Sixty years of anthropogenic pressure: a spatio-temporal genetic analysis of brown trout populations subject to stocking and population declines

Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout (Salmo tru...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology Vol. 18; no. 12; pp. 2549 - 2562
Main Authors Hansen, Michael M, Fraser, Dylan J, Meier, Kristian, Mensberg, Karen-Lise D
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.06.2009
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout (Salmo trutta) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14 to 64%. Historical population genetic structure was characterized by isolation by distance and by positive correlations between historical effective population sizes and habitat area within river systems. Contemporary population genetic structure still showed isolation by distance, but also reflected differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression by hatchery strain trout should be the most significant conservation concern in this system. Based on theoretical considerations, we argue that population declines have had limited negative effects for the persistence of adaptive variation, but admixture with hatchery trout may have resulted in reduced local adaptation. Collectively, our study demonstrates the usefulness of analysing historical samples for identifying the most important consequences of human activities on the genetic structure of wild populations.
AbstractList AbstractAnalyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout (Salmo trutta) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14 to 64%. Historical population genetic structure was characterized by isolation by distance and by positive correlations between historical effective population sizes and habitat area within river systems. Contemporary population genetic structure still showed isolation by distance, but also reflected differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression by hatchery strain trout should be the most significant conservation concern in this system. Based on theoretical considerations, we argue that population declines have had limited negative effects for the persistence of adaptive variation, but admixture with hatchery trout may have resulted in reduced local adaptation. Collectively, our study demonstrates the usefulness of analysing historical samples for identifying the most important consequences of human activities on the genetic structure of wild populations.
Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout (Salmo trutta) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14 to 64%. Historical population genetic structure was characterized by isolation by distance and by positive correlations between historical effective population sizes and habitat area within river systems. Contemporary population genetic structure still showed isolation by distance, but also reflected differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression by hatchery strain trout should be the most significant conservation concern in this system. Based on theoretical considerations, we argue that population declines have had limited negative effects for the persistence of adaptive variation, but admixture with hatchery trout may have resulted in reduced local adaptation. Collectively, our study demonstrates the usefulness of analysing historical samples for identifying the most important consequences of human activities on the genetic structure of wild populations.
Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout (Salmo trutta) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14 to 64%. Historical population genetic structure was characterized by isolation by distance and by positive correlations between historical effective population sizes and habitat area within river systems. Contemporary population genetic structure still showed isolation by distance, but also reflected differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression by hatchery strain trout should be the most significant conservation concern in this system. Based on theoretical considerations, we argue that population declines have had limited negative effects for the persistence of adaptive variation, but admixture with hatchery trout may have resulted in reduced local adaptation. Collectively, our study demonstrates the usefulness of analysing historical samples for identifying the most important consequences of human activities on the genetic structure of wild populations.Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout (Salmo trutta) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14 to 64%. Historical population genetic structure was characterized by isolation by distance and by positive correlations between historical effective population sizes and habitat area within river systems. Contemporary population genetic structure still showed isolation by distance, but also reflected differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression by hatchery strain trout should be the most significant conservation concern in this system. Based on theoretical considerations, we argue that population declines have had limited negative effects for the persistence of adaptive variation, but admixture with hatchery trout may have resulted in reduced local adaptation. Collectively, our study demonstrates the usefulness of analysing historical samples for identifying the most important consequences of human activities on the genetic structure of wild populations.
Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout ( Salmo trutta ) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14 to 64%. Historical population genetic structure was characterized by isolation by distance and by positive correlations between historical effective population sizes and habitat area within river systems. Contemporary population genetic structure still showed isolation by distance, but also reflected differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression by hatchery strain trout should be the most significant conservation concern in this system. Based on theoretical considerations, we argue that population declines have had limited negative effects for the persistence of adaptive variation, but admixture with hatchery trout may have resulted in reduced local adaptation. Collectively, our study demonstrates the usefulness of analysing historical samples for identifying the most important consequences of human activities on the genetic structure of wild populations.
Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout (Salmo trutta) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14 to 64%. Historical population genetic structure was characterized by isolation by distance and by positive correlations between historical effective population sizes and habitat area within river systems. Contemporary population genetic structure still showed isolation by distance, but also reflected differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression by hatchery strain trout should be the most significant conservation concern in this system. Based on theoretical considerations, we argue that population declines have had limited negative effects for the persistence of adaptive variation, but admixture with hatchery trout may have resulted in reduced local adaptation. Collectively, our study demonstrates the usefulness of analysing historical samples for identifying the most important consequences of human activities on the genetic structure of wild populations. [PUBLICATION ABSTRACT]
Author Fraser, Dylan J
Hansen, Michael M
Mensberg, Karen-Lise D
Meier, Kristian
Author_xml – sequence: 1
  fullname: Hansen, Michael M
– sequence: 2
  fullname: Fraser, Dylan J
– sequence: 3
  fullname: Meier, Kristian
– sequence: 4
  fullname: Mensberg, Karen-Lise D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19457206$$D View this record in MEDLINE/PubMed
BookMark eNqNkt9uFCEUh4mpsX_0FZR44d2swAwMmNjEbGprUjVxW-sdYQZmZTs7jMCku2_hI8vs1Gp603IDCd93IOf8DsFe5zoDAMRohtN6u5rhnNGMiOLHjCAkZqjAgs82T8DB3cUeOECCkQwjnu-DwxBWCOGcUPoM7GNR0JIgdgB-L-wmbuHWKB-ga6Dq4k_verc0na1h700IgzfvoIKhV9G6LJp177xqYSJMTIzqVLsNdmdX3t10MHo3RNi7fmhHpQswDNXK1BFGB0N09bXtlsnT_zFQm7q1nQnPwdNGtcG8uN2PwOXHk4v5WXb-9fTT_MN5VlNe8ExQXAqNca5KQw1DxPCalIhp3lQIEZQLpbWmldalyrFCQjPeCMIYbUzFNcuPwJupbu_dr8GEKNc21KZtVWfcECQraZEzhB4EC0ZESfHDFcn4rQl8fQ9cucGnNiYGoxKVDJMEvbyFhmpttOy9XSu_lX9HlwA-AbV3IXjT_EOQHFMiV3IMgxzDIMeUyF1K5Capx_fU2sbdGKJXtn1MgfdTgRvbmu2jH5afT-bjKfnZ5NsQzebOV_469T0vqbz6ciovFuwM86vv8lviX018o5xUS2-DvFyQFGeU2smLguR_AFHE8U8
CitedBy_id crossref_primary_10_1111_j_1365_294X_2009_04199_x
crossref_primary_10_1111_mec_13570
crossref_primary_10_1111_j_1365_294X_2012_05581_x
crossref_primary_10_1007_s10592_014_0577_0
crossref_primary_10_1038_hdy_2012_36
crossref_primary_10_1093_biolinnean_blad002
crossref_primary_10_1007_s10592_015_0699_z
crossref_primary_10_1186_1471_2148_12_247
crossref_primary_10_1007_s10592_011_0231_z
crossref_primary_10_1007_s10201_015_0450_y
crossref_primary_10_1007_s10592_011_0211_3
crossref_primary_10_1007_s11160_015_9405_y
crossref_primary_10_1007_s12686_010_9310_6
crossref_primary_10_1007_s10592_019_01168_2
crossref_primary_10_1111_mec_14816
crossref_primary_10_1111_eva_13544
crossref_primary_10_1111_j_1365_2400_2009_00706_x
crossref_primary_10_1007_s10592_012_0438_7
crossref_primary_10_1134_S0032945223060085
crossref_primary_10_1007_s10592_014_0602_3
crossref_primary_10_1111_j_1365_294X_2011_05266_x
crossref_primary_10_1371_journal_pone_0202383
crossref_primary_10_1093_icesjms_fsaa240
crossref_primary_10_1111_fwb_12193
crossref_primary_10_1038_s41437_019_0292_1
crossref_primary_10_1111_eff_12102
crossref_primary_10_1007_s10592_018_1047_x
crossref_primary_10_1007_s10750_011_0708_2
crossref_primary_10_1080_00028487_2011_567837
crossref_primary_10_31857_S0042875223060140
crossref_primary_10_1111_eva_12166
crossref_primary_10_1080_00028487_2014_935477
crossref_primary_10_1007_s10592_013_0510_y
crossref_primary_10_1111_eva_12566
crossref_primary_10_1139_f2011_107
crossref_primary_10_1111_eva_12160
crossref_primary_10_1038_s41598_021_96681_1
crossref_primary_10_1007_s00027_024_01135_1
crossref_primary_10_1111_eff_12215
crossref_primary_10_1007_s10592_018_1095_2
crossref_primary_10_1111_j_1752_4571_2012_00280_x
crossref_primary_10_1139_f2012_118
crossref_primary_10_1093_icesjms_fsae114
crossref_primary_10_3390_genes14040808
crossref_primary_10_1134_S1022795419090060
crossref_primary_10_1016_j_aquaculture_2013_07_034
crossref_primary_10_1002_ece3_5191
crossref_primary_10_1111_fme_12259
crossref_primary_10_1111_j_1365_294X_2010_04628_x
crossref_primary_10_1007_s10592_015_0797_y
crossref_primary_10_1007_s10750_023_05463_5
crossref_primary_10_1073_pnas_2105076119
crossref_primary_10_1051_alr_2016012
crossref_primary_10_1016_j_aquaculture_2021_737043
crossref_primary_10_1002_ece3_3699
crossref_primary_10_3354_aei00032
crossref_primary_10_1111_fwb_13460
crossref_primary_10_1007_s10592_018_1083_6
crossref_primary_10_1371_journal_pone_0113697
crossref_primary_10_1111_eva_12941
crossref_primary_10_1111_fme_12643
crossref_primary_10_1111_j_1365_294X_2010_04615_x
crossref_primary_10_1038_hdy_2010_164
crossref_primary_10_1002_ece3_6457
crossref_primary_10_1111_j_1558_5646_2011_01385_x
crossref_primary_10_1139_f2011_040
crossref_primary_10_1002_nafm_10288
crossref_primary_10_1007_s10592_023_01582_7
crossref_primary_10_1002_aqc_3826
crossref_primary_10_1002_aqc_2856
crossref_primary_10_1002_nafm_10844
crossref_primary_10_1080_02755947_2014_902409
crossref_primary_10_1139_cjfas_2013_0460
crossref_primary_10_1111_j_1752_4571_2011_00198_x
crossref_primary_10_1371_journal_pone_0033986
crossref_primary_10_3390_fishes5020019
crossref_primary_10_1111_j_1365_294X_2012_05579_x
crossref_primary_10_1111_j_1752_4571_2010_00176_x
crossref_primary_10_1002_ece3_629
crossref_primary_10_1007_s10750_019_3924_9
crossref_primary_10_1139_f2012_027
crossref_primary_10_1186_s41240_020_00156_9
crossref_primary_10_1111_jfb_12522
crossref_primary_10_1371_journal_pone_0240823
crossref_primary_10_1007_s10592_013_0546_z
crossref_primary_10_1111_eva_12646
crossref_primary_10_1111_evo_12278
crossref_primary_10_1111_mec_14965
crossref_primary_10_1111_mec_17714
crossref_primary_10_1186_s12862_021_01876_9
crossref_primary_10_3390_biology11040554
crossref_primary_10_1111_eva_12765
crossref_primary_10_1111_j_1365_294X_2012_05588_x
crossref_primary_10_1111_j_1467_2979_2011_00437_x
crossref_primary_10_1007_s10682_024_10322_3
crossref_primary_10_1080_02755947_2013_790861
crossref_primary_10_1111_mec_15256
crossref_primary_10_1111_j_1365_294X_2010_04955_x
crossref_primary_10_1111_mec_12028
crossref_primary_10_1371_journal_pone_0125743
crossref_primary_10_2744_CCB_1149_1
crossref_primary_10_1007_s10592_010_0175_8
crossref_primary_10_1002_fsh_10985
crossref_primary_10_1111_eva_13725
crossref_primary_10_3354_meps08901
crossref_primary_10_1111_eva_12118
crossref_primary_10_1111_eva_12877
crossref_primary_10_1371_journal_pone_0081916
crossref_primary_10_1080_00028487_2013_806351
crossref_primary_10_1139_cjfas_2013_0362
crossref_primary_10_3390_w14060937
crossref_primary_10_1111_eva_12199
crossref_primary_10_1080_00028487_2017_1360393
crossref_primary_10_1007_s10750_018_3775_9
crossref_primary_10_3390_fishes8080411
crossref_primary_10_1007_s10750_012_1063_7
crossref_primary_10_1111_rec_13395
Cites_doi 10.1139/f07-167
10.1046/j.1471-8286.2003.00351.x
10.1139/f95-865
10.1534/genetics.105.048330
10.1111/j.1365-294X.2004.02396.x
10.1038/sj.hdy.6800693
10.1046/j.1365-294X.2002.01495.x
10.1111/j.1365-294X.2007.03485.x
10.1093/jhered/93.2.153
10.1098/rspb.2002.2250
10.1093/oxfordjournals.jhered.a111627
10.1016/S0169-5347(01)02290-X
10.1139/F08-025
10.1017/S0016672301005286
10.1111/j.1755-0998.2007.02061.x
10.1046/j.1365-294X.1998.00362.x
10.1111/j.1558-5646.1999.tb05351.x
10.1016/j.tree.2007.08.017
10.1046/j.1365-294X.2002.01634.x
10.1007/s10592-005-9100-y
10.1111/j.1365-294X.2007.03147.x
10.1111/j.1365-294X.2005.02553.x
10.1111/j.1365-294X.2006.02890.x
10.1139/cjfas-53-10-2292
10.1111/j.1471-8286.2004.00684.x
10.1111/j.1752-4571.2009.00104.x
10.1038/hdy.1997.101
10.1046/j.1365-294X.2004.02008.x
10.1086/286145
10.1111/j.1365-294X.2006.02995.x
10.1111/j.1365-294X.2008.03771.x
10.1046/j.1365-294X.2003.01705.x
10.1073/pnas.081068098
10.1111/j.1095-8312.1991.tb00595.x
10.1098/rspb.2003.2520
10.1016/j.icesjms.2006.03.004
10.1007/BF00221895
10.1111/j.1095-8649.2007.01398.x
10.1093/genetics/147.4.1943
10.1111/j.1365-294X.2007.03453.x
10.1111/j.1752-4571.2008.00026.x
10.1214/aos/1013699998
10.1111/j.1365-2052.1995.tb03262.x
10.1111/j.1365-294X.2007.03271.x
10.1111/j.1365-294X.2008.03891.x
10.1016/0044-8486(91)90383-I
10.1093/jhered/esh074
10.1038/hdy.1993.167
10.1111/j.1365-294X.2006.03206.x
10.1046/j.1461-0248.2003.00462.x
10.1023/A:1012550620717
10.1111/j.1365-2435.2006.01228.x
10.1146/annurev.ecolsys.30.1.539
10.1007/BF02300753
10.1111/j.1365-294X.2007.03255.x
10.1098/rspb.2000.0972
10.1111/j.1365-294X.2007.03541.x
10.1139/f03-040
10.1111/j.1365-294X.2007.03478.x
10.1046/j.1365-294X.1997.00204.x
10.1111/j.1365-294X.2004.02162.x
10.1111/j.0014-3820.2002.tb00857.x
10.1111/j.1461-0248.2004.00684.x
10.1016/j.aquaculture.2007.08.002
10.1073/pnas.0503811102
10.1111/j.1365-294X.2006.03148.x
10.1016/j.tree.2006.08.009
10.1890/1051-0761(2001)011[0148:BTSTSI]2.0.CO;2
10.1111/j.1558-5646.1984.tb05657.x
10.1111/j.1467-2979.2008.00304.x
10.1111/j.1365-294X.2007.03438.x
10.1046/j.1365-294X.2000.105312.x
10.1111/j.1601-5223.1999.00265.x
10.1111/j.1365-294X.2005.02568.x
10.1046/j.1365-294X.2003.02038.x
10.1111/j.1365-294X.2006.03067.x
10.1007/s10592-006-9188-8
10.1098/rspb.2001.1762
10.1111/j.1365-2052.1996.tb01180.x
10.1111/j.1752-4571.2008.00037.x
ContentType Journal Article
Copyright 2009 Blackwell Publishing Ltd
Copyright_xml – notice: 2009 Blackwell Publishing Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7ST
7U6
F1W
H95
H97
H98
L.G
7S9
L.6
7X8
DOI 10.1111/j.1365-294X.2009.04198.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE - Academic

CrossRef
MEDLINE
AGRICOLA
Entomology Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 2562
ExternalDocumentID 1742491301
19457206
10_1111_j_1365_294X_2009_04198_x
MEC4198
ark_67375_WNG_TS6H18WV_R
US201301638442
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations Denmark
GeographicLocations_xml – name: Denmark
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AEUQT
AFPWT
BSCLL
ESX
WRC
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
M7N
P64
RC3
7ST
7U6
F1W
H95
H97
H98
L.G
7S9
L.6
7X8
ID FETCH-LOGICAL-c5848-95179d113a7e5e602e8c2706d8fb002039addd5bdd7a31a09d68f92665feb8d63
IEDL.DBID DR2
ISSN 0962-1083
1365-294X
IngestDate Fri Jul 11 02:03:50 EDT 2025
Tue Aug 05 10:37:33 EDT 2025
Fri Jul 11 03:16:53 EDT 2025
Wed Aug 13 04:33:24 EDT 2025
Wed Feb 19 01:49:40 EST 2025
Thu Apr 24 23:08:37 EDT 2025
Tue Jul 01 01:21:47 EDT 2025
Wed Jan 22 16:31:41 EST 2025
Wed Oct 30 09:56:59 EDT 2024
Thu Apr 03 09:46:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5848-95179d113a7e5e602e8c2706d8fb002039addd5bdd7a31a09d68f92665feb8d63
Notes http://dx.doi.org/10.1111/j.1365-294X.2009.04198.x
ArticleID:MEC4198
istex:386D52F8F02ECE1691E3157147493102E00F6F1E
ark:/67375/WNG-TS6H18WV-R
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 19457206
PQID 210707612
PQPubID 31465
PageCount 14
ParticipantIDs proquest_miscellaneous_67543600
proquest_miscellaneous_46297516
proquest_miscellaneous_20203516
proquest_journals_210707612
pubmed_primary_19457206
crossref_primary_10_1111_j_1365_294X_2009_04198_x
crossref_citationtrail_10_1111_j_1365_294X_2009_04198_x
wiley_primary_10_1111_j_1365_294X_2009_04198_x_MEC4198
istex_primary_ark_67375_WNG_TS6H18WV_R
fao_agris_US201301638442
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2009
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: June 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Oxford
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
References Vasemägi A, Gross R, Paaver T, Koljonen ML, Nilsson J (2005) Extensive immigration from compensatory hatchery releases into wild Atlantic salmon population in the Baltic Sea: spatio-temporal analysis over 18 years. Heredity, 95, 76-83.
Wang JL (2001) A pseudo-likelihood method for estimating effective population size from temporally spaced samples. Genetical Research, 78, 243-257.
Wang IA, Gilk SE, Smoker WW, Gharrett AJ (2007) Outbreeding effect on embryo development in hybrids of allopatric pink salmon (Oncorhynchus gorbuscha) populations, a potential consequence of stock translocation. Aquaculture, 272, S152-S160.
Ruzzante DE, Hansen MM, Meldrup D, Ebert KM (2004) Stocking impact and migration pattern in an anadromous brown trout (Salmo trutta) complex: where have all the stocked spawning sea trout gone? Molecular Ecology, 13, 1433-1445.
Legendre P, Legendre L (1998) Numerical Ecology. Elsevier, Amsterdam, The Netherlands.
O'Reilly PT, Hamilton LC, McConnell SK, Wright JM (1996) Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Canadian Journal of Fisheries and Aquatic Sciences, 53, 2292-2298.
Pichler FB, Baker CS (2000) Loss of genetic diversity in the endemic Hector's dolphin due to fisheries-related mortality. Proceedings of the Royal Society B: Biological Sciences, 267, 97-102.
Wang JL, Whitlock MC (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics, 163, 429-446.
Dionne M, Caron F, Dodson JJ, Bernatchez L (2008) Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation. Molecular Ecology, 17, 2382-2396.
Excoffier L, Laval G, Schneider S (2005) Arlequin version 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50.
Mclean JE, Bentzen P, Quinn TP (2003) Differential reproductive success of sympatric, naturally spawning hatchery and wild steelhead trout (Oncorhynchus mykiss) through the adult stage. Canadian Journal of Fisheries and Aquatic Sciences, 60, 433-440.
Nielsen EE, Hansen MM, Loeschcke V (1999a) Analysis of DNA from old scale samples: technical aspects, applications and perspectives for conservation. Hereditas, 130, 265-276.
Araki H, Berejikian BA, Ford MJ, Blouin MS (2008) Fitness of hatchery-reared salmonids in the wild. Evolutionary Applications, 1, 342-355.
Hansen MM, Ruzzante DE, Nielsen EE, Bekkevold D, Mensberg KLD (2002) Long-term effective population sizes, temporal stability of genetic composition and potential for local adaptation in anadromous brown trout (Salmo trutta) populations. Molecular Ecology, 11, 2523-2535.
Wandeler P, Hoeck PEA, Keller LF (2007) Back to the future: museum specimens in population genetics. Trends in Ecology & Evolution, 22, 634-642.
Garant D, Fleming IA, Einum S, Bernatchez L (2003) Alternative male life-history tactics as potential vehicles for speeding introgression of farm salmon traits into wild populations. Ecology Letters, 6, 541-549.
Storz JF, Beaumont MA (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution, 56, 154-166.
Dieringer D, Schlotterer C (2003) Microsatellite Analyser (msa): a platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes, 3, 167-169.
Piry S, Alapetite A, Cornuet JM et al . (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. Journal of Heredity, 95, 536-539.
Palstra FP, O'Connell MF, Ruzzante DE (2007) Population structure and gene flow reversals in Atlantic salmon (Salmo salar) over contemporary and long-term temporal scales: effects of population size and life history. Molecular Ecology, 16, 4504-4522.
Waples RS, Do C (2008) ldne: a program for estimating effective population size from data on linkage disequilibrium. Molecular Ecology Resources, 8, 753-756.
Roberge C, Normandeau E, Einum S, Guderley H, Bernatchez L (2008) Genetic consequences of interbreeding between farmed and wild Atlantic salmon: insights from the transcriptome. Molecular Ecology, 17, 314-324.
Felsenstein J (1989) Phylogeny inference package (version 3.2). Cladistics, 5, 164-166.
Hansen MM (2002) Estimating the long-term effects of stocking domesticated trout into wild brown trout (Salmo trutta) populations: an approach using microsatellite DNA analysis of historical and contemporary samples. Molecular Ecology, 11, 1003-1015.
Lynch M, O'Hely M (2001) Captive breeding and the genetic fitness of natural populations. Conservation Genetics, 2, 363-378.
Slettan A, Olsaker I, Lie Ø (1996) Polymorphic Atlantic salmon, Salmo salar L., microsatellites at the SSOSL438, SSOSL439 and SSOSL444 loci. Animal Genetics, 27, 57-64.
Svärdson G, Faderström Å (1982) Adaptive differences in the long-distance migration of some trout (Salmo trutta) stocks. Reports of the Institute of Freshwater Research, Drottningholm, 60, 51-80.
Gharbi K, Gautier A, Danzmann RG et al . (2006) A linkage map for brown trout (Salmo trutta): chromosome homeologies and comparative genome organization with other salmonid fish. Genetics, 172, 2405-2419.
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4, 535-538.
Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164, 1567-1587.
Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends in Ecology & Evolution, 22, 25-33.
Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecology Letters, 7, 1225-1241.
Araki H, Waples RS, Ardren WR, Cooper B, Blouin MS (2007) Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life-history forms. Molecular Ecology, 16, 953-966.
Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Molecular Ecology, 16, 463-475.
Hansen MM, Skaala O, Jensen LF, Bekkevold D, Mensberg KLD (2007) Gene flow, effective population size and selection at major histocompatibility complex genes: brown trout in the Hardanger Fjord, Norway. Molecular Ecology, 16, 1413-1425.
Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165-1188.
Fraser DJ, Cook AM, Eddington JD, Bentzen P (2008) Mixed evidence for reduced local adaptation in wild salmon resulting from interbreeding with escaped farmed salmon: complexities in hybrid fitness. Evolutionary Applications, 1, 501-512.
Guinand B, Scribner KT, Page KS, Burnham-Curtis MK (2003) Genetic variation over space and time: analyses of extinct and remnant lake trout populations in the Upper Great Lakes. Proceedings of the Royal Society B: Biological Sciences, 270, 425-433.
Saitou N, Nei M (1987) The neighbor-joining method - a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425.
Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics, 7, 167-184.
Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends in Ecology & Evolution, 16, 613-622.
Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. 2. Gene frequency data. Journal of Molecular Evolution, 19, 153-170.
Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370.
Narum SR, Zendt JS, Graves D, Sharp WR (2008) Influence of landscape on resident and anadromous life history types of Oncorhynchus mykiss. Canadian Journal of Fisheries and Aquatic Sciences, 65, 1013-1023.
Nielsen EE, Hansen MM (2008) Waking the dead: the value of population genetic analyses of historical samples. Fish and Fisheries, 9, 450-461.
Cairney M, Taggart JB, Hoyheim B (2000) Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Molecular Ecology, 9, 2175-2178.
Smith TB, Mila B, Grether GF et al . (2008) Evolutionary consequences of human disturbance in a rainforest bird species from Central Africa. Molecular Ecology, 17, 58-71.
Ardren WR, Kapuscinski AR (2003) Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout. Molecular Ecology, 12, 35-49.
Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology, 13, 55-65.
Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics, 145, 1219-1228.
Fraser DJ, Lippe C, Bernatchez L (2004) Consequences of unequal population size, asymmetric gene flow and sex-biased dispersal on population structure in brook charr (Salvelinus fontinalis). Molecular Ecology, 13, 67-80.
Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proceedings of the National Academy of Sciences, USA, 98, 4563-4568.
Leonard JA (2008) Ancient DNA applications for wildlife conservation. Molecular Ecology, 17, 4186-4196.
Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annual Review of Ecology and Systematics, 30, 539-563.
Bohonak AJ (
1983; 19
1991; 98
1987; 4
2002; 56
2000; 9
2004; 7
2002; 11
2008; 9
2004; 4
2003; 270
2008; 8
2006; 172
2008; 1
1997; 6
2001; 268
2003; 12
1998; 152
1997; 147
2006; 63
1982; 60
1993; 71
1991; 43
1995; 26
2005; 102
2003; 6
1997; 145
2007; 175
2003; 3
2008; 65
2001; 16
2002; 93
1980
2001; 11
2007; 21
2007; 22
1996; 27
2003; 164
2001; 98
2003; 163
1995; 52
1989; 5
2008; 17
2006; 15
1998
2006; 7
1997
1993
1996; 92
2000; 155
2001; 29
1996; 53
2007; 16
1995; 86
2004; 95
2000; 267
2007; 272
1984; 38
2007a; 16
2004; 13
1997; 78
2005; 95
2005; 1
2007b; 8
1999; 30
2001; 2
1999a; 130
1998; 7
2003; 60
2001; 78
1999b; 53
2005; 14
e_1_2_7_5_1
Dieperink C (e_1_2_7_14_1) 1997
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_49_1
Franklin IR (e_1_2_7_28_1) 1980
Svärdson G (e_1_2_7_76_1) 1982; 60
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
Felsenstein J (e_1_2_7_26_1) 1989; 5
Legendre P (e_1_2_7_46_1) 1998
e_1_2_7_39_1
Saitou N (e_1_2_7_69_1) 1987; 4
e_1_2_7_6_1
Estoup A (e_1_2_7_22_1) 1998; 7
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
19457205 - Mol Ecol. 2009 Jun;18(12):2545-6
References_xml – reference: Waples RS, Yokota M (2007) Temporal estimates of effective population size in species with overlapping generations. Genetics, 175, 219-233.
– reference: Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proceedings of the National Academy of Sciences, USA, 98, 4563-4568.
– reference: Felsenstein J (1989) Phylogeny inference package (version 3.2). Cladistics, 5, 164-166.
– reference: Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecology Letters, 7, 1225-1241.
– reference: Mclean JE, Bentzen P, Quinn TP (2003) Differential reproductive success of sympatric, naturally spawning hatchery and wild steelhead trout (Oncorhynchus mykiss) through the adult stage. Canadian Journal of Fisheries and Aquatic Sciences, 60, 433-440.
– reference: Saitou N, Nei M (1987) The neighbor-joining method - a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425.
– reference: Paetkau D, Waits LP, Clarkson PL, Craighead L, Strobeck C (1997) An empirical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae) populations. Genetics, 147, 1943-1957.
– reference: Legendre P, Legendre L (1998) Numerical Ecology. Elsevier, Amsterdam, The Netherlands.
– reference: Taylor EB (1991) A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture, 98, 185-207.
– reference: Dionne M, Caron F, Dodson JJ, Bernatchez L (2008) Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation. Molecular Ecology, 17, 2382-2396.
– reference: Garant D, Forde SE, Hendry AP (2007) The multifarious effects of dispersal and gene flow on contemporary adaptation. Functional Ecology, 21, 434-443.
– reference: Bohonak AJ (2002) ibd (isolation by distance): a program for analyses of isolation by distance. Journal of Heredity, 93, 153-154.
– reference: Pertoldi C, Hansen MM, Loeschcke V et al . (2001) Genetic consequences of population decline in the European otter (Lutra lutra): an assessment of microsatellite DNA variation in Danish otters from 1883 to 1993. Proceedings of the Royal Society of London Series B: Biology Sciences, 268, 1775-1781.
– reference: Pichler FB, Baker CS (2000) Loss of genetic diversity in the endemic Hector's dolphin due to fisheries-related mortality. Proceedings of the Royal Society B: Biological Sciences, 267, 97-102.
– reference: O'Reilly PT, Hamilton LC, McConnell SK, Wright JM (1996) Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Canadian Journal of Fisheries and Aquatic Sciences, 53, 2292-2298.
– reference: Caroffino DC, Miller LM, Kapuscinski AR, Ostazeski JJ (2008) Stocking success of local-origin fry and impact of hatchery ancestry: monitoring a new steelhead (Oncorhynchus mykiss) stocking program in a Minnesota tributary to Lake Superior. Canadian Journal of Fisheries and Aquatic Sciences, 65, 309-318.
– reference: Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959.
– reference: Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. 2. Gene frequency data. Journal of Molecular Evolution, 19, 153-170.
– reference: Nielsen EE, Hansen MM, Loeschcke V (1997) Analysis of microsatellite DNA from old scale samples of Atlantic salmon Salmo salar: a comparison of genetic composition over 60 years. Molecular Ecology, 6, 487-492.
– reference: Ruzzante DE, Hansen MM, Meldrup D, Ebert KM (2004) Stocking impact and migration pattern in an anadromous brown trout (Salmo trutta) complex: where have all the stocked spawning sea trout gone? Molecular Ecology, 13, 1433-1445.
– reference: Wang JL, Whitlock MC (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics, 163, 429-446.
– reference: Cairney M, Taggart JB, Hoyheim B (2000) Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Molecular Ecology, 9, 2175-2178.
– reference: Nielsen EE, Hansen MM, Loeschcke V (1999b) Genetic variation in time and space: microsatellite analysis of extinct and extant populations of Atlantic salmon. Evolution, 53, 261-268.
– reference: Hansen MM (2002) Estimating the long-term effects of stocking domesticated trout into wild brown trout (Salmo trutta) populations: an approach using microsatellite DNA analysis of historical and contemporary samples. Molecular Ecology, 11, 1003-1015.
– reference: Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends in Ecology & Evolution, 22, 25-33.
– reference: Excoffier L, Laval G, Schneider S (2005) Arlequin version 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47-50.
– reference: Jonsson B, Jonsson N (2006) Cultured Atlantic salmon in nature: a review of their ecology and interaction with wild fish. ICES Journal of Marine Science, 63, 1162-1181.
– reference: Nielsen EE, Hansen MM, Loeschcke V (1999a) Analysis of DNA from old scale samples: technical aspects, applications and perspectives for conservation. Hereditas, 130, 265-276.
– reference: Eldridge WH, Naish KA (2007) Long-term effects of translocation and release numbers on fine-scale population structure among coho salmon (Oncorhynchus kisutch). Molecular Ecology, 16, 2407-2421.
– reference: Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annual Review of Ecology and Systematics, 30, 539-563.
– reference: Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology, 14, 2611-2620.
– reference: McGinnity P, Prodohl P, Ferguson K et al . (2003) Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proceedings of the Royal Society B: Biological Sciences, 270, 2443-2450.
– reference: Piry S, Alapetite A, Cornuet JM et al . (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. Journal of Heredity, 95, 536-539.
– reference: Goudet J (1995) fstat (version 1.2): a computer program to calculate F-statistics. Journal of Heredity, 86, 485-486.
– reference: Smith TB, Mila B, Grether GF et al . (2008) Evolutionary consequences of human disturbance in a rainforest bird species from Central Africa. Molecular Ecology, 17, 58-71.
– reference: Dawson MN, Sen Gupta A, England MH (2005) Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species. Proceedings of the National Academy of Sciences, USA, 102, 11968-11973.
– reference: Hansen MM, Skaala O, Jensen LF, Bekkevold D, Mensberg KLD (2007) Gene flow, effective population size and selection at major histocompatibility complex genes: brown trout in the Hardanger Fjord, Norway. Molecular Ecology, 16, 1413-1425.
– reference: Nielsen EE, Hansen MM (2008) Waking the dead: the value of population genetic analyses of historical samples. Fish and Fisheries, 9, 450-461.
– reference: Wandeler P, Hoeck PEA, Keller LF (2007) Back to the future: museum specimens in population genetics. Trends in Ecology & Evolution, 22, 634-642.
– reference: Fraser DJ, Jones MW, McParland TL, Hutchings JA (2007b) Loss of historical immigration and the unsuccessful rehabilitation of extirpated salmon populations. Conservation Genetics, 8, 527-546.
– reference: El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theoretical and Applied Genetics, 92, 832-839.
– reference: Garant D, Fleming IA, Einum S, Bernatchez L (2003) Alternative male life-history tactics as potential vehicles for speeding introgression of farm salmon traits into wild populations. Ecology Letters, 6, 541-549.
– reference: Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics, 145, 1219-1228.
– reference: Storz JF, Beaumont MA (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution, 56, 154-166.
– reference: Slettan A, Olsaker I, Lie Ø (1996) Polymorphic Atlantic salmon, Salmo salar L., microsatellites at the SSOSL438, SSOSL439 and SSOSL444 loci. Animal Genetics, 27, 57-64.
– reference: Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164, 1567-1587.
– reference: Narum SR, Zendt JS, Graves D, Sharp WR (2008) Influence of landscape on resident and anadromous life history types of Oncorhynchus mykiss. Canadian Journal of Fisheries and Aquatic Sciences, 65, 1013-1023.
– reference: Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165-1188.
– reference: Hansen MM, Ruzzante DE, Nielsen EE, Mensberg KLD (2001) Brown trout (Salmo trutta) stocking impact assessment using microsatellite DNA markers. Ecological Applications, 11, 148-160.
– reference: Hutchings JA, Fraser DJ (2008) The nature of fisheries- and farming-induced evolution. Molecular Ecology, 17, 294-313.
– reference: Lynch M, O'Hely M (2001) Captive breeding and the genetic fitness of natural populations. Conservation Genetics, 2, 363-378.
– reference: Bouzat JL, Lewin HA, Paige KN (1998) The ghost of genetic diversity past: historical DNA analysis of the greater prairie chicken. American Naturalist, 152, 1-6.
– reference: Gharbi K, Gautier A, Danzmann RG et al . (2006) A linkage map for brown trout (Salmo trutta): chromosome homeologies and comparative genome organization with other salmonid fish. Genetics, 172, 2405-2419.
– reference: Hansen MM, Ruzzante DE, Nielsen EE, Bekkevold D, Mensberg KLD (2002) Long-term effective population sizes, temporal stability of genetic composition and potential for local adaptation in anadromous brown trout (Salmo trutta) populations. Molecular Ecology, 11, 2523-2535.
– reference: Wang JL (2001) A pseudo-likelihood method for estimating effective population size from temporally spaced samples. Genetical Research, 78, 243-257.
– reference: Leonard JA (2008) Ancient DNA applications for wildlife conservation. Molecular Ecology, 17, 4186-4196.
– reference: Dieperink C, Ejbye-Ernst M, Jensen AR et al . (1997) Laksefiskene Og Fiskeriet I Vadehavsområdet. DFU Rapport 40-97. Danish Institute for Fisheries Research, Charlottenlund, Denmark.
– reference: Svärdson G, Faderström Å (1982) Adaptive differences in the long-distance migration of some trout (Salmo trutta) stocks. Reports of the Institute of Freshwater Research, Drottningholm, 60, 51-80.
– reference: Waples RS, Do C (2008) ldne: a program for estimating effective population size from data on linkage disequilibrium. Molecular Ecology Resources, 8, 753-756.
– reference: Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Molecular Ecology, 16, 463-475.
– reference: Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370.
– reference: Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4, 535-538.
– reference: Ardren WR, Kapuscinski AR (2003) Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout. Molecular Ecology, 12, 35-49.
– reference: Palstra FP, O'Connell MF, Ruzzante DE (2007) Population structure and gene flow reversals in Atlantic salmon (Salmo salar) over contemporary and long-term temporal scales: effects of population size and life history. Molecular Ecology, 16, 4504-4522.
– reference: Roberge C, Normandeau E, Einum S, Guderley H, Bernatchez L (2008) Genetic consequences of interbreeding between farmed and wild Atlantic salmon: insights from the transcriptome. Molecular Ecology, 17, 314-324.
– reference: Dieringer D, Schlotterer C (2003) Microsatellite Analyser (msa): a platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes, 3, 167-169.
– reference: Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics, 7, 167-184.
– reference: Estoup A, Rousset F, Michalakis Y et al . (1998) Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta). Molecular Ecology, 7, 339-353.
– reference: Fraser DJ, Hansen MM, Østergaard S et al . (2007a) Comparative estimation of effective population sizes and temporal gene flow in two contrasting population systems. Molecular Ecology, 16, 3866-3889.
– reference: Guinand B, Scribner KT, Page KS, Burnham-Curtis MK (2003) Genetic variation over space and time: analyses of extinct and remnant lake trout populations in the Upper Great Lakes. Proceedings of the Royal Society B: Biological Sciences, 270, 425-433.
– reference: Wang IA, Gilk SE, Smoker WW, Gharrett AJ (2007) Outbreeding effect on embryo development in hybrids of allopatric pink salmon (Oncorhynchus gorbuscha) populations, a potential consequence of stock translocation. Aquaculture, 272, S152-S160.
– reference: Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Molecular Ecology, 15, 1419-1439.
– reference: Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends in Ecology & Evolution, 16, 613-622.
– reference: Araki H, Waples RS, Ardren WR, Cooper B, Blouin MS (2007) Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life-history forms. Molecular Ecology, 16, 953-966.
– reference: Adkison MD (1995) Population differentiation in Pacific salmon: local adaptation, genetic drift, or the environment? Canadian Journal of Fisheries and Aquatic Sciences, 52, 2762-2777.
– reference: Vasemägi A, Gross R, Paaver T, Koljonen ML, Nilsson J (2005) Extensive immigration from compensatory hatchery releases into wild Atlantic salmon population in the Baltic Sea: spatio-temporal analysis over 18 years. Heredity, 95, 76-83.
– reference: Fraser DJ, Lippe C, Bernatchez L (2004) Consequences of unequal population size, asymmetric gene flow and sex-biased dispersal on population structure in brook charr (Salvelinus fontinalis). Molecular Ecology, 13, 67-80.
– reference: Slettan A, Olsaker I, Lie O (1997) Segregation studies and linkage analysis of Atlantic salmon microsatellites using haploid genetics. Heredity, 78, 620-627.
– reference: Ferguson A, Taggart JB (1991) Genetic differentiation among the sympatric brown trout (Salmo trutta) populations of Lough Melvin, Ireland. Biological Journal of the Linnean Society, 43, 221-237.
– reference: Estoup A, Presa P, Krieg F, Vaiman D, Guyomard R (1993) (CT)n and (GT)n microsatellites - a new class of genetic markers for Salmo trutta (brown trout). Heredity, 71, 488-496.
– reference: Martinez-Cruz B, Godoy JA, Negro JJ (2007) Population fragmentation leads to spatial and temporal genetic structure in the endangered Spanish imperial eagle. Molecular Ecology, 16, 477-486.
– reference: Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology, 13, 55-65.
– reference: Verardi A, Lucchini V, Randi E (2006) Detecting introgressive hybridization between free-ranging domestic dogs and wild wolves (Canis lupus) by admixture linkage disequilibrium analysis. Molecular Ecology, 15, 2845-2855.
– reference: Fraser DJ, Cook AM, Eddington JD, Bentzen P (2008) Mixed evidence for reduced local adaptation in wild salmon resulting from interbreeding with escaped farmed salmon: complexities in hybrid fitness. Evolutionary Applications, 1, 501-512.
– reference: Araki H, Berejikian BA, Ford MJ, Blouin MS (2008) Fitness of hatchery-reared salmonids in the wild. Evolutionary Applications, 1, 342-355.
– reference: Slettan A, Olsaker I, Lie O (1995) Atlantic salmon, Salmo salar, microsatellites at the Ssosl25, Ssosl85, Ssosl311, Ssosl417 loci. Animal Genetics, 26, 281-282.
– volume: 270
  start-page: 425
  year: 2003
  end-page: 433
  article-title: Genetic variation over space and time: analyses of extinct and remnant lake trout populations in the Upper Great Lakes.
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 6
  start-page: 487
  year: 1997
  end-page: 492
  article-title: Analysis of microsatellite DNA from old scale samples of Atlantic salmon : a comparison of genetic composition over 60 years
  publication-title: Molecular Ecology
– volume: 163
  start-page: 429
  year: 2003
  end-page: 446
  article-title: Estimating effective population size and migration rates from genetic samples over space and time
  publication-title: Genetics
– volume: 27
  start-page: 57
  year: 1996
  end-page: 64
  article-title: Polymorphic Atlantic salmon, L., microsatellites at the SSOSL438, SSOSL439 and SSOSL444 loci
  publication-title: Animal Genetics
– volume: 21
  start-page: 434
  year: 2007
  end-page: 443
  article-title: The multifarious effects of dispersal and gene flow on contemporary adaptation
  publication-title: Functional Ecology
– volume: 53
  start-page: 2292
  year: 1996
  end-page: 2298
  article-title: Rapid analysis of genetic variation in Atlantic salmon ( ) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 12
  start-page: 35
  year: 2003
  end-page: 49
  article-title: Demographic and genetic estimates of effective population size ( ) reveals genetic compensation in steelhead trout
  publication-title: Molecular Ecology
– volume: 17
  start-page: 4186
  year: 2008
  end-page: 4196
  article-title: Ancient DNA applications for wildlife conservation
  publication-title: Molecular Ecology
– volume: 14
  start-page: 2611
  year: 2005
  end-page: 2620
  article-title: Detecting the number of clusters of individuals using the software Structure: a simulation study
  publication-title: Molecular Ecology
– volume: 8
  start-page: 753
  year: 2008
  end-page: 756
  article-title: ldne: a program for estimating effective population size from data on linkage disequilibrium
  publication-title: Molecular Ecology Resources
– volume: 16
  start-page: 463
  year: 2007
  end-page: 475
  article-title: Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management
  publication-title: Molecular Ecology
– volume: 175
  start-page: 219
  year: 2007
  end-page: 233
  article-title: Temporal estimates of effective population size in species with overlapping generations
  publication-title: Genetics
– volume: 22
  start-page: 634
  year: 2007
  end-page: 642
  article-title: Back to the future: museum specimens in population genetics
  publication-title: Trends in Ecology & Evolution
– volume: 78
  start-page: 620
  year: 1997
  end-page: 627
  article-title: Segregation studies and linkage analysis of Atlantic salmon microsatellites using haploid genetics
  publication-title: Heredity
– volume: 22
  start-page: 25
  year: 2007
  end-page: 33
  article-title: Genetic monitoring as a promising tool for conservation and management
  publication-title: Trends in Ecology & Evolution
– year: 1998
– volume: 86
  start-page: 485
  year: 1995
  end-page: 486
  article-title: fstat (version 1.2): a computer program to calculate ‐statistics
  publication-title: Journal of Heredity
– volume: 16
  start-page: 1413
  year: 2007
  end-page: 1425
  article-title: Gene flow, effective population size and selection at major histocompatibility complex genes: brown trout in the Hardanger Fjord, Norway
  publication-title: Molecular Ecology
– volume: 78
  start-page: 243
  year: 2001
  end-page: 257
  article-title: A pseudo‐likelihood method for estimating effective population size from temporally spaced samples
  publication-title: Genetical Research
– volume: 13
  start-page: 55
  year: 2004
  end-page: 65
  article-title: Genetic assignment methods for the direct, real‐time estimation of migration rate: a simulation‐based exploration of accuracy and power
  publication-title: Molecular Ecology
– volume: 56
  start-page: 154
  year: 2002
  end-page: 166
  article-title: Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model
  publication-title: Evolution
– volume: 7
  start-page: 1225
  year: 2004
  end-page: 1241
  article-title: Conceptual issues in local adaptation
  publication-title: Ecology Letters
– volume: 16
  start-page: 477
  year: 2007
  end-page: 486
  article-title: Population fragmentation leads to spatial and temporal genetic structure in the endangered Spanish imperial eagle
  publication-title: Molecular Ecology
– volume: 17
  start-page: 314
  year: 2008
  end-page: 324
  article-title: Genetic consequences of interbreeding between farmed and wild Atlantic salmon: insights from the transcriptome
  publication-title: Molecular Ecology
– volume: 65
  start-page: 309
  year: 2008
  end-page: 318
  article-title: Stocking success of local‐origin fry and impact of hatchery ancestry: monitoring a new steelhead ( ) stocking program in a Minnesota tributary to Lake Superior
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 30
  start-page: 539
  year: 1999
  end-page: 563
  article-title: Gene flow and introgression from domesticated plants into their wild relatives
  publication-title: Annual Review of Ecology and Systematics
– volume: 93
  start-page: 153
  year: 2002
  end-page: 154
  article-title: ibd (isolation by distance): a program for analyses of isolation by distance
  publication-title: Journal of Heredity
– volume: 272
  start-page: S152
  year: 2007
  end-page: S160
  article-title: Outbreeding effect on embryo development in hybrids of allopatric pink salmon ( ) populations, a potential consequence of stock translocation
  publication-title: Aquaculture
– volume: 152
  start-page: 1
  year: 1998
  end-page: 6
  article-title: The ghost of genetic diversity past: historical DNA analysis of the greater prairie chicken
  publication-title: American Naturalist
– volume: 17
  start-page: 294
  year: 2008
  end-page: 313
  article-title: The nature of fisheries‐ and farming‐induced evolution
  publication-title: Molecular Ecology
– volume: 16
  start-page: 613
  year: 2001
  end-page: 622
  article-title: The problems with hybrids: setting conservation guidelines
  publication-title: Trends in Ecology & Evolution
– volume: 1
  start-page: 342
  year: 2008
  end-page: 355
  article-title: Fitness of hatchery‐reared salmonids in the wild
  publication-title: Evolutionary Applications
– year: 1997
– volume: 26
  start-page: 281
  year: 1995
  end-page: 282
  article-title: Atlantic salmon, , microsatellites at the Ssosl25, Ssosl85, Ssosl311, Ssosl417 loci
  publication-title: Animal Genetics
– volume: 4
  start-page: 535
  year: 2004
  end-page: 538
  article-title: Micro‐Checker: software for identifying and correcting genotyping errors in microsatellite data
  publication-title: Molecular Ecology Notes
– volume: 65
  start-page: 1013
  year: 2008
  end-page: 1023
  article-title: Influence of landscape on resident and anadromous life history types of
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 102
  start-page: 11968
  year: 2005
  end-page: 11973
  article-title: Coupled biophysical global ocean model and molecular genetic analyses identify multiple introductions of cryptogenic species
  publication-title: Proceedings of the National Academy of Sciences, USA
– year: 1993
– volume: 270
  start-page: 2443
  year: 2003
  end-page: 2450
  article-title: Fitness reduction and potential extinction of wild populations of Atlantic salmon, , as a result of interactions with escaped farm salmon.
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 16
  start-page: 3866
  year: 2007a
  end-page: 3889
  article-title: Comparative estimation of effective population sizes and temporal gene flow in two contrasting population systems
  publication-title: Molecular Ecology
– volume: 268
  start-page: 1775
  year: 2001
  end-page: 1781
  article-title: Genetic consequences of population decline in the European otter ( ): an assessment of microsatellite DNA variation in Danish otters from 1883 to 1993.
  publication-title: Proceedings of the Royal Society of London Series B: Biology Sciences
– volume: 92
  start-page: 832
  year: 1996
  end-page: 839
  article-title: High level of genetic differentiation for allelic richness among populations of the argan tree [ (L.) Skeels] endemic to Morocco
  publication-title: Theoretical and Applied Genetics
– volume: 1
  start-page: 47
  year: 2005
  end-page: 50
  article-title: Arlequin version 3.0: an integrated software package for population genetics data analysis
  publication-title: Evolutionary Bioinformatics Online
– volume: 13
  start-page: 67
  year: 2004
  end-page: 80
  article-title: Consequences of unequal population size, asymmetric gene flow and sex‐biased dispersal on population structure in brook charr (
  publication-title: Molecular Ecology
– volume: 63
  start-page: 1162
  year: 2006
  end-page: 1181
  article-title: Cultured Atlantic salmon in nature: a review of their ecology and interaction with wild fish
  publication-title: ICES Journal of Marine Science
– volume: 8
  start-page: 527
  year: 2007b
  end-page: 546
  article-title: Loss of historical immigration and the unsuccessful rehabilitation of extirpated salmon populations
  publication-title: Conservation Genetics
– volume: 98
  start-page: 185
  year: 1991
  end-page: 207
  article-title: A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon
  publication-title: Aquaculture
– volume: 15
  start-page: 1419
  year: 2006
  end-page: 1439
  article-title: What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity
  publication-title: Molecular Ecology
– volume: 7
  start-page: 339
  year: 1998
  end-page: 353
  article-title: Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (
  publication-title: Molecular Ecology
– volume: 19
  start-page: 153
  year: 1983
  end-page: 170
  article-title: Accuracy of estimated phylogenetic trees from molecular data. 2. Gene frequency data
  publication-title: Journal of Molecular Evolution
– volume: 9
  start-page: 450
  year: 2008
  end-page: 461
  article-title: Waking the dead: the value of population genetic analyses of historical samples
  publication-title: Fish and Fisheries
– volume: 53
  start-page: 261
  year: 1999b
  end-page: 268
  article-title: Genetic variation in time and space: microsatellite analysis of extinct and extant populations of Atlantic salmon
  publication-title: Evolution
– volume: 52
  start-page: 2762
  year: 1995
  end-page: 2777
  article-title: Population differentiation in Pacific salmon: local adaptation, genetic drift, or the environment?
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 267
  start-page: 97
  year: 2000
  end-page: 102
  article-title: Loss of genetic diversity in the endemic Hector's dolphin due to fisheries‐related mortality.
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 15
  start-page: 2845
  year: 2006
  end-page: 2855
  article-title: Detecting introgressive hybridization between free‐ranging domestic dogs and wild wolves ( ) by admixture linkage disequilibrium analysis
  publication-title: Molecular Ecology
– volume: 71
  start-page: 488
  year: 1993
  end-page: 496
  article-title: (CT)n and (GT)n microsatellites — a new class of genetic markers for (brown trout)
  publication-title: Heredity
– volume: 95
  start-page: 76
  year: 2005
  end-page: 83
  article-title: Extensive immigration from compensatory hatchery releases into wild Atlantic salmon population in the Baltic Sea: spatio‐temporal analysis over 18 years
  publication-title: Heredity
– volume: 95
  start-page: 536
  year: 2004
  end-page: 539
  article-title: GeneClass2: a software for genetic assignment and first‐generation migrant detection
  publication-title: Journal of Heredity
– volume: 164
  start-page: 1567
  year: 2003
  end-page: 1587
  article-title: Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies
  publication-title: Genetics
– volume: 147
  start-page: 1943
  year: 1997
  end-page: 1957
  article-title: An empirical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae) populations
  publication-title: Genetics
– volume: 13
  start-page: 1433
  year: 2004
  end-page: 1445
  article-title: Stocking impact and migration pattern in an anadromous brown trout ( ) complex: where have all the stocked spawning sea trout gone?
  publication-title: Molecular Ecology
– volume: 2
  start-page: 363
  year: 2001
  end-page: 378
  article-title: Captive breeding and the genetic fitness of natural populations
  publication-title: Conservation Genetics
– volume: 16
  start-page: 953
  year: 2007
  end-page: 966
  article-title: Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life‐history forms
  publication-title: Molecular Ecology
– volume: 5
  start-page: 164
  year: 1989
  end-page: 166
  article-title: Phylogeny inference package (version 3.2)
  publication-title: Cladistics
– volume: 4
  start-page: 406
  year: 1987
  end-page: 425
  article-title: The neighbor‐joining method — a new method for reconstructing phylogenetic trees
  publication-title: Molecular Biology and Evolution
– volume: 43
  start-page: 221
  year: 1991
  end-page: 237
  article-title: Genetic differentiation among the sympatric brown trout ( ) populations of Lough Melvin, Ireland
  publication-title: Biological Journal of the Linnean Society
– volume: 6
  start-page: 541
  year: 2003
  end-page: 549
  article-title: Alternative male life‐history tactics as potential vehicles for speeding introgression of farm salmon traits into wild populations
  publication-title: Ecology Letters
– volume: 7
  start-page: 167
  year: 2006
  end-page: 184
  article-title: A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci
  publication-title: Conservation Genetics
– volume: 17
  start-page: 2382
  year: 2008
  end-page: 2396
  article-title: Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation
  publication-title: Molecular Ecology
– volume: 155
  start-page: 945
  year: 2000
  end-page: 959
  article-title: Inference of population structure using multilocus genotype data
  publication-title: Genetics
– volume: 98
  start-page: 4563
  year: 2001
  end-page: 4568
  article-title: Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 29
  start-page: 1165
  year: 2001
  end-page: 1188
  article-title: The control of the false discovery rate in multiple testing under dependency
  publication-title: Annals of Statistics
– volume: 16
  start-page: 2407
  year: 2007
  end-page: 2421
  article-title: Long‐term effects of translocation and release numbers on fine‐scale population structure among coho salmon (
  publication-title: Molecular Ecology
– volume: 17
  start-page: 58
  year: 2008
  end-page: 71
  article-title: Evolutionary consequences of human disturbance in a rainforest bird species from Central Africa
  publication-title: Molecular Ecology
– volume: 60
  start-page: 51
  year: 1982
  end-page: 80
  article-title: Adaptive differences in the long‐distance migration of some trout ( ) stocks
  publication-title: Reports of the Institute of Freshwater Research, Drottningholm
– volume: 1
  start-page: 501
  year: 2008
  end-page: 512
  article-title: Mixed evidence for reduced local adaptation in wild salmon resulting from interbreeding with escaped farmed salmon: complexities in hybrid fitness
  publication-title: Evolutionary Applications
– volume: 38
  start-page: 1358
  year: 1984
  end-page: 1370
  article-title: Estimating ‐statistics for the analysis of population structure
  publication-title: Evolution
– volume: 16
  start-page: 4504
  year: 2007
  end-page: 4522
  article-title: Population structure and gene flow reversals in Atlantic salmon ( ) over contemporary and long‐term temporal scales: effects of population size and life history
  publication-title: Molecular Ecology
– volume: 9
  start-page: 2175
  year: 2000
  end-page: 2178
  article-title: Characterization of microsatellite and minisatellite loci in Atlantic salmon ( L.) and cross‐species amplification in other salmonids
  publication-title: Molecular Ecology
– volume: 172
  start-page: 2405
  year: 2006
  end-page: 2419
  article-title: A linkage map for brown trout ( ): chromosome homeologies and comparative genome organization with other salmonid fish
  publication-title: Genetics
– volume: 130
  start-page: 265
  year: 1999a
  end-page: 276
  article-title: Analysis of DNA from old scale samples: technical aspects, applications and perspectives for conservation
  publication-title: Hereditas
– volume: 3
  start-page: 167
  year: 2003
  end-page: 169
  article-title: Microsatellite Analyser (msa): a platform independent analysis tool for large microsatellite data sets
  publication-title: Molecular Ecology Notes
– volume: 60
  start-page: 433
  year: 2003
  end-page: 440
  article-title: Differential reproductive success of sympatric, naturally spawning hatchery and wild steelhead trout ( ) through the adult stage
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 11
  start-page: 2523
  year: 2002
  end-page: 2535
  article-title: Long‐term effective population sizes, temporal stability of genetic composition and potential for local adaptation in anadromous brown trout ( ) populations
  publication-title: Molecular Ecology
– volume: 11
  start-page: 148
  year: 2001
  end-page: 160
  article-title: Brown trout ( ) stocking impact assessment using microsatellite DNA markers
  publication-title: Ecological Applications
– volume: 145
  start-page: 1219
  year: 1997
  end-page: 1228
  article-title: Genetic differentiation and estimation of gene flow from ‐statistics under isolation by distance
  publication-title: Genetics
– start-page: 135
  year: 1980
  end-page: 150
– volume: 11
  start-page: 1003
  year: 2002
  end-page: 1015
  article-title: Estimating the long‐term effects of stocking domesticated trout into wild brown trout ( ) populations: an approach using microsatellite DNA analysis of historical and contemporary samples
  publication-title: Molecular Ecology
– ident: e_1_2_7_12_1
  doi: 10.1139/f07-167
– ident: e_1_2_7_15_1
  doi: 10.1046/j.1471-8286.2003.00351.x
– ident: e_1_2_7_2_1
  doi: 10.1139/f95-865
– start-page: 135
  volume-title: Conservation Biology: An Evolutionary‐Ecological Perspective
  year: 1980
  ident: e_1_2_7_28_1
– ident: e_1_2_7_35_1
  doi: 10.1534/genetics.105.048330
– ident: e_1_2_7_65_1
  doi: 10.1111/j.1365-294X.2004.02396.x
– ident: e_1_2_7_79_1
  doi: 10.1038/sj.hdy.6800693
– ident: e_1_2_7_38_1
  doi: 10.1046/j.1365-294X.2002.01495.x
– ident: e_1_2_7_42_1
  doi: 10.1111/j.1365-294X.2007.03485.x
– ident: e_1_2_7_9_1
  doi: 10.1093/jhered/93.2.153
– ident: e_1_2_7_37_1
  doi: 10.1098/rspb.2002.2250
– ident: e_1_2_7_36_1
  doi: 10.1093/oxfordjournals.jhered.a111627
– ident: e_1_2_7_3_1
  doi: 10.1016/S0169-5347(01)02290-X
– ident: e_1_2_7_52_1
  doi: 10.1139/F08-025
– ident: e_1_2_7_82_1
  doi: 10.1017/S0016672301005286
– ident: e_1_2_7_86_1
  doi: 10.1111/j.1755-0998.2007.02061.x
– volume: 7
  start-page: 339
  year: 1998
  ident: e_1_2_7_22_1
  article-title: Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta
  publication-title: Molecular Ecology
  doi: 10.1046/j.1365-294X.1998.00362.x
– ident: e_1_2_7_57_1
  doi: 10.1111/j.1558-5646.1999.tb05351.x
– ident: e_1_2_7_81_1
  doi: 10.1016/j.tree.2007.08.017
– ident: e_1_2_7_39_1
  doi: 10.1046/j.1365-294X.2002.01634.x
– ident: e_1_2_7_85_1
  doi: 10.1007/s10592-005-9100-y
– ident: e_1_2_7_49_1
  doi: 10.1111/j.1365-294X.2007.03147.x
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1365-294X.2005.02553.x
– ident: e_1_2_7_87_1
  doi: 10.1111/j.1365-294X.2006.02890.x
– ident: e_1_2_7_58_1
  doi: 10.1139/cjfas-53-10-2292
– ident: e_1_2_7_78_1
  doi: 10.1111/j.1471-8286.2004.00684.x
– ident: e_1_2_7_88_1
  doi: 10.1111/j.1752-4571.2009.00104.x
– ident: e_1_2_7_73_1
  doi: 10.1038/hdy.1997.101
– ident: e_1_2_7_59_1
  doi: 10.1046/j.1365-294X.2004.02008.x
– ident: e_1_2_7_10_1
  doi: 10.1086/286145
– volume-title: Numerical Ecology
  year: 1998
  ident: e_1_2_7_46_1
– ident: e_1_2_7_80_1
  doi: 10.1111/j.1365-294X.2006.02995.x
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1365-294X.2008.03771.x
– ident: e_1_2_7_6_1
  doi: 10.1046/j.1365-294X.2003.01705.x
– ident: e_1_2_7_7_1
  doi: 10.1073/pnas.081068098
– volume: 60
  start-page: 51
  year: 1982
  ident: e_1_2_7_76_1
  article-title: Adaptive differences in the long‐distance migration of some trout (Salmo trutta) stocks
  publication-title: Reports of the Institute of Freshwater Research, Drottningholm
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1095-8312.1991.tb00595.x
– ident: e_1_2_7_50_1
  doi: 10.1098/rspb.2003.2520
– ident: e_1_2_7_43_1
  doi: 10.1016/j.icesjms.2006.03.004
– ident: e_1_2_7_18_1
  doi: 10.1007/BF00221895
– ident: e_1_2_7_84_1
  doi: 10.1111/j.1095-8649.2007.01398.x
– ident: e_1_2_7_60_1
  doi: 10.1093/genetics/147.4.1943
– ident: e_1_2_7_30_1
  doi: 10.1111/j.1365-294X.2007.03453.x
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1752-4571.2008.00026.x
– ident: e_1_2_7_8_1
  doi: 10.1214/aos/1013699998
– ident: e_1_2_7_71_1
  doi: 10.1111/j.1365-2052.1995.tb03262.x
– ident: e_1_2_7_45_1
– volume: 5
  start-page: 164
  year: 1989
  ident: e_1_2_7_26_1
  article-title: Phylogeny inference package (version 3.2)
  publication-title: Cladistics
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1365-294X.2007.03271.x
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1365-294X.2008.03891.x
– ident: e_1_2_7_77_1
  doi: 10.1016/0044-8486(91)90383-I
– ident: e_1_2_7_64_1
  doi: 10.1093/jhered/esh074
– ident: e_1_2_7_21_1
  doi: 10.1038/hdy.1993.167
– ident: e_1_2_7_5_1
  doi: 10.1111/j.1365-294X.2006.03206.x
– ident: e_1_2_7_33_1
  doi: 10.1046/j.1461-0248.2003.00462.x
– ident: e_1_2_7_48_1
  doi: 10.1023/A:1012550620717
– ident: e_1_2_7_34_1
  doi: 10.1111/j.1365-2435.2006.01228.x
– ident: e_1_2_7_20_1
  doi: 10.1146/annurev.ecolsys.30.1.539
– volume: 4
  start-page: 406
  year: 1987
  ident: e_1_2_7_69_1
  article-title: The neighbor‐joining method — a new method for reconstructing phylogenetic trees
  publication-title: Molecular Biology and Evolution
– ident: e_1_2_7_53_1
  doi: 10.1007/BF02300753
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1365-294X.2007.03255.x
– ident: e_1_2_7_63_1
  doi: 10.1098/rspb.2000.0972
– ident: e_1_2_7_61_1
  doi: 10.1111/j.1365-294X.2007.03541.x
– ident: e_1_2_7_51_1
  doi: 10.1139/f03-040
– ident: e_1_2_7_74_1
  doi: 10.1111/j.1365-294X.2007.03478.x
– ident: e_1_2_7_55_1
  doi: 10.1046/j.1365-294X.1997.00204.x
– ident: e_1_2_7_68_1
  doi: 10.1111/j.1365-294X.2004.02162.x
– ident: e_1_2_7_75_1
  doi: 10.1111/j.0014-3820.2002.tb00857.x
– ident: e_1_2_7_44_1
  doi: 10.1111/j.1461-0248.2004.00684.x
– ident: e_1_2_7_83_1
  doi: 10.1016/j.aquaculture.2007.08.002
– ident: e_1_2_7_13_1
  doi: 10.1073/pnas.0503811102
– ident: e_1_2_7_25_1
  doi: 10.1111/j.1365-294X.2005.02553.x
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1365-294X.2006.03148.x
– ident: e_1_2_7_70_1
  doi: 10.1016/j.tree.2006.08.009
– ident: e_1_2_7_40_1
  doi: 10.1890/1051-0761(2001)011[0148:BTSTSI]2.0.CO;2
– ident: e_1_2_7_89_1
  doi: 10.1111/j.1558-5646.1984.tb05657.x
– ident: e_1_2_7_54_1
  doi: 10.1111/j.1467-2979.2008.00304.x
– ident: e_1_2_7_66_1
  doi: 10.1111/j.1365-294X.2007.03438.x
– ident: e_1_2_7_11_1
  doi: 10.1046/j.1365-294X.2000.105312.x
– ident: e_1_2_7_56_1
  doi: 10.1111/j.1601-5223.1999.00265.x
– ident: e_1_2_7_67_1
  doi: 10.1111/j.1365-294X.2005.02568.x
– ident: e_1_2_7_32_1
  doi: 10.1046/j.1365-294X.2003.02038.x
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1365-294X.2006.03067.x
– ident: e_1_2_7_31_1
  doi: 10.1007/s10592-006-9188-8
– ident: e_1_2_7_62_1
  doi: 10.1098/rspb.2001.1762
– ident: e_1_2_7_72_1
  doi: 10.1111/j.1365-2052.1996.tb01180.x
– volume-title: Laksefiskene Og Fiskeriet I Vadehavsområdet
  year: 1997
  ident: e_1_2_7_14_1
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1752-4571.2008.00037.x
– reference: 19457205 - Mol Ecol. 2009 Jun;18(12):2545-6
SSID ssj0013255
Score 2.3340428
Snippet Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities....
AbstractAnalyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2549
SubjectTerms admixture
adverse effects
Animal populations
Animals
Anthropogenic factors
Cluster Analysis
Crosses, Genetic
Denmark
DNA
DNA - genetics
effective population size
Fish hatcheries
Fish populations
Fisheries
Freshwater
gene flow
Genetic diversity
Genetic structure
genetic techniques and protocols
Genetic Variation
genetics
Genetics, Population
habitats
hatcheries
humans
introgression
local adaptation
microsatellite DNA
Microsatellite Repeats
Natural populations
Population decline
Population Density
Population Dynamics
Population genetics
population size
River systems
Rivers
Salmo trutta
Sequence Analysis, DNA
stocking
Trout
Trout - genetics
Wildlife
Title Sixty years of anthropogenic pressure: a spatio-temporal genetic analysis of brown trout populations subject to stocking and population declines
URI https://api.istex.fr/ark:/67375/WNG-TS6H18WV-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-294X.2009.04198.x
https://www.ncbi.nlm.nih.gov/pubmed/19457206
https://www.proquest.com/docview/210707612
https://www.proquest.com/docview/20203516
https://www.proquest.com/docview/46297516
https://www.proquest.com/docview/67543600
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgJSQuvGHD8vABcWuVh-3E3NCqS4W0e9hu2d4sO3bQqqtm1SRSy4mfgPiJ_BJmnDS0aEErxKWKlBlLns5MPs-MZwh5w3RmHWd2AEcv-DFFMZB5JDFTyCXnWa4dBvSPT8R4yj7O-Kyrf8K7MG1_iD7ghpbh_TUauDbVrpH7Ci3JZl3bSQYH6CHiSXyB-Og03koo-AGoANhj8DxZslvUc-1CO1-q24UuAb-i6FfXgdFdbOs_Tkf3yXyzrbYmZT5sajPMv_zW8fH_7PsBuddhWPq-VbqH5JZbPCJ32qmWa3ga-U7Y68fk--RiVa_pGqypomVBdTeVAZT2Iqe-BLdZundU08oXdv_4-q1rlXVJgQbvVwJP2zUF-Q3GDGi9LJuaXvWTxypaNQbDSbQuKWDZHKP_wGe3aKh1eAfUVU_I9Gh0djgedEMgBjlgI3DG2EPMRlGiU8edCGOX5XEaCpsVxqdRJXhoy421qU4iHUorskIC7OCFM5kVyVOytygXbp9QEQG8FdYAyBKs0KnOuUwyYVgiRMp4FJB084ervOuQjoM6LtXWSQlkr1D2OL9TKi97tQpI1HNetV1CbsCzDzql9Gdw5mo6iTGFjOCYsTggb72i9Wvp5RwL8FKuzk8-qLOJGEfZ-Sd1GpCDjSaqzvdUCg7xKUanYJnX_VtwGpgJ0gtXNkCCguOR-DMFE3jl-m8UcNIEwYVhQJ61JvBr55LxNA6BV3hFvrFI1PHoEJ-e_yvjAbnbZvswSvaC7NXLxr0E0FibV94d_ARJ0l1W
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEYIL71JTSveAuCXyY3dtc0NVSoAmhyahua3W3jWqGsVVbEsJJ34C4ifyS5hZO26CCqoQl8hSZlba8ez4m8fOEPKaqUgbznQHXC_4SbKsE6dejJlCHnMepcpgQH8wFP0J-zjl02YcEN6FqftDtAE3PBnWXuMBx4D09im3JVoxmzZ9Jxl40F0AlHdwwLf1r079jZSCHYEKkN0H2xMF22U916609a26nakcECwKf3kdHN1Gt_bzdPyQzNYbq6tSLrpVmXTTr7_1fPxPO39EHjQwlr6r9e4xuWXmT8jderDlCp56thn26in5MTpfliu6ggNV0DyjqhnMAHp7nlJbhVstzFuqaGFru39--950y5pRoMErlsBTN05B_gTDBrRc5FVJL9vhYwUtqgQjSrTMKcDZFBMAwKc3aKg2eA3UFM_I5Lg3Pup3mjkQnRTgEdhjbCOmPS9QoeFGuL6JUj90hY6yxGZSYzDSmidahyrwlBtrEWUxIA-emSTSItglO_N8bvYIFR4gXKETwFmCZSpUKY-DSCQsECJk3HNIuH7jMm2apOOsjpnccJZA9hJljyM8Y2llL5cO8VrOy7pRyA149kCppPoC9lxORj5mkREfM-Y75I3VtHYttbjAGryQy7Phezkeib4XnX2Wpw7ZX6uibMxPIcGPDzFABcsctv-C3cBkkJqbvAISFBz3xJ8pmMBb13-jAGcTBOe6Dnlen4GrnceMh74LvMJq8o1FIge9I3x68a-Mh-Refzw4kScfhp_2yf06-YdBs5dkp1xU5gAwZJm8srbhFwX4YXE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEYgL71JToHtA3BL5sbu2uaE2ITwaoaahua3W3jWqUsVRbEsJJ34C4ifyS5hZOyZBBVWIS2QpMyvteGb87czsDCEvmIq04Ux34OgFP0mWdeLUizFTyGPOo1QZDOgfD8VgzN5N-KSpf8K7MHV_iDbghpZh_TUa-Fxn20ZuK7RiNmnaTjI4QHcBT95gwo1Qw49O_I2Mgp2ACojdB9cTBdtVPZeutPWpup6pHAAsyn55GRrdBrf269S_S6brfdVFKdNuVSbd9MtvLR__z8bvkTsNiKWva627T66Z2QNysx5ruYKnnm2FvXpIvo_Ol-WKrsCcCppnVDVjGUBrz1Nqa3CrhXlFFS1sZfePr9-aXlkXFGjwgiXw1G1TkD_BoAEtF3lV0nk7eqygRZVgPImWOQUwm2L4H_j0Bg3VBi-BmuIRGfd7p4eDTjMFopMCOAJvjE3EtOcFKjTcCNc3UeqHrtBRltg8agwuWvNE61AFnnJjLaIsBtzBM5NEWgS7ZGeWz8weocIDfCt0AihLsEyFKuVxEImEBUKEjHsOCdcvXKZNi3Sc1HEhN45KIHuJsscBnrG0spdLh3gt57xuE3IFnj3QKak-gzeX45GPOWREx4z5DnlpFa1dSy2mWIEXcnk2fCNPR2LgRWef5IlD9teaKBvnU0g4xYcYnoJlDtp_wWtgKkjNTF4BCQqOe-LPFEzgneu_UcBREwTnug55XJvAr53HjIe-C7zCKvKVRSKPe4f49ORfGQ_IrY9Hffnh7fD9PrldZ_4wYvaU7JSLyjwDAFkmz61n-AmkuGAp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sixty+years+of+anthropogenic+pressure%3A+a+spatio-temporal+genetic+analysis+of+brown+trout+populations+subject+to+stocking+and+population+declines&rft.jtitle=Molecular+ecology&rft.au=HANSEN%2C+MICHAEL+M.&rft.au=FRASER%2C+DYLAN+J.&rft.au=MEIER%2C+KRISTIAN&rft.au=MENSBERG%2C+KAREN-LISE+D.&rft.date=2009-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=18&rft.issue=12&rft.spage=2549&rft.epage=2562&rft_id=info:doi/10.1111%2Fj.1365-294X.2009.04198.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_TS6H18WV_R
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon