SARS CoV‐2 related microvascular damage and symptoms during and after COVID‐19: Consequences of capillary transit‐time changes, tissue hypoxia and inflammation
Corona virus disease 2019 (COVID‐19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV‐2). They range from early, low blood oxygen levels (hypoxemia) without breathlessness (“silent hypoxia”), delirium, rashes, and loss of smell (anosm...
Saved in:
Published in | Physiological reports Vol. 9; no. 3; pp. e14726 - n/a |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.02.2021
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Corona virus disease 2019 (COVID‐19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV‐2). They range from early, low blood oxygen levels (hypoxemia) without breathlessness (“silent hypoxia”), delirium, rashes, and loss of smell (anosmia), to persisting chest pain, muscle weakness and ‐pain, fatigue, confusion, memory problems and difficulty to concentrate (“brain fog”), mood changes, and unexpected onset of hypertension or diabetes. SARS CoV‐2 affects the microcirculation, causing endothelial cell swelling and damage (endotheliitis), microscopic blood clots (microthrombosis), capillary congestion, and damage to pericytes that are integral to capillary integrity and barrier function, tissue repair (angiogenesis), and scar formation. Similar to other instances of critical illness, COVID‐19 is also associated with elevated cytokine levels in the systemic circulation. This review examines how capillary damage and inflammation may contribute to these acute and persisting COVID‐19 symptoms by interfering with blood and tissue oxygenation and with brain function. Undetectable by current diagnostic methods, capillary flow disturbances limit oxygen diffusion exchange in lungs and tissue and may therefore cause hypoxemia and tissue hypoxia. The review analyzes the combined effects of COVID‐19‐related capillary damage, pre‐existing microvascular changes, and upstream vascular tone on tissue oxygenation in key organs. It identifies a vicious cycle, as infection‐ and hypoxia‐related inflammation cause capillary function to deteriorate, which in turn accelerates hypoxia‐related inflammation and tissue damage. Finally, the review addresses the effects of low oxygen and high cytokine levels in brain tissue on neurotransmitter synthesis and mood. Methods to assess capillary functions in human organs and therapeutic means to protect capillary functions and stimulate capillary bed repair may prove important for the individualized management of COVID‐19 patients and targeted rehabilitation strategies.
COVID‐19‐related microvascular damage and inflammation may cause tissue hypoxia via transit‐time effects and disturb neurotransmitter synthesis in the brain. The duration of COVID‐19 symptoms and the long‐term health effects of SARS‐CoV‐2 infection may rely on whether disease‐related capillary damage is reversible. |
---|---|
AbstractList | Abstract Corona virus disease 2019 (COVID‐19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV‐2). They range from early, low blood oxygen levels (hypoxemia) without breathlessness (“silent hypoxia”), delirium, rashes, and loss of smell (anosmia), to persisting chest pain, muscle weakness and ‐pain, fatigue, confusion, memory problems and difficulty to concentrate (“brain fog”), mood changes, and unexpected onset of hypertension or diabetes. SARS CoV‐2 affects the microcirculation, causing endothelial cell swelling and damage (endotheliitis), microscopic blood clots (microthrombosis), capillary congestion, and damage to pericytes that are integral to capillary integrity and barrier function, tissue repair (angiogenesis), and scar formation. Similar to other instances of critical illness, COVID‐19 is also associated with elevated cytokine levels in the systemic circulation. This review examines how capillary damage and inflammation may contribute to these acute and persisting COVID‐19 symptoms by interfering with blood and tissue oxygenation and with brain function. Undetectable by current diagnostic methods, capillary flow disturbances limit oxygen diffusion exchange in lungs and tissue and may therefore cause hypoxemia and tissue hypoxia. The review analyzes the combined effects of COVID‐19‐related capillary damage, pre‐existing microvascular changes, and upstream vascular tone on tissue oxygenation in key organs. It identifies a vicious cycle, as infection‐ and hypoxia‐related inflammation cause capillary function to deteriorate, which in turn accelerates hypoxia‐related inflammation and tissue damage. Finally, the review addresses the effects of low oxygen and high cytokine levels in brain tissue on neurotransmitter synthesis and mood. Methods to assess capillary functions in human organs and therapeutic means to protect capillary functions and stimulate capillary bed repair may prove important for the individualized management of COVID‐19 patients and targeted rehabilitation strategies. Corona virus disease 2019 (COVID-19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV-2). They range from early, low blood oxygen levels (hypoxemia) without breathlessness ("silent hypoxia"), delirium, rashes, and loss of smell (anosmia), to persisting chest pain, muscle weakness and -pain, fatigue, confusion, memory problems and difficulty to concentrate ("brain fog"), mood changes, and unexpected onset of hypertension or diabetes. SARS CoV-2 affects the microcirculation, causing endothelial cell swelling and damage (endotheliitis), microscopic blood clots (microthrombosis), capillary congestion, and damage to pericytes that are integral to capillary integrity and barrier function, tissue repair (angiogenesis), and scar formation. Similar to other instances of critical illness, COVID-19 is also associated with elevated cytokine levels in the systemic circulation. This review examines how capillary damage and inflammation may contribute to these acute and persisting COVID-19 symptoms by interfering with blood and tissue oxygenation and with brain function. Undetectable by current diagnostic methods, capillary flow disturbances limit oxygen diffusion exchange in lungs and tissue and may therefore cause hypoxemia and tissue hypoxia. The review analyzes the combined effects of COVID-19-related capillary damage, pre-existing microvascular changes, and upstream vascular tone on tissue oxygenation in key organs. It identifies a vicious cycle, as infection- and hypoxia-related inflammation cause capillary function to deteriorate, which in turn accelerates hypoxia-related inflammation and tissue damage. Finally, the review addresses the effects of low oxygen and high cytokine levels in brain tissue on neurotransmitter synthesis and mood. Methods to assess capillary functions in human organs and therapeutic means to protect capillary functions and stimulate capillary bed repair may prove important for the individualized management of COVID-19 patients and targeted rehabilitation strategies.Corona virus disease 2019 (COVID-19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV-2). They range from early, low blood oxygen levels (hypoxemia) without breathlessness ("silent hypoxia"), delirium, rashes, and loss of smell (anosmia), to persisting chest pain, muscle weakness and -pain, fatigue, confusion, memory problems and difficulty to concentrate ("brain fog"), mood changes, and unexpected onset of hypertension or diabetes. SARS CoV-2 affects the microcirculation, causing endothelial cell swelling and damage (endotheliitis), microscopic blood clots (microthrombosis), capillary congestion, and damage