Comprehensive Design of the High-Sulfur-Loading Li–S Battery Based on MXene Nanosheets

Highlights The intrinsic negatively charged MXene nanosheets were assembled to the positively charged Ketjen black/sulfur (KB/S) or KB to constructing the interwoven composite. The KB/S@Ti 3 C 2 T x architectures allow high sulfur loading and accommodate the corresponding volume change, while the st...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 12; no. 1; pp. 112 - 13
Main Authors Zhang, Shouzheng, Zhong, Ning, Zhou, Xing, Zhang, Mingjie, Huang, Xiangping, Yang, Xuelin, Meng, Ruijin, Liang, Xiao
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 20.05.2020
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights The intrinsic negatively charged MXene nanosheets were assembled to the positively charged Ketjen black/sulfur (KB/S) or KB to constructing the interwoven composite. The KB/S@Ti 3 C 2 T x architectures allow high sulfur loading and accommodate the corresponding volume change, while the structural integrity and the ionic and electric conducting pathways are well maintained. The KB@Ti 3 C 2 T x interlayers further retard the polysulfide that escaped from the cathode. It is only 0.28 mg cm −2 in density and 3 μm in thickness—the effect on energy density is minimal. The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation. A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase (Ti 3 C 2 T x nanosheets) is performed, aiming at realize stable cycling performance of Li–S battery with high sulfur areal loading. The interwoven KB@Ti 3 C 2 T x composite formed by self-assembly of MXene and Ktejen black, not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host, but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode. The KB@Ti 3 C 2 T x interlayer is only 0.28 mg cm −2 in areal loading and 3 μm in thickness, which accounts a little contribution to the thick sulfur electrode; thus, the impacts on the energy density is minimal. By coupling the robust KB@Ti 3 C 2 T x cathode and the effective KB@Ti 3 C 2 T x modified separator, a stable Li–S battery with high sulfur areal loading (5.6 mg cm −2 ) and high areal capacity (6.4 mAh cm −2 ) at relatively lean electrolyte is achieved.
AbstractList Highlights The intrinsic negatively charged MXene nanosheets were assembled to the positively charged Ketjen black/sulfur (KB/S) or KB to constructing the interwoven composite. The KB/S@Ti 3 C 2 T x architectures allow high sulfur loading and accommodate the corresponding volume change, while the structural integrity and the ionic and electric conducting pathways are well maintained. The KB@Ti 3 C 2 T x interlayers further retard the polysulfide that escaped from the cathode. It is only 0.28 mg cm −2 in density and 3 μm in thickness—the effect on energy density is minimal. The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation. A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase (Ti 3 C 2 T x nanosheets) is performed, aiming at realize stable cycling performance of Li–S battery with high sulfur areal loading. The interwoven KB@Ti 3 C 2 T x composite formed by self-assembly of MXene and Ktejen black, not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host, but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode. The KB@Ti 3 C 2 T x interlayer is only 0.28 mg cm −2 in areal loading and 3 μm in thickness, which accounts a little contribution to the thick sulfur electrode; thus, the impacts on the energy density is minimal. By coupling the robust KB@Ti 3 C 2 T x cathode and the effective KB@Ti 3 C 2 T x modified separator, a stable Li–S battery with high sulfur areal loading (5.6 mg cm −2 ) and high areal capacity (6.4 mAh cm −2 ) at relatively lean electrolyte is achieved.
The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation. A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase (Ti 3 C 2 T x nanosheets) is performed, aiming at realize stable cycling performance of Li–S battery with high sulfur areal loading. The interwoven KB@Ti 3 C 2 T x composite formed by self-assembly of MXene and Ktejen black, not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host, but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode. The KB@Ti 3 C 2 T x interlayer is only 0.28 mg cm −2 in areal loading and 3 μm in thickness, which accounts a little contribution to the thick sulfur electrode; thus, the impacts on the energy density is minimal. By coupling the robust KB@Ti 3 C 2 T x cathode and the effective KB@Ti 3 C 2 T x modified separator, a stable Li–S battery with high sulfur areal loading (5.6 mg cm −2 ) and high areal capacity (6.4 mAh cm −2 ) at relatively lean electrolyte is achieved.
The intrinsic negatively charged MXene nanosheets were assembled to the positively charged Ketjen black/sulfur (KB/S) or KB to constructing the interwoven composite. The KB/S@Ti 3 C 2 T x architectures allow high sulfur loading and accommodate the corresponding volume change, while the structural integrity and the ionic and electric conducting pathways are well maintained. The KB@Ti 3 C 2 T x interlayers further retard the polysulfide that escaped from the cathode. It is only 0.28 mg cm −2 in density and 3 μm in thickness—the effect on energy density is minimal. The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation. A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase (Ti 3 C 2 T x nanosheets) is performed, aiming at realize stable cycling performance of Li–S battery with high sulfur areal loading. The interwoven KB@Ti 3 C 2 T x composite formed by self-assembly of MXene and Ktejen black, not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host, but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode. The KB@Ti 3 C 2 T x interlayer is only 0.28 mg cm −2 in areal loading and 3 μm in thickness, which accounts a little contribution to the thick sulfur electrode; thus, the impacts on the energy density is minimal. By coupling the robust KB@Ti 3 C 2 T x cathode and the effective KB@Ti 3 C 2 T x modified separator, a stable Li–S battery with high sulfur areal loading (5.6 mg cm −2 ) and high areal capacity (6.4 mAh cm −2 ) at relatively lean electrolyte is achieved.
Abstract The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation. A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase (Ti3C2T x nanosheets) is performed, aiming at realize stable cycling performance of Li–S battery with high sulfur areal loading. The interwoven KB@Ti3C2T x composite formed by self-assembly of MXene and Ktejen black, not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host, but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode. The KB@Ti3C2T x interlayer is only 0.28 mg cm−2 in areal loading and 3 μm in thickness, which accounts a little contribution to the thick sulfur electrode; thus, the impacts on the energy density is minimal. By coupling the robust KB@Ti3C2T x cathode and the effective KB@Ti3C2T x modified separator, a stable Li–S battery with high sulfur areal loading (5.6 mg cm−2) and high areal capacity (6.4 mAh cm−2) at relatively lean electrolyte is achieved.
The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation. A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase (Ti3C2Tx nanosheets) is performed, aiming at realize stable cycling performance of Li-S battery with high sulfur areal loading. The interwoven KB@Ti3C2Tx composite formed by self-assembly of MXene and Ktejen black, not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host, but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode. The KB@Ti3C2Tx interlayer is only 0.28 mg cm-2 in areal loading and 3 μm in thickness, which accounts a little contribution to the thick sulfur electrode; thus, the impacts on the energy density is minimal. By coupling the robust KB@Ti3C2Tx cathode and the effective KB@Ti3C2Tx modified separator, a stable Li-S battery with high sulfur areal loading (5.6 mg cm-2) and high areal capacity (6.4 mAh cm-2) at relatively lean electrolyte is achieved.The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation. A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase (Ti3C2Tx nanosheets) is performed, aiming at realize stable cycling performance of Li-S battery with high sulfur areal loading. The interwoven KB@Ti3C2Tx composite formed by self-assembly of MXene and Ktejen black, not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host, but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode. The KB@Ti3C2Tx interlayer is only 0.28 mg cm-2 in areal loading and 3 μm in thickness, which accounts a little contribution to the thick sulfur electrode; thus, the impacts on the energy density is minimal. By coupling the robust KB@Ti3C2Tx cathode and the effective KB@Ti3C2Tx modified separator, a stable Li-S battery with high sulfur areal loading (5.6 mg cm-2) and high areal capacity (6.4 mAh cm-2) at relatively lean electrolyte is achieved.
HighlightsThe intrinsic negatively charged MXene nanosheets were assembled to the positively charged Ketjen black/sulfur (KB/S) or KB to constructing the interwoven composite.The KB/S@Ti3C2Tx architectures allow high sulfur loading and accommodate the corresponding volume change, while the structural integrity and the ionic and electric conducting pathways are well maintained.The KB@Ti3C2Tx interlayers further retard the polysulfide that escaped from the cathode. It is only 0.28 mg cm−2 in density and 3 μm in thickness—the effect on energy density is minimal.The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are challenged by fast decay owing to polysulfide shuttle and electrode architecture degradation. A comprehensive study of the sulfur host microstructure design and the cell architecture construction based on the MXene phase (Ti3C2Tx nanosheets) is performed, aiming at realize stable cycling performance of Li–S battery with high sulfur areal loading. The interwoven KB@Ti3C2Tx composite formed by self-assembly of MXene and Ktejen black, not only provides superior conductivity and maintains the electrode integrality bearing the volume expansion/shrinkage when used as the sulfur host, but also functions as an interlayer on separator to further retard the polysulfide cross-diffusion that possibly escaped from the cathode. The KB@Ti3C2Tx interlayer is only 0.28 mg cm−2 in areal loading and 3 μm in thickness, which accounts a little contribution to the thick sulfur electrode; thus, the impacts on the energy density is minimal. By coupling the robust KB@Ti3C2Tx cathode and the effective KB@Ti3C2Tx modified separator, a stable Li–S battery with high sulfur areal loading (5.6 mg cm−2) and high areal capacity (6.4 mAh cm−2) at relatively lean electrolyte is achieved.
ArticleNumber 112
Author Zhang, Shouzheng
Meng, Ruijin
Huang, Xiangping
Liang, Xiao
Zhang, Mingjie
Yang, Xuelin
Zhong, Ning
Zhou, Xing
Author_xml – sequence: 1
  givenname: Shouzheng
  surname: Zhang
  fullname: Zhang, Shouzheng
  organization: College of Materials and Chemical Engineering, China Three Gorges University, College of Science, China Three Gorges University
– sequence: 2
  givenname: Ning
  surname: Zhong
  fullname: Zhong, Ning
  organization: State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
– sequence: 3
  givenname: Xing
  surname: Zhou
  fullname: Zhou, Xing
  organization: State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
– sequence: 4
  givenname: Mingjie
  surname: Zhang
  fullname: Zhang, Mingjie
  organization: State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
– sequence: 5
  givenname: Xiangping
  surname: Huang
  fullname: Huang, Xiangping
  organization: College of Science, China Three Gorges University
– sequence: 6
  givenname: Xuelin
  surname: Yang
  fullname: Yang, Xuelin
  email: xlyang@ctgu.edu.cn
  organization: College of Materials and Chemical Engineering, China Three Gorges University
– sequence: 7
  givenname: Ruijin
  surname: Meng
  fullname: Meng, Ruijin
  organization: State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
– sequence: 8
  givenname: Xiao
  surname: Liang
  fullname: Liang, Xiao
  email: xliang@hnu.edu.cn
  organization: State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
BookMark eNp9Ustu1TAQjVARLaU_wCoSGzYBP2NngwSXRytdYFGQurMcZ5y4yrUvdlKpO_6BP-RLcEgFahfX0mhG9jlnZjzztDjywUNRPMfoFUZIvE4MSYIqtBhirKnEo-KEYI4qzjk-yjHFuKoFqo-Ls5RcizhhggjOnhTHlGEqMSYnxdUm7PYRBvDJ3UD5HpLrfRlsOQ1Qnrt-qC7n0c6x2gbdOd-XW_f756_L8p2eJoi32SfoyuDLz1fgofyifUgDwJSeFY-tHhOc3fnT4vvHD98259X266eLzdttZbhkU0VtJ6nQlBNtBNdd7kTWjNaAibXALK4bIBbJRhhkAIBrCq3GDHcEE56Jp8XFqtsFfa320e10vFVBO_X3IsRe6Tg5M4JqmKVECkMZz3mIaGXTIcCtsBp4R1jWerNq7ed2B50BP0U93hO9_-LdoPpwo4QQqGE8C7y8E4jhxwxpUjuXDIyj9hDmpAhnhPImTyhDXzyAXoc5-vxVKs-J5kMaeRiFeNaSsskosqJMDClFsP9Kxkgt26LWbVFosWVblMgk-YBk3KQnF5bW3HiYSldqynl8D_F_VQdYfwCZL9NI
CitedBy_id crossref_primary_10_1016_j_compositesb_2022_110465
crossref_primary_10_1007_s12598_024_03022_y
crossref_primary_10_1016_j_electacta_2021_137838
crossref_primary_10_1016_j_ensm_2022_09_028
crossref_primary_10_1039_D2TA04592C
crossref_primary_10_1021_acs_energyfuels_4c02106
crossref_primary_10_1088_1361_6528_ac5443
crossref_primary_10_1007_s40820_022_00941_2
crossref_primary_10_1016_j_electacta_2021_139539
crossref_primary_10_1007_s40820_023_01137_y
crossref_primary_10_1002_aenm_202202860
crossref_primary_10_3390_nano11020408
crossref_primary_10_1016_j_ensm_2024_103328
crossref_primary_10_1007_s12274_023_5557_6
crossref_primary_10_1088_2515_7655_abd5c4
crossref_primary_10_1016_j_cej_2022_141264
crossref_primary_10_1021_acsanm_4c06605
crossref_primary_10_1039_D1TA08968D
crossref_primary_10_1007_s12274_023_5535_z
crossref_primary_10_1021_acs_nanolett_3c03021
crossref_primary_10_1039_D2TA01398C
crossref_primary_10_1007_s41918_021_00110_w
crossref_primary_10_1002_smll_202200046
crossref_primary_10_1002_adma_202008654
crossref_primary_10_1002_eem2_12454
crossref_primary_10_1007_s12598_021_01876_0
crossref_primary_10_1007_s40820_024_01482_6
crossref_primary_10_1016_j_est_2024_113412
crossref_primary_10_1016_j_jechem_2024_07_038
crossref_primary_10_1016_j_cclet_2025_111110
crossref_primary_10_1016_j_ceramint_2022_03_154
crossref_primary_10_1021_acsami_4c04919
crossref_primary_10_1016_j_ccr_2023_215208
crossref_primary_10_1016_j_jechem_2021_08_040
crossref_primary_10_1021_acsami_2c02713
crossref_primary_10_1246_cl_210810
crossref_primary_10_1007_s40820_021_00676_6
crossref_primary_10_1016_j_mattod_2022_06_006
crossref_primary_10_1021_acs_energyfuels_1c01242
crossref_primary_10_1016_j_cej_2021_131031
crossref_primary_10_1016_j_cej_2024_151285
crossref_primary_10_1016_j_cclet_2022_02_034
crossref_primary_10_1016_j_cjsc_2024_100337
crossref_primary_10_1016_j_jcis_2021_07_114
crossref_primary_10_1016_j_jelechem_2023_117370
crossref_primary_10_20517_energymater_2023_99
crossref_primary_10_1007_s12598_024_02635_7
crossref_primary_10_1016_j_jcis_2024_07_079
crossref_primary_10_1016_j_carbpol_2022_119201
crossref_primary_10_1016_j_jallcom_2021_159952
crossref_primary_10_1016_j_cej_2020_128102
crossref_primary_10_1016_j_ensm_2022_04_022
crossref_primary_10_1039_D3EE01841E
crossref_primary_10_1021_acsami_1c14813
crossref_primary_10_1007_s12274_022_5215_4
crossref_primary_10_1016_j_cej_2024_151978
crossref_primary_10_1016_j_jechem_2025_01_020
crossref_primary_10_1016_j_matre_2021_100077
crossref_primary_10_1039_D2TA09123B
crossref_primary_10_1007_s11431_021_2077_5
crossref_primary_10_1016_j_mtcomm_2021_102323
crossref_primary_10_1039_D0CP02275F
crossref_primary_10_1021_acs_langmuir_4c04102
crossref_primary_10_1557_s43578_024_01367_9
crossref_primary_10_1016_j_ccr_2023_215055
crossref_primary_10_1002_adfm_202100457
crossref_primary_10_1021_acsami_0c12767
crossref_primary_10_1007_s40820_022_00935_0
crossref_primary_10_1002_smll_202206081
crossref_primary_10_1007_s40843_022_2303_0
crossref_primary_10_1016_j_est_2024_115015
crossref_primary_10_1002_adfm_202204635
crossref_primary_10_1021_acs_energyfuels_4c02385
crossref_primary_10_1016_j_nanoen_2022_107913
crossref_primary_10_1016_j_est_2023_109555
crossref_primary_10_1021_acsaem_2c03004
crossref_primary_10_1016_j_carbon_2024_119442
crossref_primary_10_1002_smll_202303266
crossref_primary_10_1002_cssc_202100173
Cites_doi 10.1039/c5cs00410a
10.1039/C4EE01377H
10.1021/acsnano.8b08155
10.1021/acsami.6b09027
10.1002/aenm.201900219
10.1002/anie.201812062
10.1002/aenm.201500046
10.1002/adfm.201901907
10.1002/aenm.201601630
10.1021/acs.chemmater.7b02847
10.1002/adma.201405689
10.1002/adma.201906739
10.1016/j.joule.2020.01.001
10.1038/nenergy.2016.132
10.1016/j.nanoen.2019.05.011
10.1038/nmat3191
10.1002/adfm.201502251
10.1021/acsnano.9b05908
10.1002/adma.201603040
10.1002/adma.201705951
10.1002/adfm.201905986
10.1039/C5TA10307J
10.1002/anie.201410174
10.1021/acsami.7b13247
10.1021/acscentsci.8b00921
10.1002/ange.201909339
10.1021/jz9003137
10.1002/aenm.201901940
10.1038/nature13970
10.1016/j.nanoen.2016.06.005
10.1039/C5EE02837J
10.1002/anie.201605931
10.1002/adfm.201504294
10.1038/ncomms6682
10.1149/2.106311jes
10.1002/adma.201504765
10.1021/nl403715h
10.1038/natrevmats.2016.98
10.1002/aenm.201702839
10.1002/anie.201511673
10.1021/ja308170k
10.1002/adfm.201602071
10.1002/advs.201500268
10.1002/adfm.201302631
10.1021/acs.nanolett.6b01434
10.1002/aenm.201500110
10.1021/acsenergylett.9b00573
10.1021/acsnano.9b06629
10.1002/adfm.201603704
10.1002/aenm.201700260
10.1002/smll.201804786
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-020-00449-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
CrossRef


MEDLINE - Academic
Publicly Available Content Database
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 2150-5551
EndPage 13
ExternalDocumentID oai_doaj_org_article_94f3287c345d4427b89d0e1b7fae5d24
PMC7770945
10_1007_s40820_020_00449_7
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c584t-3fd837a352ac75ad44986436e12ffe4f169e2f0897c0ceee5a3eba141d21257a3
IEDL.DBID C24
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:28:06 EDT 2025
Thu Aug 21 18:07:16 EDT 2025
Fri Jul 11 05:00:17 EDT 2025
Wed Aug 13 08:09:36 EDT 2025
Wed Aug 13 09:39:25 EDT 2025
Tue Jul 01 00:55:44 EDT 2025
Thu Apr 24 23:10:35 EDT 2025
Fri Feb 21 02:35:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords High sulfur areal loading
Interlayer
MXene nanosheet
Lithium–sulfur battery
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c584t-3fd837a352ac75ad44986436e12ffe4f169e2f0897c0ceee5a3eba141d21257a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s40820-020-00449-7
PMID 34138112
PQID 2405359889
PQPubID 2044332
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_94f3287c345d4427b89d0e1b7fae5d24
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7770945
proquest_miscellaneous_2542359555
proquest_journals_2473333298
proquest_journals_2405359889
crossref_primary_10_1007_s40820_020_00449_7
crossref_citationtrail_10_1007_s40820_020_00449_7
springer_journals_10_1007_s40820_020_00449_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-20
PublicationDateYYYYMMDD 2020-05-20
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-20
  day: 20
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationYear 2020
Publisher Springer Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Son, Lee, Son, Jang, Cho (CR42) 2015; 5
Yu, Dai (CR38) 2009; 1
Balach, Jaumann, Klose, Oswald, Eckert, Giebeler (CR49) 2015; 25
Guo, Ming, Su, Wu, Wahyudi, Li, Li, Lai (CR25) 2019; 61
Tian, Song, Wang, Wu, Qiu, Guan, Sun (CR23) 2019; 6
Chung, Manthiram (CR27) 2018; 30
Peng, Wang, Huang, Cheng, Yuan, Wei, Zhang (CR44) 2016; 3
Song, Su, Xie, Guo, Bao, Shao, Wang (CR45) 2016; 8
Anasori, Lukatskaya, Gogotsi (CR19) 2017; 2
Ai, Dai, Mao, Zhao, Fu, Song, Liu (CR29) 2016; 16
Zhang, Li, Wang, Zhang, Tan, Chu, Guo (CR43) 2018; 8
Yao, Yan, Li, Zheng, Kong (CR48) 2014; 7
Liang, Rangom, Kwok, Pang, Nazar (CR17) 2017; 29
Qie, Manthiram (CR10) 2015; 27
Tang, Li, Pan, Tu, Du, Qiu, Zhang (CR9) 2019
Wang, Liu, Yuan, Wang, Xia (CR7) 2016; 9
Alhabeb, Maleski, Anasori, Lelyukh, Clark, Sin, Gogotsi (CR36) 2017; 29
Bhargav, He, Gupta, Manthiram (CR50) 2020; 4
Zhao, Li, Peng, Yuan, Wei, Huang (CR3) 2020; 132
Ma, Fang, Yan, Yang, Gu, Hu, Huang (CR28) 2015; 5
Seh, Sun, Zhang, Cui (CR2) 2016; 45
CR41
Ghidiu, Lukatskaya, Zhao, Gogotsi, Barsoum (CR34) 2014; 516
Hong, Song, Yang, Tan, Li, Cai, Wang (CR22) 2019; 13
Wu, Liu, Wang, Qiu, Guan, Tian, Zhang (CR5) 2019; 13
Ding, Kopold, Hahn, van Aken, Maier, Yu (CR11) 2016; 26
Peng, Huang, Cheng, Zhang (CR12) 2017; 7
Liang, Hart, Pang, Garsuch, Weiss, Nazar (CR18) 2015; 6
Hu, Xu, Sun, Wang, Cheng, Li, Ren (CR31) 2016; 28
Pang, Liang, Kwok, Nazar (CR13) 2016; 1
Wang, Dong, Wang, Zhang, Jin (CR33) 2013; 13
Peng, Xu, Zhu, Wang, Huang, Cheng, Zhang (CR30) 2016; 26
Zhong, Yang, Guan, Wang, Wang, Han, Meng (CR35) 2017; 9
Chen, Zeng, Muheiyati, Zhai, Li, Ding, Qian (CR16) 2019; 4
Xie, Zhao, Anasori, Maleski, Ren, Li, Gogotsi (CR37) 2016; 26
Xu, Wang, Yang, Miao, Chen, Qian, Miao (CR8) 2016; 55
Sun, Liu, Li, Luo, Liu, Hong, Zheng (CR14) 2019; 13
Yu, Zhou, Wang, Pei, Liu, Liu, Qiu (CR15) 2019; 29
Zheng, Lva, Gu, Wang, Zhang, Liu, Xiao (CR39) 2013; 160
Xin, Gu, Zhao, Yin, Zhou, Guo, Wan (CR6) 2012; 134
Bao, Su, Zhang, Guo, Wang (CR40) 2016; 26
Bruce, Freunberger, Hardwick, Tarascon (CR1) 2012; 11
Lin, Zhang, Wang, Wang, Zhao, Duan, Jin (CR26) 2016; 4
Zhao, Peng, Zhang, Li, Chen (CR24) 2019; 58
Jiao, Zhang, Geng, Wu, Li, Lv, Ling (CR51) 2019; 9
Wang, Zhang, Liu, Guo (CR46) 2016; 55
Tang, Zhou, Li, Guo, Sun (CR20) 2019
Pang, Liang, Kwok, Kulisch, Nazar (CR32) 2017; 7
Tang, Zhou, Li, Guo, Wang, Kang, Li, Wang (CR21) 2019; 5
Liang, Garsuch, Nazar (CR4) 2015; 54
Song, Xu, Gordin, Zhu, Lv (CR47) 2014; 24
Z Xu (449_CR8) 2016; 55
X Tang (449_CR21) 2019; 5
Q Pang (449_CR32) 2017; 7
HJ Peng (449_CR30) 2016; 26
X Chen (449_CR16) 2019; 4
L Wang (449_CR33) 2013; 13
HJ Peng (449_CR44) 2016; 3
D Tian (449_CR23) 2019; 6
W Sun (449_CR14) 2019; 13
X Liang (449_CR18) 2015; 6
L Jiao (449_CR51) 2019; 9
M Zhao (449_CR3) 2020; 132
G Ai (449_CR29) 2016; 16
YK Son (449_CR42) 2015; 5
ZW Seh (449_CR2) 2016; 45
X Xie (449_CR37) 2016; 26
HJ Peng (449_CR12) 2017; 7
C Lin (449_CR26) 2016; 4
PG Bruce (449_CR1) 2012; 11
X Tang (449_CR20) 2019
M Yu (449_CR15) 2019; 29
D Guo (449_CR25) 2019; 61
X Wu (449_CR5) 2019; 13
D Yu (449_CR38) 2009; 1
Q Pang (449_CR13) 2016; 1
L Wang (449_CR7) 2016; 9
L Zhong (449_CR35) 2017; 9
X Liang (449_CR4) 2015; 54
H Tang (449_CR9) 2019
M Ghidiu (449_CR34) 2014; 516
HB Yao (449_CR48) 2014; 7
A Bhargav (449_CR50) 2020; 4
JX Song (449_CR47) 2014; 24
S Xin (449_CR6) 2012; 134
J Song (449_CR45) 2016; 8
J Balach (449_CR49) 2015; 25
G Hu (449_CR31) 2016; 28
J Zhang (449_CR43) 2018; 8
HQ Wang (449_CR46) 2016; 55
L Qie (449_CR10) 2015; 27
M Zhao (449_CR24) 2019; 58
XJ Hong (449_CR22) 2019; 13
449_CR41
B Anasori (449_CR19) 2017; 2
X Liang (449_CR17) 2017; 29
SH Chung (449_CR27) 2018; 30
J Ma (449_CR28) 2015; 5
WZ Bao (449_CR40) 2016; 26
JM Zheng (449_CR39) 2013; 160
YL Ding (449_CR11) 2016; 26
M Alhabeb (449_CR36) 2017; 29
References_xml – volume: 45
  start-page: 5605
  issue: 20
  year: 2016
  end-page: 5634
  ident: CR2
  article-title: Designing highenergy lithium–sulfur batteries
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c5cs00410a
– volume: 7
  start-page: 3381
  issue: 10
  year: 2014
  end-page: 3390
  ident: CR48
  article-title: Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive s-related species at the cathode–separator interface
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01377H
– volume: 13
  start-page: 1923
  issue: 2
  year: 2019
  end-page: 1931
  ident: CR22
  article-title: Cerium based Metal-Organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium–sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b08155
– volume: 8
  start-page: 29427
  issue: 43
  year: 2016
  end-page: 29433
  ident: CR45
  article-title: Immobilizing polysulfides with mxene-functionalized separators for stable lithium–sulfur batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09027
– volume: 9
  start-page: 1900219
  issue: 19
  year: 2019
  ident: CR51
  article-title: Capture and catalytic conversion of polysulfides by in situ built TiO -mxene heterostructures for lithium–sulfur batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900219
– volume: 58
  start-page: 3779
  issue: 12
  year: 2019
  end-page: 3783
  ident: CR24
  article-title: Activating inert metallic compounds for high-rate lithium–sulfur batteries through in situ etching of extrinsic metal
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201812062
– volume: 5
  start-page: 1500046
  issue: 16
  year: 2015
  ident: CR28
  article-title: Novel large-scale synthesis of a C/S nanocomposite with mixed conducting networks through a spray drying approach for Li–S batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500046
– year: 2019
  ident: CR9
  article-title: A robust, freestanding mxene-sulfur conductive paper for long-lifetime Li–S batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901907
– volume: 7
  start-page: 1601630
  issue: 6
  year: 2017
  ident: CR32
  article-title: A comprehensive approach toward stable lithium–sulfur batteries with high volumetric energy density
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601630
– volume: 29
  start-page: 7633
  issue: 18
  year: 2017
  end-page: 7644
  ident: CR36
  article-title: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti C T MXene)
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02847
– volume: 27
  start-page: 1694
  issue: 10
  year: 2015
  end-page: 1700
  ident: CR10
  article-title: A facile layer-by-layer approach for high-areal-capacity sulfur cathodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405689
– year: 2019
  ident: CR20
  article-title: MXene-based dendrite-free potassium metal batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906739
– volume: 4
  start-page: 285
  issue: 2
  year: 2020
  end-page: 291
  ident: CR50
  article-title: Lithium–sulfur batteries: attaining the critical metrics
  publication-title: Joule
  doi: 10.1016/j.joule.2020.01.001
– volume: 1
  start-page: 16132
  issue: 9
  year: 2016
  ident: CR13
  article-title: Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.132
– volume: 61
  start-page: 478
  year: 2019
  end-page: 485
  ident: CR25
  article-title: MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li–S battery
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.011
– volume: 11
  start-page: 19
  year: 2012
  end-page: 29
  ident: CR1
  article-title: Li–O and Li–S batteries with high energy storage
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3191
– volume: 25
  start-page: 5285
  issue: 33
  year: 2015
  end-page: 5291
  ident: CR49
  article-title: Functional mesoporous carbon-coated separator for long-life, high-energy lithium–sulfur batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502251
– volume: 13
  start-page: 13109
  issue: 11
  year: 2019
  end-page: 13115
  ident: CR5
  article-title: A class of catalysts of BiOX (X = Cl, Br, I) for anchoring polysulfides and accelerating redox reaction in lithium sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05908
– volume: 29
  start-page: 1603040
  issue: 3
  year: 2017
  ident: CR17
  article-title: Interwoven MXene nanosheet/carbon-nanotube composites as Li–S cathode hosts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603040
– volume: 30
  start-page: 1705951
  issue: 6
  year: 2018
  ident: CR27
  article-title: Rational design of statically and dynamically stable lithium–sulfur batteries with high sulfur loading and low electrolyte/sulfur ratio
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705951
– volume: 29
  start-page: 1905986
  year: 2019
  ident: CR15
  article-title: A molecular-cage strategy enabling efficient chemisorption–electrocatalytic interface in nanostructured Li2S cathode for Li metal-free rechargeable cells with high energy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905986
– volume: 4
  start-page: 5993
  issue: 16
  year: 2016
  end-page: 5998
  ident: CR26
  article-title: A few-layered Ti C nanosheet/glass fiber composite separator as a lithium polysulphide reservoir for high-performance lithium–sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA10307J
– volume: 54
  start-page: 3907
  issue: 13
  year: 2015
  end-page: 3911
  ident: CR4
  article-title: Sulfur cathodes based on conductive mxene nanosheets for high-performance lithium-sulfur batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201410174
– volume: 9
  start-page: 43640
  issue: 50
  year: 2017
  end-page: 43647
  ident: CR35
  article-title: Toward theoretically cycling-stable lithium–sulfur battery using a foldable and compositionally heterogeneous cathode
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13247
– volume: 5
  start-page: 365
  issue: 2
  year: 2019
  end-page: 373
  ident: CR21
  article-title: High-performance quasi-solid-state MXene-based Li–I batteries
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.8b00921
– volume: 132
  start-page: 2
  year: 2020
  end-page: 20
  ident: CR3
  article-title: Challenges and opportunities towards practical lithium–sulfur batteries under lean electrolyte conditions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201909339
– volume: 1
  start-page: 467
  issue: 2
  year: 2009
  end-page: 470
  ident: CR38
  article-title: Self-assembled graphene/carbon nanotube hybrid films for supercapacitors
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz9003137
– volume: 6
  start-page: 1901940
  year: 2019
  ident: CR23
  article-title: MoN supported on graphene as a bifunctional interlayer for advanced Li–S batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901940
– volume: 516
  start-page: 78
  year: 2014
  end-page: 81
  ident: CR34
  article-title: Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance
  publication-title: Nature
  doi: 10.1038/nature13970
– volume: 26
  start-page: 513
  year: 2016
  end-page: 523
  ident: CR37
  article-title: Porous heterostructured mxene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.005
– volume: 9
  start-page: 224
  issue: 1
  year: 2016
  end-page: 231
  ident: CR7
  article-title: To mitigate self-discharge of lithium–sulfur batteries by optimizing ionic liquid electrolytes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02837J
– volume: 55
  start-page: 10372
  issue: 35
  year: 2016
  end-page: 10375
  ident: CR8
  article-title: Enhanced performance of a lithium–sulfur battery using a carbonate-based electrolyte
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201605931
– volume: 26
  start-page: 1112
  issue: 7
  year: 2016
  end-page: 1119
  ident: CR11
  article-title: Facile solid-state growth of 3D well-interconnected nitrogen-rich carbon nanotube–graphene hybrid architectures for lithium–sulfur batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504294
– volume: 6
  start-page: 5682
  year: 2015
  ident: CR18
  article-title: A highly efficient polysulfide mediator for lithium–sulfur batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6682
– volume: 160
  start-page: A2288
  issue: 11
  year: 2013
  end-page: A2292
  ident: CR39
  article-title: How to obtain reproducible results for lithium sulfur batteries?
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.106311jes
– volume: 28
  start-page: 1603
  issue: 8
  year: 2016
  end-page: 1609
  ident: CR31
  article-title: 3D graphene-foam–reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li–S batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504765
– volume: 13
  start-page: 6244
  issue: 12
  year: 2013
  end-page: 6250
  ident: CR33
  article-title: Covalent bond glued sulfur nanosheet-based cathode integration for long-cycle-life Li–S batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl403715h
– volume: 2
  start-page: 16098
  issue: 2
  year: 2017
  ident: CR19
  article-title: 2D metal carbides and nitrides (MXenes) for energy storage
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.98
– volume: 8
  start-page: 1702839
  year: 2018
  ident: CR43
  article-title: Microemulsion assisted assembly of 3D porous S/Graphene@g-C N hybrid sponge as free-standing cathodes for high energy density Li–S batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702839
– volume: 55
  start-page: 3992
  issue: 12
  year: 2016
  end-page: 3996
  ident: CR46
  article-title: A strategy for configuration of an integrated flexible sulfur cathode for high-performance lithium–sulfur batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201511673
– volume: 134
  start-page: 18510
  issue: 45
  year: 2012
  end-page: 18513
  ident: CR6
  article-title: Smaller sulfur molecules promise better lithium–sulfur batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308170k
– volume: 26
  start-page: 6351
  issue: 35
  year: 2016
  end-page: 6358
  ident: CR30
  article-title: 3D carbonaceous current collectors: the origin of enhanced cycling stability for high-sulfur-loading lithium–sulfur batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201602071
– volume: 3
  start-page: 1500268
  year: 2016
  ident: CR44
  article-title: Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium–sulfur batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500268
– volume: 24
  start-page: 1243
  issue: 9
  year: 2014
  end-page: 1250
  ident: CR47
  article-title: Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium–sulfur batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201302631
– volume: 16
  start-page: 5365
  issue: 9
  year: 2016
  end-page: 5372
  ident: CR29
  article-title: Biomimetic ant-nest electrode structures for high sulfur ratio lithium–sulfur batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01434
– volume: 5
  start-page: 1500110
  issue: 16
  year: 2015
  ident: CR42
  article-title: Recent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500110
– volume: 4
  start-page: 1496
  year: 2019
  end-page: 1504
  ident: CR16
  article-title: Double-shelled Ni–Fe–P/N-doped carbon nanobox derived from Prussian blue analogue as electrode material for K-ion batteries and Li–S batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00573
– volume: 13
  start-page: 12137
  issue: 10
  year: 2019
  end-page: 12147
  ident: CR14
  article-title: Rational construction of Fe N@ C yolk–shell nanoboxes as multifunctional hosts for ultralong lithium–sulfur batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b06629
– volume: 26
  start-page: 8746
  year: 2016
  end-page: 8756
  ident: CR40
  article-title: 3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201603704
– volume: 7
  start-page: 1700260
  issue: 24
  year: 2017
  ident: CR12
  article-title: Review on high-loading and high-energy lithium–sulfur batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700260
– ident: CR41
– volume: 5
  start-page: 1500046
  issue: 16
  year: 2015
  ident: 449_CR28
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500046
– volume: 55
  start-page: 10372
  issue: 35
  year: 2016
  ident: 449_CR8
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201605931
– volume: 7
  start-page: 1601630
  issue: 6
  year: 2017
  ident: 449_CR32
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601630
– volume: 25
  start-page: 5285
  issue: 33
  year: 2015
  ident: 449_CR49
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502251
– volume: 4
  start-page: 285
  issue: 2
  year: 2020
  ident: 449_CR50
  publication-title: Joule
  doi: 10.1016/j.joule.2020.01.001
– volume: 1
  start-page: 16132
  issue: 9
  year: 2016
  ident: 449_CR13
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.132
– volume: 8
  start-page: 1702839
  year: 2018
  ident: 449_CR43
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702839
– volume: 13
  start-page: 1923
  issue: 2
  year: 2019
  ident: 449_CR22
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b08155
– volume: 29
  start-page: 1905986
  year: 2019
  ident: 449_CR15
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905986
– volume: 26
  start-page: 8746
  year: 2016
  ident: 449_CR40
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201603704
– volume: 9
  start-page: 43640
  issue: 50
  year: 2017
  ident: 449_CR35
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13247
– volume: 134
  start-page: 18510
  issue: 45
  year: 2012
  ident: 449_CR6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308170k
– volume: 61
  start-page: 478
  year: 2019
  ident: 449_CR25
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.011
– volume: 1
  start-page: 467
  issue: 2
  year: 2009
  ident: 449_CR38
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz9003137
– volume: 13
  start-page: 6244
  issue: 12
  year: 2013
  ident: 449_CR33
  publication-title: Nano Lett.
  doi: 10.1021/nl403715h
– volume: 16
  start-page: 5365
  issue: 9
  year: 2016
  ident: 449_CR29
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01434
– volume: 2
  start-page: 16098
  issue: 2
  year: 2017
  ident: 449_CR19
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.98
– volume: 11
  start-page: 19
  year: 2012
  ident: 449_CR1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3191
– volume: 5
  start-page: 1500110
  issue: 16
  year: 2015
  ident: 449_CR42
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500110
– volume: 29
  start-page: 7633
  issue: 18
  year: 2017
  ident: 449_CR36
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02847
– volume: 6
  start-page: 5682
  year: 2015
  ident: 449_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6682
– year: 2019
  ident: 449_CR9
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901907
– year: 2019
  ident: 449_CR20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906739
– volume: 26
  start-page: 1112
  issue: 7
  year: 2016
  ident: 449_CR11
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504294
– volume: 3
  start-page: 1500268
  year: 2016
  ident: 449_CR44
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500268
– volume: 6
  start-page: 1901940
  year: 2019
  ident: 449_CR23
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901940
– volume: 516
  start-page: 78
  year: 2014
  ident: 449_CR34
  publication-title: Nature
  doi: 10.1038/nature13970
– volume: 5
  start-page: 365
  issue: 2
  year: 2019
  ident: 449_CR21
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.8b00921
– volume: 30
  start-page: 1705951
  issue: 6
  year: 2018
  ident: 449_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705951
– volume: 26
  start-page: 6351
  issue: 35
  year: 2016
  ident: 449_CR30
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201602071
– volume: 9
  start-page: 1900219
  issue: 19
  year: 2019
  ident: 449_CR51
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900219
– volume: 7
  start-page: 3381
  issue: 10
  year: 2014
  ident: 449_CR48
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01377H
– volume: 7
  start-page: 1700260
  issue: 24
  year: 2017
  ident: 449_CR12
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700260
– volume: 45
  start-page: 5605
  issue: 20
  year: 2016
  ident: 449_CR2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c5cs00410a
– volume: 4
  start-page: 5993
  issue: 16
  year: 2016
  ident: 449_CR26
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA10307J
– volume: 24
  start-page: 1243
  issue: 9
  year: 2014
  ident: 449_CR47
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201302631
– volume: 160
  start-page: A2288
  issue: 11
  year: 2013
  ident: 449_CR39
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.106311jes
– volume: 13
  start-page: 12137
  issue: 10
  year: 2019
  ident: 449_CR14
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b06629
– volume: 8
  start-page: 29427
  issue: 43
  year: 2016
  ident: 449_CR45
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09027
– volume: 28
  start-page: 1603
  issue: 8
  year: 2016
  ident: 449_CR31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504765
– volume: 55
  start-page: 3992
  issue: 12
  year: 2016
  ident: 449_CR46
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201511673
– volume: 132
  start-page: 2
  year: 2020
  ident: 449_CR3
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201909339
– volume: 26
  start-page: 513
  year: 2016
  ident: 449_CR37
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.005
– volume: 13
  start-page: 13109
  issue: 11
  year: 2019
  ident: 449_CR5
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05908
– volume: 58
  start-page: 3779
  issue: 12
  year: 2019
  ident: 449_CR24
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201812062
– volume: 9
  start-page: 224
  issue: 1
  year: 2016
  ident: 449_CR7
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02837J
– volume: 29
  start-page: 1603040
  issue: 3
  year: 2017
  ident: 449_CR17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603040
– volume: 54
  start-page: 3907
  issue: 13
  year: 2015
  ident: 449_CR4
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201410174
– volume: 27
  start-page: 1694
  issue: 10
  year: 2015
  ident: 449_CR10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405689
– ident: 449_CR41
  doi: 10.1002/smll.201804786
– volume: 4
  start-page: 1496
  year: 2019
  ident: 449_CR16
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00573
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.477659
Snippet Highlights The intrinsic negatively charged MXene nanosheets were assembled to the positively charged Ketjen black/sulfur (KB/S) or KB to constructing the...
The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are challenged by...
HighlightsThe intrinsic negatively charged MXene nanosheets were assembled to the positively charged Ketjen black/sulfur (KB/S) or KB to constructing the...
The intrinsic negatively charged MXene nanosheets were assembled to the positively charged Ketjen black/sulfur (KB/S) or KB to constructing the interwoven...
Abstract The lithium-sulfur battery is the subject of much recent attention due to the high theoretical energy density, but practical applications are...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112
SubjectTerms Architecture
Cathodes
Decay rate
Electrodes
Engineering
Flux density
High sulfur areal loading
Interlayer
Interlayers
Lithium sulfur batteries
Lithium–sulfur battery
MXene nanosheet
MXenes
Nanoscale Science and Technology
Nanosheets
Nanotechnology
Nanotechnology and Microengineering
Polysulfides
Self-assembly
Separators
Structural integrity
Sulfur
Thickness
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYlp_RQmrQl26RBhd5aUcuSLOuYpg2hJL2kgb0Z2R6xgWCH_TnklnfIG-ZJMiN7fxxIeumCWbAkvIxGM9_sjL9h7Av6DEDjCMKr4IUuvRM-01Yk4DyihdwB0P8d53-y00v9e2zGG62-qCasowfuBPfd6aAQ1VdKm1rr1Ja5qxOQpQ0eTJ1GJlD0eRvBFGpSaqkj0zo_SG2V9QZLjSZOF7UmMjNEXGbX_Jgm1ejXe0fbAWlLKazYqU5Kkdkk69_Aie_hUdfmRFAkRglSJ-zAy8VmAAME-7T-8kkSNvq2k7fsTQ9K-VEnjB32Cppd9nqDqvAdG5PhmMKkq3fnP2PhB28DRwDJqVhEXCyuw2IqztpYlc_Prh7u7i94x995i98zqHnb8PMxWleORr2dTQDms_fs8uTX3-NT0XdlEBWClblQocag1iNw85U1HjeFGN5VBjINAXSQmYM0JLmzVYIeGIxXUHqpZY1e0uDCD2yraRvYY9xoFIGvla3zRHslfYWhuvJZBcG5srIjJpdSLKqespw6Z1wXK7LlKPkioYskX-Car6s1Nx1hx4uzf9DmrGYS2Xa8gSpY9CpY_EsFR-xgubVFbwFmBSIlQ-yIuXtm2Cr8pC4fsc-rYTzalK_xDbQLnGMQ6xpnjBkxO9CYwe8djjRXk0gSbq3FyB1Xflvq1vrhz8vj4_-Qxz7bTuNZMGiDD9jWfLqATwjd5uVhPKWPJdU0Dw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwELege4EHxF9RGMhIvIFFEttx_IQYbJrQNiHGpL5FTnKmk6ZkNO0Db3wHviGfhDvHaddJW6WqUm0ryfl8_p3v8jvG3uKeAWgcQTjpnVCVs8LlyogErEO0UFgAOu84PskPz9TXmZ7FA7c-plWONjEY6qar6Yz8Q6aMxE9mi4-XvwRVjaLoaiyhcZftoAkuignb2ds_-fZ91KjMUGWmTZyQyiurK2w1irhd5IbQTBOBmdnwZGq8ambihjsAakOhrFCxLk1FbpI8vokT3sej6s2JII-MAqVWmK3dLhQF2EKy1_MwrwVjwx538JA9iOCUfxq06RG7A-1jdv8KZeETNiMDsoD5kPfOv4QEEN55jkCSU9KIOF1d-NVCHHUhO58fnf_78_eUDzyev_G3h4Z3LT-eoZXlaNy7fg6w7J-ys4P9H58PRazOIGoELUshfYPOrUMA52qjXYPPWyC8ySHNvAfl09xC5pPCmjrBnRi0k1C5VKUNTpXGgc_YpO1aeM64VigC10jTFIlyMnU1uuzS5TV4a6vaTFk6SrGsI3U5VdC4KNeky0HyZUJfknyJY96tx1wOxB239t6jyVn3JNLt8Ee3-FnGNVxa5SU6mLVUGp82M1VhmwTSyngHusnUlO2OU1tGS9CXiJg0sSQW9obmUa2n7M26GZc4xW1cC90K-2jEvNpqrafMbGnM1v1ut7Tn80AWboxBDx5Hvh91a3Pxm-Xx4vZ7fcnuZUHLNVrZXTZZLlbwCsHZsnodV-B_KS4tLQ
  priority: 102
  providerName: ProQuest
Title Comprehensive Design of the High-Sulfur-Loading Li–S Battery Based on MXene Nanosheets
URI https://link.springer.com/article/10.1007/s40820-020-00449-7
https://www.proquest.com/docview/2405359889
https://www.proquest.com/docview/2473333298
https://www.proquest.com/docview/2542359555
https://pubmed.ncbi.nlm.nih.gov/PMC7770945
https://doaj.org/article/94f3287c345d4427b89d0e1b7fae5d24
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZNcmkPpU-6bbqo0Fsr8EOyrGM2yTaUJJSmgb0Z2R51A8EO691Db_0P_Yf9JZ3R-hGHptCFXcNKwvZYmvnGM_qGsfdoMwCVIwgbOytkbo2widQiAGMRLaQGgN53nJ0nJ5fy80It2k1hTZft3oUkvabuN7tRaeRAkLtDUUgj9A7bU-S7U4h24ByPNFVjGmKDVFJZ3mKokcTnEg8kZopIy_TAjakiiTa9NbJbEK0pfOWr1IWhSHSQtLtv_n5ZIwvnCwGM0Ovd3Ms7AVhv1-ZP2OMWkPKD7Qx6yh5A9Yw9ukVT-JwtSGmsYLnNdedHPumD144jeOSUKCIuNtdusxKntc_I56dXv3_-uuBb7s4feGyg5HXFzxaoWTkq9LpZAqybF-xyfvzt8ES0FRlEgUBlLWJXokNrEbTZQitb4v2mCGkSCCPnQLowMRC5IDW6CND6grIx5DaUYYkWUuHAl2y3qit4xbiSKAJbxrpMA2nj0Bbopsc2KcAZkxd6wsJOilnR0pVT1YzrrCda9pLPAvqS5DMc86Efc7Ml6_hn7xk9nL4nEW37P-rV96xdt5mRLkansoilwruNdJ6aMoAw186CKiM5Yfvdo83a1d9kiJIUMSOm5p5mHeMnMumEveubcVlTrMZWUG-wj0Kcq4xSasL0aMaMrnfcUl0tPUG41hq9dhz5sZtbw8nvl8fr_-v-hj2M_KxXqGn32e56tYG3CNDW-ZTtpPNPU7Z3MDuazfE4Oz7_8nXqVyn9JodT_-rjD31ELik
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKOQAHxK8aKGAkOIHFrn_W6wNCQAkpTXppK-W2eHdtUqnaLfkR6o134D14KJ6EGe9u0lRqb40URYrtZNcefzPemfmGkFegMxyAo2NWeMtkbg2zidQscsaCtZAa5_B5x2g_GRzJb2M13iB_u1wYDKvsMDEAdVkX-Iz8HZdawIub9MPpT4ZVo9C72pXQaMRiz539giPb7P3uDqzva877Xw4_D1hbVYAVoGznTPgSDmUWDA9baGVLKZGhXCQu5t476ePEOO6j1OgiAg3ilBUut7GMS0B5BQPhd2-Qm1KAJsfM9P7XTn65xjpQK68kFnOW57hxJDLJiBV9mkK6NL1i5VRwj1y36r0x3zU6zkJ9vDhmiY6SNu8nZP9hreiI4fkP3bKG6TXdGkoQrNnNF6M-L7h-g0bt3yN3W1OYfmxk9z7ZcNUDcuccQeJDMka4mrpJE2VPd0K4Ca09BbOVYogKO1ic-MWUDeuQC0CHx_9-_zmgDWvoGXzOXEnrio7GgOkUVEk9mzg3nz0iR9eyao_JZlVXbotQJWEKbCl0mUbSitgWBnDOJoXzxuSF7pG4m8WsaInSsV7HSbakeA4zn0X4xpnPYMyb5ZjThibkyt6fcHGWPZHiO3xRT39kLWJkRnoBx9lCSAV3y3WemjJyca69darkske2u6XNWtyZZWCfKeRkTM0lzd0m6pGXy2YAFPQS2crVC-ijwMJWRinVI3pNYtaud72lOp4EanKtdWQkjHzbydbqzy-fjydXX-sLcmtwOBpmw939vafkNg8SrwDft8nmfLpwz8AsnOfPw16k5Pt1b_7_eoto3Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKKiE4IH7VQAEjwQms7o-9Xh84BELUpmmFFCrltnh3x6RStVtlN0K98Q68CM_EkzDev3QrisShkaJIsb3ZjO2Zzzsz3xDyGm0GoHIEpn2jGY-1YjrgkjmgNKKFUAHY5x1Hx8H-CZ8uxGKL_GpzYapo99YlWec0WJamrNw7T81el_hmyyQ7zB59rEdSMdmEVR7CxXc8tBXvD8Y4w288b_Lpy8d91tQVYAma25L5JsVjmUbooRMpdIoXCNEwB-B6xgA3bqDAM06oZOKgDQGhfYi1y90U9bzAgXjdW2Q7DHCHDsj2aDSdT9s17ElbC2rjmbQFnfklfhxu2WT8DYWasJRpcsPMKTyOiKIx8TWEl9Z5VtXIc10WSCdocn_-Loiefa3KEPSw89XIzyvu38qqTu6Tew0cpqN6_T4gW5A9JHcvkSQ-IgurslawrCPt6bgKOaG5oQhdqQ1TYfP1mVmv2Cyv8gHo7PT3j59zWjOHXuBnASnNM3q0QL1O0ZzkxRKgLB6TkxuZtydkkOUZ7BAqOIpAp75MQ4dr39WJQl2ngwSMUnEih8RtpRglDVm6rdlxFnU0z5XkI8e-reQjHPO2G3NeU4X8s_cHOzldT0vzXX2Rr75FjdaIFDc-HmkTnwv8t56MQ5U64MbSaBCpx4dkt53aqNE9RYQYTVhexlBd0yx9fHkqHJJXXTMqFesp0hnka-wjEGULJYQYEtlbMb377bdkp8uKnlxK6SiOI9-1a2vz49fL4-n_dX9Jbn8eT6LZwfHhM3LHqzaAQJW_Swblag3PESmW8Ytmc1Ly9ab1wR983Wtm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+Design+of+the+High-Sulfur-Loading+Li%E2%80%93S+Battery+Based+on+MXene+Nanosheets&rft.jtitle=Nano-micro+letters&rft.au=Zhang%2C+Shouzheng&rft.au=Zhong%2C+Ning&rft.au=Zhou%2C+Xing&rft.au=Zhang%2C+Mingjie&rft.date=2020-05-20&rft.pub=Springer+Singapore&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1007%2Fs40820-020-00449-7&rft.externalDocID=10_1007_s40820_020_00449_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon