The maximal metabolic steady state: redefining the ‘gold standard’
The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. However, while perhaps having similarities in principle, methodological...
Saved in:
Published in | Physiological reports Vol. 7; no. 10; pp. e14098 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.05.2019
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. However, while perhaps having similarities in principle, methodological differences in the assessment of these parameters typically result in MLSS occurring at a somewhat lower power output or running speed and exercise at CP being sustainable for no more than approximately 20–30 min. This has led to the view that CP overestimates the ‘actual’ maximal metabolic steady state and that MLSS should be considered the ‘gold standard’ metric for the evaluation of endurance exercise capacity. In this article we will present evidence consistent with the contrary conclusion: i.e., that (1) as presently defined, MLSS naturally underestimates the actual maximal metabolic steady state; and (2) CP alone represents the boundary between discrete exercise intensity domains within which the dynamic cardiorespiratory and muscle metabolic responses to exercise differ profoundly. While both MLSS and CP may have relevance for athletic training and performance, we urge that the distinction between the two concepts/metrics be better appreciated and that comparisons between MLSS and CP, undertaken in the mistaken belief that they are theoretically synonymous, is discontinued. CP represents the genuine boundary separating exercise in which physiological homeostasis can be maintained from exercise in which it cannot, and should be considered the gold standard when the goal is to determine the maximal metabolic steady state.
The maximal lactate steady state (MLSS) and the critical power (CP) are two indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. We discuss evidence consistent with the interpretation that CP provides a more robust representation of the boundary separating exercise domains wherein a metabolic steady‐state can or cannot be achieved. |
---|---|
AbstractList | The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. However, while perhaps having similarities in principle, methodological differences in the assessment of these parameters typically result in MLSS occurring at a somewhat lower power output or running speed and exercise at CP being sustainable for no more than approximately 20–30 min. This has led to the view that CP overestimates the ‘actual’ maximal metabolic steady state and that MLSS should be considered the ‘gold standard’ metric for the evaluation of endurance exercise capacity. In this article we will present evidence consistent with the contrary conclusion: i.e., that (1) as presently defined, MLSS naturally underestimates the actual maximal metabolic steady state; and (2) CP alone represents the boundary between discrete exercise intensity domains within which the dynamic cardiorespiratory and muscle metabolic responses to exercise differ profoundly. While both MLSS and CP may have relevance for athletic training and performance, we urge that the distinction between the two concepts/metrics be better appreciated and that comparisons between MLSS and CP, undertaken in the mistaken belief that they are theoretically synonymous, is discontinued. CP represents the genuine boundary separating exercise in which physiological homeostasis can be maintained from exercise in which it cannot, and should be considered the gold standard when the goal is to determine the maximal metabolic steady state. The maximal lactate steady state ( MLSS ) and the critical power ( CP ) are two widely used indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. However, while perhaps having similarities in principle, methodological differences in the assessment of these parameters typically result in MLSS occurring at a somewhat lower power output or running speed and exercise at CP being sustainable for no more than approximately 20–30 min. This has led to the view that CP overestimates the ‘actual’ maximal metabolic steady state and that MLSS should be considered the ‘gold standard’ metric for the evaluation of endurance exercise capacity. In this article we will present evidence consistent with the contrary conclusion: i.e., that (1) as presently defined, MLSS naturally underestimates the actual maximal metabolic steady state; and (2) CP alone represents the boundary between discrete exercise intensity domains within which the dynamic cardiorespiratory and muscle metabolic responses to exercise differ profoundly. While both MLSS and CP may have relevance for athletic training and performance, we urge that the distinction between the two concepts/metrics be better appreciated and that comparisons between MLSS and CP , undertaken in the mistaken belief that they are theoretically synonymous, is discontinued. CP represents the genuine boundary separating exercise in which physiological homeostasis can be maintained from exercise in which it cannot, and should be considered the gold standard when the goal is to determine the maximal metabolic steady state. The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. However, while perhaps having similarities in principle, methodological differences in the assessment of these parameters typically result in MLSS occurring at a somewhat lower power output or running speed and exercise at CP being sustainable for no more than approximately 20-30 min. This has led to the view that CP overestimates the 'actual' maximal metabolic steady state and that MLSS should be considered the 'gold standard' metric for the evaluation of endurance exercise capacity. In this article we will present evidence consistent with the contrary conclusion: i.e., that (1) as presently defined, MLSS naturally underestimates the actual maximal metabolic steady state; and (2) CP alone represents the boundary between discrete exercise intensity domains within which the dynamic cardiorespiratory and muscle metabolic responses to exercise differ profoundly. While both MLSS and CP may have relevance for athletic training and performance, we urge that the distinction between the two concepts/metrics be better appreciated and that comparisons between MLSS and CP, undertaken in the mistaken belief that they are theoretically synonymous, is discontinued. CP represents the genuine boundary separating exercise in which physiological homeostasis can be maintained from exercise in which it cannot, and should be considered the gold standard when the goal is to determine the maximal metabolic steady state.The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. However, while perhaps having similarities in principle, methodological differences in the assessment of these parameters typically result in MLSS occurring at a somewhat lower power output or running speed and exercise at CP being sustainable for no more than approximately 20-30 min. This has led to the view that CP overestimates the 'actual' maximal metabolic steady state and that MLSS should be considered the 'gold standard' metric for the evaluation of endurance exercise capacity. In this article we will present evidence consistent with the contrary conclusion: i.e., that (1) as presently defined, MLSS naturally underestimates the actual maximal metabolic steady state; and (2) CP alone represents the boundary between discrete exercise intensity domains within which the dynamic cardiorespiratory and muscle metabolic responses to exercise differ profoundly. While both MLSS and CP may have relevance for athletic training and performance, we urge that the distinction between the two concepts/metrics be better appreciated and that comparisons between MLSS and CP, undertaken in the mistaken belief that they are theoretically synonymous, is discontinued. CP represents the genuine boundary separating exercise in which physiological homeostasis can be maintained from exercise in which it cannot, and should be considered the gold standard when the goal is to determine the maximal metabolic steady state. Abstract The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. However, while perhaps having similarities in principle, methodological differences in the assessment of these parameters typically result in MLSS occurring at a somewhat lower power output or running speed and exercise at CP being sustainable for no more than approximately 20–30 min. This has led to the view that CP overestimates the ‘actual’ maximal metabolic steady state and that MLSS should be considered the ‘gold standard’ metric for the evaluation of endurance exercise capacity. In this article we will present evidence consistent with the contrary conclusion: i.e., that (1) as presently defined, MLSS naturally underestimates the actual maximal metabolic steady state; and (2) CP alone represents the boundary between discrete exercise intensity domains within which the dynamic cardiorespiratory and muscle metabolic responses to exercise differ profoundly. While both MLSS and CP may have relevance for athletic training and performance, we urge that the distinction between the two concepts/metrics be better appreciated and that comparisons between MLSS and CP, undertaken in the mistaken belief that they are theoretically synonymous, is discontinued. CP represents the genuine boundary separating exercise in which physiological homeostasis can be maintained from exercise in which it cannot, and should be considered the gold standard when the goal is to determine the maximal metabolic steady state. The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. However, while perhaps having similarities in principle, methodological differences in the assessment of these parameters typically result in MLSS occurring at a somewhat lower power output or running speed and exercise at CP being sustainable for no more than approximately 20-30 min. This has led to the view that CP overestimates the 'actual' maximal metabolic steady state and that MLSS should be considered the 'gold standard' metric for the evaluation of endurance exercise capacity. In this article we will present evidence consistent with the contrary conclusion: i.e., that (1) as presently defined, MLSS naturally underestimates the actual maximal metabolic steady state; and (2) CP alone represents the boundary between discrete exercise intensity domains within which the dynamic cardiorespiratory and muscle metabolic responses to exercise differ profoundly. While both MLSS and CP may have relevance for athletic training and performance, we urge that the distinction between the two concepts/metrics be better appreciated and that comparisons between MLSS and CP, undertaken in the mistaken belief that they are theoretically synonymous, is discontinued. CP represents the genuine boundary separating exercise in which physiological homeostasis can be maintained from exercise in which it cannot, and should be considered the gold standard when the goal is to determine the maximal metabolic steady state. The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. However, while perhaps having similarities in principle, methodological differences in the assessment of these parameters typically result in MLSS occurring at a somewhat lower power output or running speed and exercise at CP being sustainable for no more than approximately 20–30 min. This has led to the view that CP overestimates the ‘actual’ maximal metabolic steady state and that MLSS should be considered the ‘gold standard’ metric for the evaluation of endurance exercise capacity. In this article we will present evidence consistent with the contrary conclusion: i.e., that (1) as presently defined, MLSS naturally underestimates the actual maximal metabolic steady state; and (2) CP alone represents the boundary between discrete exercise intensity domains within which the dynamic cardiorespiratory and muscle metabolic responses to exercise differ profoundly. While both MLSS and CP may have relevance for athletic training and performance, we urge that the distinction between the two concepts/metrics be better appreciated and that comparisons between MLSS and CP, undertaken in the mistaken belief that they are theoretically synonymous, is discontinued. CP represents the genuine boundary separating exercise in which physiological homeostasis can be maintained from exercise in which it cannot, and should be considered the gold standard when the goal is to determine the maximal metabolic steady state. The maximal lactate steady state (MLSS) and the critical power (CP) are two indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. We discuss evidence consistent with the interpretation that CP provides a more robust representation of the boundary separating exercise domains wherein a metabolic steady‐state can or cannot be achieved. |
Author | Burnley, Mark Jones, Andrew M. Poole, David C. Vanhatalo, Anni Black, Matthew I. |
AuthorAffiliation | 2 School of Sport and Exercise Sciences University of Kent Medway United Kingdom 1 Sport and Health Sciences University of Exeter St. Luke's Campus Exeter United Kingdom 3 Department of Kinesiology Kansas State University Manhattan Kansas |
AuthorAffiliation_xml | – name: 2 School of Sport and Exercise Sciences University of Kent Medway United Kingdom – name: 1 Sport and Health Sciences University of Exeter St. Luke's Campus Exeter United Kingdom – name: 3 Department of Kinesiology Kansas State University Manhattan Kansas |
Author_xml | – sequence: 1 givenname: Andrew M. surname: Jones fullname: Jones, Andrew M. email: a.m.jones@exeter.ac.uk organization: St. Luke's Campus – sequence: 2 givenname: Mark surname: Burnley fullname: Burnley, Mark organization: University of Kent – sequence: 3 givenname: Matthew I. surname: Black fullname: Black, Matthew I. organization: St. Luke's Campus – sequence: 4 givenname: David C. surname: Poole fullname: Poole, David C. organization: Kansas State University – sequence: 5 givenname: Anni surname: Vanhatalo fullname: Vanhatalo, Anni organization: St. Luke's Campus |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31124324$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks9qFEEQxhuJmLjm5F0GvAhhtf_O9HgQJCQmENBDBD01Nd01u730Tq89s-re8hj6enkSe3cSSYJ4qqLrV199dNVTstfFDgl5zuhrJjWTb1bzDc8prfUjcsCpYlPNqi97d_J9ctj3C0opo0LUVD4h-4IxLgWXB-T0co7FEn76JYRiiQM0MXhb9AOC2-QAA74tEjpsfee7WTFk_Prq1ywGt612DpK7vvr9jDxuIfR4eBMn5PPpyeXx2fTi44fz4_cXU6u01NOGUm4Zk9lvUyOiY9pSJdAppWjtWoVlTVXZSIrcgrWQS6BK27gWoNatmJDzUddFWJhVyrbTxkTwZvcQ08xAGrwNaLSCSlpVlo1Q0tk8sC0VUgFNLbkCyFrvRq3Vulmis9gNCcI90fuVzs_NLH43pRKCVToLvLoRSPHbGvvBLH1vMQToMK57w7ngjNWV3qIvH6CLuE5d_irDBWWyrOq8nQl5cdfRXyu368oAGwGbYt8nbI31eUU-bg36YBg1u6sw26swu6vIPUcPem5l_03zkf7hA27-h5pPZ1_52PQHrO7Jhg |
CitedBy_id | crossref_primary_10_3390_sports8090123 crossref_primary_10_1007_s40279_024_02125_x crossref_primary_10_1055_a_1559_3623 crossref_primary_10_1111_sms_14260 crossref_primary_10_1007_s00421_023_05274_5 crossref_primary_10_1007_s00726_019_02775_6 crossref_primary_10_1007_s40279_022_01805_w crossref_primary_10_1089_ham_2019_0061 crossref_primary_10_3390_ijms242115753 crossref_primary_10_17644_sbd_931304 crossref_primary_10_1123_ijspp_2024_0101 crossref_primary_10_1139_apnm_2021_0374 crossref_primary_10_1152_japplphysiol_00058_2021 crossref_primary_10_1371_journal_pone_0278858 crossref_primary_10_1080_17461391_2021_1874541 crossref_primary_10_1519_JSC_0000000000004772 crossref_primary_10_1123_ijspp_2021_0207 crossref_primary_10_1007_s40279_022_01680_5 crossref_primary_10_1249_MSS_0000000000002147 crossref_primary_10_1249_MSS_0000000000002389 crossref_primary_10_1007_s00399_022_00916_1 crossref_primary_10_1007_s40279_021_01523_9 crossref_primary_10_1249_MSS_0000000000002548 crossref_primary_10_1007_s00421_022_04942_2 crossref_primary_10_3389_fphys_2021_613066 crossref_primary_10_1055_a_1100_7253 crossref_primary_10_1007_s00421_020_04549_5 crossref_primary_10_1080_02640414_2020_1847504 crossref_primary_10_1177_17479541221104721 crossref_primary_10_1093_eurjpc_zwae034 crossref_primary_10_1007_s40279_021_01498_7 crossref_primary_10_1007_s00421_019_04266_8 crossref_primary_10_1113_EP088548 crossref_primary_10_1249_MSS_0000000000003468 crossref_primary_10_1007_s40279_023_01936_8 crossref_primary_10_1177_17543371231200295 crossref_primary_10_1007_s00421_021_04675_8 crossref_primary_10_1249_MSS_0000000000003066 crossref_primary_10_1055_a_2209_5191 crossref_primary_10_1007_s40279_022_01748_2 crossref_primary_10_1111_sms_14124 crossref_primary_10_1111_sms_14122 crossref_primary_10_1152_japplphysiol_00416_2022 crossref_primary_10_1007_s40279_024_02084_3 crossref_primary_10_1007_s11332_022_00945_w crossref_primary_10_3390_physiologia3030027 crossref_primary_10_1016_j_jsams_2022_05_012 crossref_primary_10_3390_sports11120238 crossref_primary_10_1007_s00421_021_04780_8 crossref_primary_10_1007_s00421_024_05459_6 crossref_primary_10_1249_MSS_0000000000003412 crossref_primary_10_1007_s00421_021_04739_9 crossref_primary_10_1152_ajpregu_00178_2023 crossref_primary_10_5114_jhk_170882 crossref_primary_10_1080_02701367_2022_2117268 crossref_primary_10_1016_j_scispo_2021_12_009 crossref_primary_10_1007_s00421_025_05748_8 crossref_primary_10_1152_japplphysiol_00120_2024 crossref_primary_10_52082_jssm_2023_790 crossref_primary_10_1007_s40279_020_01314_8 crossref_primary_10_1249_MSS_0000000000003414 crossref_primary_10_1007_s00421_021_04874_3 crossref_primary_10_1113_EP089565 crossref_primary_10_1123_ijspp_2023_0389 crossref_primary_10_1111_sms_14074 crossref_primary_10_1152_japplphysiol_00706_2022 crossref_primary_10_3390_ijerph20021612 crossref_primary_10_1007_s00421_024_05572_6 crossref_primary_10_1113_JP281142 crossref_primary_10_1123_ijspp_2023_0308 crossref_primary_10_1007_s40279_022_01690_3 crossref_primary_10_1152_ajpregu_00065_2024 crossref_primary_10_1007_s40279_021_01459_0 crossref_primary_10_1007_s40279_021_01497_8 crossref_primary_10_1519_JSC_0000000000004046 crossref_primary_10_3390_sports8120155 crossref_primary_10_1007_s00421_024_05687_w crossref_primary_10_1007_s11332_023_01050_2 crossref_primary_10_1186_s40798_019_0230_z crossref_primary_10_1249_MSS_0000000000002673 crossref_primary_10_1139_apnm_2020_0261 crossref_primary_10_3390_ijerph192114439 crossref_primary_10_3390_jfmk6040088 crossref_primary_10_1007_s00421_022_04959_7 crossref_primary_10_1113_JP278931 crossref_primary_10_1249_MSS_0000000000002831 crossref_primary_10_1016_j_mehy_2021_110575 crossref_primary_10_1152_japplphysiol_00344_2022 crossref_primary_10_1249_MSS_0000000000002955 crossref_primary_10_1055_a_2408_7467 crossref_primary_10_5114_jhk_186976 crossref_primary_10_1038_s41598_023_36983_8 crossref_primary_10_14814_phy2_14342 crossref_primary_10_1177_17479541241262385 crossref_primary_10_1080_19390211_2023_2203738 crossref_primary_10_1186_s40798_022_00430_1 crossref_primary_10_1152_japplphysiol_00253_2021 crossref_primary_10_1007_s42978_022_00195_9 crossref_primary_10_1152_ajpregu_00096_2021 crossref_primary_10_1186_s13102_024_00827_3 crossref_primary_10_1080_02640414_2021_1955515 crossref_primary_10_1055_a_2155_6813 crossref_primary_10_1007_s00421_022_05001_6 crossref_primary_10_1007_s00421_022_04967_7 crossref_primary_10_1016_j_resp_2020_103507 crossref_primary_10_1007_s00421_022_05020_3 crossref_primary_10_1016_j_pulmoe_2019_10_004 crossref_primary_10_3390_ijerph20053782 crossref_primary_10_1080_19424280_2022_2164624 crossref_primary_10_1038_s41598_024_84371_7 crossref_primary_10_1113_JP281169 crossref_primary_10_1007_s00421_021_04833_y crossref_primary_10_1007_s00421_022_05094_z crossref_primary_10_1007_s00421_024_05490_7 crossref_primary_10_1007_s00421_023_05268_3 crossref_primary_10_1016_j_pmr_2021_08_012 crossref_primary_10_3390_jfmk6020038 crossref_primary_10_1080_14763141_2023_2200403 crossref_primary_10_14814_phy2_15782 crossref_primary_10_3390_ijerph18157886 crossref_primary_10_1002_ejsc_12254 crossref_primary_10_14814_phy2_14292 crossref_primary_10_14814_phy2_14293 crossref_primary_10_1007_s00421_023_05238_9 crossref_primary_10_1249_MSS_0000000000002574 crossref_primary_10_1007_s00421_022_05036_9 crossref_primary_10_1249_MSS_0000000000003300 crossref_primary_10_7717_peerj_19060 crossref_primary_10_1152_japplphysiol_00167_2020 crossref_primary_10_1007_s00421_022_05059_2 crossref_primary_10_1055_a_1738_0252 crossref_primary_10_33549_physiolres_935068 crossref_primary_10_1007_s40279_020_01322_8 crossref_primary_10_1007_s42978_020_00053_6 crossref_primary_10_1249_MSS_0000000000003548 crossref_primary_10_1113_JP281335 crossref_primary_10_1152_japplphysiol_00655_2024 crossref_primary_10_3389_fphys_2020_613151 crossref_primary_10_1007_s00421_022_04972_w crossref_primary_10_1186_s12970_020_00392_3 crossref_primary_10_3389_fspor_2024_1376876 crossref_primary_10_1519_JSC_0000000000004350 crossref_primary_10_1016_j_jsams_2024_11_004 crossref_primary_10_1080_17461391_2022_2130097 crossref_primary_10_1113_JP284205 crossref_primary_10_1139_apnm_2019_0637 crossref_primary_10_1007_s12283_024_00452_w crossref_primary_10_1007_s40279_023_01924_y crossref_primary_10_1113_EP091835 crossref_primary_10_1007_s00421_020_04459_6 crossref_primary_10_1007_s00421_022_04922_6 crossref_primary_10_1111_sms_70024 crossref_primary_10_1007_s00421_022_04968_6 crossref_primary_10_1111_sms_14159 crossref_primary_10_1007_s00421_024_05533_z crossref_primary_10_1152_japplphysiol_00723_2021 crossref_primary_10_1111_sms_14154 crossref_primary_10_1111_sms_14152 crossref_primary_10_3389_fphys_2021_792376 crossref_primary_10_1111_sms_14151 crossref_primary_10_1007_s40279_024_02075_4 crossref_primary_10_1038_s41598_020_63297_w crossref_primary_10_1007_s00421_020_04358_w crossref_primary_10_1249_TJX_0000000000000236 crossref_primary_10_3389_fspor_2025_1520914 crossref_primary_10_3389_fphys_2021_676484 crossref_primary_10_1113_EP090642 crossref_primary_10_1113_EP091571 crossref_primary_10_3390_ijerph18020477 crossref_primary_10_1123_ijspp_2022_0018 crossref_primary_10_1080_17461391_2023_2238679 crossref_primary_10_1080_17461391_2023_2240748 crossref_primary_10_1113_JP288130 crossref_primary_10_1519_JSC_0000000000004597 crossref_primary_10_1113_EP090878 crossref_primary_10_1007_s40279_020_01366_w crossref_primary_10_1080_15502783_2024_2340574 crossref_primary_10_1152_ajpheart_00697_2019 crossref_primary_10_1007_s00421_025_05711_7 crossref_primary_10_1080_02640414_2023_2176045 crossref_primary_10_1007_s00421_021_04880_5 crossref_primary_10_1055_a_2201_7081 crossref_primary_10_17644_sbd_1107799 crossref_primary_10_3390_ijerph17041177 |
Cites_doi | 10.1097/00005768-200002000-00040 10.1123/ijspp.2013-0471 10.1113/JP271879 10.1249/01.mss.0000181691.72432.a1 10.1055/s-0031-1299749 10.1249/01.MSS.0000079047.84364.70 10.1111/j.1748-1716.1967.tb03719.x 10.1249/00003677-199001000-00005 10.2165/00007256-200029060-00001 10.1152/japplphysiol.00942.2016 10.1007/s004210050509 10.1080/00140138808966766 10.1111/sms.13280 10.1097/00005768-199808000-00020 10.1152/jappl.1994.77.5.2413 10.1249/MSS.0b013e31821fcfc1 10.1152/ajpregu.00031.2019 10.1055/s-2004-821227 10.1249/MSS.0000000000000613 10.1519/JSC.0b013e318212dafc 10.1016/j.resp.2004.06.001 10.1152/japplphysiol.91474.2008 10.1002/9781444303315.ch3 10.1113/expphysiol.2009.050500 10.1113/expphysiol.2007.039883 10.1519/JSC.0000000000002977 10.1007/s00421-002-0783-1 10.2165/00007256-200939060-00003 10.1007/BF00357613 10.1139/apnm-2016-0248 10.1080/02640414.2018.1535772 10.1055/s-2008-1025824 10.1152/jappl.1974.37.2.247 10.1007/BF01094788 10.1519/JSC.0b013e318220b4eb 10.1007/BF02388623 10.1038/116544a0 10.1152/japplphysiol.00022.2012 10.1055/s-2008-1025875 10.1007/BF00863406 10.1249/01.mss.0000232024.06114.a6 10.1055/s-2007-971147 10.1152/jappl.1999.87.5.1684 10.1249/MSS.0000000000000950 10.1016/j.resp.2012.08.024 10.1139/apnm-2014-0442 10.1249/00005768-199205000-00008 10.1007/s004210100384 10.1007/s40279-017-0688-0 10.1097/00005768-200006000-00016 10.1007/s00421-011-1979-z 10.1249/00005768-199506000-00010 10.2165/00007256-199316040-00003 10.1152/japplphysiol.00991.2004 10.1249/00005768-198201000-00004 10.1152/japplphysiol.01126.2017 10.1007/BF00428962 10.2165/00007256-198603010-00003 10.1249/MSS.0000000000001601 10.1016/j.resp.2017.12.002 10.1097/00005768-200204000-00023 10.1111/j.1748-1716.1982.tb07007.x 10.1080/17461391.2017.1418025 10.1080/02640419508732236 10.1097/00005768-199602000-00013 10.1249/MSS.0b013e3181d9cf7f 10.1055/s-2007-1025043 10.1007/s00421-001-0556-2 10.1080/02640414.2012.738925 10.1249/MSS.0b013e318177871a 10.1249/01.MSS.0000084520.80451.D5 10.1007/s00421-005-0088-2 10.1152/japplphysiol.01092.2010 10.1371/journal.pone.0199794 10.1136/bjsm.35.3.192 10.1152/ajpregu.00731.2007 10.1080/00140138108924856 10.1152/jappl.1995.79.3.838 10.1007/s00421-002-0786-y 10.1055/s-2007-1021015 10.1007/s00421-002-0703-4 10.1007/s00421-011-2088-8 10.1080/02640414.2018.1487115 10.1139/h99-008 10.1055/s-2007-971894 10.2114/ahs1983.11.207 10.1080/00140136508930810 10.1007/BF00422124 10.1136/bjsm.21.1.18 10.1080/17461391.2016.1249524 10.1152/ajpregu.00761.2010 10.1080/00140136008930462 10.2165/00007256-200333060-00003 10.1249/MSS.0000000000000939 10.1113/expphysiol.2005.032789 10.1249/00005768-199211000-00014 10.1007/s00421-014-2908-8 10.1007/s00421-002-0706-1 10.1080/17461391.2013.810306 10.1249/mss.0b013e31802dd3e6 10.1111/j.2042-3306.1999.tb05289.x 10.1249/01.MSS.0000145468.17329.9F 10.1113/jphysiol.2010.198382 10.1152/jappl.1978.44.3.350 10.1016/j.jsams.2017.11.015 10.1080/026404199365353 10.1055/s-2008-1026072 10.1113/JP274589 10.1055/s-2008-1025802 10.1007/BF00760802 10.1123/ijspp.6.1.128 10.1152/jappl.1984.56.4.831 10.1249/MSS.0b013e3182860325 |
ContentType | Journal Article |
Copyright | 2019 The Authors. published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 The Authors. published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. – notice: 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7QP 7T5 7TK 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.14814/phy2.14098 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | A. M. Jones et al |
EISSN | 2051-817X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_85a74c566b354dc0b9f65e03ab9425aa PMC6533178 31124324 10_14814_phy2_14098 PHY214098 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 7X7 8-1 8FE 8FH 8FI 8FJ AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN AEEZP AEQDE AFKRA AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU DIK EBS EJD FYUFA GODZA GROUPED_DOAJ HCIFZ HMCUK HYE IAO IHR INH ITC KQ8 LK8 M48 M7P M~E OK1 PIMPY PQQKQ PROAC RAP RHI RPM UKHRP WIN AAYXX AFPKN CITATION PHGZM PHGZT NPM 3V. 7QP 7T5 7TK 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ H94 K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5848-b002c114140b9eeed18c053ed55509df5e69056b40e2cacca3eda56cbdfaa98f3 |
IEDL.DBID | M48 |
ISSN | 2051-817X |
IngestDate | Wed Aug 27 01:32:20 EDT 2025 Thu Aug 21 18:05:37 EDT 2025 Tue Aug 05 10:56:17 EDT 2025 Wed Aug 13 02:45:06 EDT 2025 Wed Feb 19 02:30:32 EST 2025 Thu Apr 24 23:09:16 EDT 2025 Tue Jul 01 04:33:12 EDT 2025 Wed Jan 22 16:57:28 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Fatigue metabolism performance |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 http://doi.wiley.com/10.1002/tdm_license_1.1 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5848-b002c114140b9eeed18c053ed55509df5e69056b40e2cacca3eda56cbdfaa98f3 |
Notes | Funding information No funding information provided. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.14814/phy2.14098 |
PMID | 31124324 |
PQID | 2301467910 |
PQPubID | 2034607 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_85a74c566b354dc0b9f65e03ab9425aa pubmedcentral_primary_oai_pubmedcentral_nih_gov_6533178 proquest_miscellaneous_2232119788 proquest_journals_2301467910 pubmed_primary_31124324 crossref_citationtrail_10_14814_phy2_14098 crossref_primary_10_14814_phy2_14098 wiley_primary_10_14814_phy2_14098_PHY214098 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2019 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford – name: Hoboken |
PublicationTitle | Physiological reports |
PublicationTitleAlternate | Physiol Rep |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 1990; 59 1960; 3 2006; 38 2010; 588 1994; 69 2011; 110 1990; 61 1998; 19 1986; 7 1995; 27 2002; 86 1965; 8 1986; 3 2004; 36 1984; 56 2002; 88 1994; 77 2014; 14 2016; 41 2012; 26 2016; 48 2018; 37 2018; 28 2004; 142 2019; 33 1997; 24 2019; 37 2003; 35 1999; 24 1981; 24 2013; 185 1999; 20 2018; 21 2012; 33 2003; 33 2018; 18 2010; 42 1982; 49 1983; 244 2012; 112 2012; 113 1978; 44 1991; 63 1984; 5 1981; 13 2005; 98 1992; 24 1999; 30 1994; 15 2001; 35 2009; 106 2018; 13 2007; 39 1982; 14 2015; 36 2018; 249 2017; 47 1990; 18 1993; 66 1995; 79 1986; 251 2018; 125 1981; 46 1999; 87 1988; 31 2017; 595 2005; 26 1992; 11 2001; 85 2008a; 40 2015; 47 1996; 28 2015; 40 2008b; 93 2011b; 300 1999; 17 1982; 3 1994; 34 2016; 594 2011; 25 2017; 122 2005; 37 2014; 9 2003; 89 1974; 37 2006; 91 2015; 14 2000; 29 2006; 96 2013; 45 2002; 34 1995; 13 2011a; 6 1985; 6 2008 1925; 116 2014; 114 1987; 21 1993; 16 1988; 9 2000; 32 1967; 71 2013; 31 1999; 79 2019 2018 2011; 43 2018; 50 1982; 114 1998; 30 2008; 294 2010; 95 2009; 39 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 LaFontaine T. P. (e_1_2_8_74_1) 1981; 13 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 Poole D. C. (e_1_2_8_90_1) 1997; 24 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 Hill D. W. (e_1_2_8_50_1) 1994; 34 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_121_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 Simpson L. P. (e_1_2_8_98_1) 2015; 36 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Full R. J. (e_1_2_8_40_1) 1986; 251 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_97_1 Lauderdale M. A. (e_1_2_8_75_1) 1999; 30 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_103_1 e_1_2_8_93_1 Full R. J. (e_1_2_8_41_1) 1983; 244 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 Bonaventura J. M. (e_1_2_8_19_1) 2015; 14 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_104_1 31758668 - Physiol Rep. 2019 Nov;7(22):e14292 31758638 - Physiol Rep. 2019 Nov;7(22):e14293 |
References_xml | – volume: 113 start-page: 215 year: 2012 end-page: 223 article-title: Distinct profiles of neuromuscular fatigue during muscle contractions below and above the critical torque in humans publication-title: J. Appl. Physiol. – volume: 7 start-page: 45 year: 1986 end-page: 65 article-title: A theory of the metabolic origin of anaerobic threshold publication-title: Int. J. Sports Med. – volume: 35 start-page: 192 year: 2001 end-page: 196 article-title: Dependence of the maximal lactate steady state on the motor pattern of exercise publication-title: Br. J. Sports Med. – volume: 37 start-page: 1734 year: 2005 end-page: 1740 article-title: Validity of a single‐visit protocol to estimate the maximum lactate steady state publication-title: Med. Sci. Sports Exerc. – volume: 31 start-page: 1265 year: 1988 end-page: 1279 article-title: Metabolic and respiratory profile of the upper limit for prolonged exercise in man publication-title: Ergonomics – volume: 112 start-page: 327 year: 2012 end-page: 335 article-title: Influence of moderate hypoxia on tolerance to high‐intensity exercise publication-title: Eur. J. Appl. Physiol. – volume: 125 start-page: 737 year: 2018 end-page: 745 article-title: Critical power is positively related to skeletal muscle capillarity and type I muscle fibers in endurance‐trained individuals publication-title: J. Appl. Physiol. – volume: 9 start-page: 417 year: 1988 end-page: 421 article-title: Effects of continuous and interval training on the parameters of the power‐endurance time relationship for high‐intensity exercise publication-title: Int. J. Sports Med. – volume: 30 start-page: 1304 year: 1998 end-page: 1313 article-title: The validity of the lactate minimum test for determination of the maximal lactate steady state publication-title: Med. Sci. Sports Exerc. – start-page: 43 year: 2008 end-page: 55 – volume: 79 start-page: 290 year: 1999 end-page: 293 article-title: A physiological description of critical velocity publication-title: Eur. J. Appl. Physiol. Occup. Physiol. – volume: 3 start-page: 1 year: 1960 end-page: 8 article-title: Man as a source of mechanical power publication-title: Ergonomics – volume: 185 start-page: 380 year: 2013 end-page: 385 article-title: A single test for the determination of parameters of the speed‐time relationship for running publication-title: Respir. Physiol. Neurobiol. – volume: 114 start-page: 441 year: 1982 end-page: 446 article-title: Lactate accumulation in muscle and blood during submaximal exercise publication-title: Acta Physiol. Scand. – volume: 89 start-page: 95 year: 2003 end-page: 99 article-title: Methodological aspects of maximal lactate steady state‐implications for performance testing publication-title: Eur. J. Appl. Physiol. – volume: 24 start-page: 543 year: 1992 end-page: 550 article-title: A comparative evaluation of the individual anaerobic threshold and the critical power publication-title: Med. Sci. Sports Exerc. – volume: 14 start-page: 217 year: 2014 end-page: 223 article-title: Critical power derived from a 3‐minute all‐out test predicts 16.1‐km road time‐trial performance publication-title: Eur. J. Sport Sci. – volume: 24 start-page: 339 year: 1981 end-page: 350 article-title: Critical power as a measure of physical work capacity and anaerobic threshold publication-title: Ergonomics – volume: 594 start-page: 4407 year: 2016 end-page: 4423 article-title: The mechanistic bases of the power‐time relationship: muscle metabolic responses and relationships to muscle fibre type publication-title: J. Physiol. – volume: 11 start-page: 207 year: 1992 end-page: 214 article-title: Pulmonary gas exchange dynamics and the tolerance to muscular exercise: effects of fitness and training publication-title: Ann. Physiol. Anthropol. – volume: 27 start-page: 863 year: 1995 end-page: 867 article-title: Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing publication-title: Med. Sci. Sports Exerc. – volume: 13 start-page: 190 year: 1981 end-page: 193 article-title: The maximal steady state versus selected running events publication-title: Med. Sci. Sports Exerc. – volume: 28 start-page: 241 year: 1996 end-page: 246 article-title: Determination of maximal lactate steady state response in selected sports events publication-title: Med. Sci. Sports Exerc. – volume: 16 start-page: 237 year: 1993 end-page: 254 article-title: The critical power concept publication-title: A review. Sports Med. – volume: 24 start-page: 308 year: 1997 end-page: 320 article-title: Determinants of oxygen uptake publication-title: Implications for exercise testing. Sports Med. – volume: 46 start-page: 367 year: 1981 end-page: 377 article-title: Critical analysis of the “anaerobic threshold” during exercise at constant workloads publication-title: Eur. J. Appl. Physiol. Occup. Physiol. – volume: 595 start-page: 6673 year: 2017 end-page: 6686 article-title: Dissociating external power from intramuscular exercise intensity during intermittent bilateral knee‐extension in humans publication-title: J. Physiol. – volume: 35 start-page: 1413 year: 2003 end-page: 1418 article-title: The curvature constant parameter of the power‐duration curve for varied‐power exercise publication-title: Med. Sci. Sports Exerc. – volume: 71 start-page: 129 year: 1967 end-page: 139 article-title: Muscle glycogen during prolonged severe exercise publication-title: Acta Physiol. Scand. – volume: 20 start-page: 374 year: 1999 end-page: 378 article-title: Critical power is related to cycling time trial performance publication-title: Int. J. Sports Med. – volume: 79 start-page: 838 year: 1995 end-page: 845 article-title: Slow component of O2 uptake during heavy exercise: adaptation to endurance training publication-title: J. Appl. Physiol. – volume: 8 start-page: 329 year: 1965 end-page: 338 article-title: The work capacity of a synergic muscular group publication-title: Ergonomics – volume: 40 start-page: 662 year: 2015 end-page: 670 article-title: Self‐pacing increases critical power and improves performance during severe‐intensity exercise publication-title: Appl. Physiol. Nutr. Metab. – volume: 6 start-page: 117 year: 1985 end-page: 130 article-title: Justification of the 4‐mmol/l lactate threshold publication-title: Int. J. Sports Med. – volume: 49 start-page: 45 year: 1982 end-page: 57 article-title: Changes in onset of blood lactate accumulation (OBLA) and muscle enzymes after training at OBLA publication-title: Eur. J. Appl. Physiol. Occup. Physiol. – volume: 66 start-page: 90 year: 1993 end-page: 95 article-title: Does critical swimming velocity represent exercise intensity at maximal lactate steady state? publication-title: Eur. J. Appl. Physiol. Occup. Physiol. – volume: 56 start-page: 831 year: 1984 end-page: 838 article-title: Adaptations of skeletal muscle to endurance exercise and their metabolic consequences publication-title: J. Appl. Physiol. Respir. Environ. Exerc. Physiol. – volume: 69 start-page: 196 year: 1994 end-page: 202 article-title: A method for determining the maximal steady state of blood lactate concentration from two levels of submaximal exercise publication-title: Eur. J. Appl. Physiol. Occup. Physiol. – volume: 19 start-page: 125 year: 1998 end-page: 129 article-title: The critical power function is dependent on the duration of the predictive exercise tests chosen publication-title: Int. J. Sports Med. – volume: 3 start-page: 10 year: 1986 end-page: 25 article-title: Blood lactate. Implications for training and sports performance publication-title: Sports Med. – volume: 41 start-page: 1197 year: 2016 end-page: 1203 article-title: Can measures of critical power precisely estimate the maximal metabolic steady‐state? publication-title: Appl. Physiol. Nutr. Metab. – volume: 300 start-page: R700 year: 2011b end-page: R707 article-title: Muscle fiber recruitment and the slow component of O2 uptake: constant work rate vs. all‐out sprint exercise publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. – volume: 9 start-page: 900 year: 2014 end-page: 904 article-title: Validation of a novel intermittent W’ model for cycling using field data publication-title: Int. J. Sports Physiol. Perform. – volume: 39 start-page: 548 year: 2007 end-page: 555 article-title: Determination of critical power using a 3‐minute all‐out cycling test publication-title: Med. Sci. Sports Exerc. – volume: 95 start-page: 528 year: 2010 end-page: 540 article-title: Influence of hyperoxia on muscle metabolic responses and the power‐duration relationship during severe‐intensity exercise in humans: a 31P magnetic resonance spectroscopy study publication-title: Exp. Physiol. – volume: 588 start-page: 5077 year: 2010 end-page: 5087 article-title: Critical speed in the rat: implications for hindlimb muscle blood flow distribution and fibre recruitment publication-title: J. Physiol. – volume: 112 start-page: 1359 year: 2012 end-page: 1370 article-title: Critical power in adolescents: physiological bases and assessment using all‐out exercise publication-title: Eur. J. Appl. Physiol. – volume: 116 start-page: 544 year: 1925 end-page: 548 article-title: The physiological basis of athletic records publication-title: Nature – volume: 14 start-page: 203 year: 2015 end-page: 214 article-title: Reliability and accuracy of six hand‐held blood lactate analysers publication-title: J. Sports Sci. Med. – volume: 33 start-page: 584 year: 2019 end-page: 596 article-title: Methodological approaches and related challenges associated with the determination of critical power and curvature constant publication-title: J. Strength Cond. Res. – volume: 48 start-page: 1751 year: 2016 end-page: 1760 article-title: Intensity‐dependent contribution of neuromuscular fatigue after constant‐load cycling publication-title: Med. Sci. Sports Exerc. – volume: 33 start-page: 407 year: 2003 end-page: 426 article-title: The concept of maximal lactate steady state: a bridge between biochemistry, physiology and sport science publication-title: Sports Med. – volume: 34 start-page: 709 year: 2002 end-page: 714 article-title: The relationship between power and the time to achieve VO(2max) publication-title: Med. Sci. Sports Exerc. – volume: 43 start-page: 2046 year: 2011 end-page: 2062 article-title: Slow component of VO kinetics: mechanistic bases and practical applications publication-title: Med. Sci. Sports Exerc. – volume: 106 start-page: 975 year: 2009 end-page: 983 article-title: Estimation of critical torque using intermittent isometric maximal voluntary contractions of the quadriceps in humans publication-title: J. Appl. Physiol. – volume: 14 start-page: 21 year: 1982 end-page: 25 article-title: Biological variability in maximum aerobic power publication-title: Med. Sci. Sports Exerc. – volume: 28 start-page: 2481 year: 2018 end-page: 2493 article-title: Metabolic and performance‐related consequences of exercising at and slightly above MLSS publication-title: Scand. J. Med. Sci. Sports – volume: 36 start-page: 1972 year: 2004 end-page: 1976 article-title: Reliability and variability of running economy in elite distance runners publication-title: Med. Sci. Sports Exerc. – volume: 13 start-page: 265 year: 1995 end-page: 269 article-title: The relationship between critical power and running performance publication-title: J. Sports Sci. – volume: 251 start-page: R775 year: 1986 end-page: R780 article-title: Locomotion without lungs: energetics and performance of a lungless salamander publication-title: Am. J. Physiol. – volume: 48 start-page: 2320 year: 2016 end-page: 2334 article-title: Critical power: an important fatigue threshold in exercise physiology publication-title: Med. Sci. Sports Exerc. – volume: 44 start-page: 350 year: 1978 end-page: 352 article-title: Lactate release in relation to tissue lactate in human skeletal muscle during exercise publication-title: J. Appl. Physiol. Respir. Environ. Exerc. Physiol. – volume: 3 start-page: 105 year: 1982 end-page: 110 article-title: Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold of 4 mmol.l(‐1) lactate publication-title: Int. J. Sports Med. – volume: 93 start-page: 383 year: 2008b end-page: 390 article-title: Robustness of a 3 min all‐out cycling test to manipulations of power profile and cadence in humans publication-title: Exp. Physiol. – volume: 35 start-page: 1626 year: 2003 end-page: 1630 article-title: Effect of test interruptions on blood lactate during constant workload testing publication-title: Med. Sci. Sports Exerc. – volume: 29 start-page: 373 year: 2000 end-page: 386 article-title: The effect of endurance training on parameters of aerobic fitness publication-title: Sports Med. – volume: 47 start-page: 65 year: 2017 end-page: 78 article-title: The ‘critical power’ concept: applications to sports performance with a focus on intermittent high‐intensity exercise publication-title: Sports Med. – volume: 26 start-page: 416 year: 2012 end-page: 421 article-title: Comparison of a field‐based test to estimate functional threshold power and power output at lactate threshold publication-title: J. Strength Cond. Res. – volume: 294 start-page: R585 year: 2008 end-page: R593 article-title: Muscle metabolic responses to exercise above and below the “critical power” assessed using P‐MRS publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. – volume: 89 start-page: 281 year: 2003 end-page: 288 article-title: Maximal lactate steady state, respiratory compensation threshold and critical power publication-title: Eur. J. Appl. Physiol. – volume: 31 start-page: 537 year: 2013 end-page: 545 article-title: Responses during exhaustive exercise at critical power determined from the 3‐minute all‐out test publication-title: J. Sports Sci. – volume: 32 start-page: 526 year: 2000 end-page: 530 article-title: Effect of mathematical modeling on the estimation of critical power publication-title: Med. Sci. Sports Exerc. – volume: 45 start-page: 1377 year: 2013 end-page: 1385 article-title: Effects of pacing strategy on work done above critical power during high‐intensity exercise publication-title: Med. Sci. Sports Exerc. – volume: 13 start-page: e0199794 year: 2018 article-title: Manipulating graded exercise test variables affects the validity of the lactate threshold and VO2 peak publication-title: PLoS ONE – volume: 244 start-page: R530 year: 1983 end-page: R536 article-title: Aerobic response to exercise of the fastest land crab publication-title: Am. J. Physiol. – volume: 24 start-page: 1283 year: 1992 end-page: 1289 article-title: Endurance training enhances critical power publication-title: Med. Sci. Sports Exerc. – volume: 96 start-page: 339 year: 2006 end-page: 354 article-title: The critical power and related whole‐body bioenergetic models publication-title: Eur. J. Appl. Physiol. – volume: 37 start-page: 156 year: 2019 end-page: 162 article-title: The 3‐minuteute all‐out cycling test is sensitive to changes in cadence using the Lode Excalibur Sport ergometer publication-title: J. Sports Sci. – volume: 50 start-page: 1658 year: 2018 end-page: 1668 article-title: Effects of two hours of heavy‐intensity exercise on the power‐duration relationship publication-title: Med. Sci. Sports Exerc. – volume: 18 start-page: 332 year: 2018 end-page: 340 article-title: Different durations within the method of best practice affect the parameters of the speed‐duration relationship publication-title: Eur. J. Sport Sci. – volume: 6 start-page: 128 year: 2011a end-page: 136 article-title: Application of critical power in sport publication-title: Int. J. Sports Physiol. Perform. – volume: 110 start-page: 1598 year: 2011 end-page: 1606 article-title: Pulmonary O uptake kinetics as a determinant of high‐intensity exercise tolerance in humans publication-title: J. Appl. Physiol. – volume: 24 start-page: 74 year: 1999 end-page: 86 article-title: Determination of critical power by pulmonary gas exchange publication-title: Can. J. Appl. Physiol. – volume: 142 start-page: 211 year: 2004 end-page: 223 article-title: Effect of work rate on the functional ‘gain’ of Phase II pulmonary O uptake response to exercise publication-title: Respir. Physiol. Neurobiol. – volume: 88 start-page: 146 year: 2002 end-page: 151 article-title: Physiological responses during exercise to exhaustion at critical power publication-title: Eur. J. Appl. Physiol. – volume: 85 start-page: 19 year: 2001 end-page: 26 article-title: The relationship between critical velocity, maximal lactate steady‐state velocity and lactate turnpoint velocity in runners publication-title: Eur. J. Appl. Physiol. – volume: 87 start-page: 1684 year: 1999 end-page: 1896 article-title: Active muscle and whole body lactate kinetics after endurance training in men publication-title: J. Appl. Physiol. – volume: 15 start-page: 27 year: 1994 end-page: 31 article-title: A simplified approach to estimating the maximal lactate steady state publication-title: Int. J. Sports Med. – volume: 38 start-page: 1995 year: 2006 end-page: 2003 article-title: A 3‐minute all‐out test to determine peak oxygen uptake and the maximal steady state publication-title: Med. Sci. Sports Exerc. – volume: 39 start-page: 469 year: 2009 end-page: 490 article-title: Lactate threshold concepts: how valid are they? publication-title: Sports Med. – volume: 122 start-page: 446 year: 2017 end-page: 459 article-title: Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains publication-title: J. Appl. Physiol. – volume: 114 start-page: 1863 year: 2014 end-page: 1874 article-title: A ‘ramp‐sprint’ protocol to characterise indices of aerobic function and exercise intensity domains in a single laboratory test publication-title: Eur. J. Appl. Physiol. – volume: 61 start-page: 278 year: 1990 end-page: 283 article-title: Blood lactate in trained cyclists during cycle ergometry at critical power publication-title: Eur. J. Appl. Physiol. Occup. Physiol. – volume: 25 start-page: 3093 year: 2011 end-page: 3098 article-title: Sustainability of critical power determined by a 3‐minuteute all‐out test in elite cyclists publication-title: J. Strength Cond. Res. – volume: 18 start-page: 1 year: 2018 end-page: 12 article-title: Power‐duration relationship: Physiology, fatigue, and the limits of human performance publication-title: Eur. J. Sport Sci. – volume: 77 start-page: 2413 year: 1994 end-page: 2419 article-title: Effects of infused epinephrine on slow phase of O2 uptake kinetics during heavy exercise in humans publication-title: J. Appl. Physiol. – volume: 42 start-page: 1876 year: 2010 end-page: 1890 article-title: Critical power: implications for determination of VO max and exercise tolerance publication-title: Med. Sci. Sports Exerc. – volume: 36 start-page: 113 year: 2015 end-page: 119 article-title: Influence of hypoxia on the power‐duration relationship during high‐intensity exercise publication-title: Int. J. Sports Med. – volume: 17 start-page: 957 year: 1999 end-page: 967 article-title: Effect of 6 weeks of endurance training on the lactate minimum speed publication-title: J. Sports Sci. – volume: 63 start-page: 55 year: 1991 end-page: 59 article-title: The ventilatory threshold gives maximal lactate steady state publication-title: Eur. J. Appl. Physiol. Occup. Physiol. – volume: 34 start-page: 23 year: 1994 end-page: 37 article-title: A method to ensure accuracy of estimates of anaerobic capacity derived using the critical power concept publication-title: J. Sports Med. Physical Fitness. – volume: 33 start-page: 426 year: 2012 end-page: 431 article-title: 3‐minute all‐out exercise test for running publication-title: Int. J. Sports Med. – volume: 32 start-page: 1135 year: 2000 end-page: 1139 article-title: Maximal lactate‐steady‐state independent of performance publication-title: Med. Sci. Sports Exerc. – volume: 37 start-page: 247 year: 1974 end-page: 248 article-title: Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration publication-title: J. Appl. Physiol. – volume: 88 start-page: 214 year: 2002 end-page: 226 article-title: Maximal lactate steady state, critical power and EMG during cycling publication-title: Eur. J. Appl. Physiol. – volume: 37 start-page: 902 year: 2018 end-page: 910 article-title: Road cycle TT performance: Relationship to the power‐duration model and association with FTP publication-title: J. Sports Sci. – volume: 26 start-page: 524 year: 2005 end-page: 530 article-title: Critical swimming speed does not represent the speed at maximal lactate steady state publication-title: Int. J. Sports Med. – volume: 59 start-page: 421 year: 1990 end-page: 429 article-title: The effects of training on the metabolic and respiratory profile of high‐intensity cycle ergometer exercise publication-title: Eur. J. Appl. Physiol. Occup. Physiol. – volume: 86 start-page: 347 year: 2002 end-page: 354 article-title: Oxygen uptake kinetics during treadmill running across exercise intensity domains publication-title: Eur. J. Appl. Physiol. – year: 2019 article-title: Changes in the power‐duration relationship following prolonged exercise: estimation using conventional and all‐out protocols and relationship to muscle glycogen publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. – volume: 91 start-page: 621 year: 2006 end-page: 632 article-title: Human critical power‐oxygen uptake relationship at different pedalling frequencies publication-title: Exp. Physiol. – volume: 249 start-page: 1 year: 2018 end-page: 6 article-title: Effects of normobaric hypoxia on upper body critical power and anaerobic working capacity publication-title: Respir. Physiol. Neurobiol. – start-page: 319 year: 2018 end-page: 352 – volume: 21 start-page: 742 year: 2018 end-page: 747 article-title: Critical power: How different protocols and models affect its determination publication-title: J. Sci. Med. Sport. – volume: 18 start-page: 29 year: 1990 end-page: 63 article-title: Control of lactic acid metabolism in contracting muscles and during exercise publication-title: Exerc. Sport Sci. Rev. – volume: 98 start-page: 1258 year: 2005 end-page: 1263 article-title: Inter‐ and intrastrain variation in mouse critical running speed publication-title: J. Appl. Physiol. – volume: 30 start-page: 586 year: 1999 end-page: 590 article-title: Hyperbolic relationship between time‐to‐fatigue and workload publication-title: Equine Vet. J. Suppl. – volume: 21 start-page: 18 year: 1987 end-page: 21 article-title: The effects of maximum steady state pace training on running performance publication-title: Br. J. Sports Med. – volume: 47 start-page: 1932 year: 2015 end-page: 1340 article-title: Exercise intensity thresholds: identifying the boundaries of sustainable performance publication-title: Med. Sci. Sports Exerc. – volume: 5 start-page: 23 year: 1984 end-page: 25 article-title: A high velocity treadmill running test to assess endurance running potential publication-title: Int. J. Sports Med. – volume: 40 start-page: 1693 year: 2008a end-page: 1699 article-title: A 3‐minute all‐out cycling test is sensitive to a change in critical power publication-title: Med. Sci. Sports Exerc. – volume: 244 start-page: R530 year: 1983 ident: e_1_2_8_41_1 article-title: Aerobic response to exercise of the fastest land crab publication-title: Am. J. Physiol. – ident: e_1_2_8_22_1 doi: 10.1097/00005768-200002000-00040 – ident: e_1_2_8_100_1 doi: 10.1123/ijspp.2013-0471 – ident: e_1_2_8_115_1 doi: 10.1113/JP271879 – ident: e_1_2_8_71_1 doi: 10.1249/01.mss.0000181691.72432.a1 – ident: e_1_2_8_89_1 doi: 10.1055/s-0031-1299749 – ident: e_1_2_8_67_1 – ident: e_1_2_8_39_1 doi: 10.1249/01.MSS.0000079047.84364.70 – ident: e_1_2_8_46_1 doi: 10.1111/j.1748-1716.1967.tb03719.x – ident: e_1_2_8_104_1 doi: 10.1249/00003677-199001000-00005 – ident: e_1_2_8_60_1 doi: 10.2165/00007256-200029060-00001 – ident: e_1_2_8_18_1 doi: 10.1152/japplphysiol.00942.2016 – volume: 34 start-page: 23 year: 1994 ident: e_1_2_8_50_1 article-title: A method to ensure accuracy of estimates of anaerobic capacity derived using the critical power concept publication-title: J. Sports Med. Physical Fitness. – ident: e_1_2_8_49_1 doi: 10.1007/s004210050509 – volume: 13 start-page: 190 year: 1981 ident: e_1_2_8_74_1 article-title: The maximal steady state versus selected running events publication-title: Med. Sci. Sports Exerc. – ident: e_1_2_8_91_1 doi: 10.1080/00140138808966766 – ident: e_1_2_8_55_1 doi: 10.1111/sms.13280 – ident: e_1_2_8_61_1 doi: 10.1097/00005768-199808000-00020 – ident: e_1_2_8_43_1 doi: 10.1152/jappl.1994.77.5.2413 – ident: e_1_2_8_66_1 doi: 10.1249/MSS.0b013e31821fcfc1 – ident: e_1_2_8_31_1 doi: 10.1152/ajpregu.00031.2019 – ident: e_1_2_8_35_1 doi: 10.1055/s-2004-821227 – ident: e_1_2_8_70_1 doi: 10.1249/MSS.0000000000000613 – ident: e_1_2_8_79_1 doi: 10.1519/JSC.0b013e318212dafc – ident: e_1_2_8_118_1 doi: 10.1016/j.resp.2004.06.001 – ident: e_1_2_8_23_1 doi: 10.1152/japplphysiol.91474.2008 – ident: e_1_2_8_62_1 doi: 10.1002/9781444303315.ch3 – ident: e_1_2_8_112_1 doi: 10.1113/expphysiol.2009.050500 – ident: e_1_2_8_111_1 doi: 10.1113/expphysiol.2007.039883 – ident: e_1_2_8_86_1 doi: 10.1519/JSC.0000000000002977 – ident: e_1_2_8_5_1 doi: 10.1007/s00421-002-0783-1 – ident: e_1_2_8_38_1 doi: 10.2165/00007256-200939060-00003 – ident: e_1_2_8_58_1 doi: 10.1007/BF00357613 – ident: e_1_2_8_77_1 doi: 10.1139/apnm-2016-0248 – ident: e_1_2_8_83_1 doi: 10.1080/02640414.2018.1535772 – ident: e_1_2_8_45_1 doi: 10.1055/s-2008-1025824 – ident: e_1_2_8_37_1 doi: 10.1152/jappl.1974.37.2.247 – ident: e_1_2_8_12_1 doi: 10.1007/BF01094788 – ident: e_1_2_8_44_1 doi: 10.1519/JSC.0b013e318220b4eb – ident: e_1_2_8_92_1 doi: 10.1007/BF02388623 – ident: e_1_2_8_47_1 doi: 10.1038/116544a0 – ident: e_1_2_8_26_1 doi: 10.1152/japplphysiol.00022.2012 – ident: e_1_2_8_54_1 doi: 10.1055/s-2008-1025875 – ident: e_1_2_8_116_1 doi: 10.1007/BF00863406 – ident: e_1_2_8_25_1 doi: 10.1249/01.mss.0000232024.06114.a6 – ident: e_1_2_8_102_1 doi: 10.1055/s-2007-971147 – ident: e_1_2_8_10_1 doi: 10.1152/jappl.1999.87.5.1684 – ident: e_1_2_8_107_1 doi: 10.1249/MSS.0000000000000950 – ident: e_1_2_8_21_1 doi: 10.1016/j.resp.2012.08.024 – ident: e_1_2_8_17_1 doi: 10.1139/apnm-2014-0442 – ident: e_1_2_8_80_1 doi: 10.1249/00005768-199205000-00008 – ident: e_1_2_8_101_1 doi: 10.1007/s004210100384 – ident: e_1_2_8_63_1 doi: 10.1007/s40279-017-0688-0 – ident: e_1_2_8_7_1 doi: 10.1097/00005768-200006000-00016 – ident: e_1_2_8_36_1 doi: 10.1007/s00421-011-1979-z – ident: e_1_2_8_4_1 doi: 10.1249/00005768-199506000-00010 – ident: e_1_2_8_48_1 doi: 10.2165/00007256-199316040-00003 – ident: e_1_2_8_14_1 doi: 10.1152/japplphysiol.00991.2004 – ident: e_1_2_8_69_1 doi: 10.1249/00005768-198201000-00004 – ident: e_1_2_8_81_1 doi: 10.1152/japplphysiol.01126.2017 – volume: 24 start-page: 308 year: 1997 ident: e_1_2_8_90_1 article-title: Determinants of oxygen uptake publication-title: Implications for exercise testing. Sports Med. – ident: e_1_2_8_99_1 doi: 10.1007/BF00428962 – ident: e_1_2_8_56_1 doi: 10.2165/00007256-198603010-00003 – ident: e_1_2_8_30_1 doi: 10.1249/MSS.0000000000001601 – ident: e_1_2_8_73_1 doi: 10.1016/j.resp.2017.12.002 – ident: e_1_2_8_52_1 doi: 10.1097/00005768-200204000-00023 – ident: e_1_2_8_106_1 doi: 10.1111/j.1748-1716.1982.tb07007.x – ident: e_1_2_8_108_1 doi: 10.1080/17461391.2017.1418025 – ident: e_1_2_8_72_1 doi: 10.1080/02640419508732236 – ident: e_1_2_8_6_1 doi: 10.1097/00005768-199602000-00013 – ident: e_1_2_8_65_1 doi: 10.1249/MSS.0b013e3181d9cf7f – ident: e_1_2_8_42_1 doi: 10.1055/s-2007-1025043 – ident: e_1_2_8_28_1 doi: 10.1007/s00421-001-0556-2 – ident: e_1_2_8_11_1 doi: 10.1080/02640414.2012.738925 – ident: e_1_2_8_110_1 doi: 10.1249/MSS.0b013e318177871a – ident: e_1_2_8_9_1 doi: 10.1249/01.MSS.0000084520.80451.D5 – volume: 14 start-page: 203 year: 2015 ident: e_1_2_8_19_1 article-title: Reliability and accuracy of six hand‐held blood lactate analysers publication-title: J. Sports Sci. Med. – ident: e_1_2_8_85_1 doi: 10.1007/s00421-005-0088-2 – ident: e_1_2_8_87_1 doi: 10.1152/japplphysiol.01092.2010 – ident: e_1_2_8_57_1 doi: 10.1371/journal.pone.0199794 – ident: e_1_2_8_8_1 doi: 10.1136/bjsm.35.3.192 – ident: e_1_2_8_64_1 doi: 10.1152/ajpregu.00731.2007 – volume: 251 start-page: R775 year: 1986 ident: e_1_2_8_40_1 article-title: Locomotion without lungs: energetics and performance of a lungless salamander publication-title: Am. J. Physiol. – ident: e_1_2_8_84_1 doi: 10.1080/00140138108924856 – ident: e_1_2_8_120_1 doi: 10.1152/jappl.1995.79.3.838 – ident: e_1_2_8_34_1 doi: 10.1007/s00421-002-0786-y – ident: e_1_2_8_103_1 doi: 10.1055/s-2007-1021015 – ident: e_1_2_8_95_1 doi: 10.1007/s00421-002-0703-4 – volume: 36 start-page: 113 year: 2015 ident: e_1_2_8_98_1 article-title: Influence of hypoxia on the power‐duration relationship during high‐intensity exercise publication-title: Int. J. Sports Med. – ident: e_1_2_8_3_1 doi: 10.1007/s00421-011-2088-8 – ident: e_1_2_8_121_1 doi: 10.1080/02640414.2018.1487115 – ident: e_1_2_8_51_1 doi: 10.1139/h99-008 – ident: e_1_2_8_15_1 doi: 10.1055/s-2007-971894 – ident: e_1_2_8_117_1 doi: 10.2114/ahs1983.11.207 – ident: e_1_2_8_82_1 doi: 10.1080/00140136508930810 – ident: e_1_2_8_97_1 doi: 10.1007/BF00422124 – ident: e_1_2_8_94_1 doi: 10.1136/bjsm.21.1.18 – ident: e_1_2_8_24_1 doi: 10.1080/17461391.2016.1249524 – ident: e_1_2_8_114_1 doi: 10.1152/ajpregu.00761.2010 – ident: e_1_2_8_119_1 doi: 10.1080/00140136008930462 – ident: e_1_2_8_13_1 doi: 10.2165/00007256-200333060-00003 – ident: e_1_2_8_93_1 doi: 10.1249/MSS.0000000000000939 – ident: e_1_2_8_2_1 doi: 10.1113/expphysiol.2005.032789 – ident: e_1_2_8_59_1 doi: 10.1249/00005768-199211000-00014 – ident: e_1_2_8_88_1 doi: 10.1007/s00421-014-2908-8 – ident: e_1_2_8_20_1 doi: 10.1007/s00421-002-0706-1 – ident: e_1_2_8_16_1 doi: 10.1080/17461391.2013.810306 – ident: e_1_2_8_109_1 doi: 10.1249/mss.0b013e31802dd3e6 – volume: 30 start-page: 586 year: 1999 ident: e_1_2_8_75_1 article-title: Hyperbolic relationship between time‐to‐fatigue and workload publication-title: Equine Vet. J. Suppl. doi: 10.1111/j.2042-3306.1999.tb05289.x – ident: e_1_2_8_96_1 doi: 10.1249/01.MSS.0000145468.17329.9F – ident: e_1_2_8_32_1 doi: 10.1113/jphysiol.2010.198382 – ident: e_1_2_8_68_1 doi: 10.1152/jappl.1978.44.3.350 – ident: e_1_2_8_78_1 doi: 10.1016/j.jsams.2017.11.015 – ident: e_1_2_8_27_1 doi: 10.1080/026404199365353 – ident: e_1_2_8_105_1 doi: 10.1055/s-2008-1026072 – ident: e_1_2_8_33_1 doi: 10.1113/JP274589 – ident: e_1_2_8_76_1 doi: 10.1055/s-2008-1025802 – ident: e_1_2_8_122_1 doi: 10.1007/BF00760802 – ident: e_1_2_8_113_1 doi: 10.1123/ijspp.6.1.128 – ident: e_1_2_8_53_1 doi: 10.1152/jappl.1984.56.4.831 – ident: e_1_2_8_29_1 doi: 10.1249/MSS.0b013e3182860325 – reference: 31758638 - Physiol Rep. 2019 Nov;7(22):e14293 – reference: 31758668 - Physiol Rep. 2019 Nov;7(22):e14292 |
SSID | ssj0001033904 |
Score | 2.5389204 |
SecondaryResourceType | review_article |
Snippet | The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be sustained... The maximal lactate steady state ( MLSS ) and the critical power ( CP ) are two widely used indices of the highest oxidative metabolic rate that can be... Abstract The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e14098 |
SubjectTerms | Anaerobic threshold Endurance Endurance and Performance Exercise intensity Fatigue Homeostasis Invited Review Invited Reviews Lactic acid Measurement techniques Metabolic rate Metabolic response Metabolism Metabolism and Regulation Musculoskeletal system Physical training Physiology Skeletal Muscle |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp1xKm_TDyTaoEHpoceMPyZZzS0qXpdDSQxe2JyHL42Rh11u2u5Dc8jOav5dfkifZu-zS0Fx6M5Ysj2dGzHuyNMPYcVWbsqiTPKQyqkNRxCo0uQJrlQbRSqjYFu7s8Ndv2WAovozkaKPUl9sT1qYHbhV3oqTJhQXoKFMpKhth5ExSlOIVcDfjoRFi3gaZ8qsrUQoyL7oDeXilOIHUyUeX3klthSCfqf8hePn3LslN9OrDT_8Ze9rhRn7WyvucPaFmj-2fNeDM02v-jvudnH6JfJ_1YXs-NVfjKZ6Y0gJ2nowt9_a85v4I0SmfU0W1rw7BgQH53c2fi9mk4qulhbub2xds2P_849Mg7OolhBYwQrlaOokFv8FHlgUh-MXKYo5RJUFDiqqWBCoss1JElFgD06HJyMyWMJgpVJ2-ZDvNrKHXjCNipWSiNM_jUrjDppQSSSupxtgxZQF7v1Khtl0ycVfTYqIdqXD61k7f2us7YMfrzr_aHBoPdzt3tlh3cYmv_Q24g-7cQT_mDgHrrSypu9n4WyeON2Y5kFHA3q6bMY_czxHT0GyJPoCW7peqghyvWsOvJUkBSl3mwoDlWy6xJep2SzO-9Lm6M8DpOMeYH7zz_Ov79ffBz8RfHfwPTRyyXYC7ot2c2WM7i_mS3gBALcojP1fuATEtGmY priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagXLigQvkJLZWRKg6g0Pw5TrhUBbFaIYE4UGk5RY4zKSvtJu12K7W3Pga8Xp-Eb7zeLSuq3qK1N7E9M55vxuMZIfaa1tRlm-iQ6qgNszIuQqMLWK3KQFtlRWxLvjv89Vs-PMq-jNTIO9zOfFjlck90G3XTW_aR7yeM_XMN7XZwchpy1Sg-XfUlNO6LB5y6jEO69Ejf-FiiFCZ95q_l4cPZPsaevOckT8WaInL5-m8Dmf_HSv6LYZ0SGmyKRx49ysMFuR-Le9Q9EVuHHSzn6aV8I108p3OUb4kBOEBOzcV4in9MaQ5qT8ZWOqpeSneR6IOcUUOtqxEhgQTl9dXv437SyKWD4frqz1NxNPj849Mw9FUTQgswUXBFncTCysEk65KgAuPCQtKoUTBGyqZVBINY5XUWUWINCIgmo3Jbg2ymLNr0mdjo-o5eCAm9lZKJUq3jOuMrp5QSKauoxbtjygPxdrmElfUpxbmyxaRi04LXu-L1rtx6B2Jv1flkkUnj9m4fmRarLpz-2v3Qz44rL01VoYzOLJBonaqssZhomyuKUvAd9iBjArGzpGTlZfKsuuGgQLxeNUOa-IjEdNSfow8AJh-sFhjH8wXhVyNJAU05f2Eg9BpLrA11vaUb_3IZu3OA6ljjne8c89w1_-r78Gfinl7ePYlt8RDgrVwEX-6IjfnsnF4BIM3rXScFfwEjPhHF priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5BuXBBQPkJtMhIFQdQID924nBrK1YrJFAPVCony3Ym7Uq72WrZSuytjwGv1ydhxsmmXVEhcYvisWXPeDLfOJ4ZgL26sa5qsjJGlzSxrFId21KT16osWSupU19x7PCXr8X4WH4-USf93RyOhenyQwwHbqwZ4XvNCm5dV4WERpBcmvZslb3nfE36Ltzj4FpOnZ_Jo-sjliQnj172UXnc68N1nw07FNL134Yx_74qeRPCBhs0eggPevAo9jtpP4I72D6G7f2WHOfZSrwR4TpnOCffhhFtADGzPycz6jHDJQl7OvEiCHUlQhzRR7HAGptQIkIQEBRXl79O59NarM8Xri5_P4Hj0advh-O4L5oQe8ISmgvqZJ64QYt0FZIFTLUnRcNakS9S1Y1C8odV4WSCmbckP2qyqvCOpGYr3eRPYaudt_gcBJmtHG2Sl2XqJEecYo6ovMKGxk6xiODtmoXG9xnFubDF1LBnwfw2zG8T-B3B3kB83iXSuJ3sgGUxkHD26_Bivjg1vTIZrWwpPQFRlytZe1poUyhMctp29AmyNoKdtSRNr5I_TMbOY1ESPIrg9dBMysR_SGyL8wuiIXzJ_1U1zeNZJ_hhJjkhU05fGEG5sSU2prrZ0k7OQsLugjB1WtKY78Lm-df6zdH4exaeXvwX9Uu4T1Cu6q5i7sDWcnGBuwSXlu5VUIo_62kTOQ priority: 102 providerName: Wiley-Blackwell |
Title | The maximal metabolic steady state: redefining the ‘gold standard’ |
URI | https://onlinelibrary.wiley.com/doi/abs/10.14814%2Fphy2.14098 https://www.ncbi.nlm.nih.gov/pubmed/31124324 https://www.proquest.com/docview/2301467910 https://www.proquest.com/docview/2232119788 https://pubmed.ncbi.nlm.nih.gov/PMC6533178 https://doaj.org/article/85a74c566b354dc0b9f65e03ab9425aa |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFD708rKXsa67eOuCBmWFDXe-yZIHozSjJQxawlggezKyLLeBxGmzFJp_30-KHZotjL2YYMni6FxyvqPLOUSHZaWKrIqEb4qg8pMslL4SElErV_BWiQx1Zu8OX1ymvUHyfciHW9QW42wY-HtjaGfrSQ1m4-P728UJDP6rNXiMlnwGQdGxzdwkt2kXLklYC71ocL5bbAlixPZ2hzmCEvoyFMPmrt4f3695J5fEfxPy_PsA5WNg6zzT-TN62kBKdrrUgT3aMvVz2j-tEU5PFuwDc4c83er5PnWhFmyi7kcTfDExc6jAeKSZE_WCudtFX9jMlKZyhSMY4CE7upqOS9auORy9oMH52c9vPb8po-BroAtpS-xEGmEPJlhkBj4xlBqmZ0qO6CQrK24QIfO0SAITaQWJoknxVBeQo8pkFb-knXpam9fE4Mhio4JYiLBI7B1UExvDNTcVxg5N6tHHln25bnKM21IX49zGGpbXueV17njt0eGq880ytcbmbl0rh1UXmw_bvZjOrvLGvHLJlUg0oGkR86TUmGiVchPEUET8KSnl0UErxbzVsTyy4WQqAJg8er9qhnnZPRNVm-kd-gBx2p1WCTpeLYW-oiQGVrUJDT0Sa-qwRup6Sz26dim8U6DsUGDMT05x_jX_vN_7Fblfb_6Dyrf0BJAuWx7JPKCd-ezOvANsmhcd2o6SPp5iKDq02z277P_ouCWIjjOWBwBMGMM |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QEuCCg_gQJGKhxAoUls5wcJoRa62tJ2VaFWak_BcSZlpd2kbLeCvfUx4CV4qD4JYyfZsqLqrbfV2rE848-eb_wzA7CSFypLiiByMfMKVyR-7KooJq9VKrJWIvZ1Yt4O7_TD3r74fCAPFuBP-xbGXKts10S7UOeVNnvkq4Hh_mFE1u3D8XfXZI0yp6ttCo0aFls4_UEu28n7zU80vi-DoLux97HnNlkFXE3GNjYZZwJNXgB5FlmCZCL8WBMSMZdE1pO8kEgOowwz4WGgFQlIRUqGOiOxVBIXnNq9AYuCkyvTgcX1jf7ul4tdHY_zxBPNQ0ASVayStoK3JqxUPGf6bIaAy2jt_7cz_2XN1ux178Dthq-ytRpgd2EBy3uwtFaSrz6aslfM3iC1W_NL0CXMsZH6ORjRFyOcEL6GA80sjqbMPl16x8aYY2GzUjDinuz87NdRNcxZu6Vxfvb7Puxfi0YfQKesSnwEjCwlR-XxKPIzYR65IkeUWmJBbfsYOvC6VWGqmyDmJpfGMDXOjNF3avSdWn07sDKrfFzH7ri82roZi1kVE3Db_lGNj9Jm_qaxVJHQxH0zLkWuSdAilOhxQjqteko5sNyOZNqsAifpBWYdeDErpvlrDmVUidUp1SFKa45yY-rHw3rgZz3hRIZNxEQHojlIzHV1vqQcfLMxwkOi8X5Ebb6x4LlK_nS3dxjYX4-vFuI53Ozt7Wyn25v9rSdwi6hjUl_9XIbOZHyKT4meTbJnzZxg8PW6p-FfY79RaA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NISFeEDD-ZAww0uABFJrEcZwgITQYVcdg2gOTuifjOJetUpuMrhP0bR8DvgofZ5-Es5t0VEx721tVO5bvfOf7nX2-A1gvSp1nZSR9zIPSj7Mw9bVMyWsVmqxVnIYms2-Hv-wkvb34U1_0l-BP-xbGhlW2e6LbqIva2DPyTmSxfyLJunXKJixid7P77ui7bytI2ZvWtpzGTES2cfqD3Lfjt1ubtNbPo6j78euHnt9UGPANGd7UVp-JDHkE5GXkGZK5CFNDUomFIOCeFaVAch5FkscBRkYTsdSkRWJyIlFnaclp3GtwXXIRWh2TfXl-vhNwngVx8ySQiI47xLfotU0wlS4YQVcr4CKA-3-c5r_42RnA7m241SBXtjETtTuwhNVdWNmoyGsfTdkL5mJJ3SH9CnRJ-thI_xyM6IsRTkjShgPDnERNmXvE9IaNscDS1adghELZ2emvg3pYsPZw4-z09z3YuxJ-3oflqq7wITCymRx1wKUM89g-d0WOKIzAksYOMfHgZctCZZp05raqxlBZt8byW1l-K8dvD9bnnY9mWTwu7vbersW8i0297f6oxweq0WSVCi1jQyg45yIuDBFaJgIDTjJP-5_WHqy1K6ma_eBYnUuvB8_mzaTJ9npGV1ifUB8Ct_ZSN6V5PJgt_HwmnGCxzZ3ogVwQiYWpLrZUg0OXLTwhQB9KGvOVE57L6Fe7vf3I_Vq9nIincIOUT33e2tl-BDcJQ2azGNA1WJ6MT_Ax4bRJ_sQpBINvV62BfwEmkVQ4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+maximal+metabolic+steady+state%3A+redefining+the+%27gold+standard%27&rft.jtitle=Physiological+reports&rft.au=Jones%2C+Andrew+M&rft.au=Burnley%2C+Mark&rft.au=Black%2C+Matthew+I&rft.au=Poole%2C+David+C&rft.date=2019-05-01&rft.issn=2051-817X&rft.eissn=2051-817X&rft.volume=7&rft.issue=10&rft.spage=e14098&rft_id=info:doi/10.14814%2Fphy2.14098&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-817X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-817X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-817X&client=summon |