Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia
Non‐Technical Summary Reduced atmospheric O2 availability (hypoxia) impairs muscle oxidative energy production and exercise tolerance. We show that dietary supplementation with inorganic nitrate reduces markers of muscle fatigue and improves high‐intensity exercise tolerance in healthy adults inhal...
Saved in:
Published in | The Journal of physiology Vol. 589; no. 22; pp. 5517 - 5528 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.11.2011
Wiley Subscription Services, Inc Blackwell Science Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3751 1469-7793 1469-7793 |
DOI | 10.1113/jphysiol.2011.216341 |
Cover
Loading…
Abstract | Non‐Technical Summary Reduced atmospheric O2 availability (hypoxia) impairs muscle oxidative energy production and exercise tolerance. We show that dietary supplementation with inorganic nitrate reduces markers of muscle fatigue and improves high‐intensity exercise tolerance in healthy adults inhaling air containing 14.5% O2. In the body, nitrate can be converted to nitrite and nitric oxide. These molecules can improve muscle efficiency and also dilate blood vessels allowing more O2 to be delivered to active muscle. These results suggest that dietary nitrate could be beneficial during exercise at moderate to high altitude and in conditions where O2 delivery to muscle is reduced such as in pulmonary, cardiovascular and sleep disorders.
Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double‐blind, randomised crossover study, nine healthy subjects completed knee‐extension exercise to the limit of tolerance (Tlim), once in normoxia (20.9% O2; CON) and twice in hypoxia (14.5% O2). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate‐rich beetroot juice (9.3 mmol nitrate; H‐BR) or 0.75 L of nitrate‐depleted beetroot juice as a placebo (0.006 mmol nitrate; H‐PL). Muscle metabolism was assessed using calibrated 31P‐MRS. Plasma [nitrite] was elevated (P < 0.01) following BR (194 ± 51 nm) compared to PL (129 ± 23 nm) and CON (142 ± 37 nM). Tlim was reduced in H‐PL compared to CON (393 ± 169 vs. 471 ± 200 s; P < 0.05) but was not different between CON and H‐BR (477 ± 200 s). The muscle [PCr], [Pi] and pH changed at a faster rate in H‐PL compared to CON and H‐BR. The [PCr] recovery time constant was greater (P < 0.01) in H‐PL (29 ± 5 s) compared to CON (23 ± 5 s) and H‐BR (24 ± 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate–nitrite–NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia. |
---|---|
AbstractList | Non‐Technical Summary
Reduced atmospheric O
2
availability (hypoxia) impairs muscle oxidative energy production and exercise tolerance. We show that dietary supplementation with inorganic nitrate reduces markers of muscle fatigue and improves high‐intensity exercise tolerance in healthy adults inhaling air containing 14.5% O
2
. In the body, nitrate can be converted to nitrite and nitric oxide. These molecules can improve muscle efficiency and also dilate blood vessels allowing more O
2
to be delivered to active muscle. These results suggest that dietary nitrate could be beneficial during exercise at moderate to high altitude and in conditions where O
2
delivery to muscle is reduced such as in pulmonary, cardiovascular and sleep disorders.
Abstract
Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double‐blind, randomised crossover study, nine healthy subjects completed knee‐extension exercise to the limit of tolerance (T
lim
), once in normoxia (20.9% O
2
; CON) and twice in hypoxia (14.5% O
2
). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate‐rich beetroot juice (9.3 mmol nitrate; H‐BR) or 0.75 L of nitrate‐depleted beetroot juice as a placebo (0.006 mmol nitrate; H‐PL). Muscle metabolism was assessed using calibrated
31
P‐MRS. Plasma [nitrite] was elevated (
P
< 0.01) following BR (194 ± 51 n
m
) compared to PL (129 ± 23 n
m
) and CON (142 ± 37 nM). T
lim
was reduced in H‐PL compared to CON (393 ± 169
vs
. 471 ± 200 s;
P
< 0.05) but was not different between CON and H‐BR (477 ± 200 s). The muscle [PCr], [P
i
] and pH changed at a faster rate in H‐PL compared to CON and H‐BR. The [PCr] recovery time constant was greater (
P
< 0.01) in H‐PL (29 ± 5 s) compared to CON (23 ± 5 s) and H‐BR (24 ± 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate–nitrite–NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia. Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double-blind, randomised crossover study, nine healthy subjects completed knee-extension exercise to the limit of tolerance (T(lim)), once in normoxia (20.9% O(2); CON) and twice in hypoxia (14.5% O(2)). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate-rich beetroot juice (9.3 mmol nitrate; H-BR) or 0.75 L of nitrate-depleted beetroot juice as a placebo (0.006 mmol nitrate; H-PL). Muscle metabolism was assessed using calibrated (31)P-MRS. Plasma [nitrite] was elevated (P < 0.01) following BR (194 ± 51 nm) compared to PL (129 ± 23 nm) and CON (142 ± 37 nM). T(lim) was reduced in H-PL compared to CON (393 ± 169 vs. 471 ± 200 s; P < 0.05) but was not different between CON and H-BR (477 ± 200 s). The muscle [PCr], [P(i)] and pH changed at a faster rate in H-PL compared to CON and H-BR. The [PCr] recovery time constant was greater (P < 0.01) in H-PL (29 ± 5 s) compared to CON (23 ± 5 s) and H-BR (24 ± 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate-nitrite-NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia. Non-Technical Summary Reduced atmospheric O2 availability (hypoxia) impairs muscle oxidative energy production and exercise tolerance. We show that dietary supplementation with inorganic nitrate reduces markers of muscle fatigue and improves high-intensity exercise tolerance in healthy adults inhaling air containing 14.5% O2. In the body, nitrate can be converted to nitrite and nitric oxide. These molecules can improve muscle efficiency and also dilate blood vessels allowing more O2 to be delivered to active muscle. These results suggest that dietary nitrate could be beneficial during exercise at moderate to high altitude and in conditions where O2 delivery to muscle is reduced such as in pulmonary, cardiovascular and sleep disorders. Abstract Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double-blind, randomised crossover study, nine healthy subjects completed knee-extension exercise to the limit of tolerance (Tlim), once in normoxia (20.9% O2; CON) and twice in hypoxia (14.5% O2). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate-rich beetroot juice (9.3 mmol nitrate; H-BR) or 0.75 L of nitrate-depleted beetroot juice as a placebo (0.006 mmol nitrate; H-PL). Muscle metabolism was assessed using calibrated 31P-MRS. Plasma [nitrite] was elevated (P < 0.01) following BR (194 +/- 51 nm) compared to PL (129 +/- 23 nm) and CON (142 +/- 37 nM). Tlim was reduced in H-PL compared to CON (393 +/- 169 vs. 471 +/- 200 s; P < 0.05) but was not different between CON and H-BR (477 +/- 200 s). The muscle [PCr], [Pi] and pH changed at a faster rate in H-PL compared to CON and H-BR. The [PCr] recovery time constant was greater (P < 0.01) in H-PL (29 +/- 5 s) compared to CON (23 +/- 5 s) and H-BR (24 +/- 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate-nitrite-NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia. Non‐Technical Summary Reduced atmospheric O2 availability (hypoxia) impairs muscle oxidative energy production and exercise tolerance. We show that dietary supplementation with inorganic nitrate reduces markers of muscle fatigue and improves high‐intensity exercise tolerance in healthy adults inhaling air containing 14.5% O2. In the body, nitrate can be converted to nitrite and nitric oxide. These molecules can improve muscle efficiency and also dilate blood vessels allowing more O2 to be delivered to active muscle. These results suggest that dietary nitrate could be beneficial during exercise at moderate to high altitude and in conditions where O2 delivery to muscle is reduced such as in pulmonary, cardiovascular and sleep disorders. Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double‐blind, randomised crossover study, nine healthy subjects completed knee‐extension exercise to the limit of tolerance (Tlim), once in normoxia (20.9% O2; CON) and twice in hypoxia (14.5% O2). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate‐rich beetroot juice (9.3 mmol nitrate; H‐BR) or 0.75 L of nitrate‐depleted beetroot juice as a placebo (0.006 mmol nitrate; H‐PL). Muscle metabolism was assessed using calibrated 31P‐MRS. Plasma [nitrite] was elevated (P < 0.01) following BR (194 ± 51 nm) compared to PL (129 ± 23 nm) and CON (142 ± 37 nM). Tlim was reduced in H‐PL compared to CON (393 ± 169 vs. 471 ± 200 s; P < 0.05) but was not different between CON and H‐BR (477 ± 200 s). The muscle [PCr], [Pi] and pH changed at a faster rate in H‐PL compared to CON and H‐BR. The [PCr] recovery time constant was greater (P < 0.01) in H‐PL (29 ± 5 s) compared to CON (23 ± 5 s) and H‐BR (24 ± 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate–nitrite–NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia. Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double-blind, randomised crossover study, nine healthy subjects completed knee-extension exercise to the limit of tolerance (T(lim)), once in normoxia (20.9% O(2); CON) and twice in hypoxia (14.5% O(2)). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate-rich beetroot juice (9.3 mmol nitrate; H-BR) or 0.75 L of nitrate-depleted beetroot juice as a placebo (0.006 mmol nitrate; H-PL). Muscle metabolism was assessed using calibrated (31)P-MRS. Plasma [nitrite] was elevated (P < 0.01) following BR (194 ± 51 nm) compared to PL (129 ± 23 nm) and CON (142 ± 37 nM). T(lim) was reduced in H-PL compared to CON (393 ± 169 vs. 471 ± 200 s; P < 0.05) but was not different between CON and H-BR (477 ± 200 s). The muscle [PCr], [P(i)] and pH changed at a faster rate in H-PL compared to CON and H-BR. The [PCr] recovery time constant was greater (P < 0.01) in H-PL (29 ± 5 s) compared to CON (23 ± 5 s) and H-BR (24 ± 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate-nitrite-NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia.Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double-blind, randomised crossover study, nine healthy subjects completed knee-extension exercise to the limit of tolerance (T(lim)), once in normoxia (20.9% O(2); CON) and twice in hypoxia (14.5% O(2)). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate-rich beetroot juice (9.3 mmol nitrate; H-BR) or 0.75 L of nitrate-depleted beetroot juice as a placebo (0.006 mmol nitrate; H-PL). Muscle metabolism was assessed using calibrated (31)P-MRS. Plasma [nitrite] was elevated (P < 0.01) following BR (194 ± 51 nm) compared to PL (129 ± 23 nm) and CON (142 ± 37 nM). T(lim) was reduced in H-PL compared to CON (393 ± 169 vs. 471 ± 200 s; P < 0.05) but was not different between CON and H-BR (477 ± 200 s). The muscle [PCr], [P(i)] and pH changed at a faster rate in H-PL compared to CON and H-BR. The [PCr] recovery time constant was greater (P < 0.01) in H-PL (29 ± 5 s) compared to CON (23 ± 5 s) and H-BR (24 ± 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate-nitrite-NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia. Non-Technical Summary Reduced atmospheric O2 availability (hypoxia) impairs muscle oxidative energy production and exercise tolerance. We show that dietary supplementation with inorganic nitrate reduces markers of muscle fatigue and improves high-intensity exercise tolerance in healthy adults inhaling air containing 14.5% O2. In the body, nitrate can be converted to nitrite and nitric oxide. These molecules can improve muscle efficiency and also dilate blood vessels allowing more O2 to be delivered to active muscle. These results suggest that dietary nitrate could be beneficial during exercise at moderate to high altitude and in conditions where O2 delivery to muscle is reduced such as in pulmonary, cardiovascular and sleep disorders. Abstract Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double-blind, randomised crossover study, nine healthy subjects completed knee-extension exercise to the limit of tolerance (Tlim), once in normoxia (20.9% O2; CON) and twice in hypoxia (14.5% O2). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate-rich beetroot juice (9.3 mmol nitrate; H-BR) or 0.75 L of nitrate-depleted beetroot juice as a placebo (0.006 mmol nitrate; H-PL). Muscle metabolism was assessed using calibrated 31P-MRS. Plasma [nitrite] was elevated (P < 0.01) following BR (194 ± 51 nm) compared to PL (129 ± 23 nm) and CON (142 ± 37 nM). Tlim was reduced in H-PL compared to CON (393 ± 169 vs. 471 ± 200 s; P < 0.05) but was not different between CON and H-BR (477 ± 200 s). The muscle [PCr], [Pi] and pH changed at a faster rate in H-PL compared to CON and H-BR. The [PCr] recovery time constant was greater (P < 0.01) in H-PL (29 ± 5 s) compared to CON (23 ± 5 s) and H-BR (24 ± 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate-nitrite-NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia. |
Author | Bailey, Stephen J. Blackwell, James R. Fulford, Jonathan Winyard, Paul G. Jones, Andrew M. Vanhatalo, Anni |
Author_xml | – sequence: 1 givenname: Anni surname: Vanhatalo fullname: Vanhatalo, Anni – sequence: 2 givenname: Jonathan surname: Fulford fullname: Fulford, Jonathan – sequence: 3 givenname: Stephen J. surname: Bailey fullname: Bailey, Stephen J. – sequence: 4 givenname: James R. surname: Blackwell fullname: Blackwell, James R. – sequence: 5 givenname: Paul G. surname: Winyard fullname: Winyard, Paul G. – sequence: 6 givenname: Andrew M. surname: Jones fullname: Jones, Andrew M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21911616$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9v1DAQxS1URLeFb4BQJA70ksUTO7HNAQmV_6oEh3I2jjPLepXYwU5K99vXy3YR9ACcfJjfe5rxeyfkyAePhDwGugQA9nwzrrfJhX5ZUYBlBQ3jcI8sgDeqFEKxI7KgtKpKJmo4JicpbSgFRpV6QI4rUAANNAvy9bXDycRt4d0UzYRFxG62mIphTrbHYsjTNvTOFiPGaY6tmVzwhfFd4YYxhquM4jVG6xIWU-gxGm-xcL5Yb8dw7cxDcn9l-oSPbt9T8uXtm8vz9-XFp3cfzl9dlLaWXJa16JB1negkldAaZSq5UkzxvLySsoJKWF4DR141aBveYQMGAKGjpq2Z4OyUvNz7jnM7YGfR53t6PUY35PN0ME7_OfFurb-FK80qTqWU2eDZrUEM32dMkx5cstj3xmOYk1a0bhqpJM3k2V9JkExkVwE79OkddBPm6PNHaKh5zViOckc9-X33X0sfYsrAiz1gY0gp4kpbN_1MIp_ieg1U7zqhD53Qu07ofSeymN8RH_z_IVN72Q_X4_a_NPry42cuuGQ3cV3Qkw |
CODEN | JPHYA7 |
CitedBy_id | crossref_primary_10_3389_fphys_2022_827235 crossref_primary_10_1007_s00421_012_2397_6 crossref_primary_10_1136_bjsports_2012_091231 crossref_primary_10_1177_00315125221101017 crossref_primary_10_1139_apnm_2014_0228 crossref_primary_10_1186_s12970_017_0204_9 crossref_primary_10_1007_s00421_013_2589_8 crossref_primary_10_3389_fphys_2017_00401 crossref_primary_10_1016_j_niox_2014_09_157 crossref_primary_10_1139_apnm_2013_0336 crossref_primary_10_14814_phy2_13572 crossref_primary_10_3389_fphys_2015_00211 crossref_primary_10_3390_nu6020605 crossref_primary_10_1080_17461391_2018_1445298 crossref_primary_10_1111_sms_12234 crossref_primary_10_1016_j_resp_2013_04_001 crossref_primary_10_1111_sms_12199 crossref_primary_10_1093_nutrit_nuab074 crossref_primary_10_1007_s40279_017_0744_9 crossref_primary_10_3390_nu12071912 crossref_primary_10_1016_j_niox_2019_01_011 crossref_primary_10_3390_nu16091323 crossref_primary_10_1123_ijsnem_2020_0034 crossref_primary_10_1152_japplphysiol_00400_2021 crossref_primary_10_1016_j_nut_2018_10_011 crossref_primary_10_1152_japplphysiol_00372_2013 crossref_primary_10_1007_s00421_017_3580_6 crossref_primary_10_1152_japplphysiol_00014_2016 crossref_primary_10_1016_j_niox_2016_08_007 crossref_primary_10_1007_s00421_015_3295_5 crossref_primary_10_1152_japplphysiol_01253_2011 crossref_primary_10_1249_MSS_0b013e3182a1dc51 crossref_primary_10_1016_j_niox_2016_08_001 crossref_primary_10_1139_apnm_2014_0470 crossref_primary_10_3390_sports7050120 crossref_primary_10_3390_nu15020388 crossref_primary_10_1007_s12161_015_0275_7 crossref_primary_10_1007_s40279_014_0149_y crossref_primary_10_1016_j_niox_2020_03_007 crossref_primary_10_1123_ijspp_2013_0384 crossref_primary_10_3390_nu13093183 crossref_primary_10_1152_ajpregu_00068_2014 crossref_primary_10_1089_ars_2015_6260 crossref_primary_10_1016_j_jacc_2013_03_050 crossref_primary_10_1007_s10068_016_0011_0 crossref_primary_10_1089_ham_2013_1057 crossref_primary_10_1152_ajpheart_00414_2017 crossref_primary_10_1152_ajpregu_00084_2019 crossref_primary_10_3390_healthcare12131240 crossref_primary_10_1007_s00424_013_1220_5 crossref_primary_10_1016_j_cdnut_2024_104408 crossref_primary_10_1016_j_jsams_2019_01_011 crossref_primary_10_1152_japplphysiol_00640_2015 crossref_primary_10_1519_JSC_0000000000001437 crossref_primary_10_1113_jphysiol_2011_220673 crossref_primary_10_3390_app14073091 crossref_primary_10_1113_JP278494 crossref_primary_10_1016_j_resp_2012_09_008 crossref_primary_10_1177_1074248415599061 crossref_primary_10_1016_j_freeradbiomed_2020_03_025 crossref_primary_10_15857_ksep_2015_24_1_31 crossref_primary_10_18276_cej_2023_2_05 crossref_primary_10_1152_ajpheart_00421_2015 crossref_primary_10_1007_s00421_015_3296_4 crossref_primary_10_1016_j_talanta_2014_07_084 crossref_primary_10_1111_jth_12711 crossref_primary_10_1186_s12970_017_0172_0 crossref_primary_10_1016_j_niox_2017_08_001 crossref_primary_10_1186_2046_7648_3_8 crossref_primary_10_1016_j_freeradbiomed_2024_11_010 crossref_primary_10_1111_sms_12684 crossref_primary_10_1136_thoraxjnl_2021_217147 crossref_primary_10_1186_s12970_019_0330_7 crossref_primary_10_1152_japplphysiol_01331_2012 crossref_primary_10_1016_j_niox_2024_07_003 crossref_primary_10_1080_10408398_2020_1746629 crossref_primary_10_1111_jhn_13048 crossref_primary_10_1016_j_niox_2014_12_010 crossref_primary_10_1249_JES_0000000000000074 crossref_primary_10_1007_s00421_021_04726_0 crossref_primary_10_1152_ajpendo_00512_2015 crossref_primary_10_1152_japplphysiol_00096_2014 crossref_primary_10_1016_j_niox_2014_03_162 crossref_primary_10_1111_bcp_12918 crossref_primary_10_1152_ajpregu_00264_2016 crossref_primary_10_1097_MCO_0000000000000222 crossref_primary_10_1080_07315724_2019_1601601 crossref_primary_10_1152_ajpendo_00230_2016 crossref_primary_10_1152_japplphysiol_00218_2022 crossref_primary_10_1016_j_niox_2014_10_007 crossref_primary_10_1080_15438627_2019_1586707 crossref_primary_10_1007_s00394_024_03440_9 crossref_primary_10_1016_j_niox_2016_10_006 crossref_primary_10_3389_fpsyg_2021_787496 crossref_primary_10_1152_ajpregu_00295_2013 crossref_primary_10_1139_apnm_2014_0036 crossref_primary_10_3390_nu12082227 crossref_primary_10_1152_ajpendo_00028_2016 crossref_primary_10_1080_09637486_2018_1492521 crossref_primary_10_1080_27697061_2023_2211318 crossref_primary_10_1007_s40279_016_0617_7 crossref_primary_10_1152_ajpregu_00201_2012 crossref_primary_10_1249_MSS_0b013e31828e885c crossref_primary_10_1152_ajpgi_00066_2012 crossref_primary_10_1158_1055_9965_EPI_13_0134 crossref_primary_10_14814_phy2_13475 crossref_primary_10_1152_japplphysiol_00321_2024 crossref_primary_10_1016_j_resp_2012_05_007 crossref_primary_10_1080_10408398_2022_2124949 crossref_primary_10_1016_j_niox_2015_04_006 crossref_primary_10_1152_japplphysiol_00953_2016 crossref_primary_10_3389_fnut_2021_660150 crossref_primary_10_3389_fphys_2016_00233 crossref_primary_10_1113_jphysiol_2012_243121 crossref_primary_10_3945_jn_113_183186 crossref_primary_10_1152_japplphysiol_00293_2017 crossref_primary_10_1080_02640414_2018_1504369 crossref_primary_10_3389_fspor_2024_1435494 crossref_primary_10_3390_nu12123627 crossref_primary_10_1016_j_niox_2017_07_001 crossref_primary_10_14814_phy2_15694 crossref_primary_10_1007_s00421_019_04094_w crossref_primary_10_1152_ajpregu_00406_2012 crossref_primary_10_1123_ijspp_2017_0724 crossref_primary_10_1146_annurev_nutr_082117_051622 crossref_primary_10_1016_j_anifeedsci_2018_12_008 crossref_primary_10_1519_JSC_0000000000002046 crossref_primary_10_3390_nu15112493 crossref_primary_10_1152_ajpgi_00203_2016 crossref_primary_10_3389_fphys_2022_839996 crossref_primary_10_1016_j_niox_2022_01_005 crossref_primary_10_3390_sports7030067 crossref_primary_10_3390_nu14235119 crossref_primary_10_15430_JCP_2021_26_1_1 crossref_primary_10_20463_jenb_2019_0008 crossref_primary_10_1152_japplphysiol_00047_2018 crossref_primary_10_17816_RCF14178_88 crossref_primary_10_1152_ajpheart_00451_2016 crossref_primary_10_1152_japplphysiol_00658_2015 crossref_primary_10_1248_bpb_b17_00316 crossref_primary_10_1146_annurev_nutr_071812_161159 crossref_primary_10_1016_j_freeradbiomed_2012_08_580 crossref_primary_10_1080_07315724_2015_1081572 crossref_primary_10_1161_CIRCHEARTFAILURE_113_001420 crossref_primary_10_1186_s12970_018_0242_y crossref_primary_10_15857_ksep_2019_28_3_211 crossref_primary_10_1016_j_niox_2014_04_007 crossref_primary_10_1016_j_jchf_2015_12_013 crossref_primary_10_1152_japplphysiol_00122_2020 crossref_primary_10_1249_MSS_0b013e3182687e5c crossref_primary_10_1111_j_1365_2125_2012_04420_x crossref_primary_10_1111_sms_12005 crossref_primary_10_1186_s12970_020_00358_5 crossref_primary_10_3389_fphys_2022_915640 crossref_primary_10_3390_nu12030734 crossref_primary_10_1113_JP279789 crossref_primary_10_1371_journal_pone_0188893 crossref_primary_10_3390_nu6115224 |
Cites_doi | 10.1161/CIRCULATIONAHA.107.719591 10.1002/mrm.1910010303 10.1073/pnas.98.1.355 10.1152/jappl.1999.86.6.2013 10.1152/ajpheart.00230.2009 10.1002/med.20151 10.1152/ajpheart.01239.2009 10.1161/ATVBAHA.108.181628 10.1152/ajpregu.00206.2010 10.1152/jappl.1980.49.5.863 10.1161/HYPERTENSIONAHA.107.103523 10.1152/japplphysiol.00487.2006 10.1152/ajpregu.00056.2010 10.1016/j.cmet.2011.01.004 10.1113/jphysiol.2009.172221 10.1152/jappl.1974.36.4.399 10.1113/expphysiol.2009.050500 10.1152/jappl.1998.85.4.1457 10.1111/j.1748-1716.2007.01713.x 10.1152/physrev.00015.2007 10.1002/nbm.1192 10.1073/pnas.0707462104 10.1152/ajpcell.1997.272.2.C501 10.1016/j.freeradbiomed.2004.04.027 10.1152/jappl.1983.55.4.1134 10.1111/j.1469-7793.2001.00901.x 10.1152/japplphysiol.00046.2010 10.1113/jphysiol.2007.144113 10.1152/jappl.1999.86.4.1367 10.1152/japplphysiol.01008.2007 10.1152/japplphysiol.01070.2010 10.1016/j.freeradbiomed.2006.05.019 10.1113/jphysiol.2006.114249 10.1113/jphysiol.1993.sp019673 10.1113/jphysiol.2011.209486 10.1161/HYPERTENSIONAHA.110.153536 10.1152/jappl.1995.78.6.2131 10.1016/j.niox.2008.08.003 10.1038/nm954 10.1016/j.freeradbiomed.2009.11.006 10.1152/japplphysiol.00787.2010 10.1113/jphysiol.2008.162271 10.1113/jphysiol.2009.180489 10.1016/0003-9861(79)90375-8 10.1152/ajpheart.00996.2010 10.1161/CIRCRESAHA.109.197228 10.1038/nm0695-546 10.1152/ajpregu.00039.2007 10.1172/JCI118237 10.1152/japplphysiol.00071.2011 10.1006/jmre.1997.1244 10.1152/japplphysiol.01321.2003 10.1016/S0014-5793(98)00430-X 10.1161/01.CIR.98.19.1990 10.1016/0014-5793(94)01290-3 10.1126/science.1088805 10.1002/nbm.1940060111 10.1152/jappl.1999.86.3.1048 10.1152/japplphysiol.00722.2009 10.2165/00007256-200434140-00004 10.1006/bbrc.1998.9226 |
ContentType | Journal Article |
Copyright | 2011 The Authors. Journal compilation © 2011 The Physiological Society Journal compilation © 2011 The Physiological Society 2011 |
Copyright_xml | – notice: 2011 The Authors. Journal compilation © 2011 The Physiological Society – notice: Journal compilation © 2011 The Physiological Society 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
DOI | 10.1113/jphysiol.2011.216341 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Physical Education Index MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-7793 |
EndPage | 5528 |
ExternalDocumentID | PMC3240888 3374292731 21911616 10_1113_jphysiol_2011_216341 TJP4748 |
Genre | article Randomized Controlled Trial Journal Article |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 0YM 10A 123 18M 1OB 1OC 24P 29L 2WC 31~ 33P 36B 3EH 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAYJJ AAZKR ABCQN ABCUV ABEML ABITZ ABIVO ABJNI ABOCM ABPPZ ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG CHEAL COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EBS EJD EMOBN EX3 F00 F01 F04 F5P FA8 FIJ FUBAC G-S G.N GODZA GX1 H.X H13 HF~ HGLYW HZI HZ~ H~9 IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NEJ NF~ O66 O9- OHT OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K RIG ROL RPM RX1 SAMSI SUPJJ TEORI TLM TN5 TR2 UB1 UKR UPT V8K VH1 W8F W8V W99 WBKPD WH7 WHG WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ X7M XG1 XOL YBU YHG YKV YQT YSK YXB YYP YZZ ZGI ZXP ZZTAW ~IA ~WT AAYXX ADXHL AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c5848-57de3dd7d8081ba9a28f93947519882127c4514e426ec64de61a11e1d0ab53743 |
IEDL.DBID | DR2 |
ISSN | 0022-3751 1469-7793 |
IngestDate | Thu Aug 21 14:11:22 EDT 2025 Thu Jul 10 23:51:24 EDT 2025 Fri Jul 11 02:59:59 EDT 2025 Fri Jul 25 12:22:13 EDT 2025 Thu Apr 03 07:09:19 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 Tue Jul 01 04:29:02 EDT 2025 Wed Jan 22 16:33:30 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5848-57de3dd7d8081ba9a28f93947519882127c4514e426ec64de61a11e1d0ab53743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3240888 |
PMID | 21911616 |
PQID | 1545331110 |
PQPubID | 1086388 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3240888 proquest_miscellaneous_905668980 proquest_miscellaneous_1837324710 proquest_journals_1545331110 pubmed_primary_21911616 crossref_citationtrail_10_1113_jphysiol_2011_216341 crossref_primary_10_1113_jphysiol_2011_216341 wiley_primary_10_1113_jphysiol_2011_216341_TJP4748 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2011 |
PublicationDateYYYYMMDD | 2011-11-01 |
PublicationDate_xml | – month: 11 year: 2011 text: November 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: London |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc Blackwell Science Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: Blackwell Science Inc |
References | 2010; 56 1980; 49 2007; 104 2010; 109 1997; 272 2010; 588 1995; 78 2010a; 299 1999; 86 2011; 13 2008; 104 2007; 191 2008; 586 1998; 85 2006; 577 1979; 195 2011; 110 1983; 55 1993; 6 2007; 293 2001; 171 2004; 37 2004; 34 2003; 9 2008; 117 1998; 249 2007; 20 1998; 98 2010; 30 2001; 535 2001; 98 1995; 96 1974; 36 1994; 356 2008; 19 2009; 297 2010b; 95 1993; 465 1995; 1 2008; 51 2009; 29 2011; 589 2004; 97 2011; 300 2006; 41 2010; 48 1997; 129 1984; 1 2010; 299 1998; 427 2010; 298 2008; 88 2009; 107 2003; 302 2009; 587 2006; 101 2009; 104 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 Modin A (e_1_2_6_45_1) 2001; 171 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 Linnarsson D (e_1_2_6_40_1) 1974; 36 8024651 - J Physiol. 1993 Jun;465:203-22 20466802 - J Appl Physiol (1985). 2010 Jul;109(1):135-48 20028850 - Exp Physiol. 2010 Apr;95(4):528-40 18250365 - Hypertension. 2008 Mar;51(3):784-90 10368368 - J Appl Physiol (1985). 1999 Jun;86(6):2013-8 14595407 - Nat Med. 2003 Dec;9(12):1498-505 15223073 - Free Radic Biol Med. 2004 Aug 1;37(3):395-400 17962570 - J Appl Physiol (1985). 2008 Mar;104(3):861-70 21624968 - J Physiol. 2011 Jul 15;589(Pt 14):3671-83 19948661 - J Physiol. 2010 Jan 15;588(Pt 2):373-85 14671307 - Science. 2003 Dec 12;302(5652):1975-8 7560083 - J Clin Invest. 1995 Oct;96(4):1916-26 6571561 - Magn Reson Med. 1984 Sep;1(3):307-15 9124293 - Am J Physiol. 1997 Feb;272(2 Pt 1):C501-10 7805858 - FEBS Lett. 1994 Dec 19;356(2-3):295-8 18212289 - Circulation. 2008 Feb 5;117(5):670-7 15571429 - Sports Med. 2004;34(14):983-1003 19407240 - Circ Res. 2009 May 22;104(10):1178-83 19713530 - Arterioscler Thromb Vasc Biol. 2010 Apr;30(4):643-7 11559784 - J Physiol. 2001 Sep 15;535(Pt 3):901-28 21257921 - Am J Physiol Heart Circ Physiol. 2011 Apr;300(4):H1510-7 18195089 - Physiol Rev. 2008 Jan;88(1):287-332 20427728 - Am J Physiol Regul Integr Comp Physiol. 2010 Jul;299(1):R72-9 224819 - Arch Biochem Biophys. 1979 Jul;195(2):485-93 18048452 - J Physiol. 2008 Feb 15;586(4):1195-205 21071588 - J Appl Physiol (1985). 2011 Mar;110(3):591-600 21193565 - J Appl Physiol (1985). 2011 Mar;110(3):687-94 20585108 - Hypertension. 2010 Aug;56(2):274-81 4820319 - J Appl Physiol. 1974 Apr;36(4):399-402 11134509 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):355-60 19047206 - J Physiol. 2009 Jan 15;587(Pt 2):477-90 17971439 - Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17593-8 16809628 - J Appl Physiol (1985). 2006 Nov;101(5):1343-50 17635415 - Acta Physiol (Oxf). 2007 Sep;191(1):59-66 19767531 - Am J Physiol Heart Circ Physiol. 2009 Nov;297(5):H1829-36 7665409 - J Appl Physiol (1985). 1995 Jun;78(6):2131-9 19661447 - J Appl Physiol (1985). 2009 Oct;107(4):1144-55 9405214 - J Magn Reson. 1997 Nov;129(1):35-43 10066722 - J Appl Physiol (1985). 1999 Mar;86(3):1048-53 9607316 - FEBS Lett. 1998 May 8;427(2):225-8 20207810 - Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1661-70 9731211 - Biochem Biophys Res Commun. 1998 Aug 28;249(3):767-72 18793740 - Nitric Oxide. 2008 Dec;19(4):333-7 16945975 - J Physiol. 2006 Nov 15;577(Pt 1):353-67 7585121 - Nat Med. 1995 Jun;1(6):546-51 9760341 - J Appl Physiol (1985). 1998 Oct;85(4):1457-63 10194224 - J Appl Physiol (1985). 1999 Apr;86(4):1367-73 21454745 - J Appl Physiol (1985). 2011 Jun;110(6):1582-91 17715186 - Am J Physiol Regul Integr Comp Physiol. 2007 Nov;293(5):R2046-51 6629944 - J Appl Physiol Respir Environ Exerc Physiol. 1983 Oct;55(4):1134-40 9808594 - Circulation. 1998 Nov 10;98(19):1990-2 19528246 - J Physiol. 2009 Aug 1;587(Pt 15):3885-97 6776081 - J Appl Physiol Respir Environ Exerc Physiol. 1980 Nov;49(5):863-8 11350258 - Acta Physiol Scand. 2001 Jan;171(1):9-16 8457428 - NMR Biomed. 1993 Jan-Feb;6(1):66-72 15133010 - J Appl Physiol (1985). 2004 Sep;97(3):1077-81 16895789 - Free Radic Biol Med. 2006 Sep 1;41(5):691-701 21284982 - Cell Metab. 2011 Feb 2;13(2):149-59 17628042 - NMR Biomed. 2007 Oct;20(6):555-65 19219851 - Med Res Rev. 2009 Sep;29(5):683-741 20702806 - Am J Physiol Regul Integr Comp Physiol. 2010 Oct;299(4):R1121-31 19913611 - Free Radic Biol Med. 2010 Jan 15;48(2):342-7 |
References_xml | – volume: 41 start-page: 691 year: 2006 end-page: 701 article-title: Nitrite in nitric oxide biology: cause or consequence? A systems‐based review publication-title: Free Radic Biol Med – volume: 1 start-page: 546 year: 1995 end-page: 551 article-title: Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate publication-title: Nat Med – volume: 586 start-page: 1195 year: 2008 end-page: 1205 article-title: Exercise intensity‐dependent contribution of β‐adrenergic receptor‐mediated vasodilatation in hypoxic humans publication-title: J Physiol – volume: 356 start-page: 295 year: 1994 end-page: 298 article-title: Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase publication-title: FEBS Lett – volume: 86 start-page: 2013 year: 1999 end-page: 2018 article-title: Skeletal muscle phosphocreatine recovery in exercise‐trained humans is dependent on O availability publication-title: J Appl Physiol – volume: 9 start-page: 1498 year: 2003 end-page: 1505 article-title: Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation publication-title: Nat Med – volume: 249 start-page: 767 year: 1998 end-page: 772 article-title: Generation of nitric oxide by a nitrite reductase activity of xanthine oxidase: a potential pathway for nitric oxide formation in the absence of nitric oxide synthase activity publication-title: Biochem Biophys Res Commun – volume: 195 start-page: 485 year: 1979 end-page: 493 article-title: The oxygen dependence of cellular energy metabolism publication-title: Arch Biochem Biophys – volume: 37 start-page: 395 year: 2004 end-page: 400 article-title: Inorganic nitrate is a possible source for systemic generation of nitric oxide publication-title: Free Radic Biol Med – volume: 587 start-page: 477 year: 2009 end-page: 490 article-title: On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass publication-title: J Physiol – volume: 95 start-page: 528 year: 2010b end-page: 540 article-title: Influence of hyperoxia on muscle metabolic responses and the power‐duration relationship during severe‐intensity exercise in humans: a P magnetic resonance spectroscopy study publication-title: Exp Physiol – volume: 48 start-page: 342 year: 2010 end-page: 347 article-title: Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise publication-title: Free Radic Biol Med – volume: 98 start-page: 1990 year: 1998 end-page: 1992 article-title: Systemic hypoxia elevates skeletal muscle interstitial adenosine levels in humans publication-title: Circulation – volume: 51 start-page: 784 year: 2008 end-page: 790 article-title: Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite publication-title: Hypertension – volume: 1 start-page: 307 year: 1984 end-page: 315 article-title: Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of P NMR publication-title: Magn Reson Med – volume: 300 start-page: H1510 year: 2011 end-page: H1517 article-title: Skeletal muscle blood flow and oxygen uptake at rest and during exercise in humans: a pet study with nitric oxide and cyclooxygenase inhibition publication-title: Am J Physiol Heart Circ Physiol – volume: 302 start-page: 1975 year: 2003 end-page: 1978 article-title: Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1α publication-title: Science – volume: 86 start-page: 1367 year: 1999 end-page: 1373 article-title: Human muscle performance and PCr hydrolysis with varied inspired oxygen fractions: a P‐MRS study publication-title: J Appl Physiol – volume: 88 start-page: 287 year: 2008 end-page: 332 article-title: Skeletal muscle fatigue: cellular mechanisms publication-title: Physiol Rev – volume: 589 start-page: 3671 year: 2011 end-page: 3683 article-title: Augmented skeletal muscle hyperaemia during hypoxic exercise in humans is blunted by combined inhibition of nitric oxide and vasodilating prostaglandins publication-title: J Physiol – volume: 104 start-page: 1178 year: 2009 end-page: 1183 article-title: Regulation of oxygen distribution in tissues by endothelial nitric oxide publication-title: Circ Res – volume: 55 start-page: 1134 year: 1983 end-page: 1140 article-title: Lactate accumulation during incremental exercise with varied inspired oxygen fractions publication-title: J Appl Physiol – volume: 86 start-page: 1048 year: 1999 end-page: 1053 article-title: Evidence of O supply‐dependent VO in the exercise‐trained human quadriceps publication-title: J Appl Physiol – volume: 298 start-page: H1661 year: 2010 end-page: H1670 article-title: Defects in oxygen supply to skeletal muscle of prediabetic ZDF rats publication-title: Am J Physiol Heart Circ Physiol – volume: 427 start-page: 225 year: 1998 end-page: 228 article-title: Xanthine oxidoreductase catalyses the reduction of nitrates and nitrite to nitric oxide under hypoxic conditions publication-title: FEBS Lett – volume: 49 start-page: 863 year: 1980 end-page: 868 article-title: Oxygen uptake, acid‐base status, and performance with varied inspired oxygen fractions publication-title: J Appl Physiol – volume: 272 start-page: C501 year: 1997 end-page: C510 article-title: Linear dependence of muscle phosphocreatine kinetics on oxidative capacity publication-title: Am J Physiol Cell Physiol – volume: 107 start-page: 1144 year: 2009 end-page: 1155 article-title: Dietary nitrate supplementation reduces the O cost of sub‐maximal exercise and enhances exercise tolerance in humans publication-title: J Appl Physiol – volume: 465 start-page: 203 year: 1993 end-page: 222 article-title: Separate measures of ATP utilization and recovery in human skeletal muscle publication-title: J Physiol – volume: 101 start-page: 1343 year: 2006 end-page: 1350 article-title: Systemic hypoxia and vasoconstrictor responsiveness in exercising human muscle publication-title: J Appl Physiol – volume: 56 start-page: 274 year: 2010 end-page: 281 article-title: Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite‐derived NO publication-title: Hypertension – volume: 29 start-page: 683 year: 2009 end-page: 741 article-title: Nitrite as regulator of hypoxic signaling in mammalian physiology publication-title: Med Res Rev – volume: 13 start-page: 149 year: 2011 end-page: 159 article-title: Dietary inorganic nitrate improves mitochondrial efficiency in humans publication-title: Cell Metab – volume: 577 start-page: 353 year: 2006 end-page: 367 article-title: In vivo ATP production during free‐flow and ischaemic muscle contractions in humans publication-title: J Physiol – volume: 98 start-page: 355 year: 2001 end-page: 360 article-title: The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O publication-title: Proc Natl Acad Sci U S A – volume: 104 start-page: 861 year: 2008 end-page: 870 article-title: Convective oxygen transport and fatigue publication-title: J Appl Physiol – volume: 85 start-page: 1457 year: 1998 end-page: 1463 article-title: Phosphocreatine hydrolysis during submaximal exercise: the effect of FIO publication-title: J Appl Physiol – volume: 297 start-page: H1829 year: 2009 end-page: H1836 article-title: eNOS uncoupling and endothelial dysfunction in aged vessels publication-title: Am J Physiol Heart Circ Physiol – volume: 20 start-page: 555 year: 2007 end-page: 565 article-title: Absolute quantification of phosphorus metabolite concentrations in human muscle by P MRS: a quantitative review publication-title: NMR Biomed – volume: 587 start-page: 3885 year: 2009 end-page: 3897 article-title: Effects of ageing and exercise training on eNOS uncoupling in skeletal muscle resistance arterioles publication-title: J Physiol – volume: 299 start-page: R1121 year: 2010a end-page: R1131 article-title: Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate‐intensity and incremental exercise publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 293 start-page: R2046 year: 2007 end-page: R2051 article-title: Oxygen availability and PCr recovery rate in untrained human calf muscle: evidence of metabolic limitation in normoxia publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 97 start-page: 1077 year: 2004 end-page: 1081 article-title: Skeletal muscle oxidative metabolism in sedentary humans: P‐MRS assessment of O supply and demand limitations publication-title: J Appl Physiol – volume: 129 start-page: 35 year: 1997 end-page: 43 article-title: Improved method for accurate and efficient quantification of MRS data with use of prior knowledge publication-title: J Magn Reson – volume: 36 start-page: 399 year: 1974 end-page: 402 article-title: Muscle metabolites and oxygen deficit with exercise in hypoxia and hyperoxia publication-title: J Appl Physiol – volume: 535 start-page: 901 year: 2001 end-page: 928 article-title: Interrelations of ATP synthesis and proton handling in ischaemically exercising human forearm muscle studied by P magnetic resonance spectroscopy publication-title: J Physiol – volume: 110 start-page: 591 year: 2011 end-page: 600 article-title: Dietary nitrate supplementation reduces the O cost of walking and running: a placebo‐controlled study publication-title: J Appl Physiol – volume: 96 start-page: 1916 year: 1995 end-page: 1926 article-title: Myoglobin O desaturation during exercise. Evidence of limited O transport publication-title: J Clin Invest – volume: 109 start-page: 135 year: 2010 end-page: 148 article-title: Dietary nitrate supplementation enhances muscle contractile efficiency during knee‐extensor exercise in humans publication-title: J Appl Physiol – volume: 30 start-page: 643 year: 2010 end-page: 647 article-title: Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia publication-title: Arterioscler Thromb Vasc Biol – volume: 104 start-page: 17593 year: 2007 end-page: 17598 article-title: Higher blood flow and circulating NO products offset high‐altitude hypoxia among Tibetans publication-title: Proc Natl Acad Sci U S A – volume: 191 start-page: 59 year: 2007 end-page: 66 article-title: Effects of dietary nitrate on oxygen cost during exercise publication-title: Acta Physiol (Oxf) – volume: 78 start-page: 2131 year: 1995 end-page: 2139 article-title: Skeletal muscle mitochondrial function studied by kinetic analysis of postexercise phosphocreatine resynthesis publication-title: J Appl Physiol – volume: 299 start-page: R72 year: 2010 end-page: R79 article-title: Regulation of human skeletal muscle perfusion and its heterogeneity during exercise in moderate hypoxia publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 171 start-page: 9 year: 2001 end-page: 16 article-title: Nitrite‐derived nitric oxide: a possible mediator of 'acidic‐metabolic' vasodilation publication-title: Acta Physiol Scand – volume: 588 start-page: 373 year: 2010 end-page: 385 article-title: Nitric oxide contributes to the augmented vasodilatation during hypoxic exercise publication-title: J Physiol – volume: 117 start-page: 670 year: 2008 end-page: 677 article-title: Hypoxic modulation of exogenous nitrite‐induced vasodilation in humans publication-title: Circulation – volume: 6 start-page: 66 year: 1993 end-page: 72 article-title: Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle publication-title: NMR Biomed – volume: 19 start-page: 333 year: 2008 end-page: 337 article-title: The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash publication-title: Nitric Oxide – volume: 34 start-page: 983 year: 2004 end-page: 1003 article-title: Optimising exercise training in peripheral arterial disease publication-title: Sports Med – volume: 110 start-page: 687 year: 2011 end-page: 694 article-title: Nitric oxide‐mediated vasodilation becomes independent of β‐adrenergic receptor activation with increased intensity of hypoxic exercise publication-title: J Appl Physiol – volume: 110 start-page: 1582 year: 2011 end-page: 1591 article-title: Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease publication-title: J Appl Physiol – ident: e_1_2_6_43_1 doi: 10.1161/CIRCULATIONAHA.107.719591 – ident: e_1_2_6_5_1 doi: 10.1002/mrm.1910010303 – ident: e_1_2_6_51_1 doi: 10.1073/pnas.98.1.355 – ident: e_1_2_6_22_1 doi: 10.1152/jappl.1999.86.6.2013 – ident: e_1_2_6_62_1 doi: 10.1152/ajpheart.00230.2009 – ident: e_1_2_6_53_1 doi: 10.1002/med.20151 – ident: e_1_2_6_18_1 doi: 10.1152/ajpheart.01239.2009 – volume: 171 start-page: 9 year: 2001 ident: e_1_2_6_45_1 article-title: Nitrite‐derived nitric oxide: a possible mediator of 'acidic‐metabolic' vasodilation publication-title: Acta Physiol Scand – ident: e_1_2_6_50_1 doi: 10.1161/ATVBAHA.108.181628 – ident: e_1_2_6_55_1 doi: 10.1152/ajpregu.00206.2010 – ident: e_1_2_6_2_1 doi: 10.1152/jappl.1980.49.5.863 – ident: e_1_2_6_58_1 doi: 10.1161/HYPERTENSIONAHA.107.103523 – ident: e_1_2_6_60_1 doi: 10.1152/japplphysiol.00487.2006 – ident: e_1_2_6_26_1 doi: 10.1152/ajpregu.00056.2010 – ident: e_1_2_6_37_1 doi: 10.1016/j.cmet.2011.01.004 – ident: e_1_2_6_49_1 doi: 10.1113/jphysiol.2009.172221 – volume: 36 start-page: 399 year: 1974 ident: e_1_2_6_40_1 article-title: Muscle metabolites and oxygen deficit with exercise in hypoxia and hyperoxia publication-title: J Appl Physiol doi: 10.1152/jappl.1974.36.4.399 – ident: e_1_2_6_56_1 doi: 10.1113/expphysiol.2009.050500 – ident: e_1_2_6_25_1 doi: 10.1152/jappl.1998.85.4.1457 – ident: e_1_2_6_39_1 doi: 10.1111/j.1748-1716.2007.01713.x – ident: e_1_2_6_3_1 doi: 10.1152/physrev.00015.2007 – ident: e_1_2_6_31_1 doi: 10.1002/nbm.1192 – ident: e_1_2_6_19_1 doi: 10.1073/pnas.0707462104 – ident: e_1_2_6_46_1 doi: 10.1152/ajpcell.1997.272.2.C501 – ident: e_1_2_6_41_1 doi: 10.1016/j.freeradbiomed.2004.04.027 – ident: e_1_2_6_28_1 doi: 10.1152/jappl.1983.55.4.1134 – ident: e_1_2_6_32_1 doi: 10.1111/j.1469-7793.2001.00901.x – ident: e_1_2_6_6_1 doi: 10.1152/japplphysiol.00046.2010 – ident: e_1_2_6_59_1 doi: 10.1113/jphysiol.2007.144113 – ident: e_1_2_6_29_1 doi: 10.1152/jappl.1999.86.4.1367 – ident: e_1_2_6_4_1 doi: 10.1152/japplphysiol.01008.2007 – ident: e_1_2_6_35_1 doi: 10.1152/japplphysiol.01070.2010 – ident: e_1_2_6_10_1 doi: 10.1016/j.freeradbiomed.2006.05.019 – ident: e_1_2_6_36_1 doi: 10.1113/jphysiol.2006.114249 – ident: e_1_2_6_8_1 doi: 10.1113/jphysiol.1993.sp019673 – ident: e_1_2_6_16_1 doi: 10.1113/jphysiol.2011.209486 – ident: e_1_2_6_30_1 doi: 10.1161/HYPERTENSIONAHA.110.153536 – ident: e_1_2_6_52_1 doi: 10.1152/jappl.1995.78.6.2131 – ident: e_1_2_6_20_1 doi: 10.1016/j.niox.2008.08.003 – ident: e_1_2_6_15_1 doi: 10.1038/nm954 – ident: e_1_2_6_38_1 doi: 10.1016/j.freeradbiomed.2009.11.006 – ident: e_1_2_6_13_1 doi: 10.1152/japplphysiol.00787.2010 – ident: e_1_2_6_12_1 doi: 10.1113/jphysiol.2008.162271 – ident: e_1_2_6_14_1 doi: 10.1113/jphysiol.2009.180489 – ident: e_1_2_6_61_1 doi: 10.1016/0003-9861(79)90375-8 – ident: e_1_2_6_27_1 doi: 10.1152/ajpheart.00996.2010 – ident: e_1_2_6_57_1 doi: 10.1161/CIRCRESAHA.109.197228 – ident: e_1_2_6_17_1 doi: 10.1038/nm0695-546 – ident: e_1_2_6_23_1 doi: 10.1152/ajpregu.00039.2007 – ident: e_1_2_6_48_1 doi: 10.1172/JCI118237 – ident: e_1_2_6_34_1 doi: 10.1152/japplphysiol.00071.2011 – ident: e_1_2_6_54_1 doi: 10.1006/jmre.1997.1244 – ident: e_1_2_6_24_1 doi: 10.1152/japplphysiol.01321.2003 – ident: e_1_2_6_44_1 doi: 10.1016/S0014-5793(98)00430-X – ident: e_1_2_6_42_1 doi: 10.1161/01.CIR.98.19.1990 – ident: e_1_2_6_9_1 doi: 10.1016/0014-5793(94)01290-3 – ident: e_1_2_6_21_1 doi: 10.1126/science.1088805 – ident: e_1_2_6_33_1 doi: 10.1002/nbm.1940060111 – ident: e_1_2_6_47_1 doi: 10.1152/jappl.1999.86.3.1048 – ident: e_1_2_6_7_1 doi: 10.1152/japplphysiol.00722.2009 – ident: e_1_2_6_11_1 doi: 10.2165/00007256-200434140-00004 – ident: e_1_2_6_63_1 doi: 10.1006/bbrc.1998.9226 – reference: 19767531 - Am J Physiol Heart Circ Physiol. 2009 Nov;297(5):H1829-36 – reference: 10194224 - J Appl Physiol (1985). 1999 Apr;86(4):1367-73 – reference: 7805858 - FEBS Lett. 1994 Dec 19;356(2-3):295-8 – reference: 10368368 - J Appl Physiol (1985). 1999 Jun;86(6):2013-8 – reference: 6629944 - J Appl Physiol Respir Environ Exerc Physiol. 1983 Oct;55(4):1134-40 – reference: 19528246 - J Physiol. 2009 Aug 1;587(Pt 15):3885-97 – reference: 20028850 - Exp Physiol. 2010 Apr;95(4):528-40 – reference: 9731211 - Biochem Biophys Res Commun. 1998 Aug 28;249(3):767-72 – reference: 15223073 - Free Radic Biol Med. 2004 Aug 1;37(3):395-400 – reference: 21257921 - Am J Physiol Heart Circ Physiol. 2011 Apr;300(4):H1510-7 – reference: 18250365 - Hypertension. 2008 Mar;51(3):784-90 – reference: 20207810 - Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1661-70 – reference: 14595407 - Nat Med. 2003 Dec;9(12):1498-505 – reference: 14671307 - Science. 2003 Dec 12;302(5652):1975-8 – reference: 17971439 - Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17593-8 – reference: 8024651 - J Physiol. 1993 Jun;465:203-22 – reference: 224819 - Arch Biochem Biophys. 1979 Jul;195(2):485-93 – reference: 18793740 - Nitric Oxide. 2008 Dec;19(4):333-7 – reference: 11350258 - Acta Physiol Scand. 2001 Jan;171(1):9-16 – reference: 17635415 - Acta Physiol (Oxf). 2007 Sep;191(1):59-66 – reference: 18212289 - Circulation. 2008 Feb 5;117(5):670-7 – reference: 19948661 - J Physiol. 2010 Jan 15;588(Pt 2):373-85 – reference: 9405214 - J Magn Reson. 1997 Nov;129(1):35-43 – reference: 18195089 - Physiol Rev. 2008 Jan;88(1):287-332 – reference: 10066722 - J Appl Physiol (1985). 1999 Mar;86(3):1048-53 – reference: 19913611 - Free Radic Biol Med. 2010 Jan 15;48(2):342-7 – reference: 8457428 - NMR Biomed. 1993 Jan-Feb;6(1):66-72 – reference: 20466802 - J Appl Physiol (1985). 2010 Jul;109(1):135-48 – reference: 19661447 - J Appl Physiol (1985). 2009 Oct;107(4):1144-55 – reference: 4820319 - J Appl Physiol. 1974 Apr;36(4):399-402 – reference: 17715186 - Am J Physiol Regul Integr Comp Physiol. 2007 Nov;293(5):R2046-51 – reference: 7665409 - J Appl Physiol (1985). 1995 Jun;78(6):2131-9 – reference: 15571429 - Sports Med. 2004;34(14):983-1003 – reference: 11134509 - Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):355-60 – reference: 7560083 - J Clin Invest. 1995 Oct;96(4):1916-26 – reference: 9124293 - Am J Physiol. 1997 Feb;272(2 Pt 1):C501-10 – reference: 16809628 - J Appl Physiol (1985). 2006 Nov;101(5):1343-50 – reference: 7585121 - Nat Med. 1995 Jun;1(6):546-51 – reference: 6776081 - J Appl Physiol Respir Environ Exerc Physiol. 1980 Nov;49(5):863-8 – reference: 16945975 - J Physiol. 2006 Nov 15;577(Pt 1):353-67 – reference: 9607316 - FEBS Lett. 1998 May 8;427(2):225-8 – reference: 9760341 - J Appl Physiol (1985). 1998 Oct;85(4):1457-63 – reference: 20427728 - Am J Physiol Regul Integr Comp Physiol. 2010 Jul;299(1):R72-9 – reference: 6571561 - Magn Reson Med. 1984 Sep;1(3):307-15 – reference: 18048452 - J Physiol. 2008 Feb 15;586(4):1195-205 – reference: 20585108 - Hypertension. 2010 Aug;56(2):274-81 – reference: 17962570 - J Appl Physiol (1985). 2008 Mar;104(3):861-70 – reference: 21284982 - Cell Metab. 2011 Feb 2;13(2):149-59 – reference: 20702806 - Am J Physiol Regul Integr Comp Physiol. 2010 Oct;299(4):R1121-31 – reference: 11559784 - J Physiol. 2001 Sep 15;535(Pt 3):901-28 – reference: 19407240 - Circ Res. 2009 May 22;104(10):1178-83 – reference: 19047206 - J Physiol. 2009 Jan 15;587(Pt 2):477-90 – reference: 15133010 - J Appl Physiol (1985). 2004 Sep;97(3):1077-81 – reference: 21454745 - J Appl Physiol (1985). 2011 Jun;110(6):1582-91 – reference: 21071588 - J Appl Physiol (1985). 2011 Mar;110(3):591-600 – reference: 21193565 - J Appl Physiol (1985). 2011 Mar;110(3):687-94 – reference: 21624968 - J Physiol. 2011 Jul 15;589(Pt 14):3671-83 – reference: 9808594 - Circulation. 1998 Nov 10;98(19):1990-2 – reference: 19219851 - Med Res Rev. 2009 Sep;29(5):683-741 – reference: 17628042 - NMR Biomed. 2007 Oct;20(6):555-65 – reference: 16895789 - Free Radic Biol Med. 2006 Sep 1;41(5):691-701 – reference: 19713530 - Arterioscler Thromb Vasc Biol. 2010 Apr;30(4):643-7 |
SSID | ssj0013099 |
Score | 2.4570084 |
Snippet | Non‐Technical Summary Reduced atmospheric O2 availability (hypoxia) impairs muscle oxidative energy production and exercise tolerance. We show that dietary... Non‐Technical Summary Reduced atmospheric O 2 availability (hypoxia) impairs muscle oxidative energy production and exercise tolerance. We show that dietary... Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation... Non-Technical Summary Reduced atmospheric O2 availability (hypoxia) impairs muscle oxidative energy production and exercise tolerance. We show that dietary... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5517 |
SubjectTerms | Adult Beta vulgaris Blood Pressure Cross-Over Studies Dietary Supplements Double-Blind Method Exercise Test Exercise Tolerance - drug effects Female Humans Hypoxia - blood Hypoxia - drug therapy Hypoxia - physiopathology Integrative Male Muscle, Skeletal - drug effects Muscle, Skeletal - physiopathology Nitrates - pharmacology Nitrites - blood Plant Extracts - pharmacology Plant Extracts - therapeutic use Plant Roots - chemistry Young Adult |
Title | Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2011.216341 https://www.ncbi.nlm.nih.gov/pubmed/21911616 https://www.proquest.com/docview/1545331110 https://www.proquest.com/docview/1837324710 https://www.proquest.com/docview/905668980 https://pubmed.ncbi.nlm.nih.gov/PMC3240888 |
Volume | 589 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqnrjwVT4WCjIS4pYSx05sHytgVfWAKtRKvQU7dtvAbrLazUpsf31n7CSwFASCs98ksTMTPzueN4S8hlWGcxkEYGWFS4S1PMGktESignaae5OaoPb5sTg6E8fn-fkOmQ65MFEfYtxww8gI32sMcGP7KiQMxQa-hKV_O4synBnwipC_jse2kBt9yr7_TEi1HkXDZc76DDq4zNtfXWR7hrpFO2-fnvyR1YZpaXqPXA4diqdRvh6sO3tQXf-k9fj_Pb5P7vbMlR5GV3tAdnzzkOwdNrBqn2_oG3oSzdrLzR75_L72HdyIwgcDtSjoEhVi_YrO1yswpnNotahITBd-CZOeDf5BTeNoHXY5ADoUg6JdO_NY_sPTuqFXm0X7rTaPyNn0w-m7o6Sv5ZBUQHFUkkvnuXPSYaUPa7TJ1IXmWsDr0EDyWSYrAdzNA2HwVSGcL5hhzDOXGptzoDmPyW7TNv4poazSWkCLzc0FAJmVqFDEFAArrryaED68v7Lqhc6x3sasjAseXg4DWeJAlnEgJyQZrRZR6OMP-P3BNco-7Fcl8lHOwSadkFdjMwQs_oUxjW_XgFFcAouViKG_wWigpYXSCiBPorONzwQzDAOWXkyI3HLDEYB64dstTX0VdMNRe1EpGJ8seNlfdbM8PT4RUqhn_2L0nNwJW_AhdXOf7HbLtX8BHK6zL0OE3gBl90PK |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWq9gAXoJSPhQJGQtxS4jiJ7WNFW5ZSqgptpd6CHbtsYDdZ7WalLr-eGecDloJAiLPfJLEzEz_bmTeEvIBVhrURBGBuYhvExvAAk9ICgQraYeJ0qL3a52k6PI-PL5KLDfKmy4Vp9CH6DTeMDP-9xgDHDek2ylFt4LNf-1eTRoczAmKBCexbWNwbSxkcfIi-HyeESvWy4SJhbQ4dXOfVr66yPkddI57X_5_8kdf6ienoNhl3XWr-R_myt6zNXv71J7XH_9DnO-RWS17pfuNt22TDlXfJzn4JC_fpir6kZ41Z9Wm1Qz4eFK6GO1H4ZqAcBZ2jSKxb0OlyAcZ0Cq0GRYnpzM1h3jPeRaguLS38RgdAu3pQtK4mDiuAOFqUdLyaVVeFvkfOjw5Hr4dBW84hyIHlyCAR1nFrhcViH0YrHclLxVUM70MBz2eRyGOgbw44g8vT2LqUacYcs6E2CQemc59sllXpHhLKcqViaDGJvgQgMwJFipgEYM6lkwPCuxeY5a3WOZbcmGTNmodn3UBmOJBZM5ADEvRWs0br4w_43c43sjbyFxlSUs7BJhyQ530zxCwexOjSVUvASC6AyArE0N9gFDDTVCoJkAeNt_XPBJMMA6KeDohY88MegJLh6y1lMfbS4Si_KCWMT-Td7K-6mY2Oz2IRy0f_YvSM3BiO3p9kJ29P3z0mN_2OvM_k3CWb9XzpngClq81TH67fAGwWR-Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLamISFeuI1LxwAjId4y6tiJ7ceJUY2Bpgpt0t6CHbtboE2qNpVWfj3nOBcoA4Hg2d9JYuec-LOd8x1CXsIqw7kYAjC3wkXCWh5hUlokUUF7mHgzNEHt8yQ9OhPH58n5Fhl1uTCNPkS_4YaREb7XGOBzN2mDHMUGPoelfzVtZDhj4BWYv35DpBA3SI4-xt9PE4Za96rhMmFtCh1c5_WvrrI5RV3jndd_n_yR1oZ5aXSHXHQ9an5H-bK_qu1-_vUnscf_7_JdcrulrvSg8bV7ZMuX98nOQQnL9tmavqLjxqy6WO-QT4eFr-FGFL4YKEZBFygR65d0tlqCMZ1Bq0VJYjr3C5j1bHAQakpHi7DNAdCuGhStq6nH-h-eFiW9XM-rq8I8IGejt6dvjqK2mEOUA8dRUSKd585Jh6U-rNEmVhPNtYDXoYHls1jmAsibB8bg81Q4nzLDmGduaGzCgec8JNtlVfrHhLJcawEtNjETADIrUaKIKQDmXHk1ILx7f1neKp1jwY1p1qx4eNYNZIYDmTUDOSBRbzVvlD7-gN_rXCNr436ZISHlHGyGA_Kib4aIxWMYU_pqBRjFJdBYiRj6G4wGXpoqrQDyqHG2_plgimFA09MBkRtu2ANQMHyzpSwug3A4ii8qBeMTBy_7q25mp8djIYXa_Rej5-Tm-HCUfXh38v4JuRW240Ma5x7Zrhcr_xT4XG2fhWD9BodmRpw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dietary+nitrate+reduces+muscle+metabolic+perturbation+and+improves+exercise+tolerance+in+hypoxia&rft.jtitle=The+Journal+of+physiology&rft.au=Vanhatalo%2C+Anni&rft.au=Fulford%2C+Jonathan&rft.au=Bailey%2C+Stephen+J.&rft.au=Blackwell%2C+James+R.&rft.date=2011-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=589&rft.issue=22&rft.spage=5517&rft.epage=5528&rft_id=info:doi/10.1113%2Fjphysiol.2011.216341&rft.externalDBID=10.1113%252Fjphysiol.2011.216341&rft.externalDocID=TJP4748 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |