Global patterns and drivers of soil total phosphorus concentration

Soil represents the largest phosphorus (P) stock in terrestrial ecosystems. Determining the amount of soil P is a critical first step in identifying sites where ecosystem functioning is potentially limited by soil P availability. However, global patterns and predictors of soil total P concentration...

Full description

Saved in:
Bibliographic Details
Published inEarth system science data Vol. 13; no. 12; pp. 5831 - 5846
Main Authors He, Xianjin, Augusto, Laurent, Goll, Daniel S., Ringeval, Bruno, Wang, Yingping, Helfenstein, Julian, Huang, Yuanyuan, Yu, Kailiang, Wang, Zhiqiang, Yang, Yongchuan, Hou, Enqing
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 20.12.2021
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1866-3516
1866-3508
1866-3516
DOI10.5194/essd-13-5831-2021

Cover

Loading…
Abstract Soil represents the largest phosphorus (P) stock in terrestrial ecosystems. Determining the amount of soil P is a critical first step in identifying sites where ecosystem functioning is potentially limited by soil P availability. However, global patterns and predictors of soil total P concentration remain poorly understood. To address this knowledge gap, we constructed a database of total P concentration of 5275 globally distributed (semi-)natural soils from 761 published studies. We quantified the relative importance of 13 soil-forming variables in predicting soil total P concentration and then made further predictions at the global scale using a random forest approach. Soil total P concentration varied significantly among parent material types, soil orders, biomes, and continents and ranged widely from 1.4 to 9630.0 (median 430.0 and mean 570.0) mg kg−1 across the globe. About two-thirds (65 %) of the global variation was accounted for by the 13 variables that we selected, among which soil organic carbon concentration, parent material, mean annual temperature, and soil sand content were the most important ones. While predicted soil total P concentrations increased significantly with latitude, they varied largely among regions with similar latitudes due to regional differences in parent material, topography, and/or climate conditions. Soil P stocks (excluding Antarctica) were estimated to be 26.8 ± 3.1 (mean ± standard deviation) Pg and 62.2 ± 8.9 Pg (1 Pg = 1 × 1015 g) in the topsoil (0–30 cm) and subsoil (30–100 cm), respectively. Our global map of soil total P concentration as well as the underlying drivers of soil total P concentration can be used to constraint Earth system models that represent the P cycle and to inform quantification of global soil P availability. Raw datasets and global maps generated in this study are available at https://doi.org/10.6084/m9.figshare.14583375 (He et al., 2021).
AbstractList Soil represents the largest phosphorus (P) stock in terrestrial ecosystems. Determining the amount of soil P is a critical first step in identifying sites where ecosystem functioning is potentially limited by soil P availability. However, global patterns and predictors of soil total P concentration remain poorly understood. To address this knowledge gap, we constructed a database of total P concentration of 5275 globally distributed (semi-)natural soils from 761 published studies. We quantified the relative importance of 13 soil-forming variables in predicting soil total P concentration and then made further predictions at the global scale using a random forest approach. Soil total P concentration varied significantly among parent material types, soil orders, biomes, and continents and ranged widely from 1.4 to 9630.0 (median 430.0 and mean 570.0) mg kg.sup.-1 across the globe. About two-thirds (65 %) of the global variation was accounted for by the 13 variables that we selected, among which soil organic carbon concentration, parent material, mean annual temperature, and soil sand content were the most important ones. While predicted soil total P concentrations increased significantly with latitude, they varied largely among regions with similar latitudes due to regional differences in parent material, topography, and/or climate conditions. Soil P stocks (excluding Antarctica) were estimated to be 26.8 ± 3.1 (mean ± standard deviation) Pg and 62.2 ± 8.9 Pg (1 Pg = 1 x 10.sup.15 g) in the topsoil (0-30 cm) and subsoil (30-100 cm), respectively. Our global map of soil total P concentration as well as the underlying drivers of soil total P concentration can be used to constraint Earth system models that represent the P cycle and to inform quantification of global soil P availability. Raw datasets and global maps generated in this study are available at
Soil represents the largest phosphorus (P) stock in terrestrial ecosystems. Determining the amount of soil P is a critical first step in identifying sites where ecosystem functioning is potentially limited by soil P availability. However, global patterns and predictors of soil total P concentration remain poorly understood. To address this knowledge gap, we constructed a database of total P concentration of 5275 globally distributed (semi-)natural soils from 761 published studies. We quantified the relative importance of 13 soil-forming variables in predicting soil total P concentration and then made further predictions at the global scale using a random forest approach. Soil total P concentration varied significantly among parent material types, soil orders, biomes, and continents and ranged widely from 1.4 to 9630.0 (median 430.0 and mean 570.0) mg kg−1 across the globe. About two-thirds (65 %) of the global variation was accounted for by the 13 variables that we selected, among which soil organic carbon concentration, parent material, mean annual temperature, and soil sand content were the most important ones. While predicted soil total P concentrations increased significantly with latitude, they varied largely among regions with similar latitudes due to regional differences in parent material, topography, and/or climate conditions. Soil P stocks (excluding Antarctica) were estimated to be 26.8 ± 3.1 (mean ± standard deviation) Pg and 62.2 ± 8.9 Pg (1 Pg = 1 × 1015 g) in the topsoil (0–30 cm) and subsoil (30–100 cm), respectively. Our global map of soil total P concentration as well as the underlying drivers of soil total P concentration can be used to constraint Earth system models that represent the P cycle and to inform quantification of global soil P availability. Raw datasets and global maps generated in this study are available at https://doi.org/10.6084/m9.figshare.14583375 (He et al., 2021).
Soil represents the largest phosphorus (P) stock in terrestrial ecosystems. Determining the amount of soil P is a critical first step in identifying sites where ecosystem functioning is potentially limited by soil P availability. However, global patterns and predictors of soil total P concentration remain poorly understood. To address this knowledge gap, we constructed a database of total P concentration of 5275 globally distributed (semi-)natural soils from 761 published studies. We quantified the relative importance of 13 soil-forming variables in predicting soil total P concentration and then made further predictions at the global scale using a random forest approach. Soil total P concentration varied significantly among parent material types, soil orders, biomes, and continents and ranged widely from 1.4 to 9630.0 (median 430.0 and mean 570.0) mg kg−1 across the globe. About two-thirds (65 %) of the global variation was accounted for by the 13 variables that we selected, among which soil organic carbon concentration, parent material, mean annual temperature, and soil sand content were the most important ones. While predicted soil total P concentrations increased significantly with latitude, they varied largely among regions with similar latitudes due to regional differences in parent material, topography, and/or climate conditions. Soil P stocks (excluding Antarctica) were estimated to be 26.8 ± 3.1 (mean ± standard deviation) Pg and 62.2 ± 8.9 Pg (1 Pg = 1 × 1015 g) in the topsoil (0–30 cm) and subsoil (30–100 cm), respectively. Our global map of soil total P concentration as well as the underlying drivers of soil total P concentration can be used to constraint Earth system models that represent the P cycle and to inform quantification of global soil P availability. Raw datasets and global maps generated in this study are available at https://doi.org/10.6084/m9.figshare.14583375 (He et al., 2021).
Soil represents the largest phosphorus (P) stock in terrestrial ecosystems. Determining the amount of soil P is a critical first step in identifying sites where ecosystem functioning is potentially limited by soil P availability. However, global patterns and predictors of soil total P concentration remain poorly understood. To address this knowledge gap, we constructed a database of total P concentration of 5275 globally distributed (semi-)natural soils from 761 published studies. We quantified the relative importance of 13 soil-forming variables in predicting soil total P concentration and then made further predictions at the global scale using a random forest approach. Soil total P concentration varied significantly among parent material types, soil orders, biomes, and continents and ranged widely from 1.4 to 9630.0 (median 430.0 and mean 570.0) mg kg-1 across the globe. About two-thirds (65 %) of the global variation was accounted for by the 13 variables that we selected, among which soil organic carbon concentration, parent material, mean annual temperature, and soil sand content were the most important ones. While predicted soil total P concentrations increased significantly with latitude, they varied largely among regions with similar latitudes due to regional differences in parent material, topography, and/or climate conditions. Soil P stocks (excluding Antarctica) were estimated to be 26.8 ± 3.1 (mean ± standard deviation) Pg and 62.2 ± 8.9 Pg (1 Pg = 1 × 1015 g) in the topsoil (0–30 cm) and subsoil (30–100 cm), respectively. Our global map of soil total P concentration as well as the underlying drivers of soil total P concentration can be used to constraint Earth system models that represent the P cycle and to inform quantification of global soil P availability. Raw datasets and global maps generated in this study are available at 10.6084/m9.figshare.14583375 (He et al., 2021).
Soil represents the largest phosphorus (P) stock in terrestrial ecosystems. Determining the amount of soil P is a critical first step in identifying sites where ecosystem functioning is potentially limited by soil P availability. However, global patterns and predictors of soil total P concentration remain poorly understood. To address this knowledge gap, we constructed a database of total P concentration of 5275 globally distributed (semi-)natural soils from 761 published studies. We quantified the relative importance of 13 soil-forming variables in predicting soil total P concentration and then made further predictions at the global scale using a random forest approach. Soil total P concentration varied significantly among parent material types, soil orders, biomes, and continents and ranged widely from 1.4 to 9630.0 (median 430.0 and mean 570.0) mg kg −1 across the globe. About two-thirds (65 %) of the global variation was accounted for by the 13 variables that we selected, among which soil organic carbon concentration, parent material, mean annual temperature, and soil sand content were the most important ones. While predicted soil total P concentrations increased significantly with latitude, they varied largely among regions with similar latitudes due to regional differences in parent material, topography, and/or climate conditions. Soil P stocks (excluding Antarctica) were estimated to be 26.8  ±  3.1 (mean  ±  standard deviation) Pg and 62.2  ±  8.9 Pg (1 Pg  =  1  ×  10 15  g) in the topsoil (0–30 cm) and subsoil (30–100 cm), respectively. Our global map of soil total P concentration as well as the underlying drivers of soil total P concentration can be used to constraint Earth system models that represent the P cycle and to inform quantification of global soil P availability. Raw datasets and global maps generated in this study are available at https://doi.org/10.6084/m9.figshare.14583375 (He et al., 2021).
Audience Academic
Author He, Xianjin
Yu, Kailiang
Hou, Enqing
Helfenstein, Julian
Goll, Daniel S.
Wang, Yingping
Augusto, Laurent
Ringeval, Bruno
Wang, Zhiqiang
Huang, Yuanyuan
Yang, Yongchuan
Author_xml – sequence: 1
  givenname: Xianjin
  orcidid: 0000-0002-5573-607X
  surname: He
  fullname: He, Xianjin
– sequence: 2
  givenname: Laurent
  surname: Augusto
  fullname: Augusto, Laurent
– sequence: 3
  givenname: Daniel S.
  orcidid: 0000-0001-9246-9671
  surname: Goll
  fullname: Goll, Daniel S.
– sequence: 4
  givenname: Bruno
  orcidid: 0000-0001-8405-1304
  surname: Ringeval
  fullname: Ringeval, Bruno
– sequence: 5
  givenname: Yingping
  orcidid: 0000-0002-4614-6203
  surname: Wang
  fullname: Wang, Yingping
– sequence: 6
  givenname: Julian
  orcidid: 0000-0002-5012-2589
  surname: Helfenstein
  fullname: Helfenstein, Julian
– sequence: 7
  givenname: Yuanyuan
  orcidid: 0000-0003-4202-8071
  surname: Huang
  fullname: Huang, Yuanyuan
– sequence: 8
  givenname: Kailiang
  surname: Yu
  fullname: Yu, Kailiang
– sequence: 9
  givenname: Zhiqiang
  surname: Wang
  fullname: Wang, Zhiqiang
– sequence: 10
  givenname: Yongchuan
  surname: Yang
  fullname: Yang, Yongchuan
– sequence: 11
  givenname: Enqing
  orcidid: 0000-0003-4864-2347
  surname: Hou
  fullname: Hou, Enqing
BackLink https://insu.hal.science/insu-03660145$$DView record in HAL
BookMark eNp1km9rFDEQxhepYFv9AL5b8JXC1kyySfZenkXbgwPBP69DNplcc-wlZ5Ir9dub7Sl6ooSQMPyeZzKTuWjOQgzYNC-BXHFY9G8xZ9sB6_jAoKOEwpPmHAYhOsZBnP1xf9Zc5LwlRPQg-Xnz7maKo57avS4FU8itDra1yd9jym10bY5-akssM3IXc93pkFsTg8FQki4-hufNU6enjC9-npfN1w_vv1zfduuPN6vr5bozfOhLx50AEBQdSmkllZRayYnlRjgkToIkIzdkHDjRDIeRL5wwYEdJrB1w0JxdNqujr416q_bJ73T6rqL26jEQ00bpVLyZUNHRLQAoMSPBfqRG90ZoskDgCL0dafV6c_S609OJ1e1yrXzIB0WYEAR6fg8VfnWE9yl-O2AuahsPKdRaFa01cckZZb-pja4v8MHF2h-z89mopRhkLziTc-Krf1B1Wdz52lZ0vsZPBK9PBJUp-FA2-pCzWn3-dMrKI2tSzDmhU8aXxz-qSfykgKh5WNQ8LAqYmodFzcNSlfCX8ldT_q_5AcKOwec
CitedBy_id crossref_primary_10_1016_j_geodrs_2023_e00729
crossref_primary_10_1007_s11104_024_06912_3
crossref_primary_10_1016_j_jenvman_2024_121656
crossref_primary_10_1038_d41586_022_02106_y
crossref_primary_10_3390_f15020341
crossref_primary_10_1111_gcb_16501
crossref_primary_10_1002_eap_2951
crossref_primary_10_1038_s43016_023_00890_y
crossref_primary_10_1016_j_fecs_2024_100257
crossref_primary_10_1016_j_heliyon_2024_e40128
crossref_primary_10_1111_pce_15169
crossref_primary_10_1007_s11104_023_06089_1
crossref_primary_10_1016_j_soilbio_2024_109387
crossref_primary_10_1038_s43016_024_00952_9
crossref_primary_10_3390_agronomy14010200
crossref_primary_10_1038_s43017_024_00603_4
crossref_primary_10_1111_nph_20150
crossref_primary_10_3390_land13122204
crossref_primary_10_1016_j_catena_2024_108145
crossref_primary_10_1016_j_catena_2024_108266
crossref_primary_10_1038_s43247_025_02021_w
crossref_primary_10_1016_j_envexpbot_2023_105641
crossref_primary_10_1016_j_scitotenv_2022_157748
crossref_primary_10_1111_ejss_13448
crossref_primary_10_1007_s42729_023_01390_5
crossref_primary_10_1016_j_jes_2025_03_009
crossref_primary_10_1111_nph_19513
crossref_primary_10_5194_bg_20_4147_2023
crossref_primary_10_1007_s10668_023_03489_2
crossref_primary_10_1007_s10661_023_11175_z
crossref_primary_10_1016_j_scitotenv_2022_157277
crossref_primary_10_1016_j_soilbio_2023_109158
crossref_primary_10_1016_j_geodrs_2023_e00721
crossref_primary_10_1002_jaa2_145
crossref_primary_10_1007_s42773_024_00415_1
crossref_primary_10_3389_fevo_2023_1073842
crossref_primary_10_1016_j_oneear_2024_07_020
crossref_primary_10_1016_j_catena_2022_106037
crossref_primary_10_1016_j_catena_2023_107302
crossref_primary_10_1007_s10533_024_01187_3
crossref_primary_10_1007_s11104_025_07253_5
crossref_primary_10_1038_s41561_023_01240_0
crossref_primary_10_1016_j_chemosphere_2024_142699
crossref_primary_10_1016_j_scitotenv_2024_170890
crossref_primary_10_1016_j_ecoinf_2024_102990
crossref_primary_10_1126_sciadv_adm7773
crossref_primary_10_1016_j_scitotenv_2024_175543
crossref_primary_10_1016_j_catena_2023_107193
crossref_primary_10_1016_j_jenvman_2025_124744
crossref_primary_10_3390_f14081665
crossref_primary_10_1007_s11104_024_06661_3
crossref_primary_10_1016_j_agee_2023_108483
crossref_primary_10_1038_s41558_025_02273_6
crossref_primary_10_1016_j_agrformet_2022_109165
crossref_primary_10_1111_1440_1703_12414
crossref_primary_10_1007_s11104_023_06180_7
crossref_primary_10_1016_j_apsoil_2023_105074
crossref_primary_10_1016_j_scitotenv_2023_165020
crossref_primary_10_3390_f13060905
crossref_primary_10_1016_j_scitotenv_2024_172524
crossref_primary_10_1007_s10342_023_01551_2
crossref_primary_10_1007_s11356_023_30555_z
crossref_primary_10_1071_SR24118
crossref_primary_10_1038_s41561_022_01105_y
crossref_primary_10_1007_s11104_023_06001_x
crossref_primary_10_1016_j_catena_2022_106409
crossref_primary_10_1111_ejss_70033
crossref_primary_10_1098_rstb_2023_0355
crossref_primary_10_1016_j_apsoil_2025_105938
crossref_primary_10_1007_s11104_024_07035_5
crossref_primary_10_1016_j_soilbio_2022_108826
crossref_primary_10_1007_s10533_023_01029_8
crossref_primary_10_1016_j_pedsph_2024_06_012
crossref_primary_10_1007_s12517_023_11823_1
crossref_primary_10_1016_j_csr_2025_105450
crossref_primary_10_5194_gmd_16_4113_2023
crossref_primary_10_1093_nsr_nwad242
crossref_primary_10_1007_s11104_023_06075_7
crossref_primary_10_1029_2022JG006795
crossref_primary_10_3390_rs14194929
crossref_primary_10_1016_j_oneear_2024_11_001
crossref_primary_10_1016_j_still_2023_105809
crossref_primary_10_1038_s41597_023_02751_6
crossref_primary_10_1111_gcb_16478
crossref_primary_10_3390_land13060882
crossref_primary_10_1007_s11104_022_05405_5
crossref_primary_10_5194_essd_16_715_2024
crossref_primary_10_1007_s10265_024_01533_4
crossref_primary_10_1016_j_catena_2025_108732
crossref_primary_10_1016_j_scitotenv_2022_158706
Cites_doi 10.5194/essd-13-5337-2021
10.1890/11-1927.1
10.5194/gmd-8-4045-2015
10.1126/science.1098778
10.1146/annurev.energy.25.1.53
10.1007/s10533-016-0247-z
10.1111/geb.12190
10.1016/j.geoderma.2017.09.036
10.1371/journal.pone.0169748
10.1111/gcb.14093
10.5194/bg-11-1667-2014
10.1007/s10533-016-0274-9
10.1038/s41467-018-05731-2
10.1088/1748-9326/10/1/014001
10.1029/2020MS002123
10.1890/07-1739.1
10.1016/0016-7061(76)90066-5
10.1007/978-3-319-44327-0_1
10.1002/ldr.3345
10.1111/nph.13521
10.1038/ngeo2413
10.1038/s41467-020-18326-7
10.5194/bg-9-3547-2012
10.1007/s10533-007-9132-0
10.1002/2016EF000472
10.1890/08-0127.1
10.1111/nph.14119
10.1890/08-0588.1
10.1186/1471-2105-9-307
10.1002/2014GL059471
10.1890/11-1013.1
10.1111/sum.12192
10.1007/s11104-012-1490-2
10.1038/s41467-020-18451-3
10.5194/gmd-10-3745-2017
10.1007/s11676-017-0519-z
10.1111/j.1365-2389.2010.01286.x
10.5194/bg-10-2525-2013
10.1038/s41559-020-01323-w
10.1007/s10021-013-9690-z
10.1016/j.scitotenv.2015.09.119
10.1016/bs.agron.2018.11.005
10.1002/2016MS000686
10.5194/bg-15-4575-2018
10.1007/s10533-015-0178-0
10.5194/bg-7-2025-2010
10.1038/s41561-019-0404-9
10.1111/gcb.13618
10.5194/bg-13-2493-2016
10.1111/ele.13761
10.1007/s10533-010-9466-x
10.1088/1748-9326/abed78
10.1038/ngeo2516
10.1111/gcb.15154
10.1007/s13595-018-0727-5
10.1016/0016-7061(85)90001-1
10.1111/geb.12029
10.1007/s004420051020
10.5194/bg-7-2261-2010
10.1029/2004GB002296
10.1111/j.1461-0248.2007.01113.x
10.1073/pnas.0403588101
10.1016/j.catena.2010.05.010
10.1038/s41467-020-14492-w
10.2134/jeq2012.0224
10.1002/2013MS000293
10.1073/pnas.1315667111
10.1007/s10533-013-9946-x
10.1029/2011GL049244
10.1007/s10021-012-9612-5
10.5194/essd-2021-166
10.1038/sdata.2018.166
10.1016/0016-7061(94)00023-4
10.1038/s41467-020-18321-y
10.1016/j.geoderma.2019.113912
10.1007/s10533-020-00700-8
10.1016/S0378-1127(97)00256-9
10.1016/j.catena.2018.07.006
10.1111/gcb.13691
10.1007/s11104-013-1823-9
10.1007/s10705-017-9870-x
10.1016/j.geoderma.2009.01.021
10.1016/j.catena.2015.02.015
10.32614/CRAN.package.quantregForest
10.1007/s00442-011-2185-8
10.1016/j.geoderma.2020.114707
ContentType Journal Article
Copyright COPYRIGHT 2021 Copernicus GmbH
2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: COPYRIGHT 2021 Copernicus GmbH
– notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID AAYXX
CITATION
ISR
7SN
7TG
7TN
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
1XC
VOOES
DOA
DOI 10.5194/essd-13-5831-2021
DatabaseName CrossRef
Gale In Context: Science
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Continental Europe Database (ProQuest)
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1866-3516
EndPage 5846
ExternalDocumentID oai_doaj_org_article_2bf91120cb0e4b2ca4c6a09e15e14db2
oai_HAL_insu_03660145v1
A687465372
10_5194_essd_13_5831_2021
GroupedDBID 5VS
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACIWK
ACPRK
ACUHS
ADBBV
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IGS
ISR
ITC
KQ8
L6V
LK5
M7R
M7S
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
RKB
RNS
TR2
TUS
ZBA
BBORY
PMFND
7SN
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQGLB
PQUKI
PRINS
1XC
C1A
IPNFZ
RIG
VOOES
PUEGO
ID FETCH-LOGICAL-c584t-5f61162efe77d72722d750d5c6fe0f7170b5c0b850a3e8b59f6c1db70dd8e8a53
IEDL.DBID 8FG
ISSN 1866-3516
1866-3508
IngestDate Wed Aug 27 01:10:49 EDT 2025
Wed Aug 13 07:45:31 EDT 2025
Fri Jul 25 19:05:29 EDT 2025
Tue Jun 17 21:58:15 EDT 2025
Tue Jun 10 20:58:53 EDT 2025
Fri Jun 27 05:16:32 EDT 2025
Tue Jul 01 02:14:37 EDT 2025
Thu Apr 24 23:05:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c584t-5f61162efe77d72722d750d5c6fe0f7170b5c0b850a3e8b59f6c1db70dd8e8a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4202-8071
0000-0001-9246-9671
0000-0002-4614-6203
0000-0003-4864-2347
0000-0001-8405-1304
0000-0002-5573-607X
0000-0002-5012-2589
0000-0002-7049-6000
OpenAccessLink https://www.proquest.com/docview/2611575323?pq-origsite=%requestingapplication%
PQID 2611575323
PQPubID 105729
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_2bf91120cb0e4b2ca4c6a09e15e14db2
hal_primary_oai_HAL_insu_03660145v1
proquest_journals_2611575323
gale_infotracmisc_A687465372
gale_infotracacademiconefile_A687465372
gale_incontextgauss_ISR_A687465372
crossref_citationtrail_10_5194_essd_13_5831_2021
crossref_primary_10_5194_essd_13_5831_2021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-20
PublicationDateYYYYMMDD 2021-12-20
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-20
  day: 20
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Earth system science data
PublicationYear 2021
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref10
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref78
ref75
ref74
ref77
ref76
ref2
ref1
ref71
ref70
ref73
ref72
ref68
ref67
ref69
ref64
ref63
ref66
ref65
ref60
ref62
ref61
References_xml – ident: ref97
  doi: 10.5194/essd-13-5337-2021
– ident: ref45
  doi: 10.1890/11-1927.1
– ident: ref12
  doi: 10.5194/gmd-8-4045-2015
– ident: ref87
  doi: 10.1126/science.1098778
– ident: ref72
  doi: 10.1146/annurev.energy.25.1.53
– ident: ref76
  doi: 10.1007/s10533-016-0247-z
– ident: ref51
  doi: 10.1111/geb.12190
– ident: ref57
  doi: 10.1016/j.geoderma.2017.09.036
– ident: ref40
  doi: 10.1371/journal.pone.0169748
– ident: ref41
  doi: 10.1111/gcb.14093
– ident: ref94
  doi: 10.5194/bg-11-1667-2014
– ident: ref53
– ident: ref1
  doi: 10.1007/s10533-016-0274-9
– ident: ref38
  doi: 10.1038/s41467-018-05731-2
– ident: ref83
  doi: 10.1088/1748-9326/10/1/014001
– ident: ref85
  doi: 10.1029/2020MS002123
– ident: ref61
  doi: 10.1890/07-1739.1
– ident: ref50
– ident: ref47
– ident: ref81
  doi: 10.1016/0016-7061(76)90066-5
– ident: ref55
  doi: 10.1007/978-3-319-44327-0_1
– ident: ref52
  doi: 10.1002/ldr.3345
– ident: ref16
– ident: ref64
  doi: 10.1111/nph.13521
– ident: ref3
– ident: ref89
  doi: 10.1038/ngeo2413
– ident: ref4
  doi: 10.1038/s41467-020-18326-7
– ident: ref33
  doi: 10.5194/bg-9-3547-2012
– ident: ref19
  doi: 10.1007/s10533-007-9132-0
– ident: ref29
– ident: ref75
  doi: 10.1002/2016EF000472
– ident: ref80
  doi: 10.1890/08-0127.1
– ident: ref25
  doi: 10.1111/nph.14119
– ident: ref46
  doi: 10.1890/08-0588.1
– ident: ref74
  doi: 10.1186/1471-2105-9-307
– ident: ref34
  doi: 10.1002/2014GL059471
– ident: ref11
  doi: 10.1890/11-1013.1
– ident: ref24
  doi: 10.1111/sum.12192
– ident: ref62
  doi: 10.1007/s11104-012-1490-2
– ident: ref23
  doi: 10.1038/s41467-020-18451-3
– ident: ref63
– ident: ref35
  doi: 10.5194/gmd-10-3745-2017
– ident: ref91
  doi: 10.1007/s11676-017-0519-z
– ident: ref8
  doi: 10.1111/j.1365-2389.2010.01286.x
– ident: ref93
  doi: 10.5194/bg-10-2525-2013
– ident: ref88
  doi: 10.1038/s41559-020-01323-w
– ident: ref79
  doi: 10.1007/s10021-013-9690-z
– ident: ref78
  doi: 10.1016/j.scitotenv.2015.09.119
– ident: ref7
  doi: 10.1016/bs.agron.2018.11.005
– ident: ref69
  doi: 10.1002/2016MS000686
– ident: ref22
  doi: 10.5194/bg-15-4575-2018
– ident: ref5
– ident: ref20
– ident: ref2
  doi: 10.1007/s10533-015-0178-0
– ident: ref14
  doi: 10.5194/bg-7-2025-2010
– ident: ref31
  doi: 10.1038/s41561-019-0404-9
– ident: ref66
  doi: 10.1111/gcb.13618
– ident: ref13
  doi: 10.5194/bg-13-2493-2016
– ident: ref44
  doi: 10.1111/ele.13761
– ident: ref77
  doi: 10.1007/s10533-010-9466-x
– ident: ref86
  doi: 10.1088/1748-9326/abed78
– ident: ref28
  doi: 10.1038/ngeo2516
– ident: ref73
  doi: 10.1111/gcb.15154
– ident: ref48
  doi: 10.1007/s13595-018-0727-5
– ident: ref71
  doi: 10.1016/0016-7061(85)90001-1
– ident: ref90
  doi: 10.1111/geb.12029
– ident: ref49
  doi: 10.1007/s004420051020
– ident: ref84
  doi: 10.5194/bg-7-2261-2010
– ident: ref95
  doi: 10.1029/2004GB002296
– ident: ref30
  doi: 10.1111/j.1461-0248.2007.01113.x
– ident: ref65
  doi: 10.1073/pnas.0403588101
– ident: ref27
  doi: 10.1016/j.catena.2010.05.010
– ident: ref43
  doi: 10.1038/s41467-020-14492-w
– ident: ref6
  doi: 10.2134/jeq2012.0224
– ident: ref68
  doi: 10.1002/2013MS000293
– ident: ref36
  doi: 10.1073/pnas.1315667111
– ident: ref32
  doi: 10.1007/s10533-013-9946-x
– ident: ref96
  doi: 10.1029/2011GL049244
– ident: ref54
  doi: 10.1007/s10021-012-9612-5
– ident: ref37
  doi: 10.5194/essd-2021-166
– ident: ref42
  doi: 10.1038/sdata.2018.166
– ident: ref21
  doi: 10.1016/0016-7061(94)00023-4
– ident: ref60
  doi: 10.1038/s41467-020-18321-y
– ident: ref10
  doi: 10.1016/j.geoderma.2019.113912
– ident: ref67
  doi: 10.1007/s10533-020-00700-8
– ident: ref92
  doi: 10.1016/S0378-1127(97)00256-9
– ident: ref18
  doi: 10.1016/j.catena.2018.07.006
– ident: ref9
  doi: 10.1111/gcb.13691
– ident: ref15
  doi: 10.1007/s11104-013-1823-9
– ident: ref39
  doi: 10.1007/s10705-017-9870-x
– ident: ref82
  doi: 10.1016/j.geoderma.2009.01.021
– ident: ref17
  doi: 10.1016/j.catena.2015.02.015
– ident: ref58
  doi: 10.32614/CRAN.package.quantregForest
– ident: ref59
– ident: ref26
  doi: 10.1007/s00442-011-2185-8
– ident: ref56
– ident: ref70
  doi: 10.1016/j.geoderma.2020.114707
SSID ssj0064175
Score 2.5543523
Snippet Soil represents the largest phosphorus (P) stock in terrestrial ecosystems. Determining the amount of soil P is a critical first step in identifying sites...
Soil represents the largest phosphorus (P) stock in terrestrial ecosystems. Determining the amount of soil P is a critical first step in identifying sites...
SourceID doaj
hal
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5831
SubjectTerms Age
Analysis
Annual temperatures
Automobile drivers
Availability
Carbon content
Climate change
Climatic conditions
Constraint modelling
Ecological function
Mean
Organic carbon
Phosphorus
Predictions
Regions
Sciences of the Universe
Soil
Soil conditions
Soil formation
Soil maps
Soil temperature
Soils
Stocks
Subsoils
Terrestrial ecosystems
Topography
Topsoil
Vegetation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9UwEA66IHiRdVV87lOCCoJQNkmTtD2-FXefoh7Uhb2F_HSFpV1e-wT_e2fSvof1oBcPvbRTaL7OTGbIzDeEvEzKxRi1K3zyrJB1ApOKQhUNpBeNw5A-zzr8-EmvL-T7S3X526gvrAkb6YFH4E6ES2CPgnnHonTCW-m1ZU3kKnIZXPa-sOftkqnRB2vJM8UusrkVJcQg43kmRCvyBBxIKHiJ7UYcdETw2Y6Uifv37vn2FVZH_uGk885zdkjuTSEjXY2fep_ciu0RuXOeR_L-fEBOR9p-epOZMtue2jbQsMn1FrRLtO--X9OhG1Dkquvh2mx76rFdsZ04cx-Si7O3X9-si2kyQuEhYBgKlTTnWsQUqyrgUaoIsPMH5XWKLEGGxpzyzNWK2TLWTjVJex5cxUKoY21V-YgctF0bHxMaASzfWK-kdLKpoq2T0Eo4L8ukXVUvCNuhY_xEG47TK64NpA8IqEFADS8NAmoQ0AV5vX_lZuTM-JvwKUK-F0S663wDlMBMSmD-pQQL8hx_mEFCixYrZr7Zbd-bd18-m5WuK-SQq0Do1SSUOliBt1MDAuCAHFgzyeVMEizOzx6_AL2YffF69cFg84CBgEDjSe0PWNhypzdm8gu9gXyVQ4BcivLJ_1j3MbmLGGJ5jWBLcjBstvEpBEmDe5bt4Rd9jwsu
  priority: 102
  providerName: Directory of Open Access Journals
Title Global patterns and drivers of soil total phosphorus concentration
URI https://www.proquest.com/docview/2611575323
https://insu.hal.science/insu-03660145
https://doaj.org/article/2bf91120cb0e4b2ca4c6a09e15e14db2
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEA7eHYIv4k9cXZeigiCUS9MkbZ9kq7e3ih5yenBvofl1Jxztuu0K_vfOZLMr9eEeSqGdQvt1MvmSTL4h5I0X2jkndWq8oSkvPTQpx0RawfCi0kjpQ63Dr2dyecE_X4rLOOHWx7TKXUwMgdp2BufIj4HpZ0Atcpa_X_1KsWoUrq7GEhoH5CiDngY9vFyc7iKx5FkQ2kVNtzQHJrJd1QTOwo8hjNg0y3HTUQaewrJRvxTk-_dB-uAacyT_C9Wh_1k8IPcjcUzm2z_9kNxx7SNy9zQU5v3zmNRb8f5kFfQy2z5pWpvYdci6SDqf9N3Pm2ToBjS57no41ps-MbhpsY3KuU_IxeLkx4dlGusjpAZow5AKD5hI5rwrCosLqsxC_2-Fkd5RD-M0qoWhuhS0yV2pReWlyawuqLWlKxuRPyWHbde6ZyRxAJapGiM417wqXFN6JgXThude6qKcELpDR5koHo41LG4UDCIQUIWAqixXCKhCQCfk3f6R1VY54zbjGiHfG6LodbjQra9UbEOKaQ-hmVGjqeOamYYb2dDKZcJl3Go2Ia_whymUtWgxb-aq2fS9-vT9XM1lWaCSXAFGb6OR7-ALTBO3IQAOqIQ1spyOLKHdmdHt1-AXozdezr8o3EKggBZIXK_9DR823fmNitGhV_98-fntt1-Qe4gOps8wOiWHw3rjXgIJGvQsePqMHM3rj_UCzvXJ2bfzWZhS-Au02gYJ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELbKVgguvBELC0Q8hISU1nFiJzlw2AWWXbpbCWjV3kz8ahFVUm2yoPJX-Cv8OGbyWLQ99FaJQy7xWIrtzzPjeOYbQl44rqy1QvnaaepHiYMtZRn3UzhepApd-rrW4XxXTPajj4f8cIP87nJhMKyy04m1ojaFxn_k2-DpB-BahKyrVL1jz37C-ax8M30Hi_mSsfH7vbcTvy0h4GuwrJXPHXQTzDobxwbvHJkBE2m4Fs5SB0cZqrimKuE0C22ieOqEDoyKqTGJTTIsCQH6fTNBO9wjm6Px_NNBp-hFFNQ8vkgZ54fg6DSXpuASRdugpYwfhJjTFAAQWbBm9urqACsbcOUYQzDPWYLavI1vkj_dxDRRLd-3lpXa0r_OcUb-pzN3i9xo3Wpv2OyD22TD5nfI1Q912eKzu2TUlDbwTms20bz0stx4ZlHHpHiF88ri24lXFRWKHBclPItl6WlM6cxbXuF7ZP9SBnCf9PIitw-IZ2GtdZppHkUqSmObJY4JzpSOQidUnPQJ7RZX6pZaHSt8nEg4YiEeJOJBBqFEPEjEQ5-8XnU5bXhFLhIeIWJWgkgJXr8oFkey1TCSKQeGi1GtqI0U01mkRUZTG3AbREaxPnmGeJNI-pFjVNFRtixLOf3yWQ5FEiPPXgxCr1ohV8AIdNYmacA8IE_YmuRgTRK0kl5rfg6wXvviyXAmMcFCgtMk8Db7Bwxs0EFWtrqzlP_w-vDi5qfk2mRvPpOz6e7OI3IdZwoDjRgdkF61WNrH4C5W6km7bT3y9bLx_hcrRXSW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIhAXxFMEAlg8hIRkZb3eXdsHhFJKmtBSIaBSb1vvq0Wq7BA7oP41fh0zfgSZQ2895BJPovjzzM5sdub7CHnlhXbOSR0ab2jIUw8h5ZgIM9heZBpL-kbr8POhnB_xT8fieIv86WdhsK2yXxObhdqWBv8jn0ClH0FpEbN44ru2iC-7s_fLnyEqSOFJay-n0brIvrv4Ddu36t1iF571a8ZmH79_mIedwkBoIPHWofDwrZI575LE4pEks5BBrTDSO-php0O1MFSnguaxS7XIvDSR1Qm1NnVpjooRsPxfT-KUonpCOtvrs4DkUUPyi3xyYQxVUHuiCvUSn8ASZsMoxoGnCLyURYOc2EgHbBLEtTPsz_wvTTS5b3aH3O6K1mDaetldsuWKe-TGXiMKfHGf7LTCAcGy4eosqiAvbGBXTcdHUPqgKn-cB3VZo8lZWcFrta4CgwOTRcfa-4AcXQlyD8l2URbuEQkcgGWy3AjONc8Sl6eeScG04bGXOklHhPboKNMRl6N-xrmCDQwCqhBQFcUKAVUI6Ii83Xxk2bJ2XGa8g5BvDJFwu3mjXJ2qLn4V0x7SAqNGU8c1Mzk3MqeZi4SLuNVsRF7gA1NIqVGgc57m66pSi29f1VSmCbLYJWD0pjPyJdyBybsRCMABWbgGluOBJcS8GVx-CX4x-MXz6YHC8QUFJYnEs-JfcGPj3m9UtzJV6l8cPb788nNyEwJMHSwO95-QWwgUdvEwOibb9WrtnkItVutnjdMH5OSqo-wvsApDWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+patterns+and+drivers+of+soil+total+phosphorus+concentration&rft.jtitle=Earth+system+science+data&rft.au=He%2C+Xianjin&rft.au=Augusto%2C+Laurent&rft.au=Goll%2C+Daniel+S&rft.au=Ringeval%2C+Bruno&rft.date=2021-12-20&rft.pub=Copernicus+GmbH&rft.issn=1866-3508&rft.volume=13&rft.issue=12&rft.spage=5831&rft_id=info:doi/10.5194%2Fessd-13-5831-2021&rft.externalDocID=A687465372
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-3516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-3516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-3516&client=summon