Comprehensive Design of the High-Sulfur-Loading Li–S Battery Based on MXene Nanosheets
Highlights The intrinsic negatively charged MXene nanosheets were assembled to the positively charged Ketjen black/sulfur (KB/S) or KB to constructing the interwoven composite. The KB/S@Ti 3 C 2 T x architectures allow high sulfur loading and accommodate the corresponding volume change, while the st...
Saved in:
Published in | Nano-micro letters Vol. 12; no. 1; pp. 112 - 13 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
20.05.2020
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
The intrinsic negatively charged MXene nanosheets were assembled to the positively charged Ketjen black/sulfur (KB/S) or KB to constructing the interwoven composite.
The KB/S@Ti
3
C
2
T
x
architectures allow high sulfur loading and accommodate the corresponding volume change, while the structural integrity and the ionic and electric conducting pathways are well maintained.
The KB@Ti
3
C
2
T
x
interlayers further retard the polysulfide that escaped from the cathode. It is only 0.28 mg cm
−2
in density and 3 μm in thickness—the effect on energy density is minimal.
The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation. A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase (Ti
3
C
2
T
x
nanosheets) is performed, aiming at realize stable cycling performance of Li–S battery with high sulfur areal loading. The interwoven KB@Ti
3
C
2
T
x
composite formed by self-assembly of MXene and Ktejen black, not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host, but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode. The KB@Ti
3
C
2
T
x
interlayer is only 0.28 mg cm
−2
in areal loading and 3 μm in thickness, which accounts a little contribution to the thick sulfur electrode; thus, the impacts on the energy density is minimal. By coupling the robust KB@Ti
3
C
2
T
x
cathode and the effective KB@Ti
3
C
2
T
x
modified separator, a stable Li–S battery with high sulfur areal loading (5.6 mg cm
−2
) and high areal capacity (6.4 mAh cm
−2
) at relatively lean electrolyte is achieved. |
---|---|
AbstractList | Highlights
The intrinsic negatively charged MXene nanosheets were assembled to the positively charged Ketjen black/sulfur (KB/S) or KB to constructing the interwoven composite.
The KB/S@Ti
3
C
2
T
x
architectures allow high sulfur loading and accommodate the corresponding volume change, while the structural integrity and the ionic and electric conducting pathways are well maintained.
The KB@Ti
3
C
2
T
x
interlayers further retard the polysulfide that escaped from the cathode. It is only 0.28 mg cm
−2
in density and 3 μm in thickness—the effect on energy density is minimal.
The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation. A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase (Ti
3
C
2
T
x
nanosheets) is performed, aiming at realize stable cycling performance of Li–S battery with high sulfur areal loading. The interwoven KB@Ti
3
C
2
T
x
composite formed by self-assembly of MXene and Ktejen black, not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host, but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode. The KB@Ti
3
C
2
T
x
interlayer is only 0.28 mg cm
−2
in areal loading and 3 μm in thickness, which accounts a little contribution to the thick sulfur electrode; thus, the impacts on the energy density is minimal. By coupling the robust KB@Ti
3
C
2
T
x
cathode and the effective KB@Ti
3
C
2
T
x
modified separator, a stable Li–S battery with high sulfur areal loading (5.6 mg cm
−2
) and high areal capacity (6.4 mAh cm
−2
) at relatively lean electrolyte is achieved. The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation. A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase (Ti 3 C 2 T x nanosheets) is performed, aiming at realize stable cycling performance of Li–S battery with high sulfur areal loading. The interwoven KB@Ti 3 C 2 T x composite formed by self-assembly of MXene and Ktejen black, not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host, but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode. The KB@Ti 3 C 2 T x interlayer is only 0.28 mg cm −2 in areal loading and 3 μm in thickness, which accounts a little contribution to the thick sulfur electrode; thus, the impacts on the energy density is minimal. By coupling the robust KB@Ti 3 C 2 T x cathode and the effective KB@Ti 3 C 2 T x modified separator, a stable Li–S battery with high sulfur areal loading (5.6 mg cm −2 ) and high areal capacity (6.4 mAh cm −2 ) at relatively lean electrolyte is achieved. The intrinsic negatively charged MXene nanosheets were assembled to the positively charged Ketjen black/sulfur (KB/S) or KB to constructing the interwoven composite. The KB/S@Ti 3 C 2 T x architectures allow high sulfur loading and accommodate the corresponding volume change, while the structural integrity and the ionic and electric conducting pathways are well maintained. The KB@Ti 3 C 2 T x interlayers further retard the polysulfide that escaped from the cathode. It is only 0.28 mg cm −2 in density and 3 μm in thickness—the effect on energy density is minimal. The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation. A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase (Ti 3 C 2 T x nanosheets) is performed, aiming at realize stable cycling performance of Li–S battery with high sulfur areal loading. The interwoven KB@Ti 3 C 2 T x composite formed by self-assembly of MXene and Ktejen black, not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host, but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode. The KB@Ti 3 C 2 T x interlayer is only 0.28 mg cm −2 in areal loading and 3 μm in thickness, which accounts a little contribution to the thick sulfur electrode; thus, the impacts on