to pericytes that are integral to capillary integrity and barrier function, tissue repair (angiogenesis), and scar formation. Similar to other instances of critical illness, COVID-19 is also associated with elevated cytokine levels in the systemic circulation. This review examines how capillary damage and inflammation may contribute to these acute and persisting COVID-19 symptoms by interfering with blood and tissue oxygenation and with brain function. Undetectable by current diagnostic methods, capillary flow disturbances limit oxygen diffusion exchange in lungs and tissue and may therefore cause hypoxemia and tissue hypoxia. The review analyzes the combined effects of COVID-19-related capillary damage, pre-existing microvascular changes, and upstream vascular tone on tissue oxygenation in key organs. It identifies a vicious cycle, as infection- and hypoxia-related inflammation cause capillary function to deteriorate, which in turn accelerates hypoxia-related inflammation and tissue damage. Finally, the review addresses the effects of low oxygen and high cytokine levels in brain tissue on neurotransmitter synthesis and mood. Methods to assess capillary functions in human organs and therapeutic means to protect capillary functions and stimulate capillary bed repair may prove important for the individualized management of COVID-19 patients and targeted rehabilitation strategies. Corona virus disease 2019 (COVID‐19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV‐2). They range from early, low blood oxygen levels (hypoxemia) without breathlessness (“silent hypoxia”), delirium, rashes, and loss of smell (anosmia), to persisting chest pain, muscle weakness and ‐pain, fatigue, confusion, memory problems and difficulty to concentrate (“brain fog”), mood changes, and unexpected onset of hypertension or diabetes. SARS CoV‐2 affects the microcirculation, causing endothelial cell swelling and damage (endotheliitis), microscopic blood clots (microthrombosis), capillary congestion, and damage to pericytes that are integral to capillary integrity and barrier function, tissue repair (angiogenesis), and scar formation. Similar to other instances of critical illness, COVID‐19 is also associated with elevated cytokine levels in the systemic circulation. This review examines how capillary damage and inflammation may contribute to these acute and persisting COVID‐19 symptoms by interfering with blood and tissue oxygenation and with brain function. Undetectable by current diagnostic methods, capillary flow disturbances limit oxygen diffusion exchange in lungs and tissue and may therefore cause hypoxemia and tissue hypoxia. The review analyzes the combined effects of COVID‐19‐related capillary damage, pre‐existing microvascular changes, and upstream vascular tone on tissue oxygenation in key organs. It identifies a vicious cycle, as infection‐ and hypoxia‐related inflammation cause capillary function to deteriorate, which in turn accelerates hypoxia‐related inflammation and tissue damage. Finally, the review addresses the effects of low oxygen and high cytokine levels in brain tissue on neurotransmitter synthesis and mood. Methods to assess capillary functions in human organs and therapeutic means to protect capillary functions and stimulate capillary bed repair may prove important for the individualized management of COVID‐19 patients and targeted rehabilitation strategies. Corona virus disease 2019 (COVID‐19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV‐2). They range from early, low blood oxygen levels (hypoxemia) without breathlessness (“silent hypoxia”), delirium, rashes, and loss of smell (anosmia), to persisting chest pain, muscle weakness and ‐pain, fatigue, confusion, memory problems and difficulty to concentrate (“brain fog”), mood changes, and unexpected onset of hypertension or diabetes. SARS CoV‐2 affects the microcirculation, causing endothelial cell swelling and damage (endotheliitis), microscopic blood clots (microthrombosis), capillary congestion, and damage to pericytes that are integral to capillary integrity and barrier function, tissue repair (angiogenesis), and scar formation. Similar to other instances of critical illness, COVID‐19 is also associated with elevated cytokine levels in the systemic circulation. This review examines how capillary damage and inflammation may contribute to these acute and persisting COVID‐19 symptoms by interfering with blood and tissue oxygenation and with brain function. Undetectable by current diagnostic methods, capillary flow disturbances limit oxygen diffusion exchange in lungs and tissue and may therefore cause hypoxemia and tissue hypoxia. The review analyzes the combined effects of COVID‐19‐related capillary damage, pre‐existing microvascular changes, and upstream vascular tone on tissue oxygenation in key organs. It identifies a vicious cycle, as infection‐ and hypoxia‐related inflammation cause capillary function to deteriorate, which in turn accelerates hypoxia‐related inflammation and tissue damage. Finally, the review addresses the effects of low oxygen and high cytokine levels in brain tissue on neurotransmitter synthesis and mood. Methods to assess capillary functions in human organs and therapeutic means to protect capillary functions and stimulate capillary bed repair may prove important for the individualized management of COVID‐19 patients and targeted rehabilitation strategies. COVID‐19‐related microvascular damage and inflammation may cause tissue hypoxia via transit‐time effects and disturb neurotransmitter synthesis in the brain. The duration of COVID‐19 symptoms and the long‐term health effects of SARS‐CoV‐2 infection may rely on whether disease‐related capillary damage is reversible. |
Author | Østergaard, Leif |
AuthorAffiliation | 1 Neuroradiology Research Unit Section of Neuroradiology Department of Radiology Aarhus University Hospital Aarhus Denmark 2 Center of Functionally Integrative Neuroscience Department of Clinical Medicine Aarhus University Aarhus Denmark |
AuthorAffiliation_xml | – name: 1 Neuroradiology Research Unit Section of Neuroradiology Department of Radiology Aarhus University Hospital Aarhus Denmark – name: 2 Center of Functionally Integrative Neuroscience Department of Clinical Medicine Aarhus University Aarhus Denmark |
Author_xml | – sequence: 1 givenname: Leif orcidid: 0000-0003-2930-6997 surname: Østergaard fullname: Østergaard, Leif email: leif@cfin.au.dk organization: Aarhus University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33523608$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks9u1DAQhyNUREvpiTuyxAUJFmzHSWwOSNXypytVKqJQwclynPGuV4kd7KSwNx6Bl-DFeBLcbIvaCnGKNfnm08_juZ_tOO8gyx4S_JwwTtiLfrWh6VjR8k62R3FBZpxUn3eunXezgxjXGGOC81xgdi_bzfOC5iXme9mv08MPp2juz37_-ElRgFYN0KDO6uDPVdRjqwJqVKeWgJRrUNx0_eC7iJoxWLecasoMEND85GzxOkmIeJl0LsLXEZyGiLxBWvW2TaYNGoJy0Q6JG2wHSK-UW0J8hgYb4whoten9d6smrXWmVV2nBuvdg-yuUW2Eg8vvfvbp7ZuP86PZ8cm7xfzweKYLzsoZw1w3RtRlYaAwFQOhK1ozrhVpRImxKqCkTV5RYTDlxNRGlJUipYEcc16qfD9bbL2NV2vZB9ul0NIrK6eCD0upwmB1C1LVuMBUiMowwhg3dVPRlMFAKlYFFsn1auvqx7qDRoNLl29vSG_-cXYll_5cVpwJVuRJ8ORSEHwaZhxkZ6OGNEgHfoySMs4oo7moEvr4Frr2Y3BpVBeUoHmFaZmoR9cT_Y1ytQ0JIFsgvX6MAYzUdpgeIAW0rSRYTksnL5ZOTkuXep7e6rnS_pumW_qbbWHzP1S-P_pCt01_AOK465M |
CitedBy_id | crossref_primary_10_1097_MCC_0000000000000904 crossref_primary_10_21518_ms2024_092 crossref_primary_10_3892_wasj_2022_178 crossref_primary_10_4330_wjc_v14_i7_392 crossref_primary_10_61865_j_cyfsld_2024_8630_29w4 crossref_primary_10_21886_2712_8156_2023_4_4_69_76 crossref_primary_10_3390_v16071049 crossref_primary_10_1371_journal_pone_0312735 crossref_primary_10_2147_VHRM_S371468 crossref_primary_10_3389_fnano_2022_987117 crossref_primary_10_1186_s12879_024_10222_5 crossref_primary_10_1186_s13256_024_04596_y crossref_primary_10_1007_s43465_021_00546_8 crossref_primary_10_3389_fneur_2023_1221518 crossref_primary_10_1016_j_mayocpiqo_2023_05_002 crossref_primary_10_1007_s40520_022_02328_0 crossref_primary_10_1002_jcu_23503 crossref_primary_10_1111_papr_13277 crossref_primary_10_1002_tkm2_1370 crossref_primary_10_1016_j_diabet_2022_101359 crossref_primary_10_1007_s10528_023_10453_2 crossref_primary_10_3390_ijms23137247 crossref_primary_10_18093_0869_0189_2023_33_6_760_771 crossref_primary_10_1007_s42843_022_00055_8 crossref_primary_10_1097_BPO_0000000000002845 crossref_primary_10_1016_j_brs_2022_05_006 crossref_primary_10_1111_1756_185X_14703 crossref_primary_10_1371_journal_pone_0269471 crossref_primary_10_1111_ene_15545 crossref_primary_10_1177_2050313X231185951 crossref_primary_10_1165_rcmb_2024_0005MA crossref_primary_10_1016_j_medengphy_2022_103904 crossref_primary_10_33546_bnj_1828 crossref_primary_10_1080_07853890_2023_2198776 crossref_primary_10_1080_17434440_2023_2277236 crossref_primary_10_3390_biom14121621 crossref_primary_10_1007_s40211_023_00487_8 crossref_primary_10_1007_s00415_023_11767_2 crossref_primary_10_1007_s11428_024_01157_1 crossref_primary_10_1007_s12035_022_02932_1 crossref_primary_10_3390_biomedicines11041199 crossref_primary_10_1002_acn3_51801 crossref_primary_10_1016_j_ebiom_2023_104519 crossref_primary_10_1042_BCJ20220154 crossref_primary_10_3389_fphar_2024_1338235 crossref_primary_10_31857_S0042132423030067 crossref_primary_10_3389_fphys_2021_719701 crossref_primary_10_1002_jmv_27309 crossref_primary_10_3389_fnhum_2022_988021 crossref_primary_10_1080_09593985_2024_2327534 crossref_primary_10_4103_ijciis_ijciis_93_21 crossref_primary_10_1093_cvr_cvac115 crossref_primary_10_1042_CS20210735 crossref_primary_10_1016_j_bbi_2023_06_015 crossref_primary_10_1089_brain_2022_0058 crossref_primary_10_1097_HJH_0000000000003271 crossref_primary_10_1111_odi_14126 crossref_primary_10_1136_bjsports_2021_104595 crossref_primary_10_1016_j_lanepe_2023_100595 crossref_primary_10_1016_j_heliyon_2023_e15500 crossref_primary_10_1186_s13000_024_01445_w crossref_primary_10_1007_s00277_022_04907_7 crossref_primary_10_1016_j_blre_2023_101075 crossref_primary_10_21638_spbu03_2023_307 crossref_primary_10_1007_s00011_022_01612_z crossref_primary_10_3389_fcell_2022_807149 crossref_primary_10_12968_bjcn_2021_26_10_474 crossref_primary_10_3390_neurolint16050075 crossref_primary_10_1097_MS9_0000000000002302 crossref_primary_10_1016_j_pdpdt_2023_103556 crossref_primary_10_3389_fneur_2022_921173 crossref_primary_10_1016_j_jiph_2023_01_012 crossref_primary_10_1038_s41419_024_06642_5 crossref_primary_10_18093_0869_0189_2021_31_5_571_579 crossref_primary_10_3233_RNN_211249 crossref_primary_10_35420_jcohns_2021_32_3_163 crossref_primary_10_1080_00207160_2022_2163167 crossref_primary_10_3389_fphys_2023_1203472 crossref_primary_10_3389_fpsyg_2023_1136667 crossref_primary_10_1007_s00380_022_02180_2 crossref_primary_10_1097_MD_0000000000037265 crossref_primary_10_24075_brsmu_2022_057 crossref_primary_10_1002_jcb_30530 crossref_primary_10_1093_jnen_nlac056 crossref_primary_10_1360_SSV_2021_0311 crossref_primary_10_3389_fmed_2023_1222767 crossref_primary_10_1016_j_cyto_2021_155523 crossref_primary_10_3389_fcimb_2022_861703 crossref_primary_10_34883_PI_2022_25_2_001 crossref_primary_10_47529_2223_2524_2022_3_1 crossref_primary_10_1186_s12967_023_04719_x crossref_primary_10_1007_s13337_022_00793_9 crossref_primary_10_1007_s10067_021_05835_z crossref_primary_10_1007_s42212_024_00707_4 crossref_primary_10_1016_j_clinph_2024_02_034 crossref_primary_10_1089_neur_2023_0067 crossref_primary_10_1152_ajpheart_00088_2022 crossref_primary_10_1016_j_biopha_2022_112718 crossref_primary_10_1093_cvr_cvab200 crossref_primary_10_3389_fimmu_2022_732197 crossref_primary_10_1002_alz_14279 crossref_primary_10_5694_mja2_52456 crossref_primary_10_1007_s44337_024_00059_x crossref_primary_10_1016_j_mam_2021_101000 crossref_primary_10_3389_fphar_2023_1304697 crossref_primary_10_17116_jnevro202312304244 crossref_primary_10_1016_j_amjmed_2024_05_021 crossref_primary_10_12677_acm_2024_1472131 crossref_primary_10_1093_brain_awac272 crossref_primary_10_3346_jkms_2023_38_e83 crossref_primary_10_17925_USN_2023_19_1_16 crossref_primary_10_22159_ijap_2023v15i6_48889 crossref_primary_10_1016_j_tem_2023_03_002 crossref_primary_10_3389_fpubh_2023_1254723 crossref_primary_10_3390_vaccines10050652 crossref_primary_10_1002_acp_70040 crossref_primary_10_1016_j_jtha_2023_09_022 crossref_primary_10_26416_ORL_54_1_2022_6027 crossref_primary_10_1016_j_anai_2024_08_008 crossref_primary_10_1371_journal_pone_0284489 crossref_primary_10_14814_phy2_15532 crossref_primary_10_3390_v15020533 crossref_primary_10_29328_journal_cjog_1001139 crossref_primary_10_59541_001c_81031 crossref_primary_10_30895_2312_7821_2022_10_1_78_90 crossref_primary_10_1016_j_gastha_2022_02_021 crossref_primary_10_1080_14789450_2021_2010549 crossref_primary_10_1136_bmj_2023_075387 crossref_primary_10_1111_jon_12975 crossref_primary_10_1177_20420188221110708 crossref_primary_10_1016_j_brainresbull_2022_06_014 crossref_primary_10_1093_trstmh_trac030 crossref_primary_10_1007_s11897_023_00618_w crossref_primary_10_47360_1995_4484_2021_255_262 crossref_primary_10_1016_j_heliyon_2023_e23320 crossref_primary_10_1016_j_lfs_2022_121018 crossref_primary_10_3389_fbioe_2023_1250312 crossref_primary_10_3389_fcvm_2021_745758 crossref_primary_10_1007_s11033_024_09279_x crossref_primary_10_1007_s40138_023_00276_1 crossref_primary_10_1177_11206721241255402 crossref_primary_10_1007_s11357_022_00561_z crossref_primary_10_1098_rsob_230349 crossref_primary_10_1134_S2079086423060087 crossref_primary_10_2174_2666796703666220623090158 crossref_primary_10_1016_j_resmer_2023_101044 crossref_primary_10_1038_s41598_023_35692_6 crossref_primary_10_3389_fimmu_2021_712402 crossref_primary_10_2478_amb_2022_0010 crossref_primary_10_1007_s40121_022_00730_9 crossref_primary_10_1016_j_ejrad_2022_110164 crossref_primary_10_1002_prp2_911 crossref_primary_10_1016_j_autneu_2022_103071 crossref_primary_10_1183_23120541_00623_2022 crossref_primary_10_1111_sji_13043 crossref_primary_10_1080_22221751_2023_2261559 crossref_primary_10_33667_2078_5631_2022_29_49_53 crossref_primary_10_1093_infdis_jiad119 crossref_primary_10_1080_07853890_2022_2076901 crossref_primary_10_3233_NPM_230177 crossref_primary_10_3390_covid2010004 crossref_primary_10_1016_j_cbi_2021_109657 crossref_primary_10_1016_j_sopen_2022_10_008 crossref_primary_10_3390_jcdd8110156 crossref_primary_10_1002_rfc2_95 crossref_primary_10_1016_j_biopha_2023_115637 crossref_primary_10_7554_eLife_86002 crossref_primary_10_1007_s00415_021_10735_y crossref_primary_10_1007_s11940_024_00816_4 crossref_primary_10_1038_s41684_023_01231_z crossref_primary_10_2214_AJR_22_28267 crossref_primary_10_3390_biomedicines9080966 crossref_primary_10_1016_j_radcr_2022_06_009 crossref_primary_10_1038_s41598_024_63255_w crossref_primary_10_3390_v16060923 |
Cites_doi | 10.1111/bjd.19327 10.1016/j.cell.2020.08.028 10.1016/j.pnpbp.2004.05.031 10.1007/s00134-020-06033-2 10.1002/path.1570 10.1056/NEJMoa2015432 10.1016/S1473-3099(20)30367-4 10.1038/nrc2895 10.1164/rccm.202007-2676LE 10.1161/01.RES.87.5.e1 10.1038/s41467-018-04913-2 10.1126/sciadv.abc5801 10.1212/WNL.0000000000010111 10.1016/j.neuint.2005.07.006 10.1001/jama.2020.17052 10.1016/j.bbi.2006.09.006 10.1152/ajpheart.2000.279.6.H2815 10.1016/j.clim.2020.108393 10.1177/0271678X15606723 10.1152/ajpheart.00803.2011 10.1001/jama.2020.1585 10.1016/j.cmet.2020.11.006 10.1164/rccm.202006-2219LE 10.1016/j.pharmthera.2011.01.014 10.1111/eci.13339 10.1016/j.devcel.2011.07.001 10.1371/journal.pone.0045499 10.1113/jphysiol.2004.073098 10.1038/jcbfm.2014.254 10.1152/jappl.1999.86.5.1460 10.1002/dad2.12032 10.1001/jamacardio.2020.3557 10.1097/ALN.0000000000003377 10.1113/JP279223 10.1038/nature09522 10.1016/j.atherosclerosis.2008.03.024 10.1007/s00134-020-06220-1 10.1152/japplphysiol.00537.2020 10.1152/ajpheart.1998.274.3.H1016 10.7554/eLife.29280 10.1016/j.neubiorev.2018.08.007 10.1038/jcbfm.2011.153 10.1210/er.2009-0035 10.1016/j.jalz.2019.06.001 10.1016/j.jalz.2017.02.007 10.1002/jmv.25915 10.1093/cvr/cvaa078 10.1038/s41593-018-0329-4 10.1084/jem.20202135 10.1152/ajpheart.00945.2005 10.1161/CIRCULATIONAHA.120.047549 10.1038/s41593-020-00758-5 10.1001/jamainternmed.2020.3313 10.1056/NEJMra0910283 10.1080/10739680590895028 10.1016/j.neurobiolaging.2016.11.004 10.1152/ajpheart.00117.2003 10.1007/s00395-008-0749-5 10.1016/S2666-5247(20)30115-4 10.1016/S0140-6736(20)30937-5 10.1161/CIRCULATIONAHA.120.051362 10.1152/ajpheart.00679.2010 10.1038/nature13165 10.1038/nm.2022 10.1378/chest.122.5.1774 10.1111/j.1471-4159.1980.tb03721.x 10.2353/ajpath.2007.061088 10.1016/j.biopsych.2008.11.029 10.1161/01.RES.79.3.581 10.1152/ajpheart.1993.264.3.H909 10.1038/jcbfm.2013.18 10.1126/science.3775368 10.1084/jem.20111622 10.1038/s41577-020-0343-0 10.1016/S1473-3099(20)30701-5 10.1152/japplphysiol.01155.2006 10.1073/pnas.0812671106 10.1111/aas.12581 10.1161/CIRCULATIONAHA.120.049465 10.1007/s00395-014-0409-x 10.1016/0026-2862(79)90042-6 10.1152/ajpheart.00384.2019 10.1016/S1473-3099(20)30434-5 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society 2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society – notice: 2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7T5 7TK 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.14814/phy2.14726 |
DatabaseName | WIley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (ProQuest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central (subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | ØSTERGAARD |
EISSN | 2051-817X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_ab0502997f41448fbd72846fe0297509 PMC7849453 33523608 10_14814_phy2_14726 PHY214726 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: VELUX Foundation funderid: 0026167 – fundername: Lundbeck Foundation funderid: R310‐2018‐3455 – fundername: VELUX Foundation grantid: 0026167 – fundername: Lundbeck Foundation grantid: R310-2018-3455 – fundername: ; grantid: 0026167 – fundername: ; grantid: R310‐2018‐3455 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 7X7 8-1 8FE 8FH 8FI 8FJ AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN AEEZP AEQDE AFKRA AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU DIK EBS EJD FYUFA GODZA GROUPED_DOAJ HCIFZ HMCUK HYE IAO IHR INH ITC KQ8 LK8 M48 M7P M~E OK1 PIMPY PQQKQ PROAC RAP RHI RPM UKHRP WIN AAYXX AFPKN CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PQGLB 3V. 7QP 7T5 7TK 7XB 8FK AZQEC COVID DWQXO GNUQQ H94 K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5846-408cdf9b65fe5f74e9c72b48ca1d9600a5e62d3729f0281fbf967a16fe30886a3 |
IEDL.DBID | M48 |
ISSN | 2051-817X |
IngestDate | Wed Aug 27 01:32:06 EDT 2025 Thu Aug 21 17:49:25 EDT 2025 Fri Jul 11 16:13:28 EDT 2025 Wed Aug 13 11:34:43 EDT 2025 Mon Jul 21 06:06:57 EDT 2025 Tue Jul 01 04:33:17 EDT 2025 Thu Apr 24 22:55:41 EDT 2025 Wed Jan 22 16:31:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | COVID-19 hypoxemia hypoxia long-term symptoms inflammation capillary dysfunction muscle lungs brain microcirculation heart |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 http://doi.wiley.com/10.1002/tdm_license_1.1 2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5846-408cdf9b65fe5f74e9c72b48ca1d9600a5e62d3729f0281fbf967a16fe30886a3 |
Notes | Funding information This review was supported by the VELUX Foundation (ARCADIA II, grant no. 0026167) and a Lundbeck Foundation Professorship to the author (grant no. R310‐2018‐3455). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2930-6997 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.14814/phy2.14726 |
PMID | 33523608 |
PQID | 2489237026 |
PQPubID | 2034607 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ab0502997f41448fbd72846fe0297509 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7849453 proquest_miscellaneous_2484242397 proquest_journals_2489237026 pubmed_primary_33523608 crossref_citationtrail_10_14814_phy2_14726 crossref_primary_10_14814_phy2_14726 wiley_primary_10_14814_phy2_14726_PHY214726 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 20210201 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford – name: Hoboken |
PublicationTitle | Physiological reports |
PublicationTitleAlternate | Physiol Rep |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2015; 35 2017; 6 2004; 561 2010; 10 2007; 102 2004; 203 2020; 20 2010; 468 2004; 28 2000; 87 2019; 15 2020; 324 2020; 129 1999; 86 2006; 290 2020; 12 2020; 202 2020; 323 1996; 79 2016; 36 1998; 274 2012; 209 2020; 6 2018; 9 2020; 5 2020; 1 2019; 22 2007; 170 2020; 95 2020; 50 1980; 35 2020; 92 2020; 214 2011; 21 2020; 46 2020; 133 2007; 21 2009; 202 2011; 364 2009; 15 2003; 285 2015; 59 2009; 24 2010; 31 1979; 18 1986; 234 2009; 65 2020; 383 2000; 279 2020; 142 2020; 180 2020; 183 2020; 32 2011; 130 1993; 264 2012; 32 2005; 47 2017; 50 2011; 301 2011; 300 2014; 508 2020; 2020 2014; 109 2013; 33 2020 2020; 395 2002; 122 2017; 13 2021; 218 2020; 116 2018 2018; 94 2020; 598 2012; 7 2020; 318 2009; 104 2005; 12 2009; 106 e_1_2_12_4_1 Reynolds A. S. (e_1_2_12_70_1) 2020 e_1_2_12_6_1 e_1_2_12_19_1 e_1_2_12_2_1 e_1_2_12_17_1 Godino C. (e_1_2_12_27_1) 2020 e_1_2_12_38_1 e_1_2_12_41_1 e_1_2_12_66_1 e_1_2_12_87_1 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_64_1 e_1_2_12_85_1 e_1_2_12_24_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_47_1 e_1_2_12_68_1 e_1_2_12_89_1 e_1_2_12_62_1 e_1_2_12_83_1 Diaz‐Flores L. (e_1_2_12_20_1) 2009; 24 e_1_2_12_60_1 e_1_2_12_81_1 e_1_2_12_28_1 e_1_2_12_49_1 e_1_2_12_31_1 e_1_2_12_52_1 e_1_2_12_77_1 e_1_2_12_33_1 e_1_2_12_54_1 e_1_2_12_75_1 e_1_2_12_35_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_58_1 e_1_2_12_79_1 e_1_2_12_14_1 e_1_2_12_90_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_73_1 e_1_2_12_71_1 e_1_2_12_3_1 e_1_2_12_5_1 e_1_2_12_18_1 e_1_2_12_16_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 e_1_2_12_80_1 Lucker A. (e_1_2_12_50_1) 2018 e_1_2_12_61_1 e_1_2_12_84_1 e_1_2_12_40_1 e_1_2_12_82_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_74_1 e_1_2_12_57_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_78_1 e_1_2_12_15_1 e_1_2_12_13_1 He L. (e_1_2_12_34_1) 2020; 2020 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_9_1 |
References_xml | – volume: 290 start-page: H1199 issue: 3 year: 2006 end-page: H1205 article-title: Connexin40 and connexin43 in mouse aortic endothelium: Evidence for coordinated regulation publication-title: American Journal of Physiology‐Heart and Circulatory Physiology. – volume: 1 start-page: e245 issue: 6 year: 2020 end-page: e253 article-title: Histopathological findings and viral tropism in UK patients with severe fatal COVID‐19: a post‐mortem study publication-title: The Lancet Microbe – volume: 279 start-page: H2815 issue: 6 year: 2000 end-page: H2823 article-title: TNF‐alpha increases entry of macromolecules into luminal endothelial cell glycocalyx publication-title: American Journal of Physiology Heart and Circulatory Physiology – volume: 598 start-page: 4473 issue: 20 year: 2020 end-page: 4507 article-title: August Krogh’s theory of muscle microvascular control and oxygen delivery: A paradigm shift based on new data publication-title: Journal of Physiology – volume: 109 issue: 3 year: 2014 article-title: The role of capillary transit time heterogeneity in myocardial oxygenation and ischemic heart disease publication-title: Basic Research in Cardiology – volume: 218 issue: 3 year: 2021 article-title: Neuroinvasion of SARS‐CoV‐2 in human and mouse brain publication-title: J Exp Med – volume: 15 start-page: 1031 issue: 9 year: 2009 end-page: 1037 article-title: Pericyte contraction induced by oxidative‐nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery publication-title: Nature Medicine – volume: 35 start-page: 806 issue: 5 year: 2015 end-page: 817 article-title: The effects of capillary transit time heterogeneity (CTH) on brain oxygenation publication-title: Journal of Cerebral Blood Flow & Metabolism – volume: 285 start-page: H2848 issue: 6 year: 2003 end-page: H2856 article-title: Localization of the permeability barrier to solutes in isolated arteries by confocal microscopy publication-title: American Journal of Physiology‐Heart and Circulatory Physiology – volume: 9 issue: 1 year: 2018 article-title: Pulmonary pericytes regulate lung morphogenesis publication-title: Nature Communications – volume: 65 start-page: 732 issue: 9 year: 2009 end-page: 741 article-title: Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression publication-title: Biological Psychiatry – volume: 21 start-page: 153 issue: 2 year: 2007 end-page: 160 article-title: Twenty years of research on cytokine‐induced sickness behavior publication-title: Brain, Behavior, and Immunity – volume: 395 start-page: 1417 issue: 10234 year: 2020 end-page: 1418 article-title: Endothelial cell infection and endotheliitis in COVID‐19 publication-title: The Lancet – volume: 104 start-page: 78 issue: 1 year: 2009 end-page: 89 article-title: TNF‐α induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin publication-title: Basic Research in Cardiology – volume: 21 start-page: 193 issue: 2 year: 2011 end-page: 215 article-title: Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises publication-title: Developmental Cell – volume: 10 start-page: 587 issue: 8 year: 2010 end-page: 593 article-title: The shunt problem: Control of functional shunting in normal and tumour vasculature publication-title: Nature Reviews Cancer – volume: 203 start-page: 631 issue: 2 year: 2004 end-page: 637 article-title: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis publication-title: The Journal of Pathology – volume: 561 start-page: 671 issue: 3 year: 2004 end-page: 683 article-title: Effects of angiotensin II on the pericyte‐containing microvasculature of the rat retina publication-title: The Journal of Physiology – year: 2018 article-title: The relation between capillary transit times and hemoglobin saturation heterogeneity. Part 1: Theoretical models publication-title: Frontiers in Physiology – volume: 79 start-page: 581 issue: 3 year: 1996 end-page: 589 article-title: Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries publication-title: Circulation Research – volume: 94 start-page: 248 year: 2018 end-page: 270 article-title: Low on energy? An energy supply‐demand perspective on stress and depression publication-title: Neuroscience and Biobehavioral Reviews – volume: 7 issue: 9 year: 2012 article-title: Pericytes regulate vascular basement membrane remodeling and govern neutrophil extravasation during inflammation publication-title: PLoS ONE – volume: 214 start-page: 108393 year: 2020 article-title: The use of anti‐inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID‐19): The Perspectives of clinical immunologists from China publication-title: Clinical Immunology – volume: 202 start-page: 1037 issue: 7 year: 2020 end-page: 1039 article-title: Pulmonary vascular dilatation detected by automated transcranial doppler in COVID‐19 pneumonia publication-title: American Journal of Respiratory and Critical Care Medicine – volume: 50 issue: 12 year: 2020 article-title: SGLT2 inhibition and COVID‐19: The road not taken publication-title: European Journal of Clinical Investigation – volume: 31 start-page: 343 issue: 3 year: 2010 end-page: 363 article-title: The role of blood vessels, endothelial cells, and vascular pericytes in insulin secretion and peripheral insulin action publication-title: Endocrine Reviews – volume: 20 start-page: 1135 issue: 10 year: 2020 end-page: 1140 article-title: Pulmonary post‐mortem findings in a series of COVID‐19 cases from northern Italy: a two‐centre descriptive study publication-title: The Lancet Infectious Diseases – volume: 142 start-page: 68 issue: 1 year: 2020 end-page: 78 article-title: The science underlying COVID‐19: Implications for the cardiovascular system publication-title: Circulation – volume: 46 start-page: 1967 issue: 10 year: 2020 end-page: 1968 article-title: Apoptosis and pericyte loss in alveolar capillaries in COVID‐19 infection: Choice of markers matters. Author's reply publication-title: Intensive Care Medicine – volume: 2020 start-page: 11.088500 issue: 05 year: 2020 article-title: Pericyte‐specific vascular expression of SARS‐CoV‐2 receptor ACE2 – Implications for microvascular inflammation and hypercoagulopathy in COVID‐19 publication-title: bioRxiv – volume: 6 issue: 31 year: 2020 article-title: Non‐neuronal expression of SARS‐CoV‐2 entry genes in the olfactory system suggests mechanisms underlying COVID‐19‐associated anosmia publication-title: Science Advances – year: 2020 article-title: Antithrombotic therapy in patients with COVID‐19? ‐Rationale and Evidence‐ publication-title: International Journal of Cardiology – volume: 106 start-page: 3543 issue: 9 year: 2009 end-page: 3548 article-title: Dynamic regulation of mitochondrial function by glucocorticoids publication-title: Proceedings of the National Academy of Sciences – year: 2020 article-title: Reply to: Positive bubble study in severe COVID‐19 indicates the development of anatomical intra‐pulmonary shunts in response to microvascular occlusion publication-title: American Journal of Respiratory and Critical Care Medicine – volume: 12 start-page: 33 issue: 1 year: 2005 end-page: 45 article-title: Regulation of blood flow in the microcirculation publication-title: Microcirculation – volume: 183 start-page: 729 issue: 4 year: 2020 end-page: 737 article-title: SARS‐CoV‐2 endothelial infection causes COVID‐19 chilblains: histopathological, immunohistochemical and ultrastructural study of seven paediatric cases publication-title: British Journal of Dermatology – volume: 180 start-page: 1152 issue: 9 year: 2020 end-page: 1154 article-title: Is a “Cytokine Storm” relevant to COVID‐19? publication-title: JAMA Internal Medicine – volume: 13 start-page: 1143 issue: 10 year: 2017 end-page: 1153 article-title: Capillary dysfunction is associated with symptom severity and neurodegeneration in Alzheimer's disease publication-title: Alzheimer's & Dementia – volume: 364 start-page: 656 issue: 7 year: 2011 end-page: 665 article-title: Hypoxia and Inflammation publication-title: New England Journal of Medicine – volume: 32 start-page: 1028 issue: 6 year: 2020 end-page: 1040.e4 article-title: SARS‐CoV‐2 cell entry factors ACE2 and TMPRSS2 are expressed in the microvasculature and ducts of human pancreas but are not enriched in β cells publication-title: Cell Metabolism – volume: 33 start-page: 635 issue: 5 year: 2013 end-page: 648 article-title: The role of the cerebral capillaries in acute ischemic stroke: The extended penumbra model publication-title: Journal of Cerebral Blood Flow & Metabolism – volume: 24 start-page: 909 issue: 7 year: 2009 end-page: 969 article-title: Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche publication-title: Histology and Histopathology – volume: 130 start-page: 226 issue: 2 year: 2011 end-page: 238 article-title: Immune system to brain signaling: Neuropsychopharmacological implications publication-title: Pharmacology & Therapeutics. – volume: 46 start-page: 1099 issue: 6 year: 2020 end-page: 1102 article-title: COVID‐19 pneumonia: different respiratory treatments for different phenotypes? publication-title: Intensive Care Medicine – volume: 15 start-page: 961 issue: 7 year: 2019 end-page: 984 article-title: Preventing dementia by preventing stroke: The Berlin Manifesto publication-title: Alzheimer's & Dementia – year: 2020 article-title: An urgent need for studies of the late effects of SARS‐CoV‐2 on the cardiovascular system publication-title: Circulation – year: 2020 article-title: Olfactory transmucosal SARS‐CoV‐2 invasion as a port of central nervous system entry in individuals with COVID‐19 publication-title: Nature Neuroscience – volume: 383 start-page: 120 issue: 2 year: 2020 end-page: 128 article-title: Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid‐19 publication-title: New England Journal of Medicine – volume: 129 start-page: 1413 issue: 6 year: 2020 end-page: 1421 article-title: Blood flow, capillary transit times, and tissue oxygenation: the centennial of capillary recruitment publication-title: Journal of Applied Physiology – volume: 86 start-page: 1460 issue: 5 year: 1999 end-page: 1467 article-title: Red cell distribution and the recruitment of pulmonary diffusing capacity publication-title: Journal of Applied Physiology – volume: 301 start-page: H2235 year: 2011 end-page: H2245 article-title: Shedding of the endothelial glycocalyx in arterioles, capillaries and venules and its effect on capillary hemodynamics during inflammation publication-title: American Journal of Physiology‐Heart and Circulatory Physiology – volume: 116 start-page: 1097 issue: 6 year: 2020 end-page: 1100 article-title: The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS‐CoV‐2 publication-title: Cardiovascular Research – volume: 508 start-page: 55 issue: 7494 year: 2014 end-page: 60 article-title: Capillary pericytes regulate cerebral blood flow in health and disease publication-title: Nature – volume: 92 start-page: 699 issue: 7 year: 2020 end-page: 702 article-title: Central nervous system involvement by severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) publication-title: Journal of Medical Virology – volume: 47 start-page: 556 issue: 8 year: 2005 end-page: 564 article-title: Increasing blood oxygen increases an index of 5‐HT synthesis in human brain as measured using α‐[11C]methyl‐l‐tryptophan and positron emission tomography publication-title: Neurochemistry International – volume: 5 start-page: 1265 issue: 11 year: 2020 article-title: Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID‐19) publication-title: JAMA Cardiology – volume: 170 start-page: 1136 issue: 4 year: 2007 end-page: 1147 article-title: Pathology and pathogenesis of severe acute respiratory syndrome publication-title: The American Journal of Pathology – volume: 28 start-page: 891 issue: 5 year: 2004 end-page: 907 article-title: Can stress cause depression? publication-title: Progress in Neuro‐Psychopharmacology & Biological Psychiatry – volume: 20 start-page: 389 issue: 7 year: 2020 end-page: 391 article-title: COVID‐19: The vasculature unleashed publication-title: Nature Reviews Immunology – volume: 22 start-page: 413 issue: 3 year: 2019 end-page: 420 article-title: Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer’s disease mouse models publication-title: Nature Neuroscience – volume: 300 start-page: H397 issue: 1 year: 2011 end-page: H407 article-title: The cerebrovascular dysfunction induced by slow pressor doses of angiotensin II precedes the development of hypertension publication-title: American Journal of Physiology‐Heart and Circulatory Physiology – volume: 264 start-page: H909 issue: 3 year: 1993 end-page: H916 article-title: Effects of leukocyte activation on capillary hemodynamics in skeletal muscle publication-title: American Journal of Physiology‐Heart and Circulatory Physiology – volume: 209 start-page: 1219 issue: 6 year: 2012 end-page: 1234 article-title: Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo publication-title: Journal of Experimental Medicine – volume: 102 start-page: 2251 issue: 6 year: 2007 end-page: 2259 article-title: Microvascular and capillary perfusion following glycocalyx degradation publication-title: Journal of Applied Physiology – volume: 202 start-page: 296 issue: 1 year: 2009 end-page: 303 article-title: Tumor necrosis factor‐alpha inhibition protects against endotoxin‐induced endothelial glycocalyx perturbation publication-title: Atherosclerosis – volume: 20 start-page: 1115 issue: 10 year: 2020 end-page: 1117 article-title: Long‐term consequences of COVID‐19: Research needs publication-title: The Lancet Infectious Diseases – volume: 234 start-page: 868 issue: 4778 year: 1986 end-page: 870 article-title: Flow control among microvessels coordinated by intercellular conduction publication-title: Science – volume: 468 start-page: 557 issue: 7323 year: 2010 end-page: 561 article-title: Pericytes regulate the blood‐brain barrier publication-title: Nature – year: 2020 – volume: 323 start-page: 1061 issue: 11 year: 2020 article-title: Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China publication-title: JAMA – volume: 318 start-page: H425 issue: 2 year: 2020 end-page: H447 article-title: Krogh’s capillary recruitment hypothesis, 100 years on: Is the opening of previously closed capillaries necessary to ensure muscle oxygenation during exercise? publication-title: American Journal of Physiology‐Heart and Circulatory Physiology – volume: 324 start-page: 1565 issue: 15 year: 2020 article-title: Cytokine levels in critically Ill patients With COVID‐19 and other conditions publication-title: JAMA – volume: 36 start-page: 302 issue: 2 year: 2016 end-page: 325 article-title: Cerebral small vessel disease: Capillary pathways to stroke and cognitive decline publication-title: Journal of Cerebral Blood Flow & Metabolism – volume: 18 start-page: 336 issue: 3 year: 1979 end-page: 352 article-title: Differences in pericyte contractile function in rat cardiac and skeletal muscle microvasculatures publication-title: Microvascular Research – volume: 142 start-page: 1123 issue: 11 year: 2020 end-page: 1125 article-title: Unexpected features of cardiac pathology in COVID‐19 infection publication-title: Circulation – volume: 87 issue: 5 year: 2000 article-title: A novel angiotensin‐converting enzyme–related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1‐9 publication-title: Circulation Research – volume: 59 start-page: 1246 issue: 10 year: 2015 end-page: 1259 article-title: Microcirculatory dysfunction and tissue oxygenation in critical illness publication-title: Acta Anaesthesiologica Scandinavica – volume: 12 issue: 1 year: 2020 article-title: Impaired perfusion and capillary dysfunction in prodromal Alzheimer's disease publication-title: Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring – volume: 274 start-page: H1016 issue: 3 year: 1998 end-page: H1022 article-title: A model for red blood cell motion in glycocalyx‐lined capillaries publication-title: American Journal of Physiology‐Heart and Circulatory Physiology – volume: 122 start-page: 1774 issue: 5 year: 2002 end-page: 1783 article-title: Recruitment of lung diffusing capacity: Update of concept and application publication-title: Chest – volume: 6 year: 2017 article-title: Capillary pericytes mediate coronary no‐reflow after myocardial ischaemia publication-title: eLife – year: 2020 article-title: Effects of COVID‐19 on the nervous system publication-title: Cell – volume: 20 start-page: 1365 issue: 12 year: 2020 end-page: 1366 article-title: Hypoxaemia related to COVID‐19: vascular and perfusion abnormalities on dual‐energy CT publication-title: The Lancet Infectious Diseases – volume: 202 start-page: 1178 issue: 8 year: 2020 end-page: 1181 article-title: Injury to the endothelial glycocalyx in critically Ill patients with COVID‐19 publication-title: American Journal of Respiratory and Critical Care Medicine – volume: 32 start-page: 264 issue: 2 year: 2012 end-page: 277 article-title: The roles of cerebral blood flow, capillary transit time heterogeneity and oxygen tension in brain oxygenation and metabolism publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 50 start-page: 107 year: 2017 end-page: 118 article-title: Increased cortical capillary transit time heterogeneity in Alzheimer's disease: A DSC‐MRI perfusion study publication-title: Neurobiology of Aging – volume: 95 start-page: e1754 issue: 12 year: 2020 end-page: e1759 article-title: Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID‐19 publication-title: Neurology – volume: 35 start-page: 760 issue: 3 year: 1980 end-page: 763 article-title: Oxygen affinity of tyrosine and tryptophan hydroxylases in synaptosomes publication-title: Journal of Neurochemistry – volume: 133 start-page: 304 issue: 2 year: 2020 end-page: 317 article-title: Ephedrine versus phenylephrine effect on cerebral blood flow and oxygen consumption in anesthetized brain tumor patients publication-title: Anesthesiology – ident: e_1_2_12_16_1 doi: 10.1111/bjd.19327 – ident: e_1_2_12_38_1 doi: 10.1016/j.cell.2020.08.028 – ident: e_1_2_12_83_1 doi: 10.1016/j.pnpbp.2004.05.031 – ident: e_1_2_12_26_1 doi: 10.1007/s00134-020-06033-2 – ident: e_1_2_12_31_1 doi: 10.1002/path.1570 – ident: e_1_2_12_2_1 doi: 10.1056/NEJMoa2015432 – ident: e_1_2_12_47_1 doi: 10.1016/S1473-3099(20)30367-4 – ident: e_1_2_12_67_1 doi: 10.1038/nrc2895 – ident: e_1_2_12_78_1 doi: 10.1164/rccm.202007-2676LE – ident: e_1_2_12_21_1 doi: 10.1161/01.RES.87.5.e1 – ident: e_1_2_12_42_1 doi: 10.1038/s41467-018-04913-2 – year: 2020 ident: e_1_2_12_70_1 article-title: Reply to: Positive bubble study in severe COVID‐19 indicates the development of anatomical intra‐pulmonary shunts in response to microvascular occlusion publication-title: American Journal of Respiratory and Critical Care Medicine – ident: e_1_2_12_7_1 doi: 10.1126/sciadv.abc5801 – ident: e_1_2_12_41_1 doi: 10.1212/WNL.0000000000010111 – ident: e_1_2_12_57_1 doi: 10.1016/j.neuint.2005.07.006 – ident: e_1_2_12_46_1 doi: 10.1001/jama.2020.17052 – ident: e_1_2_12_18_1 doi: 10.1016/j.bbi.2006.09.006 – ident: e_1_2_12_35_1 doi: 10.1152/ajpheart.2000.279.6.H2815 – ident: e_1_2_12_90_1 doi: 10.1016/j.clim.2020.108393 – ident: e_1_2_12_60_1 doi: 10.1177/0271678X15606723 – ident: e_1_2_12_48_1 doi: 10.1152/ajpheart.00803.2011 – ident: e_1_2_12_86_1 doi: 10.1001/jama.2020.1585 – ident: e_1_2_12_15_1 doi: 10.1016/j.cmet.2020.11.006 – ident: e_1_2_12_71_1 doi: 10.1164/rccm.202006-2219LE – ident: e_1_2_12_11_1 doi: 10.1016/j.pharmthera.2011.01.014 – volume: 2020 start-page: 11.088500 issue: 05 year: 2020 ident: e_1_2_12_34_1 article-title: Pericyte‐specific vascular expression of SARS‐CoV‐2 receptor ACE2 – Implications for microvascular inflammation and hypercoagulopathy in COVID‐19 publication-title: bioRxiv – ident: e_1_2_12_19_1 doi: 10.1111/eci.13339 – ident: e_1_2_12_5_1 doi: 10.1016/j.devcel.2011.07.001 – ident: e_1_2_12_87_1 doi: 10.1371/journal.pone.0045499 – ident: e_1_2_12_44_1 doi: 10.1113/jphysiol.2004.073098 – ident: e_1_2_12_4_1 doi: 10.1038/jcbfm.2014.254 – ident: e_1_2_12_37_1 doi: 10.1152/jappl.1999.86.5.1460 – ident: e_1_2_12_55_1 doi: 10.1002/dad2.12032 – ident: e_1_2_12_69_1 doi: 10.1001/jamacardio.2020.3557 – ident: e_1_2_12_45_1 doi: 10.1097/ALN.0000000000003377 – ident: e_1_2_12_66_1 doi: 10.1113/JP279223 – ident: e_1_2_12_6_1 doi: 10.1038/nature09522 – ident: e_1_2_12_56_1 doi: 10.1016/j.atherosclerosis.2008.03.024 – ident: e_1_2_12_8_1 doi: 10.1007/s00134-020-06220-1 – ident: e_1_2_12_59_1 doi: 10.1152/japplphysiol.00537.2020 – ident: e_1_2_12_73_1 doi: 10.1152/ajpheart.1998.274.3.H1016 – year: 2018 ident: e_1_2_12_50_1 article-title: The relation between capillary transit times and hemoglobin saturation heterogeneity. Part 1: Theoretical models publication-title: Frontiers in Physiology – ident: e_1_2_12_58_1 doi: 10.7554/eLife.29280 – ident: e_1_2_12_63_1 doi: 10.1016/j.neubiorev.2018.08.007 – ident: e_1_2_12_40_1 doi: 10.1038/jcbfm.2011.153 – ident: e_1_2_12_72_1 doi: 10.1210/er.2009-0035 – ident: e_1_2_12_80_1 – ident: e_1_2_12_29_1 doi: 10.1016/j.jalz.2019.06.001 – ident: e_1_2_12_54_1 doi: 10.1016/j.jalz.2017.02.007 – ident: e_1_2_12_65_1 doi: 10.1002/jmv.25915 – ident: e_1_2_12_14_1 doi: 10.1093/cvr/cvaa078 – ident: e_1_2_12_17_1 doi: 10.1038/s41593-018-0329-4 – ident: e_1_2_12_77_1 doi: 10.1084/jem.20202135 – ident: e_1_2_12_39_1 doi: 10.1152/ajpheart.00945.2005 – ident: e_1_2_12_49_1 doi: 10.1161/CIRCULATIONAHA.120.047549 – ident: e_1_2_12_52_1 doi: 10.1038/s41593-020-00758-5 – ident: e_1_2_12_76_1 doi: 10.1001/jamainternmed.2020.3313 – ident: e_1_2_12_23_1 doi: 10.1056/NEJMra0910283 – ident: e_1_2_12_74_1 doi: 10.1080/10739680590895028 – ident: e_1_2_12_24_1 doi: 10.1016/j.neurobiolaging.2016.11.004 – ident: e_1_2_12_82_1 doi: 10.1152/ajpheart.00117.2003 – ident: e_1_2_12_13_1 doi: 10.1007/s00395-008-0749-5 – ident: e_1_2_12_32_1 doi: 10.1016/S2666-5247(20)30115-4 – ident: e_1_2_12_84_1 doi: 10.1016/S0140-6736(20)30937-5 – ident: e_1_2_12_51_1 doi: 10.1161/CIRCULATIONAHA.120.051362 – ident: e_1_2_12_10_1 doi: 10.1152/ajpheart.00679.2010 – ident: e_1_2_12_30_1 doi: 10.1038/nature13165 – ident: e_1_2_12_89_1 doi: 10.1038/nm.2022 – ident: e_1_2_12_36_1 doi: 10.1378/chest.122.5.1774 – ident: e_1_2_12_43_1 doi: 10.1111/j.1471-4159.1980.tb03721.x – ident: e_1_2_12_28_1 doi: 10.2353/ajpath.2007.061088 – year: 2020 ident: e_1_2_12_27_1 article-title: Antithrombotic therapy in patients with COVID‐19? ‐Rationale and Evidence‐ publication-title: International Journal of Cardiology – ident: e_1_2_12_53_1 doi: 10.1016/j.biopsych.2008.11.029 – ident: e_1_2_12_85_1 doi: 10.1161/01.RES.79.3.581 – volume: 24 start-page: 909 issue: 7 year: 2009 ident: e_1_2_12_20_1 article-title: Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche publication-title: Histology and Histopathology – ident: e_1_2_12_33_1 doi: 10.1152/ajpheart.1993.264.3.H909 – ident: e_1_2_12_62_1 doi: 10.1038/jcbfm.2013.18 – ident: e_1_2_12_75_1 doi: 10.1126/science.3775368 – ident: e_1_2_12_68_1 doi: 10.1084/jem.20111622 – ident: e_1_2_12_79_1 doi: 10.1038/s41577-020-0343-0 – ident: e_1_2_12_88_1 doi: 10.1016/S1473-3099(20)30701-5 – ident: e_1_2_12_9_1 doi: 10.1152/japplphysiol.01155.2006 – ident: e_1_2_12_22_1 doi: 10.1073/pnas.0812671106 – ident: e_1_2_12_61_1 doi: 10.1111/aas.12581 – ident: e_1_2_12_25_1 doi: 10.1161/CIRCULATIONAHA.120.049465 – ident: e_1_2_12_64_1 doi: 10.1007/s00395-014-0409-x – ident: e_1_2_12_81_1 doi: 10.1016/0026-2862(79)90042-6 – ident: e_1_2_12_3_1 doi: 10.1152/ajpheart.00384.2019 – ident: e_1_2_12_12_1 doi: 10.1016/S1473-3099(20)30434-5 |
SSID | ssj0001033904 |
Score | 2.5752819 |
SecondaryResourceType | review_article |
Snippet | Corona virus disease 2019 (COVID‐19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV‐2).... Corona virus disease 2019 (COVID-19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV-2).... Abstract Corona virus disease 2019 (COVID‐19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e14726 |
SubjectTerms | Alzheimer's disease Angiogenesis Animals Anosmia Blood Blood coagulation brain capillary dysfunction Carbon dioxide Cell size Coronaviruses COVID-19 COVID-19 - complications COVID-19 - metabolism COVID-19 - pathology Diabetes mellitus Endothelial cells Heart Humans Hypertension Hypoxemia Hypoxia Infections Inflammation Influenza Injuries long‐term symptoms Lungs microcirculation Microvasculature Microvessels - metabolism Microvessels - pathology Microvessels - virology Mood muscle Olfaction disorders Oxygen - blood Oxygen - metabolism Oxygen Consumption Oxygenation Pain Pericytes Permeability Physiology Post-Acute COVID-19 Syndrome Rehabilitation Respiratory diseases SARS-CoV-2 - pathogenicity Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 Short Review Short Reviews |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT1wQUH5CCzJSxQGImjhjO-G2LFQLEj-itCqnyHFsdSU2WXVTib3xCLwEL8aTMONkV7uiggs5RcnIcTKf7W-c-WHsQCCJT8GaWIPPYtDGxLmyIq4cHjZR1njaGnj3Xk1O4O2ZPNso9UU-YX164P7DHZoqkQnOmdoDcv_cV7XGGVV5R1WXZB-6h2vehjEVdleSDI15GALyIE_hEHst8FRTGoWNJShk6r-KXv7pJbnJXsPyc3ST3Rh4Ix_1_b3FrrnmNtsdNWgzz5b8CQ-enGGLfJf9PB59Oubj9vTX9x-Ch2gVV_MZud6tHE95bWY4k3DT1HyxnM2xlQXvQxbDtVA6nI8_nL55hY2kxQs-3nC75q3n1sypYNHFkne03E07lKNC9bwPJV48513QKT9fzttvUxOaRTgjAvtoyTvs5Oj15_EkHsoxxJZYClqaua19USnpnfQaXGG1qCC3Jq3RDkqMdErU9BvQI2lJfeULpU2KqspwKlMmu8t2mrZx9xn3eWGUBBTABhIpTSFBaGOFLwAyqCL2dKWh0g65yqlkxteSbBZSZ0nqLIM6I3awFp73KTquFntJql6LUF7tcAHRVg5oK_-Ftojtr4BSDoN9UQrIkSbrhJ7xeH0bhyn9ezGNay-DDBB1LXTE7vW4WveEwt4yleQR01uI2-rq9p1meh5SgescCpBZxJ4FbP7t_cuPky8inD34H19ij10X5N4THNj32U53cekeIj_rqkdhKP4GxSs7Nw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLggSnkECjJSxQGImjh-JFzQslAtSDxEabWcIsex25XYJN1NJfbGT-BP8Mf4Jcw42e2uqJpTlIwsWzP2fDOeByF7DEB8zI0OFXdJyJXWYSoNCwsLj4mk0Q5dAx8_ydER_zAW497hNu_DKpdnoj-oy9qgj3yf8RSwiAKT4XVzFmLXKLxd7VtoXCc3sHQZhnSpsbrwsUQJmPS8T8vjacz3Ye4MXhUWU1hTRL5e_2Ug8_9YyXUM65XQwW1yq0ePdNCxe5tcs9UdsjOowHKeLugz6uM5vaN8h_w5HHw9pMP6-O-v34z6nBVb0ikG4C3DT2mpp3CeUF2VdL6YNjDKnHaJi_6bbyBOh5-P37-FQeLsFR2uBV_T2lGjG2xbNFvQFpXepAU6bFdPu4Ti-Uvaes7S00VT_5xoPywINchhlzN5lxwdvPs2HIV9U4bQIFYBezM1pcsKKZwVTnGbGcUKnhodl2ANRVpYyUq8DHQAXWJXuEwqHUtnEzjQpE7uka2qruwDQl2aaSk4EMAAkRA6E5wpbZjLOE94EZDnSw7lpq9Yjo0zfuRouSA7c2Rn7tkZkL0VcdMV6ric7A2yekWC1bX9h3p2kvebNddFJCLQ08pxsDdTV5QKtDgsATt9AcIKyO5SUPJ-y8_zCwENyNPVb9iseAOjK1ufexqOADZTAbnfydVqJpj8lsgoDYjakLiNqW7-qSanviC4SnnGRRKQF142r1p__mX0nfm3h1cv4hG5yTB8xweo75KtdnZuHwP-aosnfpP9AwvlNAg priority: 102 providerName: ProQuest – databaseName: WIley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXLggSnkECjJSxQGISBw_Em7LQrUgARWlVTlFjmN3V2KT1W4qNTd-An-CP8YvYcbJpl1RIZFTHhMn0cx4vnHmQcgeAxAfc6NDxV0ScqV1mErDwsLCZiJptMOlgY-f5OSIfzgRJ31sDubCdPUhhgU31Aw_X6OC66LrQsLTmGNr2mnL4EAxeZ3cwORaLJ3P-MHFEkuUgEfP-6w8vOvVxT0bdsiX678KY_4dKnkZwnobtH-b3OrBIx113N4m12x1h-yMKnCc5y19Rn04p18n3yG_DkdfDum4Pv794yejPmXFlnSO8Xfr6FNa6jlMJ1RXJV218wWMsqJd3qI_5_uH0_Hn4_dvYZA4e03Hl2Kvae2o0QvsWrRsaYM2b9YAHXarp10-8eolbTxj6bRd1Ocz7YcFmQYx7FIm75Kj_Xdfx5Ow78kQGoQq4G6mpnRZIYWzwiluM6NYwVOj4xKcoUgLK1mJ_wIdIJfYFS6TSsfS2QTmM6mTe2Srqiv7gFCXZloKDgQwQCSEzgRnShvmMs4TXgTk-ZpDuekLlmPfjO85Oi7IzhzZmXt2BmRvIF50dTquJnuDrB5IsLi2P1EvT_NeV3NdRCICM60cB3czdUWpwIjDJ2CjLwBYAdldC0rea_wqZzwFrKwifMbT4TLoKv6A0ZWtzzwNR_yaqYDc7-RqeBPMfUtklAZEbUjcxqtuXqlmU18PXKU84yIJyAsvm__6_vxg8o35vYf_Rf2I3GQYzOPD1XfJVrM8s48BjTXFE69zfwDJmTVi priority: 102 providerName: Wiley-Blackwell |
Title | SARS CoV‐2 related microvascular damage and symptoms during and after COVID‐19: Consequences of capillary transit‐time changes, tissue hypoxia and inflammation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.14814%2Fphy2.14726 https://www.ncbi.nlm.nih.gov/pubmed/33523608 https://www.proquest.com/docview/2489237026 https://www.proquest.com/docview/2484242397 https://pubmed.ncbi.nlm.nih.gov/PMC7849453 https://doaj.org/article/ab0502997f41448fbd72846fe0297509 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEF7158IFAeXHUKJFqjgABnu93rWREEpDq4DUErWkSk_Weu2lkRo7JK7U3HgEXoIX40mYWdtRAxESPkSWPd6sPTOeb9bzQ8geAxDvc61cyU3gcqmUGwnN3DSHTXtCK4NLA0fHoj_kn0bhaIO0zTibBzhf69phP6nh7PL19bfFe1D4d6jwPPL5G5gQg13JxCbZBpMkUUOPGpxvF1u8AHx73uTn_XHNikWyhfvXoc2_gyZvgllrjQ7vkNsNjKTdmu93yUZe3CM73QJc6MmCPqc2sNOumO-Qn6fdk1PaK89-ff_BqE1eyTM6wUi8Ng6VZmoCLxaqiozOF5MpjDKndQajPWY7idPe57OPH2AQP35LezeisGlpqFZT7F80W9AKrd-4AjrsW0_rzOL5K1pZFtOLxbS8His7LDxvEMg6efI-GR4efOn13aY7g6sRtIDjGenMxKkITR4ayfNYS5bySCs_A7fIU2EuWIZfBQ1gGN-kJhZS-cLkAbzZhAoekK2iLPJHhJooViLkQAADeGGo4pAzqTQzMecBTx3youVQopvS5dhB4zJBFwbZmSA7E8tOh-wtiad1xY71ZPvI6iUJltm2B8rZ16TR2kSlXuiBwZaGg-MZmTSTYM7hFrDlF0Ath-y2gpK0opswHgFqlh7-x7PladBa_BSjiry8sjQckWwsHfKwlqvlTDALLhBe5BC5InErU109U4wvbGVwGfGYh4FDXlrZ_Nf9J4P-ObN7j_-L-gm5xTCsxwau75KtanaVPwVcVqUdssn4AH7lSHbI9v7B8eCkY9c4OlYbfwP2NT5i |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QEuCCjQQAEjFQ5A1MRx4gQJoe221Za2S9U_lVNwEpuuxCbLbirYG4_AS3DloXgSxk6y3RVVb80pSkZWnPnxN_b8AKxSBPEuS4XNmfJsxoWwwyCldiLxSp0gFUpvDez1gu4x-3Dqny7AnyYXRodVNjbRGOqsSPUe-RplIWIRji7D--E3W3eN0qerTQuNSix25OQ7umzjd9sbyN8XlG5tHnW6dt1VwE71YosOU5hmKkoCX0lfcSajlNOEhalwM4TzjvBlQDN9mqVw7XVVoqKACzdQ0kONDISH496AReahK9OCxfXN3v7Bxa6O43mRw-pEQBa6bA3_FsVbrss3zCx9pkPAZbD2_-jMWdRslr2tO3C7xqukXQnYXViQ-T1Yaufoqw8m5CUxEaRma34Jfh-2Dw5Jpzj5-_MXJSZLRmZkoEP-moBXkokBWjAi8oyMJ4MhjjImVaqkeWZalpPOx5PtDRzEjd6Szky4NykUScVQN0oaTUipl9l-iXRlfyBJlcI8fkNKI0vkbDIsfvSFGRbVCCW_ytK8D8fXwrAH0MqLXC4DUWEkAp8hAQ7g-L6IfEa5SKmKGPNYYsGrhkNxWtdI1606vsbaV9LsjDU7Y8NOC1anxMOqNMjlZOua1VMSXc_bPChGX-LaPMQicXwHkQFXDD3cUCUZR9yAU9C9xRDTWbDSCEpcG5lxfKESFjyfvkbzoM98RC6Lc0PDNGSOuAUPK7mafolOt0MpDi3gcxI396nzb_L-mSlBzkMWMd-z4LWRzavmH-93P1Fz9-jqSTyDm92jvd14d7u38xhuUR08ZMLjV6BVjs7lE0R_ZfK0VjkCn69by_8BgtNxzQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbGkBA3CBg_gQFGGlwAURPHiRMkhEpL1TIYE2NTuQqOY7NKNCltJ-gdj8BL8BI8Dk_COU7SdWLa3XIVJUdWnPPj79jnh5AtBiDe50q6gpvA5UJKN44UczMNl_IiJQ1uDbzbifr7_M0wHK6RP00uDIZVNjbRGuq8VLhH3mI8BiwiwGVomTosYrfbezn55mIHKTxpbdppVCKyrRffwX2bvRh0gdePGOu9_tjpu3WHAVfhwgvOU6xyk2RRaHRoBNeJEizjsZJ-DtDek6GOWI4nWwbWYd9kJomE9COjA9DOSAYw7gVyUQShjzomhuJ4f8cLgsTjdUogj33egv_G4FZgIYeVRdD2CjgN4P4fp7mKn-0C2LtKrtTIlbYrUbtG1nRxnWy0C_Daxwv6mNpYUrtJv0F-77U_7NFOefD35y9Gbb6MzukYg_-a0FeayzHYMiqLnM4W4wmMMqNV0qR9ZpuX0877g0EXBvGT57SzEvhNS0OVnGDLpOmCznHBHc2Bbj4aa1olM8-e0bmVKnq4mJQ_RtIOCwoFOlDla94g--fCrptkvSgLfZtQEycyCjkQwABeGMok5ExIxUzCecAzhzxpOJSqulo6Nu34mqLXhOxMkZ2pZadDtpbEk6pIyOlkr5DVSxKs7G0flNMvaW0oUpl5oQcYQRgOvm5sslwAgoApYJcxQHcO2WwEJa3NzSw9Vg6HPFy-BkOBpz-y0OWRpeEInhPhkFuVXC2_BBPvgsiLHSJOSNyJTz35phgd2mLkIuYJDwOHPLWyedb8093-J2bv7pw9iQfkEuh2-naws32XXGYYRWTj5DfJ-nx6pO8BDJxn962-UfL5vBX8H1kVdJ0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS+CoV%E2%80%902+related+microvascular+damage+and+symptoms+during+and+after+COVID%E2%80%9019%3A+Consequences+of+capillary+transit%E2%80%90time+changes%2C+tissue+hypoxia+and+inflammation&rft.jtitle=Physiological+reports&rft.au=%C3%98stergaard%2C+Leif&rft.date=2021-02-01&rft.eissn=2051-817X&rft.volume=9&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.14814%2Fphy2.14726&rft.externalDBID=10.14814%252Fphy2.14726&rft.externalDocID=PHY214726 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-817X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-817X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-817X&client=summon |