Omentin1 ameliorates myocardial ischemia-induced heart failure via SIRT3/FOXO3a-dependent mitochondrial dynamical homeostasis and mitophagy

Background Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial isc...

Full description

Saved in:
Bibliographic Details
Published inJournal of translational medicine Vol. 20; no. 1; pp. 1 - 21
Main Authors Hu, Jingui, Liu, Tao, Fu, Fei, Cui, Zekun, Lai, Qiong, Zhang, Yuanyuan, Yu, Boyang, Liu, Fuming, Kou, Junping, Li, Fang
Format Journal Article
LanguageEnglish
Published London BioMed Central 04.10.2022
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1479-5876
1479-5876
DOI10.1186/s12967-022-03642-x

Cover

Abstract Background Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial ischemia (MI)-induced heart failure (HF) and its specific mechanism remains unclear and to be elucidated. Methods The model of MI-induced HF mice and oxygen glucose deprivation (OGD)-injured cardiomyocytes were performed. Mice with overexpression of omentin1 were constructed by a fat-specific adeno-associated virus (AAV) vector system. Results We demonstrated that circulating omentin1 level diminished in HF patients compared with healthy subjects. Furthermore, the fat-specific overexpression of omentin1 ameliorated cardiac function, cardiac hypertrophy, infarct size and cardiac pathological features, and also enhanced SIRT3/FOXO3a signaling in HF mice. Additionally, administration with AAV-omentin1 increased mitochondrial fusion and decreased mitochondrial fission in HF mice, as evidenced by up-regulated expression of Mfn2 and OPA1, and downregulation of p-Drp1(Ser616). Then, it also promoted PINK1/Parkin-dependent mitophagy. Simultaneously, treatment with recombinant omentin1 strengthened OGD-injured cardiomyocyte viability, restrained LDH release, and enhanced the mitochondrial accumulation of SIRT3 and nucleus transduction of FOXO3a. Besides, omentin1 also ameliorated unbalanced mitochondrial fusion-fission dynamics and activated mitophagy, thereby, improving the damaged mitochondria morphology and controlling mitochondrial quality in OGD-injured cardiomyocytes. Interestingly, SIRT3 played an important role in the improvement effects of omentin1 on mitochondrial function, unbalanced mitochondrial fusion-fission dynamics and mitophagy. Conclusion Omentin1 improves MI-induced HF and myocardial injury by maintaining mitochondrial dynamical homeostasis and activating mitophagy via upregulation of SIRT3/FOXO3a signaling. This study provides evidence for further application of omentin1 in cardiovascular diseases from the perspective of crosstalk between heart and adipose tissue.
AbstractList Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial ischemia (MI)-induced heart failure (HF) and its specific mechanism remains unclear and to be elucidated. The model of MI-induced HF mice and oxygen glucose deprivation (OGD)-injured cardiomyocytes were performed. Mice with overexpression of omentin1 were constructed by a fat-specific adeno-associated virus (AAV) vector system. We demonstrated that circulating omentin1 level diminished in HF patients compared with healthy subjects. Furthermore, the fat-specific overexpression of omentin1 ameliorated cardiac function, cardiac hypertrophy, infarct size and cardiac pathological features, and also enhanced SIRT3/FOXO3a signaling in HF mice. Additionally, administration with AAV-omentin1 increased mitochondrial fusion and decreased mitochondrial fission in HF mice, as evidenced by up-regulated expression of Mfn2 and OPA1, and downregulation of p-Drp1(Ser616). Then, it also promoted PINK1/Parkin-dependent mitophagy. Simultaneously, treatment with recombinant omentin1 strengthened OGD-injured cardiomyocyte viability, restrained LDH release, and enhanced the mitochondrial accumulation of SIRT3 and nucleus transduction of FOXO3a. Besides, omentin1 also ameliorated unbalanced mitochondrial fusion-fission dynamics and activated mitophagy, thereby, improving the damaged mitochondria morphology and controlling mitochondrial quality in OGD-injured cardiomyocytes. Interestingly, SIRT3 played an important role in the improvement effects of omentin1 on mitochondrial function, unbalanced mitochondrial fusion-fission dynamics and mitophagy. Omentin1 improves MI-induced HF and myocardial injury by maintaining mitochondrial dynamical homeostasis and activating mitophagy via upregulation of SIRT3/FOXO3a signaling. This study provides evidence for further application of omentin1 in cardiovascular diseases from the perspective of crosstalk between heart and adipose tissue.
Abstract Background Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial ischemia (MI)-induced heart failure (HF) and its specific mechanism remains unclear and to be elucidated. Methods The model of MI-induced HF mice and oxygen glucose deprivation (OGD)-injured cardiomyocytes were performed. Mice with overexpression of omentin1 were constructed by a fat-specific adeno-associated virus (AAV) vector system. Results We demonstrated that circulating omentin1 level diminished in HF patients compared with healthy subjects. Furthermore, the fat-specific overexpression of omentin1 ameliorated cardiac function, cardiac hypertrophy, infarct size and cardiac pathological features, and also enhanced SIRT3/FOXO3a signaling in HF mice. Additionally, administration with AAV-omentin1 increased mitochondrial fusion and decreased mitochondrial fission in HF mice, as evidenced by up-regulated expression of Mfn2 and OPA1, and downregulation of p-Drp1(Ser616). Then, it also promoted PINK1/Parkin-dependent mitophagy. Simultaneously, treatment with recombinant omentin1 strengthened OGD-injured cardiomyocyte viability, restrained LDH release, and enhanced the mitochondrial accumulation of SIRT3 and nucleus transduction of FOXO3a. Besides, omentin1 also ameliorated unbalanced mitochondrial fusion-fission dynamics and activated mitophagy, thereby, improving the damaged mitochondria morphology and controlling mitochondrial quality in OGD-injured cardiomyocytes. Interestingly, SIRT3 played an important role in the improvement effects of omentin1 on mitochondrial function, unbalanced mitochondrial fusion-fission dynamics and mitophagy. Conclusion Omentin1 improves MI-induced HF and myocardial injury by maintaining mitochondrial dynamical homeostasis and activating mitophagy via upregulation of SIRT3/FOXO3a signaling. This study provides evidence for further application of omentin1 in cardiovascular diseases from the perspective of crosstalk between heart and adipose tissue.
Background Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial ischemia (MI)-induced heart failure (HF) and its specific mechanism remains unclear and to be elucidated. Methods The model of MI-induced HF mice and oxygen glucose deprivation (OGD)-injured cardiomyocytes were performed. Mice with overexpression of omentin1 were constructed by a fat-specific adeno-associated virus (AAV) vector system. Results We demonstrated that circulating omentin1 level diminished in HF patients compared with healthy subjects. Furthermore, the fat-specific overexpression of omentin1 ameliorated cardiac function, cardiac hypertrophy, infarct size and cardiac pathological features, and also enhanced SIRT3/FOXO3a signaling in HF mice. Additionally, administration with AAV-omentin1 increased mitochondrial fusion and decreased mitochondrial fission in HF mice, as evidenced by up-regulated expression of Mfn2 and OPA1, and downregulation of p-Drp1(Ser616). Then, it also promoted PINK1/Parkin-dependent mitophagy. Simultaneously, treatment with recombinant omentin1 strengthened OGD-injured cardiomyocyte viability, restrained LDH release, and enhanced the mitochondrial accumulation of SIRT3 and nucleus transduction of FOXO3a. Besides, omentin1 also ameliorated unbalanced mitochondrial fusion-fission dynamics and activated mitophagy, thereby, improving the damaged mitochondria morphology and controlling mitochondrial quality in OGD-injured cardiomyocytes. Interestingly, SIRT3 played an important role in the improvement effects of omentin1 on mitochondrial function, unbalanced mitochondrial fusion-fission dynamics and mitophagy. Conclusion Omentin1 improves MI-induced HF and myocardial injury by maintaining mitochondrial dynamical homeostasis and activating mitophagy via upregulation of SIRT3/FOXO3a signaling. This study provides evidence for further application of omentin1 in cardiovascular diseases from the perspective of crosstalk between heart and adipose tissue. Keywords: Omentin1, Heart failure, Sirtuin 3, Mitochondrial dynamical homeostasis, Mitophagy, Heart-adipose crosstalk
Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial ischemia (MI)-induced heart failure (HF) and its specific mechanism remains unclear and to be elucidated.BACKGROUNDAdipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial ischemia (MI)-induced heart failure (HF) and its specific mechanism remains unclear and to be elucidated.The model of MI-induced HF mice and oxygen glucose deprivation (OGD)-injured cardiomyocytes were performed. Mice with overexpression of omentin1 were constructed by a fat-specific adeno-associated virus (AAV) vector system.METHODSThe model of MI-induced HF mice and oxygen glucose deprivation (OGD)-injured cardiomyocytes were performed. Mice with overexpression of omentin1 were constructed by a fat-specific adeno-associated virus (AAV) vector system.We demonstrated that circulating omentin1 level diminished in HF patients compared with healthy subjects. Furthermore, the fat-specific overexpression of omentin1 ameliorated cardiac function, cardiac hypertrophy, infarct size and cardiac pathological features, and also enhanced SIRT3/FOXO3a signaling in HF mice. Additionally, administration with AAV-omentin1 increased mitochondrial fusion and decreased mitochondrial fission in HF mice, as evidenced by up-regulated expression of Mfn2 and OPA1, and downregulation of p-Drp1(Ser616). Then, it also promoted PINK1/Parkin-dependent mitophagy. Simultaneously, treatment with recombinant omentin1 strengthened OGD-injured cardiomyocyte viability, restrained LDH release, and enhanced the mitochondrial accumulation of SIRT3 and nucleus transduction of FOXO3a. Besides, omentin1 also ameliorated unbalanced mitochondrial fusion-fission dynamics and activated mitophagy, thereby, improving the damaged mitochondria morphology and controlling mitochondrial quality in OGD-injured cardiomyocytes. Interestingly, SIRT3 played an important role in the improvement effects of omentin1 on mitochondrial function, unbalanced mitochondrial fusion-fission dynamics and mitophagy.RESULTSWe demonstrated that circulating omentin1 level diminished in HF patients compared with healthy subjects. Furthermore, the fat-specific overexpression of omentin1 ameliorated cardiac function, cardiac hypertrophy, infarct size and cardiac pathological features, and also enhanced SIRT3/FOXO3a signaling in HF mice. Additionally, administration with AAV-omentin1 increased mitochondrial fusion and decreased mitochondrial fission in HF mice, as evidenced by up-regulated expression of Mfn2 and OPA1, and downregulation of p-Drp1(Ser616). Then, it also promoted PINK1/Parkin-dependent mitophagy. Simultaneously, treatment with recombinant omentin1 strengthened OGD-injured cardiomyocyte viability, restrained LDH release, and enhanced the mitochondrial accumulation of SIRT3 and nucleus transduction of FOXO3a. Besides, omentin1 also ameliorated unbalanced mitochondrial fusion-fission dynamics and activated mitophagy, thereby, improving the damaged mitochondria morphology and controlling mitochondrial quality in OGD-injured cardiomyocytes. Interestingly, SIRT3 played an important role in the improvement effects of omentin1 on mitochondrial function, unbalanced mitochondrial fusion-fission dynamics and mitophagy.Omentin1 improves MI-induced HF and myocardial injury by maintaining mitochondrial dynamical homeostasis and activating mitophagy via upregulation of SIRT3/FOXO3a signaling. This study provides evidence for further application of omentin1 in cardiovascular diseases from the perspective of crosstalk between heart and adipose tissue.CONCLUSIONOmentin1 improves MI-induced HF and myocardial injury by maintaining mitochondrial dynamical homeostasis and activating mitophagy via upregulation of SIRT3/FOXO3a signaling. This study provides evidence for further application of omentin1 in cardiovascular diseases from the perspective of crosstalk between heart and adipose tissue.
Background Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial ischemia (MI)-induced heart failure (HF) and its specific mechanism remains unclear and to be elucidated. Methods The model of MI-induced HF mice and oxygen glucose deprivation (OGD)-injured cardiomyocytes were performed. Mice with overexpression of omentin1 were constructed by a fat-specific adeno-associated virus (AAV) vector system. Results We demonstrated that circulating omentin1 level diminished in HF patients compared with healthy subjects. Furthermore, the fat-specific overexpression of omentin1 ameliorated cardiac function, cardiac hypertrophy, infarct size and cardiac pathological features, and also enhanced SIRT3/FOXO3a signaling in HF mice. Additionally, administration with AAV-omentin1 increased mitochondrial fusion and decreased mitochondrial fission in HF mice, as evidenced by up-regulated expression of Mfn2 and OPA1, and downregulation of p-Drp1(Ser616). Then, it also promoted PINK1/Parkin-dependent mitophagy. Simultaneously, treatment with recombinant omentin1 strengthened OGD-injured cardiomyocyte viability, restrained LDH release, and enhanced the mitochondrial accumulation of SIRT3 and nucleus transduction of FOXO3a. Besides, omentin1 also ameliorated unbalanced mitochondrial fusion-fission dynamics and activated mitophagy, thereby, improving the damaged mitochondria morphology and controlling mitochondrial quality in OGD-injured cardiomyocytes. Interestingly, SIRT3 played an important role in the improvement effects of omentin1 on mitochondrial function, unbalanced mitochondrial fusion-fission dynamics and mitophagy. Conclusion Omentin1 improves MI-induced HF and myocardial injury by maintaining mitochondrial dynamical homeostasis and activating mitophagy via upregulation of SIRT3/FOXO3a signaling. This study provides evidence for further application of omentin1 in cardiovascular diseases from the perspective of crosstalk between heart and adipose tissue.
Background Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in the maintenance of body metabolism, insulin resistance and the like. However, the protective effect of omentin1 in myocardial ischemia (MI)-induced heart failure (HF) and its specific mechanism remains unclear and to be elucidated. Methods The model of MI-induced HF mice and oxygen glucose deprivation (OGD)-injured cardiomyocytes were performed. Mice with overexpression of omentin1 were constructed by a fat-specific adeno-associated virus (AAV) vector system. Results We demonstrated that circulating omentin1 level diminished in HF patients compared with healthy subjects. Furthermore, the fat-specific overexpression of omentin1 ameliorated cardiac function, cardiac hypertrophy, infarct size and cardiac pathological features, and also enhanced SIRT3/FOXO3a signaling in HF mice. Additionally, administration with AAV-omentin1 increased mitochondrial fusion and decreased mitochondrial fission in HF mice, as evidenced by up-regulated expression of Mfn2 and OPA1, and downregulation of p-Drp1(Ser616). Then, it also promoted PINK1/Parkin-dependent mitophagy. Simultaneously, treatment with recombinant omentin1 strengthened OGD-injured cardiomyocyte viability, restrained LDH release, and enhanced the mitochondrial accumulation of SIRT3 and nucleus transduction of FOXO3a. Besides, omentin1 also ameliorated unbalanced mitochondrial fusion-fission dynamics and activated mitophagy, thereby, improving the damaged mitochondria morphology and controlling mitochondrial quality in OGD-injured cardiomyocytes. Interestingly, SIRT3 played an important role in the improvement effects of omentin1 on mitochondrial function, unbalanced mitochondrial fusion-fission dynamics and mitophagy. Conclusion Omentin1 improves MI-induced HF and myocardial injury by maintaining mitochondrial dynamical homeostasis and activating mitophagy via upregulation of SIRT3/FOXO3a signaling. This study provides evidence for further application of omentin1 in cardiovascular diseases from the perspective of crosstalk between heart and adipose tissue.
ArticleNumber 447
Audience Academic
Author Yu, Boyang
Fu, Fei
Lai, Qiong
Li, Fang
Cui, Zekun
Zhang, Yuanyuan
Kou, Junping
Hu, Jingui
Liu, Tao
Liu, Fuming
Author_xml – sequence: 1
  givenname: Jingui
  surname: Hu
  fullname: Hu, Jingui
  organization: Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University
– sequence: 2
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
  organization: Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University
– sequence: 3
  givenname: Fei
  surname: Fu
  fullname: Fu, Fei
  organization: Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University
– sequence: 4
  givenname: Zekun
  surname: Cui
  fullname: Cui, Zekun
  organization: Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University
– sequence: 5
  givenname: Qiong
  surname: Lai
  fullname: Lai, Qiong
  organization: Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University
– sequence: 6
  givenname: Yuanyuan
  surname: Zhang
  fullname: Zhang, Yuanyuan
  organization: Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University
– sequence: 7
  givenname: Boyang
  surname: Yu
  fullname: Yu, Boyang
  organization: Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University
– sequence: 8
  givenname: Fuming
  surname: Liu
  fullname: Liu, Fuming
  organization: Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine
– sequence: 9
  givenname: Junping
  surname: Kou
  fullname: Kou, Junping
  email: junpingkou@cpu.edu.cn
  organization: Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University
– sequence: 10
  givenname: Fang
  orcidid: 0000-0002-7617-6534
  surname: Li
  fullname: Li, Fang
  email: lifang@cpu.edu.cn
  organization: Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University
BookMark eNp9Uk1r3DAQNSWl-Wj_QE-GXnpxIo1s2boUQmjahcBCm0JvYizJay22tJXskP0N_dPVZkObDSXoIDF67w1v5p1mR847k2XvKTmntOEXkYLgdUEACsJ4CcX9q-yElrUoqqbmR0_ex9lpjGtCoKxK8SY7ZpwKqIGfZL-Xo3GTdTTH0QzWB5xMzMetVxi0xSG3UfVmtFhYp2dldN4bDFPeoR3mYPI7i_n3xbdbdnG9_LlkWGizMU4nzXy0k1e9dzrsdPTW4WhVevV-ND5OGG3M0ekH3KbH1fZt9rrDIZp3j_dZ9uP68-3V1-Jm-WVxdXlTqKoppwJBCw3QVi2hnPIKlEBjOk3LqgLKaNOQlpJUo5qDEEqhLrHlulGVaEwn2Fm22Otqj2u5CXbEsJUerXwo-LCSyaJVg5GaGqMEaxtQUNZcIXRaK8ZrJNApIEnr015rM7ej0SoZDzgciB7-ONvLlb-TomK0BJ4EPj4KBP9rNnGSYxq5GQZ0xs9RpjVRSL5LlqAfnkHXfg4ujWqH4qQGgCeoFSYD1nU-9VU7UXlZA2lIxaBOqPP_oNLRadkq5ayzqX5AgD1BBR9jMN1fj5TIXRzlPo4yxVE-xFHeJ1LzjKTshJP1u1nY4WUq21Nj6uNWJvwz-wLrD107938
CitedBy_id crossref_primary_10_1016_j_intimp_2024_112526
crossref_primary_10_1007_s40256_024_00711_y
crossref_primary_10_1016_j_phymed_2025_156503
crossref_primary_10_1016_j_biopha_2023_116004
crossref_primary_10_1016_j_cellsig_2024_111080
crossref_primary_10_1038_s41413_024_00399_5
crossref_primary_10_1016_j_intimp_2024_113092
crossref_primary_10_1016_j_biopha_2022_113967
crossref_primary_10_1016_j_arr_2024_102654
crossref_primary_10_1097_MD_0000000000037598
crossref_primary_10_62347_OBXQ9477
crossref_primary_10_12677_md_2024_143038
crossref_primary_10_3390_cells13050415
crossref_primary_10_1186_s12967_023_04049_y
crossref_primary_10_1097_SHK_0000000000002333
crossref_primary_10_1007_s00210_025_04008_y
crossref_primary_10_3390_biomedicines13030632
crossref_primary_10_1186_s13578_023_01097_1
crossref_primary_10_1002_advs_202300470
crossref_primary_10_1016_j_bbamcr_2025_119920
crossref_primary_10_1016_j_phymed_2024_156260
crossref_primary_10_1016_j_ijcrp_2024_200355
crossref_primary_10_1038_s41598_024_83112_0
crossref_primary_10_1186_s40001_024_01690_1
crossref_primary_10_1142_S0192415X25500181
crossref_primary_10_1186_s13008_024_00124_y
crossref_primary_10_1186_s12872_023_03603_2
crossref_primary_10_1016_j_freeradbiomed_2025_03_010
crossref_primary_10_1111_cns_14703
crossref_primary_10_1007_s12265_025_10591_5
crossref_primary_10_1016_j_ijbiomac_2023_127910
crossref_primary_10_1007_s12192_023_01321_4
crossref_primary_10_1007_s11033_023_09154_1
crossref_primary_10_1016_j_freeradbiomed_2024_05_024
crossref_primary_10_1038_s41598_023_47686_5
crossref_primary_10_1007_s12033_023_00746_7
crossref_primary_10_3389_fncel_2024_1434459
crossref_primary_10_1016_j_gde_2023_102046
crossref_primary_10_3390_cells14050324
crossref_primary_10_1016_j_phymed_2023_154830
crossref_primary_10_1016_j_biopha_2024_117004
crossref_primary_10_14336_AD_202_0513
crossref_primary_10_1016_j_jep_2025_119666
crossref_primary_10_1016_j_psj_2024_103839
crossref_primary_10_1016_j_freeradbiomed_2023_05_031
crossref_primary_10_1016_j_mvr_2023_104565
crossref_primary_10_1007_s43032_024_01509_8
crossref_primary_10_1016_j_bcp_2024_116477
crossref_primary_10_1186_s40779_024_00536_5
crossref_primary_10_1038_s41392_024_01816_1
crossref_primary_10_1016_j_arr_2024_102467
crossref_primary_10_3390_jcdd10090382
crossref_primary_10_1016_j_molmet_2024_102012
crossref_primary_10_3390_ijms232416053
crossref_primary_10_1016_j_tips_2025_02_005
crossref_primary_10_1080_15384101_2023_2167949
crossref_primary_10_3390_antiox14010038
crossref_primary_10_3390_ijms24021615
Cites_doi 10.1038/nrcardio.2016.203
10.1016/j.abb.2022.109147
10.1186/s12933-021-01337-z
10.1016/j.bbrc.2010.02.053
10.3389/fphys.2021.736245
10.1016/j.pharmthera.2022.108185
10.1016/j.tips.2017.01.009
10.3389/fphys.2018.01526
10.1136/jim-2021-002071
10.1016/j.cmet.2013.10.001
10.1016/j.jacc.2014.03.032
10.1093/cvr/cvaa340
10.1161/CIRCRESAHA.116.303790
10.1016/j.lfs.2020.118083
10.1016/j.bbrc.2015.01.032
10.1016/j.phrs.2019.104626
10.1093/cvr/cvv282
10.1089/scd.2021.0099
10.1111/ijpo.12605
10.1016/j.atherosclerosis.2015.10.100
10.1111/bph.15068
10.1038/s41401-020-0377-7
10.1016/j.atherosclerosis.2016.06.003
10.1007/s00395-015-0493-6
10.1016/j.molcel.2017.08.013
10.1002/jcp.29727
10.1530/JME-20-0236
10.1016/j.phrs.2021.105802
10.18632/aging.102251
10.1515/cclm-2017-0282
10.1002/jcp.27329
10.1126/science.aad0116
10.1016/j.freeradbiomed.2017.04.005
10.3390/ijms22189765
10.1093/cvr/cvx201
10.1016/j.biochi.2020.08.021
10.1161/CIRCRESAHA.115.306885
10.1016/j.cmet.2015.05.007
10.1016/j.bbadis.2016.10.021
10.1016/j.mam.2019.09.006
10.1111/jfbc.13820
10.1093/eurheartj/ehac088
10.1152/ajpcell.00462.2010
10.1155/2021/4946711
10.1161/CIRCRESAHA.111.258723
10.7150/thno.45922
10.1016/j.cellsig.2018.09.009
10.1016/j.pharmthera.2015.10.005
10.3389/fcvm.2020.583175
10.1042/EBC20170104
10.1146/annurev-pathmechdis-012419-032711
10.1172/JCI120849
10.3389/fcvm.2021.720085
10.1038/s41401-021-00830-1
10.3390/molecules25112534
10.1161/CIRCRESAHA.119.315767
10.1083/jcb.201308006
10.1161/CIRCULATIONAHA.117.030486
10.1038/nrcardio.2011.154
10.1091/mbc.E20-09-0605
10.1111/jpi.12686
10.1186/1475-2840-10-103
10.1007/s11427-021-1982-8
10.1038/s41569-022-00679-9
10.1007/s00125-019-05017-2
10.3389/fphar.2020.01083
10.1161/RES.0000000000000104
10.1083/jcb.201411100
10.1111/bph.14781
10.1089/ars.2018.7703
10.3390/ijms20092358
10.1080/14728222.2022.2037556
10.1016/j.ijbiomac.2021.02.029
10.2337/db06-1506
ContentType Journal Article
Copyright The Author(s) 2022
COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7T5
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12967-022-03642-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1479-5876
EndPage 21
ExternalDocumentID oai_doaj_org_article_d1eec93b82c2476ca2fddc367a02fc20
PMC9531426
A720805327
10_1186_s12967_022_03642_x
GeographicLocations China
Jiangsu China
United States--US
GeographicLocations_xml – name: China
– name: Jiangsu China
– name: United States--US
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 81973506
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: ;
  grantid: 81973506
GroupedDBID ---
0R~
29L
2WC
53G
5VS
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
AAYXX
ALIPV
CITATION
PMFND
3V.
7T5
7XB
8FK
AZQEC
DWQXO
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c584t-a2d9d22b5b0161652c9aeefd14552131880b109ae1d6299ccad4ab6d8c598ef93
IEDL.DBID C6C
ISSN 1479-5876
IngestDate Wed Aug 27 01:04:13 EDT 2025
Thu Aug 21 18:39:52 EDT 2025
Thu Sep 04 23:19:02 EDT 2025
Fri Jul 25 21:21:17 EDT 2025
Tue Jun 17 21:24:31 EDT 2025
Tue Jun 10 20:39:33 EDT 2025
Tue Jul 01 02:59:37 EDT 2025
Thu Apr 24 23:11:00 EDT 2025
Sat Sep 06 07:28:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Heart failure
Mitochondrial dynamical homeostasis
Sirtuin 3
Mitophagy
Omentin1
Heart-adipose crosstalk
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c584t-a2d9d22b5b0161652c9aeefd14552131880b109ae1d6299ccad4ab6d8c598ef93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7617-6534
OpenAccessLink https://doi.org/10.1186/s12967-022-03642-x
PMID 36192726
PQID 2726072223
PQPubID 43076
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_d1eec93b82c2476ca2fddc367a02fc20
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9531426
proquest_miscellaneous_2721258443
proquest_journals_2726072223
gale_infotracmisc_A720805327
gale_infotracacademiconefile_A720805327
crossref_primary_10_1186_s12967_022_03642_x
crossref_citationtrail_10_1186_s12967_022_03642_x
springer_journals_10_1186_s12967_022_03642_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-04
PublicationDateYYYYMMDD 2022-10-04
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-04
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of translational medicine
PublicationTitleAbbrev J Transl Med
PublicationYear 2022
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References C Koentges (3642_CR61) 2015; 110
M Morita (3642_CR66) 2017; 67
C Kang (3642_CR55) 2018; 114
K Kazama (3642_CR9) 2015; 457
DC Chan (3642_CR43) 2020; 15
R Wang (3642_CR50) 2021; 32
T Varanita (3642_CR53) 2015; 21
L Chodari (3642_CR77) 2021; 2021
S Cetin Sanlialp (3642_CR11) 2022; 70
C Wang (3642_CR20) 2021; 172
NR Sundaresan (3642_CR63) 2009; 119
T Saito (3642_CR54) 2021; 117
T Xu (3642_CR10) 2018; 56
SH Dai (3642_CR69) 2017; 108
J Menzel (3642_CR16) 2016; 251
NA Binti Kamaruddin (3642_CR33) 2020; 25
T Saito (3642_CR56) 2015; 116
A Zhao (3642_CR14) 2022; 26
RM Agra-Bermejo (3642_CR6) 2021; 12
J Liu (3642_CR21) 2019; 53
CH Saely (3642_CR40) 2016; 244
K Xu (3642_CR71) 2021; 175
H Tsutsui (3642_CR1) 2022; 238
AE Berezin (3642_CR32) 2020; 7
G Iacobellis (3642_CR4) 2022; 19
J Jiang (3642_CR73) 2021; 70
FW Prinzen (3642_CR2) 2022; 43
JJ Fuster (3642_CR3) 2016; 118
A Mourier (3642_CR49) 2015; 208
W Zhao (3642_CR68) 2018; 9
L Chen (3642_CR45) 2020; 11
E Murphy (3642_CR42) 2016; 118
SS Ana (3642_CR64) 2020; 152
C Niersmann (3642_CR15) 2020; 63
HJ Yoo (3642_CR39) 2011; 10
L Tilokani (3642_CR44) 2018; 62
Z Jin (3642_CR8) 2021; 66
J Zhang (3642_CR60) 2020; 10
X Zhang (3642_CR62) 2018; 137
M Longo (3642_CR31) 2019; 20
HI Mizuho (3642_CR35) 2016; 110
O Gjesdal (3642_CR26) 2011; 8
CM de Souza Batista (3642_CR13) 2007; 56
H Yamawaki (3642_CR37) 2010; 393
Q Lai (3642_CR29) 2020; 41
M Morita (3642_CR65) 2013; 18
P Bai (3642_CR5) 2021; 13
A Tuttolomondo (3642_CR12) 2021; 20
Y Zheng (3642_CR23) 2019; 234
M Forte (3642_CR17) 2021; 178
PE Morales (3642_CR18) 2020; 71
A Benigni (3642_CR22) 2019; 31
Q Zhang (3642_CR74) 2022; 65
UA Mukherjee (3642_CR57) 2015; 156
Y Jiang (3642_CR58) 2017; 38
CC Hsieh (3642_CR28) 2019; 176
D Han (3642_CR70) 2020; 235
DA Brown (3642_CR19) 2017; 14
W Yu (3642_CR24) 2017; 1863
W Yang (3642_CR76) 2022; 46
Y Chen (3642_CR48) 2011; 109
KW Dunn (3642_CR30) 2011; 300
S Wang (3642_CR59) 2020; 179
R Anand (3642_CR51) 2014; 204
J Rothermel (3642_CR38) 2020; 15
B Zhou (3642_CR41) 2018; 128
J Ding (3642_CR46) 2022; 718
Ö Kutlay (3642_CR36) 2019; 21
JX Chen (3642_CR75) 2021; 30
J Liu (3642_CR47) 2021; 8
T Wai (3642_CR52) 2015; 350
Y Kataoka (3642_CR7) 2014; 63
Q Yin (3642_CR27) 2020; 257
Q Lai (3642_CR25) 2022; 43
F Xu (3642_CR34) 2019; 11
Y Chun (3642_CR67) 2021; 22
AE Dikalova (3642_CR72) 2020; 126
References_xml – volume: 14
  start-page: 238
  issue: 4
  year: 2017
  ident: 3642_CR19
  publication-title: Nat Rev Cardiol
  doi: 10.1038/nrcardio.2016.203
– volume: 718
  start-page: 109147
  year: 2022
  ident: 3642_CR46
  publication-title: Arch Biochem Biophys
  doi: 10.1016/j.abb.2022.109147
– volume: 20
  start-page: 142
  issue: 1
  year: 2021
  ident: 3642_CR12
  publication-title: Cardiovasc Diabetol
  doi: 10.1186/s12933-021-01337-z
– volume: 393
  start-page: 668
  issue: 4
  year: 2010
  ident: 3642_CR37
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2010.02.053
– volume: 12
  start-page: 736245
  year: 2021
  ident: 3642_CR6
  publication-title: Front Physiol
  doi: 10.3389/fphys.2021.736245
– volume: 238
  start-page: 108185
  year: 2022
  ident: 3642_CR1
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2022.108185
– volume: 38
  start-page: 459
  issue: 5
  year: 2017
  ident: 3642_CR58
  publication-title: Trends Pharmacol Sci
  doi: 10.1016/j.tips.2017.01.009
– volume: 21
  start-page: 91
  issue: 2
  year: 2019
  ident: 3642_CR36
  publication-title: Anatol J Cardiol
– volume: 9
  start-page: 1526
  year: 2018
  ident: 3642_CR68
  publication-title: Front Physiol
  doi: 10.3389/fphys.2018.01526
– volume: 70
  start-page: 780
  issue: 3
  year: 2022
  ident: 3642_CR11
  publication-title: J Investig Med
  doi: 10.1136/jim-2021-002071
– volume: 18
  start-page: 698
  issue: 5
  year: 2013
  ident: 3642_CR65
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2013.10.001
– volume: 63
  start-page: 2722
  issue: 24
  year: 2014
  ident: 3642_CR7
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2014.03.032
– volume: 117
  start-page: 2730
  issue: 14
  year: 2021
  ident: 3642_CR54
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvaa340
– volume: 116
  start-page: 1477
  issue: 8
  year: 2015
  ident: 3642_CR56
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.116.303790
– volume: 257
  start-page: 118083
  year: 2020
  ident: 3642_CR27
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2020.118083
– volume: 457
  start-page: 602
  issue: 4
  year: 2015
  ident: 3642_CR9
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2015.01.032
– volume: 152
  start-page: 104626
  year: 2020
  ident: 3642_CR64
  publication-title: Pharmacol Res
  doi: 10.1016/j.phrs.2019.104626
– volume: 110
  start-page: 107
  issue: 1
  year: 2016
  ident: 3642_CR35
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvv282
– volume: 30
  start-page: 843
  issue: 17
  year: 2021
  ident: 3642_CR75
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2021.0099
– volume: 15
  start-page: e12605
  issue: 5
  year: 2020
  ident: 3642_CR38
  publication-title: Pediatr Obes
  doi: 10.1111/ijpo.12605
– volume: 244
  start-page: 38
  year: 2016
  ident: 3642_CR40
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2015.10.100
– volume: 178
  start-page: 2060
  issue: 10
  year: 2021
  ident: 3642_CR17
  publication-title: Br J Pharmacol
  doi: 10.1111/bph.15068
– volume: 41
  start-page: 1058
  issue: 8
  year: 2020
  ident: 3642_CR29
  publication-title: Acta Pharmacol Sin
  doi: 10.1038/s41401-020-0377-7
– volume: 251
  start-page: 415
  year: 2016
  ident: 3642_CR16
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2016.06.003
– volume: 110
  start-page: 36
  issue: 4
  year: 2015
  ident: 3642_CR61
  publication-title: Basic Res Cardiol
  doi: 10.1007/s00395-015-0493-6
– volume: 67
  start-page: 922
  issue: 6
  year: 2017
  ident: 3642_CR66
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.08.013
– volume: 235
  start-page: 8839
  issue: 11
  year: 2020
  ident: 3642_CR70
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.29727
– volume: 66
  start-page: 273
  issue: 4
  year: 2021
  ident: 3642_CR8
  publication-title: J Mol Endocrinol
  doi: 10.1530/JME-20-0236
– volume: 172
  year: 2021
  ident: 3642_CR20
  publication-title: Pharmacol Res
  doi: 10.1016/j.phrs.2021.105802
– volume: 11
  start-page: 8760
  issue: 20
  year: 2019
  ident: 3642_CR34
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.102251
– volume: 56
  start-page: 350
  issue: 2
  year: 2018
  ident: 3642_CR10
  publication-title: Clin Chem Lab Med
  doi: 10.1515/cclm-2017-0282
– volume: 234
  start-page: 5488
  issue: 5
  year: 2019
  ident: 3642_CR23
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.27329
– volume: 350
  start-page: aad0116
  issue: 6265
  year: 2015
  ident: 3642_CR52
  publication-title: Science
  doi: 10.1126/science.aad0116
– volume: 108
  start-page: 345
  year: 2017
  ident: 3642_CR69
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2017.04.005
– volume: 22
  start-page: 9765
  issue: 18
  year: 2021
  ident: 3642_CR67
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22189765
– volume: 114
  start-page: 90
  issue: 1
  year: 2018
  ident: 3642_CR55
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvx201
– volume: 179
  start-page: 1
  year: 2020
  ident: 3642_CR59
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2020.08.021
– volume: 118
  start-page: 1786
  issue: 11
  year: 2016
  ident: 3642_CR3
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.115.306885
– volume: 21
  start-page: 834
  issue: 6
  year: 2015
  ident: 3642_CR53
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2015.05.007
– volume: 1863
  start-page: 1973
  issue: 8
  year: 2017
  ident: 3642_CR24
  publication-title: Biochim Biophys Acta Mol Basis Dis
  doi: 10.1016/j.bbadis.2016.10.021
– volume: 71
  start-page: 100822
  year: 2020
  ident: 3642_CR18
  publication-title: Mol Aspects Med
  doi: 10.1016/j.mam.2019.09.006
– volume: 46
  start-page: e13820
  issue: 3
  year: 2022
  ident: 3642_CR76
  publication-title: J Food Biochem
  doi: 10.1111/jfbc.13820
– volume: 43
  start-page: 1917
  issue: 20
  year: 2022
  ident: 3642_CR2
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehac088
– volume: 300
  start-page: 723
  issue: 4
  year: 2011
  ident: 3642_CR30
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00462.2010
– volume: 2021
  start-page: 4946711
  year: 2021
  ident: 3642_CR77
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2021/4946711
– volume: 109
  start-page: 1327
  issue: 12
  year: 2011
  ident: 3642_CR48
  publication-title: Cir Res
  doi: 10.1161/CIRCRESAHA.111.258723
– volume: 10
  start-page: 8315
  issue: 18
  year: 2020
  ident: 3642_CR60
  publication-title: Theranostics
  doi: 10.7150/thno.45922
– volume: 53
  start-page: 1
  year: 2019
  ident: 3642_CR21
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2018.09.009
– volume: 156
  start-page: 34
  year: 2015
  ident: 3642_CR57
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2015.10.005
– volume: 7
  start-page: 583175
  year: 2020
  ident: 3642_CR32
  publication-title: Front Cardiovasc Med
  doi: 10.3389/fcvm.2020.583175
– volume: 62
  start-page: 341
  issue: 3
  year: 2018
  ident: 3642_CR44
  publication-title: Essays Biochem
  doi: 10.1042/EBC20170104
– volume: 15
  start-page: 235
  year: 2020
  ident: 3642_CR43
  publication-title: Annu Rev Pathol
  doi: 10.1146/annurev-pathmechdis-012419-032711
– volume: 128
  start-page: 3716
  issue: 9
  year: 2018
  ident: 3642_CR41
  publication-title: J Clin Invest
  doi: 10.1172/JCI120849
– volume: 8
  start-page: 720085
  year: 2021
  ident: 3642_CR47
  publication-title: Front Cardiovasc Med
  doi: 10.3389/fcvm.2021.720085
– volume: 43
  start-page: 2003
  issue: 8
  year: 2022
  ident: 3642_CR25
  publication-title: Acta Pharmacol Sin
  doi: 10.1038/s41401-021-00830-1
– volume: 25
  start-page: 2534
  issue: 11
  year: 2020
  ident: 3642_CR33
  publication-title: Molecules
  doi: 10.3390/molecules25112534
– volume: 119
  start-page: 2758
  issue: 9
  year: 2009
  ident: 3642_CR63
  publication-title: J Clin Invest
– volume: 126
  start-page: 439
  issue: 4
  year: 2020
  ident: 3642_CR72
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.119.315767
– volume: 204
  start-page: 919
  issue: 6
  year: 2014
  ident: 3642_CR51
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201308006
– volume: 137
  start-page: 2052
  issue: 19
  year: 2018
  ident: 3642_CR62
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.117.030486
– volume: 8
  start-page: 673
  issue: 12
  year: 2011
  ident: 3642_CR26
  publication-title: Nat Rev Cardiol
  doi: 10.1038/nrcardio.2011.154
– volume: 32
  start-page: 157
  issue: 2
  year: 2021
  ident: 3642_CR50
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E20-09-0605
– volume: 70
  start-page: e12686
  issue: 1
  year: 2021
  ident: 3642_CR73
  publication-title: J Pineal Res.
  doi: 10.1111/jpi.12686
– volume: 10
  start-page: 103
  year: 2011
  ident: 3642_CR39
  publication-title: Cardiovasc Diabetol
  doi: 10.1186/1475-2840-10-103
– volume: 65
  start-page: 1198
  issue: 6
  year: 2022
  ident: 3642_CR74
  publication-title: Sci China Life Sci
  doi: 10.1007/s11427-021-1982-8
– volume: 19
  start-page: 593
  issue: 9
  year: 2022
  ident: 3642_CR4
  publication-title: Nat Rev Cardiol
  doi: 10.1038/s41569-022-00679-9
– volume: 63
  start-page: 410
  issue: 2
  year: 2020
  ident: 3642_CR15
  publication-title: Diabetologia
  doi: 10.1007/s00125-019-05017-2
– volume: 11
  start-page: 1083
  year: 2020
  ident: 3642_CR45
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2020.01083
– volume: 118
  start-page: 1960
  issue: 12
  year: 2016
  ident: 3642_CR42
  publication-title: Cir Res
  doi: 10.1161/RES.0000000000000104
– volume: 208
  start-page: 429
  issue: 4
  year: 2015
  ident: 3642_CR49
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201411100
– volume: 176
  start-page: 3791
  issue: 19
  year: 2019
  ident: 3642_CR28
  publication-title: Br J Pharmacol
  doi: 10.1111/bph.14781
– volume: 13
  start-page: e17347
  issue: 8
  year: 2021
  ident: 3642_CR5
  publication-title: Cureus
– volume: 31
  start-page: 1255
  issue: 17
  year: 2019
  ident: 3642_CR22
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2018.7703
– volume: 20
  start-page: 2358
  issue: 9
  year: 2019
  ident: 3642_CR31
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20092358
– volume: 26
  start-page: 275
  issue: 3
  year: 2022
  ident: 3642_CR14
  publication-title: Expert Opin Ther Targets
  doi: 10.1080/14728222.2022.2037556
– volume: 175
  start-page: 351
  year: 2021
  ident: 3642_CR71
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2021.02.029
– volume: 56
  start-page: 1655
  issue: 6
  year: 2007
  ident: 3642_CR13
  publication-title: Diabetes
  doi: 10.2337/db06-1506
SSID ssj0024549
Score 2.5835414
Snippet Background Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts...
Background Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts...
Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine, exerts vital roles in...
Abstract Background Adipose tissue-derived adipokines are involved in various crosstalk between adipose tissue and other organs. Omentin1, a novel adipokine,...
SourceID doaj
pubmedcentral
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adipose tissue
Adipose tissues
Antibodies
Biomedical and Life Sciences
Biomedicine
Body fat
Cardiomyocytes
Cardiovascular disease
Cardiovascular diseases
Cellular Metabolism Therapy
Complications and side effects
Congestive heart failure
Coronary vessels
Diabetes
Electrocardiography
FOXO3 protein
Health aspects
Heart failure
Heart-adipose crosstalk
Homeostasis
Hypertrophy
Insulin
Insulin resistance
Ischemia
Kinases
Laboratory animals
Medicine/Public Health
Mitochondria
Mitochondrial dynamical homeostasis
Mitophagy
Myocardial ischemia
Omentin1
Prevention
PTEN-induced putative kinase
Risk factors
Signal transduction
Sirtuin 3
Traditional Chinese medicine
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yD-KL-BNXT4kg-KBl26Rt2sdTXE7hXNA72LeQJhO3sO0ebk_u_gb_aWfSdrUe6otvSzNlm8xM5hsy-YaxFwCSYLiNBCgZpQDoUqp0Ueaz2GGAEy60ZDn5mB-fpR9W2eqXVl9UE9bTA_cLN3cJgC1lVQgrUpVbI7xzVubKxMJbEbL1uIzHZGpk2cO0Z7wiU-TzHUY13BCocp3O3UR0OQlDga3_-p58vU7yt8PSEIMWd9jtATzyo_6j77Ib0N5jN0-G4_H77PsyFP-0CTcNbOjyPQJJ3lxhvCI72PAac1loahNhJo46dZz6WXfcm5qq0_m32vDP7z-dyvliuVpKE40tcjveoOfjTtk6Mlju-j72-Gu9bWCLCHNX77hpXZA7X5svVw_Y2eLd6dvjaOi2EFkEIV1khCudEFVWEQrMM2FLA-AdMZmLRBJvW5XE-CxxOcYw1LxLTZW7wmZlAb6UD9lBu23hEeOuBKgqqywUJlUejJd5JbzyhtCAVzOWjIuv7UBFTh0xNjqkJEWue4VpVJgOCtOXM_Zq_855T8TxV-k3pNO9JJFohwdoWnowLf0v05qxl2QRmlwdP8-a4cYCTpJIs_SREoi3MylwQocTSXRROx0ebUoPW8ROC4WppCJ4NmPP98P0JpW9tbC9CDIIQIs0RRk1scXJzKYjbb0ONOElbq-Iv2bs9Wi1P__8zyv3-H-s3BN2S5CzUaFFesgOuq8X8BTBW1c9C376Ay27RMM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdbC2MvY5_MXTc0GOxhM4nlD9lPox0N3aDN6FrIm5D10RhiO6vT0f4N-6d3p8gJXlnfgnUmlu93dz9ZpztCPhgTIw1XITM8DhNjwKR4ocPUpmMNAY5p15Ll5DQ7vki-z9KZ_-DW-bTK3ic6R61bhd_IR4wD8-YYzb4sf4XYNQp3V30LjYdkF1xwDjjfPTw6_XG2rbYHy5_-qEyejTqIbuAYMIMd999YeDMIR65q_13ffDdf8p9NUxeLJk_JE08i6cFa68_IA9M8J49O_Db5C_Jn6pKAmojK2izwED4QSlrfQtxCPCxoBWtaU1cyhBU56FZT7Gu9olZWmKVOf1eS_vx2dh6PJtPZNJZh3yp3RWvwAOAxG43ApXrdzx5-zdvatMA0u6qjstFObjmXl7cvycXk6Pzrcei7LoQKyMgqlEwXmrEyLZENZilThTTGaqxozqIY67eV0RiuRTqDWAYI0IksM52rtMiNLeJXZKdpG_OaUF0YU5aKK5PLhFsjbZyVzHIrkRVYHpCof_lC-ZLk2BljIdzSJM_EWmECFCacwsRNQD5t7lmuC3LcK32IOt1IYjFtd6G9uhTeNoWOjFFFXOZMsYRnSjKrtYozLsfMKjYOyEdEhECTh8dT0p9cgEli8SxxwBnw7jRmMKH9gSSYqhoO95gS3lV0YgvsgLzfDOOdmP7WmPbayQARzZMEZPgAi4OZDUeaau7KhRfgZoGHBeRzj9rtn___ze3d_6xvyGOGZoSpFMk-2VldXZu3QM9W5Ttvg38BJv08dQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_HCeKL-Ik9T4kg-KD1tulH2geRU1xOYV3QW9i3kCaT28K2e-7uye3f4D_tTLbdo94p-FaaCW3mI_MbMplh7CVATDDchAJkHCYAaFKysGHq0oFFByesb8ky-pqdTJIv03S6x7p2Ry0DVzeGdtRParKcv738sXmPBv_OG3yeHa3QZ6G5U146naqJEDHlLfRMGQVjoyS_qr2HwVB3cebGeT3n5Gv4X9-pr2dP_nGE6j3T8B6720JKfrzVgftsD5oH7PaoPTR_yH6NfUpQE3Fdw5yu5CO85PUGvRhpx5xXyAaoKx1ifI6Stpy6XK-50xXlrPOflebfP387jY-G4-k41mHXOHfNa9wPkIWNJTXmdtvdHp9mixoWiDtX1Yrrxnq685k-2zxik-Gn048nYduDITQITdahFrawQpRpSdgwS4UpNICzVN9cRDFVcyujAb6LbIaeDfXBJrrMbG7SIgdXxI_ZfrNo4AnjtgAoSyMN5DqRDrSLs1I46TRhBCcDFnXMV6YtUE59MubKByp5prYCUygw5QWmLgP2ejfnfFue45_UH0imO0oqre1fLJZnqrVUZSMAU8RlLoxIZGa0cNaaOJN6IJwRg4C9Io1QpJL4e0a39xhwkVRKSx1LgSg8jQUu6LBHiYZr-sOdTqlO75WQGGBKAm0Be7EbppmUDNfA4sLTICzNkwRpZE8XeyvrjzTVzBcPL3DTRVQWsDed1l59_O-cO_g_8qfsjiCzokSL5JDtr5cX8AzB27p87i3yN17lQxw
  priority: 102
  providerName: Scholars Portal
Title Omentin1 ameliorates myocardial ischemia-induced heart failure via SIRT3/FOXO3a-dependent mitochondrial dynamical homeostasis and mitophagy
URI https://link.springer.com/article/10.1186/s12967-022-03642-x
https://www.proquest.com/docview/2726072223
https://www.proquest.com/docview/2721258443
https://pubmed.ncbi.nlm.nih.gov/PMC9531426
https://doaj.org/article/d1eec93b82c2476ca2fddc367a02fc20
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdbC2MvY58sWxc0GOxhM40lW7Ifm9LQDdKMrIWwFyHrozHETlnS0v4N-6d3p9jpvG6DvRhjnXDku9P9Lne6I-SdcxxhuImYkzxKnAOVkrmNUp8OLBg4ZkNLlvGJOD5LPs_SWVMmB8_C_Bq_jzOxvwJ7BKqMOecYMWMR4MXdNOYiBGbF4W1dPXB02kMxf5zXMTyhPv_dXfhuZuRv4dFgdUaPyaMGLtKDDX-fkHuufkoejJuA-DPyYxLSfeqY6sot8Lg9QEda3YCFQs4vaAneq6tKHYHvDVy0FDtYr6nXJeaj06tS06-fpqd8fzSZTbiO2qa4a1qBrsPeWFsUUWo3nevhbr6s3BIw5apcUV3bQHcx1-c3z8nZ6Oj08Dhq-itEBmDHOtLM5paxIi0Q94mUmVw75y3WLmcxx0ptRTyAZ7EVYLWA1zbRhbCZSfPM-Zy_IDv1snYvCbW5c0VhpHGZTqR32nNRMC-9RvvvZY_E7cdXpik-jj0wFio4IZlQG4YpYJgKDFPXPfJhO-diU3rjn9RD5OmWEstmhwcgTarRQmVj50zOi4wZlkhhNPPWGi6kHjBv2KBH3qNEKFRu-HlGN2cUYJFYJksdSAYIO-UMFrTXoQSlNN3hVqZUsymsFJPgPEoEZD3ydjuMMzHRrXbLy0ADkDNLEqCRHVnsrKw7UpfzUBg8hw0VEFePfGyl9vblf_9yr_6P_DV5yFCtMIki2SM76--X7g0As3XRJ_flTPbJ7vDo5Mu0H_SzH_7kgOs4yeA6HX77CU8ROew
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTgJeEFdRGGAkEA8QtXEuTh4Q2mBVy9YWjU7qm3FsZ43UJmXtYP0N_Bd-I-e4Saswsbe9xidKnHP8nc_xuRDy2hgPabhymOGe4xsDS4rH2gnSoK3BwTFtW7L0B2H31P8yDsY75E-VC4NhlRUmWqDWhcJ_5C3GgXlz9GYf5z8c7BqFp6tVC421WRyZ1S_Ysi0-9D6Dft8w1jkcfeo6ZVcBR4GzXTqS6VgzlgQJsp0wYCqWxqQaK3Yz18P6ZInbhmuuDgGrYYbal0moIxXEkUmx-BJA_q6PGa0NsntwOPh6sq3uB9utKjUnClsL8KYARBgxj-d9zLmsuT_bJeCqL7gan_nPIa31fZ175G5JWun-2srukx2TPyC3-uWx_EPye2iDjnKXypmZYtI_EFg6W4GfRPub0gz20GaWSSfLNdiSpthHe0lTmWFUPP2ZSfqtdzLyWp3heOhJp2rNu6QzQBxA6FzjQqF6lUtb34BOipkpgNkusgWVubZy84k8Wz0ipzeij8ekkRe5eUKojo1JEsWViaTPUyNTL0xYylOJLCTlTeJWH1-osgQ6duKYCrsVikKxVpgAhQmrMHHZJO8298zXBUCulT5AnW4ksXi3vVCcn4kSC4R2jVGxl0RMMZ-HSrJUa-WFXLZZqli7Sd6iRQiEGHg9JctMCZgkFusS-5wBzw88BhPaq0kCNKj6cGVTooSmhdgupCZ5tRnGOzHcLjfFhZUB4hv5Psjwmi3WZlYfybOJLU8eA6wD72uS95XVbh_-_y_39Pp3fUlud0f9Y3HcGxw9I3cYLikM4_D3SGN5fmGeAzVcJi_K9UjJ95uGgL9UL3mG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQkCZeEONDFDYwEhIPELVxPpw8jkG1AVsRbFLfLMc-r5HatFozxP4G_mnunKQjDJB4q-KzUufufL_TfTH2EiAiGG4CATIKYgBUKZnbIHHJyKKBE9aPZDk-SQ_P4g_TZPpLFb_Pdu9Ckk1NA3VpqurhyrpGxbN0uEYrhQpOmegURxMBosjbMZk-CtemB9fd9tD96Upl_rivZ4581_6bd_PNfMnfgqbeFo3vsbstiOT7Ddd32C2o7rPt4zZM_oD9mPgkoCrkegFzKsJHQMkXV2i3SB7mvESfFhalDtAjR95aTnOta-50SVnq_Fup-dejL6fRcDyZTiIddKNya77AGwBvzMqS4HLbzLPHX7PlApaINNflmuvKerrVTJ9fPWRn4_enB4dBO3UhMAhG6kALm1shiqQgNJgmwuQawFnqaC7CiPq3FeEIn4U2RVuGEmBjXaQ2M0megcujR2yrWlbwmHGbAxSFkQYyHUsH2kVpIZx0mlCBkwMWdh9fmbYlOU3GmCvvmmSpahimkGHKM0x9H7DXmz2rpiHHP6nfEk83lNRM2z9YXpyrVjeVDQFMHhWZMCKWqdHCWWuiVOqRcEaMBuwVSYQilce_Z3RbuYCHpOZZal8KxN1JJPBAuz1KVFXTX-5kSrVXxVoJiS6lJJg2YC82y7ST0t8qWF56GgSiWRwjjezJYu9k_ZWqnPl24Tles4jDBuxNJ7XXL__7l3vyf-TP2fbnd2P16ejk41N2R5CGUZZFvMu26otL2EPkVhfPvHL-BFfxP8E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Omentin1+ameliorates+myocardial+ischemia-induced+heart+failure+via+SIRT3%2FFOXO3a-dependent+mitochondrial+dynamical+homeostasis+and+mitophagy&rft.jtitle=Journal+of+translational+medicine&rft.au=Hu%2C+Jingui&rft.au=Liu%2C+Tao&rft.au=Fu%2C+Fei&rft.au=Cui%2C+Zekun&rft.date=2022-10-04&rft.pub=BioMed+Central&rft.eissn=1479-5876&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs12967-022-03642-x&rft.externalDocID=10_1186_s12967_022_03642_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-5876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-5876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-5876&client=summon