the energy density is minimal. By coupling the robust KB@Ti 3 C 2 T x cathode and the effective KB@Ti 3 C 2 T x modified separator, a stable Li–S battery with high sulfur areal loading (5.6 mg cm −2 ) and high areal capacity (6.4 mAh cm −2 ) at relatively lean electrolyte is achieved. Abstract The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation. A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase (Ti3C2T x nanosheets) is performed, aiming at realize stable cycling performance of Li–S battery with high sulfur areal loading. The interwoven KB@Ti3C2T x composite formed by self-assembly of MXene and Ktejen black, not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host, but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode. The KB@Ti3C2T x interlayer is only 0.28 mg cm−2 in areal loading and 3 μm in thickness, which accounts a little contribution to the thick sulfur electrode; thus, the impacts on the energy density is minimal. By coupling the robust KB@Ti3C2T x cathode and the effective KB@Ti3C2T x modified separator, a stable Li–S battery with high sulfur areal loading (5.6 mg cm−2) and high areal capacity (6.4 mAh cm−2) at relatively lean electrolyte is achieved. The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation. A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase (Ti3C2Tx nanosheets) is performed, aiming at realize stable cycling performance of Li-S battery with high sulfur areal loading. The interwoven KB@Ti3C2Tx composite formed by self-assembly of MXene and Ktejen black, not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host, but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode. The KB@Ti3C2Tx interlayer is only 0.28 mg cm-2 in areal loading and 3 μm in thickness, which accounts a little contribution to the thick sulfur electrode; thus, the impacts on the energy density is minimal. By coupling the robust KB@Ti3C2Tx cathode and the effective KB@Ti3C2Tx modified separator, a stable Li-S battery with high sulfur areal loading (5.6 mg cm-2) and high areal capacity (6.4 mAh cm-2) at relatively lean electrolyte is achieved.The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation. A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase (Ti3C2Tx nanosheets) is performed, aiming at realize stable cycling performance of Li-S battery with high sulfur areal loading. The interwoven KB@Ti3C2Tx composite formed by self-assembly of MXene and Ktejen black, not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host, but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode. The KB@Ti3C2Tx interlayer is only 0.28 mg cm-2 in areal loading and 3 μm in thickness, which accounts a little contribution to the thick sulfur electrode; thus, the impacts on the energy density is minimal. By coupling the robust KB@Ti3C2Tx cathode and the effective KB@Ti3C2Tx modified separator, a stable Li-S battery with high sulfur areal loading (5.6 mg cm-2) and high areal capacity (6.4 mAh cm-2) at relatively lean electrolyte is achieved. HighlightsThe intrinsic negatively charged MXene nanosheets were assembled to the positively charged Ketjen black/sulfur (KB/S) or KB to constructing the interwoven composite.The KB/S@Ti3C2Tx architectures allow high sulfur loading and accommodate the corresponding volume change, while the structural integrity and the ionic and electric conducting pathways are well maintained.The KB@Ti3C2Tx interlayers further retard the polysulfide that escaped from the cathode. It is only 0.28 mg cm−2 in density and 3 μm in thickness—the effect on energy density is minimal.The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation. A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase (Ti3C2Tx nanosheets) is performed, aiming at realize stable cycling performance of Li–S battery with high sulfur areal loading. The interwoven KB@Ti3C2Tx composite formed by self-assembly of MXene and Ktejen black, not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host, but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode. The KB@Ti3C2Tx interlayer is only 0.28 mg cm−2 in areal loading and 3 μm in thickness, which accounts a little contribution to the thick sulfur electrode; thus, the impacts on the energy density is minimal. By coupling the robust KB@Ti3C2Tx cathode and the effective KB@Ti3C2Tx modified separator, a stable Li–S battery with high sulfur areal loading (5.6 mg cm−2) and high areal capacity (6.4 mAh cm−2) at relatively lean electrolyte is achieved. |
ArticleNumber | 112 |
Author | Zhang, Shouzheng Meng, Ruijin Huang, Xiangping Liang, Xiao Zhang, Mingjie Yang, Xuelin Zhong, Ning Zhou, Xing |
Author_xml | – sequence: 1 givenname: Shouzheng surname: Zhang fullname: Zhang, Shouzheng organization: College of Materials and Chemical Engineering, China Three Gorges University, College of Science, China Three Gorges University – sequence: 2 givenname: Ning surname: Zhong fullname: Zhong, Ning organization: State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University – sequence: 3 givenname: Xing surname: Zhou fullname: Zhou, Xing organization: State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University – sequence: 4 givenname: Mingjie surname: Zhang fullname: Zhang, Mingjie organization: State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University – sequence: 5 givenname: Xiangping surname: Huang fullname: Huang, Xiangping organization: College of Science, China Three Gorges University – sequence: 6 givenname: Xuelin surname: Yang fullname: Yang, Xuelin email: xlyang@ctgu.edu.cn organization: College of Materials and Chemical Engineering, China Three Gorges University – sequence: 7 givenname: Ruijin surname: Meng fullname: Meng, Ruijin organization: State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University – sequence: 8 givenname: Xiao surname: Liang fullname: Liang, Xiao email: xliang@hnu.edu.cn organization: State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University |
BookMark | eNp9Ustu1TAQjVARLaU_wCoSGzYBP2NngwSXRytdYFGQurMcZ5y4yrUvdlKpO_6BP-RLcEgFahfX0mhG9jlnZjzztDjywUNRPMfoFUZIvE4MSYIqtBhirKnEo-KEYI4qzjk-yjHFuKoFqo-Ls5RcizhhggjOnhTHlGEqMSYnxdUm7PYRBvDJ3UD5HpLrfRlsOQ1Qnrt-qC7n0c6x2gbdOd-XW_f756_L8p2eJoi32SfoyuDLz1fgofyifUgDwJSeFY-tHhOc3fnT4vvHD98259X266eLzdttZbhkU0VtJ6nQlBNtBNdd7kTWjNaAibXALK4bIBbJRhhkAIBrCq3GDHcEE56Jp8XFqtsFfa320e10vFVBO_X3IsRe6Tg5M4JqmKVECkMZz3mIaGXTIcCtsBp4R1jWerNq7ed2B50BP0U93hO9_-LdoPpwo4QQqGE8C7y8E4jhxwxpUjuXDIyj9hDmpAhnhPImTyhDXzyAXoc5-vxVKs-J5kMaeRiFeNaSsskosqJMDClFsP9Kxkgt26LWbVFosWVblMgk-YBk3KQnF5bW3HiYSldqynl8D_F_VQdYfwCZL9NI |
CitedBy_id | crossref_primary_10_1016_j_compositesb_2022_110465 crossref_primary_10_1007_s12598_024_03022_y crossref_primary_10_1016_j_electacta_2021_137838 crossref_primary_10_1016_j_ensm_2022_09_028 crossref_primary_10_1039_D2TA04592C crossref_primary_10_1021_acs_energyfuels_4c02106 crossref_primary_10_1088_1361_6528_ac5443 crossref_primary_10_1007_s40820_022_00941_2 crossref_primary_10_1016_j_electacta_2021_139539 crossref_primary_10_1007_s40820_023_01137_y crossref_primary_10_1002_aenm_202202860 crossref_primary_10_3390_nano11020408 crossref_primary_10_1016_j_ensm_2024_103328 crossref_primary_10_1007_s12274_023_5557_6 crossref_primary_10_1088_2515_7655_abd5c4 crossref_primary_10_1016_j_cej_2022_141264 crossref_primary_10_1021_acsanm_4c06605 crossref_primary_10_1039_D1TA08968D crossref_primary_10_1007_s12274_023_5535_z crossref_primary_10_1021_acs_nanolett_3c03021 crossref_primary_10_1039_D2TA01398C crossref_primary_10_1007_s41918_021_00110_w crossref_primary_10_1002_smll_202200046 crossref_primary_10_1002_adma_202008654 crossref_primary_10_1002_eem2_12454 crossref_primary_10_1007_s12598_021_01876_0 crossref_primary_10_1007_s40820_024_01482_6 crossref_primary_10_1016_j_est_2024_113412 crossref_primary_10_1016_j_jechem_2024_07_038 crossref_primary_10_1016_j_cclet_2025_111110 crossref_primary_10_1016_j_ceramint_2022_03_154 crossref_primary_10_1021_acsami_4c04919 crossref_primary_10_1016_j_ccr_2023_215208 crossref_primary_10_1016_j_jechem_2021_08_040 crossref_primary_10_1021_acsami_2c02713 crossref_primary_10_1246_cl_210810 crossref_primary_10_1007_s40820_021_00676_6 crossref_primary_10_1016_j_mattod_2022_06_006 crossref_primary_10_1021_acs_energyfuels_1c01242 crossref_primary_10_1016_j_cej_2021_131031 crossref_primary_10_1016_j_cej_2024_151285 crossref_primary_10_1016_j_cclet_2022_02_034 crossref_primary_10_1016_j_cjsc_2024_100337 crossref_primary_10_1016_j_jcis_2021_07_114 crossref_primary_10_1016_j_jelechem_2023_117370 crossref_primary_10_20517_energymater_2023_99 crossref_primary_10_1007_s12598_024_02635_7 crossref_primary_10_1016_j_jcis_2024_07_079 crossref_primary_10_1016_j_carbpol_2022_119201 crossref_primary_10_1016_j_jallcom_2021_159952 crossref_primary_10_1016_j_cej_2020_128102 crossref_primary_10_1016_j_ensm_2022_04_022 crossref_primary_10_1039_D3EE01841E crossref_primary_10_1021_acsami_1c14813 crossref_primary_10_1007_s12274_022_5215_4 crossref_primary_10_1016_j_cej_2024_151978 crossref_primary_10_1016_j_jechem_2025_01_020 crossref_primary_10_1016_j_matre_2021_100077 crossref_primary_10_1039_D2TA09123B crossref_primary_10_1007_s11431_021_2077_5 crossref_primary_10_1016_j_mtcomm_2021_102323 crossref_primary_10_1039_D0CP02275F crossref_primary_10_1021_acs_langmuir_4c04102 crossref_primary_10_1557_s43578_024_01367_9 crossref_primary_10_1016_j_ccr_2023_215055 crossref_primary_10_1002_adfm_202100457 crossref_primary_10_1021_acsami_0c12767 crossref_primary_10_1007_s40820_022_00935_0 crossref_primary_10_1002_smll_202206081 crossref_primary_10_1007_s40843_022_2303_0 crossref_primary_10_1016_j_est_2024_115015 crossref_primary_10_1002_adfm_202204635 crossref_primary_10_1021_acs_energyfuels_4c02385 crossref_primary_10_1016_j_nanoen_2022_107913 crossref_primary_10_1016_j_est_2023_109555 crossref_primary_10_1021_acsaem_2c03004 crossref_primary_10_1016_j_carbon_2024_119442 crossref_primary_10_1002_smll_202303266 crossref_primary_10_1002_cssc_202100173 |
Cites_doi | 10.1039/c5cs00410a 10.1039/C4EE01377H 10.1021/acsnano.8b08155 10.1021/acsami.6b09027 10.1002/aenm.201900219 10.1002/anie.201812062 10.1002/aenm.201500046 10.1002/adfm.201901907 10.1002/aenm.201601630 10.1021/acs.chemmater.7b02847 10.1002/adma.201405689 10.1002/adma.201906739 10.1016/j.joule.2020.01.001 10.1038/nenergy.2016.132 10.1016/j.nanoen.2019.05.011 10.1038/nmat3191 10.1002/adfm.201502251 10.1021/acsnano.9b05908 10.1002/adma.201603040 10.1002/adma.201705951 10.1002/adfm.201905986 10.1039/C5TA10307J 10.1002/anie.201410174 10.1021/acsami.7b13247 10.1021/acscentsci.8b00921 10.1002/ange.201909339 10.1021/jz9003137 10.1002/aenm.201901940 10.1038/nature13970 10.1016/j.nanoen.2016.06.005 10.1039/C5EE02837J 10.1002/anie.201605931 10.1002/adfm.201504294 10.1038/ncomms6682 10.1149/2.106311jes 10.1002/adma.201504765 10.1021/nl403715h 10.1038/natrevmats.2016.98 10.1002/aenm.201702839 10.1002/anie.201511673 10.1021/ja308170k 10.1002/adfm.201602071 10.1002/advs.201500268 10.1002/adfm.201302631 10.1021/acs.nanolett.6b01434 10.1002/aenm.201500110 10.1021/acsenergylett.9b00573 10.1021/acsnano.9b06629 10.1002/adfm.201603704 10.1002/aenm.201700260 10.1002/smll.201804786 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-020-00449-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Architecture |
EISSN | 2150-5551 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_94f3287c345d4427b89d0e1b7fae5d24 PMC7770945 10_1007_s40820_020_00449_7 |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX CITATION PHGZM PHGZT ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c584t-3fd837a352ac75ad44986436e12ffe4f169e2f0897c0ceee5a3eba141d21257a3 |
IEDL.DBID | C24 |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:28:06 EDT 2025 Thu Aug 21 18:07:16 EDT 2025 Fri Jul 11 05:00:17 EDT 2025 Wed Aug 13 08:09:36 EDT 2025 Wed Aug 13 09:39:25 EDT 2025 Tue Jul 01 00:55:44 EDT 2025 Thu Apr 24 23:10:35 EDT 2025 Fri Feb 21 02:35:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | High sulfur areal loading Interlayer MXene nanosheet Lithium–sulfur battery |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c584t-3fd837a352ac75ad44986436e12ffe4f169e2f0897c0ceee5a3eba141d21257a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1007/s40820-020-00449-7 |
PMID | 34138112 |
PQID | 2405359889 |
PQPubID | 2044332 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_94f3287c345d4427b89d0e1b7fae5d24 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7770945 proquest_miscellaneous_2542359555 proquest_journals_2473333298 proquest_journals_2405359889 crossref_primary_10_1007_s40820_020_00449_7 crossref_citationtrail_10_1007_s40820_020_00449_7 springer_journals_10_1007_s40820_020_00449_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-20 |
PublicationDateYYYYMMDD | 2020-05-20 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationYear | 2020 |
Publisher | Springer Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Son, Lee, Son, Jang, Cho (CR42) 2015; 5 Yu, Dai (CR38) 2009; 1 Balach, Jaumann, Klose, Oswald, Eckert, Giebeler (CR49) 2015; 25 Guo, Ming, Su, Wu, Wahyudi, Li, Li, Lai (CR25) 2019; 61 Tian, Song, Wang, Wu, Qiu, Guan, Sun (CR23) 2019; 6 Chung, Manthiram (CR27) 2018; 30 Peng, Wang, Huang, Cheng, Yuan, Wei, Zhang (CR44) 2016; 3 Song, Su, Xie, Guo, Bao, Shao, Wang (CR45) 2016; 8 Anasori, Lukatskaya, Gogotsi (CR19) 2017; 2 Ai, Dai, Mao, Zhao, Fu, Song, Liu (CR29) 2016; 16 Zhang, Li, Wang, Zhang, Tan, Chu, Guo (CR43) 2018; 8 Yao, Yan, Li, Zheng, Kong (CR48) 2014; 7 Liang, Rangom, Kwok, Pang, Nazar (CR17) 2017; 29 Qie, Manthiram (CR10) 2015; 27 Tang, Li, Pan, Tu, Du, Qiu, Zhang (CR9) 2019 Wang, Liu, Yuan, Wang, Xia (CR7) 2016; 9 Alhabeb, Maleski, Anasori, Lelyukh, Clark, Sin, Gogotsi (CR36) 2017; 29 Bhargav, He, Gupta, Manthiram (CR50) 2020; 4 Zhao, Li, Peng, Yuan, Wei, Huang (CR3) 2020; 132 Ma, Fang, Yan, Yang, Gu, Hu, Huang (CR28) 2015; 5 Seh, Sun, Zhang, Cui (CR2) 2016; 45 CR41 Ghidiu, Lukatskaya, Zhao, Gogotsi, Barsoum (CR34) 2014; 516 Hong, Song, Yang, Tan, Li, Cai, Wang (CR22) 2019; 13 Wu, Liu, Wang, Qiu, Guan, Tian, Zhang (CR5) 2019; 13 Ding, Kopold, Hahn, van Aken, Maier, Yu (CR11) 2016; 26 Peng, Huang, Cheng, Zhang (CR12) 2017; 7 Liang, Hart, Pang, Garsuch, Weiss, Nazar (CR18) 2015; 6 Hu, Xu, Sun, Wang, Cheng, Li, Ren (CR31) 2016; 28 Pang, Liang, Kwok, Nazar (CR13) 2016; 1 Wang, Dong, Wang, Zhang, Jin (CR33) 2013; 13 Peng, Xu, Zhu, Wang, Huang, Cheng, Zhang (CR30) 2016; 26 Zhong, Yang, Guan, Wang, Wang, Han, Meng (CR35) 2017; 9 Chen, Zeng, Muheiyati, Zhai, Li, Ding, Qian (CR16) 2019; 4 Xie, Zhao, Anasori, Maleski, Ren, Li, Gogotsi (CR37) 2016; 26 Xu, Wang, Yang, Miao, Chen, Qian, Miao (CR8) 2016; 55 Sun, Liu, Li, Luo, Liu, Hong, Zheng (CR14) 2019; 13 Yu, Zhou, Wang, Pei, Liu, Liu, Qiu (CR15) 2019; 29 Zheng, Lva, Gu, Wang, Zhang, Liu, Xiao (CR39) 2013; 160 Xin, Gu, Zhao, Yin, Zhou, Guo, Wan (CR6) 2012; 134 Bao, Su, Zhang, Guo, Wang (CR40) 2016; 26 Bruce, Freunberger, Hardwick, Tarascon (CR1) 2012; 11 Lin, Zhang, Wang, Wang, Zhao, Duan, Jin (CR26) 2016; 4 Zhao, Peng, Zhang, Li, Chen (CR24) 2019; 58 Jiao, Zhang, Geng, Wu, Li, Lv, Ling (CR51) 2019; 9 Wang, Zhang, Liu, Guo (CR46) 2016; 55 Tang, Zhou, Li, Guo, Sun (CR20) 2019 Pang, Liang, Kwok, Kulisch, Nazar (CR32) 2017; 7 Tang, Zhou, Li, Guo, Wang, Kang, Li, Wang (CR21) 2019; 5 Liang, Garsuch, Nazar (CR4) 2015; 54 Song, Xu, Gordin, Zhu, Lv (CR47) 2014; 24 Z Xu (449_CR8) 2016; 55 X Tang (449_CR21) 2019; 5 Q Pang (449_CR32) 2017; 7 HJ Peng (449_CR30) 2016; 26 X Chen (449_CR16) 2019; 4 L Wang (449_CR33) 2013; 13 HJ Peng (449_CR44) 2016; 3 D Tian (449_CR23) 2019; 6 W Sun (449_CR14) 2019; 13 X Liang (449_CR18) 2015; 6 L Jiao (449_CR51) 2019; 9 M Zhao (449_CR3) 2020; 132 G Ai (449_CR29) 2016; 16 YK Son (449_CR42) 2015; 5 ZW Seh (449_CR2) 2016; 45 X Xie (449_CR37) 2016; 26 HJ Peng (449_CR12) 2017; 7 C Lin (449_CR26) 2016; 4 PG Bruce (449_CR1) 2012; 11 X Tang (449_CR20) 2019 M Yu (449_CR15) 2019; 29 D Guo (449_CR25) 2019; 61 X Wu (449_CR5) 2019; 13 D Yu (449_CR38) 2009; 1 Q Pang (449_CR13) 2016; 1 L Wang (449_CR7) 2016; 9 L Zhong (449_CR35) 2017; 9 X Liang (449_CR4) 2015; 54 H Tang (449_CR9) 2019 M Ghidiu (449_CR34) 2014; 516 HB Yao (449_CR48) 2014; 7 A Bhargav (449_CR50) 2020; 4 JX Song (449_CR47) 2014; 24 S Xin (449_CR6) 2012; 134 J Song (449_CR45) 2016; 8 J Balach (449_CR49) 2015; 25 G Hu (449_CR31) 2016; 28 J Zhang (449_CR43) 2018; 8 HQ Wang (449_CR46) 2016; 55 L Qie (449_CR10) 2015; 27 M Zhao (449_CR24) 2019; 58 XJ Hong (449_CR22) 2019; 13 449_CR41 B Anasori (449_CR19) 2017; 2 X Liang (449_CR17) 2017; 29 SH Chung (449_CR27) 2018; 30 J Ma (449_CR28) 2015; 5 WZ Bao (449_CR40) 2016; 26 JM Zheng (449_CR39) 2013; 160 YL Ding (449_CR11) 2016; 26 M Alhabeb (449_CR36) 2017; 29 |
References_xml | – volume: 45 start-page: 5605 issue: 20 year: 2016 end-page: 5634 ident: CR2 article-title: Designing highenergy lithium–sulfur batteries publication-title: Chem. Soc. Rev. doi: 10.1039/c5cs00410a – volume: 7 start-page: 3381 issue: 10 year: 2014 end-page: 3390 ident: CR48 article-title: Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive s-related species at the cathode–separator interface publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01377H – volume: 13 start-page: 1923 issue: 2 year: 2019 end-page: 1931 ident: CR22 article-title: Cerium based Metal-Organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium–sulfur batteries publication-title: ACS Nano doi: 10.1021/acsnano.8b08155 – volume: 8 start-page: 29427 issue: 43 year: 2016 end-page: 29433 ident: CR45 article-title: Immobilizing polysulfides with mxene-functionalized separators for stable lithium–sulfur batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09027 – volume: 9 start-page: 1900219 issue: 19 year: 2019 ident: CR51 article-title: Capture and catalytic conversion of polysulfides by in situ built TiO -mxene heterostructures for lithium–sulfur batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900219 – volume: 58 start-page: 3779 issue: 12 year: 2019 end-page: 3783 ident: CR24 article-title: Activating inert metallic compounds for high-rate lithium–sulfur batteries through in situ etching of extrinsic metal publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201812062 – volume: 5 start-page: 1500046 issue: 16 year: 2015 ident: CR28 article-title: Novel large-scale synthesis of a C/S nanocomposite with mixed conducting networks through a spray drying approach for Li–S batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500046 – year: 2019 ident: CR9 article-title: A robust, freestanding mxene-sulfur conductive paper for long-lifetime Li–S batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901907 – volume: 7 start-page: 1601630 issue: 6 year: 2017 ident: CR32 article-title: A comprehensive approach toward stable lithium–sulfur batteries with high volumetric energy density publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601630 – volume: 29 start-page: 7633 issue: 18 year: 2017 end-page: 7644 ident: CR36 article-title: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti C T MXene) publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02847 – volume: 27 start-page: 1694 issue: 10 year: 2015 end-page: 1700 ident: CR10 article-title: A facile layer-by-layer approach for high-areal-capacity sulfur cathodes publication-title: Adv. Mater. doi: 10.1002/adma.201405689 – year: 2019 ident: CR20 article-title: MXene-based dendrite-free potassium metal batteries publication-title: Adv. Mater. doi: 10.1002/adma.201906739 – volume: 4 start-page: 285 issue: 2 year: 2020 end-page: 291 ident: CR50 article-title: Lithium–sulfur batteries: attaining the critical metrics publication-title: Joule doi: 10.1016/j.joule.2020.01.001 – volume: 1 start-page: 16132 issue: 9 year: 2016 ident: CR13 article-title: Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes publication-title: Nat. Energy doi: 10.1038/nenergy.2016.132 – volume: 61 start-page: 478 year: 2019 end-page: 485 ident: CR25 article-title: MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li–S battery publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.011 – volume: 11 start-page: 19 year: 2012 end-page: 29 ident: CR1 article-title: Li–O and Li–S batteries with high energy storage publication-title: Nat. Mater. doi: 10.1038/nmat3191 – volume: 25 start-page: 5285 issue: 33 year: 2015 end-page: 5291 ident: CR49 article-title: Functional mesoporous carbon-coated separator for long-life, high-energy lithium–sulfur batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502251 – volume: 13 start-page: 13109 issue: 11 year: 2019 end-page: 13115 ident: CR5 article-title: A class of catalysts of BiOX (X = Cl, Br, I) for anchoring polysulfides and accelerating redox reaction in lithium sulfur batteries publication-title: ACS Nano doi: 10.1021/acsnano.9b05908 – volume: 29 start-page: 1603040 issue: 3 year: 2017 ident: CR17 article-title: Interwoven MXene nanosheet/carbon-nanotube composites as Li–S cathode hosts publication-title: Adv. Mater. doi: 10.1002/adma.201603040 – volume: 30 start-page: 1705951 issue: 6 year: 2018 ident: CR27 article-title: Rational design of statically and dynamically stable lithium–sulfur batteries with high sulfur loading and low electrolyte/sulfur ratio publication-title: Adv. Mater. doi: 10.1002/adma.201705951 – volume: 29 start-page: 1905986 year: 2019 ident: CR15 article-title: A molecular-cage strategy enabling efficient chemisorption–electrocatalytic interface in nanostructured Li2S cathode for Li metal-free rechargeable cells with high energy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905986 – volume: 4 start-page: 5993 issue: 16 year: 2016 end-page: 5998 ident: CR26 article-title: A few-layered Ti C nanosheet/glass fiber composite separator as a lithium polysulphide reservoir for high-performance lithium–sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA10307J – volume: 54 start-page: 3907 issue: 13 year: 2015 end-page: 3911 ident: CR4 article-title: Sulfur cathodes based on conductive mxene nanosheets for high-performance lithium-sulfur batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201410174 – volume: 9 start-page: 43640 issue: 50 year: 2017 end-page: 43647 ident: CR35 article-title: Toward theoretically cycling-stable lithium–sulfur battery using a foldable and compositionally heterogeneous cathode publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13247 – volume: 5 start-page: 365 issue: 2 year: 2019 end-page: 373 ident: CR21 article-title: High-performance quasi-solid-state MXene-based Li–I batteries publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.8b00921 – volume: 132 start-page: 2 year: 2020 end-page: 20 ident: CR3 article-title: Challenges and opportunities towards practical lithium–sulfur batteries under lean electrolyte conditions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201909339 – volume: 1 start-page: 467 issue: 2 year: 2009 end-page: 470 ident: CR38 article-title: Self-assembled graphene/carbon nanotube hybrid films for supercapacitors publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz9003137 – volume: 6 start-page: 1901940 year: 2019 ident: CR23 article-title: MoN supported on graphene as a bifunctional interlayer for advanced Li–S batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901940 – volume: 516 start-page: 78 year: 2014 end-page: 81 ident: CR34 article-title: Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance publication-title: Nature doi: 10.1038/nature13970 – volume: 26 start-page: 513 year: 2016 end-page: 523 ident: CR37 article-title: Porous heterostructured mxene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.005 – volume: 9 start-page: 224 issue: 1 year: 2016 end-page: 231 ident: CR7 article-title: To mitigate self-discharge of lithium–sulfur batteries by optimizing ionic liquid electrolytes publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02837J – volume: 55 start-page: 10372 issue: 35 year: 2016 end-page: 10375 ident: CR8 article-title: Enhanced performance of a lithium–sulfur battery using a carbonate-based electrolyte publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605931 – volume: 26 start-page: 1112 issue: 7 year: 2016 end-page: 1119 ident: CR11 article-title: Facile solid-state growth of 3D well-interconnected nitrogen-rich carbon nanotube–graphene hybrid architectures for lithium–sulfur batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504294 – volume: 6 start-page: 5682 year: 2015 ident: CR18 article-title: A highly efficient polysulfide mediator for lithium–sulfur batteries publication-title: Nat. Commun. doi: 10.1038/ncomms6682 – volume: 160 start-page: A2288 issue: 11 year: 2013 end-page: A2292 ident: CR39 article-title: How to obtain reproducible results for lithium sulfur batteries? publication-title: J. Electrochem. Soc. doi: 10.1149/2.106311jes – volume: 28 start-page: 1603 issue: 8 year: 2016 end-page: 1609 ident: CR31 article-title: 3D graphene-foam–reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li–S batteries publication-title: Adv. Mater. doi: 10.1002/adma.201504765 – volume: 13 start-page: 6244 issue: 12 year: 2013 end-page: 6250 ident: CR33 article-title: Covalent bond glued sulfur nanosheet-based cathode integration for long-cycle-life Li–S batteries publication-title: Nano Lett. doi: 10.1021/nl403715h – volume: 2 start-page: 16098 issue: 2 year: 2017 ident: CR19 article-title: 2D metal carbides and nitrides (MXenes) for energy storage publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.98 – volume: 8 start-page: 1702839 year: 2018 ident: CR43 article-title: Microemulsion assisted assembly of 3D porous S/Graphene@g-C N hybrid sponge as free-standing cathodes for high energy density Li–S batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702839 – volume: 55 start-page: 3992 issue: 12 year: 2016 end-page: 3996 ident: CR46 article-title: A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium–sulfur batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201511673 – volume: 134 start-page: 18510 issue: 45 year: 2012 end-page: 18513 ident: CR6 article-title: Smaller sulfur molecules promise better lithium–sulfur batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308170k – volume: 26 start-page: 6351 issue: 35 year: 2016 end-page: 6358 ident: CR30 article-title: 3D carbonaceous current collectors: the origin of enhanced cycling stability for high-sulfur-loading lithium–sulfur batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602071 – volume: 3 start-page: 1500268 year: 2016 ident: CR44 article-title: Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium–sulfur batteries publication-title: Adv. Sci. doi: 10.1002/advs.201500268 – volume: 24 start-page: 1243 issue: 9 year: 2014 end-page: 1250 ident: CR47 article-title: Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium–sulfur batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201302631 – volume: 16 start-page: 5365 issue: 9 year: 2016 end-page: 5372 ident: CR29 article-title: Biomimetic ant-nest electrode structures for high sulfur ratio lithium–sulfur batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01434 – volume: 5 start-page: 1500110 issue: 16 year: 2015 ident: CR42 article-title: Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500110 – volume: 4 start-page: 1496 year: 2019 end-page: 1504 ident: CR16 article-title: Double-shelled Ni–Fe–P/N-doped carbon nanobox derived from Prussian blue analogue as electrode material for K-ion batteries and Li–S batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00573 – volume: 13 start-page: 12137 issue: 10 year: 2019 end-page: 12147 ident: CR14 article-title: Rational construction of Fe N@ C yolk–shell nanoboxes as multifunctional hosts for ultralong lithium–sulfur batteries publication-title: ACS Nano doi: 10.1021/acsnano.9b06629 – volume: 26 start-page: 8746 year: 2016 end-page: 8756 ident: CR40 article-title: 3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201603704 – volume: 7 start-page: 1700260 issue: 24 year: 2017 ident: CR12 article-title: Review on high-loading and high-energy lithium–sulfur batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700260 – ident: CR41 – volume: 5 start-page: 1500046 issue: 16 year: 2015 ident: 449_CR28 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500046 – volume: 55 start-page: 10372 issue: 35 year: 2016 ident: 449_CR8 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605931 – volume: 7 start-page: 1601630 issue: 6 year: 2017 ident: 449_CR32 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601630 – volume: 25 start-page: 5285 issue: 33 year: 2015 ident: 449_CR49 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502251 – volume: 4 start-page: 285 issue: 2 year: 2020 ident: 449_CR50 publication-title: Joule doi: 10.1016/j.joule.2020.01.001 – volume: 1 start-page: 16132 issue: 9 year: 2016 ident: 449_CR13 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.132 – volume: 8 start-page: 1702839 year: 2018 ident: 449_CR43 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702839 – volume: 13 start-page: 1923 issue: 2 year: 2019 ident: 449_CR22 publication-title: ACS Nano doi: 10.1021/acsnano.8b08155 – volume: 29 start-page: 1905986 year: 2019 ident: 449_CR15 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905986 – volume: 26 start-page: 8746 year: 2016 ident: 449_CR40 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201603704 – volume: 9 start-page: 43640 issue: 50 year: 2017 ident: 449_CR35 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13247 – volume: 134 start-page: 18510 issue: 45 year: 2012 ident: 449_CR6 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308170k – volume: 61 start-page: 478 year: 2019 ident: 449_CR25 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.011 – volume: 1 start-page: 467 issue: 2 year: 2009 ident: 449_CR38 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz9003137 – volume: 13 start-page: 6244 issue: 12 year: 2013 ident: 449_CR33 publication-title: Nano Lett. doi: 10.1021/nl403715h – volume: 16 start-page: 5365 issue: 9 year: 2016 ident: 449_CR29 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01434 – volume: 2 start-page: 16098 issue: 2 year: 2017 ident: 449_CR19 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.98 – volume: 11 start-page: 19 year: 2012 ident: 449_CR1 publication-title: Nat. Mater. doi: 10.1038/nmat3191 – volume: 5 start-page: 1500110 issue: 16 year: 2015 ident: 449_CR42 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500110 – volume: 29 start-page: 7633 issue: 18 year: 2017 ident: 449_CR36 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02847 – volume: 6 start-page: 5682 year: 2015 ident: 449_CR18 publication-title: Nat. Commun. doi: 10.1038/ncomms6682 – year: 2019 ident: 449_CR9 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901907 – year: 2019 ident: 449_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.201906739 – volume: 26 start-page: 1112 issue: 7 year: 2016 ident: 449_CR11 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504294 – volume: 3 start-page: 1500268 year: 2016 ident: 449_CR44 publication-title: Adv. Sci. doi: 10.1002/advs.201500268 – volume: 6 start-page: 1901940 year: 2019 ident: 449_CR23 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901940 – volume: 516 start-page: 78 year: 2014 ident: 449_CR34 publication-title: Nature doi: 10.1038/nature13970 – volume: 5 start-page: 365 issue: 2 year: 2019 ident: 449_CR21 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.8b00921 – volume: 30 start-page: 1705951 issue: 6 year: 2018 ident: 449_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.201705951 – volume: 26 start-page: 6351 issue: 35 year: 2016 ident: 449_CR30 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602071 – volume: 9 start-page: 1900219 issue: 19 year: 2019 ident: 449_CR51 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900219 – volume: 7 start-page: 3381 issue: 10 year: 2014 ident: 449_CR48 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01377H – volume: 7 start-page: 1700260 issue: 24 year: 2017 ident: 449_CR12 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700260 – volume: 45 start-page: 5605 issue: 20 year: 2016 ident: 449_CR2 publication-title: Chem. Soc. Rev. doi: 10.1039/c5cs00410a – volume: 4 start-page: 5993 issue: 16 year: 2016 ident: 449_CR26 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA10307J – volume: 24 start-page: 1243 issue: 9 year: 2014 ident: 449_CR47 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201302631 – volume: 160 start-page: A2288 issue: 11 year: 2013 ident: 449_CR39 publication-title: J. Electrochem. Soc. doi: 10.1149/2.106311jes – volume: 13 start-page: 12137 issue: 10 year: 2019 ident: 449_CR14 publication-title: ACS Nano doi: 10.1021/acsnano.9b06629 – volume: 8 start-page: 29427 issue: 43 year: 2016 ident: 449_CR45 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09027 – volume: 28 start-page: 1603 issue: 8 year: 2016 ident: 449_CR31 publication-title: Adv. Mater. doi: 10.1002/adma.201504765 – volume: 55 start-page: 3992 issue: 12 year: 2016 ident: 449_CR46 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201511673 – volume: 132 start-page: 2 year: 2020 ident: 449_CR3 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201909339 – volume: 26 start-page: 513 year: 2016 ident: 449_CR37 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.005 – volume: 13 start-page: 13109 issue: 11 year: 2019 ident: 449_CR5 publication-title: ACS Nano doi: 10.1021/acsnano.9b05908 – volume: 58 start-page: 3779 issue: 12 year: 2019 ident: 449_CR24 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201812062 – volume: 9 start-page: 224 issue: 1 year: 2016 ident: 449_CR7 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02837J – volume: 29 start-page: 1603040 issue: 3 year: 2017 ident: 449_CR17 publication-title: Adv. Mater. doi: 10.1002/adma.201603040 – volume: 54 start-page: 3907 issue: 13 year: 2015 ident: 449_CR4 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201410174 – volume: 27 start-page: 1694 issue: 10 year: 2015 ident: 449_CR10 publication-title: Adv. Mater. doi: 10.1002/adma.201405689 – ident: 449_CR41 doi: 10.1002/smll.201804786 – volume: 4 start-page: 1496 year: 2019 ident: 449_CR16 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00573 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.477659 |
Snippet | Highlights
The intrinsic negatively charged MXene nanosheets were assembled to the positively charged Ketjen black/sulfur (KB/S) or KB to constructing the... The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are challenged by... HighlightsThe intrinsic negatively charged MXene nanosheets were assembled to the positively charged Ketjen black/sulfur (KB/S) or KB to constructing the... The intrinsic negatively charged MXene nanosheets were assembled to the positively charged Ketjen black/sulfur (KB/S) or KB to constructing the interwoven... Abstract The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112 |
SubjectTerms | Architecture Cathodes Decay rate Electrodes Engineering Flux density High sulfur areal loading Interlayer Interlayers Lithium sulfur batteries Lithium–sulfur battery MXene nanosheet MXenes Nanoscale Science and Technology Nanosheets Nanotechnology Nanotechnology and Microengineering Polysulfides Self-assembly Separators Structural integrity Sulfur Thickness |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYlp_RQmrQl26RBhd5aUcuSLOuYpg2hJL2kgb0Z2R6xgWCH_TnklnfIG-ZJMiN7fxxIeumCWbAkvIxGM9_sjL9h7Av6DEDjCMKr4IUuvRM-01Yk4DyihdwB0P8d53-y00v9e2zGG62-qCasowfuBPfd6aAQ1VdKm1rr1Ja5qxOQpQ0eTJ1GJlD0eRvBFGpSaqkj0zo_SG2V9QZLjSZOF7UmMjNEXGbX_Jgm1ejXe0fbAWlLKazYqU5Kkdkk69_Aie_hUdfmRFAkRglSJ-zAy8VmAAME-7T-8kkSNvq2k7fsTQ9K-VEnjB32Cppd9nqDqvAdG5PhmMKkq3fnP2PhB28DRwDJqVhEXCyuw2IqztpYlc_Prh7u7i94x995i98zqHnb8PMxWleORr2dTQDms_fs8uTX3-NT0XdlEBWClblQocag1iNw85U1HjeFGN5VBjINAXSQmYM0JLmzVYIeGIxXUHqpZY1e0uDCD2yraRvYY9xoFIGvla3zRHslfYWhuvJZBcG5srIjJpdSLKqespw6Z1wXK7LlKPkioYskX-Car6s1Nx1hx4uzf9DmrGYS2Xa8gSpY9CpY_EsFR-xgubVFbwFmBSIlQ-yIuXtm2Cr8pC4fsc-rYTzalK_xDbQLnGMQ6xpnjBkxO9CYwe8djjRXk0gSbq3FyB1Xflvq1vrhz8vj4_-Qxz7bTuNZMGiDD9jWfLqATwjd5uVhPKWPJdU0Dw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwELege4EHxF9RGMhIvIFFEttx_IQYbJrQNiHGpL5FTnKmk6ZkNO0Db3wHviGfhDvHaddJW6WqUm0ryfl8_p3v8jvG3uKeAWgcQTjpnVCVs8LlyogErEO0UFgAOu84PskPz9TXmZ7FA7c-plWONjEY6qar6Yz8Q6aMxE9mi4-XvwRVjaLoaiyhcZftoAkuignb2ds_-fZ91KjMUGWmTZyQyiurK2w1irhd5IbQTBOBmdnwZGq8ambihjsAakOhrFCxLk1FbpI8vokT3sej6s2JII-MAqVWmK3dLhQF2EKy1_MwrwVjwx538JA9iOCUfxq06RG7A-1jdv8KZeETNiMDsoD5kPfOv4QEEN55jkCSU9KIOF1d-NVCHHUhO58fnf_78_eUDzyev_G3h4Z3LT-eoZXlaNy7fg6w7J-ys4P9H58PRazOIGoELUshfYPOrUMA52qjXYPPWyC8ySHNvAfl09xC5pPCmjrBnRi0k1C5VKUNTpXGgc_YpO1aeM64VigC10jTFIlyMnU1uuzS5TV4a6vaTFk6SrGsI3U5VdC4KNeky0HyZUJfknyJY96tx1wOxB239t6jyVn3JNLt8Ee3-FnGNVxa5SU6mLVUGp82M1VhmwTSyngHusnUlO2OU1tGS9CXiJg0sSQW9obmUa2n7M26GZc4xW1cC90K-2jEvNpqrafMbGnM1v1ut7Tn80AWboxBDx5Hvh91a3Pxm-Xx4vZ7fcnuZUHLNVrZXTZZLlbwCsHZsnodV-B_KS4tLQ priority: 102 providerName: ProQuest |
Title | Comprehensive Design of the High-Sulfur-Loading Li–S Battery Based on MXene Nanosheets |
URI | https://link.springer.com/article/10.1007/s40820-020-00449-7 https://www.proquest.com/docview/2405359889 https://www.proquest.com/docview/2473333298 https://www.proquest.com/docview/2542359555 https://pubmed.ncbi.nlm.nih.gov/PMC7770945 https://doaj.org/article/94f3287c345d4427b89d0e1b7fae5d24 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZNcmkPpU-6bbqo0Fsr8EOyrGM2yTaUJJSmgb0Z2R51A8EO691Db_0P_Yf9JZ3R-hGHptCFXcNKwvZYmvnGM_qGsfdoMwCVIwgbOytkbo2widQiAGMRLaQGgN53nJ0nJ5fy80It2k1hTZft3oUkvabuN7tRaeRAkLtDUUgj9A7bU-S7U4h24ByPNFVjGmKDVFJZ3mKokcTnEg8kZopIy_TAjakiiTa9NbJbEK0pfOWr1IWhSHSQtLtv_n5ZIwvnCwGM0Ovd3Ms7AVhv1-ZP2OMWkPKD7Qx6yh5A9Yw9ukVT-JwtSGmsYLnNdedHPumD144jeOSUKCIuNtdusxKntc_I56dXv3_-uuBb7s4feGyg5HXFzxaoWTkq9LpZAqybF-xyfvzt8ES0FRlEgUBlLWJXokNrEbTZQitb4v2mCGkSCCPnQLowMRC5IDW6CND6grIx5DaUYYkWUuHAl2y3qit4xbiSKAJbxrpMA2nj0Bbopsc2KcAZkxd6wsJOilnR0pVT1YzrrCda9pLPAvqS5DMc86Efc7Ml6_hn7xk9nL4nEW37P-rV96xdt5mRLkansoilwruNdJ6aMoAw186CKiM5Yfvdo83a1d9kiJIUMSOm5p5mHeMnMumEveubcVlTrMZWUG-wj0Kcq4xSasL0aMaMrnfcUl0tPUG41hq9dhz5sZtbw8nvl8fr_-v-hj2M_KxXqGn32e56tYG3CNDW-ZTtpPNPU7Z3MDuazfE4Oz7_8nXqVyn9JodT_-rjD31ELik |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKOQAHxK8aKGAkOIHFrn_W6wNCQAkpTXppK-W2eHdtUqnaLfkR6o134D14KJ6EGe9u0lRqb40URYrtZNcefzPemfmGkFegMxyAo2NWeMtkbg2zidQscsaCtZAa5_B5x2g_GRzJb2M13iB_u1wYDKvsMDEAdVkX-Iz8HZdawIub9MPpT4ZVo9C72pXQaMRiz539giPb7P3uDqzva877Xw4_D1hbVYAVoGznTPgSDmUWDA9baGVLKZGhXCQu5t476ePEOO6j1OgiAg3ilBUut7GMS0B5BQPhd2-Qm1KAJsfM9P7XTn65xjpQK68kFnOW57hxJDLJiBV9mkK6NL1i5VRwj1y36r0x3zU6zkJ9vDhmiY6SNu8nZP9hreiI4fkP3bKG6TXdGkoQrNnNF6M-L7h-g0bt3yN3W1OYfmxk9z7ZcNUDcuccQeJDMka4mrpJE2VPd0K4Ca09BbOVYogKO1ic-MWUDeuQC0CHx_9-_zmgDWvoGXzOXEnrio7GgOkUVEk9mzg3nz0iR9eyao_JZlVXbotQJWEKbCl0mUbSitgWBnDOJoXzxuSF7pG4m8WsaInSsV7HSbakeA4zn0X4xpnPYMyb5ZjThibkyt6fcHGWPZHiO3xRT39kLWJkRnoBx9lCSAV3y3WemjJyca69darkske2u6XNWtyZZWCfKeRkTM0lzd0m6pGXy2YAFPQS2crVC-ijwMJWRinVI3pNYtaud72lOp4EanKtdWQkjHzbydbqzy-fjydXX-sLcmtwOBpmw939vafkNg8SrwDft8nmfLpwz8AsnOfPw16k5Pt1b_7_eoto3Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKKiE4IH7VQAEjwQms7o-9Xh84BELUpmmFFCrltnh3x6RStVtlN0K98Q68CM_EkzDev3QrisShkaJIsb3ZjO2Zzzsz3xDyGm0GoHIEpn2jGY-1YjrgkjmgNKKFUAHY5x1Hx8H-CZ8uxGKL_GpzYapo99YlWec0WJamrNw7T81el_hmyyQ7zB59rEdSMdmEVR7CxXc8tBXvD8Y4w288b_Lpy8d91tQVYAma25L5JsVjmUbooRMpdIoXCNEwB-B6xgA3bqDAM06oZOKgDQGhfYi1y90U9bzAgXjdW2Q7DHCHDsj2aDSdT9s17ElbC2rjmbQFnfklfhxu2WT8DYWasJRpcsPMKTyOiKIx8TWEl9Z5VtXIc10WSCdocn_-Loiefa3KEPSw89XIzyvu38qqTu6Tew0cpqN6_T4gW5A9JHcvkSQ-IgurslawrCPt6bgKOaG5oQhdqQ1TYfP1mVmv2Cyv8gHo7PT3j59zWjOHXuBnASnNM3q0QL1O0ZzkxRKgLB6TkxuZtydkkOUZ7BAqOIpAp75MQ4dr39WJQl2ngwSMUnEih8RtpRglDVm6rdlxFnU0z5XkI8e-reQjHPO2G3NeU4X8s_cHOzldT0vzXX2Rr75FjdaIFDc-HmkTnwv8t56MQ5U64MbSaBCpx4dkt53aqNE9RYQYTVhexlBd0yx9fHkqHJJXXTMqFesp0hnka-wjEGULJYQYEtlbMb377bdkp8uKnlxK6SiOI9-1a2vz49fL4-n_dX9Jbn8eT6LZwfHhM3LHqzaAQJW_Swblag3PESmW8Ytmc1Ly9ab1wR983Wtm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+Design+of+the+High-Sulfur-Loading+Li%E2%80%93S+Battery+Based+on+MXene+Nanosheets&rft.jtitle=Nano-micro+letters&rft.au=Zhang%2C+Shouzheng&rft.au=Zhong%2C+Ning&rft.au=Zhou%2C+Xing&rft.au=Zhang%2C+Mingjie&rft.date=2020-05-20&rft.pub=Springer+Singapore&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1007%2Fs40820-020-00449-7&rft.externalDocID=10_1007_s40820_020_00449_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |