Magnetic dynamics and nonreciprocal excitation in uniform hedgehog order in icosahedral 1/1 approximant crystal

The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic systems. The revealed magnetic dynamics exhibits nonreciprocal excitation in the vast extent of the reciprocal lattice q -energy ω space, who...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 14438 - 11
Main Author Watanabe, Shinji
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.09.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic systems. The revealed magnetic dynamics exhibits nonreciprocal excitation in the vast extent of the reciprocal lattice q -energy ω space, whose emergence mechanism remains unresolved. Here, we analyze the dynamical as well as static structure of the hedgehog order in the 1/1 approximant crystal (AC) composed of the cubic lattice with spatial inversion symmetry. We find that the dispersion of the magnetic excitation energy exhibits nonreciprocal feature along the N-P- Γ line in the q space. The dynamical structure factor exhibits highly structured intensities where high intensities appear in the high-energy branches along the Γ -H line and the P- Γ -N line in the q space. The nonreciprocity in the 1/1 AC and also in the QC is understood to be ascribed to inversion symmetry breaking by the hedgehog ordering. The sharp contrast on the emergence regime of nonreciprocal magnetic excitation between the QC and the 1/1 AC indicates that the emergence in the vast q - ω regime in the QC is attributed to the QC lattice structure.
AbstractList The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic systems. The revealed magnetic dynamics exhibits nonreciprocal excitation in the vast extent of the reciprocal lattice \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{q}}$$\end{document} q -energy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document} ω space, whose emergence mechanism remains unresolved. Here, we analyze the dynamical as well as static structure of the hedgehog order in the 1/1 approximant crystal (AC) composed of the cubic lattice with spatial inversion symmetry. We find that the dispersion of the magnetic excitation energy exhibits nonreciprocal feature along the N-P- \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma$$\end{document} Γ line in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{q}}$$\end{document} q space. The dynamical structure factor exhibits highly structured intensities where high intensities appear in the high-energy branches along the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma$$\end{document} Γ -H line and the P- \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma$$\end{document} Γ -N line in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{q}}$$\end{document} q space. The nonreciprocity in the 1/1 AC and also in the QC is understood to be ascribed to inversion symmetry breaking by the hedgehog ordering. The sharp contrast on the emergence regime of nonreciprocal magnetic excitation between the QC and the 1/1 AC indicates that the emergence in the vast \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{q}}$$\end{document} q - \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document} ω regime in the QC is attributed to the QC lattice structure.
The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic systems. The revealed magnetic dynamics exhibits nonreciprocal excitation in the vast extent of the reciprocal lattice q-energy ω space, whose emergence mechanism remains unresolved. Here, we analyze the dynamical as well as static structure of the hedgehog order in the 1/1 approximant crystal (AC) composed of the cubic lattice with spatial inversion symmetry. We find that the dispersion of the magnetic excitation energy exhibits nonreciprocal feature along the N-P-Γ line in the q space. The dynamical structure factor exhibits highly structured intensities where high intensities appear in the high-energy branches along the Γ-H line and the P-Γ-N line in the q space. The nonreciprocity in the 1/1 AC and also in the QC is understood to be ascribed to inversion symmetry breaking by the hedgehog ordering. The sharp contrast on the emergence regime of nonreciprocal magnetic excitation between the QC and the 1/1 AC indicates that the emergence in the vast q-ω regime in the QC is attributed to the QC lattice structure.
The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic systems. The revealed magnetic dynamics exhibits nonreciprocal excitation in the vast extent of the reciprocal lattice $${\varvec{q}}$$ q -energy $$\omega$$ ω space, whose emergence mechanism remains unresolved. Here, we analyze the dynamical as well as static structure of the hedgehog order in the 1/1 approximant crystal (AC) composed of the cubic lattice with spatial inversion symmetry. We find that the dispersion of the magnetic excitation energy exhibits nonreciprocal feature along the N-P- $$\Gamma$$ Γ line in the $${\varvec{q}}$$ q space. The dynamical structure factor exhibits highly structured intensities where high intensities appear in the high-energy branches along the $$\Gamma$$ Γ -H line and the P- $$\Gamma$$ Γ -N line in the $${\varvec{q}}$$ q space. The nonreciprocity in the 1/1 AC and also in the QC is understood to be ascribed to inversion symmetry breaking by the hedgehog ordering. The sharp contrast on the emergence regime of nonreciprocal magnetic excitation between the QC and the 1/1 AC indicates that the emergence in the vast $${\varvec{q}}$$ q - $$\omega$$ ω regime in the QC is attributed to the QC lattice structure.
Abstract The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic systems. The revealed magnetic dynamics exhibits nonreciprocal excitation in the vast extent of the reciprocal lattice $${\varvec{q}}$$ q -energy $$\omega$$ ω space, whose emergence mechanism remains unresolved. Here, we analyze the dynamical as well as static structure of the hedgehog order in the 1/1 approximant crystal (AC) composed of the cubic lattice with spatial inversion symmetry. We find that the dispersion of the magnetic excitation energy exhibits nonreciprocal feature along the N-P- $$\Gamma$$ Γ line in the $${\varvec{q}}$$ q space. The dynamical structure factor exhibits highly structured intensities where high intensities appear in the high-energy branches along the $$\Gamma$$ Γ -H line and the P- $$\Gamma$$ Γ -N line in the $${\varvec{q}}$$ q space. The nonreciprocity in the 1/1 AC and also in the QC is understood to be ascribed to inversion symmetry breaking by the hedgehog ordering. The sharp contrast on the emergence regime of nonreciprocal magnetic excitation between the QC and the 1/1 AC indicates that the emergence in the vast $${\varvec{q}}$$ q - $$\omega$$ ω regime in the QC is attributed to the QC lattice structure.
The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic systems. The revealed magnetic dynamics exhibits nonreciprocal excitation in the vast extent of the reciprocal lattice q -energy ω space, whose emergence mechanism remains unresolved. Here, we analyze the dynamical as well as static structure of the hedgehog order in the 1/1 approximant crystal (AC) composed of the cubic lattice with spatial inversion symmetry. We find that the dispersion of the magnetic excitation energy exhibits nonreciprocal feature along the N-P- Γ line in the q space. The dynamical structure factor exhibits highly structured intensities where high intensities appear in the high-energy branches along the Γ -H line and the P- Γ -N line in the q space. The nonreciprocity in the 1/1 AC and also in the QC is understood to be ascribed to inversion symmetry breaking by the hedgehog ordering. The sharp contrast on the emergence regime of nonreciprocal magnetic excitation between the QC and the 1/1 AC indicates that the emergence in the vast q - ω regime in the QC is attributed to the QC lattice structure.
The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic systems. The revealed magnetic dynamics exhibits nonreciprocal excitation in the vast extent of the reciprocal lattice [Formula: see text]-energy [Formula: see text] space, whose emergence mechanism remains unresolved. Here, we analyze the dynamical as well as static structure of the hedgehog order in the 1/1 approximant crystal (AC) composed of the cubic lattice with spatial inversion symmetry. We find that the dispersion of the magnetic excitation energy exhibits nonreciprocal feature along the N-P-[Formula: see text] line in the [Formula: see text] space. The dynamical structure factor exhibits highly structured intensities where high intensities appear in the high-energy branches along the [Formula: see text]-H line and the P-[Formula: see text]-N line in the [Formula: see text] space. The nonreciprocity in the 1/1 AC and also in the QC is understood to be ascribed to inversion symmetry breaking by the hedgehog ordering. The sharp contrast on the emergence regime of nonreciprocal magnetic excitation between the QC and the 1/1 AC indicates that the emergence in the vast [Formula: see text]-[Formula: see text] regime in the QC is attributed to the QC lattice structure.The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic systems. The revealed magnetic dynamics exhibits nonreciprocal excitation in the vast extent of the reciprocal lattice [Formula: see text]-energy [Formula: see text] space, whose emergence mechanism remains unresolved. Here, we analyze the dynamical as well as static structure of the hedgehog order in the 1/1 approximant crystal (AC) composed of the cubic lattice with spatial inversion symmetry. We find that the dispersion of the magnetic excitation energy exhibits nonreciprocal feature along the N-P-[Formula: see text] line in the [Formula: see text] space. The dynamical structure factor exhibits highly structured intensities where high intensities appear in the high-energy branches along the [Formula: see text]-H line and the P-[Formula: see text]-N line in the [Formula: see text] space. The nonreciprocity in the 1/1 AC and also in the QC is understood to be ascribed to inversion symmetry breaking by the hedgehog ordering. The sharp contrast on the emergence regime of nonreciprocal magnetic excitation between the QC and the 1/1 AC indicates that the emergence in the vast [Formula: see text]-[Formula: see text] regime in the QC is attributed to the QC lattice structure.
