Magnetic dynamics and nonreciprocal excitation in uniform hedgehog order in icosahedral 1/1 approximant crystal
The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic systems. The revealed magnetic dynamics exhibits nonreciprocal excitation in the vast extent of the reciprocal lattice q -energy ω space, who...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 14438 - 11 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.09.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic systems. The revealed magnetic dynamics exhibits nonreciprocal excitation in the vast extent of the reciprocal lattice
q
-energy
ω
space, whose emergence mechanism remains unresolved. Here, we analyze the dynamical as well as static structure of the hedgehog order in the 1/1 approximant crystal (AC) composed of the cubic lattice with spatial inversion symmetry. We find that the dispersion of the magnetic excitation energy exhibits nonreciprocal feature along the N-P-
Γ
line in the
q
space. The dynamical structure factor exhibits highly structured intensities where high intensities appear in the high-energy branches along the
Γ
-H line and the P-
Γ
-N line in the
q
space. The nonreciprocity in the 1/1 AC and also in the QC is understood to be ascribed to inversion symmetry breaking by the hedgehog ordering. The sharp contrast on the emergence regime of nonreciprocal magnetic excitation between the QC and the 1/1 AC indicates that the emergence in the vast
q
-
ω
regime in the QC is attributed to the QC lattice structure. |
---|---|
AbstractList | The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic systems. The revealed magnetic dynamics exhibits nonreciprocal excitation in the vast extent of the reciprocal lattice
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\varvec{q}}$$\end{document}
q
-energy
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\omega$$\end{document}
ω
space, whose emergence mechanism remains unresolved. Here, we analyze the dynamical as well as static structure of the hedgehog order in the 1/1 approximant crystal (AC) composed of the cubic lattice with spatial inversion symmetry. We find that the dispersion of the magnetic excitation energy exhibits nonreciprocal feature along the N-P-
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma$$\end{document}
Γ
line in the
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\varvec{q}}$$\end{document}
q
space. The dynamical structure factor exhibits highly structured intensities where high intensities appear in the high-energy branches along the
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma$$\end{document}
Γ
-H line and the P-
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma$$\end{document}
Γ
-N line in the
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\varvec{q}}$$\end{document}
q
space. The nonreciprocity in the 1/1 AC and also in the QC is understood to be ascribed to inversion symmetry breaking by the hedgehog ordering. The sharp contrast on the emergence regime of nonreciprocal magnetic excitation between the QC and the 1/1 AC indicates that the emergence in the vast
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\varvec{q}}$$\end{document}
q
-
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\omega$$\end{document}
ω
regime in the QC is attributed to the QC lattice structure. The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic systems. The revealed magnetic dynamics exhibits nonreciprocal excitation in the vast extent of the reciprocal lattice q-energy ω space, whose emergence mechanism remains unresolved. Here, we analyze the dynamical as well as static structure of the hedgehog order in the 1/1 approximant crystal (AC) composed of the cubic lattice with spatial inversion symmetry. We find that the dispersion of the magnetic excitation energy exhibits nonreciprocal feature along the N-P-Γ line in the q space. The dynamical structure factor exhibits highly structured intensities where high intensities appear in the high-energy branches along the Γ-H line and the P-Γ-N line in the q space. The nonreciprocity in the 1/1 AC and also in the QC is understood to be ascribed to inversion symmetry breaking by the hedgehog ordering. The sharp contrast on the emergence regime of nonreciprocal magnetic excitation between the QC and the 1/1 AC indicates that the emergence in the vast q-ω regime in the QC is attributed to the QC lattice structure. The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic systems. The revealed magnetic dynamics exhibits nonreciprocal excitation in the vast extent of the reciprocal lattice $${\varvec{q}}$$ q -energy $$\omega$$ ω space, whose emergence mechanism remains unresolved. Here, we analyze the dynamical as well as static structure of the hedgehog order in the 1/1 approximant crystal (AC) composed of the cubic lattice with spatial inversion symmetry. We find that the dispersion of the magnetic excitation energy exhibits nonreciprocal feature along the N-P- $$\Gamma$$ Γ line in the $${\varvec{q}}$$ q space. The dynamical structure factor exhibits highly structured intensities where high intensities appear in the high-energy branches along the $$\Gamma$$ Γ -H line and the P- $$\Gamma$$ Γ -N line in the $${\varvec{q}}$$ q space. The nonreciprocity in the 1/1 AC and also in the QC is understood to be ascribed to inversion symmetry breaking by the hedgehog ordering. The sharp contrast on the emergence regime of nonreciprocal magnetic excitation between the QC and the 1/1 AC indicates that the emergence in the vast $${\varvec{q}}$$ q - $$\omega$$ ω regime in the QC is attributed to the QC lattice structure. Abstract The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic systems. The revealed magnetic dynamics exhibits nonreciprocal excitation in the vast extent of the reciprocal lattice $${\varvec{q}}$$ q -energy $$\omega$$ ω space, whose emergence mechanism remains unresolved. Here, we analyze the dynamical as well as static structure of the hedgehog order in the 1/1 approximant crystal (AC) composed of the cubic lattice with spatial inversion symmetry. We find that the dispersion of the magnetic excitation energy exhibits nonreciprocal feature along the N-P- $$\Gamma$$ Γ line in the $${\varvec{q}}$$ q space. The dynamical structure factor exhibits highly structured intensities where high intensities appear in the high-energy branches along the $$\Gamma$$ Γ -H line and the P- $$\Gamma$$ Γ -N line in the $${\varvec{q}}$$ q space. The nonreciprocity in the 1/1 AC and also in the QC is understood to be ascribed to inversion symmetry breaking by the hedgehog ordering. The sharp contrast on the emergence regime of nonreciprocal magnetic excitation between the QC and the 1/1 AC indicates that the emergence in the vast $${\varvec{q}}$$ q - $$\omega$$ ω regime in the QC is attributed to the QC lattice structure. The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic systems. The revealed magnetic dynamics exhibits nonreciprocal excitation in the vast extent of the reciprocal lattice q -energy ω space, whose emergence mechanism remains unresolved. Here, we analyze the dynamical as well as static structure of the hedgehog order in the 1/1 approximant crystal (AC) composed of the cubic lattice with spatial inversion symmetry. We find that the dispersion of the magnetic excitation energy exhibits nonreciprocal feature along the N-P- Γ line in the q space. The dynamical structure factor exhibits highly structured intensities where high intensities appear in the high-energy branches along the Γ -H line and the P- Γ -N line in the q space. The nonreciprocity in the 1/1 AC and also in the QC is understood to be ascribed to inversion symmetry breaking by the hedgehog ordering. The sharp contrast on the emergence regime of nonreciprocal magnetic excitation between the QC and the 1/1 AC indicates that the emergence in the vast q - ω regime in the QC is attributed to the QC lattice structure. The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic systems. The revealed magnetic dynamics exhibits nonreciprocal excitation in the vast extent of the reciprocal lattice [Formula: see text]-energy [Formula: see text] space, whose emergence mechanism remains unresolved. Here, we analyze the dynamical as well as static structure of the hedgehog order in the 1/1 approximant crystal (AC) composed of the cubic lattice with spatial inversion symmetry. We find that the dispersion of the magnetic excitation energy exhibits nonreciprocal feature along the N-P-[Formula: see text] line in the [Formula: see text] space. The dynamical structure factor exhibits highly structured intensities where high intensities appear in the high-energy branches along the [Formula: see text]-H line and the P-[Formula: see text]-N line in the [Formula: see text] space. The nonreciprocity in the 1/1 AC and also in the QC is understood to be ascribed to inversion symmetry breaking by the hedgehog ordering. The sharp contrast on the emergence regime of nonreciprocal magnetic excitation between the QC and the 1/1 AC indicates that the emergence in the vast [Formula: see text]-[Formula: see text] regime in the QC is attributed to the QC lattice structure.The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic systems. The revealed magnetic dynamics exhibits nonreciprocal excitation in the vast extent of the reciprocal lattice [Formula: see text]-energy [Formula: see text] space, whose emergence mechanism remains unresolved. Here, we analyze the dynamical as well as static structure of the hedgehog order in the 1/1 approximant crystal (AC) composed of the cubic lattice with spatial inversion symmetry. We find that the dispersion of the magnetic excitation energy exhibits nonreciprocal feature along the N-P-[Formula: see text] line in the [Formula: see text] space. The dynamical structure factor exhibits highly structured intensities where high intensities appear in the high-energy branches along the [Formula: see text]-H line and the P-[Formula: see text]-N line in the [Formula: see text] space. The nonreciprocity in the 1/1 AC and also in the QC is understood to be ascribed to inversion symmetry breaking by the hedgehog ordering. The sharp contrast on the emergence regime of nonreciprocal magnetic excitation between the QC and the 1/1 AC indicates that the emergence in the vast [Formula: see text]-[Formula: see text] regime in the QC is attributed to the QC lattice structure. |
ArticleNumber | 14438 |
Author | Watanabe, Shinji |
Author_xml | – sequence: 1 givenname: Shinji surname: Watanabe fullname: Watanabe, Shinji email: swata@mns.kyutech.ac.jp organization: Department of Basic Sciences, Kyushu Institute of Technology |
BookMark | eNp9Uk1v1DAQjVARLaV_gFMkLlxCPf5I4hNCFR-VirjA2Zp1xlmvsvZiJ6j77_F2y0d7qC-2Zt5788YzL6uTEANV1Wtg74CJ_jJLULpvGBeNBK55A8-qM86karjg_OS_92l1kfOGlaO4lqBfVKeia1vGNJxV8SuOgWZv62EfcOttrjEMdSmWyPpdihanmm6tn3H2MdQ-1EvwLqZtvaZhpHUc65gGSoeMtzFjCafCgUuocVcEbv0Ww1zbtM8zTq-q5w6nTBf393n149PH71dfmptvn6-vPtw0VvVybrhuFQdlOSng3Ypb1zOnnQNYSdZ3g2BOKUJ0YsVRkOJ8GNyKCY3OgiAU59X1UXeIuDG7VEykvYnozV0gptFgKm1PZJi1rkUpLSklAQT2mjkGAhgCtdwVrfdHrd2y2tJgKcylwweiDzPBr80YfxlgslNMs6Lw9l4hxZ8L5dlsfbY0TRgoLtnwvmWyzEtDgb55BN3EJYXyVwWltNad5m1B8SPKpphzIvfXDTBz2A9z3A9T9sPc7Yc5SPePSH_GWlz76WmqOFJzqRNGSv9cPcH6DQVT0Rc |
CitedBy_id | crossref_primary_10_1103_PhysRevB_109_184404 |
Cites_doi | 10.1088/0953-8984/21/21/216001 10.1038/35046202 10.1103/PhysRevB.95.054408 10.1073/pnas.2022927118 10.1016/0378-4371(78)90160-7 10.1103/PhysRevB.53.3428 10.1103/PhysRevB.39.2670 10.1126/sciadv.aaz6931 10.1017/CBO9781139107808 10.1038/s41598-021-97024-w 10.1038/s41598-022-19870-6 10.1103/PhysRevB.104.224405 10.1021/jacs.1c09954 10.1088/1361-648X/ab997d 10.1038/s41598-022-14796-5 10.1103/PhysRevB.93.024416 10.1073/pnas.2112202118 10.1143/JPSJ.81.023712 10.1103/PhysRevB.82.220201 10.1103/PhysRevB.101.224419 10.2320/matertrans.MT-MB2020014 10.1103/PhysRevB.92.184419 10.1038/s41467-018-05759-4 10.1088/0953-8984/25/42/426004 10.1088/0953-8984/26/21/216004 10.1103/PhysRevB.104.134420 10.1103/PhysRev.58.1098 10.7566/JPSJ.88.081007 10.1143/JPSJ.62.3268 10.1103/PhysRevB.98.220403 10.1103/PhysRevLett.129.017201 10.1021/acs.chemrev.0c00297 10.7566/JPSJ.90.063701 10.1143/JPSJ.81.024720 10.1103/PhysRevB.71.104427 10.1103/PhysRevLett.53.1951 10.1103/PhysRevB.100.054417 10.1038/s41467-019-14095-0 10.7566/JPSJ.89.034710 10.1103/PhysRevLett.119.047201 10.1038/nmat1799 10.1103/PhysRevB.102.220408 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. Springer Nature Limited. Springer Nature Limited 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. Springer Nature Limited. – notice: Springer Nature Limited 2023 |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-41292-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central (New) (NC LIVE) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_0ccf6a44ce554113a890f01310a1e62f PMC10475090 10_1038_s41598_023_41292_1 |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: JP18K03542 funderid: http://dx.doi.org/10.13039/501100001691 – fundername: ; grantid: JP18K03542 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c584t-2965215c2e5127b2cf80f9ff11b4087d30f55eaaf3b2a3e522ddfb039afc13ea3 |
IEDL.DBID | 7X7 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:25:53 EDT 2025 Thu Aug 21 18:36:48 EDT 2025 Thu Jul 10 18:55:27 EDT 2025 Wed Aug 13 09:13:49 EDT 2025 Tue Jul 01 03:57:22 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Fri Feb 21 02:37:24 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c584t-2965215c2e5127b2cf80f9ff11b4087d30f55eaaf3b2a3e522ddfb039afc13ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2859997926?pq-origsite=%requestingapplication% |
PMID | 37660091 |
PQID | 2859997926 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0ccf6a44ce554113a890f01310a1e62f pubmedcentral_primary_oai_pubmedcentral_nih_gov_10475090 proquest_miscellaneous_2860404591 proquest_journals_2859997926 crossref_primary_10_1038_s41598_023_41292_1 crossref_citationtrail_10_1038_s41598_023_41292_1 springer_journals_10_1038_s41598_023_41292_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-02 |
PublicationDateYYYYMMDD | 2023-09-02 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Eto, Pohle, Mochizuki (CR21) 2022; 129 Nikuni, Shiba (CR32) 1993; 62 Wessel, Milat (CR40) 2005; 71 Das (CR7) 2017; 95 Hiroto (CR13) 2020; 32 Hiroto, Tokiwa, Tamura (CR11) 2014; 26 Gitgeatpong (CR24) 2017; 119 Ogawa (CR29) 2021; 118 Watanabe (CR17) 2021; 118 Takakura, Gómez, Yamamoto, De Boissieu, Tsai (CR3) 2007; 6 Holstein, Primakoff (CR37) 1940; 58 Watanabe (CR16) 2021; 11 Mori (CR6) 2012; 81 Watanabe (CR19) 2022; 12 Tokura, Kanazawa (CR22) 2021; 121 Miyahara, Furukawa (CR34) 2012; 81 Hiroto (CR10) 2013; 25 Ishikawa (CR12) 2016; 93 Iguchi, Uemura, Ueno, Onose (CR23) 2015; 92 Sato (CR9) 2019; 100 Matsumoto, Hayami (CR35) 2020; 101 Suzuki (CR4) 2021; 62 Seki (CR28) 2020; 11 Tsai, Guo, Abe, Takakura, Sato (CR2) 2000; 408 Tamura (CR14) 2021; 143 Colpa (CR41) 1978; 93 Sato, Matan (CR26) 2019; 88 Squires (CR38) 2012 Zhitomirsky, Zaliznyak (CR33) 1996; 53 Haraldsen, Fishman (CR42) 2009; 21 CR27 Matsumoto, Hayashida, Masuda (CR36) 2020; 89 Ashraff, Stinchcombe (CR39) 1989; 39 Watanabe (CR18) 2022; 12 Tokura, Nagaosa (CR25) 2018; 9 Ishikawa (CR8) 2018; 98 Watanabe, Kawamoto (CR15) 2021; 90 Shechtman, Blech, Gratias, Cahn (CR1) 1984; 53 Matsumoto, Hayami (CR30) 2021; 104 Ishibashi (CR31) 2021; 6 Tamura, Muro, Hiroto, Nishimoto, Takabatake (CR5) 2010; 82 Kato, Hayami, Motome (CR20) 2021; 104 T Holstein (41292_CR37) 1940; 58 P Das (41292_CR7) 2017; 95 T Matsumoto (41292_CR35) 2020; 101 A Mori (41292_CR6) 2012; 81 41292_CR27 JHP Colpa (41292_CR41) 1978; 93 JA Ashraff (41292_CR39) 1989; 39 Y Kato (41292_CR20) 2021; 104 JT Haraldsen (41292_CR42) 2009; 21 G Gitgeatpong (41292_CR24) 2017; 119 Y Iguchi (41292_CR23) 2015; 92 TJ Sato (41292_CR26) 2019; 88 R Tamura (41292_CR5) 2010; 82 R Eto (41292_CR21) 2022; 129 GL Squires (41292_CR38) 2012 M Matsumoto (41292_CR36) 2020; 89 T Hiroto (41292_CR11) 2014; 26 S Watanabe (41292_CR16) 2021; 11 S Watanabe (41292_CR19) 2022; 12 S Seki (41292_CR28) 2020; 11 T Hiroto (41292_CR13) 2020; 32 S Suzuki (41292_CR4) 2021; 62 T Nikuni (41292_CR32) 1993; 62 H Takakura (41292_CR3) 2007; 6 Y Tokura (41292_CR25) 2018; 9 AP Tsai (41292_CR2) 2000; 408 S Watanabe (41292_CR17) 2021; 118 S Wessel (41292_CR40) 2005; 71 A Ishikawa (41292_CR12) 2016; 93 S Watanabe (41292_CR15) 2021; 90 A Ishikawa (41292_CR8) 2018; 98 T Matsumoto (41292_CR30) 2021; 104 D Shechtman (41292_CR1) 1984; 53 ME Zhitomirsky (41292_CR33) 1996; 53 R Tamura (41292_CR14) 2021; 143 S Watanabe (41292_CR18) 2022; 12 N Ogawa (41292_CR29) 2021; 118 TJ Sato (41292_CR9) 2019; 100 S Miyahara (41292_CR34) 2012; 81 T Hiroto (41292_CR10) 2013; 25 Y Tokura (41292_CR22) 2021; 121 M Ishibashi (41292_CR31) 2021; 6 |
References_xml | – volume: 21 year: 2009 ident: CR42 article-title: Spin rotation technique for non-collinear magnetic systems: Application to the generalized Villain model publication-title: J. Phys. Condens. Matter. doi: 10.1088/0953-8984/21/21/216001 – volume: 408 start-page: 537 year: 2000 ident: CR2 article-title: A stable binary quasicrystal publication-title: Nature doi: 10.1038/35046202 – volume: 95 year: 2017 ident: CR7 article-title: Crystal electric field excitations in the quasicrystal approximant TbCd studied by inelastic neutron scattering publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.054408 – volume: 118 issue: 8 year: 2021 ident: CR29 article-title: Nonreciprocity of spin waves in the conical helix state publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2022927118 – volume: 93 start-page: 327 year: 1978 ident: CR41 article-title: Diagonalization of the quadratic boson Hamiltonian publication-title: Physica A doi: 10.1016/0378-4371(78)90160-7 – volume: 53 start-page: 3428 year: 1996 ident: CR33 article-title: Static properties of a quasi-one-dimensional antiferromagnet in a magnetic field publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.53.3428 – volume: 39 start-page: 2670 year: 1989 ident: CR39 article-title: Dynamic structure factor for the Fibonacci-chain quasicrystal publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.39.2670 – volume: 6 start-page: eaaz6931 issue: 17 year: 2021 ident: CR31 article-title: Spin wave resonance in perpendicularly magnetized synthetic antiferromagnets publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz6931 – year: 2012 ident: CR38 publication-title: Introduction to the Theory of Thermal Neutron Scattering doi: 10.1017/CBO9781139107808 – volume: 11 start-page: 17679 year: 2021 ident: CR16 article-title: Magnetism and topology in Tb-based icosahedral quasicrystal publication-title: Sci. Rep. doi: 10.1038/s41598-021-97024-w – volume: 12 start-page: 15514 year: 2022 ident: CR18 article-title: Magnetic dynamics of hedgehog in icosahedral quasicrystal publication-title: Sci. Rep. doi: 10.1038/s41598-022-19870-6 – volume: 104 year: 2021 ident: CR20 article-title: Spin excitation spectra in helimagnetic states: Proper-screw, cycloid, vortex-crystal, and hedgehog lattices publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.224405 – volume: 143 start-page: 19938 issue: 47 year: 2021 ident: CR14 article-title: Experimental observation of long-range magnetic order in icosahedral quasicrystals publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c09954 – volume: 32 year: 2020 ident: CR13 article-title: Noncoplanar ferrimagnetism and local crystalline-electric-field anisotropy in the quasicrystal approximant Au Si Tb publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/ab997d – volume: 12 start-page: 10792 year: 2022 ident: CR19 article-title: Magnetic dynamics of ferromagnetic long range order in icosahedral quasicrystal publication-title: Sci. Rep. doi: 10.1038/s41598-022-14796-5 – volume: 93 year: 2016 ident: CR12 article-title: Composition-driven spin glass to ferromagnetic transition in the quasicrystal approximant Au-Al-Gd publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.024416 – volume: 118 issue: 43 year: 2021 ident: CR17 article-title: Topological magnetic textures and long-range orders in Terbium-based quasicrystal and approximant publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2112202118 – volume: 81 year: 2012 ident: CR34 article-title: Nonreciprocal directional dichroism and toroidalmagnons in helical magnets publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.81.023712 – volume: 82 start-page: 220201(R) year: 2010 ident: CR5 article-title: Long-range magnetic order in the quasicrystalline approximant Cd Tb publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.220201 – volume: 101 year: 2020 ident: CR35 article-title: Nonreciprocal magnons due to symmetric anisotropic exchange interaction in honeycomb antiferromagnets publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.224419 – volume: 62 start-page: 298 year: 2021 end-page: 306 ident: CR4 article-title: Magnetism of Tsai-type quasicrystal approximants publication-title: Mater. Trans. doi: 10.2320/matertrans.MT-MB2020014 – ident: CR27 – volume: 92 year: 2015 ident: CR23 article-title: Nonreciprocal magnon propagation in a noncentrosymmetric ferromagnet LiFe O publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.184419 – volume: 9 start-page: 3740 year: 2018 ident: CR25 article-title: Nonreciprocal responses from non-centrosymmetric quantum materials publication-title: Nat. Commun. doi: 10.1038/s41467-018-05759-4 – volume: 25 year: 2013 ident: CR10 article-title: Ferromagnetism and re-entrant spin-glass transition in quasicrystal approximants Au-SM-Gd (SM = Si, Ge) publication-title: J. Phys. Condens. Matter. doi: 10.1088/0953-8984/25/42/426004 – volume: 26 year: 2014 ident: CR11 article-title: Sign of canted ferromagnetism in the quasicrystal approximants Au-SM-R (SM = Si, Ge and Sn/R = Tb, Dy and Ho) publication-title: J. Phys. Condens. Matter. doi: 10.1088/0953-8984/26/21/216004 – volume: 104 year: 2021 ident: CR30 article-title: Nonreciprocal magnon excitations by the Dzyaloshinskii–Moriya interaction on the basis of bond magnetic toroidal multipoles publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.134420 – volume: 58 start-page: 1098 year: 1940 ident: CR37 article-title: Field dependence of the intrinsic domain magnetization of a ferromagnet publication-title: Phys. Rev. doi: 10.1103/PhysRev.58.1098 – volume: 88 year: 2019 ident: CR26 article-title: Nonreciprocal magnons in noncentrosymmetric magnets publication-title: J. Phys. Soc. Jpn. doi: 10.7566/JPSJ.88.081007 – volume: 62 start-page: 3268 year: 1993 ident: CR32 article-title: Quantum fluctuations and magnetic structures of CsCuCl in high magnetic field publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.62.3268 – volume: 98 start-page: 220403R year: 2018 ident: CR8 article-title: Antiferromagnetic order is possible in ternary quasicrystal approximants publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.220403 – volume: 129 year: 2022 ident: CR21 article-title: Low-energy excitations of skyrmion crystals in a centrosymmetric Kondo-lattice magnet: Decoupled spin-charge excitations and nonreciprocity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.017201 – volume: 121 start-page: 2857 year: 2021 ident: CR22 article-title: Magnetic skyrmion materials publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00297 – volume: 90 year: 2021 ident: CR15 article-title: Crystalline electronic field in rare-earth based quasicrystal and approximant: Analysis of quantum critical Au–Al–Yb quasicrystal and approximant publication-title: J. Phys. Soc. Jpn. doi: 10.7566/JPSJ.90.063701 – volume: 81 year: 2012 ident: CR6 article-title: Electrical and magnetic properties of quasicrystal approximants RCd (R: Rare Earth) publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.81.024720 – volume: 71 year: 2005 ident: CR40 article-title: Quantum fluctuations and excitations in antiferromagnetic quasicrystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.104427 – volume: 53 start-page: 1951 year: 1984 ident: CR1 article-title: Metallic phase with long-range orientational order and no translational symmetry publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.53.1951 – volume: 100 year: 2019 ident: CR9 article-title: Whirling spin order in the quasicrystal approximant Au Al Tb publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.054417 – volume: 11 start-page: 256 year: 2020 ident: CR28 article-title: Propagation dynamics of spin excitations along skyrmion strings publication-title: Nat. Commun. doi: 10.1038/s41467-019-14095-0 – volume: 89 year: 2020 ident: CR36 article-title: Analysis of field-induced nonreciprocal magnon in noncollinear magnet and application to S = 1 triangular antiferromagnet CsFeCl publication-title: J. Phys. Soc. Jpn. doi: 10.7566/JPSJ.89.034710 – volume: 119 year: 2017 ident: CR24 article-title: Nonreciprocal magnons and symmetry-breaking in the noncentrosymmetric antiferromagnet publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.047201 – volume: 6 start-page: 58 year: 2007 ident: CR3 article-title: Atomic structure of the binary icosahedral Yb-Cd quasicrystal publication-title: Nat. Mater. doi: 10.1038/nmat1799 – volume: 6 start-page: 58 year: 2007 ident: 41292_CR3 publication-title: Nat. Mater. doi: 10.1038/nmat1799 – volume: 81 year: 2012 ident: 41292_CR6 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.81.024720 – volume: 129 year: 2022 ident: 41292_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.017201 – volume: 53 start-page: 3428 year: 1996 ident: 41292_CR33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.53.3428 – volume: 12 start-page: 10792 year: 2022 ident: 41292_CR19 publication-title: Sci. Rep. doi: 10.1038/s41598-022-14796-5 – volume: 93 start-page: 327 year: 1978 ident: 41292_CR41 publication-title: Physica A doi: 10.1016/0378-4371(78)90160-7 – volume: 21 year: 2009 ident: 41292_CR42 publication-title: J. Phys. Condens. Matter. doi: 10.1088/0953-8984/21/21/216001 – volume: 53 start-page: 1951 year: 1984 ident: 41292_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.53.1951 – volume: 62 start-page: 298 year: 2021 ident: 41292_CR4 publication-title: Mater. Trans. doi: 10.2320/matertrans.MT-MB2020014 – volume: 90 year: 2021 ident: 41292_CR15 publication-title: J. Phys. Soc. Jpn. doi: 10.7566/JPSJ.90.063701 – volume: 11 start-page: 17679 year: 2021 ident: 41292_CR16 publication-title: Sci. Rep. doi: 10.1038/s41598-021-97024-w – volume: 104 year: 2021 ident: 41292_CR20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.224405 – volume: 58 start-page: 1098 year: 1940 ident: 41292_CR37 publication-title: Phys. Rev. doi: 10.1103/PhysRev.58.1098 – volume: 121 start-page: 2857 year: 2021 ident: 41292_CR22 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00297 – volume: 100 year: 2019 ident: 41292_CR9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.054417 – volume: 143 start-page: 19938 issue: 47 year: 2021 ident: 41292_CR14 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c09954 – volume: 82 start-page: 220201(R) year: 2010 ident: 41292_CR5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.220201 – volume: 9 start-page: 3740 year: 2018 ident: 41292_CR25 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05759-4 – volume: 104 year: 2021 ident: 41292_CR30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.134420 – volume: 118 issue: 8 year: 2021 ident: 41292_CR29 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2022927118 – volume: 101 year: 2020 ident: 41292_CR35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.224419 – volume: 98 start-page: 220403R year: 2018 ident: 41292_CR8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.220403 – volume: 62 start-page: 3268 year: 1993 ident: 41292_CR32 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.62.3268 – volume: 32 year: 2020 ident: 41292_CR13 publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/ab997d – volume: 408 start-page: 537 year: 2000 ident: 41292_CR2 publication-title: Nature doi: 10.1038/35046202 – volume: 89 year: 2020 ident: 41292_CR36 publication-title: J. Phys. Soc. Jpn. doi: 10.7566/JPSJ.89.034710 – volume: 26 year: 2014 ident: 41292_CR11 publication-title: J. Phys. Condens. Matter. doi: 10.1088/0953-8984/26/21/216004 – volume: 11 start-page: 256 year: 2020 ident: 41292_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-019-14095-0 – volume: 25 year: 2013 ident: 41292_CR10 publication-title: J. Phys. Condens. Matter. doi: 10.1088/0953-8984/25/42/426004 – volume: 119 year: 2017 ident: 41292_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.047201 – volume: 39 start-page: 2670 year: 1989 ident: 41292_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.39.2670 – ident: 41292_CR27 doi: 10.1103/PhysRevB.102.220408 – volume: 93 year: 2016 ident: 41292_CR12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.024416 – volume-title: Introduction to the Theory of Thermal Neutron Scattering year: 2012 ident: 41292_CR38 doi: 10.1017/CBO9781139107808 – volume: 6 start-page: eaaz6931 issue: 17 year: 2021 ident: 41292_CR31 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz6931 – volume: 71 year: 2005 ident: 41292_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.104427 – volume: 118 issue: 43 year: 2021 ident: 41292_CR17 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2112202118 – volume: 95 year: 2017 ident: 41292_CR7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.054408 – volume: 92 year: 2015 ident: 41292_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.184419 – volume: 81 year: 2012 ident: 41292_CR34 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.81.023712 – volume: 88 year: 2019 ident: 41292_CR26 publication-title: J. Phys. Soc. Jpn. doi: 10.7566/JPSJ.88.081007 – volume: 12 start-page: 15514 year: 2022 ident: 41292_CR18 publication-title: Sci. Rep. doi: 10.1038/s41598-022-19870-6 |
SSID | ssj0000529419 |
Score | 2.4088314 |
Snippet | The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in aperiodic... Abstract The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical discovery of topological magnetic texture in... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 14438 |
SubjectTerms | 639/301/119/2792/4129 639/766/119/997 Anisotropy Humanities and Social Sciences Magnetism multidisciplinary Science Science (multidisciplinary) Symmetry Trace elements |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwRrYpra4ngmy6Xz93No4qlCPXJQt9CPnsH7Z707qD9753J7p3dQuuLr_lgJ5mZ_Cab5DeEfPRGicgzeJrwvlbai9oHTPdifKujBkgoTEynP5uTM_XjXJ_fSfWFd8IGeuBh4mYshNw4pUIC4ONcus6wjCQxzPHUiIyrL2Denc3UwOotjOJmfCXDZDdbAVLhazIhawUYJ2o-QaJC2D-JMu_fkbx3UFrw5_gFeT4GjvTLIPBL8iT1--TpkEry9hVZnrqLHh8k0jjkmF9R10cKm3ukr0CYgs7pJoyU3HTR002Pr7Ku6Bx_qc2XF7TQcGINWMfKQTFIRPmM00I8frO4Ai3QcH0LAeXla3J2_P3Xt5N6TKZQB4gx1rUwDSC1DiIBxLdehNyxbHLm3CvWtVGyrHVyLksvnEwQlsWYPZPG5cBlcvIN2QOZ01tCQ9Mq7yPsDZNRkTEXXODBcNyapKhjRfh2Yu12WJjw4tKWE2_Z2UEZFpRhizIsr8inXZ_fA8_Go62_or52LZEjuxSA5djRcuy_LKcih1tt29FxVxb5_IxpjWgq8mFXDS6H5yiuT8sNtmlg6VPagBzdxEomAk1r-sW8kHcjNQYEaawin7cG9ffrD4_43f8Y8QF5JtAB8DxMHJK99fUmvYeYau2Pivv8AQM4HaU priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA_HieCL-InVUyL4pvWSNP3Ig4iKxyGsTy7cW8jn7sJeV_cDdv97Z9J2pcd5r01Cp5mZ_maazm8IeWeVFJ5H8DRhbS5LK3LrsN2LsnXpS4CExMQ0-VldTuWPq_LqhAztjvoN3Nya2mE_qel6-XH_5_AZHP5TVzLenG8AhLBQTBS5BPgSOWRD9wCZanTUSR_ud1zfQkmu-tqZ25eO8CnR-I9iz5t_Tt44Pk2odPGIPOzDSfql0_9jchLaJ-R-12Dy8JSsJmbWYpki9V3n-Q01raeQ8iOpBYIXLA571xN100VLdy3Wal3TOX5om69mNJFz4gjYzMbAZZCI8nNOEx35fnENuqFufYAwc_mMTC--__p2mfctFnIHkcc2F6oC_C6dCAD8tRUuNiyqGDm3kjW1L1gsy2BMLKwwRYBgzftoWaFMdLwIpnhOTkHm8IJQV9XSWg8ZY1DSM2accdwpjglL8KXPCB82Vg-PhW0wljqdgxeN7pShQRk6KUPzjLw_rvndsW_cOfsr6us4E5mz04XVeqZ7R9TMuVgZKV2AQIrzwjSKRSQdYoaHSsSMnA3a1oM1amT5U6pWosrI2-MwOCKerpg2rHY4p4IXoiwVyNGMrGQk0HikXcwTpTcSZkDoxjLyYTCof3f__xO_vFvYV-SBQNPG8y9xRk636114DTHU1r5JjvEXW-IY5Q priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZaxRBEG5CguCLGA8cjaEF33RIX3P0oy4JQYhPBvLW9Lm7kMzKHpD8e6t6ZlYmqOBrH0xNV1VXdVfXV4R8dFqJwBNomnCuVJUTpfNY7kW7pgoVmISMxHT1vb68Vt9uqpsDIsZcmPxoP0Na5m16fB12tgFDg8lgQpYKTJQo4cRzhNDtKNWzera_V8HIleJ6yI9hsv3D1IkNylD9E__y8evIRyHSbHkunpNng8tIv_REHpOD2L0gT_oikg8vyerKzjtMRaShry6_obYLFI71CFyBBgomx3s_gHHTZUd3HeZj3dEFXqYtVnOaATixB-RiY6EZKKL8jNMMOX6_vIP1p379AK7k7StyfXH-Y3ZZDmUUSg_exbYUugYbXXkRwbg3TvjUsqRT4twp1jZBslRV0doknbAygkMWQnJMaps8l9HK1-QQaI5vCPV1o5wLcCqMWgXGrLeee83xUBJDFQrCx4U1429hqYtbk2PdsjU9Mwwww2RmGF6QT_s5P3uEjX-O_or82o9EdOzcsFrPzSAthnmfaquUj-AscS5tq1lCYCFmeaxFKsjJyG0zqOzGIJKf1o0WdUE-7LtB2TCCYru42uGYGjY9VWmgo51IyYSgaU-3XGTYbgTFAPeMFeTzKFC_v_73P377f8PfkacCRR1jXuKEHG7Xu_ge_KatO82K8gs4BhNq priority: 102 providerName: Springer Nature |
Title | Magnetic dynamics and nonreciprocal excitation in uniform hedgehog order in icosahedral 1/1 approximant crystal |
URI | https://link.springer.com/article/10.1038/s41598-023-41292-1 https://www.proquest.com/docview/2859997926 https://www.proquest.com/docview/2860404591 https://pubmed.ncbi.nlm.nih.gov/PMC10475090 https://doaj.org/article/0ccf6a44ce554113a890f01310a1e62f |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2Avo_ti2bqgwd42E0mWP_RU0tBSAiljWyFvRp9JoHXaOIH2v9-d7KSksL7YIMn47LvTne6k3xHy3SgpHA-gacKYRGZGJMZiuRdlisxlYBIiEtPkMr-4kuNpNu0Cbk23rXI7J8aJ2i0txsgHCLSmVKFEfnJ7l2DVKMyudiU0XpJDhC7DLV3FtNjFWDCLJbnqzsqwtBw0YK_wTJlIEwmWTiR8zx5F2P49X_PpTskn6dJohc6PyJvOfaTDlt9vyQtfvyOv2oKSD-_JcqJnNR5LpK6tNN9QXTsKS3wEsUBjBQ_7e9sBc9NFTTc1ns26oXMMrM2XMxrBOLEHZKTR0AwUUT7gNMKP3y9ugBfUrh7Arbz-QK7Oz_6OLpKupEJiwdNYJ0LlYK8zKzwY-sIIG0oWVAicG8nKwqUsZJnXOqRG6NSDc-ZcMCxVOlieep1-JAdAs_9EqM0LaYyDFaJX0jGmrbbcKo4LFO8y1yN8-2Or7Wdh2YvrKua907JqmVEBM6rIjIr3yI_dM7ct2sazo0-RX7uRiJQdG5arWdUpXsWsDbmW0npwnDhPdalYQJAhprnPReiR4y23q059m-pR2Hrk264bFA-zKbr2yw2OyWEClJkCOso9KdkjaL-nXswjhDcCZICrxnrk51agHt_-_y_-_DyxX8hrgaKN-S5xTA7Wq43_Cj7T2vSjYvTJ4XA4_jOG--nZ5a_f0DrKR_0Yh4DrRJb_AGHbG6Y |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVAguiKcIFFgkOIGV3fXa8R4QotAqpU2EUCv1ZvaZRGrtkodo_hS_kRk_UqUSvfXqXSdjz8x-szuebwh5Z5QUjgfwNGFMJBMjImOx3Ysy_cQlAAkVE9NwlA5O5PfT5HSL_G1rYfCzynZNrBZqV1o8I-8h0ZpSfSXSzxe_I-wahdnVtoVGbRaHfvUHtmzzTwffQL_vhdjfO_46iJquApEFsF1EQqUAWYkVHrCub4QNGQsqBM6NZFnfxSwkidc6xEbo2EN84lwwLFY6WB57HcPv3iHbMoatTIds7-6Nfvxcn-pg3kxy1VTnsDjrzQEhsYpNxJEEbBUR30DAqlHARnR7_dvMawnaCvf2H5IHTcBKv9QW9ohs-eIxuVu3sFw9IeVQjwsshKSu7m0_p7pwtCgLpM1AeISb_aVtqMDptKDLAqvBzukEj_Im5ZhW9J84AlY513AZJKK8x2lFeH45PQftUztbQSB79pSc3MrrfkY6ILN_TqhN-9IYB3tSr6RjTFttuVUct0TeJa5LePti8_axsNHGWV5l2uMsr5WRgzLyShk575IP63suan6PG2fvor7WM5Gbu7pQzsZ54-o5szakWkrrIVTjPNaZYgFpjZjmPhWhS3ZabefNgjHPr8y7S96uh8HVMX-jC18ucU4KS65MFMiRbVjJhkCbI8V0UpGGIyUHBIesSz62BnX17_9_4hc3C_uG3BscD4_yo4PR4UtyX6CZY7ZN7JDOYrb0ryBiW5jXjZtQ8uu2PfMfTHRUzw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4qkuFDASnCDa2HEePiAElFVLacWBSnsLfu6u1CZlsyu6f41fx4yTbLWV6K1XP5JJZsYz9ni-IeSNloJb5kHTuNaRSDWPtMFyL1LnqU3BJAQkpqPjbP9EfBun4y3yt8-FwWuV_ZoYFmpbGzwjHyLQmpS55NnQd9cifuyNPp7_jrCCFEZa-3IarYgcutUf2L41Hw72gNdvOR99_fllP-oqDEQGDO8i4jID85Ua7sDu5ZobX8Rees-YFnGR2yT2aeqU8onmKnHgq1jrdZxI5Q1LnErgubfI7TxJGepYPs7X5zsYQRNMdnk6cVIMG7CVmM_Gk0iAleUR27CFoWTAhp979ZbmlVBtsICjB-R-57rST62sPSRbrnpE7rTFLFePSX2kJhWmRFLbVrlvqKosreoKATTQUMJkd2E6UHA6q-iywrywMzrFQ71pPaEBCBR7QD4bBc1AEWVDRgP0-cXsDOSAmvkKXNrTJ-TkRn72U7INNLsdQk2WC60t7E6dFDaOlVGGGclwc-RsageE9T-27D8LS26cliHmnhRly4wSmFEGZpRsQN6t55y3SB_Xjv6M_FqPRJTu0FDPJ2Wn9GVsjM-UEMaB08ZYogoZewQ4ihVzGfcDsttzu-yWjqa8FPQBeb3uBqXHSI6qXL3EMRksviKVQEexISUbBG32VLNpgA9HcA5wE-MBed8L1OXb___Fz64n9hW5C_pYfj84PnxO7nGUcgy78V2yvZgv3Qtw3Rb6ZdARSn7dtFL-A0uEV58 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+dynamics+and+nonreciprocal+excitation+in+uniform+hedgehog+order+in+icosahedral+1%2F1+approximant+crystal&rft.jtitle=Scientific+reports&rft.au=Watanabe%2C+Shinji&rft.date=2023-09-02&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=14438&rft_id=info:doi/10.1038%2Fs41598-023-41292-1&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |