Mixed state entanglement for holographic axion model
We study the mixed state entanglement in a holographic axion model. We find that the holographic entanglement entropy (HEE), mutual information (MI) and entanglement of purification (EoP) exhibit very distinct behaviors with system parameters. The HEE exhibits universal monotonic behavior with syste...
Saved in:
Published in | The European physical journal. C, Particles and fields Vol. 80; no. 5; pp. 1 - 12 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2020
Springer Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study the mixed state entanglement in a holographic axion model. We find that the holographic entanglement entropy (HEE), mutual information (MI) and entanglement of purification (EoP) exhibit very distinct behaviors with system parameters. The HEE exhibits universal monotonic behavior with system parameters, while the behaviors of MI and EoP relate to the specific system parameters and configurations. We find that MI and EoP can characterize mixed state entanglement better than HEE since they are less affected by thermal effects. Specifically, the MI partly cancels out the thermal entropy contribution, while the holographic EoP is not dictated by the thermal entropy in any situation. Moreover, we argue that EoP is more suitable for describing mixed state entanglement than MI. Because the MI of large configurations are still dictated by the thermal entropy, while the EoP will never be controlled only by the thermal effects. |
---|---|
AbstractList | We study the mixed state entanglement in a holographic axion model. We find that the holographic entanglement entropy (HEE), mutual information (MI) and entanglement of purification (EoP) exhibit very distinct behaviors with system parameters. The HEE exhibits universal monotonic behavior with system parameters, while the behaviors of MI and EoP relate to the specific system parameters and configurations. We find that MI and EoP can characterize mixed state entanglement better than HEE since they are less affected by thermal effects. Specifically, the MI partly cancels out the thermal entropy contribution, while the holographic EoP is not dictated by the thermal entropy in any situation. Moreover, we argue that EoP is more suitable for describing mixed state entanglement than MI. Because the MI of large configurations are still dictated by the thermal entropy, while the EoP will never be controlled only by the thermal effects. Abstract We study the mixed state entanglement in a holographic axion model. We find that the holographic entanglement entropy (HEE), mutual information (MI) and entanglement of purification (EoP) exhibit very distinct behaviors with system parameters. The HEE exhibits universal monotonic behavior with system parameters, while the behaviors of MI and EoP relate to the specific system parameters and configurations. We find that MI and EoP can characterize mixed state entanglement better than HEE since they are less affected by thermal effects. Specifically, the MI partly cancels out the thermal entropy contribution, while the holographic EoP is not dictated by the thermal entropy in any situation. Moreover, we argue that EoP is more suitable for describing mixed state entanglement than MI. Because the MI of large configurations are still dictated by the thermal entropy, while the EoP will never be controlled only by the thermal effects. |
ArticleNumber | 426 |
Audience | Academic |
Author | Shi, Zi-jian Liu, Peng Zhang, Cheng-yong Niu, Chao Huang, Yi-fei |
Author_xml | – sequence: 1 givenname: Yi-fei surname: Huang fullname: Huang, Yi-fei organization: Department of Physics and Siyuan Laboratory, Jinan University – sequence: 2 givenname: Zi-jian surname: Shi fullname: Shi, Zi-jian organization: Department of Physics and Siyuan Laboratory, Jinan University – sequence: 3 givenname: Chao surname: Niu fullname: Niu, Chao organization: Department of Physics and Siyuan Laboratory, Jinan University – sequence: 4 givenname: Cheng-yong surname: Zhang fullname: Zhang, Cheng-yong organization: Department of Physics and Siyuan Laboratory, Jinan University – sequence: 5 givenname: Peng orcidid: 0000-0002-8539-5501 surname: Liu fullname: Liu, Peng email: phylp@jnu.edu.cn organization: Department of Physics and Siyuan Laboratory, Jinan University |
