Unleashing the Potential of Electroactive Hybrid Biomaterials and Self-Powered Systems for Bone Therapeutics

Highlights Introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboel...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 17; no. 1; pp. 44 - 35
Main Authors Liu, Shichang, Manshaii, Farid, Chen, Jinmiao, Wang, Xinfei, Wang, Shaolei, Yin, Junyi, Yang, Ming, Chen, Xuxu, Yin, Xinhua, Zhou, Yunlei
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2025
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights Introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices in bone tissue engineering. Emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics. The incidence of large bone defects caused by traumatic injury is increasing worldwide, and the tissue regeneration process requires a long recovery time due to limited self-healing capability. Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration. Inspired by bioelectricity, electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix, thereby accelerating bone regeneration. With ongoing advances in biomaterials and energy-harvesting techniques, electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue. In this review, we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Next, we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering. Finally, we emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies.
AbstractList The incidence of large bone defects caused by traumatic injury is increasing worldwide, and the tissue regeneration process requires a long recovery time due to limited self-healing capability. Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration. Inspired by bioelectricity, electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix, thereby accelerating bone regeneration. With ongoing advances in biomaterials and energy-harvesting techniques, electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue. In this review, we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Next, we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering. Finally, we emphasize the significance of simulating the target tissue's electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies.
The incidence of large bone defects caused by traumatic injury is increasing worldwide, and the tissue regeneration process requires a long recovery time due to limited self-healing capability. Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration. Inspired by bioelectricity, electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix, thereby accelerating bone regeneration. With ongoing advances in biomaterials and energy-harvesting techniques, electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue. In this review, we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Next, we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering. Finally, we emphasize the significance of simulating the target tissue's electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies.The incidence of large bone defects caused by traumatic injury is increasing worldwide, and the tissue regeneration process requires a long recovery time due to limited self-healing capability. Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration. Inspired by bioelectricity, electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix, thereby accelerating bone regeneration. With ongoing advances in biomaterials and energy-harvesting techniques, electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue. In this review, we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Next, we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering. Finally, we emphasize the significance of simulating the target tissue's electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies.
Highlights Introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices in bone tissue engineering. Emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics.
Highlights Introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices in bone tissue engineering. Emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics. The incidence of large bone defects caused by traumatic injury is increasing worldwide, and the tissue regeneration process requires a long recovery time due to limited self-healing capability. Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration. Inspired by bioelectricity, electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix, thereby accelerating bone regeneration. With ongoing advances in biomaterials and energy-harvesting techniques, electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue. In this review, we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Next, we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering. Finally, we emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies.
HighlightsIntroduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue.Highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices in bone tissue engineering.Emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics.The incidence of large bone defects caused by traumatic injury is increasing worldwide, and the tissue regeneration process requires a long recovery time due to limited self-healing capability. Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration. Inspired by bioelectricity, electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix, thereby accelerating bone regeneration. With ongoing advances in biomaterials and energy-harvesting techniques, electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue. In this review, we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Next, we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering. Finally, we emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies.
ArticleNumber 44
Author Yin, Junyi
Yin, Xinhua
Chen, Jinmiao
Chen, Xuxu
Wang, Xinfei
Yang, Ming
Zhou, Yunlei
Liu, Shichang
Manshaii, Farid
Wang, Shaolei
Author_xml – sequence: 1
  givenname: Shichang
  surname: Liu
  fullname: Liu, Shichang
  organization: Honghui Hospital, Xi’an Jiaotong University
– sequence: 2
  givenname: Farid
  surname: Manshaii
  fullname: Manshaii, Farid
  organization: Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles
– sequence: 3
  givenname: Jinmiao
  surname: Chen
  fullname: Chen, Jinmiao
  organization: Hangzhou Institute of Technology, Xidian University
– sequence: 4
  givenname: Xinfei
  surname: Wang
  fullname: Wang, Xinfei
  organization: Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles
– sequence: 5
  givenname: Shaolei
  surname: Wang
  fullname: Wang, Shaolei
  organization: Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles
– sequence: 6
  givenname: Junyi
  surname: Yin
  fullname: Yin, Junyi
  organization: Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles
– sequence: 7
  givenname: Ming
  surname: Yang
  fullname: Yang, Ming
  email: spine_ym@163.com
  organization: Honghui Hospital, Xi’an Jiaotong University
– sequence: 8
  givenname: Xuxu
  surname: Chen
  fullname: Chen, Xuxu
  email: firrain@126.com
  organization: Honghui Hospital, Xi’an Jiaotong University
– sequence: 9
  givenname: Xinhua
  surname: Yin
  fullname: Yin, Xinhua
  email: YIN700@outlook.com
  organization: Honghui Hospital, Xi’an Jiaotong University
– sequence: 10
  givenname: Yunlei
  surname: Zhou
  fullname: Zhou, Yunlei
  organization: Hangzhou Institute of Technology, Xidian University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39417933$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhSNUREvpH2CBLLFhE_Azjpe06kuqRCXatWU71zOuMvFgO6D597iTUqQuurLv1XfuPfZ53xxMcYKm-UjwV4Kx_JY57iluMeUtJoJ1rXrTHFEicCuEIAf1zghpO4m7w-Yk52CxoFxSKfi75pApTqRi7KgZ76cRTF6HaYXKGtBtLDCVYEYUPTofwZUUjSvhN6CrnU1hQKchbkyBVJmMzDSgnzD69jb-gQS12OUCm4x8TOi0OkZ3a0hmC3MJLn9o3vqqgpOn87i5vzi_O7tqb35cXp99v2md6HlpjSNWSWcNF0z0XqoeHGfVPZfedwywdVY6463qsAPVeUx7QzhVzJNeOsmOm-tl7hDNg96msDFpp6MJet-IaaVNqoZG0JwIKowYsCGY98Qo7r3FwKnFtep5nfVlmbVN8dcMuehNyA7G0UwQ56zrL8uOcNU9rv38An2Ic5rqS_dUTxiWpFKfnqjZbmB4tvcvkwrQBXAp5pzAPyME68fs9ZK9rtnrffZaVVH_QuRCMSXEqSQTxtelbJHmumdaQfpv-xXVX-rTwZw
CitedBy_id crossref_primary_10_1007_s42114_024_01205_w
crossref_primary_10_1007_s42114_025_01219_y
crossref_primary_10_1007_s42114_024_01098_9
crossref_primary_10_1016_j_biomaterials_2025_123083
crossref_primary_10_1016_j_ijmecsci_2025_110042
Cites_doi 10.1016/j.bioactmat.2022.03.021
10.1016/j.ensm.2019.08.004
10.1016/j.nanoen.2023.108655
10.1021/acsabm.9b00667
10.1016/j.nanoen.2022.108158
10.3390/nano10030428
10.3389/fmats.2021.628633
10.3390/biom11111731
10.1039/C8CS00583D
10.1016/j.actbio.2023.08.057
10.3109/10731198609117540
10.1088/2631-7990/acde21
10.1016/j.biomaterials.2022.121990
10.1088/2631-7990/ac94fa
10.1002/adma.202106317
10.1007/s40820-023-01187-2
10.1007/s12598-023-02370-5
10.1007/s40820-018-0228-y
10.1016/j.apmt.2022.101375
10.1021/acssuschemeng.1c07875
10.1021/nl104329y
10.1021/acsnano.7b01661
10.1002/adma.201706790
10.1038/ncomms10312
10.1007/s12598-023-02510-x
10.1002/smsc.202300303
10.3390/ma14061566
10.1038/s41467-023-42598-4
10.1021/acs.chemrev.8b00599
10.1016/j.device.2023.100252
10.1016/s0166-2236(97)01101-6
10.1088/2631-7990/acd88f
10.1186/1556-276X-9-4
10.1002/VIW.20220025
10.1016/j.addr.2012.01.016
10.1002/admt.202201310
10.1016/j.biomaterials.2020.120628
10.1002/adma.202008452
10.1016/j.bioadv.2022.212918
10.1016/j.scib.2022.04.002
10.1002/adfm.202314079
10.1038/s41467-022-33089-z
10.1002/adfm.202313553
10.1016/0021-9290(82)90174-9
10.1021/jp208436j
10.3390/app13105917
10.1002/smll.202000796
10.4317/medoral.22976
10.1038/ncomms5523
10.1021/acsnano.5b03567
10.1063/1.5091930
10.1089/ten.teb.2012.0183
10.1242/jcs.00868
10.1080/09506608.2021.1988194
10.1002/smll.202201056
10.1002/smll.202201462
10.1073/pnas.2100772118
10.1016/j.matt.2021.05.019
10.1021/acsbiomaterials.0c01314
10.1016/0141-5425(79)90013-x
10.1016/j.nanoen.2020.105201
10.20517/ss.2022.25
10.1038/s41467-023-41594-y
10.1021/acsmaterialslett.9b00376
10.1002/adma.201906989
10.1002/adfm.201907792
10.1038/s41467-024-45619-y
10.1021/acsami.8b17423
10.3390/polym9040150
10.1126/science.abn4732
10.3390/ijms21186944
10.1016/j.mattod.2023.06.011
10.1002/smll.202301693
10.20517/ss.2022.26
10.1039/c2tb00338d
10.1002/advs.202204502
10.1002/adfm.201703771
10.1002/advs.202004023
10.1016/j.actbio.2020.09.041
10.1016/j.nanoen.2021.106009
10.1039/d1cs00858g
10.1007/s40820-020-00547-6
10.1007/s12598-023-02543-2
10.1002/adfm.201909045
10.1007/s11517-018-1887-z
10.1002/adfm.202203533
10.1016/j.actbio.2015.07.021
10.1016/j.nanoen.2020.104825
10.1016/S0021-9290(97)85605-9
10.1016/j.nanoen.2012.01.004
10.1016/S2589-7500(19)30108-6
10.1016/j.tibtech.2019.07.002
10.1002/adfm.202214119
10.1007/s40820-021-00751-y
10.1021/acsnano.9b08115
10.1002/adma.202007502
10.1126/sciadv.adj0540
10.1002/adfm.201603497
10.1016/j.bone.2019.07.024
10.1002/admt.201900820
10.1093/jac/48.1.7
10.1021/nl103203u
10.7717/peerj.2821
10.1016/j.bone.2014.09.017
10.1002/adfm.202010626
10.1038/nature08602
10.1002/adhm.202300064
10.1002/flm2.10
10.1016/j.colsurfb.2024.114123
10.20517/ss.2023.08
10.1143/jjap.49.09mc11
10.1016/j.actbio.2018.04.026
10.1159/000506517
10.3390/medicina59010121
10.1039/c4ta04455j
10.1126/science.1124005
10.1002/adfm.202010609
10.1017/jfm.2022.439
10.1109/TDEI.2011.5704524
10.1016/j.msec.2020.111138
10.1021/acsomega.9b03658
10.1016/j.biomaterials.2023.121999
10.1002/adhm.201701298
10.1021/acsami.8b01991
10.1021/acsami.2c04168
10.1021/acsnano.3c09310
10.1103/PhysRevLett.127.244502
10.1002/adhm.202303405
10.3791/59127-v
10.1016/0025-5408(81)90267-1
10.1038/s41598-022-11850-0
10.1007/s12551-022-00969-z
10.1002/adma.201801511
10.1016/j.biomaterials.2023.122266
10.1109/JSEN.2022.3162914
10.1016/j.nanoen.2014.11.051
10.1002/adma.201802084
10.1002/adma.202104175
10.1021/acsnano.3c05797
10.1371/journal.pone.0006131
10.1002/advs.202304874
10.3389/fbioe.2022.879187
10.1073/pnas.2300953120
10.1007/s40291-022-00636-9
10.1002/advs.202100964
10.1088/1742-6596/534/1/012063
10.1002/advs.202401767
10.3390/en10071022
10.20517/ss.2023.06
10.1063/1.2336999
10.3390/jfb13010001
10.1016/j.pbiomolbio.2022.12.002
10.1016/j.nanoen.2022.108076
10.1021/acsnano.6b02247
10.1007/s11665-020-05016-0
10.1016/j.bioactmat.2024.02.011
10.3389/fcell.2022.772230
10.3390/app14072994
10.1021/acsami.9b14679
10.1007/s10904-022-02295-z
10.1126/sciadv.adi6799
10.1088/2057-1976/aaf210
10.1021/acsnano.3c08738
10.1016/j.surfcoat.2020.126090
10.1007/s12598-023-02298-w
10.1021/acs.nanolett.4c01926
10.1016/S0378-5955(00)00229-X
10.1126/sciadv.abl6432
10.1126/sciadv.1501478
10.1002/adfm.202214522
10.1002/adma.202109926
10.1073/pnas.2402135121
10.1016/j.jbiomech.2009.09.016
10.1016/j.medengphy.2009.02.006
10.1007/s10439-011-0504-1
10.1002/advs.201700029
10.1002/smll.201805440
10.1016/j.actbio.2015.11.047
10.1088/2631-7990/ac115a
10.1002/jor.1100010105
10.1126/science.abf2155
10.1002/adfm.202403759
10.4061/2011/920178
10.1016/j.apmt.2021.101218
10.1016/j.jma.2022.02.013
10.1002/adhm.201701466
10.1016/j.addr.2015.03.013
10.1016/j.clinbiomech.2018.05.014
10.1016/j.nanoen.2017.07.048
10.1126/sciadv.abl8379
10.1016/j.nanoen.2019.02.073
10.1016/j.actbio.2021.08.010
10.1016/j.matchemphys.2019.122002
10.1002/adma.202007429
10.1016/j.mtcomm.2021.102092
10.1111/jace.13045
10.1126/sciadv.abl5511
10.1016/j.medengphy.2017.04.002
10.1093/nsr/nwt002
10.1016/j.biomaterials.2017.10.003
10.1096/fasebj.6.13.1397839
10.1021/acsnano.2c07900
10.1002/smll.202300386
10.1016/j.compscitech.2022.109415
10.1143/jpsj.12.1158
10.1146/annurev-cellbio-100109-104042
10.1002/adhm.202301610
10.1016/j.abb.2008.03.027
10.1016/j.jeurceramsoc.2018.03.044
10.1007/s42114-024-00906-6
10.3389/fbioe.2022.832808
10.1002/advs.202100962
10.1016/j.nanoen.2018.07.012
10.1021/acsami.0c04666
10.2106/00004623-198163010-00002
10.1016/j.nantod.2020.100882
10.1002/advs.202400596
10.1007/s11914-018-0489-x
10.1021/acsomega.3c06696
10.1016/j.ceramint.2019.03.076
10.1007/s44258-023-00001-3
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
DOA
DOI 10.1007/s40820-024-01536-9
DatabaseName Springer Nature OA/Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 35
ExternalDocumentID oai_doaj_org_article_41525a5d0a10481a94ffb0e42b081a84
39417933
10_1007_s40820_024_01536_9
Genre Journal Article
Review
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AASML
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C24
C6C
CAJEB
CCEZO
CDRFL
D1I
EBLON
EBS
ESX
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PHGZM
PIMPY
PROAC
Q--
RNS
RPM
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AAYXX
AFUIB
AHSBF
C1A
CCPQU
CITATION
EJD
IPNFZ
PHGZT
PQGLB
PTHSS
RIG
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
7X8
PUEGO
ID FETCH-LOGICAL-c584t-ac1b97cba45358f798ec4324747ff63e0bcb7cafb960ce96f028a14293f187c73
IEDL.DBID C24
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:27:22 EDT 2025
Thu Jul 10 17:54:48 EDT 2025
Fri Aug 01 10:40:47 EDT 2025
Sun Aug 03 01:52:57 EDT 2025
Thu Apr 24 23:10:35 EDT 2025
Wed Aug 06 19:14:03 EDT 2025
Sun Aug 17 01:18:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Electroactive biomaterials
Bone tissue
Self-powered bioelectronics
Bone regeneration
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c584t-ac1b97cba45358f798ec4324747ff63e0bcb7cafb960ce96f028a14293f187c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s40820-024-01536-9
PMID 39417933
PQID 3117813071
PQPubID 2044332
PageCount 35
ParticipantIDs doaj_primary_oai_doaj_org_article_41525a5d0a10481a94ffb0e42b081a84
proquest_miscellaneous_3117614967
proquest_journals_3117813071
pubmed_primary_39417933
crossref_primary_10_1007_s40820_024_01536_9
crossref_citationtrail_10_1007_s40820_024_01536_9
springer_journals_10_1007_s40820_024_01536_9
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2025
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References LF George (1536_CR9) 2022; 10
P Bhardwaj (1536_CR41) 2018; 57
J-X Zhang (1536_CR15) 2023; 42
Y Wei (1536_CR126) 2017; 11
X Zhang (1536_CR120) 2021; 4
J Yin (1536_CR90) 2024; 2
B Tandon (1536_CR56) 2018; 73
Y Tian (1536_CR208) 2022; 946
W Tang (1536_CR188) 2015; 9
H Yu (1536_CR217) 2023; 3
C Peter (1536_CR201) 2019
J Sun (1536_CR170) 2024; 13
G Eng (1536_CR62) 2016; 7
F Zhao (1536_CR142) 2020; 398
EO Carvalho (1536_CR181) 2024; 243
JP Decuypere (1536_CR194) 2011; 2011
Y Jiang (1536_CR221) 2024; 121
K Barri (1536_CR93) 2022; 32
J Yin (1536_CR171) 2021; 13
B Gottenbos (1536_CR173) 2001; 48
Y Qu (1536_CR16) 2024; 11
R Balint (1536_CR61) 2013; 19
F-R Fan (1536_CR83) 2012; 1
N Zhang (1536_CR137) 2020; 5
G Yao (1536_CR189) 2021; 118
D Kim (1536_CR36) 2020; 32
MP Lutolf (1536_CR57) 2009; 462
D Pienkowski (1536_CR14) 1983; 1
G Jin (1536_CR60) 2013; 1
B Basumatary (1536_CR80) 2023; 114
W Xiong (1536_CR24) 2022; 22
X Wang (1536_CR212) 2023; 3
Y Zhou (1536_CR23) 2024
S Wang (1536_CR123) 2022; 8
A Kumar (1536_CR182) 2022; 32
B Wang (1536_CR193) 2022; 18
T-H Le (1536_CR124) 2017; 9
N Wang (1536_CR191) 2023; 8
Y Zhou (1536_CR149) 2021; 7
M Piccolino (1536_CR25) 1997; 20
T Wang (1536_CR199) 2024; 10
G Parise (1536_CR65) 2009; 4
X Wei (1536_CR59) 2020; 57
H Wu (1536_CR141) 2023; 293
X Wan (1536_CR153) 2021; 25
CR West (1536_CR37) 2012; 40
G Yao (1536_CR167) 2022; 8
Y Huang (1536_CR183) 2024; 15
X Liu (1536_CR160) 2024; 35
P Piotrowski (1536_CR116) 2021; 14
C Shuai (1536_CR148) 2020; 74
J Wu (1536_CR138) 2018; 10
Y Li (1536_CR122) 2023; 120
K Wang (1536_CR119) 2024; 11
J Walleczek (1536_CR73) 1992; 6
K Matsuo (1536_CR187) 2008; 473
G Conta (1536_CR7) 2021; 33
R Shi (1536_CR95) 2020; 77
DCF Wieland (1536_CR33) 2015; 25
I Habibagahi (1536_CR69) 2022; 12
I Mosnier (1536_CR82) 2001; 151
J Liang (1536_CR159) 2022; 14
B Amin (1536_CR44) 2019; 57
C Pan (1536_CR31) 2019; 119
C Xiao (1536_CR38) 2022; 16
Y Kong (1536_CR161) 2021; 8
BC Heng (1536_CR12) 2023; 10
L-F Zhu (1536_CR135) 2018; 38
SH Bhang (1536_CR195) 2017; 27
D Gross (1536_CR54) 1982; 15
N Adadi (1536_CR145) 2020; 5
C Tan (1536_CR214) 2022; 4
CT Brighton (1536_CR72) 1981; 63
Q Xu (1536_CR35) 2021; 33
B Zhu (1536_CR71) 2014; 5
F Yang (1536_CR200) 2021; 373
C Vargas-Estevez (1536_CR103) 2018; 51
G Khandelwal (1536_CR78) 2020; 33
Y Liu (1536_CR139) 2022; 34
S Ray (1536_CR39) 1986; 14
JS Khaw (1536_CR64) 2022; 139
AC Da Silva (1536_CR218) 2023; 3
M Yao (1536_CR196) 2022; 10
AJ Keung (1536_CR58) 2010; 26
HK Ravi (1536_CR45) 2012; 116
R Yu (1536_CR211) 2021; 14
N Setter (1536_CR146) 2006; 100
C Li (1536_CR136) 2020; 12
X Zhang (1536_CR158) 2019; 24
ZL Wang (1536_CR98) 2014; 1
X Cui (1536_CR151) 2024
T Yoneda (1536_CR3) 2018; 16
G Li (1536_CR88) 2021; 8
S Roy Barman (1536_CR155) 2024; 9
X Qu (1536_CR180) 2020; 117
A Chen (1536_CR220) 2023; 5
Y Hu (1536_CR97) 2010; 10
X Han (1536_CR222) 2023; 15
RM Irastorza (1536_CR43) 2011; 18
V Nair (1536_CR186) 2023; 382
MN Collins (1536_CR164) 2021; 31
F Jin (1536_CR30) 2022; 13
KN Kamel (1536_CR49) 2022; 14
X Long (1536_CR104) 2019; 11
H Jahr (1536_CR110) 2021; 8
B Amin (1536_CR11) 2019; 5
G Jeon (1536_CR129) 2011; 11
W Zhang (1536_CR2) 2023; 59
Y Huang (1536_CR19) 2021; 3
BD Shrivastava (1536_CR42) 2014; 534
RC Gonçalves (1536_CR163) 2021; 269
B Wang (1536_CR118) 2020; 24
X Chen (1536_CR22) 2024; 7
F Jin (1536_CR102) 2021; 33
X Wan (1536_CR107) 2021; 31
J Fu (1536_CR105) 2019; 13
Q Pan (1536_CR175) 2024; 34
AM Jawad (1536_CR76) 2017; 10
RHW Funk (1536_CR28) 2023; 177
X Wang (1536_CR202) 2023; 19
LA MacGinitie (1536_CR13) 1997; 30
Q Zheng (1536_CR87) 2017; 4
H Wang (1536_CR207) 2024; 24
Q Zheng (1536_CR190) 2016; 2
K Kapat (1536_CR143) 2020; 30
G Thrivikraman (1536_CR106) 2018; 150
Y Fu (1536_CR127) 2018; 10
H Li (1536_CR133) 2021; 26
Y Ouyang (1536_CR92) 2023; 107
S Liu (1536_CR132) 2015; 3
Y Zhou (1536_CR21) 2018; 10
L Chen (1536_CR26) 2024; 34
Y Liu (1536_CR47) 2017; 27
MT Chorsi (1536_CR100) 2019; 31
Z Liu (1536_CR27) 2021; 33
J-H Chen (1536_CR53) 2010; 43
Y Long (1536_CR184) 2021; 8
Y-P Qu (1536_CR209) 2024; 43
J Yin (1536_CR84) 2023; 1
J Song (1536_CR219) 2023; 5
JGS Figueiredo (1536_CR75) 2024; 4
Z Li (1536_CR174) 2023; 14
L Ricotti (1536_CR192) 2024; 18
F Sahm (1536_CR68) 2020; 21
S Ahadian (1536_CR114) 2016; 31
M Guillot-Ferriols (1536_CR74) 2022; 138
H Feng (1536_CR101) 2018; 7
BS Eftekhari (1536_CR108) 2020; 30
S Wang (1536_CR185) 2023; 9
Y Liu (1536_CR32) 2015; 14
S Mobini (1536_CR63) 2017; 5
KK Das (1536_CR99) 2023; 171
D D’Alessandro (1536_CR162) 2021; 11
S Swain (1536_CR179) 2020; 239
C Zhang (1536_CR152) 2018; 7
E Fukada (1536_CR10) 1957; 12
HP Savakus (1536_CR130) 1981; 16
X Zhang (1536_CR154) 2016; 10
LP da Silva (1536_CR67) 2020; 38
ZL Wang (1536_CR96) 2006; 312
Y-L Zhou (1536_CR18) 2023; 42
CH Yao (1536_CR150) 2022; 10
J Li (1536_CR121) 2023; 17
Y Zhou (1536_CR210) 2022; 3
J-B Yuan (1536_CR17) 2024; 43
C Angulo-Pineda (1536_CR178) 2020; 10
Y Zhou (1536_CR216) 2024; 18
DT Dixon (1536_CR8) 2021; 13
Y Zhou (1536_CR205) 2022; 223
L Faes (1536_CR166) 2019; 1
A Gupta (1536_CR111) 2022; 18
B Jiang (1536_CR131) 2019; 48
Z Liu (1536_CR144) 2021; 33
T Zhou (1536_CR125) 2019; 15
C Li (1536_CR169) 2023; 12
M Alzahrani (1536_CR70) 2024; 14
M Sakellakis (1536_CR29) 2023; 27
J Kwon (1536_CR51) 2020; 6
TN Vo (1536_CR6) 2012; 64
Y Zhou (1536_CR20) 2019; 1
Y Zeng (1536_CR86) 2022; 27
T Yoshida (1536_CR147) 2010; 49
F Xing (1536_CR109) 2022; 10
L Leppik (1536_CR66) 2019
S Stegen (1536_CR165) 2015; 70
W Deng (1536_CR77) 2022; 51
PJ Nicksic (1536_CR4) 2022; 10
M Wang (1536_CR112) 2023; 19
V Jarkov (1536_CR34) 2022; 67
L Wang (1536_CR117) 2023; 12
Y Huang (1536_CR213) 2017; 40
C Yu (1536_CR128) 2023; 301
J Jacob (1536_CR140) 2019; 2
Y Qian (1536_CR94) 2020; 16
SD Dutta (1536_CR157) 2023; 294
J Chen (1536_CR198) 2023; 106
T Vinikoor (1536_CR1) 2023; 14
B Saeidi (1536_CR52) 2020; 29
W Kwak (1536_CR91) 2024; 1
AS Verma (1536_CR177) 2020; 116
Y Sun (1536_CR203) 2022; 67
MA El Messiery (1536_CR46) 1979; 1
K Li (1536_CR156) 2023; 33
AA Gandhi (1536_CR48) 2014; 97
Y Li (1536_CR115) 2022; 18
S Pang (1536_CR172) 2019; 45
1536_CR176
J Tian (1536_CR89) 2019; 59
B Shi (1536_CR79) 2018; 30
Y Haba (1536_CR40) 2017; 45
AC Ahn (1536_CR50) 2009; 31
C Xu (1536_CR85) 2018; 30
BK Yun (1536_CR134) 2014; 9
M Mohammadkhah (1536_CR55) 2019; 127
M Zhao (1536_CR168) 2004; 117
SD Kim (1536_CR215) 2023; 3
Y Bai (1536_CR204) 2023; 33
X Zhang (1536_CR113) 2023; 68
H Liu (1536_CR206) 2021; 127
R Agarwal (1536_CR5) 2015; 94
J Zhou (1536_CR81) 2023; 13
Y Zhang (1536_CR197) 2021; 85
References_xml – volume: 18
  start-page: 213
  year: 2022
  ident: 1536_CR115
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2022.03.021
– volume: 24
  start-page: 22
  year: 2020
  ident: 1536_CR118
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.08.004
– volume: 114
  start-page: 108655
  year: 2023
  ident: 1536_CR80
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108655
– volume: 2
  start-page: 4922
  year: 2019
  ident: 1536_CR140
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.9b00667
– volume: 107
  start-page: 108158
  year: 2023
  ident: 1536_CR92
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.108158
– volume: 10
  start-page: 428
  year: 2020
  ident: 1536_CR178
  publication-title: Nanomaterials (Basel)
  doi: 10.3390/nano10030428
– volume: 8
  start-page: 628633
  year: 2021
  ident: 1536_CR110
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2021.628633
– volume: 11
  start-page: 1731
  year: 2021
  ident: 1536_CR162
  publication-title: Biomolecules
  doi: 10.3390/biom11111731
– volume: 48
  start-page: 1194
  year: 2019
  ident: 1536_CR131
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00583D
– volume: 171
  start-page: 85
  year: 2023
  ident: 1536_CR99
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2023.08.057
– volume: 14
  start-page: 153
  year: 1986
  ident: 1536_CR39
  publication-title: Biomater. Med. Devices Artif. Organs
  doi: 10.3109/10731198609117540
– volume: 5
  start-page: 032008
  year: 2023
  ident: 1536_CR219
  publication-title: Int. J. Extrem. Manuf.
  doi: 10.1088/2631-7990/acde21
– volume: 293
  start-page: 121990
  year: 2023
  ident: 1536_CR141
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121990
– volume: 4
  start-page: 045003
  year: 2022
  ident: 1536_CR214
  publication-title: Int. J. Extrem. Manuf.
  doi: 10.1088/2631-7990/ac94fa
– volume: 33
  start-page: e2106317
  year: 2021
  ident: 1536_CR144
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106317
– volume: 15
  start-page: 239
  year: 2023
  ident: 1536_CR222
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01187-2
– volume: 42
  start-page: 3354
  year: 2023
  ident: 1536_CR15
  publication-title: Rare Met.
  doi: 10.1007/s12598-023-02370-5
– volume: 10
  start-page: 76
  year: 2018
  ident: 1536_CR127
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-018-0228-y
– volume: 27
  start-page: 101375
  year: 2022
  ident: 1536_CR86
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2022.101375
– volume: 10
  start-page: 3276
  year: 2022
  ident: 1536_CR196
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.1c07875
– volume: 11
  start-page: 1284
  year: 2011
  ident: 1536_CR129
  publication-title: Nano Lett.
  doi: 10.1021/nl104329y
– volume: 11
  start-page: 5915
  year: 2017
  ident: 1536_CR126
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01661
– volume: 30
  start-page: e1706790
  year: 2018
  ident: 1536_CR85
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706790
– volume: 7
  start-page: 10312
  year: 2016
  ident: 1536_CR62
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10312
– volume: 43
  start-page: 796
  year: 2024
  ident: 1536_CR209
  publication-title: Rare Met.
  doi: 10.1007/s12598-023-02510-x
– volume: 4
  start-page: 2300303
  year: 2024
  ident: 1536_CR75
  publication-title: Small Sci.
  doi: 10.1002/smsc.202300303
– volume: 14
  start-page: 1566
  year: 2021
  ident: 1536_CR116
  publication-title: Materials (Basel)
  doi: 10.3390/ma14061566
– volume: 14
  start-page: 6963
  year: 2023
  ident: 1536_CR174
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-42598-4
– volume: 119
  start-page: 9303
  year: 2019
  ident: 1536_CR31
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00599
– volume: 2
  start-page: 100252
  year: 2024
  ident: 1536_CR90
  publication-title: Device
  doi: 10.1016/j.device.2023.100252
– volume: 20
  start-page: 443
  year: 1997
  ident: 1536_CR25
  publication-title: Trends Neurosci.
  doi: 10.1016/s0166-2236(97)01101-6
– volume: 5
  start-page: 032007
  year: 2023
  ident: 1536_CR220
  publication-title: Int. J. Extrem. Manuf.
  doi: 10.1088/2631-7990/acd88f
– volume: 9
  start-page: 4
  year: 2014
  ident: 1536_CR134
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-9-4
– volume: 3
  start-page: 20220025
  year: 2022
  ident: 1536_CR210
  publication-title: VIEW
  doi: 10.1002/VIW.20220025
– volume: 64
  start-page: 1292
  year: 2012
  ident: 1536_CR6
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.01.016
– volume: 8
  start-page: 2201310
  year: 2023
  ident: 1536_CR191
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202201310
– volume: 269
  year: 2021
  ident: 1536_CR163
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120628
– volume: 33
  start-page: e2008452
  year: 2021
  ident: 1536_CR35
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008452
– volume: 138
  start-page: 212918
  year: 2022
  ident: 1536_CR74
  publication-title: Biomater. Adv.
  doi: 10.1016/j.bioadv.2022.212918
– volume: 67
  start-page: 1284
  year: 2022
  ident: 1536_CR203
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2022.04.002
– volume: 34
  start-page: 2314079
  year: 2024
  ident: 1536_CR26
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202314079
– volume: 13
  start-page: 5302
  year: 2022
  ident: 1536_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33089-z
– volume: 34
  start-page: 2313553
  year: 2024
  ident: 1536_CR175
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202313553
– volume: 15
  start-page: 277
  year: 1982
  ident: 1536_CR54
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(82)90174-9
– volume: 116
  start-page: 1901
  year: 2012
  ident: 1536_CR45
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp208436j
– volume: 13
  start-page: 5917
  year: 2023
  ident: 1536_CR81
  publication-title: Appl. Sci.
  doi: 10.3390/app13105917
– volume: 16
  start-page: e2000796
  year: 2020
  ident: 1536_CR94
  publication-title: Small
  doi: 10.1002/smll.202000796
– volume: 24
  start-page: e555
  issue: 4
  year: 2019
  ident: 1536_CR158
  publication-title: Med. Oral Patologia Oral y Cirugia Bucal
  doi: 10.4317/medoral.22976
– volume: 5
  start-page: 4523
  year: 2014
  ident: 1536_CR71
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5523
– volume: 9
  start-page: 7867
  year: 2015
  ident: 1536_CR188
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03567
– year: 2019
  ident: 1536_CR201
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5091930
– volume: 19
  start-page: 48
  year: 2013
  ident: 1536_CR61
  publication-title: Tissue Eng. Part B Rev.
  doi: 10.1089/ten.teb.2012.0183
– volume: 117
  start-page: 397
  year: 2004
  ident: 1536_CR168
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.00868
– volume: 67
  start-page: 683
  year: 2022
  ident: 1536_CR34
  publication-title: Int. Mater. Rev.
  doi: 10.1080/09506608.2021.1988194
– volume: 18
  start-page: e2201056
  year: 2022
  ident: 1536_CR193
  publication-title: Small
  doi: 10.1002/smll.202201056
– volume: 18
  start-page: e2201462
  year: 2022
  ident: 1536_CR111
  publication-title: Small
  doi: 10.1002/smll.202201462
– volume: 118
  start-page: e2100772118
  year: 2021
  ident: 1536_CR189
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2100772118
– volume: 4
  start-page: 2727
  year: 2021
  ident: 1536_CR120
  publication-title: Matter
  doi: 10.1016/j.matt.2021.05.019
– volume: 6
  start-page: 6680
  year: 2020
  ident: 1536_CR51
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.0c01314
– volume: 1
  start-page: 63
  year: 1979
  ident: 1536_CR46
  publication-title: J. Biomed. Eng.
  doi: 10.1016/0141-5425(79)90013-x
– volume: 77
  start-page: 105201
  year: 2020
  ident: 1536_CR95
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105201
– volume: 3
  start-page: 3
  year: 2023
  ident: 1536_CR218
  publication-title: Soft Sci.
  doi: 10.20517/ss.2022.25
– volume: 14
  start-page: 6257
  year: 2023
  ident: 1536_CR1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-41594-y
– volume: 1
  start-page: 511
  year: 2019
  ident: 1536_CR20
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.9b00376
– volume: 32
  start-page: e1906989
  year: 2020
  ident: 1536_CR36
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906989
– volume: 30
  start-page: 1907792
  year: 2020
  ident: 1536_CR108
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201907792
– volume: 15
  start-page: 1643
  year: 2024
  ident: 1536_CR183
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-45619-y
– volume: 10
  start-page: 44760
  year: 2018
  ident: 1536_CR21
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b17423
– volume: 9
  start-page: 150
  year: 2017
  ident: 1536_CR124
  publication-title: Polymers
  doi: 10.3390/polym9040150
– volume: 382
  start-page: eabn4732
  year: 2023
  ident: 1536_CR186
  publication-title: Science
  doi: 10.1126/science.abn4732
– volume: 21
  start-page: 6944
  year: 2020
  ident: 1536_CR68
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21186944
– volume: 68
  start-page: 177
  year: 2023
  ident: 1536_CR113
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2023.06.011
– volume: 19
  start-page: 2301693
  year: 2023
  ident: 1536_CR202
  publication-title: Small
  doi: 10.1002/smll.202301693
– volume: 3
  start-page: 4
  year: 2023
  ident: 1536_CR217
  publication-title: Soft Sci.
  doi: 10.20517/ss.2022.26
– volume: 1
  start-page: 1439
  year: 2013
  ident: 1536_CR60
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c2tb00338d
– volume: 10
  start-page: e2204502
  year: 2023
  ident: 1536_CR12
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202204502
– volume: 27
  start-page: 1703771
  year: 2017
  ident: 1536_CR47
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201703771
– volume: 8
  start-page: 2004023
  year: 2021
  ident: 1536_CR184
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202004023
– volume: 117
  start-page: 400
  year: 2020
  ident: 1536_CR180
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.09.041
– volume: 85
  start-page: 106009
  year: 2021
  ident: 1536_CR197
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106009
– volume: 51
  start-page: 3380
  year: 2022
  ident: 1536_CR77
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/d1cs00858g
– volume: 13
  start-page: 30
  year: 2021
  ident: 1536_CR171
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00547-6
– volume: 43
  start-page: 3185
  year: 2024
  ident: 1536_CR17
  publication-title: Rare Met.
  doi: 10.1007/s12598-023-02543-2
– volume: 30
  start-page: 1909045
  year: 2020
  ident: 1536_CR143
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909045
– volume: 57
  start-page: 1
  year: 2019
  ident: 1536_CR44
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-018-1887-z
– volume: 32
  start-page: 2203533
  year: 2022
  ident: 1536_CR93
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202203533
– volume: 25
  start-page: 339
  year: 2015
  ident: 1536_CR33
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.07.021
– volume: 74
  start-page: 104825
  year: 2020
  ident: 1536_CR148
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104825
– volume: 30
  start-page: 1133
  year: 1997
  ident: 1536_CR13
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(97)85605-9
– volume: 1
  start-page: 328
  year: 2012
  ident: 1536_CR83
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 1
  start-page: e232
  year: 2019
  ident: 1536_CR166
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(19)30108-6
– volume: 38
  start-page: 24
  year: 2020
  ident: 1536_CR67
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2019.07.002
– volume: 33
  start-page: 2214119
  year: 2023
  ident: 1536_CR204
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202214119
– volume: 14
  start-page: 1
  year: 2021
  ident: 1536_CR211
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00751-y
– volume: 13
  start-page: 13581
  year: 2019
  ident: 1536_CR105
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b08115
– volume: 33
  start-page: 2007502
  year: 2021
  ident: 1536_CR7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007502
– volume: 9
  start-page: eadj0540
  year: 2023
  ident: 1536_CR185
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adj0540
– volume: 27
  start-page: 1603497
  year: 2017
  ident: 1536_CR195
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201603497
– volume: 127
  start-page: 544
  year: 2019
  ident: 1536_CR55
  publication-title: Bone
  doi: 10.1016/j.bone.2019.07.024
– volume: 5
  start-page: 1900820
  year: 2020
  ident: 1536_CR145
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201900820
– volume: 48
  start-page: 7
  year: 2001
  ident: 1536_CR173
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/48.1.7
– volume: 10
  start-page: 5025
  year: 2010
  ident: 1536_CR97
  publication-title: Nano Lett.
  doi: 10.1021/nl103203u
– volume: 5
  start-page: e2821
  year: 2017
  ident: 1536_CR63
  publication-title: PeerJ
  doi: 10.7717/peerj.2821
– volume: 70
  start-page: 19
  year: 2015
  ident: 1536_CR165
  publication-title: Bone
  doi: 10.1016/j.bone.2014.09.017
– volume: 31
  start-page: 2010626
  year: 2021
  ident: 1536_CR107
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202010626
– volume: 462
  start-page: 433
  year: 2009
  ident: 1536_CR57
  publication-title: Nature
  doi: 10.1038/nature08602
– volume: 12
  start-page: e2300064
  year: 2023
  ident: 1536_CR169
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202300064
– volume: 1
  start-page: 5
  year: 2024
  ident: 1536_CR91
  publication-title: FlexMat
  doi: 10.1002/flm2.10
– volume: 243
  start-page: 114123
  year: 2024
  ident: 1536_CR181
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2024.114123
– volume: 3
  start-page: 18
  year: 2023
  ident: 1536_CR215
  publication-title: Soft Sci.
  doi: 10.20517/ss.2023.08
– volume: 49
  start-page: 09MC11
  year: 2010
  ident: 1536_CR147
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/jjap.49.09mc11
– volume: 73
  start-page: 1
  year: 2018
  ident: 1536_CR56
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.04.026
– volume: 57
  start-page: 195
  year: 2020
  ident: 1536_CR59
  publication-title: J. Vasc. Res.
  doi: 10.1159/000506517
– volume: 59
  start-page: 121
  year: 2023
  ident: 1536_CR2
  publication-title: Medicina (Kaunas)
  doi: 10.3390/medicina59010121
– volume: 3
  start-page: 1511
  year: 2015
  ident: 1536_CR132
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c4ta04455j
– volume: 312
  start-page: 242
  year: 2006
  ident: 1536_CR96
  publication-title: Science
  doi: 10.1126/science.1124005
– volume: 31
  start-page: 2010609
  year: 2021
  ident: 1536_CR164
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202010609
– volume: 946
  start-page: A21
  year: 2022
  ident: 1536_CR208
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2022.439
– volume: 18
  start-page: 320
  year: 2011
  ident: 1536_CR43
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2011.5704524
– volume: 116
  start-page: 111138
  year: 2020
  ident: 1536_CR177
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2020.111138
– volume: 5
  start-page: 3099
  year: 2020
  ident: 1536_CR137
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b03658
– volume: 294
  start-page: 121999
  year: 2023
  ident: 1536_CR157
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2023.121999
– volume: 7
  start-page: 1701298
  year: 2018
  ident: 1536_CR101
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201701298
– volume: 10
  start-page: 17842
  year: 2018
  ident: 1536_CR138
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01991
– volume: 14
  start-page: 30507
  year: 2022
  ident: 1536_CR159
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c04168
– volume: 18
  start-page: 2685
  year: 2024
  ident: 1536_CR216
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c09310
– volume: 127
  start-page: 244502
  year: 2021
  ident: 1536_CR206
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.244502
– volume: 13
  start-page: e2303405
  year: 2024
  ident: 1536_CR170
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202303405
– year: 2019
  ident: 1536_CR66
  publication-title: J. Vis. Exp.
  doi: 10.3791/59127-v
– volume: 16
  start-page: 677
  year: 1981
  ident: 1536_CR130
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(81)90267-1
– volume: 12
  start-page: 8184
  year: 2022
  ident: 1536_CR69
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-11850-0
– volume: 14
  start-page: 717
  year: 2022
  ident: 1536_CR49
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-022-00969-z
– volume: 30
  start-page: 1801511
  year: 2018
  ident: 1536_CR79
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801511
– volume: 301
  start-page: 122266
  year: 2023
  ident: 1536_CR128
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2023.122266
– volume: 22
  start-page: 9046
  year: 2022
  ident: 1536_CR24
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3162914
– volume: 14
  start-page: 257
  year: 2015
  ident: 1536_CR32
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.051
– volume: 31
  start-page: 1802084
  year: 2019
  ident: 1536_CR100
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802084
– volume: 33
  start-page: e2104175
  year: 2021
  ident: 1536_CR102
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202104175
– volume: 17
  start-page: 19232
  year: 2023
  ident: 1536_CR121
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c05797
– volume: 4
  start-page: e6131
  issue: 7
  year: 2009
  ident: 1536_CR65
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0006131
– year: 2024
  ident: 1536_CR23
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202304874
– volume: 10
  start-page: 879187
  year: 2022
  ident: 1536_CR4
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2022.879187
– volume: 120
  start-page: e2300953120
  year: 2023
  ident: 1536_CR122
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2300953120
– volume: 27
  start-page: 227
  year: 2023
  ident: 1536_CR29
  publication-title: Mol. Diagn. Ther.
  doi: 10.1007/s40291-022-00636-9
– volume: 8
  start-page: e2100964
  year: 2021
  ident: 1536_CR88
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202100964
– volume: 534
  start-page: 012063
  year: 2014
  ident: 1536_CR42
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/534/1/012063
– volume: 11
  start-page: e2401767
  year: 2024
  ident: 1536_CR16
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202401767
– volume: 10
  start-page: 1022
  year: 2017
  ident: 1536_CR76
  publication-title: Energies
  doi: 10.3390/en10071022
– volume: 3
  start-page: 15
  year: 2023
  ident: 1536_CR212
  publication-title: Soft Sci.
  doi: 10.20517/ss.2023.06
– volume: 100
  start-page: 051606
  year: 2006
  ident: 1536_CR146
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2336999
– volume: 13
  start-page: 1
  year: 2021
  ident: 1536_CR8
  publication-title: J. Funct. Biomater.
  doi: 10.3390/jfb13010001
– volume: 177
  start-page: 185
  year: 2023
  ident: 1536_CR28
  publication-title: Prog. Biophys. Mol. Biol.
  doi: 10.1016/j.pbiomolbio.2022.12.002
– volume: 106
  start-page: 108076
  year: 2023
  ident: 1536_CR198
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.108076
– volume: 10
  start-page: 7279
  year: 2016
  ident: 1536_CR154
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02247
– volume: 29
  start-page: 5420
  year: 2020
  ident: 1536_CR52
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-020-05016-0
– volume: 35
  start-page: 346
  year: 2024
  ident: 1536_CR160
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2024.02.011
– volume: 10
  start-page: 772230
  year: 2022
  ident: 1536_CR9
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2022.772230
– volume: 14
  start-page: 2994
  year: 2024
  ident: 1536_CR70
  publication-title: Appl. Sci.
  doi: 10.3390/app14072994
– volume: 11
  start-page: 43857
  year: 2019
  ident: 1536_CR104
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14679
– volume: 32
  start-page: 2309
  year: 2022
  ident: 1536_CR182
  publication-title: J. Inorg. Organomet. Polym. Mater.
  doi: 10.1007/s10904-022-02295-z
– volume: 10
  start-page: eadi6799
  year: 2024
  ident: 1536_CR199
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adi6799
– volume: 5
  start-page: 022001
  year: 2019
  ident: 1536_CR11
  publication-title: Biomed. Phys. Eng. Express
  doi: 10.1088/2057-1976/aaf210
– volume: 18
  start-page: 2047
  year: 2024
  ident: 1536_CR192
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c08738
– volume: 398
  start-page: 126090
  year: 2020
  ident: 1536_CR142
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2020.126090
– volume: 42
  start-page: 1773
  year: 2023
  ident: 1536_CR18
  publication-title: Rare Met.
  doi: 10.1007/s12598-023-02298-w
– volume: 24
  start-page: 9511
  year: 2024
  ident: 1536_CR207
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.4c01926
– volume: 151
  start-page: 227
  year: 2001
  ident: 1536_CR82
  publication-title: Hear. Res.
  doi: 10.1016/S0378-5955(00)00229-X
– volume: 7
  start-page: eabl6432
  year: 2021
  ident: 1536_CR149
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abl6432
– volume: 2
  start-page: e1501478
  year: 2016
  ident: 1536_CR190
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501478
– volume: 33
  start-page: 2214522
  year: 2023
  ident: 1536_CR156
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202214522
– volume: 34
  start-page: e2109926
  year: 2022
  ident: 1536_CR139
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202109926
– volume: 121
  start-page: e2402135121
  year: 2024
  ident: 1536_CR221
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2402135121
– volume: 43
  start-page: 108
  year: 2010
  ident: 1536_CR53
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.09.016
– volume: 31
  start-page: 733
  year: 2009
  ident: 1536_CR50
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2009.02.006
– volume: 40
  start-page: 1568
  year: 2012
  ident: 1536_CR37
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-011-0504-1
– volume: 4
  start-page: 1700029
  year: 2017
  ident: 1536_CR87
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700029
– volume: 15
  start-page: e1805440
  year: 2019
  ident: 1536_CR125
  publication-title: Small
  doi: 10.1002/smll.201805440
– volume: 31
  start-page: 134
  year: 2016
  ident: 1536_CR114
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.11.047
– volume: 3
  start-page: 045101
  year: 2021
  ident: 1536_CR19
  publication-title: Int. J. Extrem. Manuf.
  doi: 10.1088/2631-7990/ac115a
– volume: 1
  start-page: 30
  year: 1983
  ident: 1536_CR14
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100010105
– volume: 373
  start-page: 337
  year: 2021
  ident: 1536_CR200
  publication-title: Science
  doi: 10.1126/science.abf2155
– ident: 1536_CR176
– year: 2024
  ident: 1536_CR151
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202403759
– volume: 2011
  start-page: 920178
  year: 2011
  ident: 1536_CR194
  publication-title: J. Aging Res.
  doi: 10.4061/2011/920178
– volume: 25
  start-page: 101218
  year: 2021
  ident: 1536_CR153
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2021.101218
– volume: 10
  start-page: 1428
  year: 2022
  ident: 1536_CR109
  publication-title: J. Magnes. Alloys
  doi: 10.1016/j.jma.2022.02.013
– volume: 7
  start-page: e1701466
  year: 2018
  ident: 1536_CR152
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201701466
– volume: 94
  start-page: 53
  year: 2015
  ident: 1536_CR5
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2015.03.013
– volume: 57
  start-page: 81
  year: 2018
  ident: 1536_CR41
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2018.05.014
– volume: 40
  start-page: 432
  year: 2017
  ident: 1536_CR213
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.048
– volume: 8
  start-page: eabl8379
  year: 2022
  ident: 1536_CR167
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abl8379
– volume: 59
  start-page: 705
  year: 2019
  ident: 1536_CR89
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.073
– volume: 139
  start-page: 204
  year: 2022
  ident: 1536_CR64
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2021.08.010
– volume: 239
  start-page: 122002
  year: 2020
  ident: 1536_CR179
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2019.122002
– volume: 33
  start-page: e2007429
  year: 2021
  ident: 1536_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007429
– volume: 26
  start-page: 102092
  year: 2021
  ident: 1536_CR133
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2021.102092
– volume: 97
  start-page: 2867
  year: 2014
  ident: 1536_CR48
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.13045
– volume: 8
  start-page: eabl5511
  year: 2022
  ident: 1536_CR123
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abl5511
– volume: 45
  start-page: 34
  year: 2017
  ident: 1536_CR40
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2017.04.002
– volume: 1
  start-page: 62
  year: 2014
  ident: 1536_CR98
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwt002
– volume: 150
  start-page: 60
  year: 2018
  ident: 1536_CR106
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.10.003
– volume: 6
  start-page: 3177
  year: 1992
  ident: 1536_CR73
  publication-title: FASEB J.
  doi: 10.1096/fasebj.6.13.1397839
– volume: 16
  start-page: 20770
  year: 2022
  ident: 1536_CR38
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c07900
– volume: 19
  start-page: 2300386
  year: 2023
  ident: 1536_CR112
  publication-title: Small
  doi: 10.1002/smll.202300386
– volume: 223
  start-page: 109415
  year: 2022
  ident: 1536_CR205
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2022.109415
– volume: 12
  start-page: 1158
  year: 1957
  ident: 1536_CR10
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/jpsj.12.1158
– volume: 26
  start-page: 533
  year: 2010
  ident: 1536_CR58
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-100109-104042
– volume: 12
  start-page: e2301610
  year: 2023
  ident: 1536_CR117
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202301610
– volume: 473
  start-page: 201
  year: 2008
  ident: 1536_CR187
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2008.03.027
– volume: 38
  start-page: 3463
  year: 2018
  ident: 1536_CR135
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.03.044
– volume: 7
  start-page: 97
  year: 2024
  ident: 1536_CR22
  publication-title: Adv. Compos. Hybrid Mater.
  doi: 10.1007/s42114-024-00906-6
– volume: 10
  start-page: 832808
  year: 2022
  ident: 1536_CR150
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2022.832808
– volume: 8
  start-page: 2100962
  year: 2021
  ident: 1536_CR161
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202100962
– volume: 51
  start-page: 571
  year: 2018
  ident: 1536_CR103
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.012
– volume: 12
  start-page: 34505
  year: 2020
  ident: 1536_CR136
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c04666
– volume: 63
  start-page: 2
  year: 1981
  ident: 1536_CR72
  publication-title: J. Bone Jt. Surg.
  doi: 10.2106/00004623-198163010-00002
– volume: 33
  start-page: 100882
  year: 2020
  ident: 1536_CR78
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2020.100882
– volume: 11
  start-page: e2400596
  year: 2024
  ident: 1536_CR119
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202400596
– volume: 16
  start-page: 648
  year: 2018
  ident: 1536_CR3
  publication-title: Curr. Osteoporos. Rep.
  doi: 10.1007/s11914-018-0489-x
– volume: 9
  start-page: 52
  year: 2024
  ident: 1536_CR155
  publication-title: ACS Omega
  doi: 10.1021/acsomega.3c06696
– volume: 45
  start-page: 12663
  year: 2019
  ident: 1536_CR172
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.03.076
– volume: 1
  start-page: 3
  issue: 1
  year: 2023
  ident: 1536_CR84
  publication-title: Med-X
  doi: 10.1007/s44258-023-00001-3
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.4925873
SecondaryResourceType review_article
Snippet Highlights Introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate...
The incidence of large bone defects caused by traumatic injury is increasing worldwide, and the tissue regeneration process requires a long recovery time due...
HighlightsIntroduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate...
Highlights Introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 44
SubjectTerms Bioelectricity
Biomedical materials
Bone regeneration
Bone tissue
Bones
Electric fields
Electroactive biomaterials
Energy
Energy harvesting
Engineering
Injury prevention
Nanogenerators
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Photovoltaic cells
Piezoelectricity
Recovery time
Regeneration (physiology)
Review
Self-powered bioelectronics
Tissue engineering
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAfBNakJG4gUUcx3Z8ZFGrFRKoEl2pN8t2bAlplaB2e-Dfd8bOJov4unDMxvnyvGTerO33CHljVJQmKccALR1rneyZ6X1kwrjAm57DXvxr4PMXtd60ny7l5YHVF84JK_LApePeY4KRcIracZQ2caZNydexbTwkM9dlJVDIeQfFFCCp0ejItIwPoq1ye6BS06Kmi1iEzCQKl-lFH1M2LeT1KdEWIq1xCCs71XHOlK7VtAInr8ND1-aaQbqDylwKxcxPWS6bAfyOwf4y-pqT2tkDcn9io_RD6YWH5E4cHpF7BxqFj8l2M2xjcVyiQBbp-bjDCUZw1JjoaTHRcfmjSdc_cPkXXX0bgQYXZFM39PRr3CZ2jnZsETaKRDoFskxX4xDpxbIC7PoJ2ZydXnxcs8migQVgLjsGAfVGB-9aKWSXtOliQI0_KFJSUiLWPngdXPJQKIVoVAI64zjkQJF4p4MWT8nRANd6TijUQqLrUD2mT23fGM99jHXTC9m7xklfEb7vUhsm_XK00djaWXk5h8FCGGwOgzUVeTsf872od_y19QojNbdE5e38A-DRTni0_8JjRU72cbbT5-DaAmZ0B2xB84q8nnfDi4yjM26I401pA1zJKF2RZwUf850Ig0ZxQlTk3R4wy8n__EAv_scDHZO7DXoe5yk8J-Rod3UTXwIR2_lX-Z27BUMaH_g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZge4EHxG8CAxmJN7CIYzuOnxBFnSokpgpWaW-RndgIqUrG2j3sv9-d4yRDwB7bOG3aO99957O_j5B3pvTKhNIy8JaKSataZlrnmTC24UXL4SouDXw7KVcb-fVMnaUFt13aVjnGxBio277BNfKPgnNdQcDV_NP5b4aqUdhdTRIad8khhOAKiq_DxfJk_X30qEKjMtPcJ0R5ZXmDrUYit4uYCc0UEpjpmSdTFRLye0q4A6DW2MqKinWcs1LnZTqJE8_joXpzziDtQYWuRMnMH9kuigL8C8n-1YWNye34IXmQUCn9PLjRI3LHd4_J_RtchU_IdtNt_aC8RAE00nW_x41GcFcf6HIQ07ExeNLVFR4Do4tfPcDhwcOp7Vr6w28DW6Msm4cXA1U6BdBMF33n6el8Emz3lGyOl6dfVixJNbAGEMyegWGd0Y2zUglVBW0q3yDXHxQrIZTC565xurHBQcHUeFMGgDWWQy4UgVe60eIZOejgu14QCjWRqCpkkWmDbAvjuPM-L1qhWltY5TLCx7-0bhKPOcppbOuJgTmaoQYz1NEMtcnI--me84HF49bRC7TUNBIZuOMb_cXPOk3oGoGPAtfOLUfKHWtkCC73snAAsmwlM3I02rlOYWFXz06ckbfTZZjQ2KWxne8vhzGAmUypM_J88I_pSYRBwTghMvJhdJj5w___g17e_iyvyL0CVY3jJp0jcrC_uPSvAWrt3Zs0n64B-bEZow
  priority: 102
  providerName: ProQuest
Title Unleashing the Potential of Electroactive Hybrid Biomaterials and Self-Powered Systems for Bone Therapeutics
URI https://link.springer.com/article/10.1007/s40820-024-01536-9
https://www.ncbi.nlm.nih.gov/pubmed/39417933
https://www.proquest.com/docview/3117813071
https://www.proquest.com/docview/3117614967
https://doaj.org/article/41525a5d0a10481a94ffb0e42b081a84
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbY9gIPiN8ERmUk3sBSHNtx_LiUlgqJqYJV2ltkJzaaVCVo7R7477lz0mSIgcRLqzZOm_bOvu9yvu8j5J3JvTIhtwy8pWDSqoaZxnkmjK151nA4ircGvpznq438fKkuh6aw3WG3-6EkGVfqsdkNpZFTBjEF0l8lcmaOyImC3B39ej5xjmca1Zim2iBKKstbDDUS-VzERGKmkLRMT9yYKpMQ04cg24NojeWrqFLHOct1mg_dN3df1m8RLgoB3IVe_6i8xoC2fEQeDkiUnvWu85jc8-0T8uAWP-FTst20W9-rLVEAinTd7XFzEZzVBbroBXRsXDDp6ie2ftHyqgMI3Hs1tW1Dv_ltYGuUYvPwoqdHpwCUadm1nl5M3V-7Z2SzXFzMV2yQZ2A1oJY9A2M6o2tnpRKqCNoUvkZ-P0hQQsiFT13tdG2DgySp9iYPAGUsh_gnAi90rcVzctzCd70kFPIgURTIHNME2WTGced9mjVCNTazyiWEH_7Sqh64y1FCY1uNrMvRDBWYoYpmqExC3o_n_OiZO_45ukRLjSORdTu-0V1_r4ZJXCHYUeDOqeVIs2ONDMGlXmYOgJUtZEJOD3auhqVgV4HP6AKQguYJeTsehkmMlRnb-u6mHwM4yeQ6IS96_xivRBgUiRMiIR8ODjN9-N9_0Kv_G_6a3M9Q2Thu1Dklx_vrG_8G4NbezchRsfw0Iydn5cdyCc_l4nz9dRbnHD7m81m8kfELeP4avw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKWQALxJtAASPBCixiO4njBUIMdJjShyoxI3UX7MRGSKOkdKZC_Sm-kXudVxHQXZczcTLO3NdJrn0OIS905lLtM8PAW3KWmLRiurKOSW1KLioOR_HVwP5BNlskn4_Sow3yq98Lg8sq-5wYEnXVlPiO_I3kXOWQcBV_d_yDoWoUdld7CY3WLXbd2U94ZFu93fkI9n0pxHR7_mHGOlUBVkKxXTOYg9WqtCZJZZp7pXNXIi0d4GrvM-liW1pVGm8B25dOZx4qsOGQtqXnuSqVhOteIVcTKTVGVD791PuvUKgDNXYlUcw5OceNkyCTjBzp01KkS1MjK2cKkxCqK-8tfFfYOAv6eJyzTMVZt-8n7P5DreiYQZFlUNNlxvQftTVIEPwLN__V8w2ldHqL3OwwMH3fOu1tsuHqO-TGOWbEu2S5qJeu1XmiAFHpYbPGZU1wVuPpdivdY0KqprMz3HRGJ98bAN9tPFFTV_SLW3p2iCJwDj60xOwUIDqdNLWj83Hf2eoeWVyKCe-TzRp-6yGh8AQm8xw5ayqfVEJbbp2LRSXTygiT2ojw_i8tyo41HcU7lsXA9xzMUIAZimCGQkfk1XDOccsZcuHoCVpqGIl83-GL5uRb0aWPAmFWCoEUG44EP0Yn3tvYJcICpDN5EpGt3s5Fl4RWxRgyEXk-HIb0gT0hU7vmtB0DCE1nKiIPWv8YZiI1ytNJGZHXvcOMF___DT26eC7PyLXZfH-v2Ns52H1MrgvUUw7Lg7bI5vrk1D0BkLe2T0NkUfL1skP5N0M5VXs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgSAgeEL8JDDASb2Atju04fqRjVfk1VWKV9hbZiT0hVcm0dQ_899zZaVLEQOIxjdu4uXPuu5zv-wh5a0qvTCgtA2-pmLSqZaZ1ngljG160HM7iq4Fvx-ViJT-fqtOdLv64231bkkw9DcjS1G0OzttwMDa-oUxyziC-QCqsRMnMTXILMhWOm_oOJ_7xQqMy01QnRHllucNWI5HbRUyEZgoJzPTEk6kKCfF9CLgJUGssZUXFOs5ZqfNy6MS5flq_RbsoCnAdkv2jChuD2_w-uTegUvohudEDcsN3D8ndHa7CR2S96tY-KS9RAI102eP9Au-lfaBHSUzHxocnXfzENjA6-9EDHE4eTm3X0u9-HdgSZdk8HCSqdAqgmc76ztOTqRPs8jFZzY9ODhdskGpgDSCYDQPDOqMbZ6USqgraVL5Brj9IVkIohc9d43Rjg4OEqfGmDABrLIdYKAKvdKPFE7LXwbWeEQo5kagqZJFpg2wL47jzPi9aoVpbWOUywre3tG4GHnOU01jXIwNzNEMNZqijGWqTkXfjd84Ti8c_R8_QUuNIZOCOH_QXZ_WwoGsEPgpcO7ccKXeskSG43MvCAciylczI_tbO9fBYuKzBZ3QFqEHzjLwZT8OCxiqN7Xx_lcYAZjKlzsjT5B_jTIRBwTghMvJ-6zDTj__9Dz3_v-Gvye3lx3n99dPxlxfkToGCx3H_zj7Z21xc-ZeAwjbuVVxovwADehws
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unleashing+the+Potential+of+Electroactive+Hybrid+Biomaterials+and+Self-Powered+Systems+for+Bone+Therapeutics&rft.jtitle=Nano-micro+letters&rft.au=Liu%2C+Shichang&rft.au=Manshaii%2C+Farid&rft.au=Chen%2C+Jinmiao&rft.au=Wang%2C+Xinfei&rft.date=2025-12-01&rft.issn=2150-5551&rft.eissn=2150-5551&rft.volume=17&rft.issue=1&rft.spage=44&rft_id=info:doi/10.1007%2Fs40820-024-01536-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon