Unleashing the Potential of Electroactive Hybrid Biomaterials and Self-Powered Systems for Bone Therapeutics
Highlights Introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboel...
Saved in:
Published in | Nano-micro letters Vol. 17; no. 1; pp. 44 - 35 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2025
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
Introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue.
Highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices in bone tissue engineering.
Emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics.
The incidence of large bone defects caused by traumatic injury is increasing worldwide, and the tissue regeneration process requires a long recovery time due to limited self-healing capability. Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration. Inspired by bioelectricity, electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix, thereby accelerating bone regeneration. With ongoing advances in biomaterials and energy-harvesting techniques, electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue. In this review, we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Next, we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering. Finally, we emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies. |
---|---|
AbstractList | The incidence of large bone defects caused by traumatic injury is increasing worldwide, and the tissue regeneration process requires a long recovery time due to limited self-healing capability. Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration. Inspired by bioelectricity, electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix, thereby accelerating bone regeneration. With ongoing advances in biomaterials and energy-harvesting techniques, electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue. In this review, we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Next, we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering. Finally, we emphasize the significance of simulating the target tissue's electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies. The incidence of large bone defects caused by traumatic injury is increasing worldwide, and the tissue regeneration process requires a long recovery time due to limited self-healing capability. Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration. Inspired by bioelectricity, electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix, thereby accelerating bone regeneration. With ongoing advances in biomaterials and energy-harvesting techniques, electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue. In this review, we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Next, we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering. Finally, we emphasize the significance of simulating the target tissue's electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies.The incidence of large bone defects caused by traumatic injury is increasing worldwide, and the tissue regeneration process requires a long recovery time due to limited self-healing capability. Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration. Inspired by bioelectricity, electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix, thereby accelerating bone regeneration. With ongoing advances in biomaterials and energy-harvesting techniques, electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue. In this review, we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Next, we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering. Finally, we emphasize the significance of simulating the target tissue's electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies. Highlights Introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices in bone tissue engineering. Emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics. Highlights Introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices in bone tissue engineering. Emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics. The incidence of large bone defects caused by traumatic injury is increasing worldwide, and the tissue regeneration process requires a long recovery time due to limited self-healing capability. Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration. Inspired by bioelectricity, electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix, thereby accelerating bone regeneration. With ongoing advances in biomaterials and energy-harvesting techniques, electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue. In this review, we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Next, we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering. Finally, we emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies. HighlightsIntroduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue.Highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices in bone tissue engineering.Emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics.The incidence of large bone defects caused by traumatic injury is increasing worldwide, and the tissue regeneration process requires a long recovery time due to limited self-healing capability. Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration. Inspired by bioelectricity, electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix, thereby accelerating bone regeneration. With ongoing advances in biomaterials and energy-harvesting techniques, electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue. In this review, we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue. Next, we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering. Finally, we emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies. |
ArticleNumber | 44 |
Author | Yin, Junyi Yin, Xinhua Chen, Jinmiao Chen, Xuxu Wang, Xinfei Yang, Ming Zhou, Yunlei Liu, Shichang Manshaii, Farid Wang, Shaolei |
Author_xml | – sequence: 1 givenname: Shichang surname: Liu fullname: Liu, Shichang organization: Honghui Hospital, Xi’an Jiaotong University – sequence: 2 givenname: Farid surname: Manshaii fullname: Manshaii, Farid organization: Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles – sequence: 3 givenname: Jinmiao surname: Chen fullname: Chen, Jinmiao organization: Hangzhou Institute of Technology, Xidian University – sequence: 4 givenname: Xinfei surname: Wang fullname: Wang, Xinfei organization: Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles – sequence: 5 givenname: Shaolei surname: Wang fullname: Wang, Shaolei organization: Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles – sequence: 6 givenname: Junyi surname: Yin fullname: Yin, Junyi organization: Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles – sequence: 7 givenname: Ming surname: Yang fullname: Yang, Ming email: spine_ym@163.com organization: Honghui Hospital, Xi’an Jiaotong University – sequence: 8 givenname: Xuxu surname: Chen fullname: Chen, Xuxu email: firrain@126.com organization: Honghui Hospital, Xi’an Jiaotong University – sequence: 9 givenname: Xinhua surname: Yin fullname: Yin, Xinhua email: YIN700@outlook.com organization: Honghui Hospital, Xi’an Jiaotong University – sequence: 10 givenname: Yunlei surname: Zhou fullname: Zhou, Yunlei organization: Hangzhou Institute of Technology, Xidian University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39417933$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAUhSNUREvpH2CBLLFhE_Azjpe06kuqRCXatWU71zOuMvFgO6D597iTUqQuurLv1XfuPfZ53xxMcYKm-UjwV4Kx_JY57iluMeUtJoJ1rXrTHFEicCuEIAf1zghpO4m7w-Yk52CxoFxSKfi75pApTqRi7KgZ76cRTF6HaYXKGtBtLDCVYEYUPTofwZUUjSvhN6CrnU1hQKchbkyBVJmMzDSgnzD69jb-gQS12OUCm4x8TOi0OkZ3a0hmC3MJLn9o3vqqgpOn87i5vzi_O7tqb35cXp99v2md6HlpjSNWSWcNF0z0XqoeHGfVPZfedwywdVY6463qsAPVeUx7QzhVzJNeOsmOm-tl7hDNg96msDFpp6MJet-IaaVNqoZG0JwIKowYsCGY98Qo7r3FwKnFtep5nfVlmbVN8dcMuehNyA7G0UwQ56zrL8uOcNU9rv38An2Ic5rqS_dUTxiWpFKfnqjZbmB4tvcvkwrQBXAp5pzAPyME68fs9ZK9rtnrffZaVVH_QuRCMSXEqSQTxtelbJHmumdaQfpv-xXVX-rTwZw |
CitedBy_id | crossref_primary_10_1007_s42114_024_01205_w crossref_primary_10_1007_s42114_025_01219_y crossref_primary_10_1007_s42114_024_01098_9 crossref_primary_10_1016_j_biomaterials_2025_123083 crossref_primary_10_1016_j_ijmecsci_2025_110042 |
Cites_doi | 10.1016/j.bioactmat.2022.03.021 10.1016/j.ensm.2019.08.004 10.1016/j.nanoen.2023.108655 10.1021/acsabm.9b00667 10.1016/j.nanoen.2022.108158 10.3390/nano10030428 10.3389/fmats.2021.628633 10.3390/biom11111731 10.1039/C8CS00583D 10.1016/j.actbio.2023.08.057 10.3109/10731198609117540 10.1088/2631-7990/acde21 10.1016/j.biomaterials.2022.121990 10.1088/2631-7990/ac94fa 10.1002/adma.202106317 10.1007/s40820-023-01187-2 10.1007/s12598-023-02370-5 10.1007/s40820-018-0228-y 10.1016/j.apmt.2022.101375 10.1021/acssuschemeng.1c07875 10.1021/nl104329y 10.1021/acsnano.7b01661 10.1002/adma.201706790 10.1038/ncomms10312 10.1007/s12598-023-02510-x 10.1002/smsc.202300303 10.3390/ma14061566 10.1038/s41467-023-42598-4 10.1021/acs.chemrev.8b00599 10.1016/j.device.2023.100252 10.1016/s0166-2236(97)01101-6 10.1088/2631-7990/acd88f 10.1186/1556-276X-9-4 10.1002/VIW.20220025 10.1016/j.addr.2012.01.016 10.1002/admt.202201310 10.1016/j.biomaterials.2020.120628 10.1002/adma.202008452 10.1016/j.bioadv.2022.212918 10.1016/j.scib.2022.04.002 10.1002/adfm.202314079 10.1038/s41467-022-33089-z 10.1002/adfm.202313553 10.1016/0021-9290(82)90174-9 10.1021/jp208436j 10.3390/app13105917 10.1002/smll.202000796 10.4317/medoral.22976 10.1038/ncomms5523 10.1021/acsnano.5b03567 10.1063/1.5091930 10.1089/ten.teb.2012.0183 10.1242/jcs.00868 10.1080/09506608.2021.1988194 10.1002/smll.202201056 10.1002/smll.202201462 10.1073/pnas.2100772118 10.1016/j.matt.2021.05.019 10.1021/acsbiomaterials.0c01314 10.1016/0141-5425(79)90013-x 10.1016/j.nanoen.2020.105201 10.20517/ss.2022.25 10.1038/s41467-023-41594-y 10.1021/acsmaterialslett.9b00376 10.1002/adma.201906989 10.1002/adfm.201907792 10.1038/s41467-024-45619-y 10.1021/acsami.8b17423 10.3390/polym9040150 10.1126/science.abn4732 10.3390/ijms21186944 10.1016/j.mattod.2023.06.011 10.1002/smll.202301693 10.20517/ss.2022.26 10.1039/c2tb00338d 10.1002/advs.202204502 10.1002/adfm.201703771 10.1002/advs.202004023 10.1016/j.actbio.2020.09.041 10.1016/j.nanoen.2021.106009 10.1039/d1cs00858g 10.1007/s40820-020-00547-6 10.1007/s12598-023-02543-2 10.1002/adfm.201909045 10.1007/s11517-018-1887-z 10.1002/adfm.202203533 10.1016/j.actbio.2015.07.021 10.1016/j.nanoen.2020.104825 10.1016/S0021-9290(97)85605-9 10.1016/j.nanoen.2012.01.004 10.1016/S2589-7500(19)30108-6 10.1016/j.tibtech.2019.07.002 10.1002/adfm.202214119 10.1007/s40820-021-00751-y 10.1021/acsnano.9b08115 10.1002/adma.202007502 10.1126/sciadv.adj0540 10.1002/adfm.201603497 10.1016/j.bone.2019.07.024 10.1002/admt.201900820 10.1093/jac/48.1.7 10.1021/nl103203u 10.7717/peerj.2821 10.1016/j.bone.2014.09.017 10.1002/adfm.202010626 10.1038/nature08602 10.1002/adhm.202300064 10.1002/flm2.10 10.1016/j.colsurfb.2024.114123 10.20517/ss.2023.08 10.1143/jjap.49.09mc11 10.1016/j.actbio.2018.04.026 10.1159/000506517 10.3390/medicina59010121 10.1039/c4ta04455j 10.1126/science.1124005 10.1002/adfm.202010609 10.1017/jfm.2022.439 10.1109/TDEI.2011.5704524 10.1016/j.msec.2020.111138 10.1021/acsomega.9b03658 10.1016/j.biomaterials.2023.121999 10.1002/adhm.201701298 10.1021/acsami.8b01991 10.1021/acsami.2c04168 10.1021/acsnano.3c09310 10.1103/PhysRevLett.127.244502 10.1002/adhm.202303405 10.3791/59127-v 10.1016/0025-5408(81)90267-1 10.1038/s41598-022-11850-0 10.1007/s12551-022-00969-z 10.1002/adma.201801511 10.1016/j.biomaterials.2023.122266 10.1109/JSEN.2022.3162914 10.1016/j.nanoen.2014.11.051 10.1002/adma.201802084 10.1002/adma.202104175 10.1021/acsnano.3c05797 10.1371/journal.pone.0006131 10.1002/advs.202304874 10.3389/fbioe.2022.879187 10.1073/pnas.2300953120 10.1007/s40291-022-00636-9 10.1002/advs.202100964 10.1088/1742-6596/534/1/012063 10.1002/advs.202401767 10.3390/en10071022 10.20517/ss.2023.06 10.1063/1.2336999 10.3390/jfb13010001 10.1016/j.pbiomolbio.2022.12.002 10.1016/j.nanoen.2022.108076 10.1021/acsnano.6b02247 10.1007/s11665-020-05016-0 10.1016/j.bioactmat.2024.02.011 10.3389/fcell.2022.772230 10.3390/app14072994 10.1021/acsami.9b14679 10.1007/s10904-022-02295-z 10.1126/sciadv.adi6799 10.1088/2057-1976/aaf210 10.1021/acsnano.3c08738 10.1016/j.surfcoat.2020.126090 10.1007/s12598-023-02298-w 10.1021/acs.nanolett.4c01926 10.1016/S0378-5955(00)00229-X 10.1126/sciadv.abl6432 10.1126/sciadv.1501478 10.1002/adfm.202214522 10.1002/adma.202109926 10.1073/pnas.2402135121 10.1016/j.jbiomech.2009.09.016 10.1016/j.medengphy.2009.02.006 10.1007/s10439-011-0504-1 10.1002/advs.201700029 10.1002/smll.201805440 10.1016/j.actbio.2015.11.047 10.1088/2631-7990/ac115a 10.1002/jor.1100010105 10.1126/science.abf2155 10.1002/adfm.202403759 10.4061/2011/920178 10.1016/j.apmt.2021.101218 10.1016/j.jma.2022.02.013 10.1002/adhm.201701466 10.1016/j.addr.2015.03.013 10.1016/j.clinbiomech.2018.05.014 10.1016/j.nanoen.2017.07.048 10.1126/sciadv.abl8379 10.1016/j.nanoen.2019.02.073 10.1016/j.actbio.2021.08.010 10.1016/j.matchemphys.2019.122002 10.1002/adma.202007429 10.1016/j.mtcomm.2021.102092 10.1111/jace.13045 10.1126/sciadv.abl5511 10.1016/j.medengphy.2017.04.002 10.1093/nsr/nwt002 10.1016/j.biomaterials.2017.10.003 10.1096/fasebj.6.13.1397839 10.1021/acsnano.2c07900 10.1002/smll.202300386 10.1016/j.compscitech.2022.109415 10.1143/jpsj.12.1158 10.1146/annurev-cellbio-100109-104042 10.1002/adhm.202301610 10.1016/j.abb.2008.03.027 10.1016/j.jeurceramsoc.2018.03.044 10.1007/s42114-024-00906-6 10.3389/fbioe.2022.832808 10.1002/advs.202100962 10.1016/j.nanoen.2018.07.012 10.1021/acsami.0c04666 10.2106/00004623-198163010-00002 10.1016/j.nantod.2020.100882 10.1002/advs.202400596 10.1007/s11914-018-0489-x 10.1021/acsomega.3c06696 10.1016/j.ceramint.2019.03.076 10.1007/s44258-023-00001-3 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 DOA |
DOI | 10.1007/s40820-024-01536-9 |
DatabaseName | Springer Nature OA/Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 35 |
ExternalDocumentID | oai_doaj_org_article_41525a5d0a10481a94ffb0e42b081a84 39417933 10_1007_s40820_024_01536_9 |
Genre | Journal Article Review |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 9D9 9DB AAFWJ AAJSJ AAKKN AASML ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C24 C6C CAJEB CCEZO CDRFL D1I EBLON EBS ESX GROUPED_DOAJ GX1 HCIFZ IAO IHR ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PHGZM PIMPY PROAC Q-- RNS RPM RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AAYXX AFUIB AHSBF C1A CCPQU CITATION EJD IPNFZ PHGZT PQGLB PTHSS RIG NPM ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI 7X8 PUEGO |
ID | FETCH-LOGICAL-c584t-ac1b97cba45358f798ec4324747ff63e0bcb7cafb960ce96f028a14293f187c73 |
IEDL.DBID | C24 |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:27:22 EDT 2025 Thu Jul 10 17:54:48 EDT 2025 Fri Aug 01 10:40:47 EDT 2025 Sun Aug 03 01:52:57 EDT 2025 Thu Apr 24 23:10:35 EDT 2025 Wed Aug 06 19:14:03 EDT 2025 Sun Aug 17 01:18:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Electroactive biomaterials Bone tissue Self-powered bioelectronics Bone regeneration |
Language | English |
License | 2024. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c584t-ac1b97cba45358f798ec4324747ff63e0bcb7cafb960ce96f028a14293f187c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1007/s40820-024-01536-9 |
PMID | 39417933 |
PQID | 3117813071 |
PQPubID | 2044332 |
PageCount | 35 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_41525a5d0a10481a94ffb0e42b081a84 proquest_miscellaneous_3117614967 proquest_journals_3117813071 pubmed_primary_39417933 crossref_primary_10_1007_s40820_024_01536_9 crossref_citationtrail_10_1007_s40820_024_01536_9 springer_journals_10_1007_s40820_024_01536_9 |
PublicationCentury | 2000 |
PublicationDate | 2025-12-01 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationTitleAlternate | Nanomicro Lett |
PublicationYear | 2025 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | LF George (1536_CR9) 2022; 10 P Bhardwaj (1536_CR41) 2018; 57 J-X Zhang (1536_CR15) 2023; 42 Y Wei (1536_CR126) 2017; 11 X Zhang (1536_CR120) 2021; 4 J Yin (1536_CR90) 2024; 2 B Tandon (1536_CR56) 2018; 73 Y Tian (1536_CR208) 2022; 946 W Tang (1536_CR188) 2015; 9 H Yu (1536_CR217) 2023; 3 C Peter (1536_CR201) 2019 J Sun (1536_CR170) 2024; 13 G Eng (1536_CR62) 2016; 7 F Zhao (1536_CR142) 2020; 398 EO Carvalho (1536_CR181) 2024; 243 JP Decuypere (1536_CR194) 2011; 2011 Y Jiang (1536_CR221) 2024; 121 K Barri (1536_CR93) 2022; 32 J Yin (1536_CR171) 2021; 13 B Gottenbos (1536_CR173) 2001; 48 Y Qu (1536_CR16) 2024; 11 R Balint (1536_CR61) 2013; 19 F-R Fan (1536_CR83) 2012; 1 N Zhang (1536_CR137) 2020; 5 G Yao (1536_CR189) 2021; 118 D Kim (1536_CR36) 2020; 32 MP Lutolf (1536_CR57) 2009; 462 D Pienkowski (1536_CR14) 1983; 1 G Jin (1536_CR60) 2013; 1 B Basumatary (1536_CR80) 2023; 114 W Xiong (1536_CR24) 2022; 22 X Wang (1536_CR212) 2023; 3 Y Zhou (1536_CR23) 2024 S Wang (1536_CR123) 2022; 8 A Kumar (1536_CR182) 2022; 32 B Wang (1536_CR193) 2022; 18 T-H Le (1536_CR124) 2017; 9 N Wang (1536_CR191) 2023; 8 Y Zhou (1536_CR149) 2021; 7 M Piccolino (1536_CR25) 1997; 20 T Wang (1536_CR199) 2024; 10 G Parise (1536_CR65) 2009; 4 X Wei (1536_CR59) 2020; 57 H Wu (1536_CR141) 2023; 293 X Wan (1536_CR153) 2021; 25 CR West (1536_CR37) 2012; 40 G Yao (1536_CR167) 2022; 8 Y Huang (1536_CR183) 2024; 15 X Liu (1536_CR160) 2024; 35 P Piotrowski (1536_CR116) 2021; 14 C Shuai (1536_CR148) 2020; 74 J Wu (1536_CR138) 2018; 10 Y Li (1536_CR122) 2023; 120 K Wang (1536_CR119) 2024; 11 J Walleczek (1536_CR73) 1992; 6 K Matsuo (1536_CR187) 2008; 473 G Conta (1536_CR7) 2021; 33 R Shi (1536_CR95) 2020; 77 DCF Wieland (1536_CR33) 2015; 25 I Habibagahi (1536_CR69) 2022; 12 I Mosnier (1536_CR82) 2001; 151 J Liang (1536_CR159) 2022; 14 B Amin (1536_CR44) 2019; 57 C Pan (1536_CR31) 2019; 119 C Xiao (1536_CR38) 2022; 16 Y Kong (1536_CR161) 2021; 8 BC Heng (1536_CR12) 2023; 10 L-F Zhu (1536_CR135) 2018; 38 SH Bhang (1536_CR195) 2017; 27 D Gross (1536_CR54) 1982; 15 N Adadi (1536_CR145) 2020; 5 C Tan (1536_CR214) 2022; 4 CT Brighton (1536_CR72) 1981; 63 Q Xu (1536_CR35) 2021; 33 B Zhu (1536_CR71) 2014; 5 F Yang (1536_CR200) 2021; 373 C Vargas-Estevez (1536_CR103) 2018; 51 G Khandelwal (1536_CR78) 2020; 33 Y Liu (1536_CR139) 2022; 34 S Ray (1536_CR39) 1986; 14 JS Khaw (1536_CR64) 2022; 139 AC Da Silva (1536_CR218) 2023; 3 M Yao (1536_CR196) 2022; 10 AJ Keung (1536_CR58) 2010; 26 HK Ravi (1536_CR45) 2012; 116 R Yu (1536_CR211) 2021; 14 N Setter (1536_CR146) 2006; 100 C Li (1536_CR136) 2020; 12 X Zhang (1536_CR158) 2019; 24 ZL Wang (1536_CR98) 2014; 1 X Cui (1536_CR151) 2024 T Yoneda (1536_CR3) 2018; 16 G Li (1536_CR88) 2021; 8 S Roy Barman (1536_CR155) 2024; 9 X Qu (1536_CR180) 2020; 117 A Chen (1536_CR220) 2023; 5 Y Hu (1536_CR97) 2010; 10 X Han (1536_CR222) 2023; 15 RM Irastorza (1536_CR43) 2011; 18 V Nair (1536_CR186) 2023; 382 MN Collins (1536_CR164) 2021; 31 F Jin (1536_CR30) 2022; 13 KN Kamel (1536_CR49) 2022; 14 X Long (1536_CR104) 2019; 11 H Jahr (1536_CR110) 2021; 8 B Amin (1536_CR11) 2019; 5 G Jeon (1536_CR129) 2011; 11 W Zhang (1536_CR2) 2023; 59 Y Huang (1536_CR19) 2021; 3 BD Shrivastava (1536_CR42) 2014; 534 RC Gonçalves (1536_CR163) 2021; 269 B Wang (1536_CR118) 2020; 24 X Chen (1536_CR22) 2024; 7 F Jin (1536_CR102) 2021; 33 X Wan (1536_CR107) 2021; 31 J Fu (1536_CR105) 2019; 13 Q Pan (1536_CR175) 2024; 34 AM Jawad (1536_CR76) 2017; 10 RHW Funk (1536_CR28) 2023; 177 X Wang (1536_CR202) 2023; 19 LA MacGinitie (1536_CR13) 1997; 30 Q Zheng (1536_CR87) 2017; 4 H Wang (1536_CR207) 2024; 24 Q Zheng (1536_CR190) 2016; 2 K Kapat (1536_CR143) 2020; 30 G Thrivikraman (1536_CR106) 2018; 150 Y Fu (1536_CR127) 2018; 10 H Li (1536_CR133) 2021; 26 Y Ouyang (1536_CR92) 2023; 107 S Liu (1536_CR132) 2015; 3 Y Zhou (1536_CR21) 2018; 10 L Chen (1536_CR26) 2024; 34 Y Liu (1536_CR47) 2017; 27 MT Chorsi (1536_CR100) 2019; 31 Z Liu (1536_CR27) 2021; 33 J-H Chen (1536_CR53) 2010; 43 Y Long (1536_CR184) 2021; 8 Y-P Qu (1536_CR209) 2024; 43 J Yin (1536_CR84) 2023; 1 J Song (1536_CR219) 2023; 5 JGS Figueiredo (1536_CR75) 2024; 4 Z Li (1536_CR174) 2023; 14 L Ricotti (1536_CR192) 2024; 18 F Sahm (1536_CR68) 2020; 21 S Ahadian (1536_CR114) 2016; 31 M Guillot-Ferriols (1536_CR74) 2022; 138 H Feng (1536_CR101) 2018; 7 BS Eftekhari (1536_CR108) 2020; 30 S Wang (1536_CR185) 2023; 9 Y Liu (1536_CR32) 2015; 14 S Mobini (1536_CR63) 2017; 5 KK Das (1536_CR99) 2023; 171 D D’Alessandro (1536_CR162) 2021; 11 S Swain (1536_CR179) 2020; 239 C Zhang (1536_CR152) 2018; 7 E Fukada (1536_CR10) 1957; 12 HP Savakus (1536_CR130) 1981; 16 X Zhang (1536_CR154) 2016; 10 LP da Silva (1536_CR67) 2020; 38 ZL Wang (1536_CR96) 2006; 312 Y-L Zhou (1536_CR18) 2023; 42 CH Yao (1536_CR150) 2022; 10 J Li (1536_CR121) 2023; 17 Y Zhou (1536_CR210) 2022; 3 J-B Yuan (1536_CR17) 2024; 43 C Angulo-Pineda (1536_CR178) 2020; 10 Y Zhou (1536_CR216) 2024; 18 DT Dixon (1536_CR8) 2021; 13 Y Zhou (1536_CR205) 2022; 223 L Faes (1536_CR166) 2019; 1 A Gupta (1536_CR111) 2022; 18 B Jiang (1536_CR131) 2019; 48 Z Liu (1536_CR144) 2021; 33 T Zhou (1536_CR125) 2019; 15 C Li (1536_CR169) 2023; 12 M Alzahrani (1536_CR70) 2024; 14 M Sakellakis (1536_CR29) 2023; 27 J Kwon (1536_CR51) 2020; 6 TN Vo (1536_CR6) 2012; 64 Y Zhou (1536_CR20) 2019; 1 Y Zeng (1536_CR86) 2022; 27 T Yoshida (1536_CR147) 2010; 49 F Xing (1536_CR109) 2022; 10 L Leppik (1536_CR66) 2019 S Stegen (1536_CR165) 2015; 70 W Deng (1536_CR77) 2022; 51 PJ Nicksic (1536_CR4) 2022; 10 M Wang (1536_CR112) 2023; 19 V Jarkov (1536_CR34) 2022; 67 L Wang (1536_CR117) 2023; 12 Y Huang (1536_CR213) 2017; 40 C Yu (1536_CR128) 2023; 301 J Jacob (1536_CR140) 2019; 2 Y Qian (1536_CR94) 2020; 16 SD Dutta (1536_CR157) 2023; 294 J Chen (1536_CR198) 2023; 106 T Vinikoor (1536_CR1) 2023; 14 B Saeidi (1536_CR52) 2020; 29 W Kwak (1536_CR91) 2024; 1 AS Verma (1536_CR177) 2020; 116 Y Sun (1536_CR203) 2022; 67 MA El Messiery (1536_CR46) 1979; 1 K Li (1536_CR156) 2023; 33 AA Gandhi (1536_CR48) 2014; 97 Y Li (1536_CR115) 2022; 18 S Pang (1536_CR172) 2019; 45 1536_CR176 J Tian (1536_CR89) 2019; 59 B Shi (1536_CR79) 2018; 30 Y Haba (1536_CR40) 2017; 45 AC Ahn (1536_CR50) 2009; 31 C Xu (1536_CR85) 2018; 30 BK Yun (1536_CR134) 2014; 9 M Mohammadkhah (1536_CR55) 2019; 127 M Zhao (1536_CR168) 2004; 117 SD Kim (1536_CR215) 2023; 3 Y Bai (1536_CR204) 2023; 33 X Zhang (1536_CR113) 2023; 68 H Liu (1536_CR206) 2021; 127 R Agarwal (1536_CR5) 2015; 94 J Zhou (1536_CR81) 2023; 13 Y Zhang (1536_CR197) 2021; 85 |
References_xml | – volume: 18 start-page: 213 year: 2022 ident: 1536_CR115 publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2022.03.021 – volume: 24 start-page: 22 year: 2020 ident: 1536_CR118 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.08.004 – volume: 114 start-page: 108655 year: 2023 ident: 1536_CR80 publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108655 – volume: 2 start-page: 4922 year: 2019 ident: 1536_CR140 publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.9b00667 – volume: 107 start-page: 108158 year: 2023 ident: 1536_CR92 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.108158 – volume: 10 start-page: 428 year: 2020 ident: 1536_CR178 publication-title: Nanomaterials (Basel) doi: 10.3390/nano10030428 – volume: 8 start-page: 628633 year: 2021 ident: 1536_CR110 publication-title: Front. Mater. doi: 10.3389/fmats.2021.628633 – volume: 11 start-page: 1731 year: 2021 ident: 1536_CR162 publication-title: Biomolecules doi: 10.3390/biom11111731 – volume: 48 start-page: 1194 year: 2019 ident: 1536_CR131 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00583D – volume: 171 start-page: 85 year: 2023 ident: 1536_CR99 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2023.08.057 – volume: 14 start-page: 153 year: 1986 ident: 1536_CR39 publication-title: Biomater. Med. Devices Artif. Organs doi: 10.3109/10731198609117540 – volume: 5 start-page: 032008 year: 2023 ident: 1536_CR219 publication-title: Int. J. Extrem. Manuf. doi: 10.1088/2631-7990/acde21 – volume: 293 start-page: 121990 year: 2023 ident: 1536_CR141 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121990 – volume: 4 start-page: 045003 year: 2022 ident: 1536_CR214 publication-title: Int. J. Extrem. Manuf. doi: 10.1088/2631-7990/ac94fa – volume: 33 start-page: e2106317 year: 2021 ident: 1536_CR144 publication-title: Adv. Mater. doi: 10.1002/adma.202106317 – volume: 15 start-page: 239 year: 2023 ident: 1536_CR222 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01187-2 – volume: 42 start-page: 3354 year: 2023 ident: 1536_CR15 publication-title: Rare Met. doi: 10.1007/s12598-023-02370-5 – volume: 10 start-page: 76 year: 2018 ident: 1536_CR127 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-018-0228-y – volume: 27 start-page: 101375 year: 2022 ident: 1536_CR86 publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2022.101375 – volume: 10 start-page: 3276 year: 2022 ident: 1536_CR196 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.1c07875 – volume: 11 start-page: 1284 year: 2011 ident: 1536_CR129 publication-title: Nano Lett. doi: 10.1021/nl104329y – volume: 11 start-page: 5915 year: 2017 ident: 1536_CR126 publication-title: ACS Nano doi: 10.1021/acsnano.7b01661 – volume: 30 start-page: e1706790 year: 2018 ident: 1536_CR85 publication-title: Adv. Mater. doi: 10.1002/adma.201706790 – volume: 7 start-page: 10312 year: 2016 ident: 1536_CR62 publication-title: Nat. Commun. doi: 10.1038/ncomms10312 – volume: 43 start-page: 796 year: 2024 ident: 1536_CR209 publication-title: Rare Met. doi: 10.1007/s12598-023-02510-x – volume: 4 start-page: 2300303 year: 2024 ident: 1536_CR75 publication-title: Small Sci. doi: 10.1002/smsc.202300303 – volume: 14 start-page: 1566 year: 2021 ident: 1536_CR116 publication-title: Materials (Basel) doi: 10.3390/ma14061566 – volume: 14 start-page: 6963 year: 2023 ident: 1536_CR174 publication-title: Nat. Commun. doi: 10.1038/s41467-023-42598-4 – volume: 119 start-page: 9303 year: 2019 ident: 1536_CR31 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00599 – volume: 2 start-page: 100252 year: 2024 ident: 1536_CR90 publication-title: Device doi: 10.1016/j.device.2023.100252 – volume: 20 start-page: 443 year: 1997 ident: 1536_CR25 publication-title: Trends Neurosci. doi: 10.1016/s0166-2236(97)01101-6 – volume: 5 start-page: 032007 year: 2023 ident: 1536_CR220 publication-title: Int. J. Extrem. Manuf. doi: 10.1088/2631-7990/acd88f – volume: 9 start-page: 4 year: 2014 ident: 1536_CR134 publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-9-4 – volume: 3 start-page: 20220025 year: 2022 ident: 1536_CR210 publication-title: VIEW doi: 10.1002/VIW.20220025 – volume: 64 start-page: 1292 year: 2012 ident: 1536_CR6 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.01.016 – volume: 8 start-page: 2201310 year: 2023 ident: 1536_CR191 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202201310 – volume: 269 year: 2021 ident: 1536_CR163 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120628 – volume: 33 start-page: e2008452 year: 2021 ident: 1536_CR35 publication-title: Adv. Mater. doi: 10.1002/adma.202008452 – volume: 138 start-page: 212918 year: 2022 ident: 1536_CR74 publication-title: Biomater. Adv. doi: 10.1016/j.bioadv.2022.212918 – volume: 67 start-page: 1284 year: 2022 ident: 1536_CR203 publication-title: Sci. Bull. doi: 10.1016/j.scib.2022.04.002 – volume: 34 start-page: 2314079 year: 2024 ident: 1536_CR26 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202314079 – volume: 13 start-page: 5302 year: 2022 ident: 1536_CR30 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33089-z – volume: 34 start-page: 2313553 year: 2024 ident: 1536_CR175 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202313553 – volume: 15 start-page: 277 year: 1982 ident: 1536_CR54 publication-title: J. Biomech. doi: 10.1016/0021-9290(82)90174-9 – volume: 116 start-page: 1901 year: 2012 ident: 1536_CR45 publication-title: J. Phys. Chem. B doi: 10.1021/jp208436j – volume: 13 start-page: 5917 year: 2023 ident: 1536_CR81 publication-title: Appl. Sci. doi: 10.3390/app13105917 – volume: 16 start-page: e2000796 year: 2020 ident: 1536_CR94 publication-title: Small doi: 10.1002/smll.202000796 – volume: 24 start-page: e555 issue: 4 year: 2019 ident: 1536_CR158 publication-title: Med. Oral Patologia Oral y Cirugia Bucal doi: 10.4317/medoral.22976 – volume: 5 start-page: 4523 year: 2014 ident: 1536_CR71 publication-title: Nat. Commun. doi: 10.1038/ncomms5523 – volume: 9 start-page: 7867 year: 2015 ident: 1536_CR188 publication-title: ACS Nano doi: 10.1021/acsnano.5b03567 – year: 2019 ident: 1536_CR201 publication-title: J. Appl. Phys. doi: 10.1063/1.5091930 – volume: 19 start-page: 48 year: 2013 ident: 1536_CR61 publication-title: Tissue Eng. Part B Rev. doi: 10.1089/ten.teb.2012.0183 – volume: 117 start-page: 397 year: 2004 ident: 1536_CR168 publication-title: J. Cell Sci. doi: 10.1242/jcs.00868 – volume: 67 start-page: 683 year: 2022 ident: 1536_CR34 publication-title: Int. Mater. Rev. doi: 10.1080/09506608.2021.1988194 – volume: 18 start-page: e2201056 year: 2022 ident: 1536_CR193 publication-title: Small doi: 10.1002/smll.202201056 – volume: 18 start-page: e2201462 year: 2022 ident: 1536_CR111 publication-title: Small doi: 10.1002/smll.202201462 – volume: 118 start-page: e2100772118 year: 2021 ident: 1536_CR189 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2100772118 – volume: 4 start-page: 2727 year: 2021 ident: 1536_CR120 publication-title: Matter doi: 10.1016/j.matt.2021.05.019 – volume: 6 start-page: 6680 year: 2020 ident: 1536_CR51 publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.0c01314 – volume: 1 start-page: 63 year: 1979 ident: 1536_CR46 publication-title: J. Biomed. Eng. doi: 10.1016/0141-5425(79)90013-x – volume: 77 start-page: 105201 year: 2020 ident: 1536_CR95 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105201 – volume: 3 start-page: 3 year: 2023 ident: 1536_CR218 publication-title: Soft Sci. doi: 10.20517/ss.2022.25 – volume: 14 start-page: 6257 year: 2023 ident: 1536_CR1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-41594-y – volume: 1 start-page: 511 year: 2019 ident: 1536_CR20 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.9b00376 – volume: 32 start-page: e1906989 year: 2020 ident: 1536_CR36 publication-title: Adv. Mater. doi: 10.1002/adma.201906989 – volume: 30 start-page: 1907792 year: 2020 ident: 1536_CR108 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201907792 – volume: 15 start-page: 1643 year: 2024 ident: 1536_CR183 publication-title: Nat. Commun. doi: 10.1038/s41467-024-45619-y – volume: 10 start-page: 44760 year: 2018 ident: 1536_CR21 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b17423 – volume: 9 start-page: 150 year: 2017 ident: 1536_CR124 publication-title: Polymers doi: 10.3390/polym9040150 – volume: 382 start-page: eabn4732 year: 2023 ident: 1536_CR186 publication-title: Science doi: 10.1126/science.abn4732 – volume: 21 start-page: 6944 year: 2020 ident: 1536_CR68 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21186944 – volume: 68 start-page: 177 year: 2023 ident: 1536_CR113 publication-title: Mater. Today doi: 10.1016/j.mattod.2023.06.011 – volume: 19 start-page: 2301693 year: 2023 ident: 1536_CR202 publication-title: Small doi: 10.1002/smll.202301693 – volume: 3 start-page: 4 year: 2023 ident: 1536_CR217 publication-title: Soft Sci. doi: 10.20517/ss.2022.26 – volume: 1 start-page: 1439 year: 2013 ident: 1536_CR60 publication-title: J. Mater. Chem. B doi: 10.1039/c2tb00338d – volume: 10 start-page: e2204502 year: 2023 ident: 1536_CR12 publication-title: Adv. Sci. doi: 10.1002/advs.202204502 – volume: 27 start-page: 1703771 year: 2017 ident: 1536_CR47 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703771 – volume: 8 start-page: 2004023 year: 2021 ident: 1536_CR184 publication-title: Adv. Sci. doi: 10.1002/advs.202004023 – volume: 117 start-page: 400 year: 2020 ident: 1536_CR180 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.09.041 – volume: 85 start-page: 106009 year: 2021 ident: 1536_CR197 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106009 – volume: 51 start-page: 3380 year: 2022 ident: 1536_CR77 publication-title: Chem. Soc. Rev. doi: 10.1039/d1cs00858g – volume: 13 start-page: 30 year: 2021 ident: 1536_CR171 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00547-6 – volume: 43 start-page: 3185 year: 2024 ident: 1536_CR17 publication-title: Rare Met. doi: 10.1007/s12598-023-02543-2 – volume: 30 start-page: 1909045 year: 2020 ident: 1536_CR143 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909045 – volume: 57 start-page: 1 year: 2019 ident: 1536_CR44 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-018-1887-z – volume: 32 start-page: 2203533 year: 2022 ident: 1536_CR93 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202203533 – volume: 25 start-page: 339 year: 2015 ident: 1536_CR33 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.07.021 – volume: 74 start-page: 104825 year: 2020 ident: 1536_CR148 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104825 – volume: 30 start-page: 1133 year: 1997 ident: 1536_CR13 publication-title: J. Biomech. doi: 10.1016/S0021-9290(97)85605-9 – volume: 1 start-page: 328 year: 2012 ident: 1536_CR83 publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 1 start-page: e232 year: 2019 ident: 1536_CR166 publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(19)30108-6 – volume: 38 start-page: 24 year: 2020 ident: 1536_CR67 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2019.07.002 – volume: 33 start-page: 2214119 year: 2023 ident: 1536_CR204 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202214119 – volume: 14 start-page: 1 year: 2021 ident: 1536_CR211 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00751-y – volume: 13 start-page: 13581 year: 2019 ident: 1536_CR105 publication-title: ACS Nano doi: 10.1021/acsnano.9b08115 – volume: 33 start-page: 2007502 year: 2021 ident: 1536_CR7 publication-title: Adv. Mater. doi: 10.1002/adma.202007502 – volume: 9 start-page: eadj0540 year: 2023 ident: 1536_CR185 publication-title: Sci. Adv. doi: 10.1126/sciadv.adj0540 – volume: 27 start-page: 1603497 year: 2017 ident: 1536_CR195 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201603497 – volume: 127 start-page: 544 year: 2019 ident: 1536_CR55 publication-title: Bone doi: 10.1016/j.bone.2019.07.024 – volume: 5 start-page: 1900820 year: 2020 ident: 1536_CR145 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201900820 – volume: 48 start-page: 7 year: 2001 ident: 1536_CR173 publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/48.1.7 – volume: 10 start-page: 5025 year: 2010 ident: 1536_CR97 publication-title: Nano Lett. doi: 10.1021/nl103203u – volume: 5 start-page: e2821 year: 2017 ident: 1536_CR63 publication-title: PeerJ doi: 10.7717/peerj.2821 – volume: 70 start-page: 19 year: 2015 ident: 1536_CR165 publication-title: Bone doi: 10.1016/j.bone.2014.09.017 – volume: 31 start-page: 2010626 year: 2021 ident: 1536_CR107 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202010626 – volume: 462 start-page: 433 year: 2009 ident: 1536_CR57 publication-title: Nature doi: 10.1038/nature08602 – volume: 12 start-page: e2300064 year: 2023 ident: 1536_CR169 publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202300064 – volume: 1 start-page: 5 year: 2024 ident: 1536_CR91 publication-title: FlexMat doi: 10.1002/flm2.10 – volume: 243 start-page: 114123 year: 2024 ident: 1536_CR181 publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2024.114123 – volume: 3 start-page: 18 year: 2023 ident: 1536_CR215 publication-title: Soft Sci. doi: 10.20517/ss.2023.08 – volume: 49 start-page: 09MC11 year: 2010 ident: 1536_CR147 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/jjap.49.09mc11 – volume: 73 start-page: 1 year: 2018 ident: 1536_CR56 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.04.026 – volume: 57 start-page: 195 year: 2020 ident: 1536_CR59 publication-title: J. Vasc. Res. doi: 10.1159/000506517 – volume: 59 start-page: 121 year: 2023 ident: 1536_CR2 publication-title: Medicina (Kaunas) doi: 10.3390/medicina59010121 – volume: 3 start-page: 1511 year: 2015 ident: 1536_CR132 publication-title: J. Mater. Chem. A doi: 10.1039/c4ta04455j – volume: 312 start-page: 242 year: 2006 ident: 1536_CR96 publication-title: Science doi: 10.1126/science.1124005 – volume: 31 start-page: 2010609 year: 2021 ident: 1536_CR164 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202010609 – volume: 946 start-page: A21 year: 2022 ident: 1536_CR208 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2022.439 – volume: 18 start-page: 320 year: 2011 ident: 1536_CR43 publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2011.5704524 – volume: 116 start-page: 111138 year: 2020 ident: 1536_CR177 publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2020.111138 – volume: 5 start-page: 3099 year: 2020 ident: 1536_CR137 publication-title: ACS Omega doi: 10.1021/acsomega.9b03658 – volume: 294 start-page: 121999 year: 2023 ident: 1536_CR157 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2023.121999 – volume: 7 start-page: 1701298 year: 2018 ident: 1536_CR101 publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201701298 – volume: 10 start-page: 17842 year: 2018 ident: 1536_CR138 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01991 – volume: 14 start-page: 30507 year: 2022 ident: 1536_CR159 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c04168 – volume: 18 start-page: 2685 year: 2024 ident: 1536_CR216 publication-title: ACS Nano doi: 10.1021/acsnano.3c09310 – volume: 127 start-page: 244502 year: 2021 ident: 1536_CR206 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.244502 – volume: 13 start-page: e2303405 year: 2024 ident: 1536_CR170 publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202303405 – year: 2019 ident: 1536_CR66 publication-title: J. Vis. Exp. doi: 10.3791/59127-v – volume: 16 start-page: 677 year: 1981 ident: 1536_CR130 publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(81)90267-1 – volume: 12 start-page: 8184 year: 2022 ident: 1536_CR69 publication-title: Sci. Rep. doi: 10.1038/s41598-022-11850-0 – volume: 14 start-page: 717 year: 2022 ident: 1536_CR49 publication-title: Biophys. Rev. doi: 10.1007/s12551-022-00969-z – volume: 30 start-page: 1801511 year: 2018 ident: 1536_CR79 publication-title: Adv. Mater. doi: 10.1002/adma.201801511 – volume: 301 start-page: 122266 year: 2023 ident: 1536_CR128 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2023.122266 – volume: 22 start-page: 9046 year: 2022 ident: 1536_CR24 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3162914 – volume: 14 start-page: 257 year: 2015 ident: 1536_CR32 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.051 – volume: 31 start-page: 1802084 year: 2019 ident: 1536_CR100 publication-title: Adv. Mater. doi: 10.1002/adma.201802084 – volume: 33 start-page: e2104175 year: 2021 ident: 1536_CR102 publication-title: Adv. Mater. doi: 10.1002/adma.202104175 – volume: 17 start-page: 19232 year: 2023 ident: 1536_CR121 publication-title: ACS Nano doi: 10.1021/acsnano.3c05797 – volume: 4 start-page: e6131 issue: 7 year: 2009 ident: 1536_CR65 publication-title: PLoS ONE doi: 10.1371/journal.pone.0006131 – year: 2024 ident: 1536_CR23 publication-title: Adv. Sci. doi: 10.1002/advs.202304874 – volume: 10 start-page: 879187 year: 2022 ident: 1536_CR4 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2022.879187 – volume: 120 start-page: e2300953120 year: 2023 ident: 1536_CR122 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.2300953120 – volume: 27 start-page: 227 year: 2023 ident: 1536_CR29 publication-title: Mol. Diagn. Ther. doi: 10.1007/s40291-022-00636-9 – volume: 8 start-page: e2100964 year: 2021 ident: 1536_CR88 publication-title: Adv. Sci. doi: 10.1002/advs.202100964 – volume: 534 start-page: 012063 year: 2014 ident: 1536_CR42 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/534/1/012063 – volume: 11 start-page: e2401767 year: 2024 ident: 1536_CR16 publication-title: Adv. Sci. doi: 10.1002/advs.202401767 – volume: 10 start-page: 1022 year: 2017 ident: 1536_CR76 publication-title: Energies doi: 10.3390/en10071022 – volume: 3 start-page: 15 year: 2023 ident: 1536_CR212 publication-title: Soft Sci. doi: 10.20517/ss.2023.06 – volume: 100 start-page: 051606 year: 2006 ident: 1536_CR146 publication-title: J. Appl. Phys. doi: 10.1063/1.2336999 – volume: 13 start-page: 1 year: 2021 ident: 1536_CR8 publication-title: J. Funct. Biomater. doi: 10.3390/jfb13010001 – volume: 177 start-page: 185 year: 2023 ident: 1536_CR28 publication-title: Prog. Biophys. Mol. Biol. doi: 10.1016/j.pbiomolbio.2022.12.002 – volume: 106 start-page: 108076 year: 2023 ident: 1536_CR198 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.108076 – volume: 10 start-page: 7279 year: 2016 ident: 1536_CR154 publication-title: ACS Nano doi: 10.1021/acsnano.6b02247 – volume: 29 start-page: 5420 year: 2020 ident: 1536_CR52 publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-020-05016-0 – volume: 35 start-page: 346 year: 2024 ident: 1536_CR160 publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2024.02.011 – volume: 10 start-page: 772230 year: 2022 ident: 1536_CR9 publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2022.772230 – volume: 14 start-page: 2994 year: 2024 ident: 1536_CR70 publication-title: Appl. Sci. doi: 10.3390/app14072994 – volume: 11 start-page: 43857 year: 2019 ident: 1536_CR104 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14679 – volume: 32 start-page: 2309 year: 2022 ident: 1536_CR182 publication-title: J. Inorg. Organomet. Polym. Mater. doi: 10.1007/s10904-022-02295-z – volume: 10 start-page: eadi6799 year: 2024 ident: 1536_CR199 publication-title: Sci. Adv. doi: 10.1126/sciadv.adi6799 – volume: 5 start-page: 022001 year: 2019 ident: 1536_CR11 publication-title: Biomed. Phys. Eng. Express doi: 10.1088/2057-1976/aaf210 – volume: 18 start-page: 2047 year: 2024 ident: 1536_CR192 publication-title: ACS Nano doi: 10.1021/acsnano.3c08738 – volume: 398 start-page: 126090 year: 2020 ident: 1536_CR142 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.126090 – volume: 42 start-page: 1773 year: 2023 ident: 1536_CR18 publication-title: Rare Met. doi: 10.1007/s12598-023-02298-w – volume: 24 start-page: 9511 year: 2024 ident: 1536_CR207 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.4c01926 – volume: 151 start-page: 227 year: 2001 ident: 1536_CR82 publication-title: Hear. Res. doi: 10.1016/S0378-5955(00)00229-X – volume: 7 start-page: eabl6432 year: 2021 ident: 1536_CR149 publication-title: Sci. Adv. doi: 10.1126/sciadv.abl6432 – volume: 2 start-page: e1501478 year: 2016 ident: 1536_CR190 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501478 – volume: 33 start-page: 2214522 year: 2023 ident: 1536_CR156 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202214522 – volume: 34 start-page: e2109926 year: 2022 ident: 1536_CR139 publication-title: Adv. Mater. doi: 10.1002/adma.202109926 – volume: 121 start-page: e2402135121 year: 2024 ident: 1536_CR221 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2402135121 – volume: 43 start-page: 108 year: 2010 ident: 1536_CR53 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.09.016 – volume: 31 start-page: 733 year: 2009 ident: 1536_CR50 publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2009.02.006 – volume: 40 start-page: 1568 year: 2012 ident: 1536_CR37 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-011-0504-1 – volume: 4 start-page: 1700029 year: 2017 ident: 1536_CR87 publication-title: Adv. Sci. doi: 10.1002/advs.201700029 – volume: 15 start-page: e1805440 year: 2019 ident: 1536_CR125 publication-title: Small doi: 10.1002/smll.201805440 – volume: 31 start-page: 134 year: 2016 ident: 1536_CR114 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.11.047 – volume: 3 start-page: 045101 year: 2021 ident: 1536_CR19 publication-title: Int. J. Extrem. Manuf. doi: 10.1088/2631-7990/ac115a – volume: 1 start-page: 30 year: 1983 ident: 1536_CR14 publication-title: J. Orthop. Res. doi: 10.1002/jor.1100010105 – volume: 373 start-page: 337 year: 2021 ident: 1536_CR200 publication-title: Science doi: 10.1126/science.abf2155 – ident: 1536_CR176 – year: 2024 ident: 1536_CR151 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202403759 – volume: 2011 start-page: 920178 year: 2011 ident: 1536_CR194 publication-title: J. Aging Res. doi: 10.4061/2011/920178 – volume: 25 start-page: 101218 year: 2021 ident: 1536_CR153 publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2021.101218 – volume: 10 start-page: 1428 year: 2022 ident: 1536_CR109 publication-title: J. Magnes. Alloys doi: 10.1016/j.jma.2022.02.013 – volume: 7 start-page: e1701466 year: 2018 ident: 1536_CR152 publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201701466 – volume: 94 start-page: 53 year: 2015 ident: 1536_CR5 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2015.03.013 – volume: 57 start-page: 81 year: 2018 ident: 1536_CR41 publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2018.05.014 – volume: 40 start-page: 432 year: 2017 ident: 1536_CR213 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.048 – volume: 8 start-page: eabl8379 year: 2022 ident: 1536_CR167 publication-title: Sci. Adv. doi: 10.1126/sciadv.abl8379 – volume: 59 start-page: 705 year: 2019 ident: 1536_CR89 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.073 – volume: 139 start-page: 204 year: 2022 ident: 1536_CR64 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2021.08.010 – volume: 239 start-page: 122002 year: 2020 ident: 1536_CR179 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2019.122002 – volume: 33 start-page: e2007429 year: 2021 ident: 1536_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.202007429 – volume: 26 start-page: 102092 year: 2021 ident: 1536_CR133 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2021.102092 – volume: 97 start-page: 2867 year: 2014 ident: 1536_CR48 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13045 – volume: 8 start-page: eabl5511 year: 2022 ident: 1536_CR123 publication-title: Sci. Adv. doi: 10.1126/sciadv.abl5511 – volume: 45 start-page: 34 year: 2017 ident: 1536_CR40 publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2017.04.002 – volume: 1 start-page: 62 year: 2014 ident: 1536_CR98 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwt002 – volume: 150 start-page: 60 year: 2018 ident: 1536_CR106 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.10.003 – volume: 6 start-page: 3177 year: 1992 ident: 1536_CR73 publication-title: FASEB J. doi: 10.1096/fasebj.6.13.1397839 – volume: 16 start-page: 20770 year: 2022 ident: 1536_CR38 publication-title: ACS Nano doi: 10.1021/acsnano.2c07900 – volume: 19 start-page: 2300386 year: 2023 ident: 1536_CR112 publication-title: Small doi: 10.1002/smll.202300386 – volume: 223 start-page: 109415 year: 2022 ident: 1536_CR205 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2022.109415 – volume: 12 start-page: 1158 year: 1957 ident: 1536_CR10 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/jpsj.12.1158 – volume: 26 start-page: 533 year: 2010 ident: 1536_CR58 publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-100109-104042 – volume: 12 start-page: e2301610 year: 2023 ident: 1536_CR117 publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202301610 – volume: 473 start-page: 201 year: 2008 ident: 1536_CR187 publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2008.03.027 – volume: 38 start-page: 3463 year: 2018 ident: 1536_CR135 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.03.044 – volume: 7 start-page: 97 year: 2024 ident: 1536_CR22 publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-024-00906-6 – volume: 10 start-page: 832808 year: 2022 ident: 1536_CR150 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2022.832808 – volume: 8 start-page: 2100962 year: 2021 ident: 1536_CR161 publication-title: Adv. Sci. doi: 10.1002/advs.202100962 – volume: 51 start-page: 571 year: 2018 ident: 1536_CR103 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.012 – volume: 12 start-page: 34505 year: 2020 ident: 1536_CR136 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c04666 – volume: 63 start-page: 2 year: 1981 ident: 1536_CR72 publication-title: J. Bone Jt. Surg. doi: 10.2106/00004623-198163010-00002 – volume: 33 start-page: 100882 year: 2020 ident: 1536_CR78 publication-title: Nano Today doi: 10.1016/j.nantod.2020.100882 – volume: 11 start-page: e2400596 year: 2024 ident: 1536_CR119 publication-title: Adv. Sci. doi: 10.1002/advs.202400596 – volume: 16 start-page: 648 year: 2018 ident: 1536_CR3 publication-title: Curr. Osteoporos. Rep. doi: 10.1007/s11914-018-0489-x – volume: 9 start-page: 52 year: 2024 ident: 1536_CR155 publication-title: ACS Omega doi: 10.1021/acsomega.3c06696 – volume: 45 start-page: 12663 year: 2019 ident: 1536_CR172 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.03.076 – volume: 1 start-page: 3 issue: 1 year: 2023 ident: 1536_CR84 publication-title: Med-X doi: 10.1007/s44258-023-00001-3 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.4925873 |
SecondaryResourceType | review_article |
Snippet | Highlights
Introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate... The incidence of large bone defects caused by traumatic injury is increasing worldwide, and the tissue regeneration process requires a long recovery time due... HighlightsIntroduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate... Highlights Introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 44 |
SubjectTerms | Bioelectricity Biomedical materials Bone regeneration Bone tissue Bones Electric fields Electroactive biomaterials Energy Energy harvesting Engineering Injury prevention Nanogenerators Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Photovoltaic cells Piezoelectricity Recovery time Regeneration (physiology) Review Self-powered bioelectronics Tissue engineering |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAfBNakJG4gUUcx3Z8ZFGrFRKoEl2pN8t2bAlplaB2e-Dfd8bOJov4unDMxvnyvGTerO33CHljVJQmKccALR1rneyZ6X1kwrjAm57DXvxr4PMXtd60ny7l5YHVF84JK_LApePeY4KRcIracZQ2caZNydexbTwkM9dlJVDIeQfFFCCp0ejItIwPoq1ye6BS06Kmi1iEzCQKl-lFH1M2LeT1KdEWIq1xCCs71XHOlK7VtAInr8ND1-aaQbqDylwKxcxPWS6bAfyOwf4y-pqT2tkDcn9io_RD6YWH5E4cHpF7BxqFj8l2M2xjcVyiQBbp-bjDCUZw1JjoaTHRcfmjSdc_cPkXXX0bgQYXZFM39PRr3CZ2jnZsETaKRDoFskxX4xDpxbIC7PoJ2ZydXnxcs8migQVgLjsGAfVGB-9aKWSXtOliQI0_KFJSUiLWPngdXPJQKIVoVAI64zjkQJF4p4MWT8nRANd6TijUQqLrUD2mT23fGM99jHXTC9m7xklfEb7vUhsm_XK00djaWXk5h8FCGGwOgzUVeTsf872od_y19QojNbdE5e38A-DRTni0_8JjRU72cbbT5-DaAmZ0B2xB84q8nnfDi4yjM26I401pA1zJKF2RZwUf850Ig0ZxQlTk3R4wy8n__EAv_scDHZO7DXoe5yk8J-Rod3UTXwIR2_lX-Z27BUMaH_g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZge4EHxG8CAxmJN7CIYzuOnxBFnSokpgpWaW-RndgIqUrG2j3sv9-d4yRDwB7bOG3aO99957O_j5B3pvTKhNIy8JaKSataZlrnmTC24UXL4SouDXw7KVcb-fVMnaUFt13aVjnGxBio277BNfKPgnNdQcDV_NP5b4aqUdhdTRIad8khhOAKiq_DxfJk_X30qEKjMtPcJ0R5ZXmDrUYit4uYCc0UEpjpmSdTFRLye0q4A6DW2MqKinWcs1LnZTqJE8_joXpzziDtQYWuRMnMH9kuigL8C8n-1YWNye34IXmQUCn9PLjRI3LHd4_J_RtchU_IdtNt_aC8RAE00nW_x41GcFcf6HIQ07ExeNLVFR4Do4tfPcDhwcOp7Vr6w28DW6Msm4cXA1U6BdBMF33n6el8Emz3lGyOl6dfVixJNbAGEMyegWGd0Y2zUglVBW0q3yDXHxQrIZTC565xurHBQcHUeFMGgDWWQy4UgVe60eIZOejgu14QCjWRqCpkkWmDbAvjuPM-L1qhWltY5TLCx7-0bhKPOcppbOuJgTmaoQYz1NEMtcnI--me84HF49bRC7TUNBIZuOMb_cXPOk3oGoGPAtfOLUfKHWtkCC73snAAsmwlM3I02rlOYWFXz06ckbfTZZjQ2KWxne8vhzGAmUypM_J88I_pSYRBwTghMvJhdJj5w___g17e_iyvyL0CVY3jJp0jcrC_uPSvAWrt3Zs0n64B-bEZow priority: 102 providerName: ProQuest |
Title | Unleashing the Potential of Electroactive Hybrid Biomaterials and Self-Powered Systems for Bone Therapeutics |
URI | https://link.springer.com/article/10.1007/s40820-024-01536-9 https://www.ncbi.nlm.nih.gov/pubmed/39417933 https://www.proquest.com/docview/3117813071 https://www.proquest.com/docview/3117614967 https://doaj.org/article/41525a5d0a10481a94ffb0e42b081a84 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbY9gIPiN8ERmUk3sBSHNtx_LiUlgqJqYJV2ltkJzaaVCVo7R7477lz0mSIgcRLqzZOm_bOvu9yvu8j5J3JvTIhtwy8pWDSqoaZxnkmjK151nA4ircGvpznq438fKkuh6aw3WG3-6EkGVfqsdkNpZFTBjEF0l8lcmaOyImC3B39ej5xjmca1Zim2iBKKstbDDUS-VzERGKmkLRMT9yYKpMQ04cg24NojeWrqFLHOct1mg_dN3df1m8RLgoB3IVe_6i8xoC2fEQeDkiUnvWu85jc8-0T8uAWP-FTst20W9-rLVEAinTd7XFzEZzVBbroBXRsXDDp6ie2ftHyqgMI3Hs1tW1Dv_ltYGuUYvPwoqdHpwCUadm1nl5M3V-7Z2SzXFzMV2yQZ2A1oJY9A2M6o2tnpRKqCNoUvkZ-P0hQQsiFT13tdG2DgySp9iYPAGUsh_gnAi90rcVzctzCd70kFPIgURTIHNME2WTGced9mjVCNTazyiWEH_7Sqh64y1FCY1uNrMvRDBWYoYpmqExC3o_n_OiZO_45ukRLjSORdTu-0V1_r4ZJXCHYUeDOqeVIs2ONDMGlXmYOgJUtZEJOD3auhqVgV4HP6AKQguYJeTsehkmMlRnb-u6mHwM4yeQ6IS96_xivRBgUiRMiIR8ODjN9-N9_0Kv_G_6a3M9Q2Thu1Dklx_vrG_8G4NbezchRsfw0Iydn5cdyCc_l4nz9dRbnHD7m81m8kfELeP4avw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKWQALxJtAASPBCixiO4njBUIMdJjShyoxI3UX7MRGSKOkdKZC_Sm-kXudVxHQXZczcTLO3NdJrn0OIS905lLtM8PAW3KWmLRiurKOSW1KLioOR_HVwP5BNlskn4_Sow3yq98Lg8sq-5wYEnXVlPiO_I3kXOWQcBV_d_yDoWoUdld7CY3WLXbd2U94ZFu93fkI9n0pxHR7_mHGOlUBVkKxXTOYg9WqtCZJZZp7pXNXIi0d4GrvM-liW1pVGm8B25dOZx4qsOGQtqXnuSqVhOteIVcTKTVGVD791PuvUKgDNXYlUcw5OceNkyCTjBzp01KkS1MjK2cKkxCqK-8tfFfYOAv6eJyzTMVZt-8n7P5DreiYQZFlUNNlxvQftTVIEPwLN__V8w2ldHqL3OwwMH3fOu1tsuHqO-TGOWbEu2S5qJeu1XmiAFHpYbPGZU1wVuPpdivdY0KqprMz3HRGJ98bAN9tPFFTV_SLW3p2iCJwDj60xOwUIDqdNLWj83Hf2eoeWVyKCe-TzRp-6yGh8AQm8xw5ayqfVEJbbp2LRSXTygiT2ojw_i8tyo41HcU7lsXA9xzMUIAZimCGQkfk1XDOccsZcuHoCVpqGIl83-GL5uRb0aWPAmFWCoEUG44EP0Yn3tvYJcICpDN5EpGt3s5Fl4RWxRgyEXk-HIb0gT0hU7vmtB0DCE1nKiIPWv8YZiI1ytNJGZHXvcOMF___DT26eC7PyLXZfH-v2Ns52H1MrgvUUw7Lg7bI5vrk1D0BkLe2T0NkUfL1skP5N0M5VXs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgSAgeEL8JDDASb2Atju04fqRjVfk1VWKV9hbZiT0hVcm0dQ_899zZaVLEQOIxjdu4uXPuu5zv-wh5a0qvTCgtA2-pmLSqZaZ1ngljG160HM7iq4Fvx-ViJT-fqtOdLv64231bkkw9DcjS1G0OzttwMDa-oUxyziC-QCqsRMnMTXILMhWOm_oOJ_7xQqMy01QnRHllucNWI5HbRUyEZgoJzPTEk6kKCfF9CLgJUGssZUXFOs5ZqfNy6MS5flq_RbsoCnAdkv2jChuD2_w-uTegUvohudEDcsN3D8ndHa7CR2S96tY-KS9RAI102eP9Au-lfaBHSUzHxocnXfzENjA6-9EDHE4eTm3X0u9-HdgSZdk8HCSqdAqgmc76ztOTqRPs8jFZzY9ODhdskGpgDSCYDQPDOqMbZ6USqgraVL5Brj9IVkIohc9d43Rjg4OEqfGmDABrLIdYKAKvdKPFE7LXwbWeEQo5kagqZJFpg2wL47jzPi9aoVpbWOUywre3tG4GHnOU01jXIwNzNEMNZqijGWqTkXfjd84Ti8c_R8_QUuNIZOCOH_QXZ_WwoGsEPgpcO7ccKXeskSG43MvCAciylczI_tbO9fBYuKzBZ3QFqEHzjLwZT8OCxiqN7Xx_lcYAZjKlzsjT5B_jTIRBwTghMvJ-6zDTj__9Dz3_v-Gvye3lx3n99dPxlxfkToGCx3H_zj7Z21xc-ZeAwjbuVVxovwADehws |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unleashing+the+Potential+of+Electroactive+Hybrid+Biomaterials+and+Self-Powered+Systems+for+Bone+Therapeutics&rft.jtitle=Nano-micro+letters&rft.au=Liu%2C+Shichang&rft.au=Manshaii%2C+Farid&rft.au=Chen%2C+Jinmiao&rft.au=Wang%2C+Xinfei&rft.date=2025-12-01&rft.issn=2150-5551&rft.eissn=2150-5551&rft.volume=17&rft.issue=1&rft.spage=44&rft_id=info:doi/10.1007%2Fs40820-024-01536-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |