Omentin1 ameliorates myocardial ischemia-induced heart failure via SIRT3/FOXO3a-dependent mitochondrial dynamical homeostasis and mitophagy
Background Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial isc...
Saved in:
Published in | Journal of translational medicine Vol. 20; no. 1; pp. 1 - 21 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
04.10.2022
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1479-5876 1479-5876 |
DOI | 10.1186/s12967-022-03642-x |
Cover
Abstract | Background
Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial ischemia (MI)-induced heart failure (HF) and its specific mechanism remains unclear and to be elucidated.
Methods
The model of MI-induced HF mice and oxygen glucose deprivation (OGD)-injured cardiomyocytes were performed. Mice with overexpression of omentin1 were constructed by a fat-specific adeno-associated virus (AAV) vector system.
Results
We demonstrated that circulating omentin1 level diminished in HF patients compared with healthy subjects. Furthermore, the fat-specific overexpression of omentin1 ameliorated cardiac function, cardiac hypertrophy, infarct size and cardiac pathological features, and also enhanced SIRT3/FOXO3a signaling in HF mice. Additionally, administration with AAV-omentin1 increased mitochondrial fusion and decreased mitochondrial fission in HF mice, as evidenced by up-regulated expression of Mfn2 and OPA1, and downregulation of p-Drp1(Ser616). Then, it also promoted PINK1/Parkin-dependent mitophagy. Simultaneously, treatment with recombinant omentin1 strengthened OGD-injured cardiomyocyte viability, restrained LDH release, and enhanced the mitochondrial accumulation of SIRT3 and nucleus transduction of FOXO3a. Besides, omentin1 also ameliorated unbalanced mitochondrial fusion-fission dynamics and activated mitophagy, thereby, improving the damaged mitochondria morphology and controlling mitochondrial quality in OGD-injured cardiomyocytes. Interestingly, SIRT3 played an important role in the improvement effects of omentin1 on mitochondrial function, unbalanced mitochondrial fusion-fission dynamics and mitophagy.
Conclusion
Omentin1 improves MI-induced HF and myocardial injury by maintaining mitochondrial dynamical homeostasis and activating mitophagy via upregulation of SIRT3/FOXO3a signaling. This study provides evidence for further application of omentin1 in cardiovascular diseases from the perspective of crosstalk between heart and adipose tissue. |
---|---|
AbstractList | Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial ischemia (MI)-induced heart failure (HF) and its specific mechanism remains unclear and to be elucidated. The model of MI-induced HF mice and oxygen glucose deprivation (OGD)-injured cardiomyocytes were performed. Mice with overexpression of omentin1 were constructed by a fat-specific adeno-associated virus (AAV) vector system. We demonstrated that circulating omentin1 level diminished in HF patients compared with healthy subjects. Furthermore, the fat-specific overexpression of omentin1 ameliorated cardiac function, cardiac hypertrophy, infarct size and cardiac pathological features, and also enhanced SIRT3/FOXO3a signaling in HF mice. Additionally, administration with AAV-omentin1 increased mitochondrial fusion and decreased mitochondrial fission in HF mice, as evidenced by up-regulated expression of Mfn2 and OPA1, and downregulation of p-Drp1(Ser616). Then, it also promoted PINK1/Parkin-dependent mitophagy. Simultaneously, treatment with recombinant omentin1 strengthened OGD-injured cardiomyocyte viability, restrained LDH release, and enhanced the mitochondrial accumulation of SIRT3 and nucleus transduction of FOXO3a. Besides, omentin1 also ameliorated unbalanced mitochondrial fusion-fission dynamics and activated mitophagy, thereby, improving the damaged mitochondria morphology and controlling mitochondrial quality in OGD-injured cardiomyocytes. Interestingly, SIRT3 played an important role in the improvement effects of omentin1 on mitochondrial function, unbalanced mitochondrial fusion-fission dynamics and mitophagy. Omentin1 improves MI-induced HF and myocardial injury by maintaining mitochondrial dynamical homeostasis and activating mitophagy via upregulation of SIRT3/FOXO3a signaling. This study provides evidence for further application of omentin1 in cardiovascular diseases from the perspective of crosstalk between heart and adipose tissue. Abstract Background Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial ischemia (MI)-induced heart failure (HF) and its specific mechanism remains unclear and to be elucidated. Methods The model of MI-induced HF mice and oxygen glucose deprivation (OGD)-injured cardiomyocytes were performed. Mice with overexpression of omentin1 were constructed by a fat-specific adeno-associated virus (AAV) vector system. Results We demonstrated that circulating omentin1 level diminished in HF patients compared with healthy subjects. Furthermore, the fat-specific overexpression of omentin1 ameliorated cardiac function, cardiac hypertrophy, infarct size and cardiac pathological features, and also enhanced SIRT3/FOXO3a signaling in HF mice. Additionally, administration with AAV-omentin1 increased mitochondrial fusion and decreased mitochondrial fission in HF mice, as evidenced by up-regulated expression of Mfn2 and OPA1, and downregulation of p-Drp1(Ser616). Then, it also promoted PINK1/Parkin-dependent mitophagy. Simultaneously, treatment with recombinant omentin1 strengthened OGD-injured cardiomyocyte viability, restrained LDH release, and enhanced the mitochondrial accumulation of SIRT3 and nucleus transduction of FOXO3a. Besides, omentin1 also ameliorated unbalanced mitochondrial fusion-fission dynamics and activated mitophagy, thereby, improving the damaged mitochondria morphology and controlling mitochondrial quality in OGD-injured cardiomyocytes. Interestingly, SIRT3 played an important role in the improvement effects of omentin1 on mitochondrial function, unbalanced mitochondrial fusion-fission dynamics and mitophagy. Conclusion Omentin1 improves MI-induced HF and myocardial injury by maintaining mitochondrial dynamical homeostasis and activating mitophagy via upregulation of SIRT3/FOXO3a signaling. This study provides evidence for further application of omentin1 in cardiovascular diseases from the perspective of crosstalk between heart and adipose tissue. Background Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial ischemia (MI)-induced heart failure (HF) and its specific mechanism remains unclear and to be elucidated. Methods The model of MI-induced HF mice and oxygen glucose deprivation (OGD)-injured cardiomyocytes were performed. Mice with overexpression of omentin1 were constructed by a fat-specific adeno-associated virus (AAV) vector system. Results We demonstrated that circulating omentin1 level diminished in HF patients compared with healthy subjects. Furthermore, the fat-specific overexpression of omentin1 ameliorated cardiac function, cardiac hypertrophy, infarct size and cardiac pathological features, and also enhanced SIRT3/FOXO3a signaling in HF mice. Additionally, administration with AAV-omentin1 increased mitochondrial fusion and decreased mitochondrial fission in HF mice, as evidenced by up-regulated expression of Mfn2 and OPA1, and downregulation of p-Drp1(Ser616). Then, it also promoted PINK1/Parkin-dependent mitophagy. Simultaneously, treatment with recombinant omentin1 strengthened OGD-injured cardiomyocyte viability, restrained LDH release, and enhanced the mitochondrial accumulation of SIRT3 and nucleus transduction of FOXO3a. Besides, omentin1 also ameliorated unbalanced mitochondrial fusion-fission dynamics and activated mitophagy, thereby, improving the damaged mitochondria morphology and controlling mitochondrial quality in OGD-injured cardiomyocytes. Interestingly, SIRT3 played an important role in the improvement effects of omentin1 on mitochondrial function, unbalanced mitochondrial fusion-fission dynamics and mitophagy. Conclusion Omentin1 improves MI-induced HF and myocardial injury by maintaining mitochondrial dynamical homeostasis and activating mitophagy via upregulation of SIRT3/FOXO3a signaling. This study provides evidence for further application of omentin1 in cardiovascular diseases from the perspective of crosstalk between heart and adipose tissue. Keywords: Omentin1, Heart failure, Sirtuin 3, Mitochondrial dynamical homeostasis, Mitophagy, Heart-adipose crosstalk Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial ischemia (MI)-induced heart failure (HF) and its specific mechanism remains unclear and to be elucidated.BACKGROUNDAdipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial ischemia (MI)-induced heart failure (HF) and its specific mechanism remains unclear and to be elucidated.The model of MI-induced HF mice and oxygen glucose deprivation (OGD)-injured cardiomyocytes were performed. Mice with overexpression of omentin1 were constructed by a fat-specific adeno-associated virus (AAV) vector system.METHODSThe model of MI-induced HF mice and oxygen glucose deprivation (OGD)-injured cardiomyocytes were performed. Mice with overexpression of omentin1 were constructed by a fat-specific adeno-associated virus (AAV) vector system.We demonstrated that circulating omentin1 level diminished in HF patients compared with healthy subjects. Furthermore, the fat-specific overexpression of omentin1 ameliorated cardiac function, cardiac hypertrophy, infarct size and cardiac pathological features, and also enhanced SIRT3/FOXO3a signaling in HF mice. Additionally, administration with AAV-omentin1 increased mitochondrial fusion and decreased mitochondrial fission in HF mice, as evidenced by up-regulated expression of Mfn2 and OPA1, and downregulation of p-Drp1(Ser616). Then, it also promoted PINK1/Parkin-dependent mitophagy. Simultaneously, treatment with recombinant omentin1 strengthened OGD-injured cardiomyocyte viability, restrained LDH release, and enhanced the mitochondrial accumulation of SIRT3 and nucleus transduction of FOXO3a. Besides, omentin1 also ameliorated unbalanced mitochondrial fusion-fission dynamics and activated mitophagy, thereby, improving the damaged mitochondria morphology and controlling mitochondrial quality in OGD-injured cardiomyocytes. Interestingly, SIRT3 played an important role in the improvement effects of omentin1 on mitochondrial function, unbalanced mitochondrial fusion-fission dynamics and mitophagy.RESULTSWe demonstrated that circulating omentin1 level diminished in HF patients compared with healthy subjects. Furthermore, the fat-specific overexpression of omentin1 ameliorated cardiac function, cardiac hypertrophy, infarct size and cardiac pathological features, and also enhanced SIRT3/FOXO3a signaling in HF mice. Additionally, administration with AAV-omentin1 increased mitochondrial fusion and decreased mitochondrial fission in HF mice, as evidenced by up-regulated expression of Mfn2 and OPA1, and downregulation of p-Drp1(Ser616). Then, it also promoted PINK1/Parkin-dependent mitophagy. Simultaneously, treatment with recombinant omentin1 strengthened OGD-injured cardiomyocyte viability, restrained LDH release, and enhanced the mitochondrial accumulation of SIRT3 and nucleus transduction of FOXO3a. Besides, omentin1 also ameliorated unbalanced mitochondrial fusion-fission dynamics and activated mitophagy, thereby, improving the damaged mitochondria morphology and controlling mitochondrial quality in OGD-injured cardiomyocytes. Interestingly, SIRT3 played an important role in the improvement effects of omentin1 on mitochondrial function, unbalanced mitochondrial fusion-fission dynamics and mitophagy.Omentin1 improves MI-induced HF and myocardial injury by maintaining mitochondrial dynamical homeostasis and activating mitophagy via upregulation of SIRT3/FOXO3a signaling. This study provides evidence for further application of omentin1 in cardiovascular diseases from the perspective of crosstalk between heart and adipose tissue.CONCLUSIONOmentin1 improves MI-induced HF and myocardial injury by maintaining mitochondrial dynamical homeostasis and activating mitophagy via upregulation of SIRT3/FOXO3a signaling. This study provides evidence for further application of omentin1 in cardiovascular diseases from the perspective of crosstalk between heart and adipose tissue. Background Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial ischemia (MI)-induced heart failure (HF) and its specific mechanism remains unclear and to be elucidated. Methods The model of MI-induced HF mice and oxygen glucose deprivation (OGD)-injured cardiomyocytes were performed. Mice with overexpression of omentin1 were constructed by a fat-specific adeno-associated virus (AAV) vector system. Results We demonstrated that circulating omentin1 level diminished in HF patients compared with healthy subjects. Furthermore, the fat-specific overexpression of omentin1 ameliorated cardiac function, cardiac hypertrophy, infarct size and cardiac pathological features, and also enhanced SIRT3/FOXO3a signaling in HF mice. Additionally, administration with AAV-omentin1 increased mitochondrial fusion and decreased mitochondrial fission in HF mice, as evidenced by up-regulated expression of Mfn2 and OPA1, and downregulation of p-Drp1(Ser616). Then, it also promoted PINK1/Parkin-dependent mitophagy. Simultaneously, treatment with recombinant omentin1 strengthened OGD-injured cardiomyocyte viability, restrained LDH release, and enhanced the mitochondrial accumulation of SIRT3 and nucleus transduction of FOXO3a. Besides, omentin1 also ameliorated unbalanced mitochondrial fusion-fission dynamics and activated mitophagy, thereby, improving the damaged mitochondria morphology and controlling mitochondrial quality in OGD-injured cardiomyocytes. Interestingly, SIRT3 played an important role in the improvement effects of omentin1 on mitochondrial function, unbalanced mitochondrial fusion-fission dynamics and mitophagy. Conclusion Omentin1 improves MI-induced HF and myocardial injury by maintaining mitochondrial dynamical homeostasis and activating mitophagy via upregulation of SIRT3/FOXO3a signaling. This study provides evidence for further application of omentin1 in cardiovascular diseases from the perspective of crosstalk between heart and adipose tissue. Background Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial ischemia (MI)-induced heart failure (HF) and its specific mechanism remains unclear and to be elucidated. Methods The model of MI-induced HF mice and oxygen glucose deprivation (OGD)-injured cardiomyocytes were performed. Mice with overexpression of omentin1 were constructed by a fat-specific adeno-associated virus (AAV) vector system. Results We demonstrated that circulating omentin1 level diminished in HF patients compared with healthy subjects. Furthermore, the fat-specific overexpression of omentin1 ameliorated cardiac function, cardiac hypertrophy, infarct size and cardiac pathological features, and also enhanced SIRT3/FOXO3a signaling in HF mice. Additionally, administration with AAV-omentin1 increased mitochondrial fusion and decreased mitochondrial fission in HF mice, as evidenced by up-regulated expression of Mfn2 and OPA1, and downregulation of p-Drp1(Ser616). Then, it also promoted PINK1/Parkin-dependent mitophagy. Simultaneously, treatment with recombinant omentin1 strengthened OGD-injured cardiomyocyte viability, restrained LDH release, and enhanced the mitochondrial accumulation of SIRT3 and nucleus transduction of FOXO3a. Besides, omentin1 also ameliorated unbalanced mitochondrial fusion-fission dynamics and activated mitophagy, thereby, improving the damaged mitochondria morphology and controlling mitochondrial quality in OGD-injured cardiomyocytes. Interestingly, SIRT3 played an important role in the improvement effects of omentin1 on mitochondrial function, unbalanced mitochondrial fusion-fission dynamics and mitophagy. Conclusion Omentin1 improves MI-induced HF and myocardial injury by maintaining mitochondrial dynamical homeostasis and activating mitophagy via upregulation of SIRT3/FOXO3a signaling. This study provides evidence for further application of omentin1 in cardiovascular diseases from the perspective of crosstalk between heart and adipose tissue. |
ArticleNumber | 447 |
Audience | Academic |
Author | Yu, Boyang Fu, Fei Lai, Qiong Li, Fang Cui, Zekun Zhang, Yuanyuan Kou, Junping Hu, Jingui Liu, Tao Liu, Fuming |
Author_xml | – sequence: 1 givenname: Jingui surname: Hu fullname: Hu, Jingui organization: Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University – sequence: 2 givenname: Tao surname: Liu fullname: Liu, Tao organization: Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University – sequence: 3 givenname: Fei surname: Fu fullname: Fu, Fei organization: Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University – sequence: 4 givenname: Zekun surname: Cui fullname: Cui, Zekun organization: Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University – sequence: 5 givenname: Qiong surname: Lai fullname: Lai, Qiong organization: Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University – sequence: 6 givenname: Yuanyuan surname: Zhang fullname: Zhang, Yuanyuan organization: Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University – sequence: 7 givenname: Boyang surname: Yu fullname: Yu, Boyang organization: Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University – sequence: 8 givenname: Fuming surname: Liu fullname: Liu, Fuming organization: Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine – sequence: 9 givenname: Junping surname: Kou fullname: Kou, Junping email: junpingkou@cpu.edu.cn organization: Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University – sequence: 10 givenname: Fang orcidid: 0000-0002-7617-6534 surname: Li fullname: Li, Fang email: lifang@cpu.edu.cn organization: Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University |
BookMark | eNp9Uk1r3DAQNSWl-Wj_QE-GXnpxIo1s2boUQmjahcBCm0JvYizJay22tJXskP0N_dPVZkObDSXoIDF67w1v5p1mR847k2XvKTmntOEXkYLgdUEACsJ4CcX9q-yElrUoqqbmR0_ex9lpjGtCoKxK8SY7ZpwKqIGfZL-Xo3GTdTTH0QzWB5xMzMetVxi0xSG3UfVmtFhYp2dldN4bDFPeoR3mYPI7i_n3xbdbdnG9_LlkWGizMU4nzXy0k1e9dzrsdPTW4WhVevV-ND5OGG3M0ekH3KbH1fZt9rrDIZp3j_dZ9uP68-3V1-Jm-WVxdXlTqKoppwJBCw3QVi2hnPIKlEBjOk3LqgLKaNOQlpJUo5qDEEqhLrHlulGVaEwn2Fm22Otqj2u5CXbEsJUerXwo-LCSyaJVg5GaGqMEaxtQUNZcIXRaK8ZrJNApIEnr015rM7ej0SoZDzgciB7-ONvLlb-TomK0BJ4EPj4KBP9rNnGSYxq5GQZ0xs9RpjVRSL5LlqAfnkHXfg4ujWqH4qQGgCeoFSYD1nU-9VU7UXlZA2lIxaBOqPP_oNLRadkq5ayzqX5AgD1BBR9jMN1fj5TIXRzlPo4yxVE-xFHeJ1LzjKTshJP1u1nY4WUq21Nj6uNWJvwz-wLrD107938 |
CitedBy_id | crossref_primary_10_1016_j_intimp_2024_112526 crossref_primary_10_1007_s40256_024_00711_y crossref_primary_10_1016_j_phymed_2025_156503 crossref_primary_10_1016_j_biopha_2023_116004 crossref_primary_10_1016_j_cellsig_2024_111080 crossref_primary_10_1038_s41413_024_00399_5 crossref_primary_10_1016_j_intimp_2024_113092 crossref_primary_10_1016_j_biopha_2022_113967 crossref_primary_10_1016_j_arr_2024_102654 crossref_primary_10_1097_MD_0000000000037598 crossref_primary_10_62347_OBXQ9477 crossref_primary_10_12677_md_2024_143038 crossref_primary_10_3390_cells13050415 crossref_primary_10_1186_s12967_023_04049_y crossref_primary_10_1097_SHK_0000000000002333 crossref_primary_10_1007_s00210_025_04008_y crossref_primary_10_3390_biomedicines13030632 crossref_primary_10_1186_s13578_023_01097_1 crossref_primary_10_1002_advs_202300470 crossref_primary_10_1016_j_bbamcr_2025_119920 crossref_primary_10_1016_j_phymed_2024_156260 crossref_primary_10_1016_j_ijcrp_2024_200355 crossref_primary_10_1038_s41598_024_83112_0 crossref_primary_10_1186_s40001_024_01690_1 crossref_primary_10_1142_S0192415X25500181 crossref_primary_10_1186_s13008_024_00124_y crossref_primary_10_1186_s12872_023_03603_2 crossref_primary_10_1016_j_freeradbiomed_2025_03_010 crossref_primary_10_1111_cns_14703 crossref_primary_10_1007_s12265_025_10591_5 crossref_primary_10_1016_j_ijbiomac_2023_127910 crossref_primary_10_1007_s12192_023_01321_4 crossref_primary_10_1007_s11033_023_09154_1 crossref_primary_10_1016_j_freeradbiomed_2024_05_024 crossref_primary_10_1038_s41598_023_47686_5 crossref_primary_10_1007_s12033_023_00746_7 crossref_primary_10_3389_fncel_2024_1434459 crossref_primary_10_1016_j_gde_2023_102046 crossref_primary_10_3390_cells14050324 crossref_primary_10_1016_j_phymed_2023_154830 crossref_primary_10_1016_j_biopha_2024_117004 crossref_primary_10_14336_AD_202_0513 crossref_primary_10_1016_j_jep_2025_119666 crossref_primary_10_1016_j_psj_2024_103839 crossref_primary_10_1016_j_freeradbiomed_2023_05_031 crossref_primary_10_1016_j_mvr_2023_104565 crossref_primary_10_1007_s43032_024_01509_8 crossref_primary_10_1016_j_bcp_2024_116477 crossref_primary_10_1186_s40779_024_00536_5 crossref_primary_10_1038_s41392_024_01816_1 crossref_primary_10_1016_j_arr_2024_102467 crossref_primary_10_3390_jcdd10090382 crossref_primary_10_1016_j_molmet_2024_102012 crossref_primary_10_3390_ijms232416053 crossref_primary_10_1016_j_tips_2025_02_005 crossref_primary_10_1080_15384101_2023_2167949 crossref_primary_10_3390_antiox14010038 crossref_primary_10_3390_ijms24021615 |
Cites_doi | 10.1038/nrcardio.2016.203 10.1016/j.abb.2022.109147 10.1186/s12933-021-01337-z 10.1016/j.bbrc.2010.02.053 10.3389/fphys.2021.736245 10.1016/j.pharmthera.2022.108185 10.1016/j.tips.2017.01.009 10.3389/fphys.2018.01526 10.1136/jim-2021-002071 10.1016/j.cmet.2013.10.001 10.1016/j.jacc.2014.03.032 10.1093/cvr/cvaa340 10.1161/CIRCRESAHA.116.303790 10.1016/j.lfs.2020.118083 10.1016/j.bbrc.2015.01.032 10.1016/j.phrs.2019.104626 10.1093/cvr/cvv282 10.1089/scd.2021.0099 10.1111/ijpo.12605 10.1016/j.atherosclerosis.2015.10.100 10.1111/bph.15068 10.1038/s41401-020-0377-7 10.1016/j.atherosclerosis.2016.06.003 10.1007/s00395-015-0493-6 10.1016/j.molcel.2017.08.013 10.1002/jcp.29727 10.1530/JME-20-0236 10.1016/j.phrs.2021.105802 10.18632/aging.102251 10.1515/cclm-2017-0282 10.1002/jcp.27329 10.1126/science.aad0116 10.1016/j.freeradbiomed.2017.04.005 10.3390/ijms22189765 10.1093/cvr/cvx201 10.1016/j.biochi.2020.08.021 10.1161/CIRCRESAHA.115.306885 10.1016/j.cmet.2015.05.007 10.1016/j.bbadis.2016.10.021 10.1016/j.mam.2019.09.006 10.1111/jfbc.13820 10.1093/eurheartj/ehac088 10.1152/ajpcell.00462.2010 10.1155/2021/4946711 10.1161/CIRCRESAHA.111.258723 10.7150/thno.45922 10.1016/j.cellsig.2018.09.009 10.1016/j.pharmthera.2015.10.005 10.3389/fcvm.2020.583175 10.1042/EBC20170104 10.1146/annurev-pathmechdis-012419-032711 10.1172/JCI120849 10.3389/fcvm.2021.720085 10.1038/s41401-021-00830-1 10.3390/molecules25112534 10.1161/CIRCRESAHA.119.315767 10.1083/jcb.201308006 10.1161/CIRCULATIONAHA.117.030486 10.1038/nrcardio.2011.154 10.1091/mbc.E20-09-0605 10.1111/jpi.12686 10.1186/1475-2840-10-103 10.1007/s11427-021-1982-8 10.1038/s41569-022-00679-9 10.1007/s00125-019-05017-2 10.3389/fphar.2020.01083 10.1161/RES.0000000000000104 10.1083/jcb.201411100 10.1111/bph.14781 10.1089/ars.2018.7703 10.3390/ijms20092358 10.1080/14728222.2022.2037556 10.1016/j.ijbiomac.2021.02.029 10.2337/db06-1506 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 COPYRIGHT 2022 BioMed Central Ltd. 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: COPYRIGHT 2022 BioMed Central Ltd. – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7T5 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12967-022-03642-x |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Immunology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1479-5876 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_d1eec93b82c2476ca2fddc367a02fc20 PMC9531426 A720805327 10_1186_s12967_022_03642_x |
GeographicLocations | China Jiangsu China United States--US |
GeographicLocations_xml | – name: China – name: Jiangsu China – name: United States--US |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 81973506 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: ; grantid: 81973506 |
GroupedDBID | --- 0R~ 29L 2WC 53G 5VS 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M AAYXX ALIPV CITATION PMFND 3V. 7T5 7XB 8FK AZQEC DWQXO H94 K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c584t-a2d9d22b5b0161652c9aeefd14552131880b109ae1d6299ccad4ab6d8c598ef93 |
IEDL.DBID | C6C |
ISSN | 1479-5876 |
IngestDate | Wed Aug 27 01:04:13 EDT 2025 Thu Aug 21 18:39:52 EDT 2025 Thu Sep 04 23:19:02 EDT 2025 Fri Jul 25 21:21:17 EDT 2025 Tue Jun 17 21:24:31 EDT 2025 Tue Jun 10 20:39:33 EDT 2025 Tue Jul 01 02:59:37 EDT 2025 Thu Apr 24 23:11:00 EDT 2025 Sat Sep 06 07:28:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Heart failure Mitochondrial dynamical homeostasis Sirtuin 3 Mitophagy Omentin1 Heart-adipose crosstalk |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c584t-a2d9d22b5b0161652c9aeefd14552131880b109ae1d6299ccad4ab6d8c598ef93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7617-6534 |
OpenAccessLink | https://doi.org/10.1186/s12967-022-03642-x |
PMID | 36192726 |
PQID | 2726072223 |
PQPubID | 43076 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d1eec93b82c2476ca2fddc367a02fc20 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9531426 proquest_miscellaneous_2721258443 proquest_journals_2726072223 gale_infotracmisc_A720805327 gale_infotracacademiconefile_A720805327 crossref_primary_10_1186_s12967_022_03642_x crossref_citationtrail_10_1186_s12967_022_03642_x springer_journals_10_1186_s12967_022_03642_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-04 |
PublicationDateYYYYMMDD | 2022-10-04 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Journal of translational medicine |
PublicationTitleAbbrev | J Transl Med |
PublicationYear | 2022 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | C Koentges (3642_CR61) 2015; 110 M Morita (3642_CR66) 2017; 67 C Kang (3642_CR55) 2018; 114 K Kazama (3642_CR9) 2015; 457 DC Chan (3642_CR43) 2020; 15 R Wang (3642_CR50) 2021; 32 T Varanita (3642_CR53) 2015; 21 L Chodari (3642_CR77) 2021; 2021 S Cetin Sanlialp (3642_CR11) 2022; 70 C Wang (3642_CR20) 2021; 172 NR Sundaresan (3642_CR63) 2009; 119 T Saito (3642_CR54) 2021; 117 T Xu (3642_CR10) 2018; 56 SH Dai (3642_CR69) 2017; 108 J Menzel (3642_CR16) 2016; 251 NA Binti Kamaruddin (3642_CR33) 2020; 25 T Saito (3642_CR56) 2015; 116 A Zhao (3642_CR14) 2022; 26 RM Agra-Bermejo (3642_CR6) 2021; 12 J Liu (3642_CR21) 2019; 53 CH Saely (3642_CR40) 2016; 244 K Xu (3642_CR71) 2021; 175 H Tsutsui (3642_CR1) 2022; 238 AE Berezin (3642_CR32) 2020; 7 G Iacobellis (3642_CR4) 2022; 19 J Jiang (3642_CR73) 2021; 70 FW Prinzen (3642_CR2) 2022; 43 JJ Fuster (3642_CR3) 2016; 118 A Mourier (3642_CR49) 2015; 208 W Zhao (3642_CR68) 2018; 9 L Chen (3642_CR45) 2020; 11 E Murphy (3642_CR42) 2016; 118 SS Ana (3642_CR64) 2020; 152 C Niersmann (3642_CR15) 2020; 63 HJ Yoo (3642_CR39) 2011; 10 L Tilokani (3642_CR44) 2018; 62 Z Jin (3642_CR8) 2021; 66 J Zhang (3642_CR60) 2020; 10 X Zhang (3642_CR62) 2018; 137 M Longo (3642_CR31) 2019; 20 HI Mizuho (3642_CR35) 2016; 110 O Gjesdal (3642_CR26) 2011; 8 CM de Souza Batista (3642_CR13) 2007; 56 H Yamawaki (3642_CR37) 2010; 393 Q Lai (3642_CR29) 2020; 41 M Morita (3642_CR65) 2013; 18 P Bai (3642_CR5) 2021; 13 A Tuttolomondo (3642_CR12) 2021; 20 Y Zheng (3642_CR23) 2019; 234 M Forte (3642_CR17) 2021; 178 PE Morales (3642_CR18) 2020; 71 A Benigni (3642_CR22) 2019; 31 Q Zhang (3642_CR74) 2022; 65 UA Mukherjee (3642_CR57) 2015; 156 Y Jiang (3642_CR58) 2017; 38 CC Hsieh (3642_CR28) 2019; 176 D Han (3642_CR70) 2020; 235 DA Brown (3642_CR19) 2017; 14 W Yu (3642_CR24) 2017; 1863 W Yang (3642_CR76) 2022; 46 Y Chen (3642_CR48) 2011; 109 KW Dunn (3642_CR30) 2011; 300 S Wang (3642_CR59) 2020; 179 R Anand (3642_CR51) 2014; 204 J Rothermel (3642_CR38) 2020; 15 B Zhou (3642_CR41) 2018; 128 J Ding (3642_CR46) 2022; 718 Ö Kutlay (3642_CR36) 2019; 21 JX Chen (3642_CR75) 2021; 30 J Liu (3642_CR47) 2021; 8 T Wai (3642_CR52) 2015; 350 Y Kataoka (3642_CR7) 2014; 63 Q Yin (3642_CR27) 2020; 257 Q Lai (3642_CR25) 2022; 43 F Xu (3642_CR34) 2019; 11 Y Chun (3642_CR67) 2021; 22 AE Dikalova (3642_CR72) 2020; 126 |
References_xml | – volume: 14 start-page: 238 issue: 4 year: 2017 ident: 3642_CR19 publication-title: Nat Rev Cardiol doi: 10.1038/nrcardio.2016.203 – volume: 718 start-page: 109147 year: 2022 ident: 3642_CR46 publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2022.109147 – volume: 20 start-page: 142 issue: 1 year: 2021 ident: 3642_CR12 publication-title: Cardiovasc Diabetol doi: 10.1186/s12933-021-01337-z – volume: 393 start-page: 668 issue: 4 year: 2010 ident: 3642_CR37 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2010.02.053 – volume: 12 start-page: 736245 year: 2021 ident: 3642_CR6 publication-title: Front Physiol doi: 10.3389/fphys.2021.736245 – volume: 238 start-page: 108185 year: 2022 ident: 3642_CR1 publication-title: Pharmacol Ther doi: 10.1016/j.pharmthera.2022.108185 – volume: 38 start-page: 459 issue: 5 year: 2017 ident: 3642_CR58 publication-title: Trends Pharmacol Sci doi: 10.1016/j.tips.2017.01.009 – volume: 21 start-page: 91 issue: 2 year: 2019 ident: 3642_CR36 publication-title: Anatol J Cardiol – volume: 9 start-page: 1526 year: 2018 ident: 3642_CR68 publication-title: Front Physiol doi: 10.3389/fphys.2018.01526 – volume: 70 start-page: 780 issue: 3 year: 2022 ident: 3642_CR11 publication-title: J Investig Med doi: 10.1136/jim-2021-002071 – volume: 18 start-page: 698 issue: 5 year: 2013 ident: 3642_CR65 publication-title: Cell Metab doi: 10.1016/j.cmet.2013.10.001 – volume: 63 start-page: 2722 issue: 24 year: 2014 ident: 3642_CR7 publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2014.03.032 – volume: 117 start-page: 2730 issue: 14 year: 2021 ident: 3642_CR54 publication-title: Cardiovasc Res doi: 10.1093/cvr/cvaa340 – volume: 116 start-page: 1477 issue: 8 year: 2015 ident: 3642_CR56 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.116.303790 – volume: 257 start-page: 118083 year: 2020 ident: 3642_CR27 publication-title: Life Sci doi: 10.1016/j.lfs.2020.118083 – volume: 457 start-page: 602 issue: 4 year: 2015 ident: 3642_CR9 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2015.01.032 – volume: 152 start-page: 104626 year: 2020 ident: 3642_CR64 publication-title: Pharmacol Res doi: 10.1016/j.phrs.2019.104626 – volume: 110 start-page: 107 issue: 1 year: 2016 ident: 3642_CR35 publication-title: Cardiovasc Res doi: 10.1093/cvr/cvv282 – volume: 30 start-page: 843 issue: 17 year: 2021 ident: 3642_CR75 publication-title: Stem Cells Dev doi: 10.1089/scd.2021.0099 – volume: 15 start-page: e12605 issue: 5 year: 2020 ident: 3642_CR38 publication-title: Pediatr Obes doi: 10.1111/ijpo.12605 – volume: 244 start-page: 38 year: 2016 ident: 3642_CR40 publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2015.10.100 – volume: 178 start-page: 2060 issue: 10 year: 2021 ident: 3642_CR17 publication-title: Br J Pharmacol doi: 10.1111/bph.15068 – volume: 41 start-page: 1058 issue: 8 year: 2020 ident: 3642_CR29 publication-title: Acta Pharmacol Sin doi: 10.1038/s41401-020-0377-7 – volume: 251 start-page: 415 year: 2016 ident: 3642_CR16 publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2016.06.003 – volume: 110 start-page: 36 issue: 4 year: 2015 ident: 3642_CR61 publication-title: Basic Res Cardiol doi: 10.1007/s00395-015-0493-6 – volume: 67 start-page: 922 issue: 6 year: 2017 ident: 3642_CR66 publication-title: Mol Cell doi: 10.1016/j.molcel.2017.08.013 – volume: 235 start-page: 8839 issue: 11 year: 2020 ident: 3642_CR70 publication-title: J Cell Physiol doi: 10.1002/jcp.29727 – volume: 66 start-page: 273 issue: 4 year: 2021 ident: 3642_CR8 publication-title: J Mol Endocrinol doi: 10.1530/JME-20-0236 – volume: 172 year: 2021 ident: 3642_CR20 publication-title: Pharmacol Res doi: 10.1016/j.phrs.2021.105802 – volume: 11 start-page: 8760 issue: 20 year: 2019 ident: 3642_CR34 publication-title: Aging (Albany NY) doi: 10.18632/aging.102251 – volume: 56 start-page: 350 issue: 2 year: 2018 ident: 3642_CR10 publication-title: Clin Chem Lab Med doi: 10.1515/cclm-2017-0282 – volume: 234 start-page: 5488 issue: 5 year: 2019 ident: 3642_CR23 publication-title: J Cell Physiol doi: 10.1002/jcp.27329 – volume: 350 start-page: aad0116 issue: 6265 year: 2015 ident: 3642_CR52 publication-title: Science doi: 10.1126/science.aad0116 – volume: 108 start-page: 345 year: 2017 ident: 3642_CR69 publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2017.04.005 – volume: 22 start-page: 9765 issue: 18 year: 2021 ident: 3642_CR67 publication-title: Int J Mol Sci doi: 10.3390/ijms22189765 – volume: 114 start-page: 90 issue: 1 year: 2018 ident: 3642_CR55 publication-title: Cardiovasc Res doi: 10.1093/cvr/cvx201 – volume: 179 start-page: 1 year: 2020 ident: 3642_CR59 publication-title: Biochimie doi: 10.1016/j.biochi.2020.08.021 – volume: 118 start-page: 1786 issue: 11 year: 2016 ident: 3642_CR3 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.115.306885 – volume: 21 start-page: 834 issue: 6 year: 2015 ident: 3642_CR53 publication-title: Cell Metab doi: 10.1016/j.cmet.2015.05.007 – volume: 1863 start-page: 1973 issue: 8 year: 2017 ident: 3642_CR24 publication-title: Biochim Biophys Acta Mol Basis Dis doi: 10.1016/j.bbadis.2016.10.021 – volume: 71 start-page: 100822 year: 2020 ident: 3642_CR18 publication-title: Mol Aspects Med doi: 10.1016/j.mam.2019.09.006 – volume: 46 start-page: e13820 issue: 3 year: 2022 ident: 3642_CR76 publication-title: J Food Biochem doi: 10.1111/jfbc.13820 – volume: 43 start-page: 1917 issue: 20 year: 2022 ident: 3642_CR2 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehac088 – volume: 300 start-page: 723 issue: 4 year: 2011 ident: 3642_CR30 publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00462.2010 – volume: 2021 start-page: 4946711 year: 2021 ident: 3642_CR77 publication-title: Oxid Med Cell Longev doi: 10.1155/2021/4946711 – volume: 109 start-page: 1327 issue: 12 year: 2011 ident: 3642_CR48 publication-title: Cir Res doi: 10.1161/CIRCRESAHA.111.258723 – volume: 10 start-page: 8315 issue: 18 year: 2020 ident: 3642_CR60 publication-title: Theranostics doi: 10.7150/thno.45922 – volume: 53 start-page: 1 year: 2019 ident: 3642_CR21 publication-title: Cell Signal doi: 10.1016/j.cellsig.2018.09.009 – volume: 156 start-page: 34 year: 2015 ident: 3642_CR57 publication-title: Pharmacol Ther doi: 10.1016/j.pharmthera.2015.10.005 – volume: 7 start-page: 583175 year: 2020 ident: 3642_CR32 publication-title: Front Cardiovasc Med doi: 10.3389/fcvm.2020.583175 – volume: 62 start-page: 341 issue: 3 year: 2018 ident: 3642_CR44 publication-title: Essays Biochem doi: 10.1042/EBC20170104 – volume: 15 start-page: 235 year: 2020 ident: 3642_CR43 publication-title: Annu Rev Pathol doi: 10.1146/annurev-pathmechdis-012419-032711 – volume: 128 start-page: 3716 issue: 9 year: 2018 ident: 3642_CR41 publication-title: J Clin Invest doi: 10.1172/JCI120849 – volume: 8 start-page: 720085 year: 2021 ident: 3642_CR47 publication-title: Front Cardiovasc Med doi: 10.3389/fcvm.2021.720085 – volume: 43 start-page: 2003 issue: 8 year: 2022 ident: 3642_CR25 publication-title: Acta Pharmacol Sin doi: 10.1038/s41401-021-00830-1 – volume: 25 start-page: 2534 issue: 11 year: 2020 ident: 3642_CR33 publication-title: Molecules doi: 10.3390/molecules25112534 – volume: 119 start-page: 2758 issue: 9 year: 2009 ident: 3642_CR63 publication-title: J Clin Invest – volume: 126 start-page: 439 issue: 4 year: 2020 ident: 3642_CR72 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.119.315767 – volume: 204 start-page: 919 issue: 6 year: 2014 ident: 3642_CR51 publication-title: J Cell Biol doi: 10.1083/jcb.201308006 – volume: 137 start-page: 2052 issue: 19 year: 2018 ident: 3642_CR62 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.117.030486 – volume: 8 start-page: 673 issue: 12 year: 2011 ident: 3642_CR26 publication-title: Nat Rev Cardiol doi: 10.1038/nrcardio.2011.154 – volume: 32 start-page: 157 issue: 2 year: 2021 ident: 3642_CR50 publication-title: Mol Biol Cell doi: 10.1091/mbc.E20-09-0605 – volume: 70 start-page: e12686 issue: 1 year: 2021 ident: 3642_CR73 publication-title: J Pineal Res. doi: 10.1111/jpi.12686 – volume: 10 start-page: 103 year: 2011 ident: 3642_CR39 publication-title: Cardiovasc Diabetol doi: 10.1186/1475-2840-10-103 – volume: 65 start-page: 1198 issue: 6 year: 2022 ident: 3642_CR74 publication-title: Sci China Life Sci doi: 10.1007/s11427-021-1982-8 – volume: 19 start-page: 593 issue: 9 year: 2022 ident: 3642_CR4 publication-title: Nat Rev Cardiol doi: 10.1038/s41569-022-00679-9 – volume: 63 start-page: 410 issue: 2 year: 2020 ident: 3642_CR15 publication-title: Diabetologia doi: 10.1007/s00125-019-05017-2 – volume: 11 start-page: 1083 year: 2020 ident: 3642_CR45 publication-title: Front Pharmacol doi: 10.3389/fphar.2020.01083 – volume: 118 start-page: 1960 issue: 12 year: 2016 ident: 3642_CR42 publication-title: Cir Res doi: 10.1161/RES.0000000000000104 – volume: 208 start-page: 429 issue: 4 year: 2015 ident: 3642_CR49 publication-title: J Cell Biol doi: 10.1083/jcb.201411100 – volume: 176 start-page: 3791 issue: 19 year: 2019 ident: 3642_CR28 publication-title: Br J Pharmacol doi: 10.1111/bph.14781 – volume: 13 start-page: e17347 issue: 8 year: 2021 ident: 3642_CR5 publication-title: Cureus – volume: 31 start-page: 1255 issue: 17 year: 2019 ident: 3642_CR22 publication-title: Antioxid Redox Signal doi: 10.1089/ars.2018.7703 – volume: 20 start-page: 2358 issue: 9 year: 2019 ident: 3642_CR31 publication-title: Int J Mol Sci doi: 10.3390/ijms20092358 – volume: 26 start-page: 275 issue: 3 year: 2022 ident: 3642_CR14 publication-title: Expert Opin Ther Targets doi: 10.1080/14728222.2022.2037556 – volume: 175 start-page: 351 year: 2021 ident: 3642_CR71 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2021.02.029 – volume: 56 start-page: 1655 issue: 6 year: 2007 ident: 3642_CR13 publication-title: Diabetes doi: 10.2337/db06-1506 |
SSID | ssj0024549 |
Score | 2.5835414 |
Snippet | Background
Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts... Background Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts... Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in... Abstract Background Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine,... |
SourceID | doaj pubmedcentral proquest gale crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Adipose tissue Adipose tissues Antibodies Biomedical and Life Sciences Biomedicine Body fat Cardiomyocytes Cardiovascular disease Cardiovascular diseases Cellular Metabolism Therapy Complications and side effects Congestive heart failure Coronary vessels Diabetes Electrocardiography FOXO3 protein Health aspects Heart failure Heart-adipose crosstalk Homeostasis Hypertrophy Insulin Insulin resistance Ischemia Kinases Laboratory animals Medicine/Public Health Mitochondria Mitochondrial dynamical homeostasis Mitophagy Myocardial ischemia Omentin1 Prevention PTEN-induced putative kinase Risk factors Signal transduction Sirtuin 3 Traditional Chinese medicine |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yD-KL-BNXT4kg-KBl26Rt2sdTXE7hXNA72LeQJhO3sO0ebk_u_gb_aWfSdrUe6otvSzNlm8xM5hsy-YaxFwCSYLiNBCgZpQDoUqp0Ueaz2GGAEy60ZDn5mB-fpR9W2eqXVl9UE9bTA_cLN3cJgC1lVQgrUpVbI7xzVubKxMJbEbL1uIzHZGpk2cO0Z7wiU-TzHUY13BCocp3O3UR0OQlDga3_-p58vU7yt8PSEIMWd9jtATzyo_6j77Ib0N5jN0-G4_H77PsyFP-0CTcNbOjyPQJJ3lxhvCI72PAac1loahNhJo46dZz6WXfcm5qq0_m32vDP7z-dyvliuVpKE40tcjveoOfjTtk6Mlju-j72-Gu9bWCLCHNX77hpXZA7X5svVw_Y2eLd6dvjaOi2EFkEIV1khCudEFVWEQrMM2FLA-AdMZmLRBJvW5XE-CxxOcYw1LxLTZW7wmZlAb6UD9lBu23hEeOuBKgqqywUJlUejJd5JbzyhtCAVzOWjIuv7UBFTh0xNjqkJEWue4VpVJgOCtOXM_Zq_855T8TxV-k3pNO9JJFohwdoWnowLf0v05qxl2QRmlwdP8-a4cYCTpJIs_SREoi3MylwQocTSXRROx0ebUoPW8ROC4WppCJ4NmPP98P0JpW9tbC9CDIIQIs0RRk1scXJzKYjbb0ONOElbq-Iv2bs9Wi1P__8zyv3-H-s3BN2S5CzUaFFesgOuq8X8BTBW1c9C376Ay27RMM priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdbC2MvY5_MXTc0GOxhM4nlD9lPox0N3aDN6FrIm5D10RhiO6vT0f4N-6d3p8gJXlnfgnUmlu93dz9ZpztCPhgTIw1XITM8DhNjwKR4ocPUpmMNAY5p15Ll5DQ7vki-z9KZ_-DW-bTK3ic6R61bhd_IR4wD8-YYzb4sf4XYNQp3V30LjYdkF1xwDjjfPTw6_XG2rbYHy5_-qEyejTqIbuAYMIMd999YeDMIR65q_13ffDdf8p9NUxeLJk_JE08i6cFa68_IA9M8J49O_Db5C_Jn6pKAmojK2izwED4QSlrfQtxCPCxoBWtaU1cyhBU56FZT7Gu9olZWmKVOf1eS_vx2dh6PJtPZNJZh3yp3RWvwAOAxG43ApXrdzx5-zdvatMA0u6qjstFObjmXl7cvycXk6Pzrcei7LoQKyMgqlEwXmrEyLZENZilThTTGaqxozqIY67eV0RiuRTqDWAYI0IksM52rtMiNLeJXZKdpG_OaUF0YU5aKK5PLhFsjbZyVzHIrkRVYHpCof_lC-ZLk2BljIdzSJM_EWmECFCacwsRNQD5t7lmuC3LcK32IOt1IYjFtd6G9uhTeNoWOjFFFXOZMsYRnSjKrtYozLsfMKjYOyEdEhECTh8dT0p9cgEli8SxxwBnw7jRmMKH9gSSYqhoO95gS3lV0YgvsgLzfDOOdmP7WmPbayQARzZMEZPgAi4OZDUeaau7KhRfgZoGHBeRzj9rtn___ze3d_6xvyGOGZoSpFMk-2VldXZu3QM9W5Ttvg38BJv08dQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_HCeKL-Ik9T4kg-KD1tulH2geRU1xOYV3QW9i3kCaT28K2e-7uye3f4D_tTLbdo94p-FaaCW3mI_MbMplh7CVATDDchAJkHCYAaFKysGHq0oFFByesb8ky-pqdTJIv03S6x7p2Ry0DVzeGdtRParKcv738sXmPBv_OG3yeHa3QZ6G5U146naqJEDHlLfRMGQVjoyS_qr2HwVB3cebGeT3n5Gv4X9-pr2dP_nGE6j3T8B6720JKfrzVgftsD5oH7PaoPTR_yH6NfUpQE3Fdw5yu5CO85PUGvRhpx5xXyAaoKx1ifI6Stpy6XK-50xXlrPOflebfP387jY-G4-k41mHXOHfNa9wPkIWNJTXmdtvdHp9mixoWiDtX1Yrrxnq685k-2zxik-Gn048nYduDITQITdahFrawQpRpSdgwS4UpNICzVN9cRDFVcyujAb6LbIaeDfXBJrrMbG7SIgdXxI_ZfrNo4AnjtgAoSyMN5DqRDrSLs1I46TRhBCcDFnXMV6YtUE59MubKByp5prYCUygw5QWmLgP2ejfnfFue45_UH0imO0oqre1fLJZnqrVUZSMAU8RlLoxIZGa0cNaaOJN6IJwRg4C9Io1QpJL4e0a39xhwkVRKSx1LgSg8jQUu6LBHiYZr-sOdTqlO75WQGGBKAm0Be7EbppmUDNfA4sLTICzNkwRpZE8XeyvrjzTVzBcPL3DTRVQWsDed1l59_O-cO_g_8qfsjiCzokSL5JDtr5cX8AzB27p87i3yN17lQxw priority: 102 providerName: Scholars Portal |
Title | Omentin1 ameliorates myocardial ischemia-induced heart failure via SIRT3/FOXO3a-dependent mitochondrial dynamical homeostasis and mitophagy |
URI | https://link.springer.com/article/10.1186/s12967-022-03642-x https://www.proquest.com/docview/2726072223 https://www.proquest.com/docview/2721258443 https://pubmed.ncbi.nlm.nih.gov/PMC9531426 https://doaj.org/article/d1eec93b82c2476ca2fddc367a02fc20 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdbC2MvY58sWxc0GOxhM40lW7Ifm9LQDdKMrIWwFyHrozHETlnS0v4N-6d3p9jpvG6DvRhjnXDku9P9Lne6I-SdcxxhuImYkzxKnAOVkrmNUp8OLBg4ZkNLlvGJOD5LPs_SWVMmB8_C_Bq_jzOxvwJ7BKqMOecYMWMR4MXdNOYiBGbF4W1dPXB02kMxf5zXMTyhPv_dXfhuZuRv4dFgdUaPyaMGLtKDDX-fkHuufkoejJuA-DPyYxLSfeqY6sot8Lg9QEda3YCFQs4vaAneq6tKHYHvDVy0FDtYr6nXJeaj06tS06-fpqd8fzSZTbiO2qa4a1qBrsPeWFsUUWo3nevhbr6s3BIw5apcUV3bQHcx1-c3z8nZ6Oj08Dhq-itEBmDHOtLM5paxIi0Q94mUmVw75y3WLmcxx0ptRTyAZ7EVYLWA1zbRhbCZSfPM-Zy_IDv1snYvCbW5c0VhpHGZTqR32nNRMC-9RvvvZY_E7cdXpik-jj0wFio4IZlQG4YpYJgKDFPXPfJhO-diU3rjn9RD5OmWEstmhwcgTarRQmVj50zOi4wZlkhhNPPWGi6kHjBv2KBH3qNEKFRu-HlGN2cUYJFYJksdSAYIO-UMFrTXoQSlNN3hVqZUsymsFJPgPEoEZD3ydjuMMzHRrXbLy0ADkDNLEqCRHVnsrKw7UpfzUBg8hw0VEFePfGyl9vblf_9yr_6P_DV5yFCtMIki2SM76--X7g0As3XRJ_flTPbJ7vDo5Mu0H_SzH_7kgOs4yeA6HX77CU8ROew |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTgJeEFdRGGAkEA8QtXEuTh4Q2mBVy9YWjU7qm3FsZ43UJmXtYP0N_Bd-I-e4Saswsbe9xidKnHP8nc_xuRDy2hgPabhymOGe4xsDS4rH2gnSoK3BwTFtW7L0B2H31P8yDsY75E-VC4NhlRUmWqDWhcJ_5C3GgXlz9GYf5z8c7BqFp6tVC421WRyZ1S_Ysi0-9D6Dft8w1jkcfeo6ZVcBR4GzXTqS6VgzlgQJsp0wYCqWxqQaK3Yz18P6ZInbhmuuDgGrYYbal0moIxXEkUmx-BJA_q6PGa0NsntwOPh6sq3uB9utKjUnClsL8KYARBgxj-d9zLmsuT_bJeCqL7gan_nPIa31fZ175G5JWun-2srukx2TPyC3-uWx_EPye2iDjnKXypmZYtI_EFg6W4GfRPub0gz20GaWSSfLNdiSpthHe0lTmWFUPP2ZSfqtdzLyWp3heOhJp2rNu6QzQBxA6FzjQqF6lUtb34BOipkpgNkusgWVubZy84k8Wz0ipzeij8ekkRe5eUKojo1JEsWViaTPUyNTL0xYylOJLCTlTeJWH1-osgQ6duKYCrsVikKxVpgAhQmrMHHZJO8298zXBUCulT5AnW4ksXi3vVCcn4kSC4R2jVGxl0RMMZ-HSrJUa-WFXLZZqli7Sd6iRQiEGHg9JctMCZgkFusS-5wBzw88BhPaq0kCNKj6cGVTooSmhdgupCZ5tRnGOzHcLjfFhZUB4hv5Psjwmi3WZlYfybOJLU8eA6wD72uS95XVbh_-_y_39Pp3fUlud0f9Y3HcGxw9I3cYLikM4_D3SGN5fmGeAzVcJi_K9UjJ95uGgL9UL3mG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQkCZeEONDFDYwEhIPELVxPpw8jkG1AVsRbFLfLMc-r5HatFozxP4G_mnunKQjDJB4q-KzUufufL_TfTH2EiAiGG4CATIKYgBUKZnbIHHJyKKBE9aPZDk-SQ_P4g_TZPpLFb_Pdu9Ckk1NA3VpqurhyrpGxbN0uEYrhQpOmegURxMBosjbMZk-CtemB9fd9tD96Upl_rivZ4581_6bd_PNfMnfgqbeFo3vsbstiOT7Ddd32C2o7rPt4zZM_oD9mPgkoCrkegFzKsJHQMkXV2i3SB7mvESfFhalDtAjR95aTnOta-50SVnq_Fup-dejL6fRcDyZTiIddKNya77AGwBvzMqS4HLbzLPHX7PlApaINNflmuvKerrVTJ9fPWRn4_enB4dBO3UhMAhG6kALm1shiqQgNJgmwuQawFnqaC7CiPq3FeEIn4U2RVuGEmBjXaQ2M0megcujR2yrWlbwmHGbAxSFkQYyHUsH2kVpIZx0mlCBkwMWdh9fmbYlOU3GmCvvmmSpahimkGHKM0x9H7DXmz2rpiHHP6nfEk83lNRM2z9YXpyrVjeVDQFMHhWZMCKWqdHCWWuiVOqRcEaMBuwVSYQilce_Z3RbuYCHpOZZal8KxN1JJPBAuz1KVFXTX-5kSrVXxVoJiS6lJJg2YC82y7ST0t8qWF56GgSiWRwjjezJYu9k_ZWqnPl24Tles4jDBuxNJ7XXL__7l3vyf-TP2fbnd2P16ejk41N2R5CGUZZFvMu26otL2EPkVhfPvHL-BFfxP8E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Omentin1+ameliorates+myocardial+ischemia-induced+heart+failure+via+SIRT3%2FFOXO3a-dependent+mitochondrial+dynamical+homeostasis+and+mitophagy&rft.jtitle=Journal+of+translational+medicine&rft.au=Hu%2C+Jingui&rft.au=Liu%2C+Tao&rft.au=Fu%2C+Fei&rft.au=Cui%2C+Zekun&rft.date=2022-10-04&rft.pub=BioMed+Central&rft.eissn=1479-5876&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs12967-022-03642-x&rft.externalDocID=10_1186_s12967_022_03642_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-5876&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-5876&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-5876&client=summon |