The maximal metabolic steady state: redefining the ‘gold standard’

The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. However, while perhaps having similarities in principle, methodological...

Full description

Saved in:
Bibliographic Details
Published inPhysiological reports Vol. 7; no. 10; pp. e14098 - n/a
Main Authors Jones, Andrew M., Burnley, Mark, Black, Matthew I., Poole, David C., Vanhatalo, Anni
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.05.2019
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. However, while perhaps having similarities in principle, methodological differences in the assessment of these parameters typically result in MLSS occurring at a somewhat lower power output or running speed and exercise at CP being sustainable for no more than approximately 20–30 min. This has led to the view that CP overestimates the ‘actual’ maximal metabolic steady state and that MLSS should be considered the ‘gold standard’ metric for the evaluation of endurance exercise capacity. In this article we will present evidence consistent with the contrary conclusion: i.e., that (1) as presently defined, MLSS naturally underestimates the actual maximal metabolic steady state; and (2) CP alone represents the boundary between discrete exercise intensity domains within which the dynamic cardiorespiratory and muscle metabolic responses to exercise differ profoundly. While both MLSS and CP may have relevance for athletic training and performance, we urge that the distinction between the two concepts/metrics be better appreciated and that comparisons between MLSS and CP, undertaken in the mistaken belief that they are theoretically synonymous, is discontinued. CP represents the genuine boundary separating exercise in which physiological homeostasis can be maintained from exercise in which it cannot, and should be considered the gold standard when the goal is to determine the maximal metabolic steady state. The maximal lactate steady state (MLSS) and the critical power (CP) are two indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. We discuss evidence consistent with the interpretation that CP provides a more robust representation of the boundary separating exercise domains wherein a metabolic steady‐state can or cannot be achieved.
AbstractList The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. However, while perhaps having similarities in principle, methodological differences in the assessment of these parameters typically result in MLSS occurring at a somewhat lower power output or running speed and exercise at CP being sustainable for no more than approximately 20–30 min. This has led to the view that CP overestimates the ‘actual’ maximal metabolic steady state and that MLSS should be considered the ‘gold standard’ metric for the evaluation of endurance exercise capacity. In this article we will present evidence consistent with the contrary conclusion: i.e., that (1) as presently defined, MLSS naturally underestimates the actual maximal metabolic steady state; and (2) CP alone represents the boundary between discrete exercise intensity domains within which the dynamic cardiorespiratory and muscle metabolic responses to exercise differ profoundly. While both MLSS and CP may have relevance for athletic training and performance, we urge that the distinction between the two concepts/metrics be better appreciated and that comparisons between MLSS and CP, undertaken in the mistaken belief that they are theoretically synonymous, is discontinued. CP represents the genuine boundary separating exercise in which physiological homeostasis can be maintained from exercise in which it cannot, and should be considered the gold standard when the goal is to determine the maximal metabolic steady state.
The maximal lactate steady state ( MLSS ) and the critical power ( CP ) are two widely used indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. However, while perhaps having similarities in principle, methodological differences in the assessment of these parameters typically result in MLSS occurring at a somewhat lower power output or running speed and exercise at CP being sustainable for no more than approximately 20–30 min. This has led to the view that CP overestimates the ‘actual’ maximal metabolic steady state and that MLSS should be considered the ‘gold standard’ metric for the evaluation of endurance exercise capacity. In this article we will present evidence consistent with the contrary conclusion: i.e., that (1) as presently defined, MLSS naturally underestimates the actual maximal metabolic steady state; and (2) CP alone represents the boundary between discrete exercise intensity domains within which the dynamic cardiorespiratory and muscle metabolic responses to exercise differ profoundly. While both MLSS and CP may have relevance for athletic training and performance, we urge that the distinction between the two concepts/metrics be better appreciated and that comparisons between MLSS and CP , undertaken in the mistaken belief that they are theoretically synonymous, is discontinued. CP represents the genuine boundary separating exercise in which physiological homeostasis can be maintained from exercise in which it cannot, and should be considered the gold standard when the goal is to determine the maximal metabolic steady state.
The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. However, while perhaps having similarities in principle, methodological differences in the assessment of these parameters typically result in MLSS occurring at a somewhat lower power output or running speed and exercise at CP being sustainable for no more than approximately 20-30 min. This has led to the view that CP overestimates the 'actual' maximal metabolic steady state and that MLSS should be considered the 'gold standard' metric for the evaluation of endurance exercise capacity. In this article we will present evidence consistent with the contrary conclusion: i.e., that (1) as presently defined, MLSS naturally underestimates the actual maximal metabolic steady state; and (2) CP alone represents the boundary between discrete exercise intensity domains within which the dynamic cardiorespiratory and muscle metabolic responses to exercise differ profoundly. While both MLSS and CP may have relevance for athletic training and performance, we urge that the distinction between the two concepts/metrics be better appreciated and that comparisons between MLSS and CP, undertaken in the mistaken belief that they are theoretically synonymous, is discontinued. CP represents the genuine boundary separating exercise in which physiological homeostasis can be maintained from exercise in which it cannot, and should be considered the gold standard when the goal is to determine the maximal metabolic steady state.The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. However, while perhaps having similarities in principle, methodological differences in the assessment of these parameters typically result in MLSS occurring at a somewhat lower power output or running speed and exercise at CP being sustainable for no more than approximately 20-30 min. This has led to the view that CP overestimates the 'actual' maximal metabolic steady state and that MLSS should be considered the 'gold standard' metric for the evaluation of endurance exercise capacity. In this article we will present evidence consistent with the contrary conclusion: i.e., that (1) as presently defined, MLSS naturally underestimates the actual maximal metabolic steady state; and (2) CP alone represents the boundary between discrete exercise intensity domains within which the dynamic cardiorespiratory and muscle metabolic responses to exercise differ profoundly. While both MLSS and CP may have relevance for athletic training and performance, we urge that the distinction between the two concepts/metrics be better appreciated and that comparisons between MLSS and CP, undertaken in the mistaken belief that they are theoretically synonymous, is discontinued. CP represents the genuine boundary separating exercise in which physiological homeostasis can be maintained from exercise in which it cannot, and should be considered the gold standard when the goal is to determine the maximal metabolic steady state.
Abstract The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. However, while perhaps having similarities in principle, methodological differences in the assessment of these parameters typically result in MLSS occurring at a somewhat lower power output or running speed and exercise at CP being sustainable for no more than approximately 20–30 min. This has led to the view that CP overestimates the ‘actual’ maximal metabolic steady state and that MLSS should be considered the ‘gold standard’ metric for the evaluation of endurance exercise capacity. In this article we will present evidence consistent with the contrary conclusion: i.e., that (1) as presently defined, MLSS naturally underestimates the actual maximal metabolic steady state; and (2) CP alone represents the boundary between discrete exercise intensity domains within which the dynamic cardiorespiratory and muscle metabolic responses to exercise differ profoundly. While both MLSS and CP may have relevance for athletic training and performance, we urge that the distinction between the two concepts/metrics be better appreciated and that comparisons between MLSS and CP, undertaken in the mistaken belief that they are theoretically synonymous, is discontinued. CP represents the genuine boundary separating exercise in which physiological homeostasis can be maintained from exercise in which it cannot, and should be considered the gold standard when the goal is to determine the maximal metabolic steady state.
The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. However, while perhaps having similarities in principle, methodological differences in the assessment of these parameters typically result in MLSS occurring at a somewhat lower power output or running speed and exercise at CP being sustainable for no more than approximately 20-30 min. This has led to the view that CP overestimates the 'actual' maximal metabolic steady state and that MLSS should be considered the 'gold standard' metric for the evaluation of endurance exercise capacity. In this article we will present evidence consistent with the contrary conclusion: i.e., that (1) as presently defined, MLSS naturally underestimates the actual maximal metabolic steady state; and (2) CP alone represents the boundary between discrete exercise intensity domains within which the dynamic cardiorespiratory and muscle metabolic responses to exercise differ profoundly. While both MLSS and CP may have relevance for athletic training and performance, we urge that the distinction between the two concepts/metrics be better appreciated and that comparisons between MLSS and CP, undertaken in the mistaken belief that they are theoretically synonymous, is discontinued. CP represents the genuine boundary separating exercise in which physiological homeostasis can be maintained from exercise in which it cannot, and should be considered the gold standard when the goal is to determine the maximal metabolic steady state.
The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. However, while perhaps having similarities in principle, methodological differences in the assessment of these parameters typically result in MLSS occurring at a somewhat lower power output or running speed and exercise at CP being sustainable for no more than approximately 20–30 min. This has led to the view that CP overestimates the ‘actual’ maximal metabolic steady state and that MLSS should be considered the ‘gold standard’ metric for the evaluation of endurance exercise capacity. In this article we will present evidence consistent with the contrary conclusion: i.e., that (1) as presently defined, MLSS naturally underestimates the actual maximal metabolic steady state; and (2) CP alone represents the boundary between discrete exercise intensity domains within which the dynamic cardiorespiratory and muscle metabolic responses to exercise differ profoundly. While both MLSS and CP may have relevance for athletic training and performance, we urge that the distinction between the two concepts/metrics be better appreciated and that comparisons between MLSS and CP, undertaken in the mistaken belief that they are theoretically synonymous, is discontinued. CP represents the genuine boundary separating exercise in which physiological homeostasis can be maintained from exercise in which it cannot, and should be considered the gold standard when the goal is to determine the maximal metabolic steady state. The maximal lactate steady state (MLSS) and the critical power (CP) are two indices of the highest oxidative metabolic rate that can be sustained during continuous exercise and are often considered to be synonymous. We discuss evidence consistent with the interpretation that CP provides a more robust representation of the boundary separating exercise domains wherein a metabolic steady‐state can or cannot be achieved.
Author Burnley, Mark
Jones, Andrew M.
Poole, David C.
Vanhatalo, Anni
Black, Matthew I.
AuthorAffiliation 2 School of Sport and Exercise Sciences University of Kent Medway United Kingdom
1 Sport and Health Sciences University of Exeter St. Luke's Campus Exeter United Kingdom
3 Department of Kinesiology Kansas State University Manhattan Kansas
AuthorAffiliation_xml – name: 2 School of Sport and Exercise Sciences University of Kent Medway United Kingdom
– name: 1 Sport and Health Sciences University of Exeter St. Luke's Campus Exeter United Kingdom
– name: 3 Department of Kinesiology Kansas State University Manhattan Kansas
Author_xml – sequence: 1
  givenname: Andrew M.
  surname: Jones
  fullname: Jones, Andrew M.
  email: a.m.jones@exeter.ac.uk
  organization: St. Luke's Campus
– sequence: 2
  givenname: Mark
  surname: Burnley
  fullname: Burnley, Mark
  organization: University of Kent
– sequence: 3
  givenname: Matthew I.
  surname: Black
  fullname: Black, Matthew I.
  organization: St. Luke's Campus
– sequence: 4
  givenname: David C.
  surname: Poole
  fullname: Poole, David C.
  organization: Kansas State University
– sequence: 5
  givenname: Anni
  surname: Vanhatalo
  fullname: Vanhatalo, Anni
  organization: St. Luke's Campus
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31124324$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9qFEEQxhuJmLjm5F0GvAhhtf_O9HgQJCQmENBDBD01Nd01u730Tq89s-re8hj6enkSe3cSSYJ4qqLrV199dNVTstfFDgl5zuhrJjWTb1bzDc8prfUjcsCpYlPNqi97d_J9ctj3C0opo0LUVD4h-4IxLgWXB-T0co7FEn76JYRiiQM0MXhb9AOC2-QAA74tEjpsfee7WTFk_Prq1ywGt612DpK7vvr9jDxuIfR4eBMn5PPpyeXx2fTi44fz4_cXU6u01NOGUm4Zk9lvUyOiY9pSJdAppWjtWoVlTVXZSIrcgrWQS6BK27gWoNatmJDzUddFWJhVyrbTxkTwZvcQ08xAGrwNaLSCSlpVlo1Q0tk8sC0VUgFNLbkCyFrvRq3Vulmis9gNCcI90fuVzs_NLH43pRKCVToLvLoRSPHbGvvBLH1vMQToMK57w7ngjNWV3qIvH6CLuE5d_irDBWWyrOq8nQl5cdfRXyu368oAGwGbYt8nbI31eUU-bg36YBg1u6sw26swu6vIPUcPem5l_03zkf7hA27-h5pPZ1_52PQHrO7Jhg
CitedBy_id crossref_primary_10_3390_sports8090123
crossref_primary_10_1007_s40279_024_02125_x
crossref_primary_10_1055_a_1559_3623
crossref_primary_10_1111_sms_14260
crossref_primary_10_1007_s00421_023_05274_5
crossref_primary_10_1007_s00726_019_02775_6
crossref_primary_10_1007_s40279_022_01805_w
crossref_primary_10_1089_ham_2019_0061
crossref_primary_10_3390_ijms242115753
crossref_primary_10_17644_sbd_931304
crossref_primary_10_1123_ijspp_2024_0101
crossref_primary_10_1139_apnm_2021_0374
crossref_primary_10_1152_japplphysiol_00058_2021
crossref_primary_10_1371_journal_pone_0278858
crossref_primary_10_1080_17461391_2021_1874541
crossref_primary_10_1519_JSC_0000000000004772
crossref_primary_10_1123_ijspp_2021_0207
crossref_primary_10_1007_s40279_022_01680_5
crossref_primary_10_1249_MSS_0000000000002147
crossref_primary_10_1249_MSS_0000000000002389
crossref_primary_10_1007_s00399_022_00916_1
crossref_primary_10_1007_s40279_021_01523_9
crossref_primary_10_1249_MSS_0000000000002548
crossref_primary_10_1007_s00421_022_04942_2
crossref_primary_10_3389_fphys_2021_613066
crossref_primary_10_1055_a_1100_7253
crossref_primary_10_1007_s00421_020_04549_5
crossref_primary_10_1080_02640414_2020_1847504
crossref_primary_10_1177_17479541221104721
crossref_primary_10_1093_eurjpc_zwae034
crossref_primary_10_1007_s40279_021_01498_7
crossref_primary_10_1007_s00421_019_04266_8
crossref_primary_10_1113_EP088548
crossref_primary_10_1249_MSS_0000000000003468
crossref_primary_10_1007_s40279_023_01936_8
crossref_primary_10_1177_17543371231200295
crossref_primary_10_1007_s00421_021_04675_8
crossref_primary_10_1249_MSS_0000000000003066
crossref_primary_10_1055_a_2209_5191
crossref_primary_10_1007_s40279_022_01748_2
crossref_primary_10_1111_sms_14124
crossref_primary_10_1111_sms_14122
crossref_primary_10_1152_japplphysiol_00416_2022
crossref_primary_10_1007_s40279_024_02084_3
crossref_primary_10_1007_s11332_022_00945_w
crossref_primary_10_3390_physiologia3030027
crossref_primary_10_1016_j_jsams_2022_05_012
crossref_primary_10_3390_sports11120238
crossref_primary_10_1007_s00421_021_04780_8
crossref_primary_10_1007_s00421_024_05459_6
crossref_primary_10_1249_MSS_0000000000003412
crossref_primary_10_1007_s00421_021_04739_9
crossref_primary_10_1152_ajpregu_00178_2023
crossref_primary_10_5114_jhk_170882
crossref_primary_10_1080_02701367_2022_2117268
crossref_primary_10_1016_j_scispo_2021_12_009
crossref_primary_10_1007_s00421_025_05748_8
crossref_primary_10_1152_japplphysiol_00120_2024
crossref_primary_10_52082_jssm_2023_790
crossref_primary_10_1007_s40279_020_01314_8
crossref_primary_10_1249_MSS_0000000000003414
crossref_primary_10_1007_s00421_021_04874_3
crossref_primary_10_1113_EP089565
crossref_primary_10_1123_ijspp_2023_0389
crossref_primary_10_1111_sms_14074
crossref_primary_10_1152_japplphysiol_00706_2022
crossref_primary_10_3390_ijerph20021612
crossref_primary_10_1007_s00421_024_05572_6
crossref_primary_10_1113_JP281142
crossref_primary_10_1123_ijspp_2023_0308
crossref_primary_10_1007_s40279_022_01690_3
crossref_primary_10_1152_ajpregu_00065_2024
crossref_primary_10_1007_s40279_021_01459_0
crossref_primary_10_1007_s40279_021_01497_8
crossref_primary_10_1519_JSC_0000000000004046
crossref_primary_10_3390_sports8120155
crossref_primary_10_1007_s00421_024_05687_w
crossref_primary_10_1007_s11332_023_01050_2
crossref_primary_10_1186_s40798_019_0230_z
crossref_primary_10_1249_MSS_0000000000002673
crossref_primary_10_1139_apnm_2020_0261
crossref_primary_10_3390_ijerph192114439
crossref_primary_10_3390_jfmk6040088
crossref_primary_10_1007_s00421_022_04959_7
crossref_primary_10_1113_JP278931
crossref_primary_10_1249_MSS_0000000000002831
crossref_primary_10_1016_j_mehy_2021_110575
crossref_primary_10_1152_japplphysiol_00344_2022
crossref_primary_10_1249_MSS_0000000000002955
crossref_primary_10_1055_a_2408_7467
crossref_primary_10_5114_jhk_186976
crossref_primary_10_1038_s41598_023_36983_8
crossref_primary_10_14814_phy2_14342
crossref_primary_10_1177_17479541241262385
crossref_primary_10_1080_19390211_2023_2203738
crossref_primary_10_1186_s40798_022_00430_1
crossref_primary_10_1152_japplphysiol_00253_2021
crossref_primary_10_1007_s42978_022_00195_9
crossref_primary_10_1152_ajpregu_00096_2021
crossref_primary_10_1186_s13102_024_00827_3
crossref_primary_10_1080_02640414_2021_1955515
crossref_primary_10_1055_a_2155_6813
crossref_primary_10_1007_s00421_022_05001_6
crossref_primary_10_1007_s00421_022_04967_7
crossref_primary_10_1016_j_resp_2020_103507
crossref_primary_10_1007_s00421_022_05020_3
crossref_primary_10_1016_j_pulmoe_2019_10_004
crossref_primary_10_3390_ijerph20053782
crossref_primary_10_1080_19424280_2022_2164624
crossref_primary_10_1038_s41598_024_84371_7
crossref_primary_10_1113_JP281169
crossref_primary_10_1007_s00421_021_04833_y
crossref_primary_10_1007_s00421_022_05094_z
crossref_primary_10_1007_s00421_024_05490_7
crossref_primary_10_1007_s00421_023_05268_3
crossref_primary_10_1016_j_pmr_2021_08_012
crossref_primary_10_3390_jfmk6020038
crossref_primary_10_1080_14763141_2023_2200403
crossref_primary_10_14814_phy2_15782
crossref_primary_10_3390_ijerph18157886
crossref_primary_10_1002_ejsc_12254
crossref_primary_10_14814_phy2_14292
crossref_primary_10_14814_phy2_14293
crossref_primary_10_1007_s00421_023_05238_9
crossref_primary_10_1249_MSS_0000000000002574
crossref_primary_10_1007_s00421_022_05036_9
crossref_primary_10_1249_MSS_0000000000003300
crossref_primary_10_7717_peerj_19060
crossref_primary_10_1152_japplphysiol_00167_2020
crossref_primary_10_1007_s00421_022_05059_2
crossref_primary_10_1055_a_1738_0252
crossref_primary_10_33549_physiolres_935068
crossref_primary_10_1007_s40279_020_01322_8
crossref_primary_10_1007_s42978_020_00053_6
crossref_primary_10_1249_MSS_0000000000003548
crossref_primary_10_1113_JP281335
crossref_primary_10_1152_japplphysiol_00655_2024
crossref_primary_10_3389_fphys_2020_613151
crossref_primary_10_1007_s00421_022_04972_w
crossref_primary_10_1186_s12970_020_00392_3
crossref_primary_10_3389_fspor_2024_1376876
crossref_primary_10_1519_JSC_0000000000004350
crossref_primary_10_1016_j_jsams_2024_11_004
crossref_primary_10_1080_17461391_2022_2130097
crossref_primary_10_1113_JP284205
crossref_primary_10_1139_apnm_2019_0637
crossref_primary_10_1007_s12283_024_00452_w
crossref_primary_10_1007_s40279_023_01924_y
crossref_primary_10_1113_EP091835
crossref_primary_10_1007_s00421_020_04459_6
crossref_primary_10_1007_s00421_022_04922_6
crossref_primary_10_1111_sms_70024
crossref_primary_10_1007_s00421_022_04968_6
crossref_primary_10_1111_sms_14159
crossref_primary_10_1007_s00421_024_05533_z
crossref_primary_10_1152_japplphysiol_00723_2021
crossref_primary_10_1111_sms_14154
crossref_primary_10_1111_sms_14152
crossref_primary_10_3389_fphys_2021_792376
crossref_primary_10_1111_sms_14151
crossref_primary_10_1007_s40279_024_02075_4
crossref_primary_10_1038_s41598_020_63297_w
crossref_primary_10_1007_s00421_020_04358_w
crossref_primary_10_1249_TJX_0000000000000236
crossref_primary_10_3389_fspor_2025_1520914
crossref_primary_10_3389_fphys_2021_676484
crossref_primary_10_1113_EP090642
crossref_primary_10_1113_EP091571
crossref_primary_10_3390_ijerph18020477
crossref_primary_10_1123_ijspp_2022_0018
crossref_primary_10_1080_17461391_2023_2238679
crossref_primary_10_1080_17461391_2023_2240748
crossref_primary_10_1113_JP288130
crossref_primary_10_1519_JSC_0000000000004597
crossref_primary_10_1113_EP090878
crossref_primary_10_1007_s40279_020_01366_w
crossref_primary_10_1080_15502783_2024_2340574
crossref_primary_10_1152_ajpheart_00697_2019
crossref_primary_10_1007_s00421_025_05711_7
crossref_primary_10_1080_02640414_2023_2176045
crossref_primary_10_1007_s00421_021_04880_5
crossref_primary_10_1055_a_2201_7081
crossref_primary_10_17644_sbd_1107799
crossref_primary_10_3390_ijerph17041177
Cites_doi 10.1097/00005768-200002000-00040
10.1123/ijspp.2013-0471
10.1113/JP271879
10.1249/01.mss.0000181691.72432.a1
10.1055/s-0031-1299749
10.1249/01.MSS.0000079047.84364.70
10.1111/j.1748-1716.1967.tb03719.x
10.1249/00003677-199001000-00005
10.2165/00007256-200029060-00001
10.1152/japplphysiol.00942.2016
10.1007/s004210050509
10.1080/00140138808966766
10.1111/sms.13280
10.1097/00005768-199808000-00020
10.1152/jappl.1994.77.5.2413
10.1249/MSS.0b013e31821fcfc1
10.1152/ajpregu.00031.2019
10.1055/s-2004-821227
10.1249/MSS.0000000000000613
10.1519/JSC.0b013e318212dafc
10.1016/j.resp.2004.06.001
10.1152/japplphysiol.91474.2008
10.1002/9781444303315.ch3
10.1113/expphysiol.2009.050500
10.1113/expphysiol.2007.039883
10.1519/JSC.0000000000002977
10.1007/s00421-002-0783-1
10.2165/00007256-200939060-00003
10.1007/BF00357613
10.1139/apnm-2016-0248
10.1080/02640414.2018.1535772
10.1055/s-2008-1025824
10.1152/jappl.1974.37.2.247
10.1007/BF01094788
10.1519/JSC.0b013e318220b4eb
10.1007/BF02388623
10.1038/116544a0
10.1152/japplphysiol.00022.2012
10.1055/s-2008-1025875
10.1007/BF00863406
10.1249/01.mss.0000232024.06114.a6
10.1055/s-2007-971147
10.1152/jappl.1999.87.5.1684
10.1249/MSS.0000000000000950
10.1016/j.resp.2012.08.024
10.1139/apnm-2014-0442
10.1249/00005768-199205000-00008
10.1007/s004210100384
10.1007/s40279-017-0688-0
10.1097/00005768-200006000-00016
10.1007/s00421-011-1979-z
10.1249/00005768-199506000-00010
10.2165/00007256-199316040-00003
10.1152/japplphysiol.00991.2004
10.1249/00005768-198201000-00004
10.1152/japplphysiol.01126.2017
10.1007/BF00428962
10.2165/00007256-198603010-00003
10.1249/MSS.0000000000001601
10.1016/j.resp.2017.12.002
10.1097/00005768-200204000-00023
10.1111/j.1748-1716.1982.tb07007.x
10.1080/17461391.2017.1418025
10.1080/02640419508732236
10.1097/00005768-199602000-00013
10.1249/MSS.0b013e3181d9cf7f
10.1055/s-2007-1025043
10.1007/s00421-001-0556-2
10.1080/02640414.2012.738925
10.1249/MSS.0b013e318177871a
10.1249/01.MSS.0000084520.80451.D5
10.1007/s00421-005-0088-2
10.1152/japplphysiol.01092.2010
10.1371/journal.pone.0199794
10.1136/bjsm.35.3.192
10.1152/ajpregu.00731.2007
10.1080/00140138108924856
10.1152/jappl.1995.79.3.838
10.1007/s00421-002-0786-y
10.1055/s-2007-1021015
10.1007/s00421-002-0703-4
10.1007/s00421-011-2088-8
10.1080/02640414.2018.1487115
10.1139/h99-008
10.1055/s-2007-971894
10.2114/ahs1983.11.207
10.1080/00140136508930810
10.1007/BF00422124
10.1136/bjsm.21.1.18
10.1080/17461391.2016.1249524
10.1152/ajpregu.00761.2010
10.1080/00140136008930462
10.2165/00007256-200333060-00003
10.1249/MSS.0000000000000939
10.1113/expphysiol.2005.032789
10.1249/00005768-199211000-00014
10.1007/s00421-014-2908-8
10.1007/s00421-002-0706-1
10.1080/17461391.2013.810306
10.1249/mss.0b013e31802dd3e6
10.1111/j.2042-3306.1999.tb05289.x
10.1249/01.MSS.0000145468.17329.9F
10.1113/jphysiol.2010.198382
10.1152/jappl.1978.44.3.350
10.1016/j.jsams.2017.11.015
10.1080/026404199365353
10.1055/s-2008-1026072
10.1113/JP274589
10.1055/s-2008-1025802
10.1007/BF00760802
10.1123/ijspp.6.1.128
10.1152/jappl.1984.56.4.831
10.1249/MSS.0b013e3182860325
ContentType Journal Article
Copyright 2019 The Authors. published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
– notice: 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7QP
7T5
7TK
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.14814/phy2.14098
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate A. M. Jones et al
EISSN 2051-817X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_85a74c566b354dc0b9f65e03ab9425aa
PMC6533178
31124324
10_14814_phy2_14098
PHY214098
Genre reviewArticle
Journal Article
Review
GroupedDBID 0R~
1OC
24P
53G
5VS
7X7
8-1
8FE
8FH
8FI
8FJ
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
DIK
EBS
EJD
FYUFA
GODZA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAO
IHR
INH
ITC
KQ8
LK8
M48
M7P
M~E
OK1
PIMPY
PQQKQ
PROAC
RAP
RHI
RPM
UKHRP
WIN
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
3V.
7QP
7T5
7TK
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
H94
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5848-b002c114140b9eeed18c053ed55509df5e69056b40e2cacca3eda56cbdfaa98f3
IEDL.DBID M48
ISSN 2051-817X
IngestDate Wed Aug 27 01:32:20 EDT 2025
Thu Aug 21 18:05:37 EDT 2025
Tue Aug 05 10:56:17 EDT 2025
Wed Aug 13 02:45:06 EDT 2025
Wed Feb 19 02:30:32 EST 2025
Thu Apr 24 23:09:16 EDT 2025
Tue Jul 01 04:33:12 EDT 2025
Wed Jan 22 16:57:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Fatigue
metabolism
performance
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
http://doi.wiley.com/10.1002/tdm_license_1.1
2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5848-b002c114140b9eeed18c053ed55509df5e69056b40e2cacca3eda56cbdfaa98f3
Notes Funding information
No funding information provided.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.14814/phy2.14098
PMID 31124324
PQID 2301467910
PQPubID 2034607
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_85a74c566b354dc0b9f65e03ab9425aa
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6533178
proquest_miscellaneous_2232119788
proquest_journals_2301467910
pubmed_primary_31124324
crossref_citationtrail_10_14814_phy2_14098
crossref_primary_10_14814_phy2_14098
wiley_primary_10_14814_phy2_14098_PHY214098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2019
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
– name: Hoboken
PublicationTitle Physiological reports
PublicationTitleAlternate Physiol Rep
PublicationYear 2019
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 1990; 59
1960; 3
2006; 38
2010; 588
1994; 69
2011; 110
1990; 61
1998; 19
1986; 7
1995; 27
2002; 86
1965; 8
1986; 3
2004; 36
1984; 56
2002; 88
1994; 77
2014; 14
2016; 41
2012; 26
2016; 48
2018; 37
2018; 28
2004; 142
2019; 33
1997; 24
2019; 37
2003; 35
1999; 24
1981; 24
2013; 185
1999; 20
2018; 21
2012; 33
2003; 33
2018; 18
2010; 42
1982; 49
1983; 244
2012; 112
2012; 113
1978; 44
1991; 63
1984; 5
1981; 13
2005; 98
1992; 24
1999; 30
1994; 15
2001; 35
2009; 106
2018; 13
2007; 39
1982; 14
2015; 36
2018; 249
2017; 47
1990; 18
1993; 66
1995; 79
1986; 251
2018; 125
1981; 46
1999; 87
1988; 31
2017; 595
2005; 26
1992; 11
2001; 85
2008a; 40
2015; 47
1996; 28
2015; 40
2008b; 93
2011b; 300
1999; 17
1982; 3
1994; 34
2016; 594
2011; 25
2017; 122
2005; 37
2014; 9
2003; 89
1974; 37
2006; 91
2015; 14
2000; 29
2006; 96
2013; 45
2002; 34
1995; 13
2011a; 6
1985; 6
2008
1925; 116
2014; 114
1987; 21
1993; 16
1988; 9
2000; 32
1967; 71
2013; 31
1999; 79
2019
2018
2011; 43
2018; 50
1982; 114
1998; 30
2008; 294
2010; 95
2009; 39
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
LaFontaine T. P. (e_1_2_8_74_1) 1981; 13
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
Poole D. C. (e_1_2_8_90_1) 1997; 24
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
Hill D. W. (e_1_2_8_50_1) 1994; 34
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_121_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
Simpson L. P. (e_1_2_8_98_1) 2015; 36
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Full R. J. (e_1_2_8_40_1) 1986; 251
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_97_1
Lauderdale M. A. (e_1_2_8_75_1) 1999; 30
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_103_1
e_1_2_8_93_1
Full R. J. (e_1_2_8_41_1) 1983; 244
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
Bonaventura J. M. (e_1_2_8_19_1) 2015; 14
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_104_1
31758668 - Physiol Rep. 2019 Nov;7(22):e14292
31758638 - Physiol Rep. 2019 Nov;7(22):e14293
References_xml – volume: 113
  start-page: 215
  year: 2012
  end-page: 223
  article-title: Distinct profiles of neuromuscular fatigue during muscle contractions below and above the critical torque in humans
  publication-title: J. Appl. Physiol.
– volume: 7
  start-page: 45
  year: 1986
  end-page: 65
  article-title: A theory of the metabolic origin of anaerobic threshold
  publication-title: Int. J. Sports Med.
– volume: 35
  start-page: 192
  year: 2001
  end-page: 196
  article-title: Dependence of the maximal lactate steady state on the motor pattern of exercise
  publication-title: Br. J. Sports Med.
– volume: 37
  start-page: 1734
  year: 2005
  end-page: 1740
  article-title: Validity of a single‐visit protocol to estimate the maximum lactate steady state
  publication-title: Med. Sci. Sports Exerc.
– volume: 31
  start-page: 1265
  year: 1988
  end-page: 1279
  article-title: Metabolic and respiratory profile of the upper limit for prolonged exercise in man
  publication-title: Ergonomics
– volume: 112
  start-page: 327
  year: 2012
  end-page: 335
  article-title: Influence of moderate hypoxia on tolerance to high‐intensity exercise
  publication-title: Eur. J. Appl. Physiol.
– volume: 125
  start-page: 737
  year: 2018
  end-page: 745
  article-title: Critical power is positively related to skeletal muscle capillarity and type I muscle fibers in endurance‐trained individuals
  publication-title: J. Appl. Physiol.
– volume: 9
  start-page: 417
  year: 1988
  end-page: 421
  article-title: Effects of continuous and interval training on the parameters of the power‐endurance time relationship for high‐intensity exercise
  publication-title: Int. J. Sports Med.
– volume: 30
  start-page: 1304
  year: 1998
  end-page: 1313
  article-title: The validity of the lactate minimum test for determination of the maximal lactate steady state
  publication-title: Med. Sci. Sports Exerc.
– start-page: 43
  year: 2008
  end-page: 55
– volume: 79
  start-page: 290
  year: 1999
  end-page: 293
  article-title: A physiological description of critical velocity
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
– volume: 3
  start-page: 1
  year: 1960
  end-page: 8
  article-title: Man as a source of mechanical power
  publication-title: Ergonomics
– volume: 185
  start-page: 380
  year: 2013
  end-page: 385
  article-title: A single test for the determination of parameters of the speed‐time relationship for running
  publication-title: Respir. Physiol. Neurobiol.
– volume: 114
  start-page: 441
  year: 1982
  end-page: 446
  article-title: Lactate accumulation in muscle and blood during submaximal exercise
  publication-title: Acta Physiol. Scand.
– volume: 89
  start-page: 95
  year: 2003
  end-page: 99
  article-title: Methodological aspects of maximal lactate steady state‐implications for performance testing
  publication-title: Eur. J. Appl. Physiol.
– volume: 24
  start-page: 543
  year: 1992
  end-page: 550
  article-title: A comparative evaluation of the individual anaerobic threshold and the critical power
  publication-title: Med. Sci. Sports Exerc.
– volume: 14
  start-page: 217
  year: 2014
  end-page: 223
  article-title: Critical power derived from a 3‐minute all‐out test predicts 16.1‐km road time‐trial performance
  publication-title: Eur. J. Sport Sci.
– volume: 24
  start-page: 339
  year: 1981
  end-page: 350
  article-title: Critical power as a measure of physical work capacity and anaerobic threshold
  publication-title: Ergonomics
– volume: 594
  start-page: 4407
  year: 2016
  end-page: 4423
  article-title: The mechanistic bases of the power‐time relationship: muscle metabolic responses and relationships to muscle fibre type
  publication-title: J. Physiol.
– volume: 11
  start-page: 207
  year: 1992
  end-page: 214
  article-title: Pulmonary gas exchange dynamics and the tolerance to muscular exercise: effects of fitness and training
  publication-title: Ann. Physiol. Anthropol.
– volume: 27
  start-page: 863
  year: 1995
  end-page: 867
  article-title: Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing
  publication-title: Med. Sci. Sports Exerc.
– volume: 13
  start-page: 190
  year: 1981
  end-page: 193
  article-title: The maximal steady state versus selected running events
  publication-title: Med. Sci. Sports Exerc.
– volume: 28
  start-page: 241
  year: 1996
  end-page: 246
  article-title: Determination of maximal lactate steady state response in selected sports events
  publication-title: Med. Sci. Sports Exerc.
– volume: 16
  start-page: 237
  year: 1993
  end-page: 254
  article-title: The critical power concept
  publication-title: A review. Sports Med.
– volume: 24
  start-page: 308
  year: 1997
  end-page: 320
  article-title: Determinants of oxygen uptake
  publication-title: Implications for exercise testing. Sports Med.
– volume: 46
  start-page: 367
  year: 1981
  end-page: 377
  article-title: Critical analysis of the “anaerobic threshold” during exercise at constant workloads
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
– volume: 595
  start-page: 6673
  year: 2017
  end-page: 6686
  article-title: Dissociating external power from intramuscular exercise intensity during intermittent bilateral knee‐extension in humans
  publication-title: J. Physiol.
– volume: 35
  start-page: 1413
  year: 2003
  end-page: 1418
  article-title: The curvature constant parameter of the power‐duration curve for varied‐power exercise
  publication-title: Med. Sci. Sports Exerc.
– volume: 71
  start-page: 129
  year: 1967
  end-page: 139
  article-title: Muscle glycogen during prolonged severe exercise
  publication-title: Acta Physiol. Scand.
– volume: 20
  start-page: 374
  year: 1999
  end-page: 378
  article-title: Critical power is related to cycling time trial performance
  publication-title: Int. J. Sports Med.
– volume: 79
  start-page: 838
  year: 1995
  end-page: 845
  article-title: Slow component of O2 uptake during heavy exercise: adaptation to endurance training
  publication-title: J. Appl. Physiol.
– volume: 8
  start-page: 329
  year: 1965
  end-page: 338
  article-title: The work capacity of a synergic muscular group
  publication-title: Ergonomics
– volume: 40
  start-page: 662
  year: 2015
  end-page: 670
  article-title: Self‐pacing increases critical power and improves performance during severe‐intensity exercise
  publication-title: Appl. Physiol. Nutr. Metab.
– volume: 6
  start-page: 117
  year: 1985
  end-page: 130
  article-title: Justification of the 4‐mmol/l lactate threshold
  publication-title: Int. J. Sports Med.
– volume: 49
  start-page: 45
  year: 1982
  end-page: 57
  article-title: Changes in onset of blood lactate accumulation (OBLA) and muscle enzymes after training at OBLA
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
– volume: 66
  start-page: 90
  year: 1993
  end-page: 95
  article-title: Does critical swimming velocity represent exercise intensity at maximal lactate steady state?
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
– volume: 56
  start-page: 831
  year: 1984
  end-page: 838
  article-title: Adaptations of skeletal muscle to endurance exercise and their metabolic consequences
  publication-title: J. Appl. Physiol. Respir. Environ. Exerc. Physiol.
– volume: 69
  start-page: 196
  year: 1994
  end-page: 202
  article-title: A method for determining the maximal steady state of blood lactate concentration from two levels of submaximal exercise
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
– volume: 19
  start-page: 125
  year: 1998
  end-page: 129
  article-title: The critical power function is dependent on the duration of the predictive exercise tests chosen
  publication-title: Int. J. Sports Med.
– volume: 3
  start-page: 10
  year: 1986
  end-page: 25
  article-title: Blood lactate. Implications for training and sports performance
  publication-title: Sports Med.
– volume: 41
  start-page: 1197
  year: 2016
  end-page: 1203
  article-title: Can measures of critical power precisely estimate the maximal metabolic steady‐state?
  publication-title: Appl. Physiol. Nutr. Metab.
– volume: 300
  start-page: R700
  year: 2011b
  end-page: R707
  article-title: Muscle fiber recruitment and the slow component of O2 uptake: constant work rate vs. all‐out sprint exercise
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
– volume: 9
  start-page: 900
  year: 2014
  end-page: 904
  article-title: Validation of a novel intermittent W’ model for cycling using field data
  publication-title: Int. J. Sports Physiol. Perform.
– volume: 39
  start-page: 548
  year: 2007
  end-page: 555
  article-title: Determination of critical power using a 3‐minute all‐out cycling test
  publication-title: Med. Sci. Sports Exerc.
– volume: 95
  start-page: 528
  year: 2010
  end-page: 540
  article-title: Influence of hyperoxia on muscle metabolic responses and the power‐duration relationship during severe‐intensity exercise in humans: a 31P magnetic resonance spectroscopy study
  publication-title: Exp. Physiol.
– volume: 588
  start-page: 5077
  year: 2010
  end-page: 5087
  article-title: Critical speed in the rat: implications for hindlimb muscle blood flow distribution and fibre recruitment
  publication-title: J. Physiol.
– volume: 112
  start-page: 1359
  year: 2012
  end-page: 1370
  article-title: Critical power in adolescents: physiological bases and assessment using all‐out exercise
  publication-title: Eur. J. Appl. Physiol.
– volume: 116
  start-page: 544
  year: 1925
  end-page: 548
  article-title: The physiological basis of athletic records
  publication-title: Nature
– volume: 14
  start-page: 203
  year: 2015
  end-page: 214
  article-title: Reliability and accuracy of six hand‐held blood lactate analysers
  publication-title: J. Sports Sci. Med.
– volume: 33
  start-page: 584
  year: 2019
  end-page: 596
  article-title: Methodological approaches and related challenges associated with the determination of critical power and curvature constant
  publication-title: J. Strength Cond. Res.
– volume: 48
  start-page: 1751
  year: 2016
  end-page: 1760
  article-title: Intensity‐dependent contribution of neuromuscular fatigue after constant‐load cycling
  publication-title: Med. Sci. Sports Exerc.
– volume: 33
  start-page: 407
  year: 2003
  end-page: 426
  article-title: The concept of maximal lactate steady state: a bridge between biochemistry, physiology and sport science
  publication-title: Sports Med.
– volume: 34
  start-page: 709
  year: 2002
  end-page: 714
  article-title: The relationship between power and the time to achieve VO(2max)
  publication-title: Med. Sci. Sports Exerc.
– volume: 43
  start-page: 2046
  year: 2011
  end-page: 2062
  article-title: Slow component of VO kinetics: mechanistic bases and practical applications
  publication-title: Med. Sci. Sports Exerc.
– volume: 106
  start-page: 975
  year: 2009
  end-page: 983
  article-title: Estimation of critical torque using intermittent isometric maximal voluntary contractions of the quadriceps in humans
  publication-title: J. Appl. Physiol.
– volume: 14
  start-page: 21
  year: 1982
  end-page: 25
  article-title: Biological variability in maximum aerobic power
  publication-title: Med. Sci. Sports Exerc.
– volume: 28
  start-page: 2481
  year: 2018
  end-page: 2493
  article-title: Metabolic and performance‐related consequences of exercising at and slightly above MLSS
  publication-title: Scand. J. Med. Sci. Sports
– volume: 36
  start-page: 1972
  year: 2004
  end-page: 1976
  article-title: Reliability and variability of running economy in elite distance runners
  publication-title: Med. Sci. Sports Exerc.
– volume: 13
  start-page: 265
  year: 1995
  end-page: 269
  article-title: The relationship between critical power and running performance
  publication-title: J. Sports Sci.
– volume: 251
  start-page: R775
  year: 1986
  end-page: R780
  article-title: Locomotion without lungs: energetics and performance of a lungless salamander
  publication-title: Am. J. Physiol.
– volume: 48
  start-page: 2320
  year: 2016
  end-page: 2334
  article-title: Critical power: an important fatigue threshold in exercise physiology
  publication-title: Med. Sci. Sports Exerc.
– volume: 44
  start-page: 350
  year: 1978
  end-page: 352
  article-title: Lactate release in relation to tissue lactate in human skeletal muscle during exercise
  publication-title: J. Appl. Physiol. Respir. Environ. Exerc. Physiol.
– volume: 3
  start-page: 105
  year: 1982
  end-page: 110
  article-title: Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold of 4 mmol.l(‐1) lactate
  publication-title: Int. J. Sports Med.
– volume: 93
  start-page: 383
  year: 2008b
  end-page: 390
  article-title: Robustness of a 3 min all‐out cycling test to manipulations of power profile and cadence in humans
  publication-title: Exp. Physiol.
– volume: 35
  start-page: 1626
  year: 2003
  end-page: 1630
  article-title: Effect of test interruptions on blood lactate during constant workload testing
  publication-title: Med. Sci. Sports Exerc.
– volume: 29
  start-page: 373
  year: 2000
  end-page: 386
  article-title: The effect of endurance training on parameters of aerobic fitness
  publication-title: Sports Med.
– volume: 47
  start-page: 65
  year: 2017
  end-page: 78
  article-title: The ‘critical power’ concept: applications to sports performance with a focus on intermittent high‐intensity exercise
  publication-title: Sports Med.
– volume: 26
  start-page: 416
  year: 2012
  end-page: 421
  article-title: Comparison of a field‐based test to estimate functional threshold power and power output at lactate threshold
  publication-title: J. Strength Cond. Res.
– volume: 294
  start-page: R585
  year: 2008
  end-page: R593
  article-title: Muscle metabolic responses to exercise above and below the “critical power” assessed using P‐MRS
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
– volume: 89
  start-page: 281
  year: 2003
  end-page: 288
  article-title: Maximal lactate steady state, respiratory compensation threshold and critical power
  publication-title: Eur. J. Appl. Physiol.
– volume: 31
  start-page: 537
  year: 2013
  end-page: 545
  article-title: Responses during exhaustive exercise at critical power determined from the 3‐minute all‐out test
  publication-title: J. Sports Sci.
– volume: 32
  start-page: 526
  year: 2000
  end-page: 530
  article-title: Effect of mathematical modeling on the estimation of critical power
  publication-title: Med. Sci. Sports Exerc.
– volume: 45
  start-page: 1377
  year: 2013
  end-page: 1385
  article-title: Effects of pacing strategy on work done above critical power during high‐intensity exercise
  publication-title: Med. Sci. Sports Exerc.
– volume: 13
  start-page: e0199794
  year: 2018
  article-title: Manipulating graded exercise test variables affects the validity of the lactate threshold and VO2 peak
  publication-title: PLoS ONE
– volume: 244
  start-page: R530
  year: 1983
  end-page: R536
  article-title: Aerobic response to exercise of the fastest land crab
  publication-title: Am. J. Physiol.
– volume: 24
  start-page: 1283
  year: 1992
  end-page: 1289
  article-title: Endurance training enhances critical power
  publication-title: Med. Sci. Sports Exerc.
– volume: 96
  start-page: 339
  year: 2006
  end-page: 354
  article-title: The critical power and related whole‐body bioenergetic models
  publication-title: Eur. J. Appl. Physiol.
– volume: 37
  start-page: 156
  year: 2019
  end-page: 162
  article-title: The 3‐minuteute all‐out cycling test is sensitive to changes in cadence using the Lode Excalibur Sport ergometer
  publication-title: J. Sports Sci.
– volume: 50
  start-page: 1658
  year: 2018
  end-page: 1668
  article-title: Effects of two hours of heavy‐intensity exercise on the power‐duration relationship
  publication-title: Med. Sci. Sports Exerc.
– volume: 18
  start-page: 332
  year: 2018
  end-page: 340
  article-title: Different durations within the method of best practice affect the parameters of the speed‐duration relationship
  publication-title: Eur. J. Sport Sci.
– volume: 6
  start-page: 128
  year: 2011a
  end-page: 136
  article-title: Application of critical power in sport
  publication-title: Int. J. Sports Physiol. Perform.
– volume: 110
  start-page: 1598
  year: 2011
  end-page: 1606
  article-title: Pulmonary O uptake kinetics as a determinant of high‐intensity exercise tolerance in humans
  publication-title: J. Appl. Physiol.
– volume: 24
  start-page: 74
  year: 1999
  end-page: 86
  article-title: Determination of critical power by pulmonary gas exchange
  publication-title: Can. J. Appl. Physiol.
– volume: 142
  start-page: 211
  year: 2004
  end-page: 223
  article-title: Effect of work rate on the functional ‘gain’ of Phase II pulmonary O uptake response to exercise
  publication-title: Respir. Physiol. Neurobiol.
– volume: 88
  start-page: 146
  year: 2002
  end-page: 151
  article-title: Physiological responses during exercise to exhaustion at critical power
  publication-title: Eur. J. Appl. Physiol.
– volume: 85
  start-page: 19
  year: 2001
  end-page: 26
  article-title: The relationship between critical velocity, maximal lactate steady‐state velocity and lactate turnpoint velocity in runners
  publication-title: Eur. J. Appl. Physiol.
– volume: 87
  start-page: 1684
  year: 1999
  end-page: 1896
  article-title: Active muscle and whole body lactate kinetics after endurance training in men
  publication-title: J. Appl. Physiol.
– volume: 15
  start-page: 27
  year: 1994
  end-page: 31
  article-title: A simplified approach to estimating the maximal lactate steady state
  publication-title: Int. J. Sports Med.
– volume: 38
  start-page: 1995
  year: 2006
  end-page: 2003
  article-title: A 3‐minute all‐out test to determine peak oxygen uptake and the maximal steady state
  publication-title: Med. Sci. Sports Exerc.
– volume: 39
  start-page: 469
  year: 2009
  end-page: 490
  article-title: Lactate threshold concepts: how valid are they?
  publication-title: Sports Med.
– volume: 122
  start-page: 446
  year: 2017
  end-page: 459
  article-title: Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains
  publication-title: J. Appl. Physiol.
– volume: 114
  start-page: 1863
  year: 2014
  end-page: 1874
  article-title: A ‘ramp‐sprint’ protocol to characterise indices of aerobic function and exercise intensity domains in a single laboratory test
  publication-title: Eur. J. Appl. Physiol.
– volume: 61
  start-page: 278
  year: 1990
  end-page: 283
  article-title: Blood lactate in trained cyclists during cycle ergometry at critical power
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
– volume: 25
  start-page: 3093
  year: 2011
  end-page: 3098
  article-title: Sustainability of critical power determined by a 3‐minuteute all‐out test in elite cyclists
  publication-title: J. Strength Cond. Res.
– volume: 18
  start-page: 1
  year: 2018
  end-page: 12
  article-title: Power‐duration relationship: Physiology, fatigue, and the limits of human performance
  publication-title: Eur. J. Sport Sci.
– volume: 77
  start-page: 2413
  year: 1994
  end-page: 2419
  article-title: Effects of infused epinephrine on slow phase of O2 uptake kinetics during heavy exercise in humans
  publication-title: J. Appl. Physiol.
– volume: 42
  start-page: 1876
  year: 2010
  end-page: 1890
  article-title: Critical power: implications for determination of VO max and exercise tolerance
  publication-title: Med. Sci. Sports Exerc.
– volume: 36
  start-page: 113
  year: 2015
  end-page: 119
  article-title: Influence of hypoxia on the power‐duration relationship during high‐intensity exercise
  publication-title: Int. J. Sports Med.
– volume: 17
  start-page: 957
  year: 1999
  end-page: 967
  article-title: Effect of 6 weeks of endurance training on the lactate minimum speed
  publication-title: J. Sports Sci.
– volume: 63
  start-page: 55
  year: 1991
  end-page: 59
  article-title: The ventilatory threshold gives maximal lactate steady state
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
– volume: 34
  start-page: 23
  year: 1994
  end-page: 37
  article-title: A method to ensure accuracy of estimates of anaerobic capacity derived using the critical power concept
  publication-title: J. Sports Med. Physical Fitness.
– volume: 33
  start-page: 426
  year: 2012
  end-page: 431
  article-title: 3‐minute all‐out exercise test for running
  publication-title: Int. J. Sports Med.
– volume: 32
  start-page: 1135
  year: 2000
  end-page: 1139
  article-title: Maximal lactate‐steady‐state independent of performance
  publication-title: Med. Sci. Sports Exerc.
– volume: 37
  start-page: 247
  year: 1974
  end-page: 248
  article-title: Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration
  publication-title: J. Appl. Physiol.
– volume: 88
  start-page: 214
  year: 2002
  end-page: 226
  article-title: Maximal lactate steady state, critical power and EMG during cycling
  publication-title: Eur. J. Appl. Physiol.
– volume: 37
  start-page: 902
  year: 2018
  end-page: 910
  article-title: Road cycle TT performance: Relationship to the power‐duration model and association with FTP
  publication-title: J. Sports Sci.
– volume: 26
  start-page: 524
  year: 2005
  end-page: 530
  article-title: Critical swimming speed does not represent the speed at maximal lactate steady state
  publication-title: Int. J. Sports Med.
– volume: 59
  start-page: 421
  year: 1990
  end-page: 429
  article-title: The effects of training on the metabolic and respiratory profile of high‐intensity cycle ergometer exercise
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
– volume: 86
  start-page: 347
  year: 2002
  end-page: 354
  article-title: Oxygen uptake kinetics during treadmill running across exercise intensity domains
  publication-title: Eur. J. Appl. Physiol.
– year: 2019
  article-title: Changes in the power‐duration relationship following prolonged exercise: estimation using conventional and all‐out protocols and relationship to muscle glycogen
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
– volume: 91
  start-page: 621
  year: 2006
  end-page: 632
  article-title: Human critical power‐oxygen uptake relationship at different pedalling frequencies
  publication-title: Exp. Physiol.
– volume: 249
  start-page: 1
  year: 2018
  end-page: 6
  article-title: Effects of normobaric hypoxia on upper body critical power and anaerobic working capacity
  publication-title: Respir. Physiol. Neurobiol.
– start-page: 319
  year: 2018
  end-page: 352
– volume: 21
  start-page: 742
  year: 2018
  end-page: 747
  article-title: Critical power: How different protocols and models affect its determination
  publication-title: J. Sci. Med. Sport.
– volume: 18
  start-page: 29
  year: 1990
  end-page: 63
  article-title: Control of lactic acid metabolism in contracting muscles and during exercise
  publication-title: Exerc. Sport Sci. Rev.
– volume: 98
  start-page: 1258
  year: 2005
  end-page: 1263
  article-title: Inter‐ and intrastrain variation in mouse critical running speed
  publication-title: J. Appl. Physiol.
– volume: 30
  start-page: 586
  year: 1999
  end-page: 590
  article-title: Hyperbolic relationship between time‐to‐fatigue and workload
  publication-title: Equine Vet. J. Suppl.
– volume: 21
  start-page: 18
  year: 1987
  end-page: 21
  article-title: The effects of maximum steady state pace training on running performance
  publication-title: Br. J. Sports Med.
– volume: 47
  start-page: 1932
  year: 2015
  end-page: 1340
  article-title: Exercise intensity thresholds: identifying the boundaries of sustainable performance
  publication-title: Med. Sci. Sports Exerc.
– volume: 5
  start-page: 23
  year: 1984
  end-page: 25
  article-title: A high velocity treadmill running test to assess endurance running potential
  publication-title: Int. J. Sports Med.
– volume: 40
  start-page: 1693
  year: 2008a
  end-page: 1699
  article-title: A 3‐minute all‐out cycling test is sensitive to a change in critical power
  publication-title: Med. Sci. Sports Exerc.
– volume: 244
  start-page: R530
  year: 1983
  ident: e_1_2_8_41_1
  article-title: Aerobic response to exercise of the fastest land crab
  publication-title: Am. J. Physiol.
– ident: e_1_2_8_22_1
  doi: 10.1097/00005768-200002000-00040
– ident: e_1_2_8_100_1
  doi: 10.1123/ijspp.2013-0471
– ident: e_1_2_8_115_1
  doi: 10.1113/JP271879
– ident: e_1_2_8_71_1
  doi: 10.1249/01.mss.0000181691.72432.a1
– ident: e_1_2_8_89_1
  doi: 10.1055/s-0031-1299749
– ident: e_1_2_8_67_1
– ident: e_1_2_8_39_1
  doi: 10.1249/01.MSS.0000079047.84364.70
– ident: e_1_2_8_46_1
  doi: 10.1111/j.1748-1716.1967.tb03719.x
– ident: e_1_2_8_104_1
  doi: 10.1249/00003677-199001000-00005
– ident: e_1_2_8_60_1
  doi: 10.2165/00007256-200029060-00001
– ident: e_1_2_8_18_1
  doi: 10.1152/japplphysiol.00942.2016
– volume: 34
  start-page: 23
  year: 1994
  ident: e_1_2_8_50_1
  article-title: A method to ensure accuracy of estimates of anaerobic capacity derived using the critical power concept
  publication-title: J. Sports Med. Physical Fitness.
– ident: e_1_2_8_49_1
  doi: 10.1007/s004210050509
– volume: 13
  start-page: 190
  year: 1981
  ident: e_1_2_8_74_1
  article-title: The maximal steady state versus selected running events
  publication-title: Med. Sci. Sports Exerc.
– ident: e_1_2_8_91_1
  doi: 10.1080/00140138808966766
– ident: e_1_2_8_55_1
  doi: 10.1111/sms.13280
– ident: e_1_2_8_61_1
  doi: 10.1097/00005768-199808000-00020
– ident: e_1_2_8_43_1
  doi: 10.1152/jappl.1994.77.5.2413
– ident: e_1_2_8_66_1
  doi: 10.1249/MSS.0b013e31821fcfc1
– ident: e_1_2_8_31_1
  doi: 10.1152/ajpregu.00031.2019
– ident: e_1_2_8_35_1
  doi: 10.1055/s-2004-821227
– ident: e_1_2_8_70_1
  doi: 10.1249/MSS.0000000000000613
– ident: e_1_2_8_79_1
  doi: 10.1519/JSC.0b013e318212dafc
– ident: e_1_2_8_118_1
  doi: 10.1016/j.resp.2004.06.001
– ident: e_1_2_8_23_1
  doi: 10.1152/japplphysiol.91474.2008
– ident: e_1_2_8_62_1
  doi: 10.1002/9781444303315.ch3
– ident: e_1_2_8_112_1
  doi: 10.1113/expphysiol.2009.050500
– ident: e_1_2_8_111_1
  doi: 10.1113/expphysiol.2007.039883
– ident: e_1_2_8_86_1
  doi: 10.1519/JSC.0000000000002977
– ident: e_1_2_8_5_1
  doi: 10.1007/s00421-002-0783-1
– ident: e_1_2_8_38_1
  doi: 10.2165/00007256-200939060-00003
– ident: e_1_2_8_58_1
  doi: 10.1007/BF00357613
– ident: e_1_2_8_77_1
  doi: 10.1139/apnm-2016-0248
– ident: e_1_2_8_83_1
  doi: 10.1080/02640414.2018.1535772
– ident: e_1_2_8_45_1
  doi: 10.1055/s-2008-1025824
– ident: e_1_2_8_37_1
  doi: 10.1152/jappl.1974.37.2.247
– ident: e_1_2_8_12_1
  doi: 10.1007/BF01094788
– ident: e_1_2_8_44_1
  doi: 10.1519/JSC.0b013e318220b4eb
– ident: e_1_2_8_92_1
  doi: 10.1007/BF02388623
– ident: e_1_2_8_47_1
  doi: 10.1038/116544a0
– ident: e_1_2_8_26_1
  doi: 10.1152/japplphysiol.00022.2012
– ident: e_1_2_8_54_1
  doi: 10.1055/s-2008-1025875
– ident: e_1_2_8_116_1
  doi: 10.1007/BF00863406
– ident: e_1_2_8_25_1
  doi: 10.1249/01.mss.0000232024.06114.a6
– ident: e_1_2_8_102_1
  doi: 10.1055/s-2007-971147
– ident: e_1_2_8_10_1
  doi: 10.1152/jappl.1999.87.5.1684
– ident: e_1_2_8_107_1
  doi: 10.1249/MSS.0000000000000950
– ident: e_1_2_8_21_1
  doi: 10.1016/j.resp.2012.08.024
– ident: e_1_2_8_17_1
  doi: 10.1139/apnm-2014-0442
– ident: e_1_2_8_80_1
  doi: 10.1249/00005768-199205000-00008
– ident: e_1_2_8_101_1
  doi: 10.1007/s004210100384
– ident: e_1_2_8_63_1
  doi: 10.1007/s40279-017-0688-0
– ident: e_1_2_8_7_1
  doi: 10.1097/00005768-200006000-00016
– ident: e_1_2_8_36_1
  doi: 10.1007/s00421-011-1979-z
– ident: e_1_2_8_4_1
  doi: 10.1249/00005768-199506000-00010
– ident: e_1_2_8_48_1
  doi: 10.2165/00007256-199316040-00003
– ident: e_1_2_8_14_1
  doi: 10.1152/japplphysiol.00991.2004
– ident: e_1_2_8_69_1
  doi: 10.1249/00005768-198201000-00004
– ident: e_1_2_8_81_1
  doi: 10.1152/japplphysiol.01126.2017
– volume: 24
  start-page: 308
  year: 1997
  ident: e_1_2_8_90_1
  article-title: Determinants of oxygen uptake
  publication-title: Implications for exercise testing. Sports Med.
– ident: e_1_2_8_99_1
  doi: 10.1007/BF00428962
– ident: e_1_2_8_56_1
  doi: 10.2165/00007256-198603010-00003
– ident: e_1_2_8_30_1
  doi: 10.1249/MSS.0000000000001601
– ident: e_1_2_8_73_1
  doi: 10.1016/j.resp.2017.12.002
– ident: e_1_2_8_52_1
  doi: 10.1097/00005768-200204000-00023
– ident: e_1_2_8_106_1
  doi: 10.1111/j.1748-1716.1982.tb07007.x
– ident: e_1_2_8_108_1
  doi: 10.1080/17461391.2017.1418025
– ident: e_1_2_8_72_1
  doi: 10.1080/02640419508732236
– ident: e_1_2_8_6_1
  doi: 10.1097/00005768-199602000-00013
– ident: e_1_2_8_65_1
  doi: 10.1249/MSS.0b013e3181d9cf7f
– ident: e_1_2_8_42_1
  doi: 10.1055/s-2007-1025043
– ident: e_1_2_8_28_1
  doi: 10.1007/s00421-001-0556-2
– ident: e_1_2_8_11_1
  doi: 10.1080/02640414.2012.738925
– ident: e_1_2_8_110_1
  doi: 10.1249/MSS.0b013e318177871a
– ident: e_1_2_8_9_1
  doi: 10.1249/01.MSS.0000084520.80451.D5
– volume: 14
  start-page: 203
  year: 2015
  ident: e_1_2_8_19_1
  article-title: Reliability and accuracy of six hand‐held blood lactate analysers
  publication-title: J. Sports Sci. Med.
– ident: e_1_2_8_85_1
  doi: 10.1007/s00421-005-0088-2
– ident: e_1_2_8_87_1
  doi: 10.1152/japplphysiol.01092.2010
– ident: e_1_2_8_57_1
  doi: 10.1371/journal.pone.0199794
– ident: e_1_2_8_8_1
  doi: 10.1136/bjsm.35.3.192
– ident: e_1_2_8_64_1
  doi: 10.1152/ajpregu.00731.2007
– volume: 251
  start-page: R775
  year: 1986
  ident: e_1_2_8_40_1
  article-title: Locomotion without lungs: energetics and performance of a lungless salamander
  publication-title: Am. J. Physiol.
– ident: e_1_2_8_84_1
  doi: 10.1080/00140138108924856
– ident: e_1_2_8_120_1
  doi: 10.1152/jappl.1995.79.3.838
– ident: e_1_2_8_34_1
  doi: 10.1007/s00421-002-0786-y
– ident: e_1_2_8_103_1
  doi: 10.1055/s-2007-1021015
– ident: e_1_2_8_95_1
  doi: 10.1007/s00421-002-0703-4
– volume: 36
  start-page: 113
  year: 2015
  ident: e_1_2_8_98_1
  article-title: Influence of hypoxia on the power‐duration relationship during high‐intensity exercise
  publication-title: Int. J. Sports Med.
– ident: e_1_2_8_3_1
  doi: 10.1007/s00421-011-2088-8
– ident: e_1_2_8_121_1
  doi: 10.1080/02640414.2018.1487115
– ident: e_1_2_8_51_1
  doi: 10.1139/h99-008
– ident: e_1_2_8_15_1
  doi: 10.1055/s-2007-971894
– ident: e_1_2_8_117_1
  doi: 10.2114/ahs1983.11.207
– ident: e_1_2_8_82_1
  doi: 10.1080/00140136508930810
– ident: e_1_2_8_97_1
  doi: 10.1007/BF00422124
– ident: e_1_2_8_94_1
  doi: 10.1136/bjsm.21.1.18
– ident: e_1_2_8_24_1
  doi: 10.1080/17461391.2016.1249524
– ident: e_1_2_8_114_1
  doi: 10.1152/ajpregu.00761.2010
– ident: e_1_2_8_119_1
  doi: 10.1080/00140136008930462
– ident: e_1_2_8_13_1
  doi: 10.2165/00007256-200333060-00003
– ident: e_1_2_8_93_1
  doi: 10.1249/MSS.0000000000000939
– ident: e_1_2_8_2_1
  doi: 10.1113/expphysiol.2005.032789
– ident: e_1_2_8_59_1
  doi: 10.1249/00005768-199211000-00014
– ident: e_1_2_8_88_1
  doi: 10.1007/s00421-014-2908-8
– ident: e_1_2_8_20_1
  doi: 10.1007/s00421-002-0706-1
– ident: e_1_2_8_16_1
  doi: 10.1080/17461391.2013.810306
– ident: e_1_2_8_109_1
  doi: 10.1249/mss.0b013e31802dd3e6
– volume: 30
  start-page: 586
  year: 1999
  ident: e_1_2_8_75_1
  article-title: Hyperbolic relationship between time‐to‐fatigue and workload
  publication-title: Equine Vet. J. Suppl.
  doi: 10.1111/j.2042-3306.1999.tb05289.x
– ident: e_1_2_8_96_1
  doi: 10.1249/01.MSS.0000145468.17329.9F
– ident: e_1_2_8_32_1
  doi: 10.1113/jphysiol.2010.198382
– ident: e_1_2_8_68_1
  doi: 10.1152/jappl.1978.44.3.350
– ident: e_1_2_8_78_1
  doi: 10.1016/j.jsams.2017.11.015
– ident: e_1_2_8_27_1
  doi: 10.1080/026404199365353
– ident: e_1_2_8_105_1
  doi: 10.1055/s-2008-1026072
– ident: e_1_2_8_33_1
  doi: 10.1113/JP274589
– ident: e_1_2_8_76_1
  doi: 10.1055/s-2008-1025802
– ident: e_1_2_8_122_1
  doi: 10.1007/BF00760802
– ident: e_1_2_8_113_1
  doi: 10.1123/ijspp.6.1.128
– ident: e_1_2_8_53_1
  doi: 10.1152/jappl.1984.56.4.831
– ident: e_1_2_8_29_1
  doi: 10.1249/MSS.0b013e3182860325
– reference: 31758638 - Physiol Rep. 2019 Nov;7(22):e14293
– reference: 31758668 - Physiol Rep. 2019 Nov;7(22):e14292
SSID ssj0001033904
Score 2.5389204
SecondaryResourceType review_article
Snippet The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be sustained...
The maximal lactate steady state ( MLSS ) and the critical power ( CP ) are two widely used indices of the highest oxidative metabolic rate that can be...
Abstract The maximal lactate steady state (MLSS) and the critical power (CP) are two widely used indices of the highest oxidative metabolic rate that can be...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e14098
SubjectTerms Anaerobic threshold
Endurance
Endurance and Performance
Exercise intensity
Fatigue
Homeostasis
Invited Review
Invited Reviews
Lactic acid
Measurement techniques
Metabolic rate
Metabolic response
Metabolism
Metabolism and Regulation
Musculoskeletal system
Physical training
Physiology
Skeletal Muscle
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp1xKm_TDyTaoEHpoceMPyZZzS0qXpdDSQxe2JyHL42Rh11u2u5Dc8jOav5dfkifZu-zS0Fx6M5Ysj2dGzHuyNMPYcVWbsqiTPKQyqkNRxCo0uQJrlQbRSqjYFu7s8Ndv2WAovozkaKPUl9sT1qYHbhV3oqTJhQXoKFMpKhth5ExSlOIVcDfjoRFi3gaZ8qsrUQoyL7oDeXilOIHUyUeX3klthSCfqf8hePn3LslN9OrDT_8Ze9rhRn7WyvucPaFmj-2fNeDM02v-jvudnH6JfJ_1YXs-NVfjKZ6Y0gJ2nowt9_a85v4I0SmfU0W1rw7BgQH53c2fi9mk4qulhbub2xds2P_849Mg7OolhBYwQrlaOokFv8FHlgUh-MXKYo5RJUFDiqqWBCoss1JElFgD06HJyMyWMJgpVJ2-ZDvNrKHXjCNipWSiNM_jUrjDppQSSSupxtgxZQF7v1Khtl0ycVfTYqIdqXD61k7f2us7YMfrzr_aHBoPdzt3tlh3cYmv_Q24g-7cQT_mDgHrrSypu9n4WyeON2Y5kFHA3q6bMY_czxHT0GyJPoCW7peqghyvWsOvJUkBSl3mwoDlWy6xJep2SzO-9Lm6M8DpOMeYH7zz_Ov79ffBz8RfHfwPTRyyXYC7ot2c2WM7i_mS3gBALcojP1fuATEtGmY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagXLigQvkJLZWRKg6g0Pw5TrhUBbFaIYE4UGk5RY4zKSvtJu12K7W3Pga8Xp-Eb7zeLSuq3qK1N7E9M55vxuMZIfaa1tRlm-iQ6qgNszIuQqMLWK3KQFtlRWxLvjv89Vs-PMq-jNTIO9zOfFjlck90G3XTW_aR7yeM_XMN7XZwchpy1Sg-XfUlNO6LB5y6jEO69Ejf-FiiFCZ95q_l4cPZPsaevOckT8WaInL5-m8Dmf_HSv6LYZ0SGmyKRx49ysMFuR-Le9Q9EVuHHSzn6aV8I108p3OUb4kBOEBOzcV4in9MaQ5qT8ZWOqpeSneR6IOcUUOtqxEhgQTl9dXv437SyKWD4frqz1NxNPj849Mw9FUTQgswUXBFncTCysEk65KgAuPCQtKoUTBGyqZVBINY5XUWUWINCIgmo3Jbg2ymLNr0mdjo-o5eCAm9lZKJUq3jOuMrp5QSKauoxbtjygPxdrmElfUpxbmyxaRi04LXu-L1rtx6B2Jv1flkkUnj9m4fmRarLpz-2v3Qz44rL01VoYzOLJBonaqssZhomyuKUvAd9iBjArGzpGTlZfKsuuGgQLxeNUOa-IjEdNSfow8AJh-sFhjH8wXhVyNJAU05f2Eg9BpLrA11vaUb_3IZu3OA6ljjne8c89w1_-r78Gfinl7ePYlt8RDgrVwEX-6IjfnsnF4BIM3rXScFfwEjPhHF
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5BuXBBQPkJtMhIFQdQID924nBrK1YrJFAPVCony3Ym7Uq72WrZSuytjwGv1ydhxsmmXVEhcYvisWXPeDLfOJ4ZgL26sa5qsjJGlzSxrFId21KT16osWSupU19x7PCXr8X4WH4-USf93RyOhenyQwwHbqwZ4XvNCm5dV4WERpBcmvZslb3nfE36Ltzj4FpOnZ_Jo-sjliQnj172UXnc68N1nw07FNL134Yx_74qeRPCBhs0eggPevAo9jtpP4I72D6G7f2WHOfZSrwR4TpnOCffhhFtADGzPycz6jHDJQl7OvEiCHUlQhzRR7HAGptQIkIQEBRXl79O59NarM8Xri5_P4Hj0advh-O4L5oQe8ISmgvqZJ64QYt0FZIFTLUnRcNakS9S1Y1C8odV4WSCmbckP2qyqvCOpGYr3eRPYaudt_gcBJmtHG2Sl2XqJEecYo6ovMKGxk6xiODtmoXG9xnFubDF1LBnwfw2zG8T-B3B3kB83iXSuJ3sgGUxkHD26_Bivjg1vTIZrWwpPQFRlytZe1poUyhMctp29AmyNoKdtSRNr5I_TMbOY1ESPIrg9dBMysR_SGyL8wuiIXzJ_1U1zeNZJ_hhJjkhU05fGEG5sSU2prrZ0k7OQsLugjB1WtKY78Lm-df6zdH4exaeXvwX9Uu4T1Cu6q5i7sDWcnGBuwSXlu5VUIo_62kTOQ
  priority: 102
  providerName: Wiley-Blackwell
Title The maximal metabolic steady state: redefining the ‘gold standard’
URI https://onlinelibrary.wiley.com/doi/abs/10.14814%2Fphy2.14098
https://www.ncbi.nlm.nih.gov/pubmed/31124324
https://www.proquest.com/docview/2301467910
https://www.proquest.com/docview/2232119788
https://pubmed.ncbi.nlm.nih.gov/PMC6533178
https://doaj.org/article/85a74c566b354dc0b9f65e03ab9425aa
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFD708rKXsa67eOuCBmWFDXe-yZIHozSjJQxawlggezKyLLeBxGmzFJp_30-KHZotjL2YYMni6FxyvqPLOUSHZaWKrIqEb4qg8pMslL4SElErV_BWiQx1Zu8OX1ymvUHyfciHW9QW42wY-HtjaGfrSQ1m4-P728UJDP6rNXiMlnwGQdGxzdwkt2kXLklYC71ocL5bbAlixPZ2hzmCEvoyFMPmrt4f3695J5fEfxPy_PsA5WNg6zzT-TN62kBKdrrUgT3aMvVz2j-tEU5PFuwDc4c83er5PnWhFmyi7kcTfDExc6jAeKSZE_WCudtFX9jMlKZyhSMY4CE7upqOS9auORy9oMH52c9vPb8po-BroAtpS-xEGmEPJlhkBj4xlBqmZ0qO6CQrK24QIfO0SAITaQWJoknxVBeQo8pkFb-knXpam9fE4Mhio4JYiLBI7B1UExvDNTcVxg5N6tHHln25bnKM21IX49zGGpbXueV17njt0eGq880ytcbmbl0rh1UXmw_bvZjOrvLGvHLJlUg0oGkR86TUmGiVchPEUET8KSnl0UErxbzVsTyy4WQqAJg8er9qhnnZPRNVm-kd-gBx2p1WCTpeLYW-oiQGVrUJDT0Sa-qwRup6Sz26dim8U6DsUGDMT05x_jX_vN_7Fblfb_6Dyrf0BJAuWx7JPKCd-ezOvANsmhcd2o6SPp5iKDq02z277P_ouCWIjjOWBwBMGMM
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QEuCCg_gQJGKhxAoUls5wcJoRa62tJ2VaFWak_BcSZlpd2kbLeCvfUx4CV4qD4JYyfZsqLqrbfV2rE848-eb_wzA7CSFypLiiByMfMKVyR-7KooJq9VKrJWIvZ1Yt4O7_TD3r74fCAPFuBP-xbGXKts10S7UOeVNnvkq4Hh_mFE1u3D8XfXZI0yp6ttCo0aFls4_UEu28n7zU80vi-DoLux97HnNlkFXE3GNjYZZwJNXgB5FlmCZCL8WBMSMZdE1pO8kEgOowwz4WGgFQlIRUqGOiOxVBIXnNq9AYuCkyvTgcX1jf7ul4tdHY_zxBPNQ0ASVayStoK3JqxUPGf6bIaAy2jt_7cz_2XN1ux178Dthq-ytRpgd2EBy3uwtFaSrz6aslfM3iC1W_NL0CXMsZH6ORjRFyOcEL6GA80sjqbMPl16x8aYY2GzUjDinuz87NdRNcxZu6Vxfvb7Puxfi0YfQKesSnwEjCwlR-XxKPIzYR65IkeUWmJBbfsYOvC6VWGqmyDmJpfGMDXOjNF3avSdWn07sDKrfFzH7ri82roZi1kVE3Db_lGNj9Jm_qaxVJHQxH0zLkWuSdAilOhxQjqteko5sNyOZNqsAifpBWYdeDErpvlrDmVUidUp1SFKa45yY-rHw3rgZz3hRIZNxEQHojlIzHV1vqQcfLMxwkOi8X5Ebb6x4LlK_nS3dxjYX4-vFuI53Ozt7Wyn25v9rSdwi6hjUl_9XIbOZHyKT4meTbJnzZxg8PW6p-FfY79RaA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NISFeEDD-ZAww0uABFJrEcZwgITQYVcdg2gOTuifjOJetUpuMrhP0bR8DvgofZ5-Es5t0VEx721tVO5bvfOf7nX2-A1gvSp1nZSR9zIPSj7Mw9bVMyWsVmqxVnIYms2-Hv-wkvb34U1_0l-BP-xbGhlW2e6LbqIva2DPyTmSxfyLJunXKJixid7P77ui7bytI2ZvWtpzGTES2cfqD3Lfjt1ubtNbPo6j78euHnt9UGPANGd7UVp-JDHkE5GXkGZK5CFNDUomFIOCeFaVAch5FkscBRkYTsdSkRWJyIlFnaclp3GtwXXIRWh2TfXl-vhNwngVx8ySQiI47xLfotU0wlS4YQVcr4CKA-3-c5r_42RnA7m241SBXtjETtTuwhNVdWNmoyGsfTdkL5mJJ3SH9CnRJ-thI_xyM6IsRTkjShgPDnERNmXvE9IaNscDS1adghELZ2emvg3pYsPZw4-z09z3YuxJ-3oflqq7wITCymRx1wKUM89g-d0WOKIzAksYOMfHgZctCZZp05raqxlBZt8byW1l-K8dvD9bnnY9mWTwu7vbersW8i0297f6oxweq0WSVCi1jQyg45yIuDBFaJgIDTjJP-5_WHqy1K6ma_eBYnUuvB8_mzaTJ9npGV1ifUB8Ct_ZSN6V5PJgt_HwmnGCxzZ3ogVwQiYWpLrZUg0OXLTwhQB9KGvOVE57L6Fe7vf3I_Vq9nIincIOUT33e2tl-BDcJQ2azGNA1WJ6MT_Ax4bRJ_sQpBINvV62BfwEmkVQ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+maximal+metabolic+steady+state%3A+redefining+the+%27gold+standard%27&rft.jtitle=Physiological+reports&rft.au=Jones%2C+Andrew+M&rft.au=Burnley%2C+Mark&rft.au=Black%2C+Matthew+I&rft.au=Poole%2C+David+C&rft.date=2019-05-01&rft.issn=2051-817X&rft.eissn=2051-817X&rft.volume=7&rft.issue=10&rft.spage=e14098&rft_id=info:doi/10.14814%2Fphy2.14098&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-817X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-817X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-817X&client=summon