ArticleNumber 14438
Author Watanabe, Shinji
Author_xml – sequence: 1
  givenname: Shinji
  surname: Watanabe
  fullname: Watanabe, Shinji
  email: swata@mns.kyutech.ac.jp
  organization: Department of Basic Sciences, Kyushu Institute of Technology
BookMark eNp9Uk1v1DAQjVARLaV_gFMkLlxCPf5I4hNCFR-VirjA2Zp1xlmvsvZiJ6j77_F2y0d7qC-2Zt5788YzL6uTEANV1Wtg74CJ_jJLULpvGBeNBK55A8-qM86karjg_OS_92l1kfOGlaO4lqBfVKeia1vGNJxV8SuOgWZv62EfcOttrjEMdSmWyPpdihanmm6tn3H2MdQ-1EvwLqZtvaZhpHUc65gGSoeMtzFjCafCgUuocVcEbv0Ww1zbtM8zTq-q5w6nTBf393n149PH71dfmptvn6-vPtw0VvVybrhuFQdlOSng3Ypb1zOnnQNYSdZ3g2BOKUJ0YsVRkOJ8GNyKCY3OgiAU59X1UXeIuDG7VEykvYnozV0gptFgKm1PZJi1rkUpLSklAQT2mjkGAhgCtdwVrfdHrd2y2tJgKcylwweiDzPBr80YfxlgslNMs6Lw9l4hxZ8L5dlsfbY0TRgoLtnwvmWyzEtDgb55BN3EJYXyVwWltNad5m1B8SPKpphzIvfXDTBz2A9z3A9T9sPc7Yc5SPePSH_GWlz76WmqOFJzqRNGSv9cPcH6DQVT0Rc
CitedBy_id crossref_primary_10_1103_PhysRevB_109_184404
Cites_doi 10.1088/0953-8984/21/21/216001
10.1038/35046202
10.1103/PhysRevB.95.054408
10.1073/pnas.2022927118
10.1016/0378-4371(78)90160-7
10.1103/PhysRevB.53.3428
10.1103/PhysRevB.39.2670
10.1126/sciadv.aaz6931
10.1017/CBO9781139107808
10.1038/s41598-021-97024-w
10.1038/s41598-022-19870-6
10.1103/PhysRevB.104.224405
10.1021/jacs.1c09954
10.1088/1361-648X/ab997d
10.1038/s41598-022-14796-5
10.1103/PhysRevB.93.024416
10.1073/pnas.2112202118
10.1143/JPSJ.81.023712
10.1103/PhysRevB.82.220201
10.1103/PhysRevB.101.224419
10.2320/matertrans.MT-MB2020014
10.1103/PhysRevB.92.184419
10.1038/s41467-018-05759-4
10.1088/0953-8984/25/42/426004
10.1088/0953-8984/26/21/216004
10.1103/PhysRevB.104.134420
10.1103/PhysRev.58.1098
10.7566/JPSJ.88.081007
10.1143/JPSJ.62.3268
10.1103/PhysRevB.98.220403
10.1103/PhysRevLett.129.017201
10.1021/acs.chemrev.0c00297
10.7566/JPSJ.90.063701
10.1143/JPSJ.81.024720
10.1103/PhysRevB.71.104427
10.1103/PhysRevLett.53.1951
10.1103/PhysRevB.100.054417
10.1038/s41467-019-14095-0
10.7566/JPSJ.89.034710
10.1103/PhysRevLett.119.047201
10.1038/nmat1799
10.1103/PhysRevB.102.220408
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. Springer Nature Limited.
Springer Nature Limited 2023
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. Springer Nature Limited.
– notice: Springer Nature Limited 2023
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-41292-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central (New) (NC LIVE)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_0ccf6a44ce554113a890f01310a1e62f
PMC10475090
10_1038_s41598_023_41292_1
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: JP18K03542
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: ;
  grantid: JP18K03542
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c584t-2965215c2e5127b2cf80f9ff11b4087d30f55eaaf3b2a3e522ddfb039afc13ea3
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Wed Aug 27 01:25:53 EDT 2025
Thu Aug 21 18:36:48 EDT 2025
Thu Jul 10 18:55:27 EDT 2025
Wed Aug 13 09:13:49 EDT 2025
Tue Jul 01 03:57:22 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Fri Feb 21 02:37:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c584t-2965215c2e5127b2cf80f9ff11b4087d30f55eaaf3b2a3e522ddfb039afc13ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2859997926?pq-origsite=%requestingapplication%
PMID 37660091
PQID 2859997926
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_0ccf6a44ce554113a890f01310a1e62f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10475090
proquest_miscellaneous_2860404591
proquest_journals_2859997926
crossref_primary_10_1038_s41598_023_41292_1
crossref_citationtrail_10_1038_s41598_023_41292_1
springer_journals_10_1038_s41598_023_41292_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-02
PublicationDateYYYYMMDD 2023-09-02
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Eto, Pohle, Mochizuki (CR21) 2022; 129
Nikuni, Shiba (CR32) 1993; 62
Wessel, Milat (CR40) 2005; 71
Das (CR7) 2017; 95
Hiroto (CR13) 2020; 32
Hiroto, Tokiwa, Tamura (CR11) 2014; 26
Gitgeatpong (CR24) 2017; 119
Ogawa (CR29) 2021; 118
Watanabe (CR17) 2021; 118
Takakura, Gómez, Yamamoto, De Boissieu, Tsai (CR3) 2007; 6
Holstein, Primakoff (CR37) 1940; 58
Watanabe (CR16) 2021; 11
Mori (CR6) 2012; 81
Watanabe (CR19) 2022; 12
Tokura, Kanazawa (CR22) 2021; 121
Miyahara, Furukawa (CR34) 2012; 81
Hiroto (CR10) 2013; 25
Ishikawa (CR12) 2016; 93
Iguchi, Uemura, Ueno, Onose (CR23) 2015; 92
Sato (CR9) 2019; 100
Matsumoto, Hayami (CR35) 2020; 101
Suzuki (CR4) 2021; 62
Seki (CR28) 2020; 11
Tsai, Guo, Abe, Takakura, Sato (CR2) 2000; 408
Tamura (CR14) 2021; 143
Colpa (CR41) 1978; 93
Sato, Matan (CR26) 2019; 88
Squires (CR38) 2012
Zhitomirsky, Zaliznyak (CR33) 1996; 53
Haraldsen, Fishman (CR42) 2009; 21
CR27
Matsumoto, Hayashida, Masuda (CR36) 2020; 89
Ashraff, Stinchcombe (CR39) 1989; 39
Watanabe (CR18) 2022; 12
Tokura, Nagaosa (CR25) 2018; 9
Ishikawa (CR8) 2018; 98
Watanabe, Kawamoto (CR15) 2021; 90
Shechtman, Blech, Gratias, Cahn (CR1) 1984; 53
Matsumoto, Hayami (CR30) 2021; 104
Ishibashi (CR31) 2021; 6
Tamura, Muro, Hiroto, Nishimoto, Takabatake (CR5) 2010; 82
Kato, Hayami, Motome (CR20) 2021; 104
T Holstein (41292_CR37) 1940; 58
P Das (41292_CR7) 2017; 95
T Matsumoto (41292_CR35) 2020; 101
A Mori (41292_CR6) 2012; 81
41292_CR27
JHP Colpa (41292_CR41) 1978; 93
JA Ashraff (41292_CR39) 1989; 39
Y Kato (41292_CR20) 2021; 104
JT Haraldsen (41292_CR42) 2009; 21
G Gitgeatpong (41292_CR24) 2017; 119
Y Iguchi (41292_CR23) 2015; 92
TJ Sato (41292_CR26) 2019; 88
R Tamura (41292_CR5) 2010; 82
R Eto (41292_CR21) 2022; 129
GL Squires (41292_CR38) 2012
M Matsumoto (41292_CR36) 2020; 89
T Hiroto (41292_CR11) 2014; 26
S Watanabe (41292_CR16) 2021; 11
S Watanabe (41292_CR19) 2022; 12
S Seki (41292_CR28) 2020; 11
T Hiroto (41292_CR13) 2020; 32
S Suzuki (41292_CR4) 2021; 62
T Nikuni (41292_CR32) 1993; 62
H Takakura (41292_CR3) 2007; 6
Y Tokura (41292_CR25) 2018; 9
AP Tsai (41292_CR2) 2000; 408
S Watanabe (41292_CR17) 2021; 118
S Wessel (41292_CR40) 2005; 71
A Ishikawa (41292_CR12) 2016; 93
S Watanabe (41292_CR15) 2021; 90
A Ishikawa (41292_CR8) 2018; 98
T Matsumoto (41292_CR30) 2021; 104
D Shechtman (41292_CR1) 1984; 53
ME Zhitomirsky (41292_CR33) 1996; 53
R Tamura (41292_CR14) 2021; 143
S Watanabe (41292_CR18) 2022; 12
N Ogawa (41292_CR29) 2021; 118
TJ Sato (41292_CR9) 2019; 100
S Miyahara (41292_CR34) 2012; 81
T Hiroto (41292_CR10) 2013; 25
Y Tokura (41292_CR22) 2021; 121
M Ishibashi (41292_CR31) 2021; 6
References_xml – volume: 21
  year: 2009
  ident: CR42
  article-title: Spin rotation technique for non-collinear magnetic systems: Application to the generalized Villain model
  publication-title: J. Phys. Condens. Matter.
  doi: 10.1088/0953-8984/21/21/216001
– volume: 408
  start-page: 537
  year: 2000
  ident: CR2
  article-title: A stable binary quasicrystal
  publication-title: Nature
  doi: 10.1038/35046202
– volume: 95
  year: 2017
  ident: CR7
  article-title: Crystal electric field excitations in the quasicrystal approximant TbCd studied by inelastic neutron scattering
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.054408
– volume: 118
  issue: 8
  year: 2021
  ident: CR29
  article-title: Nonreciprocity of spin waves in the conical helix state
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2022927118
– volume: 93
  start-page: 327
  year: 1978
  ident: CR41
  article-title: Diagonalization of the quadratic boson Hamiltonian
  publication-title: Physica A
  doi: 10.1016/0378-4371(78)90160-7
– volume: 53
  start-page: 3428
  year: 1996
  ident: CR33
  article-title: Static properties of a quasi-one-dimensional antiferromagnet in a magnetic field
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.53.3428
– volume: 39
  start-page: 2670
  year: 1989
  ident: CR39
  article-title: Dynamic structure factor for the Fibonacci-chain quasicrystal
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.2670
– volume: 6
  start-page: eaaz6931
  issue: 17
  year: 2021
  ident: CR31
  article-title: Spin wave resonance in perpendicularly magnetized synthetic antiferromagnets
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz6931
– year: 2012
  ident: CR38
  publication-title: Introduction to the Theory of Thermal Neutron Scattering
  doi: 10.1017/CBO9781139107808
– volume: 11
  start-page: 17679
  year: 2021
  ident: CR16
  article-title: Magnetism and topology in Tb-based icosahedral quasicrystal
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-97024-w
– volume: 12
  start-page: 15514
  year: 2022
  ident: CR18
  article-title: Magnetic dynamics of hedgehog in icosahedral quasicrystal
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-19870-6
– volume: 104
  year: 2021
  ident: CR20
  article-title: Spin excitation spectra in helimagnetic states: Proper-screw, cycloid, vortex-crystal, and hedgehog lattices
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.224405
– volume: 143
  start-page: 19938
  issue: 47
  year: 2021
  ident: CR14
  article-title: Experimental observation of long-range magnetic order in icosahedral quasicrystals
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c09954
– volume: 32
  year: 2020
  ident: CR13
  article-title: Noncoplanar ferrimagnetism and local crystalline-electric-field anisotropy in the quasicrystal approximant Au Si Tb
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/ab997d
– volume: 12
  start-page: 10792
  year: 2022
  ident: CR19
  article-title: Magnetic dynamics of ferromagnetic long range order in icosahedral quasicrystal
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-14796-5
– volume: 93
  year: 2016
  ident: CR12
  article-title: Composition-driven spin glass to ferromagnetic transition in the quasicrystal approximant Au-Al-Gd
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.024416
– volume: 118
  issue: 43
  year: 2021
  ident: CR17
  article-title: Topological magnetic textures and long-range orders in Terbium-based quasicrystal and approximant
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2112202118
– volume: 81
  year: 2012
  ident: CR34
  article-title: Nonreciprocal directional dichroism and toroidalmagnons in helical magnets
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.81.023712
– volume: 82
  start-page: 220201(R)
  year: 2010
  ident: CR5
  article-title: Long-range magnetic order in the quasicrystalline approximant Cd Tb
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.220201
– volume: 101
  year: 2020
  ident: CR35
  article-title: Nonreciprocal magnons due to symmetric anisotropic exchange interaction in honeycomb antiferromagnets
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.224419
– volume: 62
  start-page: 298
  year: 2021
  end-page: 306
  ident: CR4
  article-title: Magnetism of Tsai-type quasicrystal approximants
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.MT-MB2020014
– ident: CR27
– volume: 92
  year: 2015
  ident: CR23
  article-title: Nonreciprocal magnon propagation in a noncentrosymmetric ferromagnet LiFe O
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.184419
– volume: 9
  start-page: 3740
  year: 2018
  ident: CR25
  article-title: Nonreciprocal responses from non-centrosymmetric quantum materials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05759-4
– volume: 25
  year: 2013
  ident: CR10
  article-title: Ferromagnetism and re-entrant spin-glass transition in quasicrystal approximants Au-SM-Gd (SM = Si, Ge)
  publication-title: J. Phys. Condens. Matter.
  doi: 10.1088/0953-8984/25/42/426004
– volume: 26
  year: 2014
  ident: CR11
  article-title: Sign of canted ferromagnetism in the quasicrystal approximants Au-SM-R (SM = Si, Ge and Sn/R = Tb, Dy and Ho)
  publication-title: J. Phys. Condens. Matter.
  doi: 10.1088/0953-8984/26/21/216004
– volume: 104
  year: 2021
  ident: CR30
  article-title: Nonreciprocal magnon excitations by the Dzyaloshinskii–Moriya interaction on the basis of bond magnetic toroidal multipoles
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.134420
– volume: 58
  start-page: 1098
  year: 1940
  ident: CR37
  article-title: Field dependence of the intrinsic domain magnetization of a ferromagnet
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.58.1098
– volume: 88
  year: 2019
  ident: CR26
  article-title: Nonreciprocal magnons in noncentrosymmetric magnets
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.7566/JPSJ.88.081007
– volume: 62
  start-page: 3268
  year: 1993
  ident: CR32
  article-title: Quantum fluctuations and magnetic structures of CsCuCl in high magnetic field
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.62.3268
– volume: 98
  start-page: 220403R
  year: 2018
  ident: CR8
  article-title: Antiferromagnetic order is possible in ternary quasicrystal approximants
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.220403
– volume: 129
  year: 2022
  ident: CR21
  article-title: Low-energy excitations of skyrmion crystals in a centrosymmetric Kondo-lattice magnet: Decoupled spin-charge excitations and nonreciprocity
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.017201
– volume: 121
  start-page: 2857
  year: 2021
  ident: CR22
  article-title: Magnetic skyrmion materials
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00297
– volume: 90
  year: 2021
  ident: CR15
  article-title: Crystalline electronic field in rare-earth based quasicrystal and approximant: Analysis of quantum critical Au–Al–Yb quasicrystal and approximant
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.7566/JPSJ.90.063701
– volume: 81
  year: 2012
  ident: CR6
  article-title: Electrical and magnetic properties of quasicrystal approximants RCd (R: Rare Earth)
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.81.024720
– volume: 71
  year: 2005
  ident: CR40
  article-title: Quantum fluctuations and excitations in antiferromagnetic quasicrystals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.104427
– volume: 53
  start-page: 1951
  year: 1984
  ident: CR1
  article-title: Metallic phase with long-range orientational order and no translational symmetry
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.53.1951
– volume: 100
  year: 2019
  ident: CR9
  article-title: Whirling spin order in the quasicrystal approximant Au Al Tb
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.054417
– volume: 11
  start-page: 256
  year: 2020
  ident: CR28
  article-title: Propagation dynamics of spin excitations along skyrmion strings
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14095-0
– volume: 89
  year: 2020
  ident: CR36
  article-title: Analysis of field-induced nonreciprocal magnon in noncollinear magnet and application to S = 1 triangular antiferromagnet CsFeCl
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.7566/JPSJ.89.034710
– volume: 119
  year: 2017
  ident: CR24
  article-title: Nonreciprocal magnons and symmetry-breaking in the noncentrosymmetric antiferromagnet
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.047201
– volume: 6
  start-page: 58
  year: 2007
  ident: CR3
  article-title: Atomic structure of the binary icosahedral Yb-Cd quasicrystal
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1799
– volume: 6
  start-page: 58
  year: 2007
  ident: 41292_CR3
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1799
– volume: 81
  year: 2012
  ident: 41292_CR6
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.81.024720
– volume: 129
  year: 2022
  ident: 41292_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.017201
– volume: 53
  start-page: 3428
  year: 1996
  ident: 41292_CR33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.53.3428
– volume: 12
  start-page: 10792
  year: 2022
  ident: 41292_CR19
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-14796-5
– volume: 93
  start-page: 327
  year: 1978
  ident: 41292_CR41
  publication-title: Physica A
  doi: 10.1016/0378-4371(78)90160-7
– volume: 21
  year: 2009
  ident: 41292_CR42
  publication-title: J. Phys. Condens. Matter.
  doi: 10.1088/0953-8984/21/21/216001
– volume: 53
  start-page: 1951
  year: 1984
  ident: 41292_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.53.1951
– volume: 62
  start-page: 298
  year: 2021
  ident: 41292_CR4
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.MT-MB2020014
– volume: 90
  year: 2021
  ident: 41292_CR15
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.7566/JPSJ.90.063701
– volume: 11
  start-page: 17679
  year: 2021
  ident: 41292_CR16
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-97024-w
– volume: 104
  year: 2021
  ident: 41292_CR20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.224405
– volume: 58
  start-page: 1098
  year: 1940
  ident: 41292_CR37
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.58.1098
– volume: 121
  start-page: 2857
  year: 2021
  ident: 41292_CR22
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00297
– volume: 100
  year: 2019
  ident: 41292_CR9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.054417
– volume: 143
  start-page: 19938
  issue: 47
  year: 2021
  ident: 41292_CR14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c09954
– volume: 82
  start-page: 220201(R)
  year: 2010
  ident: 41292_CR5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.220201
– volume: 9
  start-page: 3740
  year: 2018
  ident: 41292_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05759-4
– volume: 104
  year: 2021
  ident: 41292_CR30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.134420
– volume: 118
  issue: 8
  year: 2021
  ident: 41292_CR29
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2022927118
– volume: 101
  year: 2020
  ident: 41292_CR35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.224419
– volume: 98
  start-page: 220403R
  year: 2018
  ident: 41292_CR8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.220403
– volume: 62
  start-page: 3268
  year: 1993
  ident: 41292_CR32
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.62.3268
– volume: 32
  year: 2020
  ident: 41292_CR13
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/ab997d
– volume: 408
  start-page: 537
  year: 2000
  ident: 41292_CR2
  publication-title: Nature
  doi: 10.1038/35046202
– volume: 89
  year: 2020
  ident: 41292_CR36
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.7566/JPSJ.89.034710
– volume: 26
  year: 2014
  ident: 41292_CR11
  publication-title: J. Phys. Condens. Matter.
  doi: 10.1088/0953-8984/26/21/216004
– volume: 11
  start-page: 256
  year: 2020
  ident: 41292_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14095-0
– volume: 25
  year: 2013
  ident: 41292_CR10
  publication-title: J. Phys. Condens. Matter.
  doi: 10.1088/0953-8984/25/42/426004
– volume: 119
  year: 2017
  ident: 41292_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.047201
– volume: 39
  start-page: 2670
  year: 1989
  ident: 41292_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.2670
– ident: 41292_CR27
  doi: 10.1103/PhysRevB.102.220408
– volume: 93
  year: 2016
  ident: 41292_CR12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.024416
– volume-title: Introduction to the Theory of Thermal Neutron Scattering
  year: 2012
  ident: 41292_CR38
  doi: 10.1017/CBO9781139107808
– volume: 6
  start-page: eaaz6931
  issue: 17
  year: 2021
  ident: 41292_CR31
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz6931
– volume: 71
  year: 2005
  ident: 41292_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.104427
– volume: 118
  issue: 43
  year: 2021
  ident: 41292_CR17
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2112202118
– volume: 95
  year: 2017
  ident: 41292_CR7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.054408
– volume: 92
  year: 2015
  ident: 41292_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.184419
– volume: 81
  year: 2012
  ident: 41292_CR34
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.81.023712
– volume: 88
  year: 2019
  ident: 41292_CR26
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.7566/JPSJ.88.081007
– volume: 12
  start-page: 15514
  year: 2022
  ident: 41292_CR18
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-19870-6
SSID ssj0000529419
Score 2.4088314
Snippet The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic...
Abstract The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14438
SubjectTerms 639/301/119/2792/4129
639/766/119/997
Anisotropy
Humanities and Social Sciences
Magnetism
multidisciplinary
Science
Science (multidisciplinary)
Symmetry
Trace elements
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwRrYpra4ngmy6Xz93No4qlCPXJQt9CPnsH7Z707qD9753J7p3dQuuLr_lgJ5mZ_Cab5DeEfPRGicgzeJrwvlbai9oHTPdifKujBkgoTEynP5uTM_XjXJ_fSfWFd8IGeuBh4mYshNw4pUIC4ONcus6wjCQxzPHUiIyrL2Denc3UwOotjOJmfCXDZDdbAVLhazIhawUYJ2o-QaJC2D-JMu_fkbx3UFrw5_gFeT4GjvTLIPBL8iT1--TpkEry9hVZnrqLHh8k0jjkmF9R10cKm3ukr0CYgs7pJoyU3HTR002Pr7Ku6Bx_qc2XF7TQcGINWMfKQTFIRPmM00I8frO4Ai3QcH0LAeXla3J2_P3Xt5N6TKZQB4gx1rUwDSC1DiIBxLdehNyxbHLm3CvWtVGyrHVyLksvnEwQlsWYPZPG5cBlcvIN2QOZ01tCQ9Mq7yPsDZNRkTEXXODBcNyapKhjRfh2Yu12WJjw4tKWE2_Z2UEZFpRhizIsr8inXZ_fA8_Go62_or52LZEjuxSA5djRcuy_LKcih1tt29FxVxb5_IxpjWgq8mFXDS6H5yiuT8sNtmlg6VPagBzdxEomAk1r-sW8kHcjNQYEaawin7cG9ffrD4_43f8Y8QF5JtAB8DxMHJK99fUmvYeYau2Pivv8AQM4HaU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA_HieCL-InVUyL4pvWSNP3Ig4iKxyGsTy7cW8jn7sJeV_cDdv97Z9J2pcd5r01Cp5mZ_maazm8IeWeVFJ5H8DRhbS5LK3LrsN2LsnXpS4CExMQ0-VldTuWPq_LqhAztjvoN3Nya2mE_qel6-XH_5_AZHP5TVzLenG8AhLBQTBS5BPgSOWRD9wCZanTUSR_ud1zfQkmu-tqZ25eO8CnR-I9iz5t_Tt44Pk2odPGIPOzDSfql0_9jchLaJ-R-12Dy8JSsJmbWYpki9V3n-Q01raeQ8iOpBYIXLA571xN100VLdy3Wal3TOX5om69mNJFz4gjYzMbAZZCI8nNOEx35fnENuqFufYAwc_mMTC--__p2mfctFnIHkcc2F6oC_C6dCAD8tRUuNiyqGDm3kjW1L1gsy2BMLKwwRYBgzftoWaFMdLwIpnhOTkHm8IJQV9XSWg8ZY1DSM2accdwpjglL8KXPCB82Vg-PhW0wljqdgxeN7pShQRk6KUPzjLw_rvndsW_cOfsr6us4E5mz04XVeqZ7R9TMuVgZKV2AQIrzwjSKRSQdYoaHSsSMnA3a1oM1amT5U6pWosrI2-MwOCKerpg2rHY4p4IXoiwVyNGMrGQk0HikXcwTpTcSZkDoxjLyYTCof3f__xO_vFvYV-SBQNPG8y9xRk636114DTHU1r5JjvEXW-IY5Q
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZaxRBEG5CguCLGA8cjaEF33RIX3P0oy4JQYhPBvLW9Lm7kMzKHpD8e6t6ZlYmqOBrH0xNV1VXdVfXV4R8dFqJwBNomnCuVJUTpfNY7kW7pgoVmISMxHT1vb68Vt9uqpsDIsZcmPxoP0Na5m16fB12tgFDg8lgQpYKTJQo4cRzhNDtKNWzera_V8HIleJ6yI9hsv3D1IkNylD9E__y8evIRyHSbHkunpNng8tIv_REHpOD2L0gT_oikg8vyerKzjtMRaShry6_obYLFI71CFyBBgomx3s_gHHTZUd3HeZj3dEFXqYtVnOaATixB-RiY6EZKKL8jNMMOX6_vIP1p379AK7k7StyfXH-Y3ZZDmUUSg_exbYUugYbXXkRwbg3TvjUsqRT4twp1jZBslRV0doknbAygkMWQnJMaps8l9HK1-QQaI5vCPV1o5wLcCqMWgXGrLeee83xUBJDFQrCx4U1429hqYtbk2PdsjU9Mwwww2RmGF6QT_s5P3uEjX-O_or82o9EdOzcsFrPzSAthnmfaquUj-AscS5tq1lCYCFmeaxFKsjJyG0zqOzGIJKf1o0WdUE-7LtB2TCCYru42uGYGjY9VWmgo51IyYSgaU-3XGTYbgTFAPeMFeTzKFC_v_73P377f8PfkacCRR1jXuKEHG7Xu_ge_KatO82K8gs4BhNq
  priority: 102
  providerName: Springer Nature
Title Magnetic dynamics and nonreciprocal excitation in uniform hedgehog order in icosahedral 1/1 approximant crystal
URI https://link.springer.com/article/10.1038/s41598-023-41292-1
https://www.proquest.com/docview/2859997926
https://www.proquest.com/docview/2860404591
https://pubmed.ncbi.nlm.nih.gov/PMC10475090
https://doaj.org/article/0ccf6a44ce554113a890f01310a1e62f
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2Avo_ti2bqgwd42E0mWP_RU0tBSAiljWyFvRp9JoHXaOIH2v9-d7KSksL7YIMn47LvTne6k3xHy3SgpHA-gacKYRGZGJMZiuRdlisxlYBIiEtPkMr-4kuNpNu0Cbk23rXI7J8aJ2i0txsgHCLSmVKFEfnJ7l2DVKMyudiU0XpJDhC7DLV3FtNjFWDCLJbnqzsqwtBw0YK_wTJlIEwmWTiR8zx5F2P49X_PpTskn6dJohc6PyJvOfaTDlt9vyQtfvyOv2oKSD-_JcqJnNR5LpK6tNN9QXTsKS3wEsUBjBQ_7e9sBc9NFTTc1ns26oXMMrM2XMxrBOLEHZKTR0AwUUT7gNMKP3y9ugBfUrh7Arbz-QK7Oz_6OLpKupEJiwdNYJ0LlYK8zKzwY-sIIG0oWVAicG8nKwqUsZJnXOqRG6NSDc-ZcMCxVOlieep1-JAdAs_9EqM0LaYyDFaJX0jGmrbbcKo4LFO8y1yN8-2Or7Wdh2YvrKua907JqmVEBM6rIjIr3yI_dM7ct2sazo0-RX7uRiJQdG5arWdUpXsWsDbmW0npwnDhPdalYQJAhprnPReiR4y23q059m-pR2Hrk264bFA-zKbr2yw2OyWEClJkCOso9KdkjaL-nXswjhDcCZICrxnrk51agHt_-_y_-_DyxX8hrgaKN-S5xTA7Wq43_Cj7T2vSjYvTJ4XA4_jOG--nZ5a_f0DrKR_0Yh4DrRJb_AGHbG6Y
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAguiKcIFFgkOIGV3fXa8R4QotAqpU2EUCv1ZvaZRGrtkodo_hS_kRk_UqUSvfXqXSdjz8x-szuebwh5Z5QUjgfwNGFMJBMjImOx3Ysy_cQlAAkVE9NwlA5O5PfT5HSL_G1rYfCzynZNrBZqV1o8I-8h0ZpSfSXSzxe_I-wahdnVtoVGbRaHfvUHtmzzTwffQL_vhdjfO_46iJquApEFsF1EQqUAWYkVHrCub4QNGQsqBM6NZFnfxSwkidc6xEbo2EN84lwwLFY6WB57HcPv3iHbMoatTIds7-6Nfvxcn-pg3kxy1VTnsDjrzQEhsYpNxJEEbBUR30DAqlHARnR7_dvMawnaCvf2H5IHTcBKv9QW9ohs-eIxuVu3sFw9IeVQjwsshKSu7m0_p7pwtCgLpM1AeISb_aVtqMDptKDLAqvBzukEj_Im5ZhW9J84AlY513AZJKK8x2lFeH45PQftUztbQSB79pSc3MrrfkY6ILN_TqhN-9IYB3tSr6RjTFttuVUct0TeJa5LePti8_axsNHGWV5l2uMsr5WRgzLyShk575IP63suan6PG2fvor7WM5Gbu7pQzsZ54-o5szakWkrrIVTjPNaZYgFpjZjmPhWhS3ZabefNgjHPr8y7S96uh8HVMX-jC18ucU4KS65MFMiRbVjJhkCbI8V0UpGGIyUHBIesSz62BnX17_9_4hc3C_uG3BscD4_yo4PR4UtyX6CZY7ZN7JDOYrb0ryBiW5jXjZtQ8uu2PfMfTHRUzw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4qkuFDASnCDa2HEePiAElFVLacWBSnsLfu6u1CZlsyu6f41fx4yTbLWV6K1XP5JJZsYz9ni-IeSNloJb5kHTuNaRSDWPtMFyL1LnqU3BJAQkpqPjbP9EfBun4y3yt8-FwWuV_ZoYFmpbGzwjHyLQmpS55NnQd9cifuyNPp7_jrCCFEZa-3IarYgcutUf2L41Hw72gNdvOR99_fllP-oqDEQGDO8i4jID85Ua7sDu5ZobX8Rees-YFnGR2yT2aeqU8onmKnHgq1jrdZxI5Q1LnErgubfI7TxJGepYPs7X5zsYQRNMdnk6cVIMG7CVmM_Gk0iAleUR27CFoWTAhp979ZbmlVBtsICjB-R-57rST62sPSRbrnpE7rTFLFePSX2kJhWmRFLbVrlvqKosreoKATTQUMJkd2E6UHA6q-iywrywMzrFQ71pPaEBCBR7QD4bBc1AEWVDRgP0-cXsDOSAmvkKXNrTJ-TkRn72U7INNLsdQk2WC60t7E6dFDaOlVGGGclwc-RsageE9T-27D8LS26cliHmnhRly4wSmFEGZpRsQN6t55y3SB_Xjv6M_FqPRJTu0FDPJ2Wn9GVsjM-UEMaB08ZYogoZewQ4ihVzGfcDsttzu-yWjqa8FPQBeb3uBqXHSI6qXL3EMRksviKVQEexISUbBG32VLNpgA9HcA5wE-MBed8L1OXb___Fz64n9hW5C_pYfj84PnxO7nGUcgy78V2yvZgv3Qtw3Rb6ZdARSn7dtFL-A0uEV58
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+dynamics+and+nonreciprocal+excitation+in+uniform+hedgehog+order+in+icosahedral+1%2F1+approximant+crystal&rft.jtitle=Scientific+reports&rft.au=Watanabe%2C+Shinji&rft.date=2023-09-02&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=14438&rft_id=info:doi/10.1038%2Fs41598-023-41292-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon