Global patterns and drivers of soil total phosphorus concentration
Soil represents the largest phosphorus (P) stock in terrestrial ecosystems. Determining the amount of soil P is a critical first step in identifying sites where ecosystem functioning is potentially limited by soil P availability. However, global patterns and predictors of soil total P concentration...
Saved in:
Published in | Earth system science data Vol. 13; no. 12; pp. 5831 - 5846 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
20.12.2021
Copernicus Publications |
Subjects | |
Online Access | Get full text |
ISSN | 1866-3516 1866-3508 1866-3516 |
DOI | 10.5194/essd-13-5831-2021 |
Cover
Loading…
Abstract | Soil represents the largest phosphorus (P) stock in terrestrial
ecosystems. Determining the amount of soil P is a critical first step in
identifying sites where ecosystem functioning is potentially limited by soil
P availability. However, global patterns and predictors of soil total P
concentration remain poorly understood. To address this knowledge gap, we
constructed a database of total P concentration of 5275 globally
distributed (semi-)natural soils from 761 published studies. We quantified
the relative importance of 13 soil-forming variables in predicting soil
total P concentration and then made further predictions at the global scale
using a random forest approach. Soil total P concentration varied
significantly among parent material types, soil orders, biomes, and
continents and ranged widely from 1.4 to 9630.0 (median 430.0 and mean
570.0) mg kg−1 across the globe. About two-thirds (65 %) of the
global variation was accounted for by the 13 variables that we selected,
among which soil organic carbon concentration, parent material, mean annual
temperature, and soil sand content were the most important ones. While
predicted soil total P concentrations increased significantly with latitude,
they varied largely among regions with similar latitudes due to regional
differences in parent material, topography, and/or climate conditions. Soil
P stocks (excluding Antarctica) were estimated to be 26.8 ± 3.1 (mean ± standard deviation) Pg and 62.2 ± 8.9 Pg (1 Pg = 1 × 1015 g) in the topsoil (0–30 cm) and subsoil (30–100 cm), respectively.
Our global map of soil total P concentration as well as the underlying
drivers of soil total P concentration can be used to constraint Earth system
models that represent the P cycle and to inform quantification of global
soil P availability. Raw datasets and global maps generated in this study
are available at https://doi.org/10.6084/m9.figshare.14583375
(He et al., 2021). |
---|---|
AbstractList | Soil represents the largest phosphorus (P) stock in terrestrial ecosystems. Determining the amount of soil P is a critical first step in identifying sites where ecosystem functioning is potentially limited by soil P availability. However, global patterns and predictors of soil total P concentration remain poorly understood. To address this knowledge gap, we constructed a database of total P concentration of 5275 globally distributed (semi-)natural soils from 761 published studies. We quantified the relative importance of 13 soil-forming variables in predicting soil total P concentration and then made further predictions at the global scale using a random forest approach. Soil total P concentration varied significantly among parent material types, soil orders, biomes, and continents and ranged widely from 1.4 to 9630.0 (median 430.0 and mean 570.0) mg kg.sup.-1 across the globe. About two-thirds (65 %) of the global variation was accounted for by the 13 variables that we selected, among which soil organic carbon concentration, parent material, mean annual temperature, and soil sand content were the most important ones. While predicted soil total P concentrations increased significantly with latitude, they varied largely among regions with similar latitudes due to regional differences in parent material, topography, and/or climate conditions. Soil P stocks (excluding Antarctica) were estimated to be 26.8 ± 3.1 (mean ± standard deviation) Pg and 62.2 ± 8.9 Pg (1 Pg = 1 x 10.sup.15 g) in the topsoil (0-30 cm) and subsoil (30-100 cm), respectively. Our global map of soil total P concentration as well as the underlying drivers of soil total P concentration can be used to constraint Earth system models that represent the P cycle and to inform quantification of global soil P availability. Raw datasets and global maps generated in this study are available at Soil represents the largest phosphorus (P) stock in terrestrial ecosystems. Determining the amount of soil P is a critical first step in identifying sites where ecosystem functioning is potentially limited by soil P availability. However, global patterns and predictors of soil total P concentration remain poorly understood. To address this knowledge gap, we constructed a database of total P concentration of 5275 globally distributed (semi-)natural soils from 761 published studies. We quantified the relative importance of 13 soil-forming variables in predicting soil total P concentration and then made further predictions at the global scale using a random forest approach. Soil total P concentration varied significantly among parent material types, soil orders, biomes, and continents and ranged widely from 1.4 to 9630.0 (median 430.0 and mean 570.0) mg kg−1 across the globe. About two-thirds (65 %) of the global variation was accounted for by the 13 variables that we selected, among which soil organic carbon concentration, parent material, mean annual temperature, and soil sand content were the most important ones. While predicted soil total P concentrations increased significantly with latitude, they varied largely among regions with similar latitudes due to regional differences in parent material, topography, and/or climate conditions. Soil P stocks (excluding Antarctica) were estimated to be 26.8 ± 3.1 (mean ± standard deviation) Pg and 62.2 ± 8.9 Pg (1 Pg = 1 × 1015 g) in the topsoil (0–30 cm) and subsoil (30–100 cm), respectively. Our global map of soil total P concentration as well as the underlying drivers of soil total P concentration can be used to constraint Earth system models that represent the P cycle and to inform quantification of global soil P availability. Raw datasets and global maps generated in this study are available at https://doi.org/10.6084/m9.figshare.14583375 (He et al., 2021). Soil represents the largest phosphorus (P) stock in terrestrial ecosystems. Determining the amount of soil P is a critical first step in identifying sites where ecosystem functioning is potentially limited by soil P availability. However, global patterns and predictors of soil total P concentration remain poorly understood. To address this knowledge gap, we constructed a database of total P concentration of 5275 globally distributed (semi-)natural soils from 761 published studies. We quantified the relative importance of 13 soil-forming variables in predicting soil total P concentration and then made further predictions at the global scale using a random forest approach. Soil total P concentration varied significantly among parent material types, soil orders, biomes, and continents and ranged widely from 1.4 to 9630.0 (median 430.0 and mean 570.0) mg kg−1 across the globe. About two-thirds (65 %) of the global variation was accounted for by the 13 variables that we selected, among which soil organic carbon concentration, parent material, mean annual temperature, and soil sand content were the most important ones. While predicted soil total P concentrations increased significantly with latitude, they varied largely among regions with similar latitudes due to regional differences in parent material, topography, and/or climate conditions. Soil P stocks (excluding Antarctica) were estimated to be 26.8 ± 3.1 (mean ± standard deviation) Pg and 62.2 ± 8.9 Pg (1 Pg = 1 × 1015 g) in the topsoil (0–30 cm) and subsoil (30–100 cm), respectively. Our global map of soil total P concentration as well as the underlying drivers of soil total P concentration can be used to constraint Earth system models that represent the P cycle and to inform quantification of global soil P availability. Raw datasets and global maps generated in this study are available at https://doi.org/10.6084/m9.figshare.14583375 (He et al., 2021). Soil represents the largest phosphorus (P) stock in terrestrial ecosystems. Determining the amount of soil P is a critical first step in identifying sites where ecosystem functioning is potentially limited by soil P availability. However, global patterns and predictors of soil total P concentration remain poorly understood. To address this knowledge gap, we constructed a database of total P concentration of 5275 globally distributed (semi-)natural soils from 761 published studies. We quantified the relative importance of 13 soil-forming variables in predicting soil total P concentration and then made further predictions at the global scale using a random forest approach. Soil total P concentration varied significantly among parent material types, soil orders, biomes, and continents and ranged widely from 1.4 to 9630.0 (median 430.0 and mean 570.0) mg kg-1 across the globe. About two-thirds (65 %) of the global variation was accounted for by the 13 variables that we selected, among which soil organic carbon concentration, parent material, mean annual temperature, and soil sand content were the most important ones. While predicted soil total P concentrations increased significantly with latitude, they varied largely among regions with similar latitudes due to regional differences in parent material, topography, and/or climate conditions. Soil P stocks (excluding Antarctica) were estimated to be 26.8 ± 3.1 (mean ± standard deviation) Pg and 62.2 ± 8.9 Pg (1 Pg = 1 × 1015 g) in the topsoil (0–30 cm) and subsoil (30–100 cm), respectively. Our global map of soil total P concentration as well as the underlying drivers of soil total P concentration can be used to constraint Earth system models that represent the P cycle and to inform quantification of global soil P availability. Raw datasets and global maps generated in this study are available at 10.6084/m9.figshare.14583375 (He et al., 2021). Soil represents the largest phosphorus (P) stock in terrestrial ecosystems. Determining the amount of soil P is a critical first step in identifying sites where ecosystem functioning is potentially limited by soil P availability. However, global patterns and predictors of soil total P concentration remain poorly understood. To address this knowledge gap, we constructed a database of total P concentration of 5275 globally distributed (semi-)natural soils from 761 published studies. We quantified the relative importance of 13 soil-forming variables in predicting soil total P concentration and then made further predictions at the global scale using a random forest approach. Soil total P concentration varied significantly among parent material types, soil orders, biomes, and continents and ranged widely from 1.4 to 9630.0 (median 430.0 and mean 570.0) mg kg −1 across the globe. About two-thirds (65 %) of the global variation was accounted for by the 13 variables that we selected, among which soil organic carbon concentration, parent material, mean annual temperature, and soil sand content were the most important ones. While predicted soil total P concentrations increased significantly with latitude, they varied largely among regions with similar latitudes due to regional differences in parent material, topography, and/or climate conditions. Soil P stocks (excluding Antarctica) were estimated to be 26.8 ± 3.1 (mean ± standard deviation) Pg and 62.2 ± 8.9 Pg (1 Pg = 1 × 10 15 g) in the topsoil (0–30 cm) and subsoil (30–100 cm), respectively. Our global map of soil total P concentration as well as the underlying drivers of soil total P concentration can be used to constraint Earth system models that represent the P cycle and to inform quantification of global soil P availability. Raw datasets and global maps generated in this study are available at https://doi.org/10.6084/m9.figshare.14583375 (He et al., 2021). |
Audience | Academic |
Author | He, Xianjin Yu, Kailiang Hou, Enqing Helfenstein, Julian Goll, Daniel S. Wang, Yingping Augusto, Laurent Ringeval, Bruno Wang, Zhiqiang Huang, Yuanyuan Yang, Yongchuan |
Author_xml | – sequence: 1 givenname: Xianjin orcidid: 0000-0002-5573-607X surname: He fullname: He, Xianjin – sequence: 2 givenname: Laurent surname: Augusto fullname: Augusto, Laurent – sequence: 3 givenname: Daniel S. orcidid: 0000-0001-9246-9671 surname: Goll fullname: Goll, Daniel S. – sequence: 4 givenname: Bruno orcidid: 0000-0001-8405-1304 surname: Ringeval fullname: Ringeval, Bruno – sequence: 5 givenname: Yingping orcidid: 0000-0002-4614-6203 surname: Wang fullname: Wang, Yingping – sequence: 6 givenname: Julian orcidid: 0000-0002-5012-2589 surname: Helfenstein fullname: Helfenstein, Julian – sequence: 7 givenname: Yuanyuan orcidid: 0000-0003-4202-8071 surname: Huang fullname: Huang, Yuanyuan – sequence: 8 givenname: Kailiang surname: Yu fullname: Yu, Kailiang – sequence: 9 givenname: Zhiqiang surname: Wang fullname: Wang, Zhiqiang – sequence: 10 givenname: Yongchuan surname: Yang fullname: Yang, Yongchuan – sequence: 11 givenname: Enqing orcidid: 0000-0003-4864-2347 surname: Hou fullname: Hou, Enqing |
BackLink | https://insu.hal.science/insu-03660145$$DView record in HAL |
BookMark | eNp1km9rFDEQxhepYFv9AL5b8JXC1kyySfZenkXbgwPBP69DNplcc-wlZ5Ir9dub7Sl6ooSQMPyeZzKTuWjOQgzYNC-BXHFY9G8xZ9sB6_jAoKOEwpPmHAYhOsZBnP1xf9Zc5LwlRPQg-Xnz7maKo57avS4FU8itDra1yd9jym10bY5-akssM3IXc93pkFsTg8FQki4-hufNU6enjC9-npfN1w_vv1zfduuPN6vr5bozfOhLx50AEBQdSmkllZRayYnlRjgkToIkIzdkHDjRDIeRL5wwYEdJrB1w0JxdNqujr416q_bJ73T6rqL26jEQ00bpVLyZUNHRLQAoMSPBfqRG90ZoskDgCL0dafV6c_S609OJ1e1yrXzIB0WYEAR6fg8VfnWE9yl-O2AuahsPKdRaFa01cckZZb-pja4v8MHF2h-z89mopRhkLziTc-Krf1B1Wdz52lZ0vsZPBK9PBJUp-FA2-pCzWn3-dMrKI2tSzDmhU8aXxz-qSfykgKh5WNQ8LAqYmodFzcNSlfCX8ldT_q_5AcKOwec |
CitedBy_id | crossref_primary_10_1016_j_geodrs_2023_e00729 crossref_primary_10_1007_s11104_024_06912_3 crossref_primary_10_1016_j_jenvman_2024_121656 crossref_primary_10_1038_d41586_022_02106_y crossref_primary_10_3390_f15020341 crossref_primary_10_1111_gcb_16501 crossref_primary_10_1002_eap_2951 crossref_primary_10_1038_s43016_023_00890_y crossref_primary_10_1016_j_fecs_2024_100257 crossref_primary_10_1016_j_heliyon_2024_e40128 crossref_primary_10_1111_pce_15169 crossref_primary_10_1007_s11104_023_06089_1 crossref_primary_10_1016_j_soilbio_2024_109387 crossref_primary_10_1038_s43016_024_00952_9 crossref_primary_10_3390_agronomy14010200 crossref_primary_10_1038_s43017_024_00603_4 crossref_primary_10_1111_nph_20150 crossref_primary_10_3390_land13122204 crossref_primary_10_1016_j_catena_2024_108145 crossref_primary_10_1016_j_catena_2024_108266 crossref_primary_10_1038_s43247_025_02021_w crossref_primary_10_1016_j_envexpbot_2023_105641 crossref_primary_10_1016_j_scitotenv_2022_157748 crossref_primary_10_1111_ejss_13448 crossref_primary_10_1007_s42729_023_01390_5 crossref_primary_10_1016_j_jes_2025_03_009 crossref_primary_10_1111_nph_19513 crossref_primary_10_5194_bg_20_4147_2023 crossref_primary_10_1007_s10668_023_03489_2 crossref_primary_10_1007_s10661_023_11175_z crossref_primary_10_1016_j_scitotenv_2022_157277 crossref_primary_10_1016_j_soilbio_2023_109158 crossref_primary_10_1016_j_geodrs_2023_e00721 crossref_primary_10_1002_jaa2_145 crossref_primary_10_1007_s42773_024_00415_1 crossref_primary_10_3389_fevo_2023_1073842 crossref_primary_10_1016_j_oneear_2024_07_020 crossref_primary_10_1016_j_catena_2022_106037 crossref_primary_10_1016_j_catena_2023_107302 crossref_primary_10_1007_s10533_024_01187_3 crossref_primary_10_1007_s11104_025_07253_5 crossref_primary_10_1038_s41561_023_01240_0 crossref_primary_10_1016_j_chemosphere_2024_142699 crossref_primary_10_1016_j_scitotenv_2024_170890 crossref_primary_10_1016_j_ecoinf_2024_102990 crossref_primary_10_1126_sciadv_adm7773 crossref_primary_10_1016_j_scitotenv_2024_175543 crossref_primary_10_1016_j_catena_2023_107193 crossref_primary_10_1016_j_jenvman_2025_124744 crossref_primary_10_3390_f14081665 crossref_primary_10_1007_s11104_024_06661_3 crossref_primary_10_1016_j_agee_2023_108483 crossref_primary_10_1038_s41558_025_02273_6 crossref_primary_10_1016_j_agrformet_2022_109165 crossref_primary_10_1111_1440_1703_12414 crossref_primary_10_1007_s11104_023_06180_7 crossref_primary_10_1016_j_apsoil_2023_105074 crossref_primary_10_1016_j_scitotenv_2023_165020 crossref_primary_10_3390_f13060905 crossref_primary_10_1016_j_scitotenv_2024_172524 crossref_primary_10_1007_s10342_023_01551_2 crossref_primary_10_1007_s11356_023_30555_z crossref_primary_10_1071_SR24118 crossref_primary_10_1038_s41561_022_01105_y crossref_primary_10_1007_s11104_023_06001_x crossref_primary_10_1016_j_catena_2022_106409 crossref_primary_10_1111_ejss_70033 crossref_primary_10_1098_rstb_2023_0355 crossref_primary_10_1016_j_apsoil_2025_105938 crossref_primary_10_1007_s11104_024_07035_5 crossref_primary_10_1016_j_soilbio_2022_108826 crossref_primary_10_1007_s10533_023_01029_8 crossref_primary_10_1016_j_pedsph_2024_06_012 crossref_primary_10_1007_s12517_023_11823_1 crossref_primary_10_1016_j_csr_2025_105450 crossref_primary_10_5194_gmd_16_4113_2023 crossref_primary_10_1093_nsr_nwad242 crossref_primary_10_1007_s11104_023_06075_7 crossref_primary_10_1029_2022JG006795 crossref_primary_10_3390_rs14194929 crossref_primary_10_1016_j_oneear_2024_11_001 crossref_primary_10_1016_j_still_2023_105809 crossref_primary_10_1038_s41597_023_02751_6 crossref_primary_10_1111_gcb_16478 crossref_primary_10_3390_land13060882 crossref_primary_10_1007_s11104_022_05405_5 crossref_primary_10_5194_essd_16_715_2024 crossref_primary_10_1007_s10265_024_01533_4 crossref_primary_10_1016_j_catena_2025_108732 crossref_primary_10_1016_j_scitotenv_2022_158706 |
Cites_doi | 10.5194/essd-13-5337-2021 10.1890/11-1927.1 10.5194/gmd-8-4045-2015 10.1126/science.1098778 10.1146/annurev.energy.25.1.53 10.1007/s10533-016-0247-z 10.1111/geb.12190 10.1016/j.geoderma.2017.09.036 10.1371/journal.pone.0169748 10.1111/gcb.14093 10.5194/bg-11-1667-2014 10.1007/s10533-016-0274-9 10.1038/s41467-018-05731-2 10.1088/1748-9326/10/1/014001 10.1029/2020MS002123 10.1890/07-1739.1 10.1016/0016-7061(76)90066-5 10.1007/978-3-319-44327-0_1 10.1002/ldr.3345 10.1111/nph.13521 10.1038/ngeo2413 10.1038/s41467-020-18326-7 10.5194/bg-9-3547-2012 10.1007/s10533-007-9132-0 10.1002/2016EF000472 10.1890/08-0127.1 10.1111/nph.14119 10.1890/08-0588.1 10.1186/1471-2105-9-307 10.1002/2014GL059471 10.1890/11-1013.1 10.1111/sum.12192 10.1007/s11104-012-1490-2 10.1038/s41467-020-18451-3 10.5194/gmd-10-3745-2017 10.1007/s11676-017-0519-z 10.1111/j.1365-2389.2010.01286.x 10.5194/bg-10-2525-2013 10.1038/s41559-020-01323-w 10.1007/s10021-013-9690-z 10.1016/j.scitotenv.2015.09.119 10.1016/bs.agron.2018.11.005 10.1002/2016MS000686 10.5194/bg-15-4575-2018 10.1007/s10533-015-0178-0 10.5194/bg-7-2025-2010 10.1038/s41561-019-0404-9 10.1111/gcb.13618 10.5194/bg-13-2493-2016 10.1111/ele.13761 10.1007/s10533-010-9466-x 10.1088/1748-9326/abed78 10.1038/ngeo2516 10.1111/gcb.15154 10.1007/s13595-018-0727-5 10.1016/0016-7061(85)90001-1 10.1111/geb.12029 10.1007/s004420051020 10.5194/bg-7-2261-2010 10.1029/2004GB002296 10.1111/j.1461-0248.2007.01113.x 10.1073/pnas.0403588101 10.1016/j.catena.2010.05.010 10.1038/s41467-020-14492-w 10.2134/jeq2012.0224 10.1002/2013MS000293 10.1073/pnas.1315667111 10.1007/s10533-013-9946-x 10.1029/2011GL049244 10.1007/s10021-012-9612-5 10.5194/essd-2021-166 10.1038/sdata.2018.166 10.1016/0016-7061(94)00023-4 10.1038/s41467-020-18321-y 10.1016/j.geoderma.2019.113912 10.1007/s10533-020-00700-8 10.1016/S0378-1127(97)00256-9 10.1016/j.catena.2018.07.006 10.1111/gcb.13691 10.1007/s11104-013-1823-9 10.1007/s10705-017-9870-x 10.1016/j.geoderma.2009.01.021 10.1016/j.catena.2015.02.015 10.32614/CRAN.package.quantregForest 10.1007/s00442-011-2185-8 10.1016/j.geoderma.2020.114707 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 Copernicus GmbH 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
Copyright_xml | – notice: COPYRIGHT 2021 Copernicus GmbH – notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
DBID | AAYXX CITATION ISR 7SN 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 1XC VOOES DOA |
DOI | 10.5194/essd-13-5831-2021 |
DatabaseName | CrossRef Gale In Context: Science Ecology Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Continental Europe Database (ProQuest) Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1866-3516 |
EndPage | 5846 |
ExternalDocumentID | oai_doaj_org_article_2bf91120cb0e4b2ca4c6a09e15e14db2 oai_HAL_insu_03660145v1 A687465372 10_5194_essd_13_5831_2021 |
GroupedDBID | 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABJCF ABUWG ACIWK ACPRK ACUHS ADBBV AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION ESX GROUPED_DOAJ H13 HCIFZ IAO IEA IGS ISR ITC KQ8 L6V LK5 M7R M7S OK1 PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS Q2X RKB RNS TR2 TUS ZBA BBORY PMFND 7SN 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W H8D H96 KL. L.G L7M PKEHL PQEST PQGLB PQUKI PRINS 1XC C1A IPNFZ RIG VOOES PUEGO |
ID | FETCH-LOGICAL-c584t-5f61162efe77d72722d750d5c6fe0f7170b5c0b850a3e8b59f6c1db70dd8e8a53 |
IEDL.DBID | 8FG |
ISSN | 1866-3516 1866-3508 |
IngestDate | Wed Aug 27 01:10:49 EDT 2025 Wed Aug 13 07:45:31 EDT 2025 Fri Jul 25 19:05:29 EDT 2025 Tue Jun 17 21:58:15 EDT 2025 Tue Jun 10 20:58:53 EDT 2025 Fri Jun 27 05:16:32 EDT 2025 Tue Jul 01 02:14:37 EDT 2025 Thu Apr 24 23:05:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c584t-5f61162efe77d72722d750d5c6fe0f7170b5c0b850a3e8b59f6c1db70dd8e8a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4202-8071 0000-0001-9246-9671 0000-0002-4614-6203 0000-0003-4864-2347 0000-0001-8405-1304 0000-0002-5573-607X 0000-0002-5012-2589 0000-0002-7049-6000 |
OpenAccessLink | https://www.proquest.com/docview/2611575323?pq-origsite=%requestingapplication% |
PQID | 2611575323 |
PQPubID | 105729 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2bf91120cb0e4b2ca4c6a09e15e14db2 hal_primary_oai_HAL_insu_03660145v1 proquest_journals_2611575323 gale_infotracmisc_A687465372 gale_infotracacademiconefile_A687465372 gale_incontextgauss_ISR_A687465372 crossref_citationtrail_10_5194_essd_13_5831_2021 crossref_primary_10_5194_essd_13_5831_2021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-20 |
PublicationDateYYYYMMDD | 2021-12-20 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Earth system science data |
PublicationYear | 2021 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref96 ref11 ref10 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref78 ref75 ref74 ref77 ref76 ref2 ref1 ref71 ref70 ref73 ref72 ref68 ref67 ref69 ref64 ref63 ref66 ref65 ref60 ref62 ref61 |
References_xml | – ident: ref97 doi: 10.5194/essd-13-5337-2021 – ident: ref45 doi: 10.1890/11-1927.1 – ident: ref12 doi: 10.5194/gmd-8-4045-2015 – ident: ref87 doi: 10.1126/science.1098778 – ident: ref72 doi: 10.1146/annurev.energy.25.1.53 – ident: ref76 doi: 10.1007/s10533-016-0247-z – ident: ref51 doi: 10.1111/geb.12190 – ident: ref57 doi: 10.1016/j.geoderma.2017.09.036 – ident: ref40 doi: 10.1371/journal.pone.0169748 – ident: ref41 doi: 10.1111/gcb.14093 – ident: ref94 doi: 10.5194/bg-11-1667-2014 – ident: ref53 – ident: ref1 doi: 10.1007/s10533-016-0274-9 – ident: ref38 doi: 10.1038/s41467-018-05731-2 – ident: ref83 doi: 10.1088/1748-9326/10/1/014001 – ident: ref85 doi: 10.1029/2020MS002123 – ident: ref61 doi: 10.1890/07-1739.1 – ident: ref50 – ident: ref47 – ident: ref81 doi: 10.1016/0016-7061(76)90066-5 – ident: ref55 doi: 10.1007/978-3-319-44327-0_1 – ident: ref52 doi: 10.1002/ldr.3345 – ident: ref16 – ident: ref64 doi: 10.1111/nph.13521 – ident: ref3 – ident: ref89 doi: 10.1038/ngeo2413 – ident: ref4 doi: 10.1038/s41467-020-18326-7 – ident: ref33 doi: 10.5194/bg-9-3547-2012 – ident: ref19 doi: 10.1007/s10533-007-9132-0 – ident: ref29 – ident: ref75 doi: 10.1002/2016EF000472 – ident: ref80 doi: 10.1890/08-0127.1 – ident: ref25 doi: 10.1111/nph.14119 – ident: ref46 doi: 10.1890/08-0588.1 – ident: ref74 doi: 10.1186/1471-2105-9-307 – ident: ref34 doi: 10.1002/2014GL059471 – ident: ref11 doi: 10.1890/11-1013.1 – ident: ref24 doi: 10.1111/sum.12192 – ident: ref62 doi: 10.1007/s11104-012-1490-2 – ident: ref23 doi: 10.1038/s41467-020-18451-3 – ident: ref63 – ident: ref35 doi: 10.5194/gmd-10-3745-2017 – ident: ref91 doi: 10.1007/s11676-017-0519-z – ident: ref8 doi: 10.1111/j.1365-2389.2010.01286.x – ident: ref93 doi: 10.5194/bg-10-2525-2013 – ident: ref88 doi: 10.1038/s41559-020-01323-w – ident: ref79 doi: 10.1007/s10021-013-9690-z – ident: ref78 doi: 10.1016/j.scitotenv.2015.09.119 – ident: ref7 doi: 10.1016/bs.agron.2018.11.005 – ident: ref69 doi: 10.1002/2016MS000686 – ident: ref22 doi: 10.5194/bg-15-4575-2018 – ident: ref5 – ident: ref20 – ident: ref2 doi: 10.1007/s10533-015-0178-0 – ident: ref14 doi: 10.5194/bg-7-2025-2010 – ident: ref31 doi: 10.1038/s41561-019-0404-9 – ident: ref66 doi: 10.1111/gcb.13618 – ident: ref13 doi: 10.5194/bg-13-2493-2016 – ident: ref44 doi: 10.1111/ele.13761 – ident: ref77 doi: 10.1007/s10533-010-9466-x – ident: ref86 doi: 10.1088/1748-9326/abed78 – ident: ref28 doi: 10.1038/ngeo2516 – ident: ref73 doi: 10.1111/gcb.15154 – ident: ref48 doi: 10.1007/s13595-018-0727-5 – ident: ref71 doi: 10.1016/0016-7061(85)90001-1 – ident: ref90 doi: 10.1111/geb.12029 – ident: ref49 doi: 10.1007/s004420051020 – ident: ref84 doi: 10.5194/bg-7-2261-2010 – ident: ref95 doi: 10.1029/2004GB002296 – ident: ref30 doi: 10.1111/j.1461-0248.2007.01113.x – ident: ref65 doi: 10.1073/pnas.0403588101 – ident: ref27 doi: 10.1016/j.catena.2010.05.010 – ident: ref43 doi: 10.1038/s41467-020-14492-w – ident: ref6 doi: 10.2134/jeq2012.0224 – ident: ref68 doi: 10.1002/2013MS000293 – ident: ref36 doi: 10.1073/pnas.1315667111 – ident: ref32 doi: 10.1007/s10533-013-9946-x – ident: ref96 doi: 10.1029/2011GL049244 – ident: ref54 doi: 10.1007/s10021-012-9612-5 – ident: ref37 doi: 10.5194/essd-2021-166 – ident: ref42 doi: 10.1038/sdata.2018.166 – ident: ref21 doi: 10.1016/0016-7061(94)00023-4 – ident: ref60 doi: 10.1038/s41467-020-18321-y – ident: ref10 doi: 10.1016/j.geoderma.2019.113912 – ident: ref67 doi: 10.1007/s10533-020-00700-8 – ident: ref92 doi: 10.1016/S0378-1127(97)00256-9 – ident: ref18 doi: 10.1016/j.catena.2018.07.006 – ident: ref9 doi: 10.1111/gcb.13691 – ident: ref15 doi: 10.1007/s11104-013-1823-9 – ident: ref39 doi: 10.1007/s10705-017-9870-x – ident: ref82 doi: 10.1016/j.geoderma.2009.01.021 – ident: ref17 doi: 10.1016/j.catena.2015.02.015 – ident: ref58 doi: 10.32614/CRAN.package.quantregForest – ident: ref59 – ident: ref26 doi: 10.1007/s00442-011-2185-8 – ident: ref56 – ident: ref70 doi: 10.1016/j.geoderma.2020.114707 |
SSID | ssj0064175 |
Score | 2.5543523 |
Snippet | Soil represents the largest phosphorus (P) stock in terrestrial
ecosystems. Determining the amount of soil P is a critical first step in
identifying sites... Soil represents the largest phosphorus (P) stock in terrestrial ecosystems. Determining the amount of soil P is a critical first step in identifying sites... |
SourceID | doaj hal proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 5831 |
SubjectTerms | Age Analysis Annual temperatures Automobile drivers Availability Carbon content Climate change Climatic conditions Constraint modelling Ecological function Mean Organic carbon Phosphorus Predictions Regions Sciences of the Universe Soil Soil conditions Soil formation Soil maps Soil temperature Soils Stocks Subsoils Terrestrial ecosystems Topography Topsoil Vegetation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9UwEA66IHiRdVV87lOCCoJQNkmTtD2-FXefoh7Uhb2F_HSFpV1e-wT_e2fSvof1oBcPvbRTaL7OTGbIzDeEvEzKxRi1K3zyrJB1ApOKQhUNpBeNw5A-zzr8-EmvL-T7S3X526gvrAkb6YFH4E6ES2CPgnnHonTCW-m1ZU3kKnIZXPa-sOftkqnRB2vJM8UusrkVJcQg43kmRCvyBBxIKHiJ7UYcdETw2Y6Uifv37vn2FVZH_uGk885zdkjuTSEjXY2fep_ciu0RuXOeR_L-fEBOR9p-epOZMtue2jbQsMn1FrRLtO--X9OhG1Dkquvh2mx76rFdsZ04cx-Si7O3X9-si2kyQuEhYBgKlTTnWsQUqyrgUaoIsPMH5XWKLEGGxpzyzNWK2TLWTjVJex5cxUKoY21V-YgctF0bHxMaASzfWK-kdLKpoq2T0Eo4L8ukXVUvCNuhY_xEG47TK64NpA8IqEFADS8NAmoQ0AV5vX_lZuTM-JvwKUK-F0S663wDlMBMSmD-pQQL8hx_mEFCixYrZr7Zbd-bd18-m5WuK-SQq0Do1SSUOliBt1MDAuCAHFgzyeVMEizOzx6_AL2YffF69cFg84CBgEDjSe0PWNhypzdm8gu9gXyVQ4BcivLJ_1j3MbmLGGJ5jWBLcjBstvEpBEmDe5bt4Rd9jwsu priority: 102 providerName: Directory of Open Access Journals |
Title | Global patterns and drivers of soil total phosphorus concentration |
URI | https://www.proquest.com/docview/2611575323 https://insu.hal.science/insu-03660145 https://doaj.org/article/2bf91120cb0e4b2ca4c6a09e15e14db2 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEA7eHYIv4k9cXZeigiCUS9MkbZ9kq7e3ih5yenBvofl1Jxztuu0K_vfOZLMr9eEeSqGdQvt1MvmSTL4h5I0X2jkndWq8oSkvPTQpx0RawfCi0kjpQ63Dr2dyecE_X4rLOOHWx7TKXUwMgdp2BufIj4HpZ0Atcpa_X_1KsWoUrq7GEhoH5CiDngY9vFyc7iKx5FkQ2kVNtzQHJrJd1QTOwo8hjNg0y3HTUQaewrJRvxTk-_dB-uAacyT_C9Wh_1k8IPcjcUzm2z_9kNxx7SNy9zQU5v3zmNRb8f5kFfQy2z5pWpvYdci6SDqf9N3Pm2ToBjS57no41ps-MbhpsY3KuU_IxeLkx4dlGusjpAZow5AKD5hI5rwrCosLqsxC_2-Fkd5RD-M0qoWhuhS0yV2pReWlyawuqLWlKxuRPyWHbde6ZyRxAJapGiM417wqXFN6JgXThude6qKcELpDR5koHo41LG4UDCIQUIWAqixXCKhCQCfk3f6R1VY54zbjGiHfG6LodbjQra9UbEOKaQ-hmVGjqeOamYYb2dDKZcJl3Go2Ia_whymUtWgxb-aq2fS9-vT9XM1lWaCSXAFGb6OR7-ALTBO3IQAOqIQ1spyOLKHdmdHt1-AXozdezr8o3EKggBZIXK_9DR823fmNitGhV_98-fntt1-Qe4gOps8wOiWHw3rjXgIJGvQsePqMHM3rj_UCzvXJ2bfzWZhS-Au02gYJ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELbKVgguvBELC0Q8hISU1nFiJzlw2AWWXbpbCWjV3kz8ahFVUm2yoPJX-Cv8OGbyWLQ99FaJQy7xWIrtzzPjeOYbQl44rqy1QvnaaepHiYMtZRn3UzhepApd-rrW4XxXTPajj4f8cIP87nJhMKyy04m1ojaFxn_k2-DpB-BahKyrVL1jz37C-ax8M30Hi_mSsfH7vbcTvy0h4GuwrJXPHXQTzDobxwbvHJkBE2m4Fs5SB0cZqrimKuE0C22ieOqEDoyKqTGJTTIsCQH6fTNBO9wjm6Px_NNBp-hFFNQ8vkgZ54fg6DSXpuASRdugpYwfhJjTFAAQWbBm9urqACsbcOUYQzDPWYLavI1vkj_dxDRRLd-3lpXa0r_OcUb-pzN3i9xo3Wpv2OyD22TD5nfI1Q912eKzu2TUlDbwTms20bz0stx4ZlHHpHiF88ri24lXFRWKHBclPItl6WlM6cxbXuF7ZP9SBnCf9PIitw-IZ2GtdZppHkUqSmObJY4JzpSOQidUnPQJ7RZX6pZaHSt8nEg4YiEeJOJBBqFEPEjEQ5-8XnU5bXhFLhIeIWJWgkgJXr8oFkey1TCSKQeGi1GtqI0U01mkRUZTG3AbREaxPnmGeJNI-pFjVNFRtixLOf3yWQ5FEiPPXgxCr1ohV8AIdNYmacA8IE_YmuRgTRK0kl5rfg6wXvviyXAmMcFCgtMk8Db7Bwxs0EFWtrqzlP_w-vDi5qfk2mRvPpOz6e7OI3IdZwoDjRgdkF61WNrH4C5W6km7bT3y9bLx_hcrRXSW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIhAXxFMEAlg8hIRkZb3eXdsHhFJKmtBSIaBSb1vvq0Wq7BA7oP41fh0zfgSZQ2895BJPovjzzM5sdub7CHnlhXbOSR0ab2jIUw8h5ZgIM9heZBpL-kbr8POhnB_xT8fieIv86WdhsK2yXxObhdqWBv8jn0ClH0FpEbN44ru2iC-7s_fLnyEqSOFJay-n0brIvrv4Ddu36t1iF571a8ZmH79_mIedwkBoIPHWofDwrZI575LE4pEks5BBrTDSO-php0O1MFSnguaxS7XIvDSR1Qm1NnVpjooRsPxfT-KUonpCOtvrs4DkUUPyi3xyYQxVUHuiCvUSn8ASZsMoxoGnCLyURYOc2EgHbBLEtTPsz_wvTTS5b3aH3O6K1mDaetldsuWKe-TGXiMKfHGf7LTCAcGy4eosqiAvbGBXTcdHUPqgKn-cB3VZo8lZWcFrta4CgwOTRcfa-4AcXQlyD8l2URbuEQkcgGWy3AjONc8Sl6eeScG04bGXOklHhPboKNMRl6N-xrmCDQwCqhBQFcUKAVUI6Ii83Xxk2bJ2XGa8g5BvDJFwu3mjXJ2qLn4V0x7SAqNGU8c1Mzk3MqeZi4SLuNVsRF7gA1NIqVGgc57m66pSi29f1VSmCbLYJWD0pjPyJdyBybsRCMABWbgGluOBJcS8GVx-CX4x-MXz6YHC8QUFJYnEs-JfcGPj3m9UtzJV6l8cPb788nNyEwJMHSwO95-QWwgUdvEwOibb9WrtnkItVutnjdMH5OSqo-wvsApDWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+patterns+and+drivers+of+soil+total+phosphorus+concentration&rft.jtitle=Earth+system+science+data&rft.au=He%2C+Xianjin&rft.au=Augusto%2C+Laurent&rft.au=Goll%2C+Daniel+S&rft.au=Ringeval%2C+Bruno&rft.date=2021-12-20&rft.pub=Copernicus+GmbH&rft.issn=1866-3508&rft.volume=13&rft.issue=12&rft.spage=5831&rft_id=info:doi/10.5194%2Fessd-13-5831-2021&rft.externalDocID=A687465372 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-3516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-3516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-3516&client=summon |