BookMark | eNqFkUFr3DAQhUVJoUnav1AMPfXgRJLHlg29hNC0CymBJD2LWXnsaPFaW8kLu_--47qkpJegg8TwvqeZeWfiZAwjCfFRyQulQF7SbuMuk5Ky1LnUMjeNVvnxjThVUEBecfnk-Q3wTpyltJFSapD1qYAf_kBtliacKKNxwrEfaMuPrAsxewpD6CPunrzL8ODDmG1DS8N78bbDIdGHv_e5-Hnz9fH6e3579211fXWbu7KGKQeNJRSuKnSNspXYmaZ1ILEkU7ma2jV0ksxaN42WRI2R4BoqCKmudDFz52K1-LYBN3YX_Rbj0Qb09k8hxN5inLwbyGIhHTPF2pABVFCXqgO3rrCuVA1tx16fFq9dDL_2lCa7Cfs4cvuWN1FoUEo3rLpYVD2yqR-7MEV0fFraesd77zzXrypGTGFgbvHzC4A1Ex2mHvcp2dXD_UtttWhdDClF6p5HUtLOUdo5SrtEaTlKO0dpjwx--Q90ngPjPLg7P7yOmwVP_N_YU_w3-ivkb7-9uLk |
CitedBy_id | crossref_primary_10_1007_JHEP09_2023_105 crossref_primary_10_1007_JHEP04_2022_014 crossref_primary_10_1140_epjc_s10052_024_12521_2 crossref_primary_10_1007_JHEP11_2024_138 crossref_primary_10_1103_PhysRevD_104_026016 crossref_primary_10_1007_JHEP08_2021_113 crossref_primary_10_1103_PhysRevD_104_046017 crossref_primary_10_1007_JHEP06_2022_078 crossref_primary_10_1007_s11433_021_1681_8 crossref_primary_10_1007_JHEP06_2024_020 crossref_primary_10_1007_JHEP04_2023_110 crossref_primary_10_1007_JHEP02_2022_037 crossref_primary_10_1140_epjc_s10052_025_13797_8 crossref_primary_10_1016_j_nuclphysb_2023_116212 crossref_primary_10_1007_JHEP03_2024_141 crossref_primary_10_1007_JHEP08_2020_078 crossref_primary_10_1103_PhysRevD_102_126026 crossref_primary_10_1007_JHEP01_2025_025 crossref_primary_10_1007_JHEP05_2021_149 |
Cites_doi | 10.1063/1.1498001 10.1103/PhysRevD.93.086006 10.1103/PhysRevLett.117.091601 10.1088/1126-6708/2008/10/065 10.1088/1126-6708/2007/01/090 10.1016/j.physletb.2019.134934 10.1103/RevModPhys.81.865 10.1103/PhysRevD.97.106018 10.1093/ptep/pty063 10.1038/416608a 10.1088/1126-6708/2008/07/097 10.1007/JHEP11(2019)039 10.1103/PhysRevD.87.126012 10.1007/JHEP03(2017)170 10.1007/JHEP10(2015)112 10.1007/JHEP02(2016)114 10.1007/JHEP08(2016)106 10.1038/nphys2701 10.1103/PhysRevA.65.032314 10.1103/PhysRevLett.116.191301 10.1103/PhysRevD.65.084014 10.1088/1126-6708/2007/07/062 10.1007/JHEP01(2019)114 10.1038/ncomms12472 10.1103/PhysRevD.81.046001 10.1103/PhysRevLett.96.110404 10.1038/nphys3174 10.1103/PhysRevLett.96.110405 10.1140/epjc/s10052-019-6696-5 10.1007/JHEP11(2016)028 10.1016/j.nuclphysb.2007.12.017 10.1007/JHEP01(2018)098 10.1007/JHEP10(2018)152 10.1103/PhysRevD.94.086014 10.1007/JHEP03(2014)067 10.1103/RevModPhys.80.517 10.1016/j.physletb.2017.03.010 10.1103/PhysRevLett.96.181602 10.1016/j.physletb.2019.07.035 10.1007/JHEP07(2018)034 10.1103/PhysRevD.91.024032 10.1007/JHEP08(2013)090 10.1007/JHEP01(2017)062 10.1007/JHEP12(2014)170 10.1103/PhysRevLett.122.141601 10.1007/JHEP10(2017)025 10.1016/j.nuclphysb.2017.01.010 10.1103/PhysRevLett.114.251602 10.1007/JHEP04(2019)146 10.1007/JHEP05(2014)101 10.1140/epjc/s10052-018-6140-2 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 COPYRIGHT 2020 Springer The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2020 Springer – notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION ISR 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1140/epjc/s10052-020-7921-y |
DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Aerospace Database SciTech Premium Advanced Technologies Database with Aerospace ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1434-6052 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_a30c33c3b7e74a14851f4cb6a86184df A624073746 10_1140_epjc_s10052_020_7921_y |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11805083; 11847055 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 11905083 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -5F -5G -A0 -BR -Y2 -~X .86 0R~ 199 1SB 29G 29Q 2JY 2P1 30V 4.4 408 409 40D 5GY 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95. 95~ AAFWJ AAKKN ABDBF ABEEZ ABMNI ABQSL ABTEG ACACY ACGFS ACNCT ACUHS ACULB ADBBV ADINQ ADKPE ADMLS AENEX AFBBN AFFNX AFGXO AFKRA AFPKN AFWTZ AGJBK AGWIL AHSBF AHYZX AI. AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF AZFZN B0M BA0 BCNDV BENPR BGLVJ BGNMA C24 C6C CAG CCPQU COF CS3 CSCUP DL5 DU5 EAD EAP EAS EBS EJD EMK EPL ER. ESX FEDTE GQ6 GQ8 GROUPED_DOAJ GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HVGLF HZ~ H~9 I-F I09 IAO IGS IHE ISR IXC IZIGR IZQ I~X KDC KOV LAS M4Y MA- N2Q NB0 NU0 O9- O93 OK1 P62 P9T PIMPY PROAC PT5 QOS R89 R9I RED RID RNS ROL RPX RSV RZK S1Z S27 S3B SDH SOJ SPH SZN T13 TN5 TSK TSV TUC TUS U2A VC2 VH1 WK8 Z45 Z7Y ~8M AAYXX ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHWEU AIXLP CITATION PHGZM PHGZT PMFND 7U5 8FD ABUWG AZQEC DWQXO H8D L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c584t-42a543c6328a0d0af79dc40a5e76c8edb4f0e7b29920ee9704c9e3eae86233c63 |
IEDL.DBID | C24 |
ISSN | 1434-6044 |
IngestDate | Wed Aug 27 01:26:13 EDT 2025 Mon Jul 14 08:25:02 EDT 2025 Tue Jun 10 20:35:46 EDT 2025 Fri Jun 27 04:43:54 EDT 2025 Tue Jul 01 01:40:01 EDT 2025 Thu Apr 24 22:56:58 EDT 2025 Fri Feb 21 02:33:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c584t-42a543c6328a0d0af79dc40a5e76c8edb4f0e7b29920ee9704c9e3eae86233c63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8539-5501 |
OpenAccessLink | https://link.springer.com/10.1140/epjc/s10052-020-7921-y |
PQID | 2403241129 |
PQPubID | 2034659 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a30c33c3b7e74a14851f4cb6a86184df proquest_journals_2403241129 gale_infotracacademiconefile_A624073746 gale_incontextgauss_ISR_A624073746 crossref_primary_10_1140_epjc_s10052_020_7921_y crossref_citationtrail_10_1140_epjc_s10052_020_7921_y springer_journals_10_1140_epjc_s10052_020_7921_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200500 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 5 year: 2020 text: 20200500 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Particles and Fields |
PublicationTitle | The European physical journal. C, Particles and fields |
PublicationTitleAbbrev | Eur. Phys. J. C |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
References | DongXNat. Commun.20167124722016NatCo...712472DarXiv:1601.06788 [hep-th] CaiRGPhys. Rev. D2002650840142002PhRvD..65h4014C1899200arXiv:hep-th/0109133 YangRQJeongHSNiuCKimKYJHEP201919041462019JHEP...04..146YarXiv:1902.07586 [hep-th] LevinMWenX-GPhys. Rev. Lett.200696111104052006PhRvL..96k0405L NguyenPDevakulTHalbaschMGZaletelMPSwingleBJHEP201818010982018JHEP...01..098NarXiv:1709.07424 [hep-th] GoutérauxBKiritsisELiWJJHEP201616041222016JHEP...04..122GarXiv:1602.01067 [hep-th] VidalGWernerRFPhys. Rev. A20026530323142002PhRvA..65c2314VarXiv:quant-ph/0102117 ZhangSJNucl. Phys. B20179163042017NuPhB.916..304ZarXiv:1608.03072 [hep-th] HubenyVERangamaniMTakayanagiTJHEP200707070622007JHEP...07..062HarXiv:0705.0016 [hep-th] AndradeTWithersBJHEP201414051012014JHEP...05..101AarXiv:1311.5157 [hep-th] HorodeckiRHorodeckiPHorodeckiMHorodeckiKRev. Mod. Phys.20098128652009RvMP...81..865H ChenBLiWMYangRQZhangCYZhangSJJHEP201818070342018JHEP...07..034CarXiv:1803.06680 [hep-th] H. Hirai, K. Tamaoka, T. Yokoya, PTEP 2018(6), 063B03 (2018). arXiv:1803.10539 [hep-th] LingYLiuYZhangCYEur. Phys. J. C20197931942019EPJC...79..194LarXiv:1808.10169 [hep-th] BaggioliMPujolasOPhys. Rev. Lett.2015114252516022015PhRvL.114y1602B10.1103/PhysRevLett.114.251602arXiv:1411.1003 [hep-th] BrownARRobertsDASusskindLSwingleBZhaoYPhys. Rev. D20169380860062016PhRvD..93h6006B3550969arXiv:1512.04993 [hep-th] ChapmanSMarrochioHMyersRCJHEP201717010622017JHEP...01..062CarXiv:1610.08063 [hep-th] DavisonRAGoutérauxBHartnollSAJHEP201515101122015JHEP...10..112D10.1007/JHEP10(2015)112arXiv:1507.07137 [hep-th] BlakeMPhys. Rev. D20169480860142016PhRvD..94h6014B3737175arXiv:1604.01754 [hep-th] LiuPLingYNiuCWuJPJHEP201919090712019JHEP...09..071LarXiv:1902.02243 [hep-th] LingYLiuPWuJPJHEP201717100252017JHEP...10..025LarXiv:1610.02669 [hep-th] WuSFWangBGeXHTianYPhys. Rev. D201897101060182018PhRvD..97j6018W3886096arXiv:1702.08803 [hep-th] TerhalBMHorodeckiMLeungDWDiVincenzoDPJ. Math. Phys.2002439428642982002JMP....43.4286T1924438 LingYLiuPWuJPPhys. Lett. B20177682882017PhLB..768..288LarXiv:1610.07146 [hep-th] AmicoLFazioROsterlohAVedralVRev. Mod. Phys.2008805172008RvMP...80..517AarXiv:quant-ph/0703044 KimKYKimKKSeoYSinSJJHEP201414121702014JHEP...12..170K10.1007/JHEP12(2014)170arXiv:1409.8346 [hep-th] DongXLewkowyczARangamaniMJHEP201616110282016JHEP...11..028DarXiv:1607.07506 [hep-th] DonosAHartnollSANat. Phys.20139649arXiv:1212.2998 BlakeMPhys. Rev. Lett.201611790916012016PhRvL.117i1601BarXiv:1603.08510 [hep-th] GuoWZPhys. Lett. B20197971349344007274arXiv:1901.00330 [hep-th] LewkowyczAMaldacenaJJHEP201313080902013JHEP...08..090LarXiv:1304.4926 [hep-th] T. Takayanagi, K. Umemoto. arXiv:1708.09393 [hep-th] CaiRGHuYPPanQYZhangYLPhys. Rev. D20159120240322015PhRvD..91b4032C3413239arXiv:1409.2369 [hep-th] FischlerWKunduAKunduSPhys. Rev. D201387121260122013PhRvD..87l6012FarXiv:1212.4764 [hep-th] BrownARRobertsDASusskindLSwingleBZhaoYPhys. Rev. Lett.2016116191913012016PhRvL.116s1301BarXiv:1509.07876 [hep-th] KitaevAPreskillJPhys. Rev. Lett.200696111104042006PhRvL..96k0404K2214523 ZengXXLiLFAdv. High Energy Phys.201620166153435arXiv:1609.06535 [hep-th] RyuSTakayanagiTPhys. Rev. Lett.2006961816022006PhRvL..96r1602R2221050arXiv:hep-th/0603001 OsterlohAAmicoLFalciGFazioRNature20024166082002Natur.416..608OarXiv:quant-ph/0202029 LiuPNiuCWuJPPhys. Lett. B20197961552019PhLB..796..155L3983151arXiv:1905.06808 [hep-th] C.A. Agón, J. De Boer, J.F. Pedraza. arXiv:1811.08879 [hep-th] ShenkerSHStanfordDJHEP201414030672014JHEP...03..067SarXiv:1306.0622 [hep-th] SekinoYSusskindLJHEP200808100652008JHEP...10..065SarXiv:0808.2096 [hep-th] M. Ghodrati, X.M. Kuang, B. Wang, C.Y. Zhang, Y.T. Zhou. arXiv:1902.02475 [hep-th] PakmanAParnachevAJHEP200808070972008JHEP...07..097ParXiv:0805.1891 [hep-th] GubserSSRochaFDPhys. Rev. D2010810460012010PhRvD..81d6001G2659372arXiv:0911.2898 [hep-th] HartnollSANature Phys.201511542015NatPh..11...54H10.1038/nphys3174arXiv:1405.3651 [cond-mat.str-el] NishiokaTTakayanagiTJHEP200707010902007JHEP...01..090NarXiv:hep-th/0611035 YangRQZhangCYLiWMJHEP201919011142019JHEP...01..114Y10.1007/JHEP01(2019)114arXiv:1810.00420 [hep-th] LingYLiuYNiuCXiaoYZhangCYJHEP201919110392019JHEP...11..039LarXiv:1908.06432 [hep-th] TamaokaKPhys. Rev. Lett.2019122141416012019PhRvL.122n1601T10.1103/PhysRevLett.122.141601arXiv:1809.09109 [hep-th] BaggioliMGoutérauxBKiritsisELiWJJHEP201717031702017JHEP...03..170B10.1007/JHEP03(2017)170arXiv:1612.05500 [hep-th] UmemotoKZhouYJHEP201818101522018JHEP...10..152UarXiv:1805.02625 [hep-th] KlebanovIRKutasovDMuruganANucl. Phys. B20087962742008NuPhB.796..274KarXiv:0709.2140 [hep-th] EspíndolaRGuijosaAPedrazaJFEur. Phys. J. C20187886462018EPJC...78..646EarXiv:1804.05855 [hep-th] MaldacenaJShenkerSHStanfordDJHEP201616081062016JHEP...08..106MarXiv:1503.01409 [hep-th] AlberteLBaggioliMKhmelnitskyAPujolasOJHEP201616021142016JHEP...02..114A10.1007/JHEP02(2016)114arXiv:1510.09089 [hep-th] RQ Yang (7921_CR32) 2019; 1904 Y Ling (7921_CR33) 2019; 1911 X Dong (7921_CR8) 2016; 1611 S Ryu (7921_CR5) 2006; 96 K Tamaoka (7921_CR49) 2019; 122 RG Cai (7921_CR56) 2015; 91 Y Sekino (7921_CR18) 2008; 0810 Y Ling (7921_CR23) 2017; 1710 T Nishioka (7921_CR11) 2007; 0701 SA Hartnoll (7921_CR39) 2015; 11 A Pakman (7921_CR13) 2008; 0807 B Chen (7921_CR31) 2018; 1807 P Nguyen (7921_CR35) 2018; 1801 W Fischler (7921_CR44) 2013; 87 J Maldacena (7921_CR19) 2016; 1608 7921_CR34 M Levin (7921_CR3) 2006; 96 SH Shenker (7921_CR17) 2014; 1403 M Blake (7921_CR22) 2016; 94 M Baggioli (7921_CR36) 2015; 114 IR Klebanov (7921_CR12) 2008; 796 Y Ling (7921_CR24) 2017; 768 S Chapman (7921_CR29) 2017; 1701 A Osterloh (7921_CR1) 2002; 416 P Liu (7921_CR26) 2019; 796 A Kitaev (7921_CR4) 2006; 96 M Blake (7921_CR21) 2016; 117 RG Cai (7921_CR57) 2002; 65 AR Brown (7921_CR27) 2016; 93 L Alberte (7921_CR37) 2016; 1602 A Lewkowycz (7921_CR7) 2013; 1308 K Umemoto (7921_CR46) 2018; 1810 M Baggioli (7921_CR42) 2017; 1703 G Vidal (7921_CR9) 2002; 65 WZ Guo (7921_CR52) 2019; 797 T Andrade (7921_CR43) 2014; 1405 RQ Yang (7921_CR47) 2019; 1901 RA Davison (7921_CR41) 2015; 1510 BM Terhal (7921_CR45) 2002; 43 SS Gubser (7921_CR55) 2010; 81 7921_CR48 SJ Zhang (7921_CR14) 2017; 916 R Espíndola (7921_CR50) 2018; 78 L Amico (7921_CR2) 2008; 80 XX Zeng (7921_CR15) 2016; 2016 KY Kim (7921_CR40) 2014; 1412 VE Hubeny (7921_CR6) 2007; 0707 X Dong (7921_CR16) 2016; 7 7921_CR53 7921_CR51 SF Wu (7921_CR25) 2018; 97 AR Brown (7921_CR28) 2016; 116 R Horodecki (7921_CR10) 2009; 81 Y Ling (7921_CR30) 2019; 79 A Donos (7921_CR20) 2013; 9 B Goutéraux (7921_CR38) 2016; 1604 P Liu (7921_CR54) 2019; 1909 |
References_xml | – reference: H. Hirai, K. Tamaoka, T. Yokoya, PTEP 2018(6), 063B03 (2018). arXiv:1803.10539 [hep-th] – reference: BlakeMPhys. Rev. D20169480860142016PhRvD..94h6014B3737175arXiv:1604.01754 [hep-th] – reference: WuSFWangBGeXHTianYPhys. Rev. D201897101060182018PhRvD..97j6018W3886096arXiv:1702.08803 [hep-th] – reference: GuoWZPhys. Lett. B20197971349344007274arXiv:1901.00330 [hep-th] – reference: LevinMWenX-GPhys. Rev. Lett.200696111104052006PhRvL..96k0405L – reference: UmemotoKZhouYJHEP201818101522018JHEP...10..152UarXiv:1805.02625 [hep-th] – reference: LiuPLingYNiuCWuJPJHEP201919090712019JHEP...09..071LarXiv:1902.02243 [hep-th] – reference: C.A. Agón, J. De Boer, J.F. Pedraza. arXiv:1811.08879 [hep-th] – reference: LingYLiuPWuJPJHEP201717100252017JHEP...10..025LarXiv:1610.02669 [hep-th] – reference: ChapmanSMarrochioHMyersRCJHEP201717010622017JHEP...01..062CarXiv:1610.08063 [hep-th] – reference: SekinoYSusskindLJHEP200808100652008JHEP...10..065SarXiv:0808.2096 [hep-th] – reference: KlebanovIRKutasovDMuruganANucl. Phys. B20087962742008NuPhB.796..274KarXiv:0709.2140 [hep-th] – reference: ChenBLiWMYangRQZhangCYZhangSJJHEP201818070342018JHEP...07..034CarXiv:1803.06680 [hep-th] – reference: EspíndolaRGuijosaAPedrazaJFEur. Phys. J. C20187886462018EPJC...78..646EarXiv:1804.05855 [hep-th] – reference: TamaokaKPhys. Rev. Lett.2019122141416012019PhRvL.122n1601T10.1103/PhysRevLett.122.141601arXiv:1809.09109 [hep-th] – reference: PakmanAParnachevAJHEP200808070972008JHEP...07..097ParXiv:0805.1891 [hep-th] – reference: LewkowyczAMaldacenaJJHEP201313080902013JHEP...08..090LarXiv:1304.4926 [hep-th] – reference: TerhalBMHorodeckiMLeungDWDiVincenzoDPJ. Math. Phys.2002439428642982002JMP....43.4286T1924438 – reference: T. Takayanagi, K. Umemoto. arXiv:1708.09393 [hep-th] – reference: KitaevAPreskillJPhys. Rev. Lett.200696111104042006PhRvL..96k0404K2214523 – reference: M. Ghodrati, X.M. Kuang, B. Wang, C.Y. Zhang, Y.T. Zhou. arXiv:1902.02475 [hep-th] – reference: GoutérauxBKiritsisELiWJJHEP201616041222016JHEP...04..122GarXiv:1602.01067 [hep-th] – reference: AmicoLFazioROsterlohAVedralVRev. Mod. Phys.2008805172008RvMP...80..517AarXiv:quant-ph/0703044 – reference: DavisonRAGoutérauxBHartnollSAJHEP201515101122015JHEP...10..112D10.1007/JHEP10(2015)112arXiv:1507.07137 [hep-th] – reference: HubenyVERangamaniMTakayanagiTJHEP200707070622007JHEP...07..062HarXiv:0705.0016 [hep-th] – reference: BrownARRobertsDASusskindLSwingleBZhaoYPhys. Rev. D20169380860062016PhRvD..93h6006B3550969arXiv:1512.04993 [hep-th] – reference: CaiRGHuYPPanQYZhangYLPhys. Rev. D20159120240322015PhRvD..91b4032C3413239arXiv:1409.2369 [hep-th] – reference: NguyenPDevakulTHalbaschMGZaletelMPSwingleBJHEP201818010982018JHEP...01..098NarXiv:1709.07424 [hep-th] – reference: MaldacenaJShenkerSHStanfordDJHEP201616081062016JHEP...08..106MarXiv:1503.01409 [hep-th] – reference: AlberteLBaggioliMKhmelnitskyAPujolasOJHEP201616021142016JHEP...02..114A10.1007/JHEP02(2016)114arXiv:1510.09089 [hep-th] – reference: DonosAHartnollSANat. Phys.20139649arXiv:1212.2998 – reference: BaggioliMPujolasOPhys. Rev. Lett.2015114252516022015PhRvL.114y1602B10.1103/PhysRevLett.114.251602arXiv:1411.1003 [hep-th] – reference: HartnollSANature Phys.201511542015NatPh..11...54H10.1038/nphys3174arXiv:1405.3651 [cond-mat.str-el] – reference: LingYLiuPWuJPPhys. Lett. B20177682882017PhLB..768..288LarXiv:1610.07146 [hep-th] – reference: BrownARRobertsDASusskindLSwingleBZhaoYPhys. Rev. Lett.2016116191913012016PhRvL.116s1301BarXiv:1509.07876 [hep-th] – reference: HorodeckiRHorodeckiPHorodeckiMHorodeckiKRev. Mod. Phys.20098128652009RvMP...81..865H – reference: AndradeTWithersBJHEP201414051012014JHEP...05..101AarXiv:1311.5157 [hep-th] – reference: DongXNat. Commun.20167124722016NatCo...712472DarXiv:1601.06788 [hep-th] – reference: KimKYKimKKSeoYSinSJJHEP201414121702014JHEP...12..170K10.1007/JHEP12(2014)170arXiv:1409.8346 [hep-th] – reference: ZengXXLiLFAdv. High Energy Phys.201620166153435arXiv:1609.06535 [hep-th] – reference: LiuPNiuCWuJPPhys. Lett. B20197961552019PhLB..796..155L3983151arXiv:1905.06808 [hep-th] – reference: CaiRGPhys. Rev. D2002650840142002PhRvD..65h4014C1899200arXiv:hep-th/0109133 – reference: DongXLewkowyczARangamaniMJHEP201616110282016JHEP...11..028DarXiv:1607.07506 [hep-th] – reference: LingYLiuYZhangCYEur. Phys. J. C20197931942019EPJC...79..194LarXiv:1808.10169 [hep-th] – reference: OsterlohAAmicoLFalciGFazioRNature20024166082002Natur.416..608OarXiv:quant-ph/0202029 – reference: ZhangSJNucl. Phys. B20179163042017NuPhB.916..304ZarXiv:1608.03072 [hep-th] – reference: FischlerWKunduAKunduSPhys. Rev. D201387121260122013PhRvD..87l6012FarXiv:1212.4764 [hep-th] – reference: ShenkerSHStanfordDJHEP201414030672014JHEP...03..067SarXiv:1306.0622 [hep-th] – reference: YangRQJeongHSNiuCKimKYJHEP201919041462019JHEP...04..146YarXiv:1902.07586 [hep-th] – reference: NishiokaTTakayanagiTJHEP200707010902007JHEP...01..090NarXiv:hep-th/0611035 – reference: LingYLiuYNiuCXiaoYZhangCYJHEP201919110392019JHEP...11..039LarXiv:1908.06432 [hep-th] – reference: YangRQZhangCYLiWMJHEP201919011142019JHEP...01..114Y10.1007/JHEP01(2019)114arXiv:1810.00420 [hep-th] – reference: VidalGWernerRFPhys. Rev. A20026530323142002PhRvA..65c2314VarXiv:quant-ph/0102117 – reference: BlakeMPhys. Rev. Lett.201611790916012016PhRvL.117i1601BarXiv:1603.08510 [hep-th] – reference: RyuSTakayanagiTPhys. Rev. Lett.2006961816022006PhRvL..96r1602R2221050arXiv:hep-th/0603001 – reference: BaggioliMGoutérauxBKiritsisELiWJJHEP201717031702017JHEP...03..170B10.1007/JHEP03(2017)170arXiv:1612.05500 [hep-th] – reference: GubserSSRochaFDPhys. Rev. D2010810460012010PhRvD..81d6001G2659372arXiv:0911.2898 [hep-th] – volume: 43 start-page: 4286 issue: 9 year: 2002 ident: 7921_CR45 publication-title: J. Math. Phys. doi: 10.1063/1.1498001 – volume: 93 start-page: 086006 issue: 8 year: 2016 ident: 7921_CR27 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.086006 – volume: 117 start-page: 091601 issue: 9 year: 2016 ident: 7921_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.091601 – volume: 0810 start-page: 065 year: 2008 ident: 7921_CR18 publication-title: JHEP doi: 10.1088/1126-6708/2008/10/065 – volume: 1604 start-page: 122 year: 2016 ident: 7921_CR38 publication-title: JHEP – volume: 0701 start-page: 090 year: 2007 ident: 7921_CR11 publication-title: JHEP doi: 10.1088/1126-6708/2007/01/090 – volume: 797 start-page: 134934 year: 2019 ident: 7921_CR52 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2019.134934 – volume: 81 start-page: 865 issue: 2 year: 2009 ident: 7921_CR10 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.865 – volume: 97 start-page: 106018 issue: 10 year: 2018 ident: 7921_CR25 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.106018 – ident: 7921_CR48 doi: 10.1093/ptep/pty063 – volume: 416 start-page: 608 year: 2002 ident: 7921_CR1 publication-title: Nature doi: 10.1038/416608a – volume: 0807 start-page: 097 year: 2008 ident: 7921_CR13 publication-title: JHEP doi: 10.1088/1126-6708/2008/07/097 – volume: 1911 start-page: 039 year: 2019 ident: 7921_CR33 publication-title: JHEP doi: 10.1007/JHEP11(2019)039 – volume: 87 start-page: 126012 issue: 12 year: 2013 ident: 7921_CR44 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.87.126012 – volume: 1703 start-page: 170 year: 2017 ident: 7921_CR42 publication-title: JHEP doi: 10.1007/JHEP03(2017)170 – volume: 1510 start-page: 112 year: 2015 ident: 7921_CR41 publication-title: JHEP doi: 10.1007/JHEP10(2015)112 – volume: 1602 start-page: 114 year: 2016 ident: 7921_CR37 publication-title: JHEP doi: 10.1007/JHEP02(2016)114 – volume: 1608 start-page: 106 year: 2016 ident: 7921_CR19 publication-title: JHEP doi: 10.1007/JHEP08(2016)106 – volume: 9 start-page: 649 year: 2013 ident: 7921_CR20 publication-title: Nat. Phys. doi: 10.1038/nphys2701 – volume: 65 start-page: 032314 issue: 3 year: 2002 ident: 7921_CR9 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.65.032314 – volume: 2016 start-page: 6153435 year: 2016 ident: 7921_CR15 publication-title: Adv. High Energy Phys. – volume: 116 start-page: 191301 issue: 19 year: 2016 ident: 7921_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.191301 – ident: 7921_CR53 – volume: 65 start-page: 084014 year: 2002 ident: 7921_CR57 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.65.084014 – volume: 0707 start-page: 062 year: 2007 ident: 7921_CR6 publication-title: JHEP doi: 10.1088/1126-6708/2007/07/062 – volume: 1901 start-page: 114 year: 2019 ident: 7921_CR47 publication-title: JHEP doi: 10.1007/JHEP01(2019)114 – volume: 7 start-page: 12472 year: 2016 ident: 7921_CR16 publication-title: Nat. Commun. doi: 10.1038/ncomms12472 – volume: 81 start-page: 046001 year: 2010 ident: 7921_CR55 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.81.046001 – volume: 96 start-page: 110404 issue: 11 year: 2006 ident: 7921_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.110404 – volume: 11 start-page: 54 year: 2015 ident: 7921_CR39 publication-title: Nature Phys. doi: 10.1038/nphys3174 – volume: 96 start-page: 110405 issue: 11 year: 2006 ident: 7921_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.110405 – volume: 79 start-page: 194 issue: 3 year: 2019 ident: 7921_CR30 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-019-6696-5 – volume: 1909 start-page: 071 year: 2019 ident: 7921_CR54 publication-title: JHEP – volume: 1611 start-page: 028 year: 2016 ident: 7921_CR8 publication-title: JHEP doi: 10.1007/JHEP11(2016)028 – volume: 796 start-page: 274 year: 2008 ident: 7921_CR12 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2007.12.017 – volume: 1801 start-page: 098 year: 2018 ident: 7921_CR35 publication-title: JHEP doi: 10.1007/JHEP01(2018)098 – volume: 1810 start-page: 152 year: 2018 ident: 7921_CR46 publication-title: JHEP doi: 10.1007/JHEP10(2018)152 – volume: 94 start-page: 086014 issue: 8 year: 2016 ident: 7921_CR22 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.086014 – volume: 1403 start-page: 067 year: 2014 ident: 7921_CR17 publication-title: JHEP doi: 10.1007/JHEP03(2014)067 – volume: 80 start-page: 517 year: 2008 ident: 7921_CR2 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.80.517 – volume: 768 start-page: 288 year: 2017 ident: 7921_CR24 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.03.010 – volume: 96 start-page: 181602 year: 2006 ident: 7921_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.181602 – ident: 7921_CR51 – volume: 796 start-page: 155 year: 2019 ident: 7921_CR26 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2019.07.035 – volume: 1807 start-page: 034 year: 2018 ident: 7921_CR31 publication-title: JHEP doi: 10.1007/JHEP07(2018)034 – volume: 91 start-page: 024032 issue: 2 year: 2015 ident: 7921_CR56 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.024032 – volume: 1308 start-page: 090 year: 2013 ident: 7921_CR7 publication-title: JHEP doi: 10.1007/JHEP08(2013)090 – volume: 1701 start-page: 062 year: 2017 ident: 7921_CR29 publication-title: JHEP doi: 10.1007/JHEP01(2017)062 – volume: 1412 start-page: 170 year: 2014 ident: 7921_CR40 publication-title: JHEP doi: 10.1007/JHEP12(2014)170 – volume: 122 start-page: 141601 issue: 14 year: 2019 ident: 7921_CR49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.141601 – volume: 1710 start-page: 025 year: 2017 ident: 7921_CR23 publication-title: JHEP doi: 10.1007/JHEP10(2017)025 – volume: 916 start-page: 304 year: 2017 ident: 7921_CR14 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2017.01.010 – volume: 114 start-page: 251602 issue: 25 year: 2015 ident: 7921_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.251602 – ident: 7921_CR34 – volume: 1904 start-page: 146 year: 2019 ident: 7921_CR32 publication-title: JHEP doi: 10.1007/JHEP04(2019)146 – volume: 1405 start-page: 101 year: 2014 ident: 7921_CR43 publication-title: JHEP doi: 10.1007/JHEP05(2014)101 – volume: 78 start-page: 646 issue: 8 year: 2018 ident: 7921_CR50 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-018-6140-2 |
SSID | ssj0002408 |
Score | 2.4587927 |
Snippet | We study the mixed state entanglement in a holographic axion model. We find that the holographic entanglement entropy (HEE), mutual information (MI) and... Abstract We study the mixed state entanglement in a holographic axion model. We find that the holographic entanglement entropy (HEE), mutual information (MI)... |
SourceID | doaj proquest gale crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Astronomy Astrophysics and Cosmology Configurations Elementary Particles Entanglement Entropy Hadrons Heavy Ions Mathematical models Measurement Science and Instrumentation Nuclear Energy Nuclear Physics Parameters Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Regular Article - Theoretical Physics String Theory Temperature effects |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS-QwEA4iHPgid55iT0_KceBT2GyTNu2jJy564D2cLvgWkmniD46uuCvof38zabqnLOjLvZV2UprJJPMNnfmGse91KMegtEXj1YErvOaN9oI7CQpcYQFiu7fzX9XpVP28Kq9etPqinLCeHrhX3MhKAVKCdNprZRG8l-OAb6lsTa1K2kCnL_q8IZhKZzARd8W6Iql4JZRKtcEYTYz8_R1Q5ZwoC06xk26KMX9-5ZYie__qGb3yszT6oMlHtpnAY37Uf_Qntua7LfYhJnHC_DNT57dPvs1jjVBOOeHddZ8cniMyzW8GeupbyO0TLkceu-Bss-nk5PL4lKeuCBwQLCy4KmypJFSyqK1ohQ26aUEJW3pdQe1bp4Lw2qGbKYT3jRYKGi-99Ri7SBq3w9a7Wed3WY7i0CImCDII5ahJ-rh20EgXNEaJvs5YOSjFQKIMp84Vf0xfziwMKdP0yjSoTEPKNM8ZGy3H3fekGe-O-EE6X0oT6XW8gaZgkimY90whY99oxQzRWnSUN3NtH-dzc3bx2xxVFLlKraqMHSahMMO5gE1lCKgRYsJ6Jbk_rLxJG3tuiL4QQQ-ipIyJwRr-PX57ll_-xyz32EZBdhuTLvfZ-uLh0X9FYLRwB3EP_AWBYQWu priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3_S90wEA-bMtgvY3OO1blRZLCfwstr0qb9SXQobqAMp-BvIbkmb47R97RP0P_euzR9IoL7rbSXQi6X-5LcfY6xr3Uop6C0ReHVgSt85o32gjsJClxhAWK7t-OT6uhc_bwoL9KBW5_SKkedGBV1Owc6I58QbhxaGzRPu4srTl2j6HY1tdB4ydZRBdcYfK3vH5z8Ol3pYgLwivVFUvFKKJVqhDGqmPjFX6AKOlEWnGIo3RRTfvfIPEUU_6e6-smlabRFh2_Zm-RE5nvDqr9jL3y3wV7FZE7o3zN1fHnr2zzWCuWUG97NhiTxHD3U_M8IU30Jub3FZcljN5xNdn54cPb9iKfuCBzQaVhyVdhSSahkUVvRCht004IStvS6gtq3TgXhtUNzUwjvGy0UNF566zGGkTTuA1vr5p3_yHIkhxZ9gyCDUI6apU9rB410QWO06OuMlSNTDCTocOpg8c8MZc3CEDPNwEyDzDTETHOXsclq3GIAz_jviH3i-YqawK_ji_n1zKS9ZKwUgDOQTnutLMZz5TSgYFW2pu41bcjYDq2YIXiLjvJnZvam782P36dmr6IIVmpVZexbIgpznAvYVI6AHCFErEeU2-PKm7TBe_MgjhkTozQ8fH5-llvP__ETe12QRMa0ym22try-8Z_R9Vm6L0m-7wEHZ_5e priority: 102 providerName: ProQuest |
Title | Mixed state entanglement for holographic axion model |
URI | https://link.springer.com/article/10.1140/epjc/s10052-020-7921-y https://www.proquest.com/docview/2403241129 https://doaj.org/article/a30c33c3b7e74a14851f4cb6a86184df |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBf9YLCXsXUby9YdYQz2ZOqLnTh5vB69tYOW0u2gb8Z27FvLyJXeFdr_fpLjdJSyjb6EkEgBS7ItxdJPAJ_rUI6dVAaNVwUm8Z41ynNmhZPOFsa52O7t-KQ6nMtv5-X5BtRDLUzMdh-OJONK3ePZ8j1_demo4o2XBaOYRzXFmN1twnaJ8TvZ9pTqHNIaTMBdsa5ISFZxKVNt8N-_82Bbiuj9j9foR4elcQ-avYQXyXnMJ722X8GG73bgWUzidKvXII8vbn2bxxqhnHLCu0WfHJ6jZ5r_HOCpL1xublEdeeyC8wbms4Mf00OWuiIwh87CmsnClFK4ShS14S03QTWtk9yUXlWu9q2VgXtlcZspuPeN4tI1XnjjMXYRxPcWtrpl599BjuSuRZ8giMClpSbp49q6RtigMEr0dQblIBTtEmQ4da74pftyZq5JmLoXpkZhahKmvstg757vqgfN-C_HPsn8nppAr-OD5fVCpzmkjeAORyCs8koajOPKcUCDqkxNXWvakMEn0pgmWIuO8mYW5ma10kffz_SkoshVKFll8CURhSWOxZlUhoASISSsB5S7g-Z1mtgrTfCF6PSgl5QBH6zhz-t_j_L901k-wPOCrDSmWO7C1vr6xn9EN2htR7BZz76OYHv_4OT0bBTtn67VdBR_LOB1Xkx-A7k3AvI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMNFIgQiJO13tiJkwNC5bHs0m4P0Eq9GcexlyKUXZqt6P4pfiMzTrJVVamceosSO5LHn-eRzMwH8Cr36dBKZRC8yjOJ16xQjrNSWGnLxFgb6N6m-9n4UH45So824G9fC0Nplb1ODIq6mlv6Rj6gvnFobdA8vVv8ZsQaRX9XewqNFha7bvUHQ7bm7eQj7u_rJBl9OvgwZh2rALNobJdMJiaVwmYiyQ2vuPGqqKzkJnUqs7mrSum5UyWq6YQ7VygubeGEMw59f0Hz8L034KYUoqATlY8-rzU_tQsL1UxCsoxL2VUkYwwzcIuflur1eJowithUkQzZ6oIxDJwBly3DpV-0wfKN7sHdzmWNd1qM3YcNVz-AWyF11DYPQU6Pz1wVh8qkmDLR61mbkh6jPxz_6JtiH9vYnCEI4sC98wgOr0Vqj2GzntduC2Icbiv0RLzwXJZEzT7MS1uI0iuMTV0eQdoLRduuUTnxZfzSbRE11yRM3QpTozA1CVOvIhis5y3aVh3_nfGeZL4eTa22w435yUx3J1cbwS2uQJTKKWkwekyHHmGcmZy4ciofwUvaMU3NNGrK1pmZ06bRk29f9U5G8bJQMovgTTfIz3Et1nTFDygR6r91YeR2v_O6UyeNPgd_BLxHw_njq1f55Oo3voDb44Ppnt6b7O8-hTsJoTMkdG7D5vLk1D1Dp2tZPg9Ij-H7dR-tf5oBOiM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTiBeED-1woAIgXiy6sZOnDwgtLFVK2PVNJi0N-M4dhlCaVk6sf5r_HXcJU6nadJ42luUnC35_Nnni-_uA3ib-WRopTIIXuWZxGeWK8dZIay0RWysbejeDibp3rH8fJKcrMHfLheGwiq7PbHZqMuZpX_kA6obh9YGzdPAh7CIw53Rx_lvRgxSdNPa0Wm0ENl3yz_ovtUfxjs41-_ieLT77dMeCwwDzKLhXTAZm0QKm4o4M7zkxqu8tJKbxKnUZq4spOdOFbhlx9y5XHFpcyeccegHCGqH_d6BdYVeEe_B-vbu5PBoZQeoeFiT2yQkS7mUIT8ZPZqBm_-0lL3Hk5iR_6byeMiWV0xjwyBw3U5cu7Bt7ODoITwIB9hoq0XcI1hz1WO42wSS2voJyIPTC1dGTZ5SRHHp1bQNUI_wdBz96Epkn9rIXCAkooaJ5ykc34renkGvmlVuAyIUtyWeS7zwXBZE1D7MCpuLwiv0VF3Wh6RTirahbDmxZ_zSbUo116RM3SpTozI1KVMv-zBYtZu3hTv-22KbdL6SpsLbzYvZ2VSHdayN4BZHIArllDToSyZDj6BOTUbMOaXvwxuaMU2lNSoC6dSc17Uefz3SWyl5z0LJtA_vg5Cf4VisCakQqBGqxnVFcrObeR02l1pfLoU-8A4Nl59vHuXzm3t8DfdwWekv48n-C7gfEzib6M5N6C3Ozt1LPIEtilcB6hF8v-3V9Q-1aD-1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+state+entanglement+for+holographic+axion+model&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Huang%2C+Yi-fei&rft.au=Shi%2C+Zi-jian&rft.au=Niu%2C+Chao&rft.au=Zhang%2C+Cheng-yong&rft.date=2020-05-01&rft.issn=1434-6044&rft.eissn=1434-6052&rft.volume=80&rft.issue=5&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-020-7921-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epjc_s10052_020_7921_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6044&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6044&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6044&client=summon |