Structural Definition of a Neutralization-Sensitive Epitope on the MERS-CoV S1-NTD

Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is k...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 28; no. 13; pp. 3395 - 3405.e6
Main Authors Wang, Nianshuang, Rosen, Osnat, Wang, Lingshu, Turner, Hannah L., Stevens, Laura J., Corbett, Kizzmekia S., Bowman, Charles A., Pallesen, Jesper, Shi, Wei, Zhang, Yi, Leung, Kwanyee, Kirchdoerfer, Robert N., Becker, Michelle M., Denison, Mark R., Chappell, James D., Ward, Andrew B., Graham, Barney S., McLellan, Jason S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 24.09.2019
Elsevier
The Author(s)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is known about antibodies targeting non-RBD epitopes. Here, we report the structural and functional characterization of G2, a neutralizing antibody targeting the MERS-CoV S1 N-terminal domain (S1-NTD). Structures of G2 alone and in complex with the MERS-CoV S1-NTD define a site of vulnerability comprising two loops, each of which contain a residue mutated in G2-escape variants. Cell-surface binding studies and in vitro competition experiments demonstrate that G2 strongly disrupts the attachment of MERS-CoV S to its receptor, dipeptidyl peptidase-4 (DPP4), with the inhibition requiring the native trimeric S conformation. These results advance our understanding of antibody-mediated neutralization of coronaviruses and should facilitate the development of immunotherapeutics and vaccines against MERS-CoV. [Display omitted] •The epitope for the neutralizing antibody G2 is confined to the apex of the MERS-CoV S1-NTD•G2 epitope is relatively well conserved•G2 IgG and Fab both neutralize pseudotyped and authentic MERS-CoV•G2 neutralizes by preventing the binding of DPP4 to trimeric S protein Wang et al. report the structural and functional characterization of the Middle East respiratory syndrome coronavirus (MERS-CoV)-neutralizing antibody G2. G2 recognizes a conserved epitope on the MERS-CoV S1 N-terminal domain (S1-NTD) and neutralizes MERS-CoV by interfering with binding to host receptor dipeptidyl peptidase-4 (DPP4). The findings are relevant for understanding the viral attachment mechanism and for the development of S1-NTD-based vaccines.
AbstractList Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is known about antibodies targeting non-RBD epitopes. Here, we report the structural and functional characterization of G2, a neutralizing antibody targeting the MERS-CoV S1 N-terminal domain (S1-NTD). Structures of G2 alone and in complex with the MERS-CoV S1-NTD define a site of vulnerability comprising two loops, each of which contain a residue mutated in G2-escape variants. Cell-surface binding studies and in vitro competition experiments demonstrate that G2 strongly disrupts the attachment of MERS-CoV S to its receptor, dipeptidyl peptidase-4 (DPP4), with the inhibition requiring the native trimeric S conformation. These results advance our understanding of antibody-mediated neutralization of coronaviruses and should facilitate the development of immunotherapeutics and vaccines against MERS-CoV. • The epitope for the neutralizing antibody G2 is confined to the apex of the MERS-CoV S1-NTD • G2 epitope is relatively well conserved • G2 IgG and Fab both neutralize pseudotyped and authentic MERS-CoV • G2 neutralizes by preventing the binding of DPP4 to trimeric S protein Wang et al. report the structural and functional characterization of the Middle East respiratory syndrome coronavirus (MERS-CoV)-neutralizing antibody G2. G2 recognizes a conserved epitope on the MERS-CoV S1 N-terminal domain (S1-NTD) and neutralizes MERS-CoV by interfering with binding to host receptor dipeptidyl peptidase-4 (DPP4). The findings are relevant for understanding the viral attachment mechanism and for the development of S1-NTD-based vaccines.
Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is known about antibodies targeting non-RBD epitopes. Here, we report the structural and functional characterization of G2, a neutralizing antibody targeting the MERS-CoV S1 N-terminal domain (S1-NTD). Structures of G2 alone and in complex with the MERS-CoV S1-NTD define a site of vulnerability comprising two loops, each of which contain a residue mutated in G2-escape variants. Cell-surface binding studies and in vitro competition experiments demonstrate that G2 strongly disrupts the attachment of MERS-CoV S to its receptor, dipeptidyl peptidase-4 (DPP4), with the inhibition requiring the native trimeric S conformation. These results advance our understanding of antibody-mediated neutralization of coronaviruses and should facilitate the development of immunotherapeutics and vaccines against MERS-CoV.
Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is known about antibodies targeting non-RBD epitopes. Here, we report the structural and functional characterization of G2, a neutralizing antibody targeting the MERS-CoV S1 N-terminal domain (S1-NTD). Structures of G2 alone and in complex with the MERS-CoV S1-NTD define a site of vulnerability comprising two loops, each of which contain a residue mutated in G2-escape variants. Cell-surface binding studies and in vitro competition experiments demonstrate that G2 strongly disrupts the attachment of MERS-CoV S to its receptor, dipeptidyl peptidase-4 (DPP4), with the inhibition requiring the native trimeric S conformation. These results advance our understanding of antibody-mediated neutralization of coronaviruses and should facilitate the development of immunotherapeutics and vaccines against MERS-CoV. [Display omitted] •The epitope for the neutralizing antibody G2 is confined to the apex of the MERS-CoV S1-NTD•G2 epitope is relatively well conserved•G2 IgG and Fab both neutralize pseudotyped and authentic MERS-CoV•G2 neutralizes by preventing the binding of DPP4 to trimeric S protein Wang et al. report the structural and functional characterization of the Middle East respiratory syndrome coronavirus (MERS-CoV)-neutralizing antibody G2. G2 recognizes a conserved epitope on the MERS-CoV S1 N-terminal domain (S1-NTD) and neutralizes MERS-CoV by interfering with binding to host receptor dipeptidyl peptidase-4 (DPP4). The findings are relevant for understanding the viral attachment mechanism and for the development of S1-NTD-based vaccines.
Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is known about antibodies targeting non-RBD epitopes. Here, we report the structural and functional characterization of G2, a neutralizing antibody targeting the MERS-CoV S1 N-terminal domain (S1-NTD). Structures of G2 alone and in complex with the MERS-CoV S1-NTD define a site of vulnerability comprising two loops, each of which contain a residue mutated in G2-escape variants. Cell-surface binding studies and in vitro competition experiments demonstrate that G2 strongly disrupts the attachment of MERS-CoV S to its receptor, dipeptidyl peptidase-4 (DPP4), with the inhibition requiring the native trimeric S conformation. These results advance our understanding of antibody-mediated neutralization of coronaviruses and should facilitate the development of immunotherapeutics and vaccines against MERS-CoV.Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is known about antibodies targeting non-RBD epitopes. Here, we report the structural and functional characterization of G2, a neutralizing antibody targeting the MERS-CoV S1 N-terminal domain (S1-NTD). Structures of G2 alone and in complex with the MERS-CoV S1-NTD define a site of vulnerability comprising two loops, each of which contain a residue mutated in G2-escape variants. Cell-surface binding studies and in vitro competition experiments demonstrate that G2 strongly disrupts the attachment of MERS-CoV S to its receptor, dipeptidyl peptidase-4 (DPP4), with the inhibition requiring the native trimeric S conformation. These results advance our understanding of antibody-mediated neutralization of coronaviruses and should facilitate the development of immunotherapeutics and vaccines against MERS-CoV.
Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is known about antibodies targeting non-RBD epitopes. Here, we report the structural and functional characterization of G2, a neutralizing antibody targeting the MERS-CoV S1 N-terminal domain (S1-NTD). Structures of G2 alone and in complex with the MERS-CoV S1-NTD define a site of vulnerability comprising two loops, each of which contain a residue mutated in G2-escape variants. Cell-surface binding studies and in vitro competition experiments demonstrate that G2 strongly disrupts the attachment of MERS-CoV S to its receptor, dipeptidyl peptidase-4 (DPP4), with the inhibition requiring the native trimeric S conformation. These results advance our understanding of antibody-mediated neutralization of coronaviruses and should facilitate the development of immunotherapeutics and vaccines against MERS-CoV. : Wang et al. report the structural and functional characterization of the Middle East respiratory syndrome coronavirus (MERS-CoV)-neutralizing antibody G2. G2 recognizes a conserved epitope on the MERS-CoV S1 N-terminal domain (S1-NTD) and neutralizes MERS-CoV by interfering with binding to host receptor dipeptidyl peptidase-4 (DPP4). The findings are relevant for understanding the viral attachment mechanism and for the development of S1-NTD-based vaccines. Keywords: MERS-CoV, coronavirus, crystal structure, electron microscopy, DPP4, receptor-binding, membrane fusion
Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently neutralizing antibodies targeting the receptor-binding domain (RBD) on MERS-CoV spike (S) protein have been characterized, but much less is known about antibodies targeting non-RBD epitopes. Here, we report the structural and functional characterization of G2, a neutralizing antibody targeting the MERS-CoV S1 N-terminal domain (S1-NTD). Structures of G2 alone and in complex with the MERS-CoV S1-NTD define a site of vulnerability comprising two loops, each of which contain a residue mutated in G2-escape variants. Cell-surface binding studies and in vitro competition experiments demonstrate that G2 strongly disrupts the attachment of MERS-CoV S to its receptor, dipeptidyl peptidase-4 (DPP4), with the inhibition requiring the native trimeric S conformation. These results advance our understanding of antibody-mediated neutralization of coronaviruses and should facilitate the development of immunotherapeutics and vaccines against MERS-CoV.
Author Denison, Mark R.
Rosen, Osnat
Corbett, Kizzmekia S.
Shi, Wei
Wang, Lingshu
Kirchdoerfer, Robert N.
Turner, Hannah L.
Pallesen, Jesper
Zhang, Yi
Bowman, Charles A.
Wang, Nianshuang
Leung, Kwanyee
Stevens, Laura J.
Graham, Barney S.
Becker, Michelle M.
McLellan, Jason S.
Chappell, James D.
Ward, Andrew B.
Author_xml – sequence: 1
  givenname: Nianshuang
  surname: Wang
  fullname: Wang, Nianshuang
  organization: Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
– sequence: 2
  givenname: Osnat
  surname: Rosen
  fullname: Rosen, Osnat
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
– sequence: 3
  givenname: Lingshu
  surname: Wang
  fullname: Wang, Lingshu
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
– sequence: 4
  givenname: Hannah L.
  surname: Turner
  fullname: Turner, Hannah L.
  organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
– sequence: 5
  givenname: Laura J.
  surname: Stevens
  fullname: Stevens, Laura J.
  organization: Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
– sequence: 6
  givenname: Kizzmekia S.
  surname: Corbett
  fullname: Corbett, Kizzmekia S.
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
– sequence: 7
  givenname: Charles A.
  surname: Bowman
  fullname: Bowman, Charles A.
  organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
– sequence: 8
  givenname: Jesper
  surname: Pallesen
  fullname: Pallesen, Jesper
  organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
– sequence: 9
  givenname: Wei
  surname: Shi
  fullname: Shi, Wei
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
– sequence: 10
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
– sequence: 11
  givenname: Kwanyee
  surname: Leung
  fullname: Leung, Kwanyee
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
– sequence: 12
  givenname: Robert N.
  surname: Kirchdoerfer
  fullname: Kirchdoerfer, Robert N.
  organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
– sequence: 13
  givenname: Michelle M.
  surname: Becker
  fullname: Becker, Michelle M.
  organization: Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
– sequence: 14
  givenname: Mark R.
  surname: Denison
  fullname: Denison, Mark R.
  organization: Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
– sequence: 15
  givenname: James D.
  surname: Chappell
  fullname: Chappell, James D.
  organization: Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
– sequence: 16
  givenname: Andrew B.
  surname: Ward
  fullname: Ward, Andrew B.
  organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
– sequence: 17
  givenname: Barney S.
  surname: Graham
  fullname: Graham, Barney S.
  organization: Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
– sequence: 18
  givenname: Jason S.
  surname: McLellan
  fullname: McLellan, Jason S.
  email: jmclellan@austin.utexas.edu
  organization: Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31553909$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1566185$$D View this record in Osti.gov
BookMark eNqFUsFu1DAQjVARLaV_gFDEiUsWj-M4MQcktF2gUilSt3C1HGfS9SprL7azEnw9TnepWg7gi62ZN2_m-c3z7Mg6i1n2EsgMCPC365nGweN2RgmIGWlmpKJPshNKAQqgrD568D7OzkJYk3Q4ARDsWXZcQlWVgoiT7HoZ_ajj6NWQn2NvrInG2dz1ucqvcIwpbn6pKVYs0YaU3WG-2JrotpgnYFxh_mVxvSzm7nu-hOLq5vxF9rRXQ8Czw32affu4uJl_Li6_frqYf7gsdNWwWPAO6o4J5JSXjNRU0L7tFOhW96prhWLIsCMCRAMNaxtR6qrVQtUUKlE3JZSn2cWet3NqLbfebJT_KZ0y8i7g_K1UPho9oExdEKHvGatqlkhFrzltW-x5i5rSKnG933Ntx3aDnUY7KX9E-jhjzUreup3koqworxPB6z2BC9HIoE1EvdLOWtRRQsU5NFOXN4cu3v0YMUS5MSEZOSiLbgyS0iSWlU09QV89HOh-kj_OJQDbA7R3IXjs7yFA5LQjci33OyKnHZGkkWlHUtm7v8rSqHf-Jllm-F_x4Zcw2boz6CehaDV2xk86O2f-TfAbrSjY4g
CitedBy_id crossref_primary_10_1093_abt_tbaa007
crossref_primary_10_3390_microorganisms9010165
crossref_primary_10_1111_jam_15720
crossref_primary_10_1128_jvi_01955_21
crossref_primary_10_3389_fimmu_2020_602256
crossref_primary_10_3390_v13010134
crossref_primary_10_1071_MA21011
crossref_primary_10_7717_peerj_9689
crossref_primary_10_1038_s41422_021_00595_6
crossref_primary_10_1056_NEJMoa2024671
crossref_primary_10_1016_j_cell_2020_05_042
crossref_primary_10_1038_s41598_020_71748_7
crossref_primary_10_3390_ijms24076253
crossref_primary_10_3390_molecules26164961
crossref_primary_10_1016_j_cell_2020_06_035
crossref_primary_10_1016_j_cell_2021_03_028
crossref_primary_10_1089_cmb_2020_0193
crossref_primary_10_1002_jmv_26254
crossref_primary_10_1016_j_jconrel_2022_07_028
crossref_primary_10_1126_science_abd0826
crossref_primary_10_1002_jmv_27425
crossref_primary_10_1038_s41577_020_00480_0
crossref_primary_10_1056_NEJMoa2022483
crossref_primary_10_3390_v12040360
crossref_primary_10_1016_j_celrep_2024_114530
crossref_primary_10_1016_j_jconrel_2020_08_060
crossref_primary_10_1016_j_molmed_2020_02_008
crossref_primary_10_1038_s41586_020_2548_6
crossref_primary_10_1155_2021_9989237
crossref_primary_10_1016_j_trsl_2021_11_007
crossref_primary_10_3390_medicina59030507
crossref_primary_10_1093_infdis_jiad267
crossref_primary_10_1038_s41559_024_02353_4
crossref_primary_10_3389_fimmu_2021_663912
crossref_primary_10_1016_j_celrep_2024_115036
crossref_primary_10_1080_14760584_2020_1813574
crossref_primary_10_1016_j_isci_2024_111632
crossref_primary_10_1016_j_micpath_2020_104241
crossref_primary_10_3390_biomedicines8050109
crossref_primary_10_1038_s42003_022_04160_8
crossref_primary_10_1016_j_jiph_2020_12_006
crossref_primary_10_3389_fmicb_2020_00658
crossref_primary_10_1016_j_lfs_2021_119289
crossref_primary_10_1126_science_abc5902
crossref_primary_10_1016_j_imu_2021_100781
crossref_primary_10_36664_bt_2021_v68i1_162888
crossref_primary_10_7717_peerj_9572
crossref_primary_10_1038_s41467_023_41661_4
crossref_primary_10_1038_s41577_021_00578_z
crossref_primary_10_1002_jmv_28572
crossref_primary_10_3390_ani14030448
Cites_doi 10.1073/pnas.1407087111
10.1107/S0907444902016657
10.1038/nature12005
10.1371/journal.ppat.1007236
10.1093/infdis/jiw236
10.1016/j.jsb.2009.01.004
10.1073/pnas.1712592114
10.1056/NEJMoa1408636
10.1128/JVI.00128-13
10.1016/j.jviromet.2018.11.009
10.1128/JVI.02002-17
10.1107/S0907444913000061
10.1128/JVI.01556-17
10.1126/scitranslmed.3008140
10.1038/nm.4131
10.1016/j.jsb.2003.08.005
10.1038/nature12328
10.1002/pro.2389
10.1371/journal.ppat.1007009
10.1073/pnas.1104306108
10.1126/science.1116480
10.1056/NEJMoa1401505
10.1006/viro.1993.1360
10.1128/jvi.71.4.3285-3287.1997
10.1093/cid/ciu812
10.1073/pnas.1707304114
10.1038/cr.2015.113
10.1016/j.vaccine.2016.11.064
10.1086/427242
10.1038/cr.2016.152
10.1261/rna.2192803
10.1038/cr.2013.92
10.1074/jbc.M113.496224
10.1016/S0304-3991(99)00043-1
10.1038/nature16988
10.1016/j.cell.2018.12.028
10.1128/mBio.00473-12
10.1128/JVI.01133-16
10.1016/j.jsb.2015.11.003
10.1038/emi.2017.50
10.1038/ncomms13473
10.1074/jbc.M112.418210
10.1146/annurev-virology-110615-042301
10.1073/pnas.1402074111
10.1107/S0907444903008126
10.1038/nature17200
10.1016/j.jsb.2009.01.002
10.1074/jbc.RA118.001897
10.1128/JVI.02615-14
10.1016/j.jsb.2006.05.009
10.1038/ncomms15092
10.1073/pnas.1510199112
10.1038/nmeth.4169
10.1038/nmeth.4193
10.1107/S0907444904019158
10.1038/ncomms8712
10.1128/mBio.00650-13
10.1128/JVI.00912-14
10.1107/S0907444910048675
10.1038/emi.2017.89
10.1016/j.jmb.2009.10.032
10.1128/jvi.65.11.6232-6237.1991
10.1016/j.virol.2009.07.028
10.1107/S0021889807021206
10.1073/pnas.1311542110
10.4178/epih/e2015033
10.1128/JVI.02377-07
10.1016/j.jsb.2005.03.010
10.1056/NEJMoa1211721
10.1016/j.jmb.2007.05.022
10.1038/nature02145
10.1038/nsmb.3293
10.1128/JVI.02596-14
10.1186/s12985-016-0544-0
10.1073/pnas.93.21.11382
10.1002/jcc.20084
10.1128/JVI.01628-17
10.7554/eLife.42166
ContentType Journal Article
Copyright 2019 The Author(s)
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
2019 The Author(s) 2019
Copyright_xml – notice: 2019 The Author(s)
– notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2019 The Author(s) 2019
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
5PM
DOA
DOI 10.1016/j.celrep.2019.08.052
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 3405.e6
ExternalDocumentID oai_doaj_org_article_9e6ee1ff44574d099fc62bbef6bec225
PMC6935267
1566185
31553909
10_1016_j_celrep_2019_08_052
S2211124719311003
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI127521
– fundername: CCR NIH HHS
  grantid: HHSN261200800001C
– fundername: NCI NIH HHS
  grantid: HHSN261200800001E
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
5PM
ID FETCH-LOGICAL-c584t-6d17d49e6263407292fbda1cbcfadb9a4e4ed09198184b893c5bc9a7215978313
IEDL.DBID M48
ISSN 2211-1247
IngestDate Wed Aug 27 01:29:30 EDT 2025
Thu Aug 21 14:13:01 EDT 2025
Thu May 18 22:43:12 EDT 2023
Fri Jul 11 12:25:59 EDT 2025
Mon Jul 21 05:42:43 EDT 2025
Tue Jul 01 02:59:04 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Wed May 17 00:05:52 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords DPP4
crystal structure
coronavirus
electron microscopy
MERS-CoV
receptor-binding
membrane fusion
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c584t-6d17d49e6263407292fbda1cbcfadb9a4e4ed09198184b893c5bc9a7215978313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
R01AI127521; HHSN261200800001E; AC02-06CH11357
National Institute of Allergy and Infectious Diseases (NIAID)
National Institutes of Health (NIH)
USDOE Office of Science (SC), Biological and Environmental Research (BER)
Present address: Department of Biotechnology, Israel Institute for Biological Research, Ness-ziona, Israel
Lead Contact
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2019.08.052
PMID 31553909
PQID 2298143875
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_9e6ee1ff44574d099fc62bbef6bec225
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6935267
osti_scitechconnect_1566185
proquest_miscellaneous_2298143875
pubmed_primary_31553909
crossref_primary_10_1016_j_celrep_2019_08_052
crossref_citationtrail_10_1016_j_celrep_2019_08_052
elsevier_sciencedirect_doi_10_1016_j_celrep_2019_08_052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-24
PublicationDateYYYYMMDD 2019-09-24
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Netherlands
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2019
Publisher Elsevier Inc
Elsevier
The Author(s)
Publisher_xml – name: Elsevier Inc
– name: Elsevier
– name: The Author(s)
References Du, Tai, Yang, Zhao, Zhu, Sun, Liu, Tao, Tseng, Perlman (bib13) 2016; 7
Li, Wan, Liu, Zhao, Lu, Qi, Wang, Lu, Wu, Liu (bib34) 2015; 25
Adams, Grosse-Kunstleve, Hung, Ioerger, McCoy, Moriarty, Read, Sacchettini, Sauter, Terwilliger (bib1) 2002; 58
Tang, Agnihothram, Jiao, Stanhope, Graham, Peterson, Avnir, Tallarico, Sheehan, Zhu (bib62) 2014; 111
Shang, Zheng, Yang, Liu, Geng, Tai, Du, Zhou, Zhang, Li (bib57) 2018; 92
Peng, Xu, Lin, Chen, Pasquarella, Holmes, Li (bib46) 2012; 287
Song, Gui, Wang, Xiang (bib58) 2018; 14
McCoy, Grosse-Kunstleve, Adams, Winn, Storoni, Read (bib36) 2007; 40
Millet, Whittaker (bib37) 2014; 111
Modjarrad, Moorthy, Ben Embarek, Van Kerkhove, Kim, Kieny (bib38) 2016; 22
Azhar, El-Kafrawy, Farraj, Hassan, Al-Saeed, Hashem, Madani (bib4) 2014; 370
Gierer, Bertram, Kaup, Wrensch, Heurich, Krämer-Kühl, Welsch, Winkler, Meyer, Drosten (bib17) 2013; 87
Rockx, Corti, Donaldson, Sheahan, Stadler, Lanzavecchia, Baric (bib52) 2008; 82
Evans, Murshudov (bib15) 2013; 69
Zheng, Palovcak, Armache, Verba, Cheng, Agard (bib78) 2017; 14
Jiaming, Yanfeng, Yao, Yawei, Linlin, Baoying, Jinghua, Gao, Chuan, Wenjie (bib21) 2017; 35
Almazán, DeDiego, Sola, Zuñiga, Nieto-Torres, Marquez-Jurado, Andrés, Enjuanes (bib2) 2013; 4
Naldini, Blömer, Gage, Trono, Verma (bib41) 1996; 93
Li (bib30) 2016; 3
Tang, Peng, Baldwin, Mann, Jiang, Rees, Ludtke (bib61) 2007; 157
Yuan, Cao, Zhang, Ma, Qi, Wang, Lu, Wu, Yan, Shi (bib74) 2017; 8
Chan, Chu, Wang, Wong, Zhao, Zhou, Yang, Leung, Chan, Yeung (bib6) 2016; 90
van Boheemen, de Graaf, Lauber, Bestebroer, Raj, Zaki, Osterhaus, Haagmans, Gorbalenya, Snijder, Fouchier (bib63) 2012; 3
Krissinel, Henrick (bib26) 2007; 372
Kirchdoerfer, Cottrell, Wang, Pallesen, Yassine, Turner, Corbett, Graham, McLellan, Ward (bib24) 2016; 531
Shang, Zheng, Yang, Liu, Geng, Luo, Zhang, Li (bib56) 2018; 14
Xiong, Tortorici, Snijder, Yoshioka, Walls, Li, McGuire, Rey, Bosch, Veesler (bib72) 2018; 92
Stewart, Dykxhoorn, Palliser, Mizuno, Yu, An, Sabatini, Chen, Hahn, Sharp (bib59) 2003; 9
Greenough, Babcock, Roberts, Hernandez, Thomas, Coccia, Graziano, Srinivasan, Lowy, Finberg (bib18) 2005; 191
Li (bib29) 2015; 89
Wang, Shi, Jiang, Zhang, Wang, Tong, Guo, Fu, Cui, Liu (bib70) 2013; 23
Künkel, Herrler (bib27) 1993; 195
Rosen, Chan, Abiona, Gough, Wang, Shi, Zhang, Wang, Kong, McLellan (bib53) 2019; 265
Punjani, Rubinstein, Fleet, Brubaker (bib50) 2017; 14
Fehr, Athmer, Channappanavar, Phillips, Meyerholz, Perlman (bib16) 2015; 89
Assiri, Midgley, Abedi, Bin Saeed, Almasri, Lu, Al-Abdely, Abdalla, Mohammed, Algarni (bib3) 2016; 214
Nagae, Ikeda, Hane, Hanashima, Kitajima, Sato, Yamaguchi (bib40) 2013; 288
Guo, Tisoncik, McReynolds, Farzan, Prabhakar, Gallagher, Rong, Caffrey (bib20) 2009; 394
Peng, Sun, Rajashankar, Qian, Holmes, Li (bib45) 2011; 108
Zivanov, Nakane, Forsberg, Kimanius, Hagen, Lindahl, Scheres (bib79) 2018; 7
Potterton, Briggs, Turkenburg, Dodson (bib49) 2003; 59
Li, Li, Farzan, Harrison (bib31) 2005; 309
Walls, Tortorici, Frenz, Snijder, Li, Rey, DiMaio, Bosch, Veesler (bib66) 2016; 23
(bib71) 2018
Zhang (bib77) 2016; 193
Chu, Chan, Zhang, Wang, Yuan, Zhou, Au-Yeung, Sze, Yang, Shuai (bib8) 2018; 293
Ogura, Iwasaki, Sato (bib43) 2003; 143
Ki (bib23) 2015; 37
Lander, Stagg, Voss, Cheng, Fellmann, Pulokas, Yoshioka, Irving, Mulder, Lau (bib28) 2009; 166
Potter, Chu, Frey, Green, Kisseberth, Madden, Miller, Nahrstedt, Pulokas, Reilein (bib48) 1999; 77
Battye, Kontogiannis, Johnson, Powell, Leslie (bib5) 2011; 67
Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib47) 2004; 25
Corti, Zhao, Pedotti, Simonelli, Agnihothram, Fett, Fernandez-Rodriguez, Foglierini, Agatic, Vanzetta (bib10) 2015; 112
Yusof, Queen, Eltahir, Paden, Al Hammadi, Tao, Li, Khalafalla, Shi, Zhang (bib75) 2017; 6
Drosten, Muth, Corman, Hussain, Al Masri, HajOmar, Landt, Assiri, Eckerle, Al Shangiti (bib12) 2015; 60
Ying, Du, Ju, Prabakaran, Lau, Lu, Liu, Wang, Feng, Wang (bib73) 2014; 88
Jiang, Wang, Zuo, Shi, Poon, Wu, Gao, Li, Wang, Guo (bib22) 2014; 6
Li, Hulswit, Widjaja, Raj, McBride, Peng, Widagdo, Tortorici, van Dieren, Lang (bib33) 2017; 114
Li, Moore, Vasilieva, Sui, Wong, Berne, Somasundaran, Sullivan, Luzuriaga, Greenough (bib32) 2003; 426
Oboho, Tomczyk, Al-Asmari, Banjar, Al-Mugti, Aloraini, Alkhaldi, Almohammadi, Alraddadi, Gerber (bib42) 2015; 372
Voss, Yoshioka, Radermacher, Potter, Carragher (bib64) 2009; 166
Wang, Shi, Joyce, Modjarrad, Zhang, Leung, Lees, Zhou, Yassine, Kanekiyo (bib68) 2015; 6
Emsley, Cowtan (bib14) 2004; 60
Schultze, Gross, Brossmer, Herrler (bib54) 1991; 65
Walls, Tortorici, Bosch, Frenz, Rottier, DiMaio, Rey, Veesler (bib65) 2016; 531
Pallesen, Wang, Corbett, Wrapp, Kirchdoerfer, Turner, Cottrell, Becker, Wang, Shi (bib44) 2017; 114
Raj, Mou, Smits, Dekkers, Müller, Dijkman, Muth, Demmers, Zaki, Fouchier (bib51) 2013; 495
Walls, Xiong, Park, Tortorici, Snijder, Quispe, Cameroni, Gopal, Dai, Lanzavecchia (bib67) 2019; 176
Wang, Shi, Chappell, Joyce, Zhang, Kanekiyo, Becker, van Doremalen, Fischer, Wang (bib69) 2018; 92
Zaki, van Boheemen, Bestebroer, Osterhaus, Fouchier (bib76) 2012; 367
Conway, Tyka, DiMaio, Konerding, Baker (bib9) 2014; 23
Gui, Song, Zhou, Xu, Chen, Xiang, Wang (bib19) 2017; 27
Coughlin, Babcook, Prabhakar (bib11) 2009; 394
Krempl, Schultze, Laude, Herrler (bib25) 1997; 71
Chen, Lu, Jia, Deng, Zhou, Huang, Yu, Lan, Wang, Lou (bib7) 2017; 6
Mohd, Al-Tawfiq, Memish (bib39) 2016; 13
Scobey, Yount, Sims, Donaldson, Agnihothram, Menachery, Graham, Swanstrom, Bove, Kim (bib55) 2013; 110
Lu, Hu, Wang, Qi, Gao, Li, Zhang, Zhang, Yuan, Bao (bib35) 2013; 500
Suloway, Pulokas, Fellmann, Cheng, Guerra, Quispe, Stagg, Potter, Carragher (bib60) 2005; 151
Krempl (10.1016/j.celrep.2019.08.052_bib25) 1997; 71
Chan (10.1016/j.celrep.2019.08.052_bib6) 2016; 90
Zaki (10.1016/j.celrep.2019.08.052_bib76) 2012; 367
Li (10.1016/j.celrep.2019.08.052_bib30) 2016; 3
Yuan (10.1016/j.celrep.2019.08.052_bib74) 2017; 8
Assiri (10.1016/j.celrep.2019.08.052_bib3) 2016; 214
Emsley (10.1016/j.celrep.2019.08.052_bib14) 2004; 60
Gierer (10.1016/j.celrep.2019.08.052_bib17) 2013; 87
Shang (10.1016/j.celrep.2019.08.052_bib56) 2018; 14
Walls (10.1016/j.celrep.2019.08.052_bib65) 2016; 531
Drosten (10.1016/j.celrep.2019.08.052_bib12) 2015; 60
Evans (10.1016/j.celrep.2019.08.052_bib15) 2013; 69
Li (10.1016/j.celrep.2019.08.052_bib33) 2017; 114
Battye (10.1016/j.celrep.2019.08.052_bib5) 2011; 67
Chen (10.1016/j.celrep.2019.08.052_bib7) 2017; 6
Li (10.1016/j.celrep.2019.08.052_bib31) 2005; 309
Peng (10.1016/j.celrep.2019.08.052_bib46) 2012; 287
Krissinel (10.1016/j.celrep.2019.08.052_bib26) 2007; 372
Punjani (10.1016/j.celrep.2019.08.052_bib50) 2017; 14
Künkel (10.1016/j.celrep.2019.08.052_bib27) 1993; 195
Mohd (10.1016/j.celrep.2019.08.052_bib39) 2016; 13
Ying (10.1016/j.celrep.2019.08.052_bib73) 2014; 88
Li (10.1016/j.celrep.2019.08.052_bib34) 2015; 25
Song (10.1016/j.celrep.2019.08.052_bib58) 2018; 14
Zheng (10.1016/j.celrep.2019.08.052_bib78) 2017; 14
Gui (10.1016/j.celrep.2019.08.052_bib19) 2017; 27
Pettersen (10.1016/j.celrep.2019.08.052_bib47) 2004; 25
Rockx (10.1016/j.celrep.2019.08.052_bib52) 2008; 82
McCoy (10.1016/j.celrep.2019.08.052_bib36) 2007; 40
Modjarrad (10.1016/j.celrep.2019.08.052_bib38) 2016; 22
Nagae (10.1016/j.celrep.2019.08.052_bib40) 2013; 288
Zivanov (10.1016/j.celrep.2019.08.052_bib79) 2018; 7
Naldini (10.1016/j.celrep.2019.08.052_bib41) 1996; 93
Li (10.1016/j.celrep.2019.08.052_bib32) 2003; 426
Rosen (10.1016/j.celrep.2019.08.052_bib53) 2019; 265
Stewart (10.1016/j.celrep.2019.08.052_bib59) 2003; 9
Tang (10.1016/j.celrep.2019.08.052_bib61) 2007; 157
Li (10.1016/j.celrep.2019.08.052_bib29) 2015; 89
Adams (10.1016/j.celrep.2019.08.052_bib1) 2002; 58
Shang (10.1016/j.celrep.2019.08.052_bib57) 2018; 92
Walls (10.1016/j.celrep.2019.08.052_bib66) 2016; 23
Scobey (10.1016/j.celrep.2019.08.052_bib55) 2013; 110
Lander (10.1016/j.celrep.2019.08.052_bib28) 2009; 166
Jiang (10.1016/j.celrep.2019.08.052_bib22) 2014; 6
Almazán (10.1016/j.celrep.2019.08.052_bib2) 2013; 4
Potter (10.1016/j.celrep.2019.08.052_bib48) 1999; 77
Raj (10.1016/j.celrep.2019.08.052_bib51) 2013; 495
Wang (10.1016/j.celrep.2019.08.052_bib70) 2013; 23
Wang (10.1016/j.celrep.2019.08.052_bib68) 2015; 6
Yusof (10.1016/j.celrep.2019.08.052_bib75) 2017; 6
Kirchdoerfer (10.1016/j.celrep.2019.08.052_bib24) 2016; 531
Voss (10.1016/j.celrep.2019.08.052_bib64) 2009; 166
Corti (10.1016/j.celrep.2019.08.052_bib10) 2015; 112
Coughlin (10.1016/j.celrep.2019.08.052_bib11) 2009; 394
Jiaming (10.1016/j.celrep.2019.08.052_bib21) 2017; 35
Oboho (10.1016/j.celrep.2019.08.052_bib42) 2015; 372
Ogura (10.1016/j.celrep.2019.08.052_bib43) 2003; 143
(10.1016/j.celrep.2019.08.052_bib71) 2018
Conway (10.1016/j.celrep.2019.08.052_bib9) 2014; 23
Potterton (10.1016/j.celrep.2019.08.052_bib49) 2003; 59
Suloway (10.1016/j.celrep.2019.08.052_bib60) 2005; 151
Schultze (10.1016/j.celrep.2019.08.052_bib54) 1991; 65
Zhang (10.1016/j.celrep.2019.08.052_bib77) 2016; 193
Fehr (10.1016/j.celrep.2019.08.052_bib16) 2015; 89
Ki (10.1016/j.celrep.2019.08.052_bib23) 2015; 37
Walls (10.1016/j.celrep.2019.08.052_bib67) 2019; 176
Xiong (10.1016/j.celrep.2019.08.052_bib72) 2018; 92
Du (10.1016/j.celrep.2019.08.052_bib13) 2016; 7
Azhar (10.1016/j.celrep.2019.08.052_bib4) 2014; 370
Wang (10.1016/j.celrep.2019.08.052_bib69) 2018; 92
Lu (10.1016/j.celrep.2019.08.052_bib35) 2013; 500
van Boheemen (10.1016/j.celrep.2019.08.052_bib63) 2012; 3
Pallesen (10.1016/j.celrep.2019.08.052_bib44) 2017; 114
Greenough (10.1016/j.celrep.2019.08.052_bib18) 2005; 191
Peng (10.1016/j.celrep.2019.08.052_bib45) 2011; 108
Chu (10.1016/j.celrep.2019.08.052_bib8) 2018; 293
Millet (10.1016/j.celrep.2019.08.052_bib37) 2014; 111
Tang (10.1016/j.celrep.2019.08.052_bib62) 2014; 111
Guo (10.1016/j.celrep.2019.08.052_bib20) 2009; 394
References_xml – volume: 60
  start-page: 369
  year: 2015
  end-page: 377
  ident: bib12
  article-title: An observational, laboratory-based study of outbreaks of middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia, 2014
  publication-title: Clin. Infect. Dis.
– volume: 27
  start-page: 119
  year: 2017
  end-page: 129
  ident: bib19
  article-title: Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding
  publication-title: Cell Res.
– volume: 531
  start-page: 114
  year: 2016
  end-page: 117
  ident: bib65
  article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer
  publication-title: Nature
– volume: 111
  start-page: 15214
  year: 2014
  end-page: 15219
  ident: bib37
  article-title: Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 58
  start-page: 1948
  year: 2002
  end-page: 1954
  ident: bib1
  article-title: PHENIX: building new software for automated crystallographic structure determination
  publication-title: Acta. Crystallogr. D Biol. Crystallogr.
– volume: 67
  start-page: 271
  year: 2011
  end-page: 281
  ident: bib5
  article-title: iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 60
  start-page: 2126
  year: 2004
  end-page: 2132
  ident: bib14
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 394
  start-page: 39
  year: 2009
  end-page: 46
  ident: bib11
  article-title: Human monoclonal antibodies to SARS-coronavirus inhibit infection by different mechanisms
  publication-title: Virology
– volume: 108
  start-page: 10696
  year: 2011
  end-page: 10701
  ident: bib45
  article-title: Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 151
  start-page: 41
  year: 2005
  end-page: 60
  ident: bib60
  article-title: Automated molecular microscopy: the new Leginon system
  publication-title: J. Struct. Biol.
– volume: 23
  start-page: 986
  year: 2013
  end-page: 993
  ident: bib70
  article-title: Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4
  publication-title: Cell Res.
– volume: 89
  start-page: 1954
  year: 2015
  end-page: 1964
  ident: bib29
  article-title: Receptor recognition mechanisms of coronaviruses: a decade of structural studies
  publication-title: J. Virol.
– volume: 6
  start-page: 234ra59
  year: 2014
  ident: bib22
  article-title: Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein
  publication-title: Sci. Transl. Med.
– volume: 370
  start-page: 2499
  year: 2014
  end-page: 2505
  ident: bib4
  article-title: Evidence for camel-to-human transmission of MERS coronavirus
  publication-title: N. Engl. J. Med.
– volume: 4
  start-page: e00650-13
  year: 2013
  ident: bib2
  article-title: Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate
  publication-title: MBio
– volume: 426
  start-page: 450
  year: 2003
  end-page: 454
  ident: bib32
  article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
  publication-title: Nature
– volume: 114
  start-page: E7348
  year: 2017
  end-page: E7357
  ident: bib44
  article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 14
  start-page: e1007009
  year: 2018
  ident: bib56
  article-title: Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins
  publication-title: PLoS Pathog.
– volume: 531
  start-page: 118
  year: 2016
  end-page: 121
  ident: bib24
  article-title: Pre-fusion structure of a human coronavirus spike protein
  publication-title: Nature
– volume: 7
  start-page: 13473
  year: 2016
  ident: bib13
  article-title: Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines
  publication-title: Nat. Commun.
– volume: 3
  year: 2012
  ident: bib63
  article-title: Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans
  publication-title: MBio
– volume: 6
  start-page: 7712
  year: 2015
  ident: bib68
  article-title: Evaluation of candidate vaccine approaches for MERS-CoV
  publication-title: Nat. Commun.
– volume: 9
  start-page: 493
  year: 2003
  end-page: 501
  ident: bib59
  article-title: Lentivirus-delivered stable gene silencing by RNAi in primary cells
  publication-title: RNA
– volume: 92
  start-page: e01628-17
  year: 2018
  ident: bib72
  article-title: Glycan Shield and Fusion Activation of a Deltacoronavirus Spike Glycoprotein Fine-Tuned for Enteric Infections
  publication-title: J. Virol.
– volume: 193
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib77
  article-title: Gctf: Real-time CTF determination and correction
  publication-title: J. Struct. Biol.
– volume: 394
  start-page: 600
  year: 2009
  end-page: 605
  ident: bib20
  article-title: Identification of a new region of SARS-CoV S protein critical for viral entry
  publication-title: J. Mol. Biol.
– volume: 112
  start-page: 10473
  year: 2015
  end-page: 10478
  ident: bib10
  article-title: Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 15092
  year: 2017
  ident: bib74
  article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains
  publication-title: Nat. Commun.
– volume: 37
  start-page: e2015033
  year: 2015
  ident: bib23
  article-title: 2015 MERS outbreak in Korea: hospital-to-hospital transmission
  publication-title: Epidemiol. Health
– volume: 90
  start-page: 9114
  year: 2016
  end-page: 9127
  ident: bib6
  article-title: Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5 Is an Important Surface Attachment Factor That Facilitates Entry of Middle East Respiratory Syndrome Coronavirus
  publication-title: J. Virol.
– volume: 40
  start-page: 658
  year: 2007
  end-page: 674
  ident: bib36
  article-title: Phaser crystallographic software
  publication-title: J. Appl. Cryst.
– volume: 89
  start-page: 1523
  year: 2015
  end-page: 1536
  ident: bib16
  article-title: The nsp3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis
  publication-title: J. Virol.
– volume: 71
  start-page: 3285
  year: 1997
  end-page: 3287
  ident: bib25
  article-title: Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus
  publication-title: J. Virol.
– volume: 59
  start-page: 1131
  year: 2003
  end-page: 1137
  ident: bib49
  article-title: A graphical user interface to the CCP4 program suite
  publication-title: Acta. Crystallogr. D Biol. Crystallogr.
– volume: 14
  start-page: e1007236
  year: 2018
  ident: bib58
  article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2
  publication-title: PLoS Pathog.
– volume: 77
  start-page: 153
  year: 1999
  end-page: 161
  ident: bib48
  article-title: Leginon: a system for fully automated acquisition of 1000 electron micrographs a day
  publication-title: Ultramicroscopy
– volume: 23
  start-page: 899
  year: 2016
  end-page: 905
  ident: bib66
  article-title: Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy
  publication-title: Nat. Struct. Mol. Biol.
– volume: 265
  start-page: 77
  year: 2019
  end-page: 83
  ident: bib53
  article-title: A high-throughput inhibition assay to study MERS-CoV antibody interactions using image cytometry
  publication-title: J. Virol. Methods
– volume: 65
  start-page: 6232
  year: 1991
  end-page: 6237
  ident: bib54
  article-title: The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant
  publication-title: J. Virol.
– volume: 82
  start-page: 3220
  year: 2008
  end-page: 3235
  ident: bib52
  article-title: Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge
  publication-title: J. Virol.
– volume: 166
  start-page: 95
  year: 2009
  end-page: 102
  ident: bib28
  article-title: Appion: an integrated, database-driven pipeline to facilitate EM image processing
  publication-title: J. Struct. Biol.
– volume: 500
  start-page: 227
  year: 2013
  end-page: 231
  ident: bib35
  article-title: Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26
  publication-title: Nature
– volume: 495
  start-page: 251
  year: 2013
  end-page: 254
  ident: bib51
  article-title: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC
  publication-title: Nature
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  ident: bib47
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
– volume: 114
  start-page: E8508
  year: 2017
  end-page: E8517
  ident: bib33
  article-title: Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 92
  start-page: e01556-17
  year: 2018
  ident: bib57
  article-title: Cryo-Electron Microscopy Structure of Porcine Deltacoronavirus Spike Protein in the Prefusion State
  publication-title: J. Virol.
– volume: 143
  start-page: 185
  year: 2003
  end-page: 200
  ident: bib43
  article-title: Topology representing network enables highly accurate classification of protein images taken by cryo electron-microscope without masking
  publication-title: J. Struct. Biol.
– volume: 6
  start-page: e101
  year: 2017
  ident: bib75
  article-title: Diversity of Middle East respiratory syndrome coronaviruses in 109 dromedary camels based on full-genome sequencing, Abu Dhabi, United Arab Emirates
  publication-title: Emerg. Microbes Infect.
– volume: 87
  start-page: 5502
  year: 2013
  end-page: 5511
  ident: bib17
  article-title: The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies
  publication-title: J. Virol.
– volume: 157
  start-page: 38
  year: 2007
  end-page: 46
  ident: bib61
  article-title: EMAN2: an extensible image processing suite for electron microscopy
  publication-title: J. Struct. Biol.
– volume: 3
  start-page: 237
  year: 2016
  end-page: 261
  ident: bib30
  article-title: Structure, Function, and Evolution of Coronavirus Spike Proteins
  publication-title: Annu. Rev. Virol.
– volume: 110
  start-page: 16157
  year: 2013
  end-page: 16162
  ident: bib55
  article-title: Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 111
  start-page: E2018
  year: 2014
  end-page: E2026
  ident: bib62
  article-title: Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 176
  start-page: 1026
  year: 2019
  end-page: 1039.e15
  ident: bib67
  article-title: Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion
  publication-title: Cell
– volume: 166
  start-page: 205
  year: 2009
  end-page: 213
  ident: bib64
  article-title: DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy
  publication-title: J. Struct. Biol.
– volume: 195
  start-page: 195
  year: 1993
  end-page: 202
  ident: bib27
  article-title: Structural and functional analysis of the surface protein of human coronavirus OC43
  publication-title: Virology
– volume: 309
  start-page: 1864
  year: 2005
  end-page: 1868
  ident: bib31
  article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor
  publication-title: Science
– volume: 293
  start-page: 11709
  year: 2018
  end-page: 11726
  ident: bib8
  article-title: Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells
  publication-title: J. Biol. Chem.
– volume: 14
  start-page: 331
  year: 2017
  end-page: 332
  ident: bib78
  article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy
  publication-title: Nat. Methods
– volume: 372
  start-page: 846
  year: 2015
  end-page: 854
  ident: bib42
  article-title: 2014 MERS-CoV outbreak in Jeddah--a link to health care facilities
  publication-title: N. Engl. J. Med.
– volume: 372
  start-page: 774
  year: 2007
  end-page: 797
  ident: bib26
  article-title: Inference of macromolecular assemblies from crystalline state
  publication-title: J. Mol. Biol.
– volume: 93
  start-page: 11382
  year: 1996
  end-page: 11388
  ident: bib41
  article-title: Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 35
  start-page: 10
  year: 2017
  end-page: 18
  ident: bib21
  article-title: The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection
  publication-title: Vaccine
– volume: 7
  start-page: e42166
  year: 2018
  ident: bib79
  article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3
  publication-title: eLife
– volume: 92
  start-page: e02002-17
  year: 2018
  ident: bib69
  article-title: Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape
  publication-title: J. Virol.
– volume: 14
  start-page: 290
  year: 2017
  end-page: 296
  ident: bib50
  article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nat. Methods
– volume: 367
  start-page: 1814
  year: 2012
  end-page: 1820
  ident: bib76
  article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia
  publication-title: N. Engl. J. Med.
– volume: 69
  start-page: 1204
  year: 2013
  end-page: 1214
  ident: bib15
  article-title: How good are my data and what is the resolution?
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 88
  start-page: 7796
  year: 2014
  end-page: 7805
  ident: bib73
  article-title: Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies
  publication-title: J. Virol.
– volume: 191
  start-page: 507
  year: 2005
  end-page: 514
  ident: bib18
  article-title: Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice
  publication-title: J. Infect. Dis.
– volume: 6
  start-page: e60
  year: 2017
  ident: bib7
  article-title: A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein
  publication-title: Emerg. Microbes Infect.
– volume: 13
  start-page: 87
  year: 2016
  ident: bib39
  article-title: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir
  publication-title: Virol. J.
– volume: 288
  start-page: 33784
  year: 2013
  end-page: 33796
  ident: bib40
  article-title: Crystal structure of anti-polysialic acid antibody single chain Fv fragment complexed with octasialic acid: insight into the binding preference for polysialic acid
  publication-title: J. Biol. Chem.
– volume: 22
  start-page: 701
  year: 2016
  end-page: 705
  ident: bib38
  article-title: A roadmap for MERS-CoV research and product development: report from a World Health Organization consultation
  publication-title: Nat. Med.
– volume: 25
  start-page: 1237
  year: 2015
  end-page: 1249
  ident: bib34
  article-title: A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein
  publication-title: Cell Res.
– volume: 23
  start-page: 47
  year: 2014
  end-page: 55
  ident: bib9
  article-title: Relaxation of backbone bond geometry improves protein energy landscape modeling
  publication-title: Protein Sci.
– year: 2018
  ident: bib71
  article-title: Middle East respiratory syndrome coronavirus (MERS-CoV)
– volume: 287
  start-page: 41931
  year: 2012
  end-page: 41938
  ident: bib46
  article-title: Crystal structure of bovine coronavirus spike protein lectin domain
  publication-title: J. Biol. Chem.
– volume: 214
  start-page: 712
  year: 2016
  end-page: 721
  ident: bib3
  article-title: Epidemiology of a Novel Recombinant Middle East Respiratory Syndrome Coronavirus in Humans in Saudi Arabia
  publication-title: J. Infect. Dis.
– volume: 111
  start-page: 15214
  year: 2014
  ident: 10.1016/j.celrep.2019.08.052_bib37
  article-title: Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1407087111
– volume: 58
  start-page: 1948
  year: 2002
  ident: 10.1016/j.celrep.2019.08.052_bib1
  article-title: PHENIX: building new software for automated crystallographic structure determination
  publication-title: Acta. Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444902016657
– volume: 495
  start-page: 251
  year: 2013
  ident: 10.1016/j.celrep.2019.08.052_bib51
  article-title: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC
  publication-title: Nature
  doi: 10.1038/nature12005
– volume: 14
  start-page: e1007236
  year: 2018
  ident: 10.1016/j.celrep.2019.08.052_bib58
  article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1007236
– volume: 214
  start-page: 712
  year: 2016
  ident: 10.1016/j.celrep.2019.08.052_bib3
  article-title: Epidemiology of a Novel Recombinant Middle East Respiratory Syndrome Coronavirus in Humans in Saudi Arabia
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiw236
– volume: 166
  start-page: 205
  year: 2009
  ident: 10.1016/j.celrep.2019.08.052_bib64
  article-title: DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2009.01.004
– volume: 114
  start-page: E8508
  year: 2017
  ident: 10.1016/j.celrep.2019.08.052_bib33
  article-title: Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1712592114
– volume: 372
  start-page: 846
  year: 2015
  ident: 10.1016/j.celrep.2019.08.052_bib42
  article-title: 2014 MERS-CoV outbreak in Jeddah--a link to health care facilities
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1408636
– volume: 87
  start-page: 5502
  year: 2013
  ident: 10.1016/j.celrep.2019.08.052_bib17
  article-title: The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies
  publication-title: J. Virol.
  doi: 10.1128/JVI.00128-13
– volume: 265
  start-page: 77
  year: 2019
  ident: 10.1016/j.celrep.2019.08.052_bib53
  article-title: A high-throughput inhibition assay to study MERS-CoV antibody interactions using image cytometry
  publication-title: J. Virol. Methods
  doi: 10.1016/j.jviromet.2018.11.009
– volume: 92
  start-page: e02002-17
  year: 2018
  ident: 10.1016/j.celrep.2019.08.052_bib69
  article-title: Importance of Neutralizing Monoclonal Antibodies Targeting Multiple Antigenic Sites on the Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein To Avoid Neutralization Escape
  publication-title: J. Virol.
  doi: 10.1128/JVI.02002-17
– volume: 69
  start-page: 1204
  year: 2013
  ident: 10.1016/j.celrep.2019.08.052_bib15
  article-title: How good are my data and what is the resolution?
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444913000061
– volume: 92
  start-page: e01556-17
  year: 2018
  ident: 10.1016/j.celrep.2019.08.052_bib57
  article-title: Cryo-Electron Microscopy Structure of Porcine Deltacoronavirus Spike Protein in the Prefusion State
  publication-title: J. Virol.
  doi: 10.1128/JVI.01556-17
– volume: 6
  start-page: 234ra59
  year: 2014
  ident: 10.1016/j.celrep.2019.08.052_bib22
  article-title: Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3008140
– volume: 22
  start-page: 701
  year: 2016
  ident: 10.1016/j.celrep.2019.08.052_bib38
  article-title: A roadmap for MERS-CoV research and product development: report from a World Health Organization consultation
  publication-title: Nat. Med.
  doi: 10.1038/nm.4131
– volume: 143
  start-page: 185
  year: 2003
  ident: 10.1016/j.celrep.2019.08.052_bib43
  article-title: Topology representing network enables highly accurate classification of protein images taken by cryo electron-microscope without masking
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2003.08.005
– volume: 500
  start-page: 227
  year: 2013
  ident: 10.1016/j.celrep.2019.08.052_bib35
  article-title: Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26
  publication-title: Nature
  doi: 10.1038/nature12328
– volume: 23
  start-page: 47
  year: 2014
  ident: 10.1016/j.celrep.2019.08.052_bib9
  article-title: Relaxation of backbone bond geometry improves protein energy landscape modeling
  publication-title: Protein Sci.
  doi: 10.1002/pro.2389
– volume: 14
  start-page: e1007009
  year: 2018
  ident: 10.1016/j.celrep.2019.08.052_bib56
  article-title: Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1007009
– volume: 108
  start-page: 10696
  year: 2011
  ident: 10.1016/j.celrep.2019.08.052_bib45
  article-title: Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1104306108
– volume: 309
  start-page: 1864
  year: 2005
  ident: 10.1016/j.celrep.2019.08.052_bib31
  article-title: Structure of SARS coronavirus spike receptor-binding domain complexed with receptor
  publication-title: Science
  doi: 10.1126/science.1116480
– volume: 370
  start-page: 2499
  year: 2014
  ident: 10.1016/j.celrep.2019.08.052_bib4
  article-title: Evidence for camel-to-human transmission of MERS coronavirus
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1401505
– volume: 195
  start-page: 195
  year: 1993
  ident: 10.1016/j.celrep.2019.08.052_bib27
  article-title: Structural and functional analysis of the surface protein of human coronavirus OC43
  publication-title: Virology
  doi: 10.1006/viro.1993.1360
– volume: 71
  start-page: 3285
  year: 1997
  ident: 10.1016/j.celrep.2019.08.052_bib25
  article-title: Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus
  publication-title: J. Virol.
  doi: 10.1128/jvi.71.4.3285-3287.1997
– volume: 60
  start-page: 369
  year: 2015
  ident: 10.1016/j.celrep.2019.08.052_bib12
  article-title: An observational, laboratory-based study of outbreaks of middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia, 2014
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciu812
– volume: 114
  start-page: E7348
  year: 2017
  ident: 10.1016/j.celrep.2019.08.052_bib44
  article-title: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1707304114
– volume: 25
  start-page: 1237
  year: 2015
  ident: 10.1016/j.celrep.2019.08.052_bib34
  article-title: A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein
  publication-title: Cell Res.
  doi: 10.1038/cr.2015.113
– volume: 35
  start-page: 10
  year: 2017
  ident: 10.1016/j.celrep.2019.08.052_bib21
  article-title: The recombinant N-terminal domain of spike proteins is a potential vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV) infection
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2016.11.064
– volume: 191
  start-page: 507
  year: 2005
  ident: 10.1016/j.celrep.2019.08.052_bib18
  article-title: Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice
  publication-title: J. Infect. Dis.
  doi: 10.1086/427242
– volume: 27
  start-page: 119
  year: 2017
  ident: 10.1016/j.celrep.2019.08.052_bib19
  article-title: Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.152
– year: 2018
  ident: 10.1016/j.celrep.2019.08.052_bib71
– volume: 9
  start-page: 493
  year: 2003
  ident: 10.1016/j.celrep.2019.08.052_bib59
  article-title: Lentivirus-delivered stable gene silencing by RNAi in primary cells
  publication-title: RNA
  doi: 10.1261/rna.2192803
– volume: 23
  start-page: 986
  year: 2013
  ident: 10.1016/j.celrep.2019.08.052_bib70
  article-title: Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.92
– volume: 288
  start-page: 33784
  year: 2013
  ident: 10.1016/j.celrep.2019.08.052_bib40
  article-title: Crystal structure of anti-polysialic acid antibody single chain Fv fragment complexed with octasialic acid: insight into the binding preference for polysialic acid
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.496224
– volume: 77
  start-page: 153
  year: 1999
  ident: 10.1016/j.celrep.2019.08.052_bib48
  article-title: Leginon: a system for fully automated acquisition of 1000 electron micrographs a day
  publication-title: Ultramicroscopy
  doi: 10.1016/S0304-3991(99)00043-1
– volume: 531
  start-page: 114
  year: 2016
  ident: 10.1016/j.celrep.2019.08.052_bib65
  article-title: Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer
  publication-title: Nature
  doi: 10.1038/nature16988
– volume: 176
  start-page: 1026
  year: 2019
  ident: 10.1016/j.celrep.2019.08.052_bib67
  article-title: Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.028
– volume: 3
  year: 2012
  ident: 10.1016/j.celrep.2019.08.052_bib63
  article-title: Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans
  publication-title: MBio
  doi: 10.1128/mBio.00473-12
– volume: 90
  start-page: 9114
  year: 2016
  ident: 10.1016/j.celrep.2019.08.052_bib6
  article-title: Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5 Is an Important Surface Attachment Factor That Facilitates Entry of Middle East Respiratory Syndrome Coronavirus
  publication-title: J. Virol.
  doi: 10.1128/JVI.01133-16
– volume: 193
  start-page: 1
  year: 2016
  ident: 10.1016/j.celrep.2019.08.052_bib77
  article-title: Gctf: Real-time CTF determination and correction
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2015.11.003
– volume: 6
  start-page: e60
  year: 2017
  ident: 10.1016/j.celrep.2019.08.052_bib7
  article-title: A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein
  publication-title: Emerg. Microbes Infect.
  doi: 10.1038/emi.2017.50
– volume: 7
  start-page: 13473
  year: 2016
  ident: 10.1016/j.celrep.2019.08.052_bib13
  article-title: Introduction of neutralizing immunogenicity index to the rational design of MERS coronavirus subunit vaccines
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13473
– volume: 287
  start-page: 41931
  year: 2012
  ident: 10.1016/j.celrep.2019.08.052_bib46
  article-title: Crystal structure of bovine coronavirus spike protein lectin domain
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.418210
– volume: 3
  start-page: 237
  year: 2016
  ident: 10.1016/j.celrep.2019.08.052_bib30
  article-title: Structure, Function, and Evolution of Coronavirus Spike Proteins
  publication-title: Annu. Rev. Virol.
  doi: 10.1146/annurev-virology-110615-042301
– volume: 111
  start-page: E2018
  year: 2014
  ident: 10.1016/j.celrep.2019.08.052_bib62
  article-title: Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1402074111
– volume: 59
  start-page: 1131
  year: 2003
  ident: 10.1016/j.celrep.2019.08.052_bib49
  article-title: A graphical user interface to the CCP4 program suite
  publication-title: Acta. Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444903008126
– volume: 531
  start-page: 118
  year: 2016
  ident: 10.1016/j.celrep.2019.08.052_bib24
  article-title: Pre-fusion structure of a human coronavirus spike protein
  publication-title: Nature
  doi: 10.1038/nature17200
– volume: 166
  start-page: 95
  year: 2009
  ident: 10.1016/j.celrep.2019.08.052_bib28
  article-title: Appion: an integrated, database-driven pipeline to facilitate EM image processing
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2009.01.002
– volume: 293
  start-page: 11709
  year: 2018
  ident: 10.1016/j.celrep.2019.08.052_bib8
  article-title: Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.001897
– volume: 89
  start-page: 1954
  year: 2015
  ident: 10.1016/j.celrep.2019.08.052_bib29
  article-title: Receptor recognition mechanisms of coronaviruses: a decade of structural studies
  publication-title: J. Virol.
  doi: 10.1128/JVI.02615-14
– volume: 157
  start-page: 38
  year: 2007
  ident: 10.1016/j.celrep.2019.08.052_bib61
  article-title: EMAN2: an extensible image processing suite for electron microscopy
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2006.05.009
– volume: 8
  start-page: 15092
  year: 2017
  ident: 10.1016/j.celrep.2019.08.052_bib74
  article-title: Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15092
– volume: 112
  start-page: 10473
  year: 2015
  ident: 10.1016/j.celrep.2019.08.052_bib10
  article-title: Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1510199112
– volume: 14
  start-page: 290
  year: 2017
  ident: 10.1016/j.celrep.2019.08.052_bib50
  article-title: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4169
– volume: 14
  start-page: 331
  year: 2017
  ident: 10.1016/j.celrep.2019.08.052_bib78
  article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4193
– volume: 60
  start-page: 2126
  year: 2004
  ident: 10.1016/j.celrep.2019.08.052_bib14
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444904019158
– volume: 6
  start-page: 7712
  year: 2015
  ident: 10.1016/j.celrep.2019.08.052_bib68
  article-title: Evaluation of candidate vaccine approaches for MERS-CoV
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8712
– volume: 4
  start-page: e00650-13
  year: 2013
  ident: 10.1016/j.celrep.2019.08.052_bib2
  article-title: Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate
  publication-title: MBio
  doi: 10.1128/mBio.00650-13
– volume: 88
  start-page: 7796
  year: 2014
  ident: 10.1016/j.celrep.2019.08.052_bib73
  article-title: Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies
  publication-title: J. Virol.
  doi: 10.1128/JVI.00912-14
– volume: 67
  start-page: 271
  year: 2011
  ident: 10.1016/j.celrep.2019.08.052_bib5
  article-title: iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444910048675
– volume: 6
  start-page: e101
  year: 2017
  ident: 10.1016/j.celrep.2019.08.052_bib75
  article-title: Diversity of Middle East respiratory syndrome coronaviruses in 109 dromedary camels based on full-genome sequencing, Abu Dhabi, United Arab Emirates
  publication-title: Emerg. Microbes Infect.
  doi: 10.1038/emi.2017.89
– volume: 394
  start-page: 600
  year: 2009
  ident: 10.1016/j.celrep.2019.08.052_bib20
  article-title: Identification of a new region of SARS-CoV S protein critical for viral entry
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2009.10.032
– volume: 65
  start-page: 6232
  year: 1991
  ident: 10.1016/j.celrep.2019.08.052_bib54
  article-title: The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant
  publication-title: J. Virol.
  doi: 10.1128/jvi.65.11.6232-6237.1991
– volume: 394
  start-page: 39
  year: 2009
  ident: 10.1016/j.celrep.2019.08.052_bib11
  article-title: Human monoclonal antibodies to SARS-coronavirus inhibit infection by different mechanisms
  publication-title: Virology
  doi: 10.1016/j.virol.2009.07.028
– volume: 40
  start-page: 658
  year: 2007
  ident: 10.1016/j.celrep.2019.08.052_bib36
  article-title: Phaser crystallographic software
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889807021206
– volume: 110
  start-page: 16157
  year: 2013
  ident: 10.1016/j.celrep.2019.08.052_bib55
  article-title: Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1311542110
– volume: 37
  start-page: e2015033
  year: 2015
  ident: 10.1016/j.celrep.2019.08.052_bib23
  article-title: 2015 MERS outbreak in Korea: hospital-to-hospital transmission
  publication-title: Epidemiol. Health
  doi: 10.4178/epih/e2015033
– volume: 82
  start-page: 3220
  year: 2008
  ident: 10.1016/j.celrep.2019.08.052_bib52
  article-title: Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge
  publication-title: J. Virol.
  doi: 10.1128/JVI.02377-07
– volume: 151
  start-page: 41
  year: 2005
  ident: 10.1016/j.celrep.2019.08.052_bib60
  article-title: Automated molecular microscopy: the new Leginon system
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2005.03.010
– volume: 367
  start-page: 1814
  year: 2012
  ident: 10.1016/j.celrep.2019.08.052_bib76
  article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1211721
– volume: 372
  start-page: 774
  year: 2007
  ident: 10.1016/j.celrep.2019.08.052_bib26
  article-title: Inference of macromolecular assemblies from crystalline state
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.05.022
– volume: 426
  start-page: 450
  year: 2003
  ident: 10.1016/j.celrep.2019.08.052_bib32
  article-title: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
  publication-title: Nature
  doi: 10.1038/nature02145
– volume: 23
  start-page: 899
  year: 2016
  ident: 10.1016/j.celrep.2019.08.052_bib66
  article-title: Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3293
– volume: 89
  start-page: 1523
  year: 2015
  ident: 10.1016/j.celrep.2019.08.052_bib16
  article-title: The nsp3 macrodomain promotes virulence in mice with coronavirus-induced encephalitis
  publication-title: J. Virol.
  doi: 10.1128/JVI.02596-14
– volume: 13
  start-page: 87
  year: 2016
  ident: 10.1016/j.celrep.2019.08.052_bib39
  article-title: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir
  publication-title: Virol. J.
  doi: 10.1186/s12985-016-0544-0
– volume: 93
  start-page: 11382
  year: 1996
  ident: 10.1016/j.celrep.2019.08.052_bib41
  article-title: Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.21.11382
– volume: 25
  start-page: 1605
  year: 2004
  ident: 10.1016/j.celrep.2019.08.052_bib47
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 92
  start-page: e01628-17
  year: 2018
  ident: 10.1016/j.celrep.2019.08.052_bib72
  article-title: Glycan Shield and Fusion Activation of a Deltacoronavirus Spike Glycoprotein Fine-Tuned for Enteric Infections
  publication-title: J. Virol.
  doi: 10.1128/JVI.01628-17
– volume: 7
  start-page: e42166
  year: 2018
  ident: 10.1016/j.celrep.2019.08.052_bib79
  article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3
  publication-title: eLife
  doi: 10.7554/eLife.42166
SSID ssj0000601194
Score 2.4865816
Snippet Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into the human population in 2012 and has caused substantial morbidity and mortality. Potently...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3395
SubjectTerms 60 APPLIED LIFE SCIENCES
coronavirus
crystal structure
DPP4
electron microscopy
Epitopes - metabolism
Humans
membrane fusion
MERS-CoV
Middle East Respiratory Syndrome Coronavirus - pathogenicity
receptor-binding
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVlodBLaZp-uGmLArmKxrJkV8c22RAC2UM2KbkJSR7RLcFe0uTQf58ZyV7WpbCXXr3S2pp50jxZ4zeMHYW6hPjVVwheE4WKUgvnXCuMB-8q7XRMxwWXi_r8Rl3c6tutUl-UE5blgbPhvhioAcoYldKNapHPxFBL7yHWeHcEI62-GPO2NlN5DSYtMzpSlpJytqRqxu_mUnJXgLt7ILnK0iQFTy0ncSnJ90_C06zHGfcvFvp3MuVWdDp7xV4OtJJ_y8PZY8-ge82e50KTf_bZ1TLJxJLEBj-FuOpSohbvI3d8AY_pbUf-HlMsKaOd1kA-X-NsXwPHhsgS-eX8ailO-h98WYrF9ekbdnM2vz45F0M1BRGQZDyIui2bVqE5ZV2RKpqR0beuDD5E13rjFChA-5YGQ7jySGOC9sE43CFqej1UVm_ZrOs7eM94RN7WIm_yOkpVKY0-URC8cmVUx61zBatGW9owSI1TxYs7O-aU_bLZA5Y8YKkQppYFE5te6yy1saP9d3LTpi0JZacLCB87wMfugk_BmtHJduAcmUvgX6123P6AMEG9SG43UF4SdqP9MHKggh2OULE4YekUxnXQP_62UqKFVYX7xIK9y9DZDKGiKk7m2OBTTUA1GeP0l271M4mC14YqHTQf_odRDtgLGqhIh28f2QwhCp-Qez34z2maPQEVnyzH
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBVhodBL6XfdtEWFXsXGsmRHx2azIRSyhzgpexOSPGpdgr2kyaH_vjOyvdSlEOjRtmR7pNHMkzR6w9inUOYQj32BymuiUFFq4ZxrhPHgXaGdjmm74GJTnl-rL1u9PWCr6SwMhVWOtn-w6claj3eWY2sud227rCXOXdA7VQhBiPeMGD8LdZwO8W1P9ussxDeSp3yIVF5QhekEXQrzCnBzC0RcmZvE5anlzEMlIv-Zo1r0OPb-hUf_Dqv8w0-dPWVPRoDJPw8yPGMH0D1nj4aUk79esMs6EcYS2QY_hdh2KWSL95E7voH7tO4xnMwUNcW2kzXk6x2O-x1wLIh4kV-sL2ux6r_yOhebq9OX7PpsfbU6F2NeBREQbtyJssmrRhkgIhriRzMy-sblwYfoGm-cAgUN4giDzlx5BDRB-2AczhU1LRTlxSu26PoO3jAeEcE1iKC8jlIVSpsYFASvXB7VUeNcxoqpLW0YSccp98WNnaLLftihByz1gKWUmFpmTOxr7QbSjQfKn1A37csSZXa60d9-s6POWJQXII9RKV0pFA9_tZTeQyxRjdGqZayaOtnONBBf1T7w-UPSCapFxLuBIpSwGs2MEQ1l7OOkKhaHLu3HuA76-59WSmxhVeCMMWOvB9XZi1BQPidzZPCvZko1k3H-pGu_J3rw0lDOg-rtf8tzyB7TlUh7b-_YAvUS3iP0uvMf0tj6DfBgLJs
  priority: 102
  providerName: Elsevier
Title Structural Definition of a Neutralization-Sensitive Epitope on the MERS-CoV S1-NTD
URI https://dx.doi.org/10.1016/j.celrep.2019.08.052
https://www.ncbi.nlm.nih.gov/pubmed/31553909
https://www.proquest.com/docview/2298143875
https://www.osti.gov/biblio/1566185
https://pubmed.ncbi.nlm.nih.gov/PMC6935267
https://doaj.org/article/9e6ee1ff44574d099fc62bbef6bec225
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLZQp0m7TIyNLbAhT9rVE3HsZD4gNKCITWoPlKLeLNuxt05V0hWQ4L_nPSfpyMSEdomUxE5i-_34bL98j5BPLk99-GIzEF4VmAhcMmNMyZT11mTSyBC3C0bj_Gwqvs_kbIN0OVvbDrx6dGqH-aSmq8Xn2993h6DwB39itZxfrDyyT6YqEnJKMMrPwDcVmNNg1AL-xjYjxxluNXOOsVxcFN3_dP94UM9fRVr_ntsa1KCJj6HTv4MsH3it003ysoWb9GsjH6_Ihq-2yPMmAeXda3I-ifSxSL1BT3yYVzGAi9aBGjr2N3EVpPlPk00w0h1tIx0uwQosPYWCgB7paHg-Ycf1JZ2kbHxx8oZMT4cXx2eszbLAHICPa5aXaVEK5ZGWBtnSFA-2NKmzLpjSKiO88CWgCgWuXViAN05apwzMHCUuG6XZNhlUdeXfERoAz5WAp6wMXGRCquCEd1aYNIj90piEZF1fatdSkGMmjIXuYs1-6WYENI6AxgSZkieErWstGwqOJ8of4TCtyyKBdrxQr37oVh81tNf7NAQhZCGgefCpObfWhxyEGmxcQopukHWLRRqMAY-aP_H6XZQJrIU0vA7jlaAazpMBGyXkYycqGhQZd2dM5eubK8059LDIYP6YkLeN6KybkGF2J7Wv4Kt6QtVrY_9ONf8ZycJzhRkQip3_7MRd8gLPWNx_e08GII3-A8Cva7sXly3g-G12tBe16x51Gi9C
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGEWIviG_K-DASPFpdHDvBDzywtVPL1j6sHeqbsR0bOk1JtQ-h_V38g9w5SUUQ0iSkvSZ24vvw3dk-_46Q9y5LfPhoU1BeFZgIXDJjTMGU9dak0sgQjwums2x8Ir4s5XKL_GrvwmBaZWP7a5serXXzZNBwc7BerQZzDmsX8E45hCCIe9ZWsD701z9h3XbxaTIEIX_g_GC02B-zprQAc-BxL1lWJHkhlEcsFoQIUzzYwiTOumAKq4zwwhfgShX4M2HBpztpnTKwXJK4V5Kk8N075C5EHzlag8lyb7OxgwAnSSzAiANkOML2yl7MK3P-7NwjUmaiInio5B2XGCsHdDxjr4LJ_q8A-O88zj8c48FD8qCJaOnnmmmPyJYvH5N7dY3L6yfkeB4RahHdgw59WJUxR4xWgRo681dxo6W-CsrmmEyP5peO1mBo1p5CQwhQ6XR0PGf71Vc6T9hsMXxKTm6F289Ir6xK_4LQACFjASGblYGLVEgVnPDOCpMEsVsY0ydpy0vtGpRzLLZxptt0tlNdS0CjBDTW4JS8T9im17pG-bih_R6KadMWMbrjg-r8u26UVAO93ichCCFzAeTBUDNurQ8ZzBswo32St0LWHZWHT61u-P0O6gT2QqRfhylR0A2X4hB-9cm7VlU02Ao8ADKlr64uNOfAYZHCErVPnteqsyEhxQJSalfBqDpK1aGx-6Zc_Yh45JnCIgv5y_-m5y25P15Mj_TRZHa4Q7bxDYsHf69ID3TUv4a479K-ifOMkm-3PbF_A7KgaVs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+Definition+of+a+Neutralization-Sensitive+Epitope+on+the+MERS-CoV+S1-NTD&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Wang%2C+Nianshuang&rft.au=Rosen%2C+Osnat&rft.au=Wang%2C+Lingshu&rft.au=Turner%2C+Hannah+L.&rft.date=2019-09-24&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=28&rft.issue=13&rft.spage=3395&rft.epage=3405.e6&rft_id=info:doi/10.1016%2Fj.celrep.2019.08.052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2019_08_052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon