Sixty years of anthropogenic pressure: a spatio-temporal genetic analysis of brown trout populations subject to stocking and population declines
Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout (Salmo tru...
Saved in:
Published in | Molecular ecology Vol. 18; no. 12; pp. 2549 - 2562 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.06.2009
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout (Salmo trutta) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14 to 64%. Historical population genetic structure was characterized by isolation by distance and by positive correlations between historical effective population sizes and habitat area within river systems. Contemporary population genetic structure still showed isolation by distance, but also reflected differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression by hatchery strain trout should be the most significant conservation concern in this system. Based on theoretical considerations, we argue that population declines have had limited negative effects for the persistence of adaptive variation, but admixture with hatchery trout may have resulted in reduced local adaptation. Collectively, our study demonstrates the usefulness of analysing historical samples for identifying the most important consequences of human activities on the genetic structure of wild populations. |
---|---|
AbstractList | AbstractAnalyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout (Salmo trutta) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14 to 64%. Historical population genetic structure was characterized by isolation by distance and by positive correlations between historical effective population sizes and habitat area within river systems. Contemporary population genetic structure still showed isolation by distance, but also reflected differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression by hatchery strain trout should be the most significant conservation concern in this system. Based on theoretical considerations, we argue that population declines have had limited negative effects for the persistence of adaptive variation, but admixture with hatchery trout may have resulted in reduced local adaptation. Collectively, our study demonstrates the usefulness of analysing historical samples for identifying the most important consequences of human activities on the genetic structure of wild populations. Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout (Salmo trutta) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14 to 64%. Historical population genetic structure was characterized by isolation by distance and by positive correlations between historical effective population sizes and habitat area within river systems. Contemporary population genetic structure still showed isolation by distance, but also reflected differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression by hatchery strain trout should be the most significant conservation concern in this system. Based on theoretical considerations, we argue that population declines have had limited negative effects for the persistence of adaptive variation, but admixture with hatchery trout may have resulted in reduced local adaptation. Collectively, our study demonstrates the usefulness of analysing historical samples for identifying the most important consequences of human activities on the genetic structure of wild populations. Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout (Salmo trutta) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14 to 64%. Historical population genetic structure was characterized by isolation by distance and by positive correlations between historical effective population sizes and habitat area within river systems. Contemporary population genetic structure still showed isolation by distance, but also reflected differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression by hatchery strain trout should be the most significant conservation concern in this system. Based on theoretical considerations, we argue that population declines have had limited negative effects for the persistence of adaptive variation, but admixture with hatchery trout may have resulted in reduced local adaptation. Collectively, our study demonstrates the usefulness of analysing historical samples for identifying the most important consequences of human activities on the genetic structure of wild populations.Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout (Salmo trutta) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14 to 64%. Historical population genetic structure was characterized by isolation by distance and by positive correlations between historical effective population sizes and habitat area within river systems. Contemporary population genetic structure still showed isolation by distance, but also reflected differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression by hatchery strain trout should be the most significant conservation concern in this system. Based on theoretical considerations, we argue that population declines have had limited negative effects for the persistence of adaptive variation, but admixture with hatchery trout may have resulted in reduced local adaptation. Collectively, our study demonstrates the usefulness of analysing historical samples for identifying the most important consequences of human activities on the genetic structure of wild populations. Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout ( Salmo trutta ) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14 to 64%. Historical population genetic structure was characterized by isolation by distance and by positive correlations between historical effective population sizes and habitat area within river systems. Contemporary population genetic structure still showed isolation by distance, but also reflected differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression by hatchery strain trout should be the most significant conservation concern in this system. Based on theoretical considerations, we argue that population declines have had limited negative effects for the persistence of adaptive variation, but admixture with hatchery trout may have resulted in reduced local adaptation. Collectively, our study demonstrates the usefulness of analysing historical samples for identifying the most important consequences of human activities on the genetic structure of wild populations. Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout (Salmo trutta) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14 to 64%. Historical population genetic structure was characterized by isolation by distance and by positive correlations between historical effective population sizes and habitat area within river systems. Contemporary population genetic structure still showed isolation by distance, but also reflected differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression by hatchery strain trout should be the most significant conservation concern in this system. Based on theoretical considerations, we argue that population declines have had limited negative effects for the persistence of adaptive variation, but admixture with hatchery trout may have resulted in reduced local adaptation. Collectively, our study demonstrates the usefulness of analysing historical samples for identifying the most important consequences of human activities on the genetic structure of wild populations. [PUBLICATION ABSTRACT] |
Author | Fraser, Dylan J Hansen, Michael M Mensberg, Karen-Lise D Meier, Kristian |
Author_xml | – sequence: 1 fullname: Hansen, Michael M – sequence: 2 fullname: Fraser, Dylan J – sequence: 3 fullname: Meier, Kristian – sequence: 4 fullname: Mensberg, Karen-Lise D |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19457206$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt9uFCEUh4mpsX_0FZR44d2swAwMmNjEbGprUjVxW-sdYQZmZTs7jMCku2_hI8vs1Gp603IDCd93IOf8DsFe5zoDAMRohtN6u5rhnNGMiOLHjCAkZqjAgs82T8DB3cUeOECCkQwjnu-DwxBWCOGcUPoM7GNR0JIgdgB-L-wmbuHWKB-ga6Dq4k_verc0na1h700IgzfvoIKhV9G6LJp177xqYSJMTIzqVLsNdmdX3t10MHo3RNi7fmhHpQswDNXK1BFGB0N09bXtlsnT_zFQm7q1nQnPwdNGtcG8uN2PwOXHk4v5WXb-9fTT_MN5VlNe8ExQXAqNca5KQw1DxPCalIhp3lQIEZQLpbWmldalyrFCQjPeCMIYbUzFNcuPwJupbu_dr8GEKNc21KZtVWfcECQraZEzhB4EC0ZESfHDFcn4rQl8fQ9cucGnNiYGoxKVDJMEvbyFhmpttOy9XSu_lX9HlwA-AbV3IXjT_EOQHFMiV3IMgxzDIMeUyF1K5Capx_fU2sbdGKJXtn1MgfdTgRvbmu2jH5afT-bjKfnZ5NsQzebOV_469T0vqbz6ciovFuwM86vv8lviX018o5xUS2-DvFyQFGeU2smLguR_AFHE8U8 |
CitedBy_id | crossref_primary_10_1111_j_1365_294X_2009_04199_x crossref_primary_10_1111_mec_13570 crossref_primary_10_1111_j_1365_294X_2012_05581_x crossref_primary_10_1007_s10592_014_0577_0 crossref_primary_10_1038_hdy_2012_36 crossref_primary_10_1093_biolinnean_blad002 crossref_primary_10_1007_s10592_015_0699_z crossref_primary_10_1186_1471_2148_12_247 crossref_primary_10_1007_s10592_011_0231_z crossref_primary_10_1007_s10201_015_0450_y crossref_primary_10_1007_s10592_011_0211_3 crossref_primary_10_1007_s11160_015_9405_y crossref_primary_10_1007_s12686_010_9310_6 crossref_primary_10_1007_s10592_019_01168_2 crossref_primary_10_1111_mec_14816 crossref_primary_10_1111_eva_13544 crossref_primary_10_1111_j_1365_2400_2009_00706_x crossref_primary_10_1007_s10592_012_0438_7 crossref_primary_10_1134_S0032945223060085 crossref_primary_10_1007_s10592_014_0602_3 crossref_primary_10_1111_j_1365_294X_2011_05266_x crossref_primary_10_1371_journal_pone_0202383 crossref_primary_10_1093_icesjms_fsaa240 crossref_primary_10_1111_fwb_12193 crossref_primary_10_1038_s41437_019_0292_1 crossref_primary_10_1111_eff_12102 crossref_primary_10_1007_s10592_018_1047_x crossref_primary_10_1007_s10750_011_0708_2 crossref_primary_10_1080_00028487_2011_567837 crossref_primary_10_31857_S0042875223060140 crossref_primary_10_1111_eva_12166 crossref_primary_10_1080_00028487_2014_935477 crossref_primary_10_1007_s10592_013_0510_y crossref_primary_10_1111_eva_12566 crossref_primary_10_1139_f2011_107 crossref_primary_10_1111_eva_12160 crossref_primary_10_1038_s41598_021_96681_1 crossref_primary_10_1007_s00027_024_01135_1 crossref_primary_10_1111_eff_12215 crossref_primary_10_1007_s10592_018_1095_2 crossref_primary_10_1111_j_1752_4571_2012_00280_x crossref_primary_10_1139_f2012_118 crossref_primary_10_1093_icesjms_fsae114 crossref_primary_10_3390_genes14040808 crossref_primary_10_1134_S1022795419090060 crossref_primary_10_1016_j_aquaculture_2013_07_034 crossref_primary_10_1002_ece3_5191 crossref_primary_10_1111_fme_12259 crossref_primary_10_1111_j_1365_294X_2010_04628_x crossref_primary_10_1007_s10592_015_0797_y crossref_primary_10_1007_s10750_023_05463_5 crossref_primary_10_1073_pnas_2105076119 crossref_primary_10_1051_alr_2016012 crossref_primary_10_1016_j_aquaculture_2021_737043 crossref_primary_10_1002_ece3_3699 crossref_primary_10_3354_aei00032 crossref_primary_10_1111_fwb_13460 crossref_primary_10_1007_s10592_018_1083_6 crossref_primary_10_1371_journal_pone_0113697 crossref_primary_10_1111_eva_12941 crossref_primary_10_1111_fme_12643 crossref_primary_10_1111_j_1365_294X_2010_04615_x crossref_primary_10_1038_hdy_2010_164 crossref_primary_10_1002_ece3_6457 crossref_primary_10_1111_j_1558_5646_2011_01385_x crossref_primary_10_1139_f2011_040 crossref_primary_10_1002_nafm_10288 crossref_primary_10_1007_s10592_023_01582_7 crossref_primary_10_1002_aqc_3826 crossref_primary_10_1002_aqc_2856 crossref_primary_10_1002_nafm_10844 crossref_primary_10_1080_02755947_2014_902409 crossref_primary_10_1139_cjfas_2013_0460 crossref_primary_10_1111_j_1752_4571_2011_00198_x crossref_primary_10_1371_journal_pone_0033986 crossref_primary_10_3390_fishes5020019 crossref_primary_10_1111_j_1365_294X_2012_05579_x crossref_primary_10_1111_j_1752_4571_2010_00176_x crossref_primary_10_1002_ece3_629 crossref_primary_10_1007_s10750_019_3924_9 crossref_primary_10_1139_f2012_027 crossref_primary_10_1186_s41240_020_00156_9 crossref_primary_10_1111_jfb_12522 crossref_primary_10_1371_journal_pone_0240823 crossref_primary_10_1007_s10592_013_0546_z crossref_primary_10_1111_eva_12646 crossref_primary_10_1111_evo_12278 crossref_primary_10_1111_mec_14965 crossref_primary_10_1111_mec_17714 crossref_primary_10_1186_s12862_021_01876_9 crossref_primary_10_3390_biology11040554 crossref_primary_10_1111_eva_12765 crossref_primary_10_1111_j_1365_294X_2012_05588_x crossref_primary_10_1111_j_1467_2979_2011_00437_x crossref_primary_10_1007_s10682_024_10322_3 crossref_primary_10_1080_02755947_2013_790861 crossref_primary_10_1111_mec_15256 crossref_primary_10_1111_j_1365_294X_2010_04955_x crossref_primary_10_1111_mec_12028 crossref_primary_10_1371_journal_pone_0125743 crossref_primary_10_2744_CCB_1149_1 crossref_primary_10_1007_s10592_010_0175_8 crossref_primary_10_1002_fsh_10985 crossref_primary_10_1111_eva_13725 crossref_primary_10_3354_meps08901 crossref_primary_10_1111_eva_12118 crossref_primary_10_1111_eva_12877 crossref_primary_10_1371_journal_pone_0081916 crossref_primary_10_1080_00028487_2013_806351 crossref_primary_10_1139_cjfas_2013_0362 crossref_primary_10_3390_w14060937 crossref_primary_10_1111_eva_12199 crossref_primary_10_1080_00028487_2017_1360393 crossref_primary_10_1007_s10750_018_3775_9 crossref_primary_10_3390_fishes8080411 crossref_primary_10_1007_s10750_012_1063_7 crossref_primary_10_1111_rec_13395 |
Cites_doi | 10.1139/f07-167 10.1046/j.1471-8286.2003.00351.x 10.1139/f95-865 10.1534/genetics.105.048330 10.1111/j.1365-294X.2004.02396.x 10.1038/sj.hdy.6800693 10.1046/j.1365-294X.2002.01495.x 10.1111/j.1365-294X.2007.03485.x 10.1093/jhered/93.2.153 10.1098/rspb.2002.2250 10.1093/oxfordjournals.jhered.a111627 10.1016/S0169-5347(01)02290-X 10.1139/F08-025 10.1017/S0016672301005286 10.1111/j.1755-0998.2007.02061.x 10.1046/j.1365-294X.1998.00362.x 10.1111/j.1558-5646.1999.tb05351.x 10.1016/j.tree.2007.08.017 10.1046/j.1365-294X.2002.01634.x 10.1007/s10592-005-9100-y 10.1111/j.1365-294X.2007.03147.x 10.1111/j.1365-294X.2005.02553.x 10.1111/j.1365-294X.2006.02890.x 10.1139/cjfas-53-10-2292 10.1111/j.1471-8286.2004.00684.x 10.1111/j.1752-4571.2009.00104.x 10.1038/hdy.1997.101 10.1046/j.1365-294X.2004.02008.x 10.1086/286145 10.1111/j.1365-294X.2006.02995.x 10.1111/j.1365-294X.2008.03771.x 10.1046/j.1365-294X.2003.01705.x 10.1073/pnas.081068098 10.1111/j.1095-8312.1991.tb00595.x 10.1098/rspb.2003.2520 10.1016/j.icesjms.2006.03.004 10.1007/BF00221895 10.1111/j.1095-8649.2007.01398.x 10.1093/genetics/147.4.1943 10.1111/j.1365-294X.2007.03453.x 10.1111/j.1752-4571.2008.00026.x 10.1214/aos/1013699998 10.1111/j.1365-2052.1995.tb03262.x 10.1111/j.1365-294X.2007.03271.x 10.1111/j.1365-294X.2008.03891.x 10.1016/0044-8486(91)90383-I 10.1093/jhered/esh074 10.1038/hdy.1993.167 10.1111/j.1365-294X.2006.03206.x 10.1046/j.1461-0248.2003.00462.x 10.1023/A:1012550620717 10.1111/j.1365-2435.2006.01228.x 10.1146/annurev.ecolsys.30.1.539 10.1007/BF02300753 10.1111/j.1365-294X.2007.03255.x 10.1098/rspb.2000.0972 10.1111/j.1365-294X.2007.03541.x 10.1139/f03-040 10.1111/j.1365-294X.2007.03478.x 10.1046/j.1365-294X.1997.00204.x 10.1111/j.1365-294X.2004.02162.x 10.1111/j.0014-3820.2002.tb00857.x 10.1111/j.1461-0248.2004.00684.x 10.1016/j.aquaculture.2007.08.002 10.1073/pnas.0503811102 10.1111/j.1365-294X.2006.03148.x 10.1016/j.tree.2006.08.009 10.1890/1051-0761(2001)011[0148:BTSTSI]2.0.CO;2 10.1111/j.1558-5646.1984.tb05657.x 10.1111/j.1467-2979.2008.00304.x 10.1111/j.1365-294X.2007.03438.x 10.1046/j.1365-294X.2000.105312.x 10.1111/j.1601-5223.1999.00265.x 10.1111/j.1365-294X.2005.02568.x 10.1046/j.1365-294X.2003.02038.x 10.1111/j.1365-294X.2006.03067.x 10.1007/s10592-006-9188-8 10.1098/rspb.2001.1762 10.1111/j.1365-2052.1996.tb01180.x 10.1111/j.1752-4571.2008.00037.x |
ContentType | Journal Article |
Copyright | 2009 Blackwell Publishing Ltd |
Copyright_xml | – notice: 2009 Blackwell Publishing Ltd |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7ST 7U6 F1W H95 H97 H98 L.G 7S9 L.6 7X8 |
DOI | 10.1111/j.1365-294X.2009.04198.x |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Sustainability Science Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic CrossRef MEDLINE AGRICOLA Entomology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1365-294X |
EndPage | 2562 |
ExternalDocumentID | 1742491301 19457206 10_1111_j_1365_294X_2009_04198_x MEC4198 ark_67375_WNG_TS6H18WV_R US201301638442 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | Denmark |
GeographicLocations_xml | – name: Denmark |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AETEA AEUYR AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AEUQT AFPWT BSCLL ESX WRC AAYXX AEYWJ AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 M7N P64 RC3 7ST 7U6 F1W H95 H97 H98 L.G 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c5848-95179d113a7e5e602e8c2706d8fb002039addd5bdd7a31a09d68f92665feb8d63 |
IEDL.DBID | DR2 |
ISSN | 0962-1083 1365-294X |
IngestDate | Fri Jul 11 02:03:50 EDT 2025 Tue Aug 05 10:37:33 EDT 2025 Fri Jul 11 03:16:53 EDT 2025 Wed Aug 13 04:33:24 EDT 2025 Wed Feb 19 01:49:40 EST 2025 Thu Apr 24 23:08:37 EDT 2025 Tue Jul 01 01:21:47 EDT 2025 Wed Jan 22 16:31:41 EST 2025 Wed Oct 30 09:56:59 EDT 2024 Thu Apr 03 09:46:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5848-95179d113a7e5e602e8c2706d8fb002039addd5bdd7a31a09d68f92665feb8d63 |
Notes | http://dx.doi.org/10.1111/j.1365-294X.2009.04198.x ArticleID:MEC4198 istex:386D52F8F02ECE1691E3157147493102E00F6F1E ark:/67375/WNG-TS6H18WV-R SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 19457206 |
PQID | 210707612 |
PQPubID | 31465 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_67543600 proquest_miscellaneous_46297516 proquest_miscellaneous_20203516 proquest_journals_210707612 pubmed_primary_19457206 crossref_primary_10_1111_j_1365_294X_2009_04198_x crossref_citationtrail_10_1111_j_1365_294X_2009_04198_x wiley_primary_10_1111_j_1365_294X_2009_04198_x_MEC4198 istex_primary_ark_67375_WNG_TS6H18WV_R fao_agris_US201301638442 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2009 |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: June 2009 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
PublicationTitle | Molecular ecology |
PublicationTitleAlternate | Mol Ecol |
PublicationYear | 2009 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd |
References | Vasemägi A, Gross R, Paaver T, Koljonen ML, Nilsson J (2005) Extensive immigration from compensatory hatchery releases into wild Atlantic salmon population in the Baltic Sea: spatio-temporal analysis over 18 years. Heredity, 95, 76-83. Wang JL (2001) A pseudo-likelihood method for estimating effective population size from temporally spaced samples. Genetical Research, 78, 243-257. Wang IA, Gilk SE, Smoker WW, Gharrett AJ (2007) Outbreeding effect on embryo development in hybrids of allopatric pink salmon (Oncorhynchus gorbuscha) populations, a potential consequence of stock translocation. Aquaculture, 272, S152-S160. Ruzzante DE, Hansen MM, Meldrup D, Ebert KM (2004) Stocking impact and migration pattern in an anadromous brown trout (Salmo trutta) complex: where have all the stocked spawning sea trout gone? Molecular Ecology, 13, 1433-1445. Legendre P, Legendre L (1998) Numerical Ecology. Elsevier, Amsterdam, The Netherlands. O'Reilly PT, Hamilton LC, McConnell SK, Wright JM (1996) Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Canadian Journal of Fisheries and Aquatic Sciences, 53, 2292-2298. Pichler FB, Baker CS (2000) Loss of genetic diversity in the endemic Hector's dolphin due to fisheries-related mortality. Proceedings of the Royal Society B: Biological Sciences, 267, 97-102. Wang JL, Whitlock MC (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics, 163, 429-446. Dionne M, Caron F, Dodson JJ, Bernatchez L (2008) Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation. Molecular Ecology, 17, 2382-2396. Excoffier L, Laval G, Schneider S (2005) Arlequin version 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50. Mclean JE, Bentzen P, Quinn TP (2003) Differential reproductive success of sympatric, naturally spawning hatchery and wild steelhead trout (Oncorhynchus mykiss) through the adult stage. Canadian Journal of Fisheries and Aquatic Sciences, 60, 433-440. Nielsen EE, Hansen MM, Loeschcke V (1999a) Analysis of DNA from old scale samples: technical aspects, applications and perspectives for conservation. Hereditas, 130, 265-276. Araki H, Berejikian BA, Ford MJ, Blouin MS (2008) Fitness of hatchery-reared salmonids in the wild. Evolutionary Applications, 1, 342-355. Hansen MM, Ruzzante DE, Nielsen EE, Bekkevold D, Mensberg KLD (2002) Long-term effective population sizes, temporal stability of genetic composition and potential for local adaptation in anadromous brown trout (Salmo trutta) populations. Molecular Ecology, 11, 2523-2535. Wandeler P, Hoeck PEA, Keller LF (2007) Back to the future: museum specimens in population genetics. Trends in Ecology & Evolution, 22, 634-642. Garant D, Fleming IA, Einum S, Bernatchez L (2003) Alternative male life-history tactics as potential vehicles for speeding introgression of farm salmon traits into wild populations. Ecology Letters, 6, 541-549. Storz JF, Beaumont MA (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution, 56, 154-166. Dieringer D, Schlotterer C (2003) Microsatellite Analyser (msa): a platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes, 3, 167-169. Piry S, Alapetite A, Cornuet JM et al . (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. Journal of Heredity, 95, 536-539. Palstra FP, O'Connell MF, Ruzzante DE (2007) Population structure and gene flow reversals in Atlantic salmon (Salmo salar) over contemporary and long-term temporal scales: effects of population size and life history. Molecular Ecology, 16, 4504-4522. Waples RS, Do C (2008) ldne: a program for estimating effective population size from data on linkage disequilibrium. Molecular Ecology Resources, 8, 753-756. Roberge C, Normandeau E, Einum S, Guderley H, Bernatchez L (2008) Genetic consequences of interbreeding between farmed and wild Atlantic salmon: insights from the transcriptome. Molecular Ecology, 17, 314-324. Felsenstein J (1989) Phylogeny inference package (version 3.2). Cladistics, 5, 164-166. Hansen MM (2002) Estimating the long-term effects of stocking domesticated trout into wild brown trout (Salmo trutta) populations: an approach using microsatellite DNA analysis of historical and contemporary samples. Molecular Ecology, 11, 1003-1015. Lynch M, O'Hely M (2001) Captive breeding and the genetic fitness of natural populations. Conservation Genetics, 2, 363-378. Slettan A, Olsaker I, Lie Ø (1996) Polymorphic Atlantic salmon, Salmo salar L., microsatellites at the SSOSL438, SSOSL439 and SSOSL444 loci. Animal Genetics, 27, 57-64. Svärdson G, Faderström Å (1982) Adaptive differences in the long-distance migration of some trout (Salmo trutta) stocks. Reports of the Institute of Freshwater Research, Drottningholm, 60, 51-80. Gharbi K, Gautier A, Danzmann RG et al . (2006) A linkage map for brown trout (Salmo trutta): chromosome homeologies and comparative genome organization with other salmonid fish. Genetics, 172, 2405-2419. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4, 535-538. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164, 1567-1587. Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends in Ecology & Evolution, 22, 25-33. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecology Letters, 7, 1225-1241. Araki H, Waples RS, Ardren WR, Cooper B, Blouin MS (2007) Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life-history forms. Molecular Ecology, 16, 953-966. Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Molecular Ecology, 16, 463-475. Hansen MM, Skaala O, Jensen LF, Bekkevold D, Mensberg KLD (2007) Gene flow, effective population size and selection at major histocompatibility complex genes: brown trout in the Hardanger Fjord, Norway. Molecular Ecology, 16, 1413-1425. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165-1188. Fraser DJ, Cook AM, Eddington JD, Bentzen P (2008) Mixed evidence for reduced local adaptation in wild salmon resulting from interbreeding with escaped farmed salmon: complexities in hybrid fitness. Evolutionary Applications, 1, 501-512. Guinand B, Scribner KT, Page KS, Burnham-Curtis MK (2003) Genetic variation over space and time: analyses of extinct and remnant lake trout populations in the Upper Great Lakes. Proceedings of the Royal Society B: Biological Sciences, 270, 425-433. Saitou N, Nei M (1987) The neighbor-joining method - a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425. Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics, 7, 167-184. Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends in Ecology & Evolution, 16, 613-622. Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. 2. Gene frequency data. Journal of Molecular Evolution, 19, 153-170. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370. Narum SR, Zendt JS, Graves D, Sharp WR (2008) Influence of landscape on resident and anadromous life history types of Oncorhynchus mykiss. Canadian Journal of Fisheries and Aquatic Sciences, 65, 1013-1023. Nielsen EE, Hansen MM (2008) Waking the dead: the value of population genetic analyses of historical samples. Fish and Fisheries, 9, 450-461. Cairney M, Taggart JB, Hoyheim B (2000) Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Molecular Ecology, 9, 2175-2178. Smith TB, Mila B, Grether GF et al . (2008) Evolutionary consequences of human disturbance in a rainforest bird species from Central Africa. Molecular Ecology, 17, 58-71. Ardren WR, Kapuscinski AR (2003) Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout. Molecular Ecology, 12, 35-49. Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology, 13, 55-65. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics, 145, 1219-1228. Fraser DJ, Lippe C, Bernatchez L (2004) Consequences of unequal population size, asymmetric gene flow and sex-biased dispersal on population structure in brook charr (Salvelinus fontinalis). Molecular Ecology, 13, 67-80. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proceedings of the National Academy of Sciences, USA, 98, 4563-4568. Leonard JA (2008) Ancient DNA applications for wildlife conservation. Molecular Ecology, 17, 4186-4196. Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annual Review of Ecology and Systematics, 30, 539-563. Bohonak AJ ( 1983; 19 1991; 98 1987; 4 2002; 56 2000; 9 2004; 7 2002; 11 2008; 9 2004; 4 2003; 270 2008; 8 2006; 172 2008; 1 1997; 6 2001; 268 2003; 12 1998; 152 1997; 147 2006; 63 1982; 60 1993; 71 1991; 43 1995; 26 2005; 102 2003; 6 1997; 145 2007; 175 2003; 3 2008; 65 2001; 16 2002; 93 1980 2001; 11 2007; 21 2007; 22 1996; 27 2003; 164 2001; 98 2003; 163 1995; 52 1989; 5 2008; 17 2006; 15 1998 2006; 7 1997 1993 1996; 92 2000; 155 2001; 29 1996; 53 2007; 16 1995; 86 2004; 95 2000; 267 2007; 272 1984; 38 2007a; 16 2004; 13 1997; 78 2005; 95 2005; 1 2007b; 8 1999; 30 2001; 2 1999a; 130 1998; 7 2003; 60 2001; 78 1999b; 53 2005; 14 e_1_2_7_5_1 Dieperink C (e_1_2_7_14_1) 1997 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_49_1 Franklin IR (e_1_2_7_28_1) 1980 Svärdson G (e_1_2_7_76_1) 1982; 60 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 Felsenstein J (e_1_2_7_26_1) 1989; 5 Legendre P (e_1_2_7_46_1) 1998 e_1_2_7_39_1 Saitou N (e_1_2_7_69_1) 1987; 4 e_1_2_7_6_1 Estoup A (e_1_2_7_22_1) 1998; 7 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 e_1_2_7_10_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 19457205 - Mol Ecol. 2009 Jun;18(12):2545-6 |
References_xml | – reference: Waples RS, Yokota M (2007) Temporal estimates of effective population size in species with overlapping generations. Genetics, 175, 219-233. – reference: Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proceedings of the National Academy of Sciences, USA, 98, 4563-4568. – reference: Felsenstein J (1989) Phylogeny inference package (version 3.2). Cladistics, 5, 164-166. – reference: Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecology Letters, 7, 1225-1241. – reference: Mclean JE, Bentzen P, Quinn TP (2003) Differential reproductive success of sympatric, naturally spawning hatchery and wild steelhead trout (Oncorhynchus mykiss) through the adult stage. Canadian Journal of Fisheries and Aquatic Sciences, 60, 433-440. – reference: Saitou N, Nei M (1987) The neighbor-joining method - a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425. – reference: Paetkau D, Waits LP, Clarkson PL, Craighead L, Strobeck C (1997) An empirical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae) populations. Genetics, 147, 1943-1957. – reference: Legendre P, Legendre L (1998) Numerical Ecology. Elsevier, Amsterdam, The Netherlands. – reference: Taylor EB (1991) A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture, 98, 185-207. – reference: Dionne M, Caron F, Dodson JJ, Bernatchez L (2008) Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation. Molecular Ecology, 17, 2382-2396. – reference: Garant D, Forde SE, Hendry AP (2007) The multifarious effects of dispersal and gene flow on contemporary adaptation. Functional Ecology, 21, 434-443. – reference: Bohonak AJ (2002) ibd (isolation by distance): a program for analyses of isolation by distance. Journal of Heredity, 93, 153-154. – reference: Pertoldi C, Hansen MM, Loeschcke V et al . (2001) Genetic consequences of population decline in the European otter (Lutra lutra): an assessment of microsatellite DNA variation in Danish otters from 1883 to 1993. Proceedings of the Royal Society of London Series B: Biology Sciences, 268, 1775-1781. – reference: Pichler FB, Baker CS (2000) Loss of genetic diversity in the endemic Hector's dolphin due to fisheries-related mortality. Proceedings of the Royal Society B: Biological Sciences, 267, 97-102. – reference: O'Reilly PT, Hamilton LC, McConnell SK, Wright JM (1996) Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Canadian Journal of Fisheries and Aquatic Sciences, 53, 2292-2298. – reference: Caroffino DC, Miller LM, Kapuscinski AR, Ostazeski JJ (2008) Stocking success of local-origin fry and impact of hatchery ancestry: monitoring a new steelhead (Oncorhynchus mykiss) stocking program in a Minnesota tributary to Lake Superior. Canadian Journal of Fisheries and Aquatic Sciences, 65, 309-318. – reference: Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959. – reference: Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. 2. Gene frequency data. Journal of Molecular Evolution, 19, 153-170. – reference: Nielsen EE, Hansen MM, Loeschcke V (1997) Analysis of microsatellite DNA from old scale samples of Atlantic salmon Salmo salar: a comparison of genetic composition over 60 years. Molecular Ecology, 6, 487-492. – reference: Ruzzante DE, Hansen MM, Meldrup D, Ebert KM (2004) Stocking impact and migration pattern in an anadromous brown trout (Salmo trutta) complex: where have all the stocked spawning sea trout gone? Molecular Ecology, 13, 1433-1445. – reference: Wang JL, Whitlock MC (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics, 163, 429-446. – reference: Cairney M, Taggart JB, Hoyheim B (2000) Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Molecular Ecology, 9, 2175-2178. – reference: Nielsen EE, Hansen MM, Loeschcke V (1999b) Genetic variation in time and space: microsatellite analysis of extinct and extant populations of Atlantic salmon. Evolution, 53, 261-268. – reference: Hansen MM (2002) Estimating the long-term effects of stocking domesticated trout into wild brown trout (Salmo trutta) populations: an approach using microsatellite DNA analysis of historical and contemporary samples. Molecular Ecology, 11, 1003-1015. – reference: Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends in Ecology & Evolution, 22, 25-33. – reference: Excoffier L, Laval G, Schneider S (2005) Arlequin version 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50. – reference: Jonsson B, Jonsson N (2006) Cultured Atlantic salmon in nature: a review of their ecology and interaction with wild fish. ICES Journal of Marine Science, 63, 1162-1181. – reference: Nielsen EE, Hansen MM, Loeschcke V (1999a) Analysis of DNA from old scale samples: technical aspects, applications and perspectives for conservation. Hereditas, 130, 265-276. – reference: Eldridge WH, Naish KA (2007) Long-term effects of translocation and release numbers on fine-scale population structure among coho salmon (Oncorhynchus kisutch). Molecular Ecology, 16, 2407-2421. – reference: Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annual Review of Ecology and Systematics, 30, 539-563. – reference: Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology, 14, 2611-2620. – reference: McGinnity P, Prodohl P, Ferguson K et al . (2003) Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proceedings of the Royal Society B: Biological Sciences, 270, 2443-2450. – reference: Piry S, Alapetite A, Cornuet JM et al . (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. Journal of Heredity, 95, 536-539. – reference: Goudet J (1995) fstat (version 1.2): a computer program to calculate F-statistics. Journal of Heredity, 86, 485-486. – reference: Smith TB, Mila B, Grether GF et al . (2008) Evolutionary consequences of human disturbance in a rainforest bird species from Central Africa. Molecular Ecology, 17, 58-71. – reference: Dawson MN, Sen Gupta A, England MH (2005) Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species. Proceedings of the National Academy of Sciences, USA, 102, 11968-11973. – reference: Hansen MM, Skaala O, Jensen LF, Bekkevold D, Mensberg KLD (2007) Gene flow, effective population size and selection at major histocompatibility complex genes: brown trout in the Hardanger Fjord, Norway. Molecular Ecology, 16, 1413-1425. – reference: Nielsen EE, Hansen MM (2008) Waking the dead: the value of population genetic analyses of historical samples. Fish and Fisheries, 9, 450-461. – reference: Wandeler P, Hoeck PEA, Keller LF (2007) Back to the future: museum specimens in population genetics. Trends in Ecology & Evolution, 22, 634-642. – reference: Fraser DJ, Jones MW, McParland TL, Hutchings JA (2007b) Loss of historical immigration and the unsuccessful rehabilitation of extirpated salmon populations. Conservation Genetics, 8, 527-546. – reference: El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theoretical and Applied Genetics, 92, 832-839. – reference: Garant D, Fleming IA, Einum S, Bernatchez L (2003) Alternative male life-history tactics as potential vehicles for speeding introgression of farm salmon traits into wild populations. Ecology Letters, 6, 541-549. – reference: Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics, 145, 1219-1228. – reference: Storz JF, Beaumont MA (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution, 56, 154-166. – reference: Slettan A, Olsaker I, Lie Ø (1996) Polymorphic Atlantic salmon, Salmo salar L., microsatellites at the SSOSL438, SSOSL439 and SSOSL444 loci. Animal Genetics, 27, 57-64. – reference: Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164, 1567-1587. – reference: Narum SR, Zendt JS, Graves D, Sharp WR (2008) Influence of landscape on resident and anadromous life history types of Oncorhynchus mykiss. Canadian Journal of Fisheries and Aquatic Sciences, 65, 1013-1023. – reference: Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165-1188. – reference: Hansen MM, Ruzzante DE, Nielsen EE, Mensberg KLD (2001) Brown trout (Salmo trutta) stocking impact assessment using microsatellite DNA markers. Ecological Applications, 11, 148-160. – reference: Hutchings JA, Fraser DJ (2008) The nature of fisheries- and farming-induced evolution. Molecular Ecology, 17, 294-313. – reference: Lynch M, O'Hely M (2001) Captive breeding and the genetic fitness of natural populations. Conservation Genetics, 2, 363-378. – reference: Bouzat JL, Lewin HA, Paige KN (1998) The ghost of genetic diversity past: historical DNA analysis of the greater prairie chicken. American Naturalist, 152, 1-6. – reference: Gharbi K, Gautier A, Danzmann RG et al . (2006) A linkage map for brown trout (Salmo trutta): chromosome homeologies and comparative genome organization with other salmonid fish. Genetics, 172, 2405-2419. – reference: Hansen MM, Ruzzante DE, Nielsen EE, Bekkevold D, Mensberg KLD (2002) Long-term effective population sizes, temporal stability of genetic composition and potential for local adaptation in anadromous brown trout (Salmo trutta) populations. Molecular Ecology, 11, 2523-2535. – reference: Wang JL (2001) A pseudo-likelihood method for estimating effective population size from temporally spaced samples. Genetical Research, 78, 243-257. – reference: Leonard JA (2008) Ancient DNA applications for wildlife conservation. Molecular Ecology, 17, 4186-4196. – reference: Dieperink C, Ejbye-Ernst M, Jensen AR et al . (1997) Laksefiskene Og Fiskeriet I Vadehavsområdet. DFU Rapport 40-97. Danish Institute for Fisheries Research, Charlottenlund, Denmark. – reference: Svärdson G, Faderström Å (1982) Adaptive differences in the long-distance migration of some trout (Salmo trutta) stocks. Reports of the Institute of Freshwater Research, Drottningholm, 60, 51-80. – reference: Waples RS, Do C (2008) ldne: a program for estimating effective population size from data on linkage disequilibrium. Molecular Ecology Resources, 8, 753-756. – reference: Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Molecular Ecology, 16, 463-475. – reference: Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370. – reference: Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4, 535-538. – reference: Ardren WR, Kapuscinski AR (2003) Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout. Molecular Ecology, 12, 35-49. – reference: Palstra FP, O'Connell MF, Ruzzante DE (2007) Population structure and gene flow reversals in Atlantic salmon (Salmo salar) over contemporary and long-term temporal scales: effects of population size and life history. Molecular Ecology, 16, 4504-4522. – reference: Roberge C, Normandeau E, Einum S, Guderley H, Bernatchez L (2008) Genetic consequences of interbreeding between farmed and wild Atlantic salmon: insights from the transcriptome. Molecular Ecology, 17, 314-324. – reference: Dieringer D, Schlotterer C (2003) Microsatellite Analyser (msa): a platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes, 3, 167-169. – reference: Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics, 7, 167-184. – reference: Estoup A, Rousset F, Michalakis Y et al . (1998) Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta). Molecular Ecology, 7, 339-353. – reference: Fraser DJ, Hansen MM, Østergaard S et al . (2007a) Comparative estimation of effective population sizes and temporal gene flow in two contrasting population systems. Molecular Ecology, 16, 3866-3889. – reference: Guinand B, Scribner KT, Page KS, Burnham-Curtis MK (2003) Genetic variation over space and time: analyses of extinct and remnant lake trout populations in the Upper Great Lakes. Proceedings of the Royal Society B: Biological Sciences, 270, 425-433. – reference: Wang IA, Gilk SE, Smoker WW, Gharrett AJ (2007) Outbreeding effect on embryo development in hybrids of allopatric pink salmon (Oncorhynchus gorbuscha) populations, a potential consequence of stock translocation. Aquaculture, 272, S152-S160. – reference: Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Molecular Ecology, 15, 1419-1439. – reference: Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends in Ecology & Evolution, 16, 613-622. – reference: Araki H, Waples RS, Ardren WR, Cooper B, Blouin MS (2007) Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life-history forms. Molecular Ecology, 16, 953-966. – reference: Adkison MD (1995) Population differentiation in Pacific salmon: local adaptation, genetic drift, or the environment? Canadian Journal of Fisheries and Aquatic Sciences, 52, 2762-2777. – reference: Vasemägi A, Gross R, Paaver T, Koljonen ML, Nilsson J (2005) Extensive immigration from compensatory hatchery releases into wild Atlantic salmon population in the Baltic Sea: spatio-temporal analysis over 18 years. Heredity, 95, 76-83. – reference: Fraser DJ, Lippe C, Bernatchez L (2004) Consequences of unequal population size, asymmetric gene flow and sex-biased dispersal on population structure in brook charr (Salvelinus fontinalis). Molecular Ecology, 13, 67-80. – reference: Slettan A, Olsaker I, Lie O (1997) Segregation studies and linkage analysis of Atlantic salmon microsatellites using haploid genetics. Heredity, 78, 620-627. – reference: Ferguson A, Taggart JB (1991) Genetic differentiation among the sympatric brown trout (Salmo trutta) populations of Lough Melvin, Ireland. Biological Journal of the Linnean Society, 43, 221-237. – reference: Estoup A, Presa P, Krieg F, Vaiman D, Guyomard R (1993) (CT)n and (GT)n microsatellites - a new class of genetic markers for Salmo trutta (brown trout). Heredity, 71, 488-496. – reference: Martinez-Cruz B, Godoy JA, Negro JJ (2007) Population fragmentation leads to spatial and temporal genetic structure in the endangered Spanish imperial eagle. Molecular Ecology, 16, 477-486. – reference: Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology, 13, 55-65. – reference: Verardi A, Lucchini V, Randi E (2006) Detecting introgressive hybridization between free-ranging domestic dogs and wild wolves (Canis lupus) by admixture linkage disequilibrium analysis. Molecular Ecology, 15, 2845-2855. – reference: Fraser DJ, Cook AM, Eddington JD, Bentzen P (2008) Mixed evidence for reduced local adaptation in wild salmon resulting from interbreeding with escaped farmed salmon: complexities in hybrid fitness. Evolutionary Applications, 1, 501-512. – reference: Araki H, Berejikian BA, Ford MJ, Blouin MS (2008) Fitness of hatchery-reared salmonids in the wild. Evolutionary Applications, 1, 342-355. – reference: Slettan A, Olsaker I, Lie O (1995) Atlantic salmon, Salmo salar, microsatellites at the Ssosl25, Ssosl85, Ssosl311, Ssosl417 loci. Animal Genetics, 26, 281-282. – volume: 270 start-page: 425 year: 2003 end-page: 433 article-title: Genetic variation over space and time: analyses of extinct and remnant lake trout populations in the Upper Great Lakes. publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 6 start-page: 487 year: 1997 end-page: 492 article-title: Analysis of microsatellite DNA from old scale samples of Atlantic salmon : a comparison of genetic composition over 60 years publication-title: Molecular Ecology – volume: 163 start-page: 429 year: 2003 end-page: 446 article-title: Estimating effective population size and migration rates from genetic samples over space and time publication-title: Genetics – volume: 27 start-page: 57 year: 1996 end-page: 64 article-title: Polymorphic Atlantic salmon, L., microsatellites at the SSOSL438, SSOSL439 and SSOSL444 loci publication-title: Animal Genetics – volume: 21 start-page: 434 year: 2007 end-page: 443 article-title: The multifarious effects of dispersal and gene flow on contemporary adaptation publication-title: Functional Ecology – volume: 53 start-page: 2292 year: 1996 end-page: 2298 article-title: Rapid analysis of genetic variation in Atlantic salmon ( ) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 12 start-page: 35 year: 2003 end-page: 49 article-title: Demographic and genetic estimates of effective population size ( ) reveals genetic compensation in steelhead trout publication-title: Molecular Ecology – volume: 17 start-page: 4186 year: 2008 end-page: 4196 article-title: Ancient DNA applications for wildlife conservation publication-title: Molecular Ecology – volume: 14 start-page: 2611 year: 2005 end-page: 2620 article-title: Detecting the number of clusters of individuals using the software Structure: a simulation study publication-title: Molecular Ecology – volume: 8 start-page: 753 year: 2008 end-page: 756 article-title: ldne: a program for estimating effective population size from data on linkage disequilibrium publication-title: Molecular Ecology Resources – volume: 16 start-page: 463 year: 2007 end-page: 475 article-title: Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management publication-title: Molecular Ecology – volume: 175 start-page: 219 year: 2007 end-page: 233 article-title: Temporal estimates of effective population size in species with overlapping generations publication-title: Genetics – volume: 22 start-page: 634 year: 2007 end-page: 642 article-title: Back to the future: museum specimens in population genetics publication-title: Trends in Ecology & Evolution – volume: 78 start-page: 620 year: 1997 end-page: 627 article-title: Segregation studies and linkage analysis of Atlantic salmon microsatellites using haploid genetics publication-title: Heredity – volume: 22 start-page: 25 year: 2007 end-page: 33 article-title: Genetic monitoring as a promising tool for conservation and management publication-title: Trends in Ecology & Evolution – year: 1998 – volume: 86 start-page: 485 year: 1995 end-page: 486 article-title: fstat (version 1.2): a computer program to calculate ‐statistics publication-title: Journal of Heredity – volume: 16 start-page: 1413 year: 2007 end-page: 1425 article-title: Gene flow, effective population size and selection at major histocompatibility complex genes: brown trout in the Hardanger Fjord, Norway publication-title: Molecular Ecology – volume: 78 start-page: 243 year: 2001 end-page: 257 article-title: A pseudo‐likelihood method for estimating effective population size from temporally spaced samples publication-title: Genetical Research – volume: 13 start-page: 55 year: 2004 end-page: 65 article-title: Genetic assignment methods for the direct, real‐time estimation of migration rate: a simulation‐based exploration of accuracy and power publication-title: Molecular Ecology – volume: 56 start-page: 154 year: 2002 end-page: 166 article-title: Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model publication-title: Evolution – volume: 7 start-page: 1225 year: 2004 end-page: 1241 article-title: Conceptual issues in local adaptation publication-title: Ecology Letters – volume: 16 start-page: 477 year: 2007 end-page: 486 article-title: Population fragmentation leads to spatial and temporal genetic structure in the endangered Spanish imperial eagle publication-title: Molecular Ecology – volume: 17 start-page: 314 year: 2008 end-page: 324 article-title: Genetic consequences of interbreeding between farmed and wild Atlantic salmon: insights from the transcriptome publication-title: Molecular Ecology – volume: 65 start-page: 309 year: 2008 end-page: 318 article-title: Stocking success of local‐origin fry and impact of hatchery ancestry: monitoring a new steelhead ( ) stocking program in a Minnesota tributary to Lake Superior publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 30 start-page: 539 year: 1999 end-page: 563 article-title: Gene flow and introgression from domesticated plants into their wild relatives publication-title: Annual Review of Ecology and Systematics – volume: 93 start-page: 153 year: 2002 end-page: 154 article-title: ibd (isolation by distance): a program for analyses of isolation by distance publication-title: Journal of Heredity – volume: 272 start-page: S152 year: 2007 end-page: S160 article-title: Outbreeding effect on embryo development in hybrids of allopatric pink salmon ( ) populations, a potential consequence of stock translocation publication-title: Aquaculture – volume: 152 start-page: 1 year: 1998 end-page: 6 article-title: The ghost of genetic diversity past: historical DNA analysis of the greater prairie chicken publication-title: American Naturalist – volume: 17 start-page: 294 year: 2008 end-page: 313 article-title: The nature of fisheries‐ and farming‐induced evolution publication-title: Molecular Ecology – volume: 16 start-page: 613 year: 2001 end-page: 622 article-title: The problems with hybrids: setting conservation guidelines publication-title: Trends in Ecology & Evolution – volume: 1 start-page: 342 year: 2008 end-page: 355 article-title: Fitness of hatchery‐reared salmonids in the wild publication-title: Evolutionary Applications – year: 1997 – volume: 26 start-page: 281 year: 1995 end-page: 282 article-title: Atlantic salmon, , microsatellites at the Ssosl25, Ssosl85, Ssosl311, Ssosl417 loci publication-title: Animal Genetics – volume: 4 start-page: 535 year: 2004 end-page: 538 article-title: Micro‐Checker: software for identifying and correcting genotyping errors in microsatellite data publication-title: Molecular Ecology Notes – volume: 65 start-page: 1013 year: 2008 end-page: 1023 article-title: Influence of landscape on resident and anadromous life history types of publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 102 start-page: 11968 year: 2005 end-page: 11973 article-title: Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species publication-title: Proceedings of the National Academy of Sciences, USA – year: 1993 – volume: 270 start-page: 2443 year: 2003 end-page: 2450 article-title: Fitness reduction and potential extinction of wild populations of Atlantic salmon, , as a result of interactions with escaped farm salmon. publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 16 start-page: 3866 year: 2007a end-page: 3889 article-title: Comparative estimation of effective population sizes and temporal gene flow in two contrasting population systems publication-title: Molecular Ecology – volume: 268 start-page: 1775 year: 2001 end-page: 1781 article-title: Genetic consequences of population decline in the European otter ( ): an assessment of microsatellite DNA variation in Danish otters from 1883 to 1993. publication-title: Proceedings of the Royal Society of London Series B: Biology Sciences – volume: 92 start-page: 832 year: 1996 end-page: 839 article-title: High level of genetic differentiation for allelic richness among populations of the argan tree [ (L.) Skeels] endemic to Morocco publication-title: Theoretical and Applied Genetics – volume: 1 start-page: 47 year: 2005 end-page: 50 article-title: Arlequin version 3.0: an integrated software package for population genetics data analysis publication-title: Evolutionary Bioinformatics Online – volume: 13 start-page: 67 year: 2004 end-page: 80 article-title: Consequences of unequal population size, asymmetric gene flow and sex‐biased dispersal on population structure in brook charr ( publication-title: Molecular Ecology – volume: 63 start-page: 1162 year: 2006 end-page: 1181 article-title: Cultured Atlantic salmon in nature: a review of their ecology and interaction with wild fish publication-title: ICES Journal of Marine Science – volume: 8 start-page: 527 year: 2007b end-page: 546 article-title: Loss of historical immigration and the unsuccessful rehabilitation of extirpated salmon populations publication-title: Conservation Genetics – volume: 98 start-page: 185 year: 1991 end-page: 207 article-title: A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon publication-title: Aquaculture – volume: 15 start-page: 1419 year: 2006 end-page: 1439 article-title: What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity publication-title: Molecular Ecology – volume: 7 start-page: 339 year: 1998 end-page: 353 article-title: Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout ( publication-title: Molecular Ecology – volume: 19 start-page: 153 year: 1983 end-page: 170 article-title: Accuracy of estimated phylogenetic trees from molecular data. 2. Gene frequency data publication-title: Journal of Molecular Evolution – volume: 9 start-page: 450 year: 2008 end-page: 461 article-title: Waking the dead: the value of population genetic analyses of historical samples publication-title: Fish and Fisheries – volume: 53 start-page: 261 year: 1999b end-page: 268 article-title: Genetic variation in time and space: microsatellite analysis of extinct and extant populations of Atlantic salmon publication-title: Evolution – volume: 52 start-page: 2762 year: 1995 end-page: 2777 article-title: Population differentiation in Pacific salmon: local adaptation, genetic drift, or the environment? publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 267 start-page: 97 year: 2000 end-page: 102 article-title: Loss of genetic diversity in the endemic Hector's dolphin due to fisheries‐related mortality. publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 15 start-page: 2845 year: 2006 end-page: 2855 article-title: Detecting introgressive hybridization between free‐ranging domestic dogs and wild wolves ( ) by admixture linkage disequilibrium analysis publication-title: Molecular Ecology – volume: 71 start-page: 488 year: 1993 end-page: 496 article-title: (CT)n and (GT)n microsatellites — a new class of genetic markers for (brown trout) publication-title: Heredity – volume: 95 start-page: 76 year: 2005 end-page: 83 article-title: Extensive immigration from compensatory hatchery releases into wild Atlantic salmon population in the Baltic Sea: spatio‐temporal analysis over 18 years publication-title: Heredity – volume: 95 start-page: 536 year: 2004 end-page: 539 article-title: GeneClass2: a software for genetic assignment and first‐generation migrant detection publication-title: Journal of Heredity – volume: 164 start-page: 1567 year: 2003 end-page: 1587 article-title: Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies publication-title: Genetics – volume: 147 start-page: 1943 year: 1997 end-page: 1957 article-title: An empirical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae) populations publication-title: Genetics – volume: 13 start-page: 1433 year: 2004 end-page: 1445 article-title: Stocking impact and migration pattern in an anadromous brown trout ( ) complex: where have all the stocked spawning sea trout gone? publication-title: Molecular Ecology – volume: 2 start-page: 363 year: 2001 end-page: 378 article-title: Captive breeding and the genetic fitness of natural populations publication-title: Conservation Genetics – volume: 16 start-page: 953 year: 2007 end-page: 966 article-title: Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life‐history forms publication-title: Molecular Ecology – volume: 5 start-page: 164 year: 1989 end-page: 166 article-title: Phylogeny inference package (version 3.2) publication-title: Cladistics – volume: 4 start-page: 406 year: 1987 end-page: 425 article-title: The neighbor‐joining method — a new method for reconstructing phylogenetic trees publication-title: Molecular Biology and Evolution – volume: 43 start-page: 221 year: 1991 end-page: 237 article-title: Genetic differentiation among the sympatric brown trout ( ) populations of Lough Melvin, Ireland publication-title: Biological Journal of the Linnean Society – volume: 6 start-page: 541 year: 2003 end-page: 549 article-title: Alternative male life‐history tactics as potential vehicles for speeding introgression of farm salmon traits into wild populations publication-title: Ecology Letters – volume: 7 start-page: 167 year: 2006 end-page: 184 article-title: A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci publication-title: Conservation Genetics – volume: 17 start-page: 2382 year: 2008 end-page: 2396 article-title: Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation publication-title: Molecular Ecology – volume: 155 start-page: 945 year: 2000 end-page: 959 article-title: Inference of population structure using multilocus genotype data publication-title: Genetics – volume: 98 start-page: 4563 year: 2001 end-page: 4568 article-title: Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach publication-title: Proceedings of the National Academy of Sciences, USA – volume: 29 start-page: 1165 year: 2001 end-page: 1188 article-title: The control of the false discovery rate in multiple testing under dependency publication-title: Annals of Statistics – volume: 16 start-page: 2407 year: 2007 end-page: 2421 article-title: Long‐term effects of translocation and release numbers on fine‐scale population structure among coho salmon ( publication-title: Molecular Ecology – volume: 17 start-page: 58 year: 2008 end-page: 71 article-title: Evolutionary consequences of human disturbance in a rainforest bird species from Central Africa publication-title: Molecular Ecology – volume: 60 start-page: 51 year: 1982 end-page: 80 article-title: Adaptive differences in the long‐distance migration of some trout ( ) stocks publication-title: Reports of the Institute of Freshwater Research, Drottningholm – volume: 1 start-page: 501 year: 2008 end-page: 512 article-title: Mixed evidence for reduced local adaptation in wild salmon resulting from interbreeding with escaped farmed salmon: complexities in hybrid fitness publication-title: Evolutionary Applications – volume: 38 start-page: 1358 year: 1984 end-page: 1370 article-title: Estimating ‐statistics for the analysis of population structure publication-title: Evolution – volume: 16 start-page: 4504 year: 2007 end-page: 4522 article-title: Population structure and gene flow reversals in Atlantic salmon ( ) over contemporary and long‐term temporal scales: effects of population size and life history publication-title: Molecular Ecology – volume: 9 start-page: 2175 year: 2000 end-page: 2178 article-title: Characterization of microsatellite and minisatellite loci in Atlantic salmon ( L.) and cross‐species amplification in other salmonids publication-title: Molecular Ecology – volume: 172 start-page: 2405 year: 2006 end-page: 2419 article-title: A linkage map for brown trout ( ): chromosome homeologies and comparative genome organization with other salmonid fish publication-title: Genetics – volume: 130 start-page: 265 year: 1999a end-page: 276 article-title: Analysis of DNA from old scale samples: technical aspects, applications and perspectives for conservation publication-title: Hereditas – volume: 3 start-page: 167 year: 2003 end-page: 169 article-title: Microsatellite Analyser (msa): a platform independent analysis tool for large microsatellite data sets publication-title: Molecular Ecology Notes – volume: 60 start-page: 433 year: 2003 end-page: 440 article-title: Differential reproductive success of sympatric, naturally spawning hatchery and wild steelhead trout ( ) through the adult stage publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 11 start-page: 2523 year: 2002 end-page: 2535 article-title: Long‐term effective population sizes, temporal stability of genetic composition and potential for local adaptation in anadromous brown trout ( ) populations publication-title: Molecular Ecology – volume: 11 start-page: 148 year: 2001 end-page: 160 article-title: Brown trout ( ) stocking impact assessment using microsatellite DNA markers publication-title: Ecological Applications – volume: 145 start-page: 1219 year: 1997 end-page: 1228 article-title: Genetic differentiation and estimation of gene flow from ‐statistics under isolation by distance publication-title: Genetics – start-page: 135 year: 1980 end-page: 150 – volume: 11 start-page: 1003 year: 2002 end-page: 1015 article-title: Estimating the long‐term effects of stocking domesticated trout into wild brown trout ( ) populations: an approach using microsatellite DNA analysis of historical and contemporary samples publication-title: Molecular Ecology – ident: e_1_2_7_12_1 doi: 10.1139/f07-167 – ident: e_1_2_7_15_1 doi: 10.1046/j.1471-8286.2003.00351.x – ident: e_1_2_7_2_1 doi: 10.1139/f95-865 – start-page: 135 volume-title: Conservation Biology: An Evolutionary‐Ecological Perspective year: 1980 ident: e_1_2_7_28_1 – ident: e_1_2_7_35_1 doi: 10.1534/genetics.105.048330 – ident: e_1_2_7_65_1 doi: 10.1111/j.1365-294X.2004.02396.x – ident: e_1_2_7_79_1 doi: 10.1038/sj.hdy.6800693 – ident: e_1_2_7_38_1 doi: 10.1046/j.1365-294X.2002.01495.x – ident: e_1_2_7_42_1 doi: 10.1111/j.1365-294X.2007.03485.x – ident: e_1_2_7_9_1 doi: 10.1093/jhered/93.2.153 – ident: e_1_2_7_37_1 doi: 10.1098/rspb.2002.2250 – ident: e_1_2_7_36_1 doi: 10.1093/oxfordjournals.jhered.a111627 – ident: e_1_2_7_3_1 doi: 10.1016/S0169-5347(01)02290-X – ident: e_1_2_7_52_1 doi: 10.1139/F08-025 – ident: e_1_2_7_82_1 doi: 10.1017/S0016672301005286 – ident: e_1_2_7_86_1 doi: 10.1111/j.1755-0998.2007.02061.x – volume: 7 start-page: 339 year: 1998 ident: e_1_2_7_22_1 article-title: Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta publication-title: Molecular Ecology doi: 10.1046/j.1365-294X.1998.00362.x – ident: e_1_2_7_57_1 doi: 10.1111/j.1558-5646.1999.tb05351.x – ident: e_1_2_7_81_1 doi: 10.1016/j.tree.2007.08.017 – ident: e_1_2_7_39_1 doi: 10.1046/j.1365-294X.2002.01634.x – ident: e_1_2_7_85_1 doi: 10.1007/s10592-005-9100-y – ident: e_1_2_7_49_1 doi: 10.1111/j.1365-294X.2007.03147.x – ident: e_1_2_7_23_1 doi: 10.1111/j.1365-294X.2005.02553.x – ident: e_1_2_7_87_1 doi: 10.1111/j.1365-294X.2006.02890.x – ident: e_1_2_7_58_1 doi: 10.1139/cjfas-53-10-2292 – ident: e_1_2_7_78_1 doi: 10.1111/j.1471-8286.2004.00684.x – ident: e_1_2_7_88_1 doi: 10.1111/j.1752-4571.2009.00104.x – ident: e_1_2_7_73_1 doi: 10.1038/hdy.1997.101 – ident: e_1_2_7_59_1 doi: 10.1046/j.1365-294X.2004.02008.x – ident: e_1_2_7_10_1 doi: 10.1086/286145 – volume-title: Numerical Ecology year: 1998 ident: e_1_2_7_46_1 – ident: e_1_2_7_80_1 doi: 10.1111/j.1365-294X.2006.02995.x – ident: e_1_2_7_16_1 doi: 10.1111/j.1365-294X.2008.03771.x – ident: e_1_2_7_6_1 doi: 10.1046/j.1365-294X.2003.01705.x – ident: e_1_2_7_7_1 doi: 10.1073/pnas.081068098 – volume: 60 start-page: 51 year: 1982 ident: e_1_2_7_76_1 article-title: Adaptive differences in the long‐distance migration of some trout (Salmo trutta) stocks publication-title: Reports of the Institute of Freshwater Research, Drottningholm – ident: e_1_2_7_27_1 doi: 10.1111/j.1095-8312.1991.tb00595.x – ident: e_1_2_7_50_1 doi: 10.1098/rspb.2003.2520 – ident: e_1_2_7_43_1 doi: 10.1016/j.icesjms.2006.03.004 – ident: e_1_2_7_18_1 doi: 10.1007/BF00221895 – ident: e_1_2_7_84_1 doi: 10.1111/j.1095-8649.2007.01398.x – ident: e_1_2_7_60_1 doi: 10.1093/genetics/147.4.1943 – ident: e_1_2_7_30_1 doi: 10.1111/j.1365-294X.2007.03453.x – ident: e_1_2_7_4_1 doi: 10.1111/j.1752-4571.2008.00026.x – ident: e_1_2_7_8_1 doi: 10.1214/aos/1013699998 – ident: e_1_2_7_71_1 doi: 10.1111/j.1365-2052.1995.tb03262.x – ident: e_1_2_7_45_1 – volume: 5 start-page: 164 year: 1989 ident: e_1_2_7_26_1 article-title: Phylogeny inference package (version 3.2) publication-title: Cladistics – ident: e_1_2_7_19_1 doi: 10.1111/j.1365-294X.2007.03271.x – ident: e_1_2_7_47_1 doi: 10.1111/j.1365-294X.2008.03891.x – ident: e_1_2_7_77_1 doi: 10.1016/0044-8486(91)90383-I – ident: e_1_2_7_64_1 doi: 10.1093/jhered/esh074 – ident: e_1_2_7_21_1 doi: 10.1038/hdy.1993.167 – ident: e_1_2_7_5_1 doi: 10.1111/j.1365-294X.2006.03206.x – ident: e_1_2_7_33_1 doi: 10.1046/j.1461-0248.2003.00462.x – ident: e_1_2_7_48_1 doi: 10.1023/A:1012550620717 – ident: e_1_2_7_34_1 doi: 10.1111/j.1365-2435.2006.01228.x – ident: e_1_2_7_20_1 doi: 10.1146/annurev.ecolsys.30.1.539 – volume: 4 start-page: 406 year: 1987 ident: e_1_2_7_69_1 article-title: The neighbor‐joining method — a new method for reconstructing phylogenetic trees publication-title: Molecular Biology and Evolution – ident: e_1_2_7_53_1 doi: 10.1007/BF02300753 – ident: e_1_2_7_41_1 doi: 10.1111/j.1365-294X.2007.03255.x – ident: e_1_2_7_63_1 doi: 10.1098/rspb.2000.0972 – ident: e_1_2_7_61_1 doi: 10.1111/j.1365-294X.2007.03541.x – ident: e_1_2_7_51_1 doi: 10.1139/f03-040 – ident: e_1_2_7_74_1 doi: 10.1111/j.1365-294X.2007.03478.x – ident: e_1_2_7_55_1 doi: 10.1046/j.1365-294X.1997.00204.x – ident: e_1_2_7_68_1 doi: 10.1111/j.1365-294X.2004.02162.x – ident: e_1_2_7_75_1 doi: 10.1111/j.0014-3820.2002.tb00857.x – ident: e_1_2_7_44_1 doi: 10.1111/j.1461-0248.2004.00684.x – ident: e_1_2_7_83_1 doi: 10.1016/j.aquaculture.2007.08.002 – ident: e_1_2_7_13_1 doi: 10.1073/pnas.0503811102 – ident: e_1_2_7_25_1 doi: 10.1111/j.1365-294X.2005.02553.x – ident: e_1_2_7_17_1 doi: 10.1111/j.1365-294X.2006.03148.x – ident: e_1_2_7_70_1 doi: 10.1016/j.tree.2006.08.009 – ident: e_1_2_7_40_1 doi: 10.1890/1051-0761(2001)011[0148:BTSTSI]2.0.CO;2 – ident: e_1_2_7_89_1 doi: 10.1111/j.1558-5646.1984.tb05657.x – ident: e_1_2_7_54_1 doi: 10.1111/j.1467-2979.2008.00304.x – ident: e_1_2_7_66_1 doi: 10.1111/j.1365-294X.2007.03438.x – ident: e_1_2_7_11_1 doi: 10.1046/j.1365-294X.2000.105312.x – ident: e_1_2_7_56_1 doi: 10.1111/j.1601-5223.1999.00265.x – ident: e_1_2_7_67_1 doi: 10.1111/j.1365-294X.2005.02568.x – ident: e_1_2_7_32_1 doi: 10.1046/j.1365-294X.2003.02038.x – ident: e_1_2_7_24_1 doi: 10.1111/j.1365-294X.2006.03067.x – ident: e_1_2_7_31_1 doi: 10.1007/s10592-006-9188-8 – ident: e_1_2_7_62_1 doi: 10.1098/rspb.2001.1762 – ident: e_1_2_7_72_1 doi: 10.1111/j.1365-2052.1996.tb01180.x – volume-title: Laksefiskene Og Fiskeriet I Vadehavsområdet year: 1997 ident: e_1_2_7_14_1 – ident: e_1_2_7_29_1 doi: 10.1111/j.1752-4571.2008.00037.x – reference: 19457205 - Mol Ecol. 2009 Jun;18(12):2545-6 |
SSID | ssj0013255 |
Score | 2.3340428 |
Snippet | Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities.... AbstractAnalyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human... |
SourceID | proquest pubmed crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2549 |
SubjectTerms | admixture adverse effects Animal populations Animals Anthropogenic factors Cluster Analysis Crosses, Genetic Denmark DNA DNA - genetics effective population size Fish hatcheries Fish populations Fisheries Freshwater gene flow Genetic diversity Genetic structure genetic techniques and protocols Genetic Variation genetics Genetics, Population habitats hatcheries humans introgression local adaptation microsatellite DNA Microsatellite Repeats Natural populations Population decline Population Density Population Dynamics Population genetics population size River systems Rivers Salmo trutta Sequence Analysis, DNA stocking Trout Trout - genetics Wildlife |
Title | Sixty years of anthropogenic pressure: a spatio-temporal genetic analysis of brown trout populations subject to stocking and population declines |
URI | https://api.istex.fr/ark:/67375/WNG-TS6H18WV-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-294X.2009.04198.x https://www.ncbi.nlm.nih.gov/pubmed/19457206 https://www.proquest.com/docview/210707612 https://www.proquest.com/docview/20203516 https://www.proquest.com/docview/46297516 https://www.proquest.com/docview/67543600 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgJSQuvGHD8vABcWuVh-3E3NCqS4W0e9hu2d4sO3bQqqtm1SRSy4mfgPiJ_BJmnDS0aEErxKWKlBlLns5MPs-MZwh5w3RmHWd2AEcv-DFFMZB5JDFTyCXnWa4dBvSPT8R4yj7O-Kyrf8K7MG1_iD7ghpbh_TUauDbVrpH7Ci3JZl3bSQYH6CHiSXyB-Og03koo-AGoANhj8DxZslvUc-1CO1-q24UuAb-i6FfXgdFdbOs_Tkf3yXyzrbYmZT5sajPMv_zW8fH_7PsBuddhWPq-VbqH5JZbPCJ32qmWa3ga-U7Y68fk--RiVa_pGqypomVBdTeVAZT2Iqe-BLdZundU08oXdv_4-q1rlXVJgQbvVwJP2zUF-Q3GDGi9LJuaXvWTxypaNQbDSbQuKWDZHKP_wGe3aKh1eAfUVU_I9Gh0djgedEMgBjlgI3DG2EPMRlGiU8edCGOX5XEaCpsVxqdRJXhoy421qU4iHUorskIC7OCFM5kVyVOytygXbp9QEQG8FdYAyBKs0KnOuUwyYVgiRMp4FJB084ervOuQjoM6LtXWSQlkr1D2OL9TKi97tQpI1HNetV1CbsCzDzql9Gdw5mo6iTGFjOCYsTggb72i9Wvp5RwL8FKuzk8-qLOJGEfZ-Sd1GpCDjSaqzvdUCg7xKUanYJnX_VtwGpgJ0gtXNkCCguOR-DMFE3jl-m8UcNIEwYVhQJ61JvBr55LxNA6BV3hFvrFI1PHoEJ-e_yvjAbnbZvswSvaC7NXLxr0E0FibV94d_ARJ0l1W |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEYIL71JTSveAuCXyY3dtc0NVSoAmhyahua3W3jWqGsVVbEsJJ34C4ifyS5hZO26CCqoQl8hSZlba8ez4m8fOEPKaqUgbznQHXC_4SbKsE6dejJlCHnMepcpgQH8wFP0J-zjl02YcEN6FqftDtAE3PBnWXuMBx4D09im3JVoxmzZ9Jxl40F0AlHdwwLf1r079jZSCHYEKkN0H2xMF22U916609a26nakcECwKf3kdHN1Gt_bzdPyQzNYbq6tSLrpVmXTTr7_1fPxPO39EHjQwlr6r9e4xuWXmT8jderDlCp56thn26in5MTpfliu6ggNV0DyjqhnMAHp7nlJbhVstzFuqaGFru39--950y5pRoMErlsBTN05B_gTDBrRc5FVJL9vhYwUtqgQjSrTMKcDZFBMAwKc3aKg2eA3UFM_I5Lg3Pup3mjkQnRTgEdhjbCOmPS9QoeFGuL6JUj90hY6yxGZSYzDSmidahyrwlBtrEWUxIA-emSTSItglO_N8bvYIFR4gXKETwFmCZSpUKY-DSCQsECJk3HNIuH7jMm2apOOsjpnccJZA9hJljyM8Y2llL5cO8VrOy7pRyA149kCppPoC9lxORj5mkREfM-Y75I3VtHYttbjAGryQy7Phezkeib4XnX2Wpw7ZX6uibMxPIcGPDzFABcsctv-C3cBkkJqbvAISFBz3xJ8pmMBb13-jAGcTBOe6Dnlen4GrnceMh74LvMJq8o1FIge9I3x68a-Mh-Refzw4kScfhp_2yf06-YdBs5dkp1xU5gAwZJm8srbhFwX4YXE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEYgL71JToHtA3BL5sbu2uaE2ITwaoaahua3W3jWqUsVRbEsJJ34C4ifyS5hZOyZBBVWIS2QpMyvteGb87czsDCEvmIq04Ux34OgFP0mWdeLUizFTyGPOo1QZDOgfD8VgzN5N-KSpf8K7MHV_iDbghpZh_TUa-Fxn20ZuK7RiNmnaTjI4QHcBT95gwo1Qw49O_I2Mgp2ACojdB9cTBdtVPZeutPWpup6pHAAsyn55GRrdBrf269S_S6brfdVFKdNuVSbd9MtvLR__z8bvkTsNiKWva627T66Z2QNysx5ruYKnnm2FvXpIvo_Ol-WKrsCcCppnVDVjGUBrz1Nqa3CrhXlFFS1sZfePr9-aXlkXFGjwgiXw1G1TkD_BoAEtF3lV0nk7eqygRZVgPImWOQUwm2L4H_j0Bg3VBi-BmuIRGfd7p4eDTjMFopMCOAJvjE3EtOcFKjTcCNc3UeqHrtBRltg8agwuWvNE61AFnnJjLaIsBtzBM5NEWgS7ZGeWz8weocIDfCt0AihLsEyFKuVxEImEBUKEjHsOCdcvXKZNi3Sc1HEhN45KIHuJsscBnrG0spdLh3gt57xuE3IFnj3QKak-gzeX45GPOWREx4z5DnlpFa1dSy2mWIEXcnk2fCNPR2LgRWef5IlD9teaKBvnU0g4xYcYnoJlDtp_wWtgKkjNTF4BCQqOe-LPFEzgneu_UcBREwTnug55XJvAr53HjIe-C7zCKvKVRSKPe4f49ORfGQ_IrY9Hffnh7fD9PrldZ_4wYvaU7JSLyjwDAFkmz61n-AmkuGAp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sixty+years+of+anthropogenic+pressure%3A+a+spatio-temporal+genetic+analysis+of+brown+trout+populations+subject+to+stocking+and+population+declines&rft.jtitle=Molecular+ecology&rft.au=HANSEN%2C+MICHAEL+M.&rft.au=FRASER%2C+DYLAN+J.&rft.au=MEIER%2C+KRISTIAN&rft.au=MENSBERG%2C+KAREN-LISE+D.&rft.date=2009-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=18&rft.issue=12&rft.spage=2549&rft.epage=2562&rft_id=info:doi/10.1111%2Fj.1365-294X.2009.04198.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_TS6H18WV_R |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |