Structural Definition of a Neutralization-Sensitive Epitope on the MERS-CoV S1-NTD
Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is k...
Saved in:
Published in | Cell reports (Cambridge) Vol. 28; no. 13; pp. 3395 - 3405.e6 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
24.09.2019
Elsevier The Author(s) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is known about antibodies targeting non-RBD epitopes. Here, we report the structural and functional characterization of G2, a neutralizing antibody targeting the MERS-CoV S1 N-terminal domain (S1-NTD). Structures of G2 alone and in complex with the MERS-CoV S1-NTD define a site of vulnerability comprising two loops, each of which contain a residue mutated in G2-escape variants. Cell-surface binding studies and in vitro competition experiments demonstrate that G2 strongly disrupts the attachment of MERS-CoV S to its receptor, dipeptidyl peptidase-4 (DPP4), with the inhibition requiring the native trimeric S conformation. These results advance our understanding of antibody-mediated neutralization of coronaviruses and should facilitate the development of immunotherapeutics and vaccines against MERS-CoV.
[Display omitted]
•The epitope for the neutralizing antibody G2 is confined to the apex of the MERS-CoV S1-NTD•G2 epitope is relatively well conserved•G2 IgG and Fab both neutralize pseudotyped and authentic MERS-CoV•G2 neutralizes by preventing the binding of DPP4 to trimeric S protein
Wang et al. report the structural and functional characterization of the Middle East respiratory syndrome coronavirus (MERS-CoV)-neutralizing antibody G2. G2 recognizes a conserved epitope on the MERS-CoV S1 N-terminal domain (S1-NTD) and neutralizes MERS-CoV by interfering with binding to host receptor dipeptidyl peptidase-4 (DPP4). The findings are relevant for understanding the viral attachment mechanism and for the development of S1-NTD-based vaccines. |
---|---|
AbstractList | Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is known about antibodies targeting non-RBD epitopes. Here, we report the structural and functional characterization of G2, a neutralizing antibody targeting the MERS-CoV S1 N-terminal domain (S1-NTD). Structures of G2 alone and in complex with the MERS-CoV S1-NTD define a site of vulnerability comprising two loops, each of which contain a residue mutated in G2-escape variants. Cell-surface binding studies and
in vitro
competition experiments demonstrate that G2 strongly disrupts the attachment of MERS-CoV S to its receptor, dipeptidyl peptidase-4 (DPP4), with the inhibition requiring the native trimeric S conformation. These results advance our understanding of antibody-mediated neutralization of coronaviruses and should facilitate the development of immunotherapeutics and vaccines against MERS-CoV.
•
The epitope for the neutralizing antibody G2 is confined to the apex of the MERS-CoV S1-NTD
•
G2 epitope is relatively well conserved
•
G2 IgG and Fab both neutralize pseudotyped and authentic MERS-CoV
•
G2 neutralizes by preventing the binding of DPP4 to trimeric S protein
Wang et al. report the structural and functional characterization of the Middle East respiratory syndrome coronavirus (MERS-CoV)-neutralizing antibody G2. G2 recognizes a conserved epitope on the MERS-CoV S1 N-terminal domain (S1-NTD) and neutralizes MERS-CoV by interfering with binding to host receptor dipeptidyl peptidase-4 (DPP4). The findings are relevant for understanding the viral attachment mechanism and for the development of S1-NTD-based vaccines. Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is known about antibodies targeting non-RBD epitopes. Here, we report the structural and functional characterization of G2, a neutralizing antibody targeting the MERS-CoV S1 N-terminal domain (S1-NTD). Structures of G2 alone and in complex with the MERS-CoV S1-NTD define a site of vulnerability comprising two loops, each of which contain a residue mutated in G2-escape variants. Cell-surface binding studies and in vitro competition experiments demonstrate that G2 strongly disrupts the attachment of MERS-CoV S to its receptor, dipeptidyl peptidase-4 (DPP4), with the inhibition requiring the native trimeric S conformation. These results advance our understanding of antibody-mediated neutralization of coronaviruses and should facilitate the development of immunotherapeutics and vaccines against MERS-CoV. Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is known about antibodies targeting non-RBD epitopes. Here, we report the structural and functional characterization of G2, a neutralizing antibody targeting the MERS-CoV S1 N-terminal domain (S1-NTD). Structures of G2 alone and in complex with the MERS-CoV S1-NTD define a site of vulnerability comprising two loops, each of which contain a residue mutated in G2-escape variants. Cell-surface binding studies and in vitro competition experiments demonstrate that G2 strongly disrupts the attachment of MERS-CoV S to its receptor, dipeptidyl peptidase-4 (DPP4), with the inhibition requiring the native trimeric S conformation. These results advance our understanding of antibody-mediated neutralization of coronaviruses and should facilitate the development of immunotherapeutics and vaccines against MERS-CoV. [Display omitted] •The epitope for the neutralizing antibody G2 is confined to the apex of the MERS-CoV S1-NTD•G2 epitope is relatively well conserved•G2 IgG and Fab both neutralize pseudotyped and authentic MERS-CoV•G2 neutralizes by preventing the binding of DPP4 to trimeric S protein Wang et al. report the structural and functional characterization of the Middle East respiratory syndrome coronavirus (MERS-CoV)-neutralizing antibody G2. G2 recognizes a conserved epitope on the MERS-CoV S1 N-terminal domain (S1-NTD) and neutralizes MERS-CoV by interfering with binding to host receptor dipeptidyl peptidase-4 (DPP4). The findings are relevant for understanding the viral attachment mechanism and for the development of S1-NTD-based vaccines. Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is known about antibodies targeting non-RBD epitopes. Here, we report the structural and functional characterization of G2, a neutralizing antibody targeting the MERS-CoV S1 N-terminal domain (S1-NTD). Structures of G2 alone and in complex with the MERS-CoV S1-NTD define a site of vulnerability comprising two loops, each of which contain a residue mutated in G2-escape variants. Cell-surface binding studies and in vitro competition experiments demonstrate that G2 strongly disrupts the attachment of MERS-CoV S to its receptor, dipeptidyl peptidase-4 (DPP4), with the inhibition requiring the native trimeric S conformation. These results advance our understanding of antibody-mediated neutralization of coronaviruses and should facilitate the development of immunotherapeutics and vaccines against MERS-CoV.Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is known about antibodies targeting non-RBD epitopes. Here, we report the structural and functional characterization of G2, a neutralizing antibody targeting the MERS-CoV S1 N-terminal domain (S1-NTD). Structures of G2 alone and in complex with the MERS-CoV S1-NTD define a site of vulnerability comprising two loops, each of which contain a residue mutated in G2-escape variants. Cell-surface binding studies and in vitro competition experiments demonstrate that G2 strongly disrupts the attachment of MERS-CoV S to its receptor, dipeptidyl peptidase-4 (DPP4), with the inhibition requiring the native trimeric S conformation. These results advance our understanding of antibody-mediated neutralization of coronaviruses and should facilitate the development of immunotherapeutics and vaccines against MERS-CoV. Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is known about antibodies targeting non-RBD epitopes. Here, we report the structural and functional characterization of G2, a neutralizing antibody targeting the MERS-CoV S1 N-terminal domain (S1-NTD). Structures of G2 alone and in complex with the MERS-CoV S1-NTD define a site of vulnerability comprising two loops, each of which contain a residue mutated in G2-escape variants. Cell-surface binding studies and in vitro competition experiments demonstrate that G2 strongly disrupts the attachment of MERS-CoV S to its receptor, dipeptidyl peptidase-4 (DPP4), with the inhibition requiring the native trimeric S conformation. These results advance our understanding of antibody-mediated neutralization of coronaviruses and should facilitate the development of immunotherapeutics and vaccines against MERS-CoV. : Wang et al. report the structural and functional characterization of the Middle East respiratory syndrome coronavirus (MERS-CoV)-neutralizing antibody G2. G2 recognizes a conserved epitope on the MERS-CoV S1 N-terminal domain (S1-NTD) and neutralizes MERS-CoV by interfering with binding to host receptor dipeptidyl peptidase-4 (DPP4). The findings are relevant for understanding the viral attachment mechanism and for the development of S1-NTD-based vaccines. Keywords: MERS-CoV, coronavirus, crystal structure, electron microscopy, DPP4, receptor-binding, membrane fusion Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is known about antibodies targeting non-RBD epitopes. Here, we report the structural and functional characterization of G2, a neutralizing antibody targeting the MERS-CoV S1 N-terminal domain (S1-NTD). Structures of G2 alone and in complex with the MERS-CoV S1-NTD define a site of vulnerability comprising two loops, each of which contain a residue mutated in G2-escape variants. Cell-surface binding studies and in vitro competition experiments demonstrate that G2 strongly disrupts the attachment of MERS-CoV S to its receptor, dipeptidyl peptidase-4 (DPP4), with the inhibition requiring the native trimeric S conformation. These results advance our understanding of antibody-mediated neutralization of coronaviruses and should facilitate the development of immunotherapeutics and vaccines against MERS-CoV. |
Author | Denison, Mark R. Rosen, Osnat Corbett, Kizzmekia S. Shi, Wei Wang, Lingshu Kirchdoerfer, Robert N. Turner, Hannah L. Pallesen, Jesper Zhang, Yi Bowman, Charles A. Wang, Nianshuang Leung, Kwanyee Stevens, Laura J. Graham, Barney S. Becker, Michelle M. McLellan, Jason S. Chappell, James D. Ward, Andrew B. |
Author_xml | – sequence: 1 givenname: Nianshuang surname: Wang fullname: Wang, Nianshuang organization: Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA – sequence: 2 givenname: Osnat surname: Rosen fullname: Rosen, Osnat organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 3 givenname: Lingshu surname: Wang fullname: Wang, Lingshu organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 4 givenname: Hannah L. surname: Turner fullname: Turner, Hannah L. organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA – sequence: 5 givenname: Laura J. surname: Stevens fullname: Stevens, Laura J. organization: Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA – sequence: 6 givenname: Kizzmekia S. surname: Corbett fullname: Corbett, Kizzmekia S. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 7 givenname: Charles A. surname: Bowman fullname: Bowman, Charles A. organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA – sequence: 8 givenname: Jesper surname: Pallesen fullname: Pallesen, Jesper organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA – sequence: 9 givenname: Wei surname: Shi fullname: Shi, Wei organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 10 givenname: Yi surname: Zhang fullname: Zhang, Yi organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 11 givenname: Kwanyee surname: Leung fullname: Leung, Kwanyee organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 12 givenname: Robert N. surname: Kirchdoerfer fullname: Kirchdoerfer, Robert N. organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA – sequence: 13 givenname: Michelle M. surname: Becker fullname: Becker, Michelle M. organization: Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA – sequence: 14 givenname: Mark R. surname: Denison fullname: Denison, Mark R. organization: Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA – sequence: 15 givenname: James D. surname: Chappell fullname: Chappell, James D. organization: Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA – sequence: 16 givenname: Andrew B. surname: Ward fullname: Ward, Andrew B. organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA – sequence: 17 givenname: Barney S. surname: Graham fullname: Graham, Barney S. organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA – sequence: 18 givenname: Jason S. surname: McLellan fullname: McLellan, Jason S. email: jmclellan@austin.utexas.edu organization: Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31553909$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1566185$$D View this record in Osti.gov |
BookMark | eNqFUsFu1DAQjVARLaV_gFDEiUsWj-M4MQcktF2gUilSt3C1HGfS9SprL7azEnw9TnepWg7gi62ZN2_m-c3z7Mg6i1n2EsgMCPC365nGweN2RgmIGWlmpKJPshNKAQqgrD568D7OzkJYk3Q4ARDsWXZcQlWVgoiT7HoZ_ajj6NWQn2NvrInG2dz1ucqvcIwpbn6pKVYs0YaU3WG-2JrotpgnYFxh_mVxvSzm7nu-hOLq5vxF9rRXQ8Czw32affu4uJl_Li6_frqYf7gsdNWwWPAO6o4J5JSXjNRU0L7tFOhW96prhWLIsCMCRAMNaxtR6qrVQtUUKlE3JZSn2cWet3NqLbfebJT_KZ0y8i7g_K1UPho9oExdEKHvGatqlkhFrzltW-x5i5rSKnG933Ntx3aDnUY7KX9E-jhjzUreup3koqworxPB6z2BC9HIoE1EvdLOWtRRQsU5NFOXN4cu3v0YMUS5MSEZOSiLbgyS0iSWlU09QV89HOh-kj_OJQDbA7R3IXjs7yFA5LQjci33OyKnHZGkkWlHUtm7v8rSqHf-Jllm-F_x4Zcw2boz6CehaDV2xk86O2f-TfAbrSjY4g |
CitedBy_id | crossref_primary_10_1093_abt_tbaa007 crossref_primary_10_3390_microorganisms9010165 crossref_primary_10_1111_jam_15720 crossref_primary_10_1128_jvi_01955_21 crossref_primary_10_3389_fimmu_2020_602256 crossref_primary_10_3390_v13010134 crossref_primary_10_1071_MA21011 crossref_primary_10_7717_peerj_9689 crossref_primary_10_1038_s41422_021_00595_6 crossref_primary_10_1056_NEJMoa2024671 crossref_primary_10_1016_j_cell_2020_05_042 crossref_primary_10_1038_s41598_020_71748_7 crossref_primary_10_3390_ijms24076253 crossref_primary_10_3390_molecules26164961 crossref_primary_10_1016_j_cell_2020_06_035 crossref_primary_10_1016_j_cell_2021_03_028 crossref_primary_10_1089_cmb_2020_0193 crossref_primary_10_1002_jmv_26254 crossref_primary_10_1016_j_jconrel_2022_07_028 crossref_primary_10_1126_science_abd0826 crossref_primary_10_1002_jmv_27425 crossref_primary_10_1038_s41577_020_00480_0 crossref_primary_10_1056_NEJMoa2022483 crossref_primary_10_3390_v12040360 crossref_primary_10_1016_j_celrep_2024_114530 crossref_primary_10_1016_j_jconrel_2020_08_060 crossref_primary_10_1016_j_molmed_2020_02_008 crossref_primary_10_1038_s41586_020_2548_6 crossref_primary_10_1155_2021_9989237 crossref_primary_10_1016_j_trsl_2021_11_007 crossref_primary_10_3390_medicina59030507 crossref_primary_10_1093_infdis_jiad267 crossref_primary_10_1038_s41559_024_02353_4 crossref_primary_10_3389_fimmu_2021_663912 crossref_primary_10_1016_j_celrep_2024_115036 crossref_primary_10_1080_14760584_2020_1813574 crossref_primary_10_1016_j_isci_2024_111632 crossref_primary_10_1016_j_micpath_2020_104241 crossref_primary_10_3390_biomedicines8050109 crossref_primary_10_1038_s42003_022_04160_8 crossref_primary_10_1016_j_jiph_2020_12_006 crossref_primary_10_3389_fmicb_2020_00658 crossref_primary_10_1016_j_lfs_2021_119289 crossref_primary_10_1126_science_abc5902 crossref_primary_10_1016_j_imu_2021_100781 crossref_primary_10_36664_bt_2021_v68i1_162888 crossref_primary_10_7717_peerj_9572 crossref_primary_10_1038_s41467_023_41661_4 crossref_primary_10_1038_s41577_021_00578_z crossref_primary_10_1002_jmv_28572 crossref_primary_10_3390_ani14030448 |
Cites_doi | 10.1073/pnas.1407087111 10.1107/S0907444902016657 10.1038/nature12005 10.1371/journal.ppat.1007236 10.1093/infdis/jiw236 10.1016/j.jsb.2009.01.004 10.1073/pnas.1712592114 10.1056/NEJMoa1408636 10.1128/JVI.00128-13 10.1016/j.jviromet.2018.11.009 10.1128/JVI.02002-17 10.1107/S0907444913000061 10.1128/JVI.01556-17 10.1126/scitranslmed.3008140 10.1038/nm.4131 10.1016/j.jsb.2003.08.005 10.1038/nature12328 10.1002/pro.2389 10.1371/journal.ppat.1007009 10.1073/pnas.1104306108 10.1126/science.1116480 10.1056/NEJMoa1401505 10.1006/viro.1993.1360 10.1128/jvi.71.4.3285-3287.1997 10.1093/cid/ciu812 10.1073/pnas.1707304114 10.1038/cr.2015.113 10.1016/j.vaccine.2016.11.064 10.1086/427242 10.1038/cr.2016.152 10.1261/rna.2192803 10.1038/cr.2013.92 10.1074/jbc.M113.496224 10.1016/S0304-3991(99)00043-1 10.1038/nature16988 10.1016/j.cell.2018.12.028 10.1128/mBio.00473-12 10.1128/JVI.01133-16 10.1016/j.jsb.2015.11.003 10.1038/emi.2017.50 10.1038/ncomms13473 10.1074/jbc.M112.418210 10.1146/annurev-virology-110615-042301 10.1073/pnas.1402074111 10.1107/S0907444903008126 10.1038/nature17200 10.1016/j.jsb.2009.01.002 10.1074/jbc.RA118.001897 10.1128/JVI.02615-14 10.1016/j.jsb.2006.05.009 10.1038/ncomms15092 10.1073/pnas.1510199112 10.1038/nmeth.4169 10.1038/nmeth.4193 10.1107/S0907444904019158 10.1038/ncomms8712 10.1128/mBio.00650-13 10.1128/JVI.00912-14 10.1107/S0907444910048675 10.1038/emi.2017.89 10.1016/j.jmb.2009.10.032 10.1128/jvi.65.11.6232-6237.1991 10.1016/j.virol.2009.07.028 10.1107/S0021889807021206 10.1073/pnas.1311542110 10.4178/epih/e2015033 10.1128/JVI.02377-07 10.1016/j.jsb.2005.03.010 10.1056/NEJMoa1211721 10.1016/j.jmb.2007.05.022 10.1038/nature02145 10.1038/nsmb.3293 10.1128/JVI.02596-14 10.1186/s12985-016-0544-0 10.1073/pnas.93.21.11382 10.1002/jcc.20084 10.1128/JVI.01628-17 10.7554/eLife.42166 |
ContentType | Journal Article |
Copyright | 2019 The Author(s) Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. 2019 The Author(s) 2019 |
Copyright_xml | – notice: 2019 The Author(s) – notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2019 The Author(s) 2019 |
CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OTOTI 5PM DOA |
DOI | 10.1016/j.celrep.2019.08.052 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 3405.e6 |
ExternalDocumentID | oai_doaj_org_article_9e6ee1ff44574d099fc62bbef6bec225 PMC6935267 1566185 31553909 10_1016_j_celrep_2019_08_052 S2211124719311003 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI127521 – fundername: CCR NIH HHS grantid: HHSN261200800001C – fundername: NCI NIH HHS grantid: HHSN261200800001E |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ CGR CUY CVF ECM EIF NPM 7X8 OTOTI 5PM |
ID | FETCH-LOGICAL-c584t-6d17d49e6263407292fbda1cbcfadb9a4e4ed09198184b893c5bc9a7215978313 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:29:30 EDT 2025 Thu Aug 21 14:13:01 EDT 2025 Thu May 18 22:43:12 EDT 2023 Fri Jul 11 12:25:59 EDT 2025 Mon Jul 21 05:42:43 EDT 2025 Tue Jul 01 02:59:04 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Wed May 17 00:05:52 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | DPP4 crystal structure coronavirus electron microscopy MERS-CoV receptor-binding membrane fusion |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c584t-6d17d49e6263407292fbda1cbcfadb9a4e4ed09198184b893c5bc9a7215978313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 R01AI127521; HHSN261200800001E; AC02-06CH11357 National Institute of Allergy and Infectious Diseases (NIAID) National Institutes of Health (NIH) USDOE Office of Science (SC), Biological and Environmental Research (BER) Present address: Department of Biotechnology, Israel Institute for Biological Research, Ness-ziona, Israel Lead Contact |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2019.08.052 |
PMID | 31553909 |
PQID | 2298143875 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9e6ee1ff44574d099fc62bbef6bec225 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6935267 osti_scitechconnect_1566185 proquest_miscellaneous_2298143875 pubmed_primary_31553909 crossref_primary_10_1016_j_celrep_2019_08_052 crossref_citationtrail_10_1016_j_celrep_2019_08_052 elsevier_sciencedirect_doi_10_1016_j_celrep_2019_08_052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-24 |
PublicationDateYYYYMMDD | 2019-09-24 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Netherlands |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier The Author(s) |
Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: The Author(s) |
References | Du, Tai, Yang, Zhao, Zhu, Sun, Liu, Tao, Tseng, Perlman (bib13) 2016; 7 Li, Wan, Liu, Zhao, Lu, Qi, Wang, Lu, Wu, Liu (bib34) 2015; 25 Adams, Grosse-Kunstleve, Hung, Ioerger, McCoy, Moriarty, Read, Sacchettini, Sauter, Terwilliger (bib1) 2002; 58 Tang, Agnihothram, Jiao, Stanhope, Graham, Peterson, Avnir, Tallarico, Sheehan, Zhu (bib62) 2014; 111 Shang, Zheng, Yang, Liu, Geng, Tai, Du, Zhou, Zhang, Li (bib57) 2018; 92 Peng, Xu, Lin, Chen, Pasquarella, Holmes, Li (bib46) 2012; 287 Song, Gui, Wang, Xiang (bib58) 2018; 14 McCoy, Grosse-Kunstleve, Adams, Winn, Storoni, Read (bib36) 2007; 40 Millet, Whittaker (bib37) 2014; 111 Modjarrad, Moorthy, Ben Embarek, Van Kerkhove, Kim, Kieny (bib38) 2016; 22 Azhar, El-Kafrawy, Farraj, Hassan, Al-Saeed, Hashem, Madani (bib4) 2014; 370 Gierer, Bertram, Kaup, Wrensch, Heurich, Krämer-Kühl, Welsch, Winkler, Meyer, Drosten (bib17) 2013; 87 Rockx, Corti, Donaldson, Sheahan, Stadler, Lanzavecchia, Baric (bib52) 2008; 82 Evans, Murshudov (bib15) 2013; 69 Zheng, Palovcak, Armache, Verba, Cheng, Agard (bib78) 2017; 14 Jiaming, Yanfeng, Yao, Yawei, Linlin, Baoying, Jinghua, Gao, Chuan, Wenjie (bib21) 2017; 35 Almazán, DeDiego, Sola, Zuñiga, Nieto-Torres, Marquez-Jurado, Andrés, Enjuanes (bib2) 2013; 4 Naldini, Blömer, Gage, Trono, Verma (bib41) 1996; 93 Li (bib30) 2016; 3 Tang, Peng, Baldwin, Mann, Jiang, Rees, Ludtke (bib61) 2007; 157 Yuan, Cao, Zhang, Ma, Qi, Wang, Lu, Wu, Yan, Shi (bib74) 2017; 8 Chan, Chu, Wang, Wong, Zhao, Zhou, Yang, Leung, Chan, Yeung (bib6) 2016; 90 van Boheemen, de Graaf, Lauber, Bestebroer, Raj, Zaki, Osterhaus, Haagmans, Gorbalenya, Snijder, Fouchier (bib63) 2012; 3 Krissinel, Henrick (bib26) 2007; 372 Kirchdoerfer, Cottrell, Wang, Pallesen, Yassine, Turner, Corbett, Graham, McLellan, Ward (bib24) 2016; 531 Shang, Zheng, Yang, Liu, Geng, Luo, Zhang, Li (bib56) 2018; 14 Xiong, Tortorici, Snijder, Yoshioka, Walls, Li, McGuire, Rey, Bosch, Veesler (bib72) 2018; 92 Stewart, Dykxhoorn, Palliser, Mizuno, Yu, An, Sabatini, Chen, Hahn, Sharp (bib59) 2003; 9 Greenough, Babcock, Roberts, Hernandez, Thomas, Coccia, Graziano, Srinivasan, Lowy, Finberg (bib18) 2005; 191 Li (bib29) 2015; 89 Wang, Shi, Jiang, Zhang, Wang, Tong, Guo, Fu, Cui, Liu (bib70) 2013; 23 Künkel, Herrler (bib27) 1993; 195 Rosen, Chan, Abiona, Gough, Wang, Shi, Zhang, Wang, Kong, McLellan (bib53) 2019; 265 Punjani, Rubinstein, Fleet, Brubaker (bib50) 2017; 14 Fehr, Athmer, Channappanavar, Phillips, Meyerholz, Perlman (bib16) 2015; 89 Assiri, Midgley, Abedi, Bin Saeed, Almasri, Lu, Al-Abdely, Abdalla, Mohammed, Algarni (bib3) 2016; 214 Nagae, Ikeda, Hane, Hanashima, Kitajima, Sato, Yamaguchi (bib40) 2013; 288 Guo, Tisoncik, McReynolds, Farzan, Prabhakar, Gallagher, Rong, Caffrey (bib20) 2009; 394 Peng, Sun, Rajashankar, Qian, Holmes, Li (bib45) 2011; 108 Zivanov, Nakane, Forsberg, Kimanius, Hagen, Lindahl, Scheres (bib79) 2018; 7 Potterton, Briggs, Turkenburg, Dodson (bib49) 2003; 59 Li, Li, Farzan, Harrison (bib31) 2005; 309 Walls, Tortorici, Frenz, Snijder, Li, Rey, DiMaio, Bosch, Veesler (bib66) 2016; 23 (bib71) 2018 Zhang (bib77) 2016; 193 Chu, Chan, Zhang, Wang, Yuan, Zhou, Au-Yeung, Sze, Yang, Shuai (bib8) 2018; 293 Ogura, Iwasaki, Sato (bib43) 2003; 143 Ki (bib23) 2015; 37 Lander, Stagg, Voss, Cheng, Fellmann, Pulokas, Yoshioka, Irving, Mulder, Lau (bib28) 2009; 166 Potter, Chu, Frey, Green, Kisseberth, Madden, Miller, Nahrstedt, Pulokas, Reilein (bib48) 1999; 77 Battye, Kontogiannis, Johnson, Powell, Leslie (bib5) 2011; 67 Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib47) 2004; 25 Corti, Zhao, Pedotti, Simonelli, Agnihothram, Fett, Fernandez-Rodriguez, Foglierini, Agatic, Vanzetta (bib10) 2015; 112 Yusof, Queen, Eltahir, Paden, Al Hammadi, Tao, Li, Khalafalla, Shi, Zhang (bib75) 2017; 6 Drosten, Muth, Corman, Hussain, Al Masri, HajOmar, Landt, Assiri, Eckerle, Al Shangiti (bib12) 2015; 60 Ying, Du, Ju, Prabakaran, Lau, Lu, Liu, Wang, Feng, Wang (bib73) 2014; 88 Jiang, Wang, Zuo, Shi, Poon, Wu, Gao, Li, Wang, Guo (bib22) 2014; 6 Li, Hulswit, Widjaja, Raj, McBride, Peng, Widagdo, Tortorici, van Dieren, Lang (bib33) 2017; 114 Li, Moore, Vasilieva, Sui, Wong, Berne, Somasundaran, Sullivan, Luzuriaga, Greenough (bib32) 2003; 426 Oboho, Tomczyk, Al-Asmari, Banjar, Al-Mugti, Aloraini, Alkhaldi, Almohammadi, Alraddadi, Gerber (bib42) 2015; 372 Voss, Yoshioka, Radermacher, Potter, Carragher (bib64) 2009; 166 Wang, Shi, Joyce, Modjarrad, Zhang, Leung, Lees, Zhou, Yassine, Kanekiyo (bib68) 2015; 6 Emsley, Cowtan (bib14) 2004; 60 Schultze, Gross, Brossmer, Herrler (bib54) 1991; 65 Walls, Tortorici, Bosch, Frenz, Rottier, DiMaio, Rey, Veesler (bib65) 2016; 531 Pallesen, Wang, Corbett, Wrapp, Kirchdoerfer, Turner, Cottrell, Becker, Wang, Shi (bib44) 2017; 114 Raj, Mou, Smits, Dekkers, Müller, Dijkman, Muth, Demmers, Zaki, Fouchier (bib51) 2013; 495 Walls, Xiong, Park, Tortorici, Snijder, Quispe, Cameroni, Gopal, Dai, Lanzavecchia (bib67) 2019; 176 Wang, Shi, Chappell, Joyce, Zhang, Kanekiyo, Becker, van Doremalen, Fischer, Wang (bib69) 2018; 92 Zaki, van Boheemen, Bestebroer, Osterhaus, Fouchier (bib76) 2012; 367 Conway, Tyka, DiMaio, Konerding, Baker (bib9) 2014; 23 Gui, Song, Zhou, Xu, Chen, Xiang, Wang (bib19) 2017; 27 Coughlin, Babcook, Prabhakar (bib11) 2009; 394 Krempl, Schultze, Laude, Herrler (bib25) 1997; 71 Chen, Lu, Jia, Deng, Zhou, Huang, Yu, Lan, Wang, Lou (bib7) 2017; 6 Mohd, Al-Tawfiq, Memish (bib39) 2016; 13 Scobey, Yount, Sims, Donaldson, Agnihothram, Menachery, Graham, Swanstrom, Bove, Kim (bib55) 2013; 110 Lu, Hu, Wang, Qi, Gao, Li, Zhang, Zhang, Yuan, Bao (bib35) 2013; 500 Suloway, Pulokas, Fellmann, Cheng, Guerra, Quispe, Stagg, Potter, Carragher (bib60) 2005; 151 Krempl (10.1016/j.celrep.2019.08.052_bib25) 1997; 71 Chan (10.1016/j.celrep.2019.08.052_bib6) 2016; 90 Zaki (10.1016/j.celrep.2019.08.052_bib76) 2012; 367 Li (10.1016/j.celrep.2019.08.052_bib30) 2016; 3 Yuan (10.1016/j.celrep.2019.08.052_bib74) 2017; 8 Assiri (10.1016/j.celrep.2019.08.052_bib3) 2016; 214 Emsley (10.1016/j.celrep.2019.08.052_bib14) 2004; 60 Gierer (10.1016/j.celrep.2019.08.052_bib17) 2013; 87 Shang (10.1016/j.celrep.2019.08.052_bib56) 2018; 14 Walls (10.1016/j.celrep.2019.08.052_bib65) 2016; 531 Drosten (10.1016/j.celrep.2019.08.052_bib12) 2015; 60 Evans (10.1016/j.celrep.2019.08.052_bib15) 2013; 69 Li (10.1016/j.celrep.2019.08.052_bib33) 2017; 114 Battye (10.1016/j.celrep.2019.08.052_bib5) 2011; 67 Chen (10.1016/j.celrep.2019.08.052_bib7) 2017; 6 Li (10.1016/j.celrep.2019.08.052_bib31) 2005; 309 Peng (10.1016/j.celrep.2019.08.052_bib46) 2012; 287 Krissinel (10.1016/j.celrep.2019.08.052_bib26) 2007; 372 Punjani (10.1016/j.celrep.2019.08.052_bib50) 2017; 14 Künkel (10.1016/j.celrep.2019.08.052_bib27) 1993; 195 Mohd (10.1016/j.celrep.2019.08.052_bib39) 2016; 13 Ying (10.1016/j.celrep.2019.08.052_bib73) 2014; 88 Li (10.1016/j.celrep.2019.08.052_bib34) 2015; 25 Song (10.1016/j.celrep.2019.08.052_bib58) 2018; 14 Zheng (10.1016/j.celrep.2019.08.052_bib78) 2017; 14 Gui (10.1016/j.celrep.2019.08.052_bib19) 2017; 27 Pettersen (10.1016/j.celrep.2019.08.052_bib47) 2004; 25 Rockx (10.1016/j.celrep.2019.08.052_bib52) 2008; 82 McCoy (10.1016/j.celrep.2019.08.052_bib36) 2007; 40 Modjarrad (10.1016/j.celrep.2019.08.052_bib38) 2016; 22 Nagae (10.1016/j.celrep.2019.08.052_bib40) 2013; 288 Zivanov (10.1016/j.celrep.2019.08.052_bib79) 2018; 7 Naldini (10.1016/j.celrep.2019.08.052_bib41) 1996; 93 Li (10.1016/j.celrep.2019.08.052_bib32) 2003; 426 Rosen (10.1016/j.celrep.2019.08.052_bib53) 2019; 265 Stewart (10.1016/j.celrep.2019.08.052_bib59) 2003; 9 Tang (10.1016/j.celrep.2019.08.052_bib61) 2007; 157 Li (10.1016/j.celrep.2019.08.052_bib29) 2015; 89 Adams (10.1016/j.celrep.2019.08.052_bib1) 2002; 58 Shang (10.1016/j.celrep.2019.08.052_bib57) 2018; 92 Walls (10.1016/j.celrep.2019.08.052_bib66) 2016; 23 Scobey (10.1016/j.celrep.2019.08.052_bib55) 2013; 110 Lander (10.1016/j.celrep.2019.08.052_bib28) 2009; 166 Jiang (10.1016/j.celrep.2019.08.052_bib22) 2014; 6 Almazán (10.1016/j.celrep.2019.08.052_bib2) 2013; 4 Potter (10.1016/j.celrep.2019.08.052_bib48) 1999; 77 Raj (10.1016/j.celrep.2019.08.052_bib51) 2013; 495 Wang (10.1016/j.celrep.2019.08.052_bib70) 2013; 23 Wang (10.1016/j.celrep.2019.08.052_bib68) 2015; 6 Yusof (10.1016/j.celrep.2019.08.052_bib75) 2017; 6 Kirchdoerfer (10.1016/j.celrep.2019.08.052_bib24) 2016; 531 Voss (10.1016/j.celrep.2019.08.052_bib64) 2009; 166 Corti (10.1016/j.celrep.2019.08.052_bib10) 2015; 112 Coughlin (10.1016/j.celrep.2019.08.052_bib11) 2009; 394 Jiaming (10.1016/j.celrep.2019.08.052_bib21) 2017; 35 Oboho (10.1016/j.celrep.2019.08.052_bib42) 2015; 372 Ogura (10.1016/j.celrep.2019.08.052_bib43) 2003; 143 (10.1016/j.celrep.2019.08.052_bib71) 2018 Conway (10.1016/j.celrep.2019.08.052_bib9) 2014; 23 Potterton (10.1016/j.celrep.2019.08.052_bib49) 2003; 59 Suloway (10.1016/j.celrep.2019.08.052_bib60) 2005; 151 Schultze (10.1016/j.celrep.2019.08.052_bib54) 1991; 65 Zhang (10.1016/j.celrep.2019.08.052_bib77) 2016; 193 Fehr (10.1016/j.celrep.2019.08.052_bib16) 2015; 89 Ki (10.1016/j.celrep.2019.08.052_bib23) 2015; 37 Walls (10.1016/j.celrep.2019.08.052_bib67) 2019; 176 Xiong (10.1016/j.celrep.2019.08.052_bib72) 2018; 92 Du (10.1016/j.celrep.2019.08.052_bib13) 2016; 7 Azhar (10.1016/j.celrep.2019.08.052_bib4) 2014; 370 Wang (10.1016/j.celrep.2019.08.052_bib69) 2018; 92 Lu (10.1016/j.celrep.2019.08.052_bib35) 2013; 500 van Boheemen (10.1016/j.celrep.2019.08.052_bib63) 2012; 3 Pallesen (10.1016/j.celrep.2019.08.052_bib44) 2017; 114 Greenough (10.1016/j.celrep.2019.08.052_bib18) 2005; 191 Peng (10.1016/j.celrep.2019.08.052_bib45) 2011; 108 Chu (10.1016/j.celrep.2019.08.052_bib8) 2018; 293 Millet (10.1016/j.celrep.2019.08.052_bib37) 2014; 111 Tang (10.1016/j.celrep.2019.08.052_bib62) 2014; 111 Guo (10.1016/j.celrep.2019.08.052_bib20) 2009; 394 |
References_xml | – volume: 60 start-page: 369 year: 2015 end-page: 377 ident: bib12 article-title: An observational, laboratory-based study of outbreaks of middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia, 2014 publication-title: Clin. Infect. Dis. – volume: 27 start-page: 119 year: 2017 end-page: 129 ident: bib19 article-title: Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding publication-title: Cell Res. – volume: 531 start-page: 114 year: 2016 end-page: 117 ident: bib65 article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer publication-title: Nature – volume: 111 start-page: 15214 year: 2014 end-page: 15219 ident: bib37 article-title: Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein publication-title: Proc. Natl. Acad. Sci. USA – volume: 58 start-page: 1948 year: 2002 end-page: 1954 ident: bib1 article-title: PHENIX: building new software for automated crystallographic structure determination publication-title: Acta. Crystallogr. D Biol. Crystallogr. – volume: 67 start-page: 271 year: 2011 end-page: 281 ident: bib5 article-title: iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 60 start-page: 2126 year: 2004 end-page: 2132 ident: bib14 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 394 start-page: 39 year: 2009 end-page: 46 ident: bib11 article-title: Human monoclonal antibodies to SARS-coronavirus inhibit infection by different mechanisms publication-title: Virology – volume: 108 start-page: 10696 year: 2011 end-page: 10701 ident: bib45 article-title: Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor publication-title: Proc. Natl. Acad. Sci. USA – volume: 151 start-page: 41 year: 2005 end-page: 60 ident: bib60 article-title: Automated molecular microscopy: the new Leginon system publication-title: J. Struct. Biol. – volume: 23 start-page: 986 year: 2013 end-page: 993 ident: bib70 article-title: Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 publication-title: Cell Res. – volume: 89 start-page: 1954 year: 2015 end-page: 1964 ident: bib29 article-title: Receptor recognition mechanisms of coronaviruses: a decade of structural studies publication-title: J. Virol. – volume: 6 start-page: 234ra59 year: 2014 ident: bib22 article-title: Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein publication-title: Sci. Transl. Med. – volume: 370 start-page: 2499 year: 2014 end-page: 2505 ident: bib4 article-title: Evidence for camel-to-human transmission of MERS coronavirus publication-title: N. Engl. J. Med. – volume: 4 start-page: e00650-13 year: 2013 ident: bib2 article-title: Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate publication-title: MBio – volume: 426 start-page: 450 year: 2003 end-page: 454 ident: bib32 article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus publication-title: Nature – volume: 114 start-page: E7348 year: 2017 end-page: E7357 ident: bib44 article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 start-page: e1007009 year: 2018 ident: bib56 article-title: Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins publication-title: PLoS Pathog. – volume: 531 start-page: 118 year: 2016 end-page: 121 ident: bib24 article-title: Pre-fusion structure of a human coronavirus spike protein publication-title: Nature – volume: 7 start-page: 13473 year: 2016 ident: bib13 article-title: Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines publication-title: Nat. Commun. – volume: 3 year: 2012 ident: bib63 article-title: Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans publication-title: MBio – volume: 6 start-page: 7712 year: 2015 ident: bib68 article-title: Evaluation of candidate vaccine approaches for MERS-CoV publication-title: Nat. Commun. – volume: 9 start-page: 493 year: 2003 end-page: 501 ident: bib59 article-title: Lentivirus-delivered stable gene silencing by RNAi in primary cells publication-title: RNA – volume: 92 start-page: e01628-17 year: 2018 ident: bib72 article-title: Glycan Shield and Fusion Activation of a Deltacoronavirus Spike Glycoprotein Fine-Tuned for Enteric Infections publication-title: J. Virol. – volume: 193 start-page: 1 year: 2016 end-page: 12 ident: bib77 article-title: Gctf: Real-time CTF determination and correction publication-title: J. Struct. Biol. – volume: 394 start-page: 600 year: 2009 end-page: 605 ident: bib20 article-title: Identification of a new region of SARS-CoV S protein critical for viral entry publication-title: J. Mol. Biol. – volume: 112 start-page: 10473 year: 2015 end-page: 10478 ident: bib10 article-title: Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 15092 year: 2017 ident: bib74 article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains publication-title: Nat. Commun. – volume: 37 start-page: e2015033 year: 2015 ident: bib23 article-title: 2015 MERS outbreak in Korea: hospital-to-hospital transmission publication-title: Epidemiol. Health – volume: 90 start-page: 9114 year: 2016 end-page: 9127 ident: bib6 article-title: Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5 Is an Important Surface Attachment Factor That Facilitates Entry of Middle East Respiratory Syndrome Coronavirus publication-title: J. Virol. – volume: 40 start-page: 658 year: 2007 end-page: 674 ident: bib36 article-title: Phaser crystallographic software publication-title: J. Appl. Cryst. – volume: 89 start-page: 1523 year: 2015 end-page: 1536 ident: bib16 article-title: The nsp3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis publication-title: J. Virol. – volume: 71 start-page: 3285 year: 1997 end-page: 3287 ident: bib25 article-title: Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus publication-title: J. Virol. – volume: 59 start-page: 1131 year: 2003 end-page: 1137 ident: bib49 article-title: A graphical user interface to the CCP4 program suite publication-title: Acta. Crystallogr. D Biol. Crystallogr. – volume: 14 start-page: e1007236 year: 2018 ident: bib58 article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 publication-title: PLoS Pathog. – volume: 77 start-page: 153 year: 1999 end-page: 161 ident: bib48 article-title: Leginon: a system for fully automated acquisition of 1000 electron micrographs a day publication-title: Ultramicroscopy – volume: 23 start-page: 899 year: 2016 end-page: 905 ident: bib66 article-title: Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy publication-title: Nat. Struct. Mol. Biol. – volume: 265 start-page: 77 year: 2019 end-page: 83 ident: bib53 article-title: A high-throughput inhibition assay to study MERS-CoV antibody interactions using image cytometry publication-title: J. Virol. Methods – volume: 65 start-page: 6232 year: 1991 end-page: 6237 ident: bib54 article-title: The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant publication-title: J. Virol. – volume: 82 start-page: 3220 year: 2008 end-page: 3235 ident: bib52 article-title: Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge publication-title: J. Virol. – volume: 166 start-page: 95 year: 2009 end-page: 102 ident: bib28 article-title: Appion: an integrated, database-driven pipeline to facilitate EM image processing publication-title: J. Struct. Biol. – volume: 500 start-page: 227 year: 2013 end-page: 231 ident: bib35 article-title: Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 publication-title: Nature – volume: 495 start-page: 251 year: 2013 end-page: 254 ident: bib51 article-title: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC publication-title: Nature – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: bib47 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. – volume: 114 start-page: E8508 year: 2017 end-page: E8517 ident: bib33 article-title: Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein publication-title: Proc. Natl. Acad. Sci. USA – volume: 92 start-page: e01556-17 year: 2018 ident: bib57 article-title: Cryo-Electron Microscopy Structure of Porcine Deltacoronavirus Spike Protein in the Prefusion State publication-title: J. Virol. – volume: 143 start-page: 185 year: 2003 end-page: 200 ident: bib43 article-title: Topology representing network enables highly accurate classification of protein images taken by cryo electron-microscope without masking publication-title: J. Struct. Biol. – volume: 6 start-page: e101 year: 2017 ident: bib75 article-title: Diversity of Middle East respiratory syndrome coronaviruses in 109 dromedary camels based on full-genome sequencing, Abu Dhabi, United Arab Emirates publication-title: Emerg. Microbes Infect. – volume: 87 start-page: 5502 year: 2013 end-page: 5511 ident: bib17 article-title: The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies publication-title: J. Virol. – volume: 157 start-page: 38 year: 2007 end-page: 46 ident: bib61 article-title: EMAN2: an extensible image processing suite for electron microscopy publication-title: J. Struct. Biol. – volume: 3 start-page: 237 year: 2016 end-page: 261 ident: bib30 article-title: Structure, Function, and Evolution of Coronavirus Spike Proteins publication-title: Annu. Rev. Virol. – volume: 110 start-page: 16157 year: 2013 end-page: 16162 ident: bib55 article-title: Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus publication-title: Proc. Natl. Acad. Sci. USA – volume: 111 start-page: E2018 year: 2014 end-page: E2026 ident: bib62 article-title: Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution publication-title: Proc. Natl. Acad. Sci. USA – volume: 176 start-page: 1026 year: 2019 end-page: 1039.e15 ident: bib67 article-title: Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion publication-title: Cell – volume: 166 start-page: 205 year: 2009 end-page: 213 ident: bib64 article-title: DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy publication-title: J. Struct. Biol. – volume: 195 start-page: 195 year: 1993 end-page: 202 ident: bib27 article-title: Structural and functional analysis of the surface protein of human coronavirus OC43 publication-title: Virology – volume: 309 start-page: 1864 year: 2005 end-page: 1868 ident: bib31 article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor publication-title: Science – volume: 293 start-page: 11709 year: 2018 end-page: 11726 ident: bib8 article-title: Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells publication-title: J. Biol. Chem. – volume: 14 start-page: 331 year: 2017 end-page: 332 ident: bib78 article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods – volume: 372 start-page: 846 year: 2015 end-page: 854 ident: bib42 article-title: 2014 MERS-CoV outbreak in Jeddah--a link to health care facilities publication-title: N. Engl. J. Med. – volume: 372 start-page: 774 year: 2007 end-page: 797 ident: bib26 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J. Mol. Biol. – volume: 93 start-page: 11382 year: 1996 end-page: 11388 ident: bib41 article-title: Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector publication-title: Proc. Natl. Acad. Sci. USA – volume: 35 start-page: 10 year: 2017 end-page: 18 ident: bib21 article-title: The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection publication-title: Vaccine – volume: 7 start-page: e42166 year: 2018 ident: bib79 article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3 publication-title: eLife – volume: 92 start-page: e02002-17 year: 2018 ident: bib69 article-title: Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape publication-title: J. Virol. – volume: 14 start-page: 290 year: 2017 end-page: 296 ident: bib50 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods – volume: 367 start-page: 1814 year: 2012 end-page: 1820 ident: bib76 article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia publication-title: N. Engl. J. Med. – volume: 69 start-page: 1204 year: 2013 end-page: 1214 ident: bib15 article-title: How good are my data and what is the resolution? publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 88 start-page: 7796 year: 2014 end-page: 7805 ident: bib73 article-title: Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies publication-title: J. Virol. – volume: 191 start-page: 507 year: 2005 end-page: 514 ident: bib18 article-title: Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice publication-title: J. Infect. Dis. – volume: 6 start-page: e60 year: 2017 ident: bib7 article-title: A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein publication-title: Emerg. Microbes Infect. – volume: 13 start-page: 87 year: 2016 ident: bib39 article-title: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir publication-title: Virol. J. – volume: 288 start-page: 33784 year: 2013 end-page: 33796 ident: bib40 article-title: Crystal structure of anti-polysialic acid antibody single chain Fv fragment complexed with octasialic acid: insight into the binding preference for polysialic acid publication-title: J. Biol. Chem. – volume: 22 start-page: 701 year: 2016 end-page: 705 ident: bib38 article-title: A roadmap for MERS-CoV research and product development: report from a World Health Organization consultation publication-title: Nat. Med. – volume: 25 start-page: 1237 year: 2015 end-page: 1249 ident: bib34 article-title: A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein publication-title: Cell Res. – volume: 23 start-page: 47 year: 2014 end-page: 55 ident: bib9 article-title: Relaxation of backbone bond geometry improves protein energy landscape modeling publication-title: Protein Sci. – year: 2018 ident: bib71 article-title: Middle East respiratory syndrome coronavirus (MERS-CoV) – volume: 287 start-page: 41931 year: 2012 end-page: 41938 ident: bib46 article-title: Crystal structure of bovine coronavirus spike protein lectin domain publication-title: J. Biol. Chem. – volume: 214 start-page: 712 year: 2016 end-page: 721 ident: bib3 article-title: Epidemiology of a Novel Recombinant Middle East Respiratory Syndrome Coronavirus in Humans in Saudi Arabia publication-title: J. Infect. Dis. – volume: 111 start-page: 15214 year: 2014 ident: 10.1016/j.celrep.2019.08.052_bib37 article-title: Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1407087111 – volume: 58 start-page: 1948 year: 2002 ident: 10.1016/j.celrep.2019.08.052_bib1 article-title: PHENIX: building new software for automated crystallographic structure determination publication-title: Acta. Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444902016657 – volume: 495 start-page: 251 year: 2013 ident: 10.1016/j.celrep.2019.08.052_bib51 article-title: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC publication-title: Nature doi: 10.1038/nature12005 – volume: 14 start-page: e1007236 year: 2018 ident: 10.1016/j.celrep.2019.08.052_bib58 article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1007236 – volume: 214 start-page: 712 year: 2016 ident: 10.1016/j.celrep.2019.08.052_bib3 article-title: Epidemiology of a Novel Recombinant Middle East Respiratory Syndrome Coronavirus in Humans in Saudi Arabia publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiw236 – volume: 166 start-page: 205 year: 2009 ident: 10.1016/j.celrep.2019.08.052_bib64 article-title: DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2009.01.004 – volume: 114 start-page: E8508 year: 2017 ident: 10.1016/j.celrep.2019.08.052_bib33 article-title: Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1712592114 – volume: 372 start-page: 846 year: 2015 ident: 10.1016/j.celrep.2019.08.052_bib42 article-title: 2014 MERS-CoV outbreak in Jeddah--a link to health care facilities publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1408636 – volume: 87 start-page: 5502 year: 2013 ident: 10.1016/j.celrep.2019.08.052_bib17 article-title: The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies publication-title: J. Virol. doi: 10.1128/JVI.00128-13 – volume: 265 start-page: 77 year: 2019 ident: 10.1016/j.celrep.2019.08.052_bib53 article-title: A high-throughput inhibition assay to study MERS-CoV antibody interactions using image cytometry publication-title: J. Virol. Methods doi: 10.1016/j.jviromet.2018.11.009 – volume: 92 start-page: e02002-17 year: 2018 ident: 10.1016/j.celrep.2019.08.052_bib69 article-title: Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape publication-title: J. Virol. doi: 10.1128/JVI.02002-17 – volume: 69 start-page: 1204 year: 2013 ident: 10.1016/j.celrep.2019.08.052_bib15 article-title: How good are my data and what is the resolution? publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444913000061 – volume: 92 start-page: e01556-17 year: 2018 ident: 10.1016/j.celrep.2019.08.052_bib57 article-title: Cryo-Electron Microscopy Structure of Porcine Deltacoronavirus Spike Protein in the Prefusion State publication-title: J. Virol. doi: 10.1128/JVI.01556-17 – volume: 6 start-page: 234ra59 year: 2014 ident: 10.1016/j.celrep.2019.08.052_bib22 article-title: Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3008140 – volume: 22 start-page: 701 year: 2016 ident: 10.1016/j.celrep.2019.08.052_bib38 article-title: A roadmap for MERS-CoV research and product development: report from a World Health Organization consultation publication-title: Nat. Med. doi: 10.1038/nm.4131 – volume: 143 start-page: 185 year: 2003 ident: 10.1016/j.celrep.2019.08.052_bib43 article-title: Topology representing network enables highly accurate classification of protein images taken by cryo electron-microscope without masking publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2003.08.005 – volume: 500 start-page: 227 year: 2013 ident: 10.1016/j.celrep.2019.08.052_bib35 article-title: Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 publication-title: Nature doi: 10.1038/nature12328 – volume: 23 start-page: 47 year: 2014 ident: 10.1016/j.celrep.2019.08.052_bib9 article-title: Relaxation of backbone bond geometry improves protein energy landscape modeling publication-title: Protein Sci. doi: 10.1002/pro.2389 – volume: 14 start-page: e1007009 year: 2018 ident: 10.1016/j.celrep.2019.08.052_bib56 article-title: Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1007009 – volume: 108 start-page: 10696 year: 2011 ident: 10.1016/j.celrep.2019.08.052_bib45 article-title: Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1104306108 – volume: 309 start-page: 1864 year: 2005 ident: 10.1016/j.celrep.2019.08.052_bib31 article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor publication-title: Science doi: 10.1126/science.1116480 – volume: 370 start-page: 2499 year: 2014 ident: 10.1016/j.celrep.2019.08.052_bib4 article-title: Evidence for camel-to-human transmission of MERS coronavirus publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1401505 – volume: 195 start-page: 195 year: 1993 ident: 10.1016/j.celrep.2019.08.052_bib27 article-title: Structural and functional analysis of the surface protein of human coronavirus OC43 publication-title: Virology doi: 10.1006/viro.1993.1360 – volume: 71 start-page: 3285 year: 1997 ident: 10.1016/j.celrep.2019.08.052_bib25 article-title: Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus publication-title: J. Virol. doi: 10.1128/jvi.71.4.3285-3287.1997 – volume: 60 start-page: 369 year: 2015 ident: 10.1016/j.celrep.2019.08.052_bib12 article-title: An observational, laboratory-based study of outbreaks of middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia, 2014 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciu812 – volume: 114 start-page: E7348 year: 2017 ident: 10.1016/j.celrep.2019.08.052_bib44 article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1707304114 – volume: 25 start-page: 1237 year: 2015 ident: 10.1016/j.celrep.2019.08.052_bib34 article-title: A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein publication-title: Cell Res. doi: 10.1038/cr.2015.113 – volume: 35 start-page: 10 year: 2017 ident: 10.1016/j.celrep.2019.08.052_bib21 article-title: The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection publication-title: Vaccine doi: 10.1016/j.vaccine.2016.11.064 – volume: 191 start-page: 507 year: 2005 ident: 10.1016/j.celrep.2019.08.052_bib18 article-title: Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice publication-title: J. Infect. Dis. doi: 10.1086/427242 – volume: 27 start-page: 119 year: 2017 ident: 10.1016/j.celrep.2019.08.052_bib19 article-title: Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding publication-title: Cell Res. doi: 10.1038/cr.2016.152 – year: 2018 ident: 10.1016/j.celrep.2019.08.052_bib71 – volume: 9 start-page: 493 year: 2003 ident: 10.1016/j.celrep.2019.08.052_bib59 article-title: Lentivirus-delivered stable gene silencing by RNAi in primary cells publication-title: RNA doi: 10.1261/rna.2192803 – volume: 23 start-page: 986 year: 2013 ident: 10.1016/j.celrep.2019.08.052_bib70 article-title: Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 publication-title: Cell Res. doi: 10.1038/cr.2013.92 – volume: 288 start-page: 33784 year: 2013 ident: 10.1016/j.celrep.2019.08.052_bib40 article-title: Crystal structure of anti-polysialic acid antibody single chain Fv fragment complexed with octasialic acid: insight into the binding preference for polysialic acid publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.496224 – volume: 77 start-page: 153 year: 1999 ident: 10.1016/j.celrep.2019.08.052_bib48 article-title: Leginon: a system for fully automated acquisition of 1000 electron micrographs a day publication-title: Ultramicroscopy doi: 10.1016/S0304-3991(99)00043-1 – volume: 531 start-page: 114 year: 2016 ident: 10.1016/j.celrep.2019.08.052_bib65 article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer publication-title: Nature doi: 10.1038/nature16988 – volume: 176 start-page: 1026 year: 2019 ident: 10.1016/j.celrep.2019.08.052_bib67 article-title: Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion publication-title: Cell doi: 10.1016/j.cell.2018.12.028 – volume: 3 year: 2012 ident: 10.1016/j.celrep.2019.08.052_bib63 article-title: Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans publication-title: MBio doi: 10.1128/mBio.00473-12 – volume: 90 start-page: 9114 year: 2016 ident: 10.1016/j.celrep.2019.08.052_bib6 article-title: Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5 Is an Important Surface Attachment Factor That Facilitates Entry of Middle East Respiratory Syndrome Coronavirus publication-title: J. Virol. doi: 10.1128/JVI.01133-16 – volume: 193 start-page: 1 year: 2016 ident: 10.1016/j.celrep.2019.08.052_bib77 article-title: Gctf: Real-time CTF determination and correction publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.11.003 – volume: 6 start-page: e60 year: 2017 ident: 10.1016/j.celrep.2019.08.052_bib7 article-title: A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein publication-title: Emerg. Microbes Infect. doi: 10.1038/emi.2017.50 – volume: 7 start-page: 13473 year: 2016 ident: 10.1016/j.celrep.2019.08.052_bib13 article-title: Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines publication-title: Nat. Commun. doi: 10.1038/ncomms13473 – volume: 287 start-page: 41931 year: 2012 ident: 10.1016/j.celrep.2019.08.052_bib46 article-title: Crystal structure of bovine coronavirus spike protein lectin domain publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.418210 – volume: 3 start-page: 237 year: 2016 ident: 10.1016/j.celrep.2019.08.052_bib30 article-title: Structure, Function, and Evolution of Coronavirus Spike Proteins publication-title: Annu. Rev. Virol. doi: 10.1146/annurev-virology-110615-042301 – volume: 111 start-page: E2018 year: 2014 ident: 10.1016/j.celrep.2019.08.052_bib62 article-title: Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1402074111 – volume: 59 start-page: 1131 year: 2003 ident: 10.1016/j.celrep.2019.08.052_bib49 article-title: A graphical user interface to the CCP4 program suite publication-title: Acta. Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444903008126 – volume: 531 start-page: 118 year: 2016 ident: 10.1016/j.celrep.2019.08.052_bib24 article-title: Pre-fusion structure of a human coronavirus spike protein publication-title: Nature doi: 10.1038/nature17200 – volume: 166 start-page: 95 year: 2009 ident: 10.1016/j.celrep.2019.08.052_bib28 article-title: Appion: an integrated, database-driven pipeline to facilitate EM image processing publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2009.01.002 – volume: 293 start-page: 11709 year: 2018 ident: 10.1016/j.celrep.2019.08.052_bib8 article-title: Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.001897 – volume: 89 start-page: 1954 year: 2015 ident: 10.1016/j.celrep.2019.08.052_bib29 article-title: Receptor recognition mechanisms of coronaviruses: a decade of structural studies publication-title: J. Virol. doi: 10.1128/JVI.02615-14 – volume: 157 start-page: 38 year: 2007 ident: 10.1016/j.celrep.2019.08.052_bib61 article-title: EMAN2: an extensible image processing suite for electron microscopy publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2006.05.009 – volume: 8 start-page: 15092 year: 2017 ident: 10.1016/j.celrep.2019.08.052_bib74 article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains publication-title: Nat. Commun. doi: 10.1038/ncomms15092 – volume: 112 start-page: 10473 year: 2015 ident: 10.1016/j.celrep.2019.08.052_bib10 article-title: Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1510199112 – volume: 14 start-page: 290 year: 2017 ident: 10.1016/j.celrep.2019.08.052_bib50 article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination publication-title: Nat. Methods doi: 10.1038/nmeth.4169 – volume: 14 start-page: 331 year: 2017 ident: 10.1016/j.celrep.2019.08.052_bib78 article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 60 start-page: 2126 year: 2004 ident: 10.1016/j.celrep.2019.08.052_bib14 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444904019158 – volume: 6 start-page: 7712 year: 2015 ident: 10.1016/j.celrep.2019.08.052_bib68 article-title: Evaluation of candidate vaccine approaches for MERS-CoV publication-title: Nat. Commun. doi: 10.1038/ncomms8712 – volume: 4 start-page: e00650-13 year: 2013 ident: 10.1016/j.celrep.2019.08.052_bib2 article-title: Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate publication-title: MBio doi: 10.1128/mBio.00650-13 – volume: 88 start-page: 7796 year: 2014 ident: 10.1016/j.celrep.2019.08.052_bib73 article-title: Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies publication-title: J. Virol. doi: 10.1128/JVI.00912-14 – volume: 67 start-page: 271 year: 2011 ident: 10.1016/j.celrep.2019.08.052_bib5 article-title: iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444910048675 – volume: 6 start-page: e101 year: 2017 ident: 10.1016/j.celrep.2019.08.052_bib75 article-title: Diversity of Middle East respiratory syndrome coronaviruses in 109 dromedary camels based on full-genome sequencing, Abu Dhabi, United Arab Emirates publication-title: Emerg. Microbes Infect. doi: 10.1038/emi.2017.89 – volume: 394 start-page: 600 year: 2009 ident: 10.1016/j.celrep.2019.08.052_bib20 article-title: Identification of a new region of SARS-CoV S protein critical for viral entry publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.10.032 – volume: 65 start-page: 6232 year: 1991 ident: 10.1016/j.celrep.2019.08.052_bib54 article-title: The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant publication-title: J. Virol. doi: 10.1128/jvi.65.11.6232-6237.1991 – volume: 394 start-page: 39 year: 2009 ident: 10.1016/j.celrep.2019.08.052_bib11 article-title: Human monoclonal antibodies to SARS-coronavirus inhibit infection by different mechanisms publication-title: Virology doi: 10.1016/j.virol.2009.07.028 – volume: 40 start-page: 658 year: 2007 ident: 10.1016/j.celrep.2019.08.052_bib36 article-title: Phaser crystallographic software publication-title: J. Appl. Cryst. doi: 10.1107/S0021889807021206 – volume: 110 start-page: 16157 year: 2013 ident: 10.1016/j.celrep.2019.08.052_bib55 article-title: Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1311542110 – volume: 37 start-page: e2015033 year: 2015 ident: 10.1016/j.celrep.2019.08.052_bib23 article-title: 2015 MERS outbreak in Korea: hospital-to-hospital transmission publication-title: Epidemiol. Health doi: 10.4178/epih/e2015033 – volume: 82 start-page: 3220 year: 2008 ident: 10.1016/j.celrep.2019.08.052_bib52 article-title: Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge publication-title: J. Virol. doi: 10.1128/JVI.02377-07 – volume: 151 start-page: 41 year: 2005 ident: 10.1016/j.celrep.2019.08.052_bib60 article-title: Automated molecular microscopy: the new Leginon system publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.03.010 – volume: 367 start-page: 1814 year: 2012 ident: 10.1016/j.celrep.2019.08.052_bib76 article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1211721 – volume: 372 start-page: 774 year: 2007 ident: 10.1016/j.celrep.2019.08.052_bib26 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.05.022 – volume: 426 start-page: 450 year: 2003 ident: 10.1016/j.celrep.2019.08.052_bib32 article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus publication-title: Nature doi: 10.1038/nature02145 – volume: 23 start-page: 899 year: 2016 ident: 10.1016/j.celrep.2019.08.052_bib66 article-title: Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3293 – volume: 89 start-page: 1523 year: 2015 ident: 10.1016/j.celrep.2019.08.052_bib16 article-title: The nsp3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis publication-title: J. Virol. doi: 10.1128/JVI.02596-14 – volume: 13 start-page: 87 year: 2016 ident: 10.1016/j.celrep.2019.08.052_bib39 article-title: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir publication-title: Virol. J. doi: 10.1186/s12985-016-0544-0 – volume: 93 start-page: 11382 year: 1996 ident: 10.1016/j.celrep.2019.08.052_bib41 article-title: Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.21.11382 – volume: 25 start-page: 1605 year: 2004 ident: 10.1016/j.celrep.2019.08.052_bib47 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 92 start-page: e01628-17 year: 2018 ident: 10.1016/j.celrep.2019.08.052_bib72 article-title: Glycan Shield and Fusion Activation of a Deltacoronavirus Spike Glycoprotein Fine-Tuned for Enteric Infections publication-title: J. Virol. doi: 10.1128/JVI.01628-17 – volume: 7 start-page: e42166 year: 2018 ident: 10.1016/j.celrep.2019.08.052_bib79 article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3 publication-title: eLife doi: 10.7554/eLife.42166 |
SSID | ssj0000601194 |
Score | 2.4865816 |
Snippet | Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3395 |
SubjectTerms | 60 APPLIED LIFE SCIENCES coronavirus crystal structure DPP4 electron microscopy Epitopes - metabolism Humans membrane fusion MERS-CoV Middle East Respiratory Syndrome Coronavirus - pathogenicity receptor-binding |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVlodBLaZp-uGmLArmKxrJkV8c22RAC2UM2KbkJSR7RLcFe0uTQf58ZyV7WpbCXXr3S2pp50jxZ4zeMHYW6hPjVVwheE4WKUgvnXCuMB-8q7XRMxwWXi_r8Rl3c6tutUl-UE5blgbPhvhioAcoYldKNapHPxFBL7yHWeHcEI62-GPO2NlN5DSYtMzpSlpJytqRqxu_mUnJXgLt7ILnK0iQFTy0ncSnJ90_C06zHGfcvFvp3MuVWdDp7xV4OtJJ_y8PZY8-ge82e50KTf_bZ1TLJxJLEBj-FuOpSohbvI3d8AY_pbUf-HlMsKaOd1kA-X-NsXwPHhsgS-eX8ailO-h98WYrF9ekbdnM2vz45F0M1BRGQZDyIui2bVqE5ZV2RKpqR0beuDD5E13rjFChA-5YGQ7jySGOC9sE43CFqej1UVm_ZrOs7eM94RN7WIm_yOkpVKY0-URC8cmVUx61zBatGW9owSI1TxYs7O-aU_bLZA5Y8YKkQppYFE5te6yy1saP9d3LTpi0JZacLCB87wMfugk_BmtHJduAcmUvgX6123P6AMEG9SG43UF4SdqP9MHKggh2OULE4YekUxnXQP_62UqKFVYX7xIK9y9DZDKGiKk7m2OBTTUA1GeP0l271M4mC14YqHTQf_odRDtgLGqhIh28f2QwhCp-Qez34z2maPQEVnyzH priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBVhodBL6XfdtEWFXsXGsmRHx2azIRSyhzgpexOSPGpdgr2kyaH_vjOyvdSlEOjRtmR7pNHMkzR6w9inUOYQj32BymuiUFFq4ZxrhPHgXaGdjmm74GJTnl-rL1u9PWCr6SwMhVWOtn-w6claj3eWY2sud227rCXOXdA7VQhBiPeMGD8LdZwO8W1P9ussxDeSp3yIVF5QhekEXQrzCnBzC0RcmZvE5anlzEMlIv-Zo1r0OPb-hUf_Dqv8w0-dPWVPRoDJPw8yPGMH0D1nj4aUk79esMs6EcYS2QY_hdh2KWSL95E7voH7tO4xnMwUNcW2kzXk6x2O-x1wLIh4kV-sL2ux6r_yOhebq9OX7PpsfbU6F2NeBREQbtyJssmrRhkgIhriRzMy-sblwYfoGm-cAgUN4giDzlx5BDRB-2AczhU1LRTlxSu26PoO3jAeEcE1iKC8jlIVSpsYFASvXB7VUeNcxoqpLW0YSccp98WNnaLLftihByz1gKWUmFpmTOxr7QbSjQfKn1A37csSZXa60d9-s6POWJQXII9RKV0pFA9_tZTeQyxRjdGqZayaOtnONBBf1T7w-UPSCapFxLuBIpSwGs2MEQ1l7OOkKhaHLu3HuA76-59WSmxhVeCMMWOvB9XZi1BQPidzZPCvZko1k3H-pGu_J3rw0lDOg-rtf8tzyB7TlUh7b-_YAvUS3iP0uvMf0tj6DfBgLJs priority: 102 providerName: Elsevier |
Title | Structural Definition of a Neutralization-Sensitive Epitope on the MERS-CoV S1-NTD |
URI | https://dx.doi.org/10.1016/j.celrep.2019.08.052 https://www.ncbi.nlm.nih.gov/pubmed/31553909 https://www.proquest.com/docview/2298143875 https://www.osti.gov/biblio/1566185 https://pubmed.ncbi.nlm.nih.gov/PMC6935267 https://doaj.org/article/9e6ee1ff44574d099fc62bbef6bec225 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLZQp0m7TIyNLbAhT9rVE3HsZD4gNKCITWoPlKLeLNuxt05V0hWQ4L_nPSfpyMSEdomUxE5i-_34bL98j5BPLk99-GIzEF4VmAhcMmNMyZT11mTSyBC3C0bj_Gwqvs_kbIN0OVvbDrx6dGqH-aSmq8Xn2993h6DwB39itZxfrDyyT6YqEnJKMMrPwDcVmNNg1AL-xjYjxxluNXOOsVxcFN3_dP94UM9fRVr_ntsa1KCJj6HTv4MsH3it003ysoWb9GsjH6_Ihq-2yPMmAeXda3I-ifSxSL1BT3yYVzGAi9aBGjr2N3EVpPlPk00w0h1tIx0uwQosPYWCgB7paHg-Ycf1JZ2kbHxx8oZMT4cXx2eszbLAHICPa5aXaVEK5ZGWBtnSFA-2NKmzLpjSKiO88CWgCgWuXViAN05apwzMHCUuG6XZNhlUdeXfERoAz5WAp6wMXGRCquCEd1aYNIj90piEZF1fatdSkGMmjIXuYs1-6WYENI6AxgSZkieErWstGwqOJ8of4TCtyyKBdrxQr37oVh81tNf7NAQhZCGgefCpObfWhxyEGmxcQopukHWLRRqMAY-aP_H6XZQJrIU0vA7jlaAazpMBGyXkYycqGhQZd2dM5eubK8059LDIYP6YkLeN6KybkGF2J7Wv4Kt6QtVrY_9ONf8ZycJzhRkQip3_7MRd8gLPWNx_e08GII3-A8Cva7sXly3g-G12tBe16x51Gi9C |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGEWIviG_K-DASPFpdHDvBDzywtVPL1j6sHeqbsR0bOk1JtQ-h_V38g9w5SUUQ0iSkvSZ24vvw3dk-_46Q9y5LfPhoU1BeFZgIXDJjTMGU9dak0sgQjwums2x8Ir4s5XKL_GrvwmBaZWP7a5serXXzZNBwc7BerQZzDmsX8E45hCCIe9ZWsD701z9h3XbxaTIEIX_g_GC02B-zprQAc-BxL1lWJHkhlEcsFoQIUzzYwiTOumAKq4zwwhfgShX4M2HBpztpnTKwXJK4V5Kk8N075C5EHzlag8lyb7OxgwAnSSzAiANkOML2yl7MK3P-7NwjUmaiInio5B2XGCsHdDxjr4LJ_q8A-O88zj8c48FD8qCJaOnnmmmPyJYvH5N7dY3L6yfkeB4RahHdgw59WJUxR4xWgRo681dxo6W-CsrmmEyP5peO1mBo1p5CQwhQ6XR0PGf71Vc6T9hsMXxKTm6F289Ir6xK_4LQACFjASGblYGLVEgVnPDOCpMEsVsY0ydpy0vtGpRzLLZxptt0tlNdS0CjBDTW4JS8T9im17pG-bih_R6KadMWMbrjg-r8u26UVAO93ichCCFzAeTBUDNurQ8ZzBswo32St0LWHZWHT61u-P0O6gT2QqRfhylR0A2X4hB-9cm7VlU02Ao8ADKlr64uNOfAYZHCErVPnteqsyEhxQJSalfBqDpK1aGx-6Zc_Yh45JnCIgv5y_-m5y25P15Mj_TRZHa4Q7bxDYsHf69ID3TUv4a479K-ifOMkm-3PbF_A7KgaVs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Definition+of+a+Neutralization-Sensitive+Epitope+on+the+MERS-CoV+S1-NTD&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Wang%2C+Nianshuang&rft.au=Rosen%2C+Osnat&rft.au=Wang%2C+Lingshu&rft.au=Turner%2C+Hannah+L.&rft.date=2019-09-24&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=28&rft.issue=13&rft.spage=3395&rft.epage=3405.e6&rft_id=info:doi/10.1016%2Fj.celrep.2019.08.052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2019_08_052 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |