Crystal structure of the Leishmania major phosphodiesterase LmjPDEB1 and insight into the design of the parasite-selective inhibitors
Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially re...
Saved in:
Published in | Molecular microbiology Vol. 66; no. 4; pp. 1029 - 1038 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.11.2007
Blackwell Publishing Ltd Blackwell Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3-isobutyl-1-methylxanthine (IBMX) at 1.55 Å resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bond with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle, but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite-selective inhibitors for the treatment of leishmaniasis. |
---|---|
AbstractList | Summary
Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3‐isobutyl‐1‐methylxanthine (IBMX) at 1.55 Å resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bond with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle, but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite‐selective inhibitors for the treatment of leishmaniasis. Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3-isobutyl-1-methylxanthine (IBMX) at 1.55 Å resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bond with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite-selective inhibitors for the treatment of leishmaniasis. Summary Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3‐isobutyl‐1‐methylxanthine (IBMX) at 1.55 Å resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bond with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle, but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite‐selective inhibitors for the treatment of leishmaniasis. Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3-isobutyl-1-methylxanthine (IBMX) at 1.55 A resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bond with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle, but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite-selective inhibitors for the treatment of leishmaniasis. [PUBLICATION ABSTRACT] Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3-isobutyl-1-methylxanthine (IBMX) at 1.55 Å resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bond with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle, but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite-selective inhibitors for the treatment of leishmaniasis. Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3-isobutyl-1-methylxanthine (IBMX) at 1.55 A resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bond with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle, but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite-selective inhibitors for the treatment of leishmaniasis.Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3-isobutyl-1-methylxanthine (IBMX) at 1.55 A resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bond with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle, but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite-selective inhibitors for the treatment of leishmaniasis. Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3-isobutyl-1-methylxanthine (IBMX) at 1.55 A resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bond with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle, but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite-selective inhibitors for the treatment of leishmaniasis. |
Author | Ke, Hengming Yan, Zier Wang, Huanchen Seebeck, Thomas Kunz, Stefan Geng, Jie |
AuthorAffiliation | 1 Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599-7260, USA 2 Institute for Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland |
AuthorAffiliation_xml | – name: 2 Institute for Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland – name: 1 Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599-7260, USA |
Author_xml | – sequence: 1 fullname: Wang, Huanchen – sequence: 2 fullname: Yan, Zier – sequence: 3 fullname: Geng, Jie – sequence: 4 fullname: Kunz, Stefan – sequence: 5 fullname: Seebeck, Thomas – sequence: 6 fullname: Ke, Hengming |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19560062$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17944832$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhSNURKeFV4AICXYJ_rezAAmGApWmAgkqsbM8jjNxlNiDnZTOA_DeOJ2hBTYQKbIVf-f43ptzkh0570yW5RCUMD0vuhJiRgtUUVEiAHgJaMVZeX0vW9weHGULUFFQYIG-HmcnMXYAQAwYfpAdQ14RIjBaZD-WYRdH1edxDJMep2By3-Rja_KVsbEdlLMqH1TnQ75tfUxvbU0cTVAxIUP36e3ZG5grV-fWRbtpx7SO_sagNumD-2W3VUliR1NE0xs92iuTyNau7ehDfJjdb1QfzaPDeppdvjv7svxQrD6-P1--XhWaCsIKwyjQTc01qQERSEEmakwQRBDyRolKYQSgWCPNGgJq1qw1A5yuOSeIkVpDfJq92vtup_Vgam3cGFQvt8EOKuykV1b-eeJsKzf-SqaBAsBoMnh-MAj-25QGIQcbtel75YyfomSC8Apz-E8QAQoYQTiBT_8COz8Fl6YgYcUowgTObmIP6eBjDKa5LRkCOSdCdnL-8XOdQs6JkDeJkNdJ-vj3lu-Ehwgk4NkBUFGrvgnKaRvvuIqy1PrMvdxz321vdv9dgLy4OJ93Sf9kr2-Ul2oT0h2Xn9EcSSAQYozjn2ys3qc |
CitedBy_id | crossref_primary_10_1002_med_22005 crossref_primary_10_1002_prot_24933 crossref_primary_10_1093_jac_dkz516 crossref_primary_10_4155_fmc_2018_0592 crossref_primary_10_1016_j_ijpara_2008_05_016 crossref_primary_10_1371_journal_pntd_0005891 crossref_primary_10_1128_EC_00112_10 crossref_primary_10_3390_molecules18077761 crossref_primary_10_1016_j_pt_2015_04_014 crossref_primary_10_1016_j_jmgm_2013_12_010 crossref_primary_10_1111_j_1574_6976_2010_00262_x crossref_primary_10_1155_2019_2859637 crossref_primary_10_2174_0929867326666190620093029 crossref_primary_10_1016_j_jmgm_2019_06_015 crossref_primary_10_1021_acs_jmedchem_7b01670 crossref_primary_10_1021_acs_jmedchem_3c00161 crossref_primary_10_1021_jm201148s crossref_primary_10_1093_infdis_jir857 crossref_primary_10_3390_molecules21101389 crossref_primary_10_1128_AAC_00603_18 crossref_primary_10_1016_j_bmc_2016_02_032 crossref_primary_10_1021_acs_jmedchem_5b01813 crossref_primary_10_1016_j_freeradbiomed_2009_08_025 crossref_primary_10_1007_s10822_011_9458_5 crossref_primary_10_4155_fmc_11_77 crossref_primary_10_2174_1389557523666230127125058 crossref_primary_10_3390_ijms24076817 crossref_primary_10_1021_jm3017877 crossref_primary_10_3389_fphar_2020_590544 crossref_primary_10_1186_1756_3305_7_368 crossref_primary_10_7554_eLife_00311 crossref_primary_10_3389_fphar_2015_00185 crossref_primary_10_1016_j_exppara_2009_05_010 crossref_primary_10_4155_fmc_13_114 crossref_primary_10_1021_jm301059b crossref_primary_10_1021_cr500365f crossref_primary_10_1016_j_bmcl_2013_08_057 crossref_primary_10_1074_jbc_M111_326777 crossref_primary_10_1002_cmdc_202000862 crossref_primary_10_1124_mol_115_099747 crossref_primary_10_1074_jbc_M115_671263 crossref_primary_10_1371_journal_pntd_0000455 crossref_primary_10_3389_fphar_2020_00782 |
Cites_doi | 10.1177/153537020623100802 10.1073/pnas.0700279104 10.1038/nrd2058 10.1002/med.20020 10.1107/S0108767390010224 10.2174/092986707780362862 10.1126/science.288.5472.1822 10.1074/jbc.M311556200 10.1021/bi049868i 10.2174/138161206777698855 10.1016/S0166-6851(99)00224-8 10.1016/j.pt.2006.06.012 10.1021/bi047313h 10.1128/JCM.02029-06 10.1099/jmm.0.46841-0 10.1042/BJ20051368 10.2174/156802606776743165 10.1017/S0031182006001831 10.1161/01.RES.0000256354.95791.f1 10.1074/jbc.M408111200 10.2174/092986706778201611 10.1016/j.pharmthera.2005.07.003 10.1073/pnas.0401120101 10.1016/S1473-3099(06)70492-3 10.1016/j.molcel.2004.07.005 10.1124/pr.58.3.5 10.1074/jbc.M512527200 10.1146/annurev.biochem.76.060305.150444 10.1016/S0076-6879(97)76066-X 10.1179/000349803225002499 10.1186/1471-2180-6-25 10.1016/S0140-6736(05)17708-3 10.1016/j.molbiopara.2005.09.018 10.1056/NEJMoa050010 10.1038/nrd893 10.1016/S0076-6879(97)76079-8 10.1016/S1359-6446(05)03622-6 10.2174/156802607779941242 10.1074/jbc.M504398200 |
ContentType | Journal Article |
Copyright | 2008 INIST-CNRS Copyright Blackwell Publishing Ltd. Nov 2007 |
Copyright_xml | – notice: 2008 INIST-CNRS – notice: Copyright Blackwell Publishing Ltd. Nov 2007 |
DBID | FBQ IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1111/j.1365-2958.2007.05976.x |
DatabaseName | AGRIS Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Public Health |
EISSN | 1365-2958 |
EndPage | 1038 |
ExternalDocumentID | 1382515531 10_1111_j_1365_2958_2007_05976_x 17944832 19560062 MMI5976 US201300822667 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM059791 – fundername: NIGMS NIH HHS grantid: R01 GM059791-06 – fundername: NIGMS NIH HHS grantid: GM59791 |
GroupedDBID | --- -DZ .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29M 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABJNI ABPTK ABPVW ABTAH ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACSMX ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEQTP AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FBQ FEDTE FIJ FSRTE FZ0 G-S G.N GODZA GX1 H.T H.X HF~ HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXSBR WYISQ X7M XFK XG1 Y6R YFH YUY ZGI ZXP ZY4 ZZTAW ~IA ~KM ~WT AHBTC AITYG HGLYW OIG AAPBV AAUGY AKALU IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5846-e650cfd7c4d0482a168d34212117fa89a32018b2c6f40d6fbc6075b774264dc13 |
IEDL.DBID | DR2 |
ISSN | 0950-382X |
IngestDate | Tue Sep 17 21:33:26 EDT 2024 Tue Oct 29 16:45:34 EDT 2024 Fri Aug 16 02:38:51 EDT 2024 Thu Oct 10 18:15:08 EDT 2024 Fri Aug 23 02:57:55 EDT 2024 Sat Nov 02 12:13:27 EDT 2024 Sun Oct 22 16:06:48 EDT 2023 Sat Aug 24 00:57:07 EDT 2024 Wed Dec 27 19:28:41 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Infection Kinetoplastida Protozoa Parasitosis Leishmania major Crystalline structure |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5846-e650cfd7c4d0482a168d34212117fa89a32018b2c6f40d6fbc6075b774264dc13 |
Notes | http://dx.doi.org/10.1111/j.1365-2958.2007.05976.x ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://europepmc.org/articles/pmc2950065?pdf=render |
PMID | 17944832 |
PQID | 196523411 |
PQPubID | 35968 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2950065 proquest_miscellaneous_68479371 proquest_miscellaneous_20506423 proquest_journals_196523411 crossref_primary_10_1111_j_1365_2958_2007_05976_x pubmed_primary_17944832 pascalfrancis_primary_19560062 wiley_primary_10_1111_j_1365_2958_2007_05976_x_MMI5976 fao_agris_US201300822667 |
PublicationCentury | 2000 |
PublicationDate | November 2007 |
PublicationDateYYYYMMDD | 2007-11-01 |
PublicationDate_xml | – month: 11 year: 2007 text: November 2007 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | Molecular microbiology |
PublicationTitleAlternate | Mol Microbiol |
PublicationYear | 2007 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell Science |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell Science |
References | 2004; 43 2007; 104 2006; 12 2005; 353 2006; 13 1998; D54 2007; 100 2006; 58 2004a; 279 1997; 276 2002; 1 2006; 393 2006; 5 2006; 231 2006; 6 2007; 76 2007; 56 2003; 97 2005; 44 2006; 133 2007; 14 2005; 25 2004b; 101 2005; 280 2006; 109 2005; 145 2005; 365 2006; 22 2000; 106 2004; 15 2005; 10 2007; 7 1991; A47 2006; 281 2000; 288 2007; 45 2006; 123 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 Brünger A.T. (e_1_2_5_5_1) 1998; 54 Croft S.L. (e_1_2_5_8_1) 2006; 123 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: A47 start-page: 110 year: 1991 end-page: 119 article-title: Improved methods for building protein models in electron density maps and the location of errors in these models publication-title: Acta Cryst – volume: 7 start-page: 391 year: 2007 end-page: 403 article-title: Crystal structures of phosphodiesterases and implications on substrate specificity and inhibitor selectivity publication-title: Curr Top Med Chem – volume: 280 start-page: 30949 year: 2005 end-page: 30955 article-title: Multiple elements jointly determine inhibitor selectivity of cyclic nucleotide phosphodiesterases 4 and 7 publication-title: J Biol Chem – volume: 22 start-page: 439 year: 2006 end-page: 445 article-title: Phlebotomine sand flies and parasites: friends or foes? publication-title: Trends Parasitol – volume: 276 start-page: 307 year: 1997 end-page: 326 article-title: Processing of X‐ray diffraction data collected in oscillation mode publication-title: Methods Enzymol – volume: 13 start-page: 2571 year: 2006 end-page: 2598 article-title: Natural products from plants as drug candidates and lead compounds against leishmaniasis and trypanosomiasis publication-title: Curr Med Chem – volume: 43 start-page: 6091 year: 2004 end-page: 6100 article-title: Crystal structure of human phosphodiesterase 3B: atomic basis for substrate and inhibitor specificity publication-title: Biochemistry – volume: 109 start-page: 366 year: 2006 end-page: 398 article-title: Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents publication-title: Pharmacol Ther – volume: 104 start-page: 5782 year: 2007 end-page: 5787 article-title: Structural insight into substrate specificity of phospodiesterase 10 publication-title: Proc Natl Acad Sci USA – volume: 58 start-page: 488 year: 2006 end-page: 520 article-title: Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use publication-title: Pharmacol Rev – volume: 133 start-page: S87 year: 2006 end-page: S112 article-title: vaccines: progress and problems publication-title: Parasitology – volume: 25 start-page: 229 year: 2005 end-page: 244 article-title: Cyclic nucleotide phosphodiesterases and their role in immunomodulatory responses: advances in the development of specific phosphodiesterase inhibitors publication-title: Med Res Rev – volume: 101 start-page: 9624 year: 2004b end-page: 9629 article-title: Crystal structure of phosphodiesterase 9 shows orientation variation of inhibitor 3‐isobutyl‐1‐methylxanthine binding publication-title: Proc Natl Acad Sci USA – volume: 279 start-page: 13095 year: 2004a end-page: 13101 article-title: Crystal structures of phosphodiesterases 4 and 5 in complex with inhibitor IBMX suggest a conformation determinant of inhibitor selectivity publication-title: J Biol Chem – volume: 6 start-page: 539 year: 2006 end-page: 550 article-title: Mechanisms of drug action and drug resistance in as basis for therapeutic target identification and design of antileishmanial modulators publication-title: Curr Top Med Chem – volume: 100 start-page: 309 year: 2007 end-page: 327 article-title: Overview of PDEs and their regulation publication-title: Circ Res – volume: 45 start-page: 21 year: 2007 end-page: 25 article-title: Molecular diagnosis of leishmaniasis: current status and future applications publication-title: J Clin Microbiol – volume: 365 start-page: 167 year: 2005 end-page: 175 article-title: Phosphodiesterase‐4 inhibitors for asthma and chronic obstructive pulmonary disease publication-title: Lancet – volume: 281 start-page: 21469 year: 2006 end-page: 21479 article-title: Multiple conformations of phosphodiesterase‐5: implications for enzyme function and drug development publication-title: J Biol Chem – volume: 123 start-page: 399 year: 2006 end-page: 410 article-title: Current scenario of drug development for leishmaniasis publication-title: Indian J Med Res – volume: 56 start-page: 143 year: 2007 end-page: 153 article-title: Molecular mechanisms of antimony resistance in publication-title: J Med Microbiol – volume: 10 start-page: 1503 year: 2005 end-page: 1519 article-title: Keynote review: phosphodiesterase‐4 as a therapeutic target publication-title: Drug Discov Today – volume: 280 start-page: 3771 year: 2005 end-page: 3779 article-title: Trypanosome cyclic nucleotide phosphodiesterase 2B binds cAMP through its GAF‐A domain publication-title: J Biol Chem – volume: 231 start-page: 1287 year: 2006 end-page: 1299 article-title: Flavonoids attenuate cardiovascular disease, inhibit phosphodiesterase, and modulate lipid homeostasis in adipose tissue and liver publication-title: Exp Biol Med – volume: 145 start-page: 133 year: 2005 end-page: 135 article-title: Cyclic nucleotide specific phosphodiesterases of the kinetoplastida: a unified nomenclature publication-title: Mol Biochem Parasitol – volume: 5 start-page: 660 year: 2006 end-page: 670 article-title: Phosphodiesterases in the CNS: targets for drug development publication-title: Nat Rev Drug Discov – volume: 6 start-page: 342 year: 2006 end-page: 349 article-title: New world cutaneous leishmaniasis in travellers publication-title: Lancet Infect Dis – volume: 44 start-page: 8312 year: 2005 end-page: 8325 article-title: Structural determinants for inhibitor specificity and selectivity in PDE2A using the wheat germ translation system publication-title: Biochemistry – volume: 97 start-page: S3 year: 2003 end-page: S15 article-title: /HIV co‐infections: epidemiology in Europe publication-title: Ann Trop Med Parasitol – volume: 288 start-page: 1822 year: 2000 end-page: 1825 article-title: Atomic structure of PDE4: insight into phosphodiesterase mechanism and specificity publication-title: Science – volume: 353 start-page: 2148 year: 2005 end-page: 2157 article-title: Sildenafil use in Pulmonary Arterial Hypertension (SUPER) study group publication-title: N Engl J Med – volume: 76 start-page: 481 year: 2007 end-page: 511 article-title: Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling publication-title: Ann Rev Biochem – volume: 6 start-page: 25 year: 2006 article-title: Cyclic nucleotide specific phosphodiesterases of publication-title: BMC Microbiol – volume: 15 start-page: 279 year: 2004 end-page: 286 article-title: A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases publication-title: Mol Cell – volume: D54 start-page: 905 year: 1998 end-page: 921 article-title: Crystallography and NMR system: a new software suite for macromolecular structure determination publication-title: Acta Cryst – volume: 1 start-page: 674 year: 2002 end-page: 682 article-title: Phosphodiesterase 5 inhibitors: current status and potential applications publication-title: Nat Rev Drug Discov – volume: 12 start-page: 2511 year: 2006 end-page: 2523 article-title: Improving memory: a role for phosphodiesterases publication-title: Curr Pharm Des – volume: 276 start-page: 581 year: 1997 end-page: 594 article-title: AMoRe: an automated molecular replacement program package publication-title: Methods Enzymol – volume: 393 start-page: 21 year: 2006 end-page: 41 article-title: Cyclic nucleotide phosphodiesterases as targets for treatment of haematological malignancies publication-title: Biochem J – volume: 14 start-page: 1153 year: 2007 end-page: 1169 article-title: Chemotherapy of leishmaniasis: past, present and future publication-title: Curr Med Chem – volume: 106 start-page: 283 year: 2000 end-page: 292 article-title: Characterization of cyclic AMP phosphodiesterases in and purification of a soluble form. publication-title: Mol Biochem Parasitol – ident: e_1_2_5_31_1 doi: 10.1177/153537020623100802 – ident: e_1_2_5_40_1 doi: 10.1073/pnas.0700279104 – ident: e_1_2_5_26_1 doi: 10.1038/nrd2058 – ident: e_1_2_5_6_1 doi: 10.1002/med.20020 – ident: e_1_2_5_16_1 doi: 10.1107/S0108767390010224 – ident: e_1_2_5_27_1 doi: 10.2174/092986707780362862 – ident: e_1_2_5_41_1 doi: 10.1126/science.288.5472.1822 – ident: e_1_2_5_12_1 doi: 10.1074/jbc.M311556200 – ident: e_1_2_5_36_1 doi: 10.1021/bi049868i – ident: e_1_2_5_4_1 doi: 10.2174/138161206777698855 – ident: e_1_2_5_32_1 doi: 10.1016/S0166-6851(99)00224-8 – ident: e_1_2_5_17_1 doi: 10.1016/j.pt.2006.06.012 – ident: e_1_2_5_14_1 doi: 10.1021/bi047313h – ident: e_1_2_5_33_1 doi: 10.1128/JCM.02029-06 – ident: e_1_2_5_2_1 doi: 10.1099/jmm.0.46841-0 – ident: e_1_2_5_22_1 doi: 10.1042/BJ20051368 – ident: e_1_2_5_24_1 doi: 10.2174/156802606776743165 – ident: e_1_2_5_19_1 doi: 10.1017/S0031182006001831 – ident: e_1_2_5_29_1 doi: 10.1161/01.RES.0000256354.95791.f1 – ident: e_1_2_5_21_1 doi: 10.1074/jbc.M408111200 – ident: e_1_2_5_35_1 doi: 10.2174/092986706778201611 – ident: e_1_2_5_25_1 doi: 10.1016/j.pharmthera.2005.07.003 – ident: e_1_2_5_13_1 doi: 10.1073/pnas.0401120101 – ident: e_1_2_5_37_1 doi: 10.1016/S1473-3099(06)70492-3 – ident: e_1_2_5_42_1 doi: 10.1016/j.molcel.2004.07.005 – ident: e_1_2_5_3_1 doi: 10.1124/pr.58.3.5 – ident: e_1_2_5_39_1 doi: 10.1074/jbc.M512527200 – ident: e_1_2_5_7_1 doi: 10.1146/annurev.biochem.76.060305.150444 – ident: e_1_2_5_30_1 doi: 10.1016/S0076-6879(97)76066-X – ident: e_1_2_5_9_1 doi: 10.1179/000349803225002499 – ident: e_1_2_5_15_1 doi: 10.1186/1471-2180-6-25 – ident: e_1_2_5_23_1 doi: 10.1016/S0140-6736(05)17708-3 – volume: 123 start-page: 399 year: 2006 ident: e_1_2_5_8_1 article-title: Current scenario of drug development for leishmaniasis publication-title: Indian J Med Res contributor: fullname: Croft S.L. – volume: 54 start-page: 905 year: 1998 ident: e_1_2_5_5_1 article-title: Crystallography and NMR system: a new software suite for macromolecular structure determination publication-title: Acta Cryst contributor: fullname: Brünger A.T. – ident: e_1_2_5_20_1 doi: 10.1016/j.molbiopara.2005.09.018 – ident: e_1_2_5_10_1 doi: 10.1056/NEJMoa050010 – ident: e_1_2_5_34_1 doi: 10.1038/nrd893 – ident: e_1_2_5_28_1 doi: 10.1016/S0076-6879(97)76079-8 – ident: e_1_2_5_11_1 doi: 10.1016/S1359-6446(05)03622-6 – ident: e_1_2_5_18_1 doi: 10.2174/156802607779941242 – ident: e_1_2_5_38_1 doi: 10.1074/jbc.M504398200 |
SSID | ssj0013063 |
Score | 2.1886714 |
Snippet | Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases... Summary Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major... Summary Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major... Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases... |
SourceID | pubmedcentral proquest crossref pubmed pascalfrancis wiley fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1029 |
SubjectTerms | 1-Methyl-3-isobutylxanthine - metabolism Amino Acid Sequence Animals Apoptosis Binding Sites Biological and medical sciences Catalysts Catalytic Domain Cells Comparative analysis Crystal structure Crystallization Crystallography, X-Ray Drug Design Fundamental and applied biological sciences. Psychology Humans Leishmania major Leishmania major - drug effects Leishmania major - enzymology Life cycle. Host-agent relationship. Pathogenesis Models, Molecular Molecular Sequence Data Parasites Phosphodiesterase Inhibitors - chemistry Phosphodiesterase Inhibitors - pharmacology Phosphoric Diester Hydrolases - chemistry Phosphoric Diester Hydrolases - drug effects Phosphoric Diester Hydrolases - metabolism Protein Folding Protozoa Public health |
Title | Crystal structure of the Leishmania major phosphodiesterase LmjPDEB1 and insight into the design of the parasite-selective inhibitors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2007.05976.x https://www.ncbi.nlm.nih.gov/pubmed/17944832 https://www.proquest.com/docview/196523411 https://search.proquest.com/docview/20506423 https://www.proquest.com/docview/68479371 https://pubmed.ncbi.nlm.nih.gov/PMC2950065 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BSkhceMOGhcUHrqkaJ3GSI-xDC6IIAZV6s-zYpt1HsmpaieXEjSu_kV_CjJO2G1gkhDhUqRTHUSbfjL_Y428AnitXKHy1aahTU4Y43oowT60IrbNK85S7KKXdyKO34micvJ6kky7_ifbCtPoQ6wk38gwfr8nBlW76Tu4ztIo075QIkRuLAfHJKM4ou2v_Pd8sKHRF1YqU5GT5pJ_Uc2VHvZHqulM15U2qBk3n2poXV5HS33MrL3NeP2gd3oaT1eO2uSong-VCD8ovvyhB_h973IFbHbdlL1ow3oVrtroHN9pqlxf34dve_AK56ClrNWuXc8tqx5CAsjd21kxJiEOxM3Vcz9n5tG7wRxmOtEO6wSZnx-_2D15GTFWGzaqG5hTwuKh9B8bnoay6IzlzWhT_8fV748v8YETHttOZnlFtoQcwPjz4uHcUdnUgwpLoUWiRRZbOZGViMN5wFYncxLSSHUWZU3mhYmQxuealcMnQCKdLgURII7FFtmfKKH4IW1Vd2W1gVpQFx5Cu0nyYZDHh1HARa5WZokisCiBavXN53sp9yEufSWhgSQam4p2Z9AaWnwPYRnBI9Qmjshx_4AQ20tEXIgtgt4eYTZ_0WToUPICdFYRkFzwaSSKPHNlFFMCz9Vn0elrKUZWtlw3en4QGefznFiKnOdMM-3jUAnJzbwzBCQbyALIeVNcNSHG8f6aaTb3yOD47cdYAhEfiX5tIjkav6N_jf71wB276SXW_CfQJbCFO7VNkgwu96_38J4nhU24 |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BEYILb6gptHvg6ihe22v7CH0ohaRC0Ei5rdb2buPS2lWcSJQTN678Rn4JM2snqaFICHGIHMnrsTyemf08O_sNwCtlEoWvNnTTMM9cnG-FG4dauNpolfKQGy-k3cijIzEYB28n4aRtB0R7YRp-iFXCjTzDxmtycEpId73clmglYdxSESI4Fj0ElLfQ-33q47D3ga-XFNq2aklIhLJ80i3ruVZSZ666aVRFlZOqRuWZpuvFdbD09-rKq6jXTlsH9-Fs-cBNtcqn3mKe9rIvv3BB_ieNPIB7Lbxlrxt7fAg3dPkIbjcNLy8fw7fd2SXC0TPW0NYuZppVhiEGZUNd1FPi4lDsXJ1WM3YxrWr8UZEjbZKuccj56fu9_TceU2XOirKmtAIe55UVkNtSlKU4YjSndfEfX7_XttMPBnUcOy3SgtoLPYHxwf7x7sBtW0G4GSEkVyOQzEweZUGOIYcrT8S5T4vZnhcZFSfKRyATpzwTJujnwqSZQCyUIrZFwJdnnv8UNsqq1JvAtMgSjlFdhXE_iHwy1ZwLP1VRniSBVg54y5cuLxrGD3nlSwkVLEnB1L8zklbB8rMDm2gdUp1gYJbjj5ysjaj0hYgc2O6YzFomfZn2BXdga2lDso0ftSSeR44Aw3NgZ3UWHZ9Wc1Spq0WN9yeuQe7_eYSIKW0aoYxnjUWu741ROMBY7kDUsdXVACId754pi6klH8dnJ9jqgLCm-NcqkqPRIf17_q8X7sCdwfFoKIeHR--24K7Nsds9oS9gA21Wv0RwOE-3rdP_BJJwV4Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB1BEYgL31BTaH3g6ihe22v7CG2jFpqqAiLltlp7dxu31I7iRKKcuHHlN_JLmFk7SQ1FQohD5Eher-Xxm9nn3dk3AK-kSSW-2sjLIpV7ON5yL4k097TRMmMRM35Eu5GHx_xgFL4dR-M2_4n2wjT6EKsJN_IMG6_JwafKdJ3cZmilUdIqESI35j3kk7dCjkSYCNJ7tl5RaKuqpRHpybJxN6vn2p46Q9VNIytKnJQ12s40RS-uY6W_J1deJb121Brch_Pl8zbJKue9xTzr5V9-kYL8PwZ5APdacuu-btD4EG7o8hHcbspdXj6Gb7uzSySjn9xGtHYx025lXGSg7pEu6gkpcUj3Qp5VM3c6qWr8UYojbZGuscnF2cne_hvflaVyi7KmSQU8zivbgbKJKMvuSM-cVsV_fP1e2zo_GNKx7aTICiou9ARGg_2PuwdeWwjCy4kfeRppZG5UnIcKAw6TPk9UQEvZvh8bmaQyQBqTZCznJuwrbrKcIxPKkNki3VO5HzyFjbIq9Sa4mucpw5guo6QfxgEBVTEeZDJWaRpq6YC_fOdi2uh9iCvfSWhgQQam6p2xsAYWnx3YRHAIeYphWYw-MAIbCelzHjuw3UHMuk_6Lu1z5sDWEkKijR61IJVHhvTCd2BndRbdntZyZKmrRY33J6VBFvy5BU9o0jTGPp41gFzfG2NwiJHcgbgD1VUDkhzvnimLiZUex2cn0uoAt0j8axOJ4fCQ_j3_1wt34M7J3kAcHR6_24K7doLdbgh9ARsIWf0SmeE827Yu_xM9l1Y1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystal+structure+of+the+Leishmania+major+phosphodiesterase+LmjPDEB1+and+insight+into+the+design+of+the+parasite%E2%80%90selective+inhibitors&rft.jtitle=Molecular+microbiology&rft.au=Wang%2C+Huanchen&rft.au=Yan%2C+Zier&rft.au=Geng%2C+Jie&rft.au=Kunz%2C+Stefan&rft.date=2007-11-01&rft.issn=0950-382X&rft.eissn=1365-2958&rft.volume=66&rft.issue=4&rft.spage=1029&rft.epage=1038&rft_id=info:doi/10.1111%2Fj.1365-2958.2007.05976.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2958_2007_05976_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon |