Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia

Non‐Technical Summary  Reduced atmospheric O2 availability (hypoxia) impairs muscle oxidative energy production and exercise tolerance. We show that dietary supplementation with inorganic nitrate reduces markers of muscle fatigue and improves high‐intensity exercise tolerance in healthy adults inhal...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 589; no. 22; pp. 5517 - 5528
Main Authors Vanhatalo, Anni, Fulford, Jonathan, Bailey, Stephen J., Blackwell, James R., Winyard, Paul G., Jones, Andrew M.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.11.2011
Wiley Subscription Services, Inc
Blackwell Science Inc
Subjects
Online AccessGet full text
ISSN0022-3751
1469-7793
1469-7793
DOI10.1113/jphysiol.2011.216341

Cover

Loading…
Abstract Non‐Technical Summary  Reduced atmospheric O2 availability (hypoxia) impairs muscle oxidative energy production and exercise tolerance. We show that dietary supplementation with inorganic nitrate reduces markers of muscle fatigue and improves high‐intensity exercise tolerance in healthy adults inhaling air containing 14.5% O2. In the body, nitrate can be converted to nitrite and nitric oxide. These molecules can improve muscle efficiency and also dilate blood vessels allowing more O2 to be delivered to active muscle. These results suggest that dietary nitrate could be beneficial during exercise at moderate to high altitude and in conditions where O2 delivery to muscle is reduced such as in pulmonary, cardiovascular and sleep disorders.   Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double‐blind, randomised crossover study, nine healthy subjects completed knee‐extension exercise to the limit of tolerance (Tlim), once in normoxia (20.9% O2; CON) and twice in hypoxia (14.5% O2). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate‐rich beetroot juice (9.3 mmol nitrate; H‐BR) or 0.75 L of nitrate‐depleted beetroot juice as a placebo (0.006 mmol nitrate; H‐PL). Muscle metabolism was assessed using calibrated 31P‐MRS. Plasma [nitrite] was elevated (P < 0.01) following BR (194 ± 51 nm) compared to PL (129 ± 23 nm) and CON (142 ± 37 nM). Tlim was reduced in H‐PL compared to CON (393 ± 169 vs. 471 ± 200 s; P < 0.05) but was not different between CON and H‐BR (477 ± 200 s). The muscle [PCr], [Pi] and pH changed at a faster rate in H‐PL compared to CON and H‐BR. The [PCr] recovery time constant was greater (P < 0.01) in H‐PL (29 ± 5 s) compared to CON (23 ± 5 s) and H‐BR (24 ± 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate–nitrite–NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia.
AbstractList Non‐Technical Summary  Reduced atmospheric O 2 availability (hypoxia) impairs muscle oxidative energy production and exercise tolerance. We show that dietary supplementation with inorganic nitrate reduces markers of muscle fatigue and improves high‐intensity exercise tolerance in healthy adults inhaling air containing 14.5% O 2 . In the body, nitrate can be converted to nitrite and nitric oxide. These molecules can improve muscle efficiency and also dilate blood vessels allowing more O 2 to be delivered to active muscle. These results suggest that dietary nitrate could be beneficial during exercise at moderate to high altitude and in conditions where O 2 delivery to muscle is reduced such as in pulmonary, cardiovascular and sleep disorders. Abstract  Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double‐blind, randomised crossover study, nine healthy subjects completed knee‐extension exercise to the limit of tolerance (T lim ), once in normoxia (20.9% O 2 ; CON) and twice in hypoxia (14.5% O 2 ). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate‐rich beetroot juice (9.3 mmol nitrate; H‐BR) or 0.75 L of nitrate‐depleted beetroot juice as a placebo (0.006 mmol nitrate; H‐PL). Muscle metabolism was assessed using calibrated 31 P‐MRS. Plasma [nitrite] was elevated ( P < 0.01) following BR (194 ± 51 n m ) compared to PL (129 ± 23 n m ) and CON (142 ± 37 nM). T lim was reduced in H‐PL compared to CON (393 ± 169 vs . 471 ± 200 s; P < 0.05) but was not different between CON and H‐BR (477 ± 200 s). The muscle [PCr], [P i ] and pH changed at a faster rate in H‐PL compared to CON and H‐BR. The [PCr] recovery time constant was greater ( P < 0.01) in H‐PL (29 ± 5 s) compared to CON (23 ± 5 s) and H‐BR (24 ± 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate–nitrite–NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia.
Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double-blind, randomised crossover study, nine healthy subjects completed knee-extension exercise to the limit of tolerance (T(lim)), once in normoxia (20.9% O(2); CON) and twice in hypoxia (14.5% O(2)). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate-rich beetroot juice (9.3 mmol nitrate; H-BR) or 0.75 L of nitrate-depleted beetroot juice as a placebo (0.006 mmol nitrate; H-PL). Muscle metabolism was assessed using calibrated (31)P-MRS. Plasma [nitrite] was elevated (P < 0.01) following BR (194 ± 51 nm) compared to PL (129 ± 23 nm) and CON (142 ± 37 nM). T(lim) was reduced in H-PL compared to CON (393 ± 169 vs. 471 ± 200 s; P < 0.05) but was not different between CON and H-BR (477 ± 200 s). The muscle [PCr], [P(i)] and pH changed at a faster rate in H-PL compared to CON and H-BR. The [PCr] recovery time constant was greater (P < 0.01) in H-PL (29 ± 5 s) compared to CON (23 ± 5 s) and H-BR (24 ± 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate-nitrite-NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia.
Non-Technical Summary Reduced atmospheric O2 availability (hypoxia) impairs muscle oxidative energy production and exercise tolerance. We show that dietary supplementation with inorganic nitrate reduces markers of muscle fatigue and improves high-intensity exercise tolerance in healthy adults inhaling air containing 14.5% O2. In the body, nitrate can be converted to nitrite and nitric oxide. These molecules can improve muscle efficiency and also dilate blood vessels allowing more O2 to be delivered to active muscle. These results suggest that dietary nitrate could be beneficial during exercise at moderate to high altitude and in conditions where O2 delivery to muscle is reduced such as in pulmonary, cardiovascular and sleep disorders. Abstract Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double-blind, randomised crossover study, nine healthy subjects completed knee-extension exercise to the limit of tolerance (Tlim), once in normoxia (20.9% O2; CON) and twice in hypoxia (14.5% O2). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate-rich beetroot juice (9.3 mmol nitrate; H-BR) or 0.75 L of nitrate-depleted beetroot juice as a placebo (0.006 mmol nitrate; H-PL). Muscle metabolism was assessed using calibrated 31P-MRS. Plasma [nitrite] was elevated (P < 0.01) following BR (194 +/- 51 nm) compared to PL (129 +/- 23 nm) and CON (142 +/- 37 nM). Tlim was reduced in H-PL compared to CON (393 +/- 169 vs. 471 +/- 200 s; P < 0.05) but was not different between CON and H-BR (477 +/- 200 s). The muscle [PCr], [Pi] and pH changed at a faster rate in H-PL compared to CON and H-BR. The [PCr] recovery time constant was greater (P < 0.01) in H-PL (29 +/- 5 s) compared to CON (23 +/- 5 s) and H-BR (24 +/- 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate-nitrite-NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia.
Non‐Technical Summary  Reduced atmospheric O2 availability (hypoxia) impairs muscle oxidative energy production and exercise tolerance. We show that dietary supplementation with inorganic nitrate reduces markers of muscle fatigue and improves high‐intensity exercise tolerance in healthy adults inhaling air containing 14.5% O2. In the body, nitrate can be converted to nitrite and nitric oxide. These molecules can improve muscle efficiency and also dilate blood vessels allowing more O2 to be delivered to active muscle. These results suggest that dietary nitrate could be beneficial during exercise at moderate to high altitude and in conditions where O2 delivery to muscle is reduced such as in pulmonary, cardiovascular and sleep disorders.   Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double‐blind, randomised crossover study, nine healthy subjects completed knee‐extension exercise to the limit of tolerance (Tlim), once in normoxia (20.9% O2; CON) and twice in hypoxia (14.5% O2). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate‐rich beetroot juice (9.3 mmol nitrate; H‐BR) or 0.75 L of nitrate‐depleted beetroot juice as a placebo (0.006 mmol nitrate; H‐PL). Muscle metabolism was assessed using calibrated 31P‐MRS. Plasma [nitrite] was elevated (P < 0.01) following BR (194 ± 51 nm) compared to PL (129 ± 23 nm) and CON (142 ± 37 nM). Tlim was reduced in H‐PL compared to CON (393 ± 169 vs. 471 ± 200 s; P < 0.05) but was not different between CON and H‐BR (477 ± 200 s). The muscle [PCr], [Pi] and pH changed at a faster rate in H‐PL compared to CON and H‐BR. The [PCr] recovery time constant was greater (P < 0.01) in H‐PL (29 ± 5 s) compared to CON (23 ± 5 s) and H‐BR (24 ± 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate–nitrite–NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia.
Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double-blind, randomised crossover study, nine healthy subjects completed knee-extension exercise to the limit of tolerance (T(lim)), once in normoxia (20.9% O(2); CON) and twice in hypoxia (14.5% O(2)). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate-rich beetroot juice (9.3 mmol nitrate; H-BR) or 0.75 L of nitrate-depleted beetroot juice as a placebo (0.006 mmol nitrate; H-PL). Muscle metabolism was assessed using calibrated (31)P-MRS. Plasma [nitrite] was elevated (P < 0.01) following BR (194 ± 51 nm) compared to PL (129 ± 23 nm) and CON (142 ± 37 nM). T(lim) was reduced in H-PL compared to CON (393 ± 169 vs. 471 ± 200 s; P < 0.05) but was not different between CON and H-BR (477 ± 200 s). The muscle [PCr], [P(i)] and pH changed at a faster rate in H-PL compared to CON and H-BR. The [PCr] recovery time constant was greater (P < 0.01) in H-PL (29 ± 5 s) compared to CON (23 ± 5 s) and H-BR (24 ± 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate-nitrite-NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia.Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double-blind, randomised crossover study, nine healthy subjects completed knee-extension exercise to the limit of tolerance (T(lim)), once in normoxia (20.9% O(2); CON) and twice in hypoxia (14.5% O(2)). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate-rich beetroot juice (9.3 mmol nitrate; H-BR) or 0.75 L of nitrate-depleted beetroot juice as a placebo (0.006 mmol nitrate; H-PL). Muscle metabolism was assessed using calibrated (31)P-MRS. Plasma [nitrite] was elevated (P < 0.01) following BR (194 ± 51 nm) compared to PL (129 ± 23 nm) and CON (142 ± 37 nM). T(lim) was reduced in H-PL compared to CON (393 ± 169 vs. 471 ± 200 s; P < 0.05) but was not different between CON and H-BR (477 ± 200 s). The muscle [PCr], [P(i)] and pH changed at a faster rate in H-PL compared to CON and H-BR. The [PCr] recovery time constant was greater (P < 0.01) in H-PL (29 ± 5 s) compared to CON (23 ± 5 s) and H-BR (24 ± 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate-nitrite-NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia.
Non-Technical Summary Reduced atmospheric O2 availability (hypoxia) impairs muscle oxidative energy production and exercise tolerance. We show that dietary supplementation with inorganic nitrate reduces markers of muscle fatigue and improves high-intensity exercise tolerance in healthy adults inhaling air containing 14.5% O2. In the body, nitrate can be converted to nitrite and nitric oxide. These molecules can improve muscle efficiency and also dilate blood vessels allowing more O2 to be delivered to active muscle. These results suggest that dietary nitrate could be beneficial during exercise at moderate to high altitude and in conditions where O2 delivery to muscle is reduced such as in pulmonary, cardiovascular and sleep disorders. Abstract Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double-blind, randomised crossover study, nine healthy subjects completed knee-extension exercise to the limit of tolerance (Tlim), once in normoxia (20.9% O2; CON) and twice in hypoxia (14.5% O2). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate-rich beetroot juice (9.3 mmol nitrate; H-BR) or 0.75 L of nitrate-depleted beetroot juice as a placebo (0.006 mmol nitrate; H-PL). Muscle metabolism was assessed using calibrated 31P-MRS. Plasma [nitrite] was elevated (P < 0.01) following BR (194 ± 51 nm) compared to PL (129 ± 23 nm) and CON (142 ± 37 nM). Tlim was reduced in H-PL compared to CON (393 ± 169 vs. 471 ± 200 s; P < 0.05) but was not different between CON and H-BR (477 ± 200 s). The muscle [PCr], [Pi] and pH changed at a faster rate in H-PL compared to CON and H-BR. The [PCr] recovery time constant was greater (P < 0.01) in H-PL (29 ± 5 s) compared to CON (23 ± 5 s) and H-BR (24 ± 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate-nitrite-NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia.
Author Bailey, Stephen J.
Blackwell, James R.
Fulford, Jonathan
Winyard, Paul G.
Jones, Andrew M.
Vanhatalo, Anni
Author_xml – sequence: 1
  givenname: Anni
  surname: Vanhatalo
  fullname: Vanhatalo, Anni
– sequence: 2
  givenname: Jonathan
  surname: Fulford
  fullname: Fulford, Jonathan
– sequence: 3
  givenname: Stephen J.
  surname: Bailey
  fullname: Bailey, Stephen J.
– sequence: 4
  givenname: James R.
  surname: Blackwell
  fullname: Blackwell, James R.
– sequence: 5
  givenname: Paul G.
  surname: Winyard
  fullname: Winyard, Paul G.
– sequence: 6
  givenname: Andrew M.
  surname: Jones
  fullname: Jones, Andrew M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21911616$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v1DAQxS1URLeFb4BQJA70ksUTO7HNAQmV_6oEh3I2jjPLepXYwU5K99vXy3YR9ACcfJjfe5rxeyfkyAePhDwGugQA9nwzrrfJhX5ZUYBlBQ3jcI8sgDeqFEKxI7KgtKpKJmo4JicpbSgFRpV6QI4rUAANNAvy9bXDycRt4d0UzYRFxG62mIphTrbHYsjTNvTOFiPGaY6tmVzwhfFd4YYxhquM4jVG6xIWU-gxGm-xcL5Yb8dw7cxDcn9l-oSPbt9T8uXtm8vz9-XFp3cfzl9dlLaWXJa16JB1negkldAaZSq5UkzxvLySsoJKWF4DR141aBveYQMGAKGjpq2Z4OyUvNz7jnM7YGfR53t6PUY35PN0ME7_OfFurb-FK80qTqWU2eDZrUEM32dMkx5cstj3xmOYk1a0bhqpJM3k2V9JkExkVwE79OkddBPm6PNHaKh5zViOckc9-X33X0sfYsrAiz1gY0gp4kpbN_1MIp_ieg1U7zqhD53Qu07ofSeymN8RH_z_IVN72Q_X4_a_NPry42cuuGQ3cV3Qkw
CODEN JPHYA7
CitedBy_id crossref_primary_10_3389_fphys_2022_827235
crossref_primary_10_1007_s00421_012_2397_6
crossref_primary_10_1136_bjsports_2012_091231
crossref_primary_10_1177_00315125221101017
crossref_primary_10_1139_apnm_2014_0228
crossref_primary_10_1186_s12970_017_0204_9
crossref_primary_10_1007_s00421_013_2589_8
crossref_primary_10_3389_fphys_2017_00401
crossref_primary_10_1016_j_niox_2014_09_157
crossref_primary_10_1139_apnm_2013_0336
crossref_primary_10_14814_phy2_13572
crossref_primary_10_3389_fphys_2015_00211
crossref_primary_10_3390_nu6020605
crossref_primary_10_1080_17461391_2018_1445298
crossref_primary_10_1111_sms_12234
crossref_primary_10_1016_j_resp_2013_04_001
crossref_primary_10_1111_sms_12199
crossref_primary_10_1093_nutrit_nuab074
crossref_primary_10_1007_s40279_017_0744_9
crossref_primary_10_3390_nu12071912
crossref_primary_10_1016_j_niox_2019_01_011
crossref_primary_10_3390_nu16091323
crossref_primary_10_1123_ijsnem_2020_0034
crossref_primary_10_1152_japplphysiol_00400_2021
crossref_primary_10_1016_j_nut_2018_10_011
crossref_primary_10_1152_japplphysiol_00372_2013
crossref_primary_10_1007_s00421_017_3580_6
crossref_primary_10_1152_japplphysiol_00014_2016
crossref_primary_10_1016_j_niox_2016_08_007
crossref_primary_10_1007_s00421_015_3295_5
crossref_primary_10_1152_japplphysiol_01253_2011
crossref_primary_10_1249_MSS_0b013e3182a1dc51
crossref_primary_10_1016_j_niox_2016_08_001
crossref_primary_10_1139_apnm_2014_0470
crossref_primary_10_3390_sports7050120
crossref_primary_10_3390_nu15020388
crossref_primary_10_1007_s12161_015_0275_7
crossref_primary_10_1007_s40279_014_0149_y
crossref_primary_10_1016_j_niox_2020_03_007
crossref_primary_10_1123_ijspp_2013_0384
crossref_primary_10_3390_nu13093183
crossref_primary_10_1152_ajpregu_00068_2014
crossref_primary_10_1089_ars_2015_6260
crossref_primary_10_1016_j_jacc_2013_03_050
crossref_primary_10_1007_s10068_016_0011_0
crossref_primary_10_1089_ham_2013_1057
crossref_primary_10_1152_ajpheart_00414_2017
crossref_primary_10_1152_ajpregu_00084_2019
crossref_primary_10_3390_healthcare12131240
crossref_primary_10_1007_s00424_013_1220_5
crossref_primary_10_1016_j_cdnut_2024_104408
crossref_primary_10_1016_j_jsams_2019_01_011
crossref_primary_10_1152_japplphysiol_00640_2015
crossref_primary_10_1519_JSC_0000000000001437
crossref_primary_10_1113_jphysiol_2011_220673
crossref_primary_10_3390_app14073091
crossref_primary_10_1113_JP278494
crossref_primary_10_1016_j_resp_2012_09_008
crossref_primary_10_1177_1074248415599061
crossref_primary_10_1016_j_freeradbiomed_2020_03_025
crossref_primary_10_15857_ksep_2015_24_1_31
crossref_primary_10_18276_cej_2023_2_05
crossref_primary_10_1152_ajpheart_00421_2015
crossref_primary_10_1007_s00421_015_3296_4
crossref_primary_10_1016_j_talanta_2014_07_084
crossref_primary_10_1111_jth_12711
crossref_primary_10_1186_s12970_017_0172_0
crossref_primary_10_1016_j_niox_2017_08_001
crossref_primary_10_1186_2046_7648_3_8
crossref_primary_10_1016_j_freeradbiomed_2024_11_010
crossref_primary_10_1111_sms_12684
crossref_primary_10_1136_thoraxjnl_2021_217147
crossref_primary_10_1186_s12970_019_0330_7
crossref_primary_10_1152_japplphysiol_01331_2012
crossref_primary_10_1016_j_niox_2024_07_003
crossref_primary_10_1080_10408398_2020_1746629
crossref_primary_10_1111_jhn_13048
crossref_primary_10_1016_j_niox_2014_12_010
crossref_primary_10_1249_JES_0000000000000074
crossref_primary_10_1007_s00421_021_04726_0
crossref_primary_10_1152_ajpendo_00512_2015
crossref_primary_10_1152_japplphysiol_00096_2014
crossref_primary_10_1016_j_niox_2014_03_162
crossref_primary_10_1111_bcp_12918
crossref_primary_10_1152_ajpregu_00264_2016
crossref_primary_10_1097_MCO_0000000000000222
crossref_primary_10_1080_07315724_2019_1601601
crossref_primary_10_1152_ajpendo_00230_2016
crossref_primary_10_1152_japplphysiol_00218_2022
crossref_primary_10_1016_j_niox_2014_10_007
crossref_primary_10_1080_15438627_2019_1586707
crossref_primary_10_1007_s00394_024_03440_9
crossref_primary_10_1016_j_niox_2016_10_006
crossref_primary_10_3389_fpsyg_2021_787496
crossref_primary_10_1152_ajpregu_00295_2013
crossref_primary_10_1139_apnm_2014_0036
crossref_primary_10_3390_nu12082227
crossref_primary_10_1152_ajpendo_00028_2016
crossref_primary_10_1080_09637486_2018_1492521
crossref_primary_10_1080_27697061_2023_2211318
crossref_primary_10_1007_s40279_016_0617_7
crossref_primary_10_1152_ajpregu_00201_2012
crossref_primary_10_1249_MSS_0b013e31828e885c
crossref_primary_10_1152_ajpgi_00066_2012
crossref_primary_10_1158_1055_9965_EPI_13_0134
crossref_primary_10_14814_phy2_13475
crossref_primary_10_1152_japplphysiol_00321_2024
crossref_primary_10_1016_j_resp_2012_05_007
crossref_primary_10_1080_10408398_2022_2124949
crossref_primary_10_1016_j_niox_2015_04_006
crossref_primary_10_1152_japplphysiol_00953_2016
crossref_primary_10_3389_fnut_2021_660150
crossref_primary_10_3389_fphys_2016_00233
crossref_primary_10_1113_jphysiol_2012_243121
crossref_primary_10_3945_jn_113_183186
crossref_primary_10_1152_japplphysiol_00293_2017
crossref_primary_10_1080_02640414_2018_1504369
crossref_primary_10_3389_fspor_2024_1435494
crossref_primary_10_3390_nu12123627
crossref_primary_10_1016_j_niox_2017_07_001
crossref_primary_10_14814_phy2_15694
crossref_primary_10_1007_s00421_019_04094_w
crossref_primary_10_1152_ajpregu_00406_2012
crossref_primary_10_1123_ijspp_2017_0724
crossref_primary_10_1146_annurev_nutr_082117_051622
crossref_primary_10_1016_j_anifeedsci_2018_12_008
crossref_primary_10_1519_JSC_0000000000002046
crossref_primary_10_3390_nu15112493
crossref_primary_10_1152_ajpgi_00203_2016
crossref_primary_10_3389_fphys_2022_839996
crossref_primary_10_1016_j_niox_2022_01_005
crossref_primary_10_3390_sports7030067
crossref_primary_10_3390_nu14235119
crossref_primary_10_15430_JCP_2021_26_1_1
crossref_primary_10_20463_jenb_2019_0008
crossref_primary_10_1152_japplphysiol_00047_2018
crossref_primary_10_17816_RCF14178_88
crossref_primary_10_1152_ajpheart_00451_2016
crossref_primary_10_1152_japplphysiol_00658_2015
crossref_primary_10_1248_bpb_b17_00316
crossref_primary_10_1146_annurev_nutr_071812_161159
crossref_primary_10_1016_j_freeradbiomed_2012_08_580
crossref_primary_10_1080_07315724_2015_1081572
crossref_primary_10_1161_CIRCHEARTFAILURE_113_001420
crossref_primary_10_1186_s12970_018_0242_y
crossref_primary_10_15857_ksep_2019_28_3_211
crossref_primary_10_1016_j_niox_2014_04_007
crossref_primary_10_1016_j_jchf_2015_12_013
crossref_primary_10_1152_japplphysiol_00122_2020
crossref_primary_10_1249_MSS_0b013e3182687e5c
crossref_primary_10_1111_j_1365_2125_2012_04420_x
crossref_primary_10_1111_sms_12005
crossref_primary_10_1186_s12970_020_00358_5
crossref_primary_10_3389_fphys_2022_915640
crossref_primary_10_3390_nu12030734
crossref_primary_10_1113_JP279789
crossref_primary_10_1371_journal_pone_0188893
crossref_primary_10_3390_nu6115224
Cites_doi 10.1161/CIRCULATIONAHA.107.719591
10.1002/mrm.1910010303
10.1073/pnas.98.1.355
10.1152/jappl.1999.86.6.2013
10.1152/ajpheart.00230.2009
10.1002/med.20151
10.1152/ajpheart.01239.2009
10.1161/ATVBAHA.108.181628
10.1152/ajpregu.00206.2010
10.1152/jappl.1980.49.5.863
10.1161/HYPERTENSIONAHA.107.103523
10.1152/japplphysiol.00487.2006
10.1152/ajpregu.00056.2010
10.1016/j.cmet.2011.01.004
10.1113/jphysiol.2009.172221
10.1152/jappl.1974.36.4.399
10.1113/expphysiol.2009.050500
10.1152/jappl.1998.85.4.1457
10.1111/j.1748-1716.2007.01713.x
10.1152/physrev.00015.2007
10.1002/nbm.1192
10.1073/pnas.0707462104
10.1152/ajpcell.1997.272.2.C501
10.1016/j.freeradbiomed.2004.04.027
10.1152/jappl.1983.55.4.1134
10.1111/j.1469-7793.2001.00901.x
10.1152/japplphysiol.00046.2010
10.1113/jphysiol.2007.144113
10.1152/jappl.1999.86.4.1367
10.1152/japplphysiol.01008.2007
10.1152/japplphysiol.01070.2010
10.1016/j.freeradbiomed.2006.05.019
10.1113/jphysiol.2006.114249
10.1113/jphysiol.1993.sp019673
10.1113/jphysiol.2011.209486
10.1161/HYPERTENSIONAHA.110.153536
10.1152/jappl.1995.78.6.2131
10.1016/j.niox.2008.08.003
10.1038/nm954
10.1016/j.freeradbiomed.2009.11.006
10.1152/japplphysiol.00787.2010
10.1113/jphysiol.2008.162271
10.1113/jphysiol.2009.180489
10.1016/0003-9861(79)90375-8
10.1152/ajpheart.00996.2010
10.1161/CIRCRESAHA.109.197228
10.1038/nm0695-546
10.1152/ajpregu.00039.2007
10.1172/JCI118237
10.1152/japplphysiol.00071.2011
10.1006/jmre.1997.1244
10.1152/japplphysiol.01321.2003
10.1016/S0014-5793(98)00430-X
10.1161/01.CIR.98.19.1990
10.1016/0014-5793(94)01290-3
10.1126/science.1088805
10.1002/nbm.1940060111
10.1152/jappl.1999.86.3.1048
10.1152/japplphysiol.00722.2009
10.2165/00007256-200434140-00004
10.1006/bbrc.1998.9226
ContentType Journal Article
Copyright 2011 The Authors. Journal compilation © 2011 The Physiological Society
Journal compilation © 2011 The Physiological Society 2011
Copyright_xml – notice: 2011 The Authors. Journal compilation © 2011 The Physiological Society
– notice: Journal compilation © 2011 The Physiological Society 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
DOI 10.1113/jphysiol.2011.216341
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
Physical Education Index

MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 5528
ExternalDocumentID PMC3240888
3374292731
21911616
10_1113_jphysiol_2011_216341
TJP4748
Genre article
Randomized Controlled Trial
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
0YM
10A
123
18M
1OB
1OC
24P
29L
2WC
31~
33P
36B
3EH
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABITZ
ABIVO
ABJNI
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
CHEAL
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FA8
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
H13
HF~
HGLYW
HZI
HZ~
H~9
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RPM
RX1
SAMSI
SUPJJ
TEORI
TLM
TN5
TR2
UB1
UKR
UPT
V8K
VH1
W8F
W8V
W99
WBKPD
WH7
WHG
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
XOL
YBU
YHG
YKV
YQT
YSK
YXB
YYP
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c5848-57de3dd7d8081ba9a28f93947519882127c4514e426ec64de61a11e1d0ab53743
IEDL.DBID DR2
ISSN 0022-3751
1469-7793
IngestDate Thu Aug 21 14:11:22 EDT 2025
Thu Jul 10 23:51:24 EDT 2025
Fri Jul 11 02:59:59 EDT 2025
Fri Jul 25 12:22:13 EDT 2025
Thu Apr 03 07:09:19 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
Tue Jul 01 04:29:02 EDT 2025
Wed Jan 22 16:33:30 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5848-57de3dd7d8081ba9a28f93947519882127c4514e426ec64de61a11e1d0ab53743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3240888
PMID 21911616
PQID 1545331110
PQPubID 1086388
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3240888
proquest_miscellaneous_905668980
proquest_miscellaneous_1837324710
proquest_journals_1545331110
pubmed_primary_21911616
crossref_citationtrail_10_1113_jphysiol_2011_216341
crossref_primary_10_1113_jphysiol_2011_216341
wiley_primary_10_1113_jphysiol_2011_216341_TJP4748
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2011
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: November 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: London
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Blackwell Science Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Blackwell Science Inc
References 2010; 56
1980; 49
2007; 104
2010; 109
1997; 272
2010; 588
1995; 78
2010a; 299
1999; 86
2011; 13
2008; 104
2007; 191
2008; 586
1998; 85
2006; 577
1979; 195
2011; 110
1983; 55
1993; 6
2007; 293
2001; 171
2004; 37
2004; 34
2003; 9
2008; 117
1998; 249
2007; 20
1998; 98
2010; 30
2001; 535
2001; 98
1995; 96
1974; 36
1994; 356
2008; 19
2009; 297
2010b; 95
1993; 465
1995; 1
2008; 51
2009; 29
2011; 589
2004; 97
2011; 300
2006; 41
2010; 48
1997; 129
1984; 1
2010; 299
1998; 427
2010; 298
2008; 88
2009; 107
2003; 302
2009; 587
2006; 101
2009; 104
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
Modin A (e_1_2_6_45_1) 2001; 171
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
Linnarsson D (e_1_2_6_40_1) 1974; 36
8024651 - J Physiol. 1993 Jun;465:203-22
20466802 - J Appl Physiol (1985). 2010 Jul;109(1):135-48
20028850 - Exp Physiol. 2010 Apr;95(4):528-40
18250365 - Hypertension. 2008 Mar;51(3):784-90
10368368 - J Appl Physiol (1985). 1999 Jun;86(6):2013-8
14595407 - Nat Med. 2003 Dec;9(12):1498-505
15223073 - Free Radic Biol Med. 2004 Aug 1;37(3):395-400
17962570 - J Appl Physiol (1985). 2008 Mar;104(3):861-70
21624968 - J Physiol. 2011 Jul 15;589(Pt 14):3671-83
19948661 - J Physiol. 2010 Jan 15;588(Pt 2):373-85
14671307 - Science. 2003 Dec 12;302(5652):1975-8
7560083 - J Clin Invest. 1995 Oct;96(4):1916-26
6571561 - Magn Reson Med. 1984 Sep;1(3):307-15
9124293 - Am J Physiol. 1997 Feb;272(2 Pt 1):C501-10
7805858 - FEBS Lett. 1994 Dec 19;356(2-3):295-8
18212289 - Circulation. 2008 Feb 5;117(5):670-7
15571429 - Sports Med. 2004;34(14):983-1003
19407240 - Circ Res. 2009 May 22;104(10):1178-83
19713530 - Arterioscler Thromb Vasc Biol. 2010 Apr;30(4):643-7
11559784 - J Physiol. 2001 Sep 15;535(Pt 3):901-28
21257921 - Am J Physiol Heart Circ Physiol. 2011 Apr;300(4):H1510-7
18195089 - Physiol Rev. 2008 Jan;88(1):287-332
20427728 - Am J Physiol Regul Integr Comp Physiol. 2010 Jul;299(1):R72-9
224819 - Arch Biochem Biophys. 1979 Jul;195(2):485-93
18048452 - J Physiol. 2008 Feb 15;586(4):1195-205
21071588 - J Appl Physiol (1985). 2011 Mar;110(3):591-600
21193565 - J Appl Physiol (1985). 2011 Mar;110(3):687-94
20585108 - Hypertension. 2010 Aug;56(2):274-81
4820319 - J Appl Physiol. 1974 Apr;36(4):399-402
11134509 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):355-60
19047206 - J Physiol. 2009 Jan 15;587(Pt 2):477-90
17971439 - Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17593-8
16809628 - J Appl Physiol (1985). 2006 Nov;101(5):1343-50
17635415 - Acta Physiol (Oxf). 2007 Sep;191(1):59-66
19767531 - Am J Physiol Heart Circ Physiol. 2009 Nov;297(5):H1829-36
7665409 - J Appl Physiol (1985). 1995 Jun;78(6):2131-9
19661447 - J Appl Physiol (1985). 2009 Oct;107(4):1144-55
9405214 - J Magn Reson. 1997 Nov;129(1):35-43
10066722 - J Appl Physiol (1985). 1999 Mar;86(3):1048-53
9607316 - FEBS Lett. 1998 May 8;427(2):225-8
20207810 - Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1661-70
9731211 - Biochem Biophys Res Commun. 1998 Aug 28;249(3):767-72
18793740 - Nitric Oxide. 2008 Dec;19(4):333-7
16945975 - J Physiol. 2006 Nov 15;577(Pt 1):353-67
7585121 - Nat Med. 1995 Jun;1(6):546-51
9760341 - J Appl Physiol (1985). 1998 Oct;85(4):1457-63
10194224 - J Appl Physiol (1985). 1999 Apr;86(4):1367-73
21454745 - J Appl Physiol (1985). 2011 Jun;110(6):1582-91
17715186 - Am J Physiol Regul Integr Comp Physiol. 2007 Nov;293(5):R2046-51
6629944 - J Appl Physiol Respir Environ Exerc Physiol. 1983 Oct;55(4):1134-40
9808594 - Circulation. 1998 Nov 10;98(19):1990-2
19528246 - J Physiol. 2009 Aug 1;587(Pt 15):3885-97
6776081 - J Appl Physiol Respir Environ Exerc Physiol. 1980 Nov;49(5):863-8
11350258 - Acta Physiol Scand. 2001 Jan;171(1):9-16
8457428 - NMR Biomed. 1993 Jan-Feb;6(1):66-72
15133010 - J Appl Physiol (1985). 2004 Sep;97(3):1077-81
16895789 - Free Radic Biol Med. 2006 Sep 1;41(5):691-701
21284982 - Cell Metab. 2011 Feb 2;13(2):149-59
17628042 - NMR Biomed. 2007 Oct;20(6):555-65
19219851 - Med Res Rev. 2009 Sep;29(5):683-741
20702806 - Am J Physiol Regul Integr Comp Physiol. 2010 Oct;299(4):R1121-31
19913611 - Free Radic Biol Med. 2010 Jan 15;48(2):342-7
References_xml – volume: 41
  start-page: 691
  year: 2006
  end-page: 701
  article-title: Nitrite in nitric oxide biology: cause or consequence? A systems‐based review
  publication-title: Free Radic Biol Med
– volume: 1
  start-page: 546
  year: 1995
  end-page: 551
  article-title: Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate
  publication-title: Nat Med
– volume: 586
  start-page: 1195
  year: 2008
  end-page: 1205
  article-title: Exercise intensity‐dependent contribution of β‐adrenergic receptor‐mediated vasodilatation in hypoxic humans
  publication-title: J Physiol
– volume: 356
  start-page: 295
  year: 1994
  end-page: 298
  article-title: Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase
  publication-title: FEBS Lett
– volume: 86
  start-page: 2013
  year: 1999
  end-page: 2018
  article-title: Skeletal muscle phosphocreatine recovery in exercise‐trained humans is dependent on O availability
  publication-title: J Appl Physiol
– volume: 9
  start-page: 1498
  year: 2003
  end-page: 1505
  article-title: Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation
  publication-title: Nat Med
– volume: 249
  start-page: 767
  year: 1998
  end-page: 772
  article-title: Generation of nitric oxide by a nitrite reductase activity of xanthine oxidase: a potential pathway for nitric oxide formation in the absence of nitric oxide synthase activity
  publication-title: Biochem Biophys Res Commun
– volume: 195
  start-page: 485
  year: 1979
  end-page: 493
  article-title: The oxygen dependence of cellular energy metabolism
  publication-title: Arch Biochem Biophys
– volume: 37
  start-page: 395
  year: 2004
  end-page: 400
  article-title: Inorganic nitrate is a possible source for systemic generation of nitric oxide
  publication-title: Free Radic Biol Med
– volume: 587
  start-page: 477
  year: 2009
  end-page: 490
  article-title: On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass
  publication-title: J Physiol
– volume: 95
  start-page: 528
  year: 2010b
  end-page: 540
  article-title: Influence of hyperoxia on muscle metabolic responses and the power‐duration relationship during severe‐intensity exercise in humans: a P magnetic resonance spectroscopy study
  publication-title: Exp Physiol
– volume: 48
  start-page: 342
  year: 2010
  end-page: 347
  article-title: Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise
  publication-title: Free Radic Biol Med
– volume: 98
  start-page: 1990
  year: 1998
  end-page: 1992
  article-title: Systemic hypoxia elevates skeletal muscle interstitial adenosine levels in humans
  publication-title: Circulation
– volume: 51
  start-page: 784
  year: 2008
  end-page: 790
  article-title: Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite
  publication-title: Hypertension
– volume: 1
  start-page: 307
  year: 1984
  end-page: 315
  article-title: Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of P NMR
  publication-title: Magn Reson Med
– volume: 300
  start-page: H1510
  year: 2011
  end-page: H1517
  article-title: Skeletal muscle blood flow and oxygen uptake at rest and during exercise in humans: a pet study with nitric oxide and cyclooxygenase inhibition
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 302
  start-page: 1975
  year: 2003
  end-page: 1978
  article-title: Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1α
  publication-title: Science
– volume: 86
  start-page: 1367
  year: 1999
  end-page: 1373
  article-title: Human muscle performance and PCr hydrolysis with varied inspired oxygen fractions: a P‐MRS study
  publication-title: J Appl Physiol
– volume: 88
  start-page: 287
  year: 2008
  end-page: 332
  article-title: Skeletal muscle fatigue: cellular mechanisms
  publication-title: Physiol Rev
– volume: 589
  start-page: 3671
  year: 2011
  end-page: 3683
  article-title: Augmented skeletal muscle hyperaemia during hypoxic exercise in humans is blunted by combined inhibition of nitric oxide and vasodilating prostaglandins
  publication-title: J Physiol
– volume: 104
  start-page: 1178
  year: 2009
  end-page: 1183
  article-title: Regulation of oxygen distribution in tissues by endothelial nitric oxide
  publication-title: Circ Res
– volume: 55
  start-page: 1134
  year: 1983
  end-page: 1140
  article-title: Lactate accumulation during incremental exercise with varied inspired oxygen fractions
  publication-title: J Appl Physiol
– volume: 86
  start-page: 1048
  year: 1999
  end-page: 1053
  article-title: Evidence of O supply‐dependent VO in the exercise‐trained human quadriceps
  publication-title: J Appl Physiol
– volume: 298
  start-page: H1661
  year: 2010
  end-page: H1670
  article-title: Defects in oxygen supply to skeletal muscle of prediabetic ZDF rats
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 427
  start-page: 225
  year: 1998
  end-page: 228
  article-title: Xanthine oxidoreductase catalyses the reduction of nitrates and nitrite to nitric oxide under hypoxic conditions
  publication-title: FEBS Lett
– volume: 49
  start-page: 863
  year: 1980
  end-page: 868
  article-title: Oxygen uptake, acid‐base status, and performance with varied inspired oxygen fractions
  publication-title: J Appl Physiol
– volume: 272
  start-page: C501
  year: 1997
  end-page: C510
  article-title: Linear dependence of muscle phosphocreatine kinetics on oxidative capacity
  publication-title: Am J Physiol Cell Physiol
– volume: 107
  start-page: 1144
  year: 2009
  end-page: 1155
  article-title: Dietary nitrate supplementation reduces the O cost of sub‐maximal exercise and enhances exercise tolerance in humans
  publication-title: J Appl Physiol
– volume: 465
  start-page: 203
  year: 1993
  end-page: 222
  article-title: Separate measures of ATP utilization and recovery in human skeletal muscle
  publication-title: J Physiol
– volume: 101
  start-page: 1343
  year: 2006
  end-page: 1350
  article-title: Systemic hypoxia and vasoconstrictor responsiveness in exercising human muscle
  publication-title: J Appl Physiol
– volume: 56
  start-page: 274
  year: 2010
  end-page: 281
  article-title: Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite‐derived NO
  publication-title: Hypertension
– volume: 29
  start-page: 683
  year: 2009
  end-page: 741
  article-title: Nitrite as regulator of hypoxic signaling in mammalian physiology
  publication-title: Med Res Rev
– volume: 13
  start-page: 149
  year: 2011
  end-page: 159
  article-title: Dietary inorganic nitrate improves mitochondrial efficiency in humans
  publication-title: Cell Metab
– volume: 577
  start-page: 353
  year: 2006
  end-page: 367
  article-title: In vivo ATP production during free‐flow and ischaemic muscle contractions in humans
  publication-title: J Physiol
– volume: 98
  start-page: 355
  year: 2001
  end-page: 360
  article-title: The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O
  publication-title: Proc Natl Acad Sci U S A
– volume: 104
  start-page: 861
  year: 2008
  end-page: 870
  article-title: Convective oxygen transport and fatigue
  publication-title: J Appl Physiol
– volume: 85
  start-page: 1457
  year: 1998
  end-page: 1463
  article-title: Phosphocreatine hydrolysis during submaximal exercise: the effect of FIO
  publication-title: J Appl Physiol
– volume: 297
  start-page: H1829
  year: 2009
  end-page: H1836
  article-title: eNOS uncoupling and endothelial dysfunction in aged vessels
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 20
  start-page: 555
  year: 2007
  end-page: 565
  article-title: Absolute quantification of phosphorus metabolite concentrations in human muscle by P MRS: a quantitative review
  publication-title: NMR Biomed
– volume: 587
  start-page: 3885
  year: 2009
  end-page: 3897
  article-title: Effects of ageing and exercise training on eNOS uncoupling in skeletal muscle resistance arterioles
  publication-title: J Physiol
– volume: 299
  start-page: R1121
  year: 2010a
  end-page: R1131
  article-title: Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate‐intensity and incremental exercise
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 293
  start-page: R2046
  year: 2007
  end-page: R2051
  article-title: Oxygen availability and PCr recovery rate in untrained human calf muscle: evidence of metabolic limitation in normoxia
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 97
  start-page: 1077
  year: 2004
  end-page: 1081
  article-title: Skeletal muscle oxidative metabolism in sedentary humans: P‐MRS assessment of O supply and demand limitations
  publication-title: J Appl Physiol
– volume: 129
  start-page: 35
  year: 1997
  end-page: 43
  article-title: Improved method for accurate and efficient quantification of MRS data with use of prior knowledge
  publication-title: J Magn Reson
– volume: 36
  start-page: 399
  year: 1974
  end-page: 402
  article-title: Muscle metabolites and oxygen deficit with exercise in hypoxia and hyperoxia
  publication-title: J Appl Physiol
– volume: 535
  start-page: 901
  year: 2001
  end-page: 928
  article-title: Interrelations of ATP synthesis and proton handling in ischaemically exercising human forearm muscle studied by P magnetic resonance spectroscopy
  publication-title: J Physiol
– volume: 110
  start-page: 591
  year: 2011
  end-page: 600
  article-title: Dietary nitrate supplementation reduces the O cost of walking and running: a placebo‐controlled study
  publication-title: J Appl Physiol
– volume: 96
  start-page: 1916
  year: 1995
  end-page: 1926
  article-title: Myoglobin O desaturation during exercise. Evidence of limited O transport
  publication-title: J Clin Invest
– volume: 109
  start-page: 135
  year: 2010
  end-page: 148
  article-title: Dietary nitrate supplementation enhances muscle contractile efficiency during knee‐extensor exercise in humans
  publication-title: J Appl Physiol
– volume: 30
  start-page: 643
  year: 2010
  end-page: 647
  article-title: Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 104
  start-page: 17593
  year: 2007
  end-page: 17598
  article-title: Higher blood flow and circulating NO products offset high‐altitude hypoxia among Tibetans
  publication-title: Proc Natl Acad Sci U S A
– volume: 191
  start-page: 59
  year: 2007
  end-page: 66
  article-title: Effects of dietary nitrate on oxygen cost during exercise
  publication-title: Acta Physiol (Oxf)
– volume: 78
  start-page: 2131
  year: 1995
  end-page: 2139
  article-title: Skeletal muscle mitochondrial function studied by kinetic analysis of postexercise phosphocreatine resynthesis
  publication-title: J Appl Physiol
– volume: 299
  start-page: R72
  year: 2010
  end-page: R79
  article-title: Regulation of human skeletal muscle perfusion and its heterogeneity during exercise in moderate hypoxia
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 171
  start-page: 9
  year: 2001
  end-page: 16
  article-title: Nitrite‐derived nitric oxide: a possible mediator of 'acidic‐metabolic' vasodilation
  publication-title: Acta Physiol Scand
– volume: 588
  start-page: 373
  year: 2010
  end-page: 385
  article-title: Nitric oxide contributes to the augmented vasodilatation during hypoxic exercise
  publication-title: J Physiol
– volume: 117
  start-page: 670
  year: 2008
  end-page: 677
  article-title: Hypoxic modulation of exogenous nitrite‐induced vasodilation in humans
  publication-title: Circulation
– volume: 6
  start-page: 66
  year: 1993
  end-page: 72
  article-title: Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle
  publication-title: NMR Biomed
– volume: 19
  start-page: 333
  year: 2008
  end-page: 337
  article-title: The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash
  publication-title: Nitric Oxide
– volume: 34
  start-page: 983
  year: 2004
  end-page: 1003
  article-title: Optimising exercise training in peripheral arterial disease
  publication-title: Sports Med
– volume: 110
  start-page: 687
  year: 2011
  end-page: 694
  article-title: Nitric oxide‐mediated vasodilation becomes independent of β‐adrenergic receptor activation with increased intensity of hypoxic exercise
  publication-title: J Appl Physiol
– volume: 110
  start-page: 1582
  year: 2011
  end-page: 1591
  article-title: Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease
  publication-title: J Appl Physiol
– ident: e_1_2_6_43_1
  doi: 10.1161/CIRCULATIONAHA.107.719591
– ident: e_1_2_6_5_1
  doi: 10.1002/mrm.1910010303
– ident: e_1_2_6_51_1
  doi: 10.1073/pnas.98.1.355
– ident: e_1_2_6_22_1
  doi: 10.1152/jappl.1999.86.6.2013
– ident: e_1_2_6_62_1
  doi: 10.1152/ajpheart.00230.2009
– ident: e_1_2_6_53_1
  doi: 10.1002/med.20151
– ident: e_1_2_6_18_1
  doi: 10.1152/ajpheart.01239.2009
– volume: 171
  start-page: 9
  year: 2001
  ident: e_1_2_6_45_1
  article-title: Nitrite‐derived nitric oxide: a possible mediator of 'acidic‐metabolic' vasodilation
  publication-title: Acta Physiol Scand
– ident: e_1_2_6_50_1
  doi: 10.1161/ATVBAHA.108.181628
– ident: e_1_2_6_55_1
  doi: 10.1152/ajpregu.00206.2010
– ident: e_1_2_6_2_1
  doi: 10.1152/jappl.1980.49.5.863
– ident: e_1_2_6_58_1
  doi: 10.1161/HYPERTENSIONAHA.107.103523
– ident: e_1_2_6_60_1
  doi: 10.1152/japplphysiol.00487.2006
– ident: e_1_2_6_26_1
  doi: 10.1152/ajpregu.00056.2010
– ident: e_1_2_6_37_1
  doi: 10.1016/j.cmet.2011.01.004
– ident: e_1_2_6_49_1
  doi: 10.1113/jphysiol.2009.172221
– volume: 36
  start-page: 399
  year: 1974
  ident: e_1_2_6_40_1
  article-title: Muscle metabolites and oxygen deficit with exercise in hypoxia and hyperoxia
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1974.36.4.399
– ident: e_1_2_6_56_1
  doi: 10.1113/expphysiol.2009.050500
– ident: e_1_2_6_25_1
  doi: 10.1152/jappl.1998.85.4.1457
– ident: e_1_2_6_39_1
  doi: 10.1111/j.1748-1716.2007.01713.x
– ident: e_1_2_6_3_1
  doi: 10.1152/physrev.00015.2007
– ident: e_1_2_6_31_1
  doi: 10.1002/nbm.1192
– ident: e_1_2_6_19_1
  doi: 10.1073/pnas.0707462104
– ident: e_1_2_6_46_1
  doi: 10.1152/ajpcell.1997.272.2.C501
– ident: e_1_2_6_41_1
  doi: 10.1016/j.freeradbiomed.2004.04.027
– ident: e_1_2_6_28_1
  doi: 10.1152/jappl.1983.55.4.1134
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1469-7793.2001.00901.x
– ident: e_1_2_6_6_1
  doi: 10.1152/japplphysiol.00046.2010
– ident: e_1_2_6_59_1
  doi: 10.1113/jphysiol.2007.144113
– ident: e_1_2_6_29_1
  doi: 10.1152/jappl.1999.86.4.1367
– ident: e_1_2_6_4_1
  doi: 10.1152/japplphysiol.01008.2007
– ident: e_1_2_6_35_1
  doi: 10.1152/japplphysiol.01070.2010
– ident: e_1_2_6_10_1
  doi: 10.1016/j.freeradbiomed.2006.05.019
– ident: e_1_2_6_36_1
  doi: 10.1113/jphysiol.2006.114249
– ident: e_1_2_6_8_1
  doi: 10.1113/jphysiol.1993.sp019673
– ident: e_1_2_6_16_1
  doi: 10.1113/jphysiol.2011.209486
– ident: e_1_2_6_30_1
  doi: 10.1161/HYPERTENSIONAHA.110.153536
– ident: e_1_2_6_52_1
  doi: 10.1152/jappl.1995.78.6.2131
– ident: e_1_2_6_20_1
  doi: 10.1016/j.niox.2008.08.003
– ident: e_1_2_6_15_1
  doi: 10.1038/nm954
– ident: e_1_2_6_38_1
  doi: 10.1016/j.freeradbiomed.2009.11.006
– ident: e_1_2_6_13_1
  doi: 10.1152/japplphysiol.00787.2010
– ident: e_1_2_6_12_1
  doi: 10.1113/jphysiol.2008.162271
– ident: e_1_2_6_14_1
  doi: 10.1113/jphysiol.2009.180489
– ident: e_1_2_6_61_1
  doi: 10.1016/0003-9861(79)90375-8
– ident: e_1_2_6_27_1
  doi: 10.1152/ajpheart.00996.2010
– ident: e_1_2_6_57_1
  doi: 10.1161/CIRCRESAHA.109.197228
– ident: e_1_2_6_17_1
  doi: 10.1038/nm0695-546
– ident: e_1_2_6_23_1
  doi: 10.1152/ajpregu.00039.2007
– ident: e_1_2_6_48_1
  doi: 10.1172/JCI118237
– ident: e_1_2_6_34_1
  doi: 10.1152/japplphysiol.00071.2011
– ident: e_1_2_6_54_1
  doi: 10.1006/jmre.1997.1244
– ident: e_1_2_6_24_1
  doi: 10.1152/japplphysiol.01321.2003
– ident: e_1_2_6_44_1
  doi: 10.1016/S0014-5793(98)00430-X
– ident: e_1_2_6_42_1
  doi: 10.1161/01.CIR.98.19.1990
– ident: e_1_2_6_9_1
  doi: 10.1016/0014-5793(94)01290-3
– ident: e_1_2_6_21_1
  doi: 10.1126/science.1088805
– ident: e_1_2_6_33_1
  doi: 10.1002/nbm.1940060111
– ident: e_1_2_6_47_1
  doi: 10.1152/jappl.1999.86.3.1048
– ident: e_1_2_6_7_1
  doi: 10.1152/japplphysiol.00722.2009
– ident: e_1_2_6_11_1
  doi: 10.2165/00007256-200434140-00004
– ident: e_1_2_6_63_1
  doi: 10.1006/bbrc.1998.9226
– reference: 19767531 - Am J Physiol Heart Circ Physiol. 2009 Nov;297(5):H1829-36
– reference: 10194224 - J Appl Physiol (1985). 1999 Apr;86(4):1367-73
– reference: 7805858 - FEBS Lett. 1994 Dec 19;356(2-3):295-8
– reference: 10368368 - J Appl Physiol (1985). 1999 Jun;86(6):2013-8
– reference: 6629944 - J Appl Physiol Respir Environ Exerc Physiol. 1983 Oct;55(4):1134-40
– reference: 19528246 - J Physiol. 2009 Aug 1;587(Pt 15):3885-97
– reference: 20028850 - Exp Physiol. 2010 Apr;95(4):528-40
– reference: 9731211 - Biochem Biophys Res Commun. 1998 Aug 28;249(3):767-72
– reference: 15223073 - Free Radic Biol Med. 2004 Aug 1;37(3):395-400
– reference: 21257921 - Am J Physiol Heart Circ Physiol. 2011 Apr;300(4):H1510-7
– reference: 18250365 - Hypertension. 2008 Mar;51(3):784-90
– reference: 20207810 - Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1661-70
– reference: 14595407 - Nat Med. 2003 Dec;9(12):1498-505
– reference: 14671307 - Science. 2003 Dec 12;302(5652):1975-8
– reference: 17971439 - Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17593-8
– reference: 8024651 - J Physiol. 1993 Jun;465:203-22
– reference: 224819 - Arch Biochem Biophys. 1979 Jul;195(2):485-93
– reference: 18793740 - Nitric Oxide. 2008 Dec;19(4):333-7
– reference: 11350258 - Acta Physiol Scand. 2001 Jan;171(1):9-16
– reference: 17635415 - Acta Physiol (Oxf). 2007 Sep;191(1):59-66
– reference: 18212289 - Circulation. 2008 Feb 5;117(5):670-7
– reference: 19948661 - J Physiol. 2010 Jan 15;588(Pt 2):373-85
– reference: 9405214 - J Magn Reson. 1997 Nov;129(1):35-43
– reference: 18195089 - Physiol Rev. 2008 Jan;88(1):287-332
– reference: 10066722 - J Appl Physiol (1985). 1999 Mar;86(3):1048-53
– reference: 19913611 - Free Radic Biol Med. 2010 Jan 15;48(2):342-7
– reference: 8457428 - NMR Biomed. 1993 Jan-Feb;6(1):66-72
– reference: 20466802 - J Appl Physiol (1985). 2010 Jul;109(1):135-48
– reference: 19661447 - J Appl Physiol (1985). 2009 Oct;107(4):1144-55
– reference: 4820319 - J Appl Physiol. 1974 Apr;36(4):399-402
– reference: 17715186 - Am J Physiol Regul Integr Comp Physiol. 2007 Nov;293(5):R2046-51
– reference: 7665409 - J Appl Physiol (1985). 1995 Jun;78(6):2131-9
– reference: 15571429 - Sports Med. 2004;34(14):983-1003
– reference: 11134509 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):355-60
– reference: 7560083 - J Clin Invest. 1995 Oct;96(4):1916-26
– reference: 9124293 - Am J Physiol. 1997 Feb;272(2 Pt 1):C501-10
– reference: 16809628 - J Appl Physiol (1985). 2006 Nov;101(5):1343-50
– reference: 7585121 - Nat Med. 1995 Jun;1(6):546-51
– reference: 6776081 - J Appl Physiol Respir Environ Exerc Physiol. 1980 Nov;49(5):863-8
– reference: 16945975 - J Physiol. 2006 Nov 15;577(Pt 1):353-67
– reference: 9607316 - FEBS Lett. 1998 May 8;427(2):225-8
– reference: 9760341 - J Appl Physiol (1985). 1998 Oct;85(4):1457-63
– reference: 20427728 - Am J Physiol Regul Integr Comp Physiol. 2010 Jul;299(1):R72-9
– reference: 6571561 - Magn Reson Med. 1984 Sep;1(3):307-15
– reference: 18048452 - J Physiol. 2008 Feb 15;586(4):1195-205
– reference: 20585108 - Hypertension. 2010 Aug;56(2):274-81
– reference: 17962570 - J Appl Physiol (1985). 2008 Mar;104(3):861-70
– reference: 21284982 - Cell Metab. 2011 Feb 2;13(2):149-59
– reference: 20702806 - Am J Physiol Regul Integr Comp Physiol. 2010 Oct;299(4):R1121-31
– reference: 11559784 - J Physiol. 2001 Sep 15;535(Pt 3):901-28
– reference: 19407240 - Circ Res. 2009 May 22;104(10):1178-83
– reference: 19047206 - J Physiol. 2009 Jan 15;587(Pt 2):477-90
– reference: 15133010 - J Appl Physiol (1985). 2004 Sep;97(3):1077-81
– reference: 21454745 - J Appl Physiol (1985). 2011 Jun;110(6):1582-91
– reference: 21071588 - J Appl Physiol (1985). 2011 Mar;110(3):591-600
– reference: 21193565 - J Appl Physiol (1985). 2011 Mar;110(3):687-94
– reference: 21624968 - J Physiol. 2011 Jul 15;589(Pt 14):3671-83
– reference: 9808594 - Circulation. 1998 Nov 10;98(19):1990-2
– reference: 19219851 - Med Res Rev. 2009 Sep;29(5):683-741
– reference: 17628042 - NMR Biomed. 2007 Oct;20(6):555-65
– reference: 16895789 - Free Radic Biol Med. 2006 Sep 1;41(5):691-701
– reference: 19713530 - Arterioscler Thromb Vasc Biol. 2010 Apr;30(4):643-7
SSID ssj0013099
Score 2.4570084
Snippet Non‐Technical Summary  Reduced atmospheric O2 availability (hypoxia) impairs muscle oxidative energy production and exercise tolerance. We show that dietary...
Non‐Technical Summary  Reduced atmospheric O 2 availability (hypoxia) impairs muscle oxidative energy production and exercise tolerance. We show that dietary...
Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation...
Non-Technical Summary Reduced atmospheric O2 availability (hypoxia) impairs muscle oxidative energy production and exercise tolerance. We show that dietary...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5517
SubjectTerms Adult
Beta vulgaris
Blood Pressure
Cross-Over Studies
Dietary Supplements
Double-Blind Method
Exercise Test
Exercise Tolerance - drug effects
Female
Humans
Hypoxia - blood
Hypoxia - drug therapy
Hypoxia - physiopathology
Integrative
Male
Muscle, Skeletal - drug effects
Muscle, Skeletal - physiopathology
Nitrates - pharmacology
Nitrites - blood
Plant Extracts - pharmacology
Plant Extracts - therapeutic use
Plant Roots - chemistry
Young Adult
Title Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2011.216341
https://www.ncbi.nlm.nih.gov/pubmed/21911616
https://www.proquest.com/docview/1545331110
https://www.proquest.com/docview/1837324710
https://www.proquest.com/docview/905668980
https://pubmed.ncbi.nlm.nih.gov/PMC3240888
Volume 589
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqnrjwVT4WCjIS4pYSx05sHytgVfWAKtRKvQU7dtvAbrLazUpsf31n7CSwFASCs98ksTMTPzueN4S8hlWGcxkEYGWFS4S1PMGktESignaae5OaoPb5sTg6E8fn-fkOmQ65MFEfYtxww8gI32sMcGP7KiQMxQa-hKV_O4synBnwipC_jse2kBt9yr7_TEi1HkXDZc76DDq4zNtfXWR7hrpFO2-fnvyR1YZpaXqPXA4diqdRvh6sO3tQXf-k9fj_Pb5P7vbMlR5GV3tAdnzzkOwdNrBqn2_oG3oSzdrLzR75_L72HdyIwgcDtSjoEhVi_YrO1yswpnNotahITBd-CZOeDf5BTeNoHXY5ADoUg6JdO_NY_sPTuqFXm0X7rTaPyNn0w-m7o6Sv5ZBUQHFUkkvnuXPSYaUPa7TJ1IXmWsDr0EDyWSYrAdzNA2HwVSGcL5hhzDOXGptzoDmPyW7TNv4poazSWkCLzc0FAJmVqFDEFAArrryaED68v7Lqhc6x3sasjAseXg4DWeJAlnEgJyQZrRZR6OMP-P3BNco-7Fcl8lHOwSadkFdjMwQs_oUxjW_XgFFcAouViKG_wWigpYXSCiBPorONzwQzDAOWXkyI3HLDEYB64dstTX0VdMNRe1EpGJ8seNlfdbM8PT4RUqhn_2L0nNwJW_AhdXOf7HbLtX8BHK6zL0OE3gBl90PK
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWq9gAXoJSPhQJGQtxS4jiJ7WNFW5ZSqgptpd6CHbtsYDdZ7WalLr-eGecDloJAiLPfJLEzEz_bmTeEvIBVhrURBGBuYhvExvAAk9ICgQraYeJ0qL3a52k6PI-PL5KLDfKmy4Vp9CH6DTeMDP-9xgDHDek2ylFt4LNf-1eTRoczAmKBCexbWNwbSxkcfIi-HyeESvWy4SJhbQ4dXOfVr66yPkddI57X_5_8kdf6ienoNhl3XWr-R_myt6zNXv71J7XH_9DnO-RWS17pfuNt22TDlXfJzn4JC_fpir6kZ41Z9Wm1Qz4eFK6GO1H4ZqAcBZ2jSKxb0OlyAcZ0Cq0GRYnpzM1h3jPeRaguLS38RgdAu3pQtK4mDiuAOFqUdLyaVVeFvkfOjw5Hr4dBW84hyIHlyCAR1nFrhcViH0YrHclLxVUM70MBz2eRyGOgbw44g8vT2LqUacYcs6E2CQemc59sllXpHhLKcqViaDGJvgQgMwJFipgEYM6lkwPCuxeY5a3WOZbcmGTNmodn3UBmOJBZM5ADEvRWs0br4w_43c43sjbyFxlSUs7BJhyQ530zxCwexOjSVUvASC6AyArE0N9gFDDTVCoJkAeNt_XPBJMMA6KeDohY88MegJLh6y1lMfbS4Si_KCWMT-Td7K-6mY2Oz2IRy0f_YvSM3BiO3p9kJ29P3z0mN_2OvM_k3CWb9XzpngClq81TH67fAGwWR-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLamISFeuI1LxwAjId4y6tiJ7ceJUY2Bpgpt0t6CHbtboE2qNpVWfj3nOBcoA4Hg2d9JYuec-LOd8x1CXsIqw7kYAjC3wkXCWh5hUlokUUF7mHgzNEHt8yQ9OhPH58n5Fhl1uTCNPkS_4YaREb7XGOBzN2mDHMUGPoelfzVtZDhj4BWYv35DpBA3SI4-xt9PE4Za96rhMmFtCh1c5_WvrrI5RV3jndd_n_yR1oZ5aXSHXHQ9an5H-bK_qu1-_vUnscf_7_JdcrulrvSg8bV7ZMuX98nOQQnL9tmavqLjxqy6WO-QT4eFr-FGFL4YKEZBFygR65d0tlqCMZ1Bq0VJYjr3C5j1bHAQakpHi7DNAdCuGhStq6nH-h-eFiW9XM-rq8I8IGejt6dvjqK2mEOUA8dRUSKd585Jh6U-rNEmVhPNtYDXoYHls1jmAsibB8bg81Q4nzLDmGduaGzCgec8JNtlVfrHhLJcawEtNjETADIrUaKIKQDmXHk1ILx7f1neKp1jwY1p1qx4eNYNZIYDmTUDOSBRbzVvlD7-gN_rXCNr436ZISHlHGyGA_Kib4aIxWMYU_pqBRjFJdBYiRj6G4wGXpoqrQDyqHG2_plgimFA09MBkRtu2ANQMHyzpSwug3A4ii8qBeMTBy_7q25mp8djIYXa_Rej5-Tm-HCUfXh38v4JuRW240Ma5x7Zrhcr_xT4XG2fhWD9BodmRpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dietary+nitrate+reduces+muscle+metabolic+perturbation+and+improves+exercise+tolerance+in+hypoxia&rft.jtitle=The+Journal+of+physiology&rft.au=Vanhatalo%2C+Anni&rft.au=Fulford%2C+Jonathan&rft.au=Bailey%2C+Stephen+J.&rft.au=Blackwell%2C+James+R.&rft.date=2011-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=589&rft.issue=22&rft.spage=5517&rft.epage=5528&rft_id=info:doi/10.1113%2Fjphysiol.2011.216341&rft.externalDBID=10.1113%252Fjphysiol.2011.216341&rft.externalDocID=TJP4748
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon