SARS CoV‐2 related microvascular damage and symptoms during and after COVID‐19: Consequences of capillary transit‐time changes, tissue hypoxia and inflammation

Corona virus disease 2019 (COVID‐19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV‐2). They range from early, low blood oxygen levels (hypoxemia) without breathlessness (“silent hypoxia”), delirium, rashes, and loss of smell (anosm...

Full description

Saved in:
Bibliographic Details
Published inPhysiological reports Vol. 9; no. 3; pp. e14726 - n/a
Main Author Østergaard, Leif
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.02.2021
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Corona virus disease 2019 (COVID‐19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV‐2). They range from early, low blood oxygen levels (hypoxemia) without breathlessness (“silent hypoxia”), delirium, rashes, and loss of smell (anosmia), to persisting chest pain, muscle weakness and ‐pain, fatigue, confusion, memory problems and difficulty to concentrate (“brain fog”), mood changes, and unexpected onset of hypertension or diabetes. SARS CoV‐2 affects the microcirculation, causing endothelial cell swelling and damage (endotheliitis), microscopic blood clots (microthrombosis), capillary congestion, and damage to pericytes that are integral to capillary integrity and barrier function, tissue repair (angiogenesis), and scar formation. Similar to other instances of critical illness, COVID‐19 is also associated with elevated cytokine levels in the systemic circulation. This review examines how capillary damage and inflammation may contribute to these acute and persisting COVID‐19 symptoms by interfering with blood and tissue oxygenation and with brain function. Undetectable by current diagnostic methods, capillary flow disturbances limit oxygen diffusion exchange in lungs and tissue and may therefore cause hypoxemia and tissue hypoxia. The review analyzes the combined effects of COVID‐19‐related capillary damage, pre‐existing microvascular changes, and upstream vascular tone on tissue oxygenation in key organs. It identifies a vicious cycle, as infection‐ and hypoxia‐related inflammation cause capillary function to deteriorate, which in turn accelerates hypoxia‐related inflammation and tissue damage. Finally, the review addresses the effects of low oxygen and high cytokine levels in brain tissue on neurotransmitter synthesis and mood. Methods to assess capillary functions in human organs and therapeutic means to protect capillary functions and stimulate capillary bed repair may prove important for the individualized management of COVID‐19 patients and targeted rehabilitation strategies. COVID‐19‐related microvascular damage and inflammation may cause tissue hypoxia via transit‐time effects and disturb neurotransmitter synthesis in the brain. The duration of COVID‐19 symptoms and the long‐term health effects of SARS‐CoV‐2 infection may rely on whether disease‐related capillary damage is reversible.
AbstractList Abstract Corona virus disease 2019 (COVID‐19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV‐2). They range from early, low blood oxygen levels (hypoxemia) without breathlessness (“silent hypoxia”), delirium, rashes, and loss of smell (anosmia), to persisting chest pain, muscle weakness and ‐pain, fatigue, confusion, memory problems and difficulty to concentrate (“brain fog”), mood changes, and unexpected onset of hypertension or diabetes. SARS CoV‐2 affects the microcirculation, causing endothelial cell swelling and damage (endotheliitis), microscopic blood clots (microthrombosis), capillary congestion, and damage to pericytes that are integral to capillary integrity and barrier function, tissue repair (angiogenesis), and scar formation. Similar to other instances of critical illness, COVID‐19 is also associated with elevated cytokine levels in the systemic circulation. This review examines how capillary damage and inflammation may contribute to these acute and persisting COVID‐19 symptoms by interfering with blood and tissue oxygenation and with brain function. Undetectable by current diagnostic methods, capillary flow disturbances limit oxygen diffusion exchange in lungs and tissue and may therefore cause hypoxemia and tissue hypoxia. The review analyzes the combined effects of COVID‐19‐related capillary damage, pre‐existing microvascular changes, and upstream vascular tone on tissue oxygenation in key organs. It identifies a vicious cycle, as infection‐ and hypoxia‐related inflammation cause capillary function to deteriorate, which in turn accelerates hypoxia‐related inflammation and tissue damage. Finally, the review addresses the effects of low oxygen and high cytokine levels in brain tissue on neurotransmitter synthesis and mood. Methods to assess capillary functions in human organs and therapeutic means to protect capillary functions and stimulate capillary bed repair may prove important for the individualized management of COVID‐19 patients and targeted rehabilitation strategies.
Corona virus disease 2019 (COVID-19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV-2). They range from early, low blood oxygen levels (hypoxemia) without breathlessness ("silent hypoxia"), delirium, rashes, and loss of smell (anosmia), to persisting chest pain, muscle weakness and -pain, fatigue, confusion, memory problems and difficulty to concentrate ("brain fog"), mood changes, and unexpected onset of hypertension or diabetes. SARS CoV-2 affects the microcirculation, causing endothelial cell swelling and damage (endotheliitis), microscopic blood clots (microthrombosis), capillary congestion, and damage to pericytes that are integral to capillary integrity and barrier function, tissue repair (angiogenesis), and scar formation. Similar to other instances of critical illness, COVID-19 is also associated with elevated cytokine levels in the systemic circulation. This review examines how capillary damage and inflammation may contribute to these acute and persisting COVID-19 symptoms by interfering with blood and tissue oxygenation and with brain function. Undetectable by current diagnostic methods, capillary flow disturbances limit oxygen diffusion exchange in lungs and tissue and may therefore cause hypoxemia and tissue hypoxia. The review analyzes the combined effects of COVID-19-related capillary damage, pre-existing microvascular changes, and upstream vascular tone on tissue oxygenation in key organs. It identifies a vicious cycle, as infection- and hypoxia-related inflammation cause capillary function to deteriorate, which in turn accelerates hypoxia-related inflammation and tissue damage. Finally, the review addresses the effects of low oxygen and high cytokine levels in brain tissue on neurotransmitter synthesis and mood. Methods to assess capillary functions in human organs and therapeutic means to protect capillary functions and stimulate capillary bed repair may prove important for the individualized management of COVID-19 patients and targeted rehabilitation strategies.Corona virus disease 2019 (COVID-19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV-2). They range from early, low blood oxygen levels (hypoxemia) without breathlessness ("silent hypoxia"), delirium, rashes, and loss of smell (anosmia), to persisting chest pain, muscle weakness and -pain, fatigue, confusion, memory problems and difficulty to concentrate ("brain fog"), mood changes, and unexpected onset of hypertension or diabetes. SARS CoV-2 affects the microcirculation, causing endothelial cell swelling and damage (endotheliitis), microscopic blood clots (microthrombosis), capillary congestion, and damage to pericytes that are integral to capillary integrity and barrier function, tissue repair (angiogenesis), and scar formation. Similar to other instances of critical illness, COVID-19 is also associated with elevated cytokine levels in the systemic circulation. This review examines how capillary damage and inflammation may contribute to these acute and persisting COVID-19 symptoms by interfering with blood and tissue oxygenation and with brain function. Undetectable by current diagnostic methods, capillary flow disturbances limit oxygen diffusion exchange in lungs and tissue and may therefore cause hypoxemia and tissue hypoxia. The review analyzes the combined effects of COVID-19-related capillary damage, pre-existing microvascular changes, and upstream vascular tone on tissue oxygenation in key organs. It identifies a vicious cycle, as infection- and hypoxia-related inflammation cause capillary function to deteriorate, which in turn accelerates hypoxia-related inflammation and tissue damage. Finally, the review addresses the effects of low oxygen and high cytokine levels in brain tissue on neurotransmitter synthesis and mood. Methods to assess capillary functions in human organs and therapeutic means to protect capillary functions and stimulate capillary bed repair may prove important for the individualized management of COVID-19 patients and targeted rehabilitation strategies.
Corona virus disease 2019 (COVID‐19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV‐2). They range from early, low blood oxygen levels (hypoxemia) without breathlessness (“silent hypoxia”), delirium, rashes, and loss of smell (anosmia), to persisting chest pain, muscle weakness and ‐pain, fatigue, confusion, memory problems and difficulty to concentrate (“brain fog”), mood changes, and unexpected onset of hypertension or diabetes. SARS CoV‐2 affects the microcirculation, causing endothelial cell swelling and damage (endotheliitis), microscopic blood clots (microthrombosis), capillary congestion, and damage to pericytes that are integral to capillary integrity and barrier function, tissue repair (angiogenesis), and scar formation. Similar to other instances of critical illness, COVID‐19 is also associated with elevated cytokine levels in the systemic circulation. This review examines how capillary damage and inflammation may contribute to these acute and persisting COVID‐19 symptoms by interfering with blood and tissue oxygenation and with brain function. Undetectable by current diagnostic methods, capillary flow disturbances limit oxygen diffusion exchange in lungs and tissue and may therefore cause hypoxemia and tissue hypoxia. The review analyzes the combined effects of COVID‐19‐related capillary damage, pre‐existing microvascular changes, and upstream vascular tone on tissue oxygenation in key organs. It identifies a vicious cycle, as infection‐ and hypoxia‐related inflammation cause capillary function to deteriorate, which in turn accelerates hypoxia‐related inflammation and tissue damage. Finally, the review addresses the effects of low oxygen and high cytokine levels in brain tissue on neurotransmitter synthesis and mood. Methods to assess capillary functions in human organs and therapeutic means to protect capillary functions and stimulate capillary bed repair may prove important for the individualized management of COVID‐19 patients and targeted rehabilitation strategies.
Corona virus disease 2019 (COVID‐19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV‐2). They range from early, low blood oxygen levels (hypoxemia) without breathlessness (“silent hypoxia”), delirium, rashes, and loss of smell (anosmia), to persisting chest pain, muscle weakness and ‐pain, fatigue, confusion, memory problems and difficulty to concentrate (“brain fog”), mood changes, and unexpected onset of hypertension or diabetes. SARS CoV‐2 affects the microcirculation, causing endothelial cell swelling and damage (endotheliitis), microscopic blood clots (microthrombosis), capillary congestion, and damage to pericytes that are integral to capillary integrity and barrier function, tissue repair (angiogenesis), and scar formation. Similar to other instances of critical illness, COVID‐19 is also associated with elevated cytokine levels in the systemic circulation. This review examines how capillary damage and inflammation may contribute to these acute and persisting COVID‐19 symptoms by interfering with blood and tissue oxygenation and with brain function. Undetectable by current diagnostic methods, capillary flow disturbances limit oxygen diffusion exchange in lungs and tissue and may therefore cause hypoxemia and tissue hypoxia. The review analyzes the combined effects of COVID‐19‐related capillary damage, pre‐existing microvascular changes, and upstream vascular tone on tissue oxygenation in key organs. It identifies a vicious cycle, as infection‐ and hypoxia‐related inflammation cause capillary function to deteriorate, which in turn accelerates hypoxia‐related inflammation and tissue damage. Finally, the review addresses the effects of low oxygen and high cytokine levels in brain tissue on neurotransmitter synthesis and mood. Methods to assess capillary functions in human organs and therapeutic means to protect capillary functions and stimulate capillary bed repair may prove important for the individualized management of COVID‐19 patients and targeted rehabilitation strategies. COVID‐19‐related microvascular damage and inflammation may cause tissue hypoxia via transit‐time effects and disturb neurotransmitter synthesis in the brain. The duration of COVID‐19 symptoms and the long‐term health effects of SARS‐CoV‐2 infection may rely on whether disease‐related capillary damage is reversible.
Author Østergaard, Leif
AuthorAffiliation 1 Neuroradiology Research Unit Section of Neuroradiology Department of Radiology Aarhus University Hospital Aarhus Denmark
2 Center of Functionally Integrative Neuroscience Department of Clinical Medicine Aarhus University Aarhus Denmark
AuthorAffiliation_xml – name: 1 Neuroradiology Research Unit Section of Neuroradiology Department of Radiology Aarhus University Hospital Aarhus Denmark
– name: 2 Center of Functionally Integrative Neuroscience Department of Clinical Medicine Aarhus University Aarhus Denmark
Author_xml – sequence: 1
  givenname: Leif
  orcidid: 0000-0003-2930-6997
  surname: Østergaard
  fullname: Østergaard, Leif
  email: leif@cfin.au.dk
  organization: Aarhus University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33523608$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9u1DAQhyNUREvpiTuyxAUJFmzHSWwOSNXypytVKqJQwclynPGuV4kd7KSwNx6Bl-DFeBLcbIvaCnGKNfnm08_juZ_tOO8gyx4S_JwwTtiLfrWh6VjR8k62R3FBZpxUn3eunXezgxjXGGOC81xgdi_bzfOC5iXme9mv08MPp2juz37_-ElRgFYN0KDO6uDPVdRjqwJqVKeWgJRrUNx0_eC7iJoxWLecasoMEND85GzxOkmIeJl0LsLXEZyGiLxBWvW2TaYNGoJy0Q6JG2wHSK-UW0J8hgYb4whoten9d6smrXWmVV2nBuvdg-yuUW2Eg8vvfvbp7ZuP86PZ8cm7xfzweKYLzsoZw1w3RtRlYaAwFQOhK1ozrhVpRImxKqCkTV5RYTDlxNRGlJUipYEcc16qfD9bbL2NV2vZB9ul0NIrK6eCD0upwmB1C1LVuMBUiMowwhg3dVPRlMFAKlYFFsn1auvqx7qDRoNLl29vSG_-cXYll_5cVpwJVuRJ8ORSEHwaZhxkZ6OGNEgHfoySMs4oo7moEvr4Frr2Y3BpVBeUoHmFaZmoR9cT_Y1ytQ0JIFsgvX6MAYzUdpgeIAW0rSRYTksnL5ZOTkuXep7e6rnS_pumW_qbbWHzP1S-P_pCt01_AOK465M
CitedBy_id crossref_primary_10_1097_MCC_0000000000000904
crossref_primary_10_21518_ms2024_092
crossref_primary_10_3892_wasj_2022_178
crossref_primary_10_4330_wjc_v14_i7_392
crossref_primary_10_61865_j_cyfsld_2024_8630_29w4
crossref_primary_10_21886_2712_8156_2023_4_4_69_76
crossref_primary_10_3390_v16071049
crossref_primary_10_1371_journal_pone_0312735
crossref_primary_10_2147_VHRM_S371468
crossref_primary_10_3389_fnano_2022_987117
crossref_primary_10_1186_s12879_024_10222_5
crossref_primary_10_1186_s13256_024_04596_y
crossref_primary_10_1007_s43465_021_00546_8
crossref_primary_10_3389_fneur_2023_1221518
crossref_primary_10_1016_j_mayocpiqo_2023_05_002
crossref_primary_10_1007_s40520_022_02328_0
crossref_primary_10_1002_jcu_23503
crossref_primary_10_1111_papr_13277
crossref_primary_10_1002_tkm2_1370
crossref_primary_10_1016_j_diabet_2022_101359
crossref_primary_10_1007_s10528_023_10453_2
crossref_primary_10_3390_ijms23137247
crossref_primary_10_18093_0869_0189_2023_33_6_760_771
crossref_primary_10_1007_s42843_022_00055_8
crossref_primary_10_1097_BPO_0000000000002845
crossref_primary_10_1016_j_brs_2022_05_006
crossref_primary_10_1111_1756_185X_14703
crossref_primary_10_1371_journal_pone_0269471
crossref_primary_10_1111_ene_15545
crossref_primary_10_1177_2050313X231185951
crossref_primary_10_1165_rcmb_2024_0005MA
crossref_primary_10_1016_j_medengphy_2022_103904
crossref_primary_10_33546_bnj_1828
crossref_primary_10_1080_07853890_2023_2198776
crossref_primary_10_1080_17434440_2023_2277236
crossref_primary_10_3390_biom14121621
crossref_primary_10_1007_s40211_023_00487_8
crossref_primary_10_1007_s00415_023_11767_2
crossref_primary_10_1007_s11428_024_01157_1
crossref_primary_10_1007_s12035_022_02932_1
crossref_primary_10_3390_biomedicines11041199
crossref_primary_10_1002_acn3_51801
crossref_primary_10_1016_j_ebiom_2023_104519
crossref_primary_10_1042_BCJ20220154
crossref_primary_10_3389_fphar_2024_1338235
crossref_primary_10_31857_S0042132423030067
crossref_primary_10_3389_fphys_2021_719701
crossref_primary_10_1002_jmv_27309
crossref_primary_10_3389_fnhum_2022_988021
crossref_primary_10_1080_09593985_2024_2327534
crossref_primary_10_4103_ijciis_ijciis_93_21
crossref_primary_10_1093_cvr_cvac115
crossref_primary_10_1042_CS20210735
crossref_primary_10_1016_j_bbi_2023_06_015
crossref_primary_10_1089_brain_2022_0058
crossref_primary_10_1097_HJH_0000000000003271
crossref_primary_10_1111_odi_14126
crossref_primary_10_1136_bjsports_2021_104595
crossref_primary_10_1016_j_lanepe_2023_100595
crossref_primary_10_1016_j_heliyon_2023_e15500
crossref_primary_10_1186_s13000_024_01445_w
crossref_primary_10_1007_s00277_022_04907_7
crossref_primary_10_1016_j_blre_2023_101075
crossref_primary_10_21638_spbu03_2023_307
crossref_primary_10_1007_s00011_022_01612_z
crossref_primary_10_3389_fcell_2022_807149
crossref_primary_10_12968_bjcn_2021_26_10_474
crossref_primary_10_3390_neurolint16050075
crossref_primary_10_1097_MS9_0000000000002302
crossref_primary_10_1016_j_pdpdt_2023_103556
crossref_primary_10_3389_fneur_2022_921173
crossref_primary_10_1016_j_jiph_2023_01_012
crossref_primary_10_1038_s41419_024_06642_5
crossref_primary_10_18093_0869_0189_2021_31_5_571_579
crossref_primary_10_3233_RNN_211249
crossref_primary_10_35420_jcohns_2021_32_3_163
crossref_primary_10_1080_00207160_2022_2163167
crossref_primary_10_3389_fphys_2023_1203472
crossref_primary_10_3389_fpsyg_2023_1136667
crossref_primary_10_1007_s00380_022_02180_2
crossref_primary_10_1097_MD_0000000000037265
crossref_primary_10_24075_brsmu_2022_057
crossref_primary_10_1002_jcb_30530
crossref_primary_10_1093_jnen_nlac056
crossref_primary_10_1360_SSV_2021_0311
crossref_primary_10_3389_fmed_2023_1222767
crossref_primary_10_1016_j_cyto_2021_155523
crossref_primary_10_3389_fcimb_2022_861703
crossref_primary_10_34883_PI_2022_25_2_001
crossref_primary_10_47529_2223_2524_2022_3_1
crossref_primary_10_1186_s12967_023_04719_x
crossref_primary_10_1007_s13337_022_00793_9
crossref_primary_10_1007_s10067_021_05835_z
crossref_primary_10_1007_s42212_024_00707_4
crossref_primary_10_1016_j_clinph_2024_02_034
crossref_primary_10_1089_neur_2023_0067
crossref_primary_10_1152_ajpheart_00088_2022
crossref_primary_10_1016_j_biopha_2022_112718
crossref_primary_10_1093_cvr_cvab200
crossref_primary_10_3389_fimmu_2022_732197
crossref_primary_10_1002_alz_14279
crossref_primary_10_5694_mja2_52456
crossref_primary_10_1007_s44337_024_00059_x
crossref_primary_10_1016_j_mam_2021_101000
crossref_primary_10_3389_fphar_2023_1304697
crossref_primary_10_17116_jnevro202312304244
crossref_primary_10_1016_j_amjmed_2024_05_021
crossref_primary_10_12677_acm_2024_1472131
crossref_primary_10_1093_brain_awac272
crossref_primary_10_3346_jkms_2023_38_e83
crossref_primary_10_17925_USN_2023_19_1_16
crossref_primary_10_22159_ijap_2023v15i6_48889
crossref_primary_10_1016_j_tem_2023_03_002
crossref_primary_10_3389_fpubh_2023_1254723
crossref_primary_10_3390_vaccines10050652
crossref_primary_10_1002_acp_70040
crossref_primary_10_1016_j_jtha_2023_09_022
crossref_primary_10_26416_ORL_54_1_2022_6027
crossref_primary_10_1016_j_anai_2024_08_008
crossref_primary_10_1371_journal_pone_0284489
crossref_primary_10_14814_phy2_15532
crossref_primary_10_3390_v15020533
crossref_primary_10_29328_journal_cjog_1001139
crossref_primary_10_59541_001c_81031
crossref_primary_10_30895_2312_7821_2022_10_1_78_90
crossref_primary_10_1016_j_gastha_2022_02_021
crossref_primary_10_1080_14789450_2021_2010549
crossref_primary_10_1136_bmj_2023_075387
crossref_primary_10_1111_jon_12975
crossref_primary_10_1177_20420188221110708
crossref_primary_10_1016_j_brainresbull_2022_06_014
crossref_primary_10_1093_trstmh_trac030
crossref_primary_10_1007_s11897_023_00618_w
crossref_primary_10_47360_1995_4484_2021_255_262
crossref_primary_10_1016_j_heliyon_2023_e23320
crossref_primary_10_1016_j_lfs_2022_121018
crossref_primary_10_3389_fbioe_2023_1250312
crossref_primary_10_3389_fcvm_2021_745758
crossref_primary_10_1007_s11033_024_09279_x
crossref_primary_10_1007_s40138_023_00276_1
crossref_primary_10_1177_11206721241255402
crossref_primary_10_1007_s11357_022_00561_z
crossref_primary_10_1098_rsob_230349
crossref_primary_10_1134_S2079086423060087
crossref_primary_10_2174_2666796703666220623090158
crossref_primary_10_1016_j_resmer_2023_101044
crossref_primary_10_1038_s41598_023_35692_6
crossref_primary_10_3389_fimmu_2021_712402
crossref_primary_10_2478_amb_2022_0010
crossref_primary_10_1007_s40121_022_00730_9
crossref_primary_10_1016_j_ejrad_2022_110164
crossref_primary_10_1002_prp2_911
crossref_primary_10_1016_j_autneu_2022_103071
crossref_primary_10_1183_23120541_00623_2022
crossref_primary_10_1111_sji_13043
crossref_primary_10_1080_22221751_2023_2261559
crossref_primary_10_33667_2078_5631_2022_29_49_53
crossref_primary_10_1093_infdis_jiad119
crossref_primary_10_1080_07853890_2022_2076901
crossref_primary_10_3233_NPM_230177
crossref_primary_10_3390_covid2010004
crossref_primary_10_1016_j_cbi_2021_109657
crossref_primary_10_1016_j_sopen_2022_10_008
crossref_primary_10_3390_jcdd8110156
crossref_primary_10_1002_rfc2_95
crossref_primary_10_1016_j_biopha_2023_115637
crossref_primary_10_7554_eLife_86002
crossref_primary_10_1007_s00415_021_10735_y
crossref_primary_10_1007_s11940_024_00816_4
crossref_primary_10_1038_s41684_023_01231_z
crossref_primary_10_2214_AJR_22_28267
crossref_primary_10_3390_biomedicines9080966
crossref_primary_10_1016_j_radcr_2022_06_009
crossref_primary_10_1038_s41598_024_63255_w
crossref_primary_10_3390_v16060923
Cites_doi 10.1111/bjd.19327
10.1016/j.cell.2020.08.028
10.1016/j.pnpbp.2004.05.031
10.1007/s00134-020-06033-2
10.1002/path.1570
10.1056/NEJMoa2015432
10.1016/S1473-3099(20)30367-4
10.1038/nrc2895
10.1164/rccm.202007-2676LE
10.1161/01.RES.87.5.e1
10.1038/s41467-018-04913-2
10.1126/sciadv.abc5801
10.1212/WNL.0000000000010111
10.1016/j.neuint.2005.07.006
10.1001/jama.2020.17052
10.1016/j.bbi.2006.09.006
10.1152/ajpheart.2000.279.6.H2815
10.1016/j.clim.2020.108393
10.1177/0271678X15606723
10.1152/ajpheart.00803.2011
10.1001/jama.2020.1585
10.1016/j.cmet.2020.11.006
10.1164/rccm.202006-2219LE
10.1016/j.pharmthera.2011.01.014
10.1111/eci.13339
10.1016/j.devcel.2011.07.001
10.1371/journal.pone.0045499
10.1113/jphysiol.2004.073098
10.1038/jcbfm.2014.254
10.1152/jappl.1999.86.5.1460
10.1002/dad2.12032
10.1001/jamacardio.2020.3557
10.1097/ALN.0000000000003377
10.1113/JP279223
10.1038/nature09522
10.1016/j.atherosclerosis.2008.03.024
10.1007/s00134-020-06220-1
10.1152/japplphysiol.00537.2020
10.1152/ajpheart.1998.274.3.H1016
10.7554/eLife.29280
10.1016/j.neubiorev.2018.08.007
10.1038/jcbfm.2011.153
10.1210/er.2009-0035
10.1016/j.jalz.2019.06.001
10.1016/j.jalz.2017.02.007
10.1002/jmv.25915
10.1093/cvr/cvaa078
10.1038/s41593-018-0329-4
10.1084/jem.20202135
10.1152/ajpheart.00945.2005
10.1161/CIRCULATIONAHA.120.047549
10.1038/s41593-020-00758-5
10.1001/jamainternmed.2020.3313
10.1056/NEJMra0910283
10.1080/10739680590895028
10.1016/j.neurobiolaging.2016.11.004
10.1152/ajpheart.00117.2003
10.1007/s00395-008-0749-5
10.1016/S2666-5247(20)30115-4
10.1016/S0140-6736(20)30937-5
10.1161/CIRCULATIONAHA.120.051362
10.1152/ajpheart.00679.2010
10.1038/nature13165
10.1038/nm.2022
10.1378/chest.122.5.1774
10.1111/j.1471-4159.1980.tb03721.x
10.2353/ajpath.2007.061088
10.1016/j.biopsych.2008.11.029
10.1161/01.RES.79.3.581
10.1152/ajpheart.1993.264.3.H909
10.1038/jcbfm.2013.18
10.1126/science.3775368
10.1084/jem.20111622
10.1038/s41577-020-0343-0
10.1016/S1473-3099(20)30701-5
10.1152/japplphysiol.01155.2006
10.1073/pnas.0812671106
10.1111/aas.12581
10.1161/CIRCULATIONAHA.120.049465
10.1007/s00395-014-0409-x
10.1016/0026-2862(79)90042-6
10.1152/ajpheart.00384.2019
10.1016/S1473-3099(20)30434-5
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society
2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society
– notice: 2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7T5
7TK
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.14814/phy2.14726
DatabaseName WIley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate ØSTERGAARD
EISSN 2051-817X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_ab0502997f41448fbd72846fe0297509
PMC7849453
33523608
10_14814_phy2_14726
PHY214726
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: VELUX Foundation
  funderid: 0026167
– fundername: Lundbeck Foundation
  funderid: R310‐2018‐3455
– fundername: VELUX Foundation
  grantid: 0026167
– fundername: Lundbeck Foundation
  grantid: R310-2018-3455
– fundername: ;
  grantid: 0026167
– fundername: ;
  grantid: R310‐2018‐3455
GroupedDBID 0R~
1OC
24P
53G
5VS
7X7
8-1
8FE
8FH
8FI
8FJ
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
DIK
EBS
EJD
FYUFA
GODZA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
IAO
IHR
INH
ITC
KQ8
LK8
M48
M7P
M~E
OK1
PIMPY
PQQKQ
PROAC
RAP
RHI
RPM
UKHRP
WIN
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
3V.
7QP
7T5
7TK
7XB
8FK
AZQEC
COVID
DWQXO
GNUQQ
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5846-408cdf9b65fe5f74e9c72b48ca1d9600a5e62d3729f0281fbf967a16fe30886a3
IEDL.DBID M48
ISSN 2051-817X
IngestDate Wed Aug 27 01:32:06 EDT 2025
Thu Aug 21 17:49:25 EDT 2025
Fri Jul 11 16:13:28 EDT 2025
Wed Aug 13 11:34:43 EDT 2025
Mon Jul 21 06:06:57 EDT 2025
Tue Jul 01 04:33:17 EDT 2025
Thu Apr 24 22:55:41 EDT 2025
Wed Jan 22 16:31:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords COVID-19
hypoxemia
hypoxia
long-term symptoms
inflammation
capillary dysfunction
muscle
lungs
brain
microcirculation
heart
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
http://doi.wiley.com/10.1002/tdm_license_1.1
2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5846-408cdf9b65fe5f74e9c72b48ca1d9600a5e62d3729f0281fbf967a16fe30886a3
Notes Funding information
This review was supported by the VELUX Foundation (ARCADIA II, grant no. 0026167) and a Lundbeck Foundation Professorship to the author (grant no. R310‐2018‐3455).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2930-6997
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.14814/phy2.14726
PMID 33523608
PQID 2489237026
PQPubID 2034607
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_ab0502997f41448fbd72846fe0297509
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7849453
proquest_miscellaneous_2484242397
proquest_journals_2489237026
pubmed_primary_33523608
crossref_citationtrail_10_14814_phy2_14726
crossref_primary_10_14814_phy2_14726
wiley_primary_10_14814_phy2_14726_PHY214726
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
20210201
2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
– name: Hoboken
PublicationTitle Physiological reports
PublicationTitleAlternate Physiol Rep
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2015; 35
2017; 6
2004; 561
2010; 10
2007; 102
2004; 203
2020; 20
2010; 468
2004; 28
2000; 87
2019; 15
2020; 324
2020; 129
1999; 86
2006; 290
2020; 12
2020; 202
2020; 323
1996; 79
2016; 36
1998; 274
2012; 209
2020; 6
2018; 9
2020; 5
2020; 1
2019; 22
2007; 170
2020; 95
2020; 50
1980; 35
2020; 92
2020; 214
2011; 21
2020; 46
2020; 133
2007; 21
2009; 202
2011; 364
2009; 15
2003; 285
2015; 59
2009; 24
2010; 31
1979; 18
1986; 234
2009; 65
2020; 383
2000; 279
2020; 142
2020; 180
2020; 183
2020; 32
2011; 130
1993; 264
2012; 32
2005; 47
2017; 50
2011; 301
2011; 300
2014; 508
2020; 2020
2014; 109
2013; 33
2020
2020; 395
2002; 122
2017; 13
2021; 218
2020; 116
2018
2018; 94
2020; 598
2012; 7
2020; 318
2009; 104
2005; 12
2009; 106
e_1_2_12_4_1
Reynolds A. S. (e_1_2_12_70_1) 2020
e_1_2_12_6_1
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
Godino C. (e_1_2_12_27_1) 2020
e_1_2_12_38_1
e_1_2_12_41_1
e_1_2_12_66_1
e_1_2_12_87_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_64_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_47_1
e_1_2_12_68_1
e_1_2_12_89_1
e_1_2_12_62_1
e_1_2_12_83_1
Diaz‐Flores L. (e_1_2_12_20_1) 2009; 24
e_1_2_12_60_1
e_1_2_12_81_1
e_1_2_12_28_1
e_1_2_12_49_1
e_1_2_12_31_1
e_1_2_12_52_1
e_1_2_12_77_1
e_1_2_12_33_1
e_1_2_12_54_1
e_1_2_12_75_1
e_1_2_12_35_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_58_1
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_73_1
e_1_2_12_71_1
e_1_2_12_3_1
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_16_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_80_1
Lucker A. (e_1_2_12_50_1) 2018
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_40_1
e_1_2_12_82_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_57_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
e_1_2_12_15_1
e_1_2_12_13_1
He L. (e_1_2_12_34_1) 2020; 2020
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_9_1
References_xml – volume: 290
  start-page: H1199
  issue: 3
  year: 2006
  end-page: H1205
  article-title: Connexin40 and connexin43 in mouse aortic endothelium: Evidence for coordinated regulation
  publication-title: American Journal of Physiology‐Heart and Circulatory Physiology.
– volume: 1
  start-page: e245
  issue: 6
  year: 2020
  end-page: e253
  article-title: Histopathological findings and viral tropism in UK patients with severe fatal COVID‐19: a post‐mortem study
  publication-title: The Lancet Microbe
– volume: 279
  start-page: H2815
  issue: 6
  year: 2000
  end-page: H2823
  article-title: TNF‐alpha increases entry of macromolecules into luminal endothelial cell glycocalyx
  publication-title: American Journal of Physiology Heart and Circulatory Physiology
– volume: 598
  start-page: 4473
  issue: 20
  year: 2020
  end-page: 4507
  article-title: August Krogh’s theory of muscle microvascular control and oxygen delivery: A paradigm shift based on new data
  publication-title: Journal of Physiology
– volume: 109
  issue: 3
  year: 2014
  article-title: The role of capillary transit time heterogeneity in myocardial oxygenation and ischemic heart disease
  publication-title: Basic Research in Cardiology
– volume: 218
  issue: 3
  year: 2021
  article-title: Neuroinvasion of SARS‐CoV‐2 in human and mouse brain
  publication-title: J Exp Med
– volume: 15
  start-page: 1031
  issue: 9
  year: 2009
  end-page: 1037
  article-title: Pericyte contraction induced by oxidative‐nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery
  publication-title: Nature Medicine
– volume: 35
  start-page: 806
  issue: 5
  year: 2015
  end-page: 817
  article-title: The effects of capillary transit time heterogeneity (CTH) on brain oxygenation
  publication-title: Journal of Cerebral Blood Flow & Metabolism
– volume: 285
  start-page: H2848
  issue: 6
  year: 2003
  end-page: H2856
  article-title: Localization of the permeability barrier to solutes in isolated arteries by confocal microscopy
  publication-title: American Journal of Physiology‐Heart and Circulatory Physiology
– volume: 9
  issue: 1
  year: 2018
  article-title: Pulmonary pericytes regulate lung morphogenesis
  publication-title: Nature Communications
– volume: 65
  start-page: 732
  issue: 9
  year: 2009
  end-page: 741
  article-title: Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression
  publication-title: Biological Psychiatry
– volume: 21
  start-page: 153
  issue: 2
  year: 2007
  end-page: 160
  article-title: Twenty years of research on cytokine‐induced sickness behavior
  publication-title: Brain, Behavior, and Immunity
– volume: 395
  start-page: 1417
  issue: 10234
  year: 2020
  end-page: 1418
  article-title: Endothelial cell infection and endotheliitis in COVID‐19
  publication-title: The Lancet
– volume: 104
  start-page: 78
  issue: 1
  year: 2009
  end-page: 89
  article-title: TNF‐α induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin
  publication-title: Basic Research in Cardiology
– volume: 21
  start-page: 193
  issue: 2
  year: 2011
  end-page: 215
  article-title: Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises
  publication-title: Developmental Cell
– volume: 10
  start-page: 587
  issue: 8
  year: 2010
  end-page: 593
  article-title: The shunt problem: Control of functional shunting in normal and tumour vasculature
  publication-title: Nature Reviews Cancer
– volume: 203
  start-page: 631
  issue: 2
  year: 2004
  end-page: 637
  article-title: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis
  publication-title: The Journal of Pathology
– volume: 561
  start-page: 671
  issue: 3
  year: 2004
  end-page: 683
  article-title: Effects of angiotensin II on the pericyte‐containing microvasculature of the rat retina
  publication-title: The Journal of Physiology
– year: 2018
  article-title: The relation between capillary transit times and hemoglobin saturation heterogeneity. Part 1: Theoretical models
  publication-title: Frontiers in Physiology
– volume: 79
  start-page: 581
  issue: 3
  year: 1996
  end-page: 589
  article-title: Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries
  publication-title: Circulation Research
– volume: 94
  start-page: 248
  year: 2018
  end-page: 270
  article-title: Low on energy? An energy supply‐demand perspective on stress and depression
  publication-title: Neuroscience and Biobehavioral Reviews
– volume: 7
  issue: 9
  year: 2012
  article-title: Pericytes regulate vascular basement membrane remodeling and govern neutrophil extravasation during inflammation
  publication-title: PLoS ONE
– volume: 214
  start-page: 108393
  year: 2020
  article-title: The use of anti‐inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID‐19): The Perspectives of clinical immunologists from China
  publication-title: Clinical Immunology
– volume: 202
  start-page: 1037
  issue: 7
  year: 2020
  end-page: 1039
  article-title: Pulmonary vascular dilatation detected by automated transcranial doppler in COVID‐19 pneumonia
  publication-title: American Journal of Respiratory and Critical Care Medicine
– volume: 50
  issue: 12
  year: 2020
  article-title: SGLT2 inhibition and COVID‐19: The road not taken
  publication-title: European Journal of Clinical Investigation
– volume: 31
  start-page: 343
  issue: 3
  year: 2010
  end-page: 363
  article-title: The role of blood vessels, endothelial cells, and vascular pericytes in insulin secretion and peripheral insulin action
  publication-title: Endocrine Reviews
– volume: 20
  start-page: 1135
  issue: 10
  year: 2020
  end-page: 1140
  article-title: Pulmonary post‐mortem findings in a series of COVID‐19 cases from northern Italy: a two‐centre descriptive study
  publication-title: The Lancet Infectious Diseases
– volume: 142
  start-page: 68
  issue: 1
  year: 2020
  end-page: 78
  article-title: The science underlying COVID‐19: Implications for the cardiovascular system
  publication-title: Circulation
– volume: 46
  start-page: 1967
  issue: 10
  year: 2020
  end-page: 1968
  article-title: Apoptosis and pericyte loss in alveolar capillaries in COVID‐19 infection: Choice of markers matters. Author's reply
  publication-title: Intensive Care Medicine
– volume: 2020
  start-page: 11.088500
  issue: 05
  year: 2020
  article-title: Pericyte‐specific vascular expression of SARS‐CoV‐2 receptor ACE2 – Implications for microvascular inflammation and hypercoagulopathy in COVID‐19
  publication-title: bioRxiv
– volume: 6
  issue: 31
  year: 2020
  article-title: Non‐neuronal expression of SARS‐CoV‐2 entry genes in the olfactory system suggests mechanisms underlying COVID‐19‐associated anosmia
  publication-title: Science Advances
– year: 2020
  article-title: Antithrombotic therapy in patients with COVID‐19? ‐Rationale and Evidence‐
  publication-title: International Journal of Cardiology
– volume: 106
  start-page: 3543
  issue: 9
  year: 2009
  end-page: 3548
  article-title: Dynamic regulation of mitochondrial function by glucocorticoids
  publication-title: Proceedings of the National Academy of Sciences
– year: 2020
  article-title: Reply to: Positive bubble study in severe COVID‐19 indicates the development of anatomical intra‐pulmonary shunts in response to microvascular occlusion
  publication-title: American Journal of Respiratory and Critical Care Medicine
– volume: 12
  start-page: 33
  issue: 1
  year: 2005
  end-page: 45
  article-title: Regulation of blood flow in the microcirculation
  publication-title: Microcirculation
– volume: 183
  start-page: 729
  issue: 4
  year: 2020
  end-page: 737
  article-title: SARS‐CoV‐2 endothelial infection causes COVID‐19 chilblains: histopathological, immunohistochemical and ultrastructural study of seven paediatric cases
  publication-title: British Journal of Dermatology
– volume: 180
  start-page: 1152
  issue: 9
  year: 2020
  end-page: 1154
  article-title: Is a “Cytokine Storm” relevant to COVID‐19?
  publication-title: JAMA Internal Medicine
– volume: 13
  start-page: 1143
  issue: 10
  year: 2017
  end-page: 1153
  article-title: Capillary dysfunction is associated with symptom severity and neurodegeneration in Alzheimer's disease
  publication-title: Alzheimer's & Dementia
– volume: 364
  start-page: 656
  issue: 7
  year: 2011
  end-page: 665
  article-title: Hypoxia and Inflammation
  publication-title: New England Journal of Medicine
– volume: 32
  start-page: 1028
  issue: 6
  year: 2020
  end-page: 1040.e4
  article-title: SARS‐CoV‐2 cell entry factors ACE2 and TMPRSS2 are expressed in the microvasculature and ducts of human pancreas but are not enriched in β cells
  publication-title: Cell Metabolism
– volume: 33
  start-page: 635
  issue: 5
  year: 2013
  end-page: 648
  article-title: The role of the cerebral capillaries in acute ischemic stroke: The extended penumbra model
  publication-title: Journal of Cerebral Blood Flow & Metabolism
– volume: 24
  start-page: 909
  issue: 7
  year: 2009
  end-page: 969
  article-title: Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche
  publication-title: Histology and Histopathology
– volume: 130
  start-page: 226
  issue: 2
  year: 2011
  end-page: 238
  article-title: Immune system to brain signaling: Neuropsychopharmacological implications
  publication-title: Pharmacology & Therapeutics.
– volume: 46
  start-page: 1099
  issue: 6
  year: 2020
  end-page: 1102
  article-title: COVID‐19 pneumonia: different respiratory treatments for different phenotypes?
  publication-title: Intensive Care Medicine
– volume: 15
  start-page: 961
  issue: 7
  year: 2019
  end-page: 984
  article-title: Preventing dementia by preventing stroke: The Berlin Manifesto
  publication-title: Alzheimer's & Dementia
– year: 2020
  article-title: An urgent need for studies of the late effects of SARS‐CoV‐2 on the cardiovascular system
  publication-title: Circulation
– year: 2020
  article-title: Olfactory transmucosal SARS‐CoV‐2 invasion as a port of central nervous system entry in individuals with COVID‐19
  publication-title: Nature Neuroscience
– volume: 383
  start-page: 120
  issue: 2
  year: 2020
  end-page: 128
  article-title: Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid‐19
  publication-title: New England Journal of Medicine
– volume: 129
  start-page: 1413
  issue: 6
  year: 2020
  end-page: 1421
  article-title: Blood flow, capillary transit times, and tissue oxygenation: the centennial of capillary recruitment
  publication-title: Journal of Applied Physiology
– volume: 86
  start-page: 1460
  issue: 5
  year: 1999
  end-page: 1467
  article-title: Red cell distribution and the recruitment of pulmonary diffusing capacity
  publication-title: Journal of Applied Physiology
– volume: 301
  start-page: H2235
  year: 2011
  end-page: H2245
  article-title: Shedding of the endothelial glycocalyx in arterioles, capillaries and venules and its effect on capillary hemodynamics during inflammation
  publication-title: American Journal of Physiology‐Heart and Circulatory Physiology
– volume: 116
  start-page: 1097
  issue: 6
  year: 2020
  end-page: 1100
  article-title: The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS‐CoV‐2
  publication-title: Cardiovascular Research
– volume: 508
  start-page: 55
  issue: 7494
  year: 2014
  end-page: 60
  article-title: Capillary pericytes regulate cerebral blood flow in health and disease
  publication-title: Nature
– volume: 92
  start-page: 699
  issue: 7
  year: 2020
  end-page: 702
  article-title: Central nervous system involvement by severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2)
  publication-title: Journal of Medical Virology
– volume: 47
  start-page: 556
  issue: 8
  year: 2005
  end-page: 564
  article-title: Increasing blood oxygen increases an index of 5‐HT synthesis in human brain as measured using α‐[11C]methyl‐l‐tryptophan and positron emission tomography
  publication-title: Neurochemistry International
– volume: 5
  start-page: 1265
  issue: 11
  year: 2020
  article-title: Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID‐19)
  publication-title: JAMA Cardiology
– volume: 170
  start-page: 1136
  issue: 4
  year: 2007
  end-page: 1147
  article-title: Pathology and pathogenesis of severe acute respiratory syndrome
  publication-title: The American Journal of Pathology
– volume: 28
  start-page: 891
  issue: 5
  year: 2004
  end-page: 907
  article-title: Can stress cause depression?
  publication-title: Progress in Neuro‐Psychopharmacology & Biological Psychiatry
– volume: 20
  start-page: 389
  issue: 7
  year: 2020
  end-page: 391
  article-title: COVID‐19: The vasculature unleashed
  publication-title: Nature Reviews Immunology
– volume: 22
  start-page: 413
  issue: 3
  year: 2019
  end-page: 420
  article-title: Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer’s disease mouse models
  publication-title: Nature Neuroscience
– volume: 300
  start-page: H397
  issue: 1
  year: 2011
  end-page: H407
  article-title: The cerebrovascular dysfunction induced by slow pressor doses of angiotensin II precedes the development of hypertension
  publication-title: American Journal of Physiology‐Heart and Circulatory Physiology
– volume: 264
  start-page: H909
  issue: 3
  year: 1993
  end-page: H916
  article-title: Effects of leukocyte activation on capillary hemodynamics in skeletal muscle
  publication-title: American Journal of Physiology‐Heart and Circulatory Physiology
– volume: 209
  start-page: 1219
  issue: 6
  year: 2012
  end-page: 1234
  article-title: Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo
  publication-title: Journal of Experimental Medicine
– volume: 102
  start-page: 2251
  issue: 6
  year: 2007
  end-page: 2259
  article-title: Microvascular and capillary perfusion following glycocalyx degradation
  publication-title: Journal of Applied Physiology
– volume: 202
  start-page: 296
  issue: 1
  year: 2009
  end-page: 303
  article-title: Tumor necrosis factor‐alpha inhibition protects against endotoxin‐induced endothelial glycocalyx perturbation
  publication-title: Atherosclerosis
– volume: 20
  start-page: 1115
  issue: 10
  year: 2020
  end-page: 1117
  article-title: Long‐term consequences of COVID‐19: Research needs
  publication-title: The Lancet Infectious Diseases
– volume: 234
  start-page: 868
  issue: 4778
  year: 1986
  end-page: 870
  article-title: Flow control among microvessels coordinated by intercellular conduction
  publication-title: Science
– volume: 468
  start-page: 557
  issue: 7323
  year: 2010
  end-page: 561
  article-title: Pericytes regulate the blood‐brain barrier
  publication-title: Nature
– year: 2020
– volume: 323
  start-page: 1061
  issue: 11
  year: 2020
  article-title: Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China
  publication-title: JAMA
– volume: 318
  start-page: H425
  issue: 2
  year: 2020
  end-page: H447
  article-title: Krogh’s capillary recruitment hypothesis, 100 years on: Is the opening of previously closed capillaries necessary to ensure muscle oxygenation during exercise?
  publication-title: American Journal of Physiology‐Heart and Circulatory Physiology
– volume: 324
  start-page: 1565
  issue: 15
  year: 2020
  article-title: Cytokine levels in critically Ill patients With COVID‐19 and other conditions
  publication-title: JAMA
– volume: 36
  start-page: 302
  issue: 2
  year: 2016
  end-page: 325
  article-title: Cerebral small vessel disease: Capillary pathways to stroke and cognitive decline
  publication-title: Journal of Cerebral Blood Flow & Metabolism
– volume: 18
  start-page: 336
  issue: 3
  year: 1979
  end-page: 352
  article-title: Differences in pericyte contractile function in rat cardiac and skeletal muscle microvasculatures
  publication-title: Microvascular Research
– volume: 142
  start-page: 1123
  issue: 11
  year: 2020
  end-page: 1125
  article-title: Unexpected features of cardiac pathology in COVID‐19 infection
  publication-title: Circulation
– volume: 87
  issue: 5
  year: 2000
  article-title: A novel angiotensin‐converting enzyme–related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1‐9
  publication-title: Circulation Research
– volume: 59
  start-page: 1246
  issue: 10
  year: 2015
  end-page: 1259
  article-title: Microcirculatory dysfunction and tissue oxygenation in critical illness
  publication-title: Acta Anaesthesiologica Scandinavica
– volume: 12
  issue: 1
  year: 2020
  article-title: Impaired perfusion and capillary dysfunction in prodromal Alzheimer's disease
  publication-title: Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring
– volume: 274
  start-page: H1016
  issue: 3
  year: 1998
  end-page: H1022
  article-title: A model for red blood cell motion in glycocalyx‐lined capillaries
  publication-title: American Journal of Physiology‐Heart and Circulatory Physiology
– volume: 122
  start-page: 1774
  issue: 5
  year: 2002
  end-page: 1783
  article-title: Recruitment of lung diffusing capacity: Update of concept and application
  publication-title: Chest
– volume: 6
  year: 2017
  article-title: Capillary pericytes mediate coronary no‐reflow after myocardial ischaemia
  publication-title: eLife
– year: 2020
  article-title: Effects of COVID‐19 on the nervous system
  publication-title: Cell
– volume: 20
  start-page: 1365
  issue: 12
  year: 2020
  end-page: 1366
  article-title: Hypoxaemia related to COVID‐19: vascular and perfusion abnormalities on dual‐energy CT
  publication-title: The Lancet Infectious Diseases
– volume: 202
  start-page: 1178
  issue: 8
  year: 2020
  end-page: 1181
  article-title: Injury to the endothelial glycocalyx in critically Ill patients with COVID‐19
  publication-title: American Journal of Respiratory and Critical Care Medicine
– volume: 32
  start-page: 264
  issue: 2
  year: 2012
  end-page: 277
  article-title: The roles of cerebral blood flow, capillary transit time heterogeneity and oxygen tension in brain oxygenation and metabolism
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 50
  start-page: 107
  year: 2017
  end-page: 118
  article-title: Increased cortical capillary transit time heterogeneity in Alzheimer's disease: A DSC‐MRI perfusion study
  publication-title: Neurobiology of Aging
– volume: 95
  start-page: e1754
  issue: 12
  year: 2020
  end-page: e1759
  article-title: Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID‐19
  publication-title: Neurology
– volume: 35
  start-page: 760
  issue: 3
  year: 1980
  end-page: 763
  article-title: Oxygen affinity of tyrosine and tryptophan hydroxylases in synaptosomes
  publication-title: Journal of Neurochemistry
– volume: 133
  start-page: 304
  issue: 2
  year: 2020
  end-page: 317
  article-title: Ephedrine versus phenylephrine effect on cerebral blood flow and oxygen consumption in anesthetized brain tumor patients
  publication-title: Anesthesiology
– ident: e_1_2_12_16_1
  doi: 10.1111/bjd.19327
– ident: e_1_2_12_38_1
  doi: 10.1016/j.cell.2020.08.028
– ident: e_1_2_12_83_1
  doi: 10.1016/j.pnpbp.2004.05.031
– ident: e_1_2_12_26_1
  doi: 10.1007/s00134-020-06033-2
– ident: e_1_2_12_31_1
  doi: 10.1002/path.1570
– ident: e_1_2_12_2_1
  doi: 10.1056/NEJMoa2015432
– ident: e_1_2_12_47_1
  doi: 10.1016/S1473-3099(20)30367-4
– ident: e_1_2_12_67_1
  doi: 10.1038/nrc2895
– ident: e_1_2_12_78_1
  doi: 10.1164/rccm.202007-2676LE
– ident: e_1_2_12_21_1
  doi: 10.1161/01.RES.87.5.e1
– ident: e_1_2_12_42_1
  doi: 10.1038/s41467-018-04913-2
– year: 2020
  ident: e_1_2_12_70_1
  article-title: Reply to: Positive bubble study in severe COVID‐19 indicates the development of anatomical intra‐pulmonary shunts in response to microvascular occlusion
  publication-title: American Journal of Respiratory and Critical Care Medicine
– ident: e_1_2_12_7_1
  doi: 10.1126/sciadv.abc5801
– ident: e_1_2_12_41_1
  doi: 10.1212/WNL.0000000000010111
– ident: e_1_2_12_57_1
  doi: 10.1016/j.neuint.2005.07.006
– ident: e_1_2_12_46_1
  doi: 10.1001/jama.2020.17052
– ident: e_1_2_12_18_1
  doi: 10.1016/j.bbi.2006.09.006
– ident: e_1_2_12_35_1
  doi: 10.1152/ajpheart.2000.279.6.H2815
– ident: e_1_2_12_90_1
  doi: 10.1016/j.clim.2020.108393
– ident: e_1_2_12_60_1
  doi: 10.1177/0271678X15606723
– ident: e_1_2_12_48_1
  doi: 10.1152/ajpheart.00803.2011
– ident: e_1_2_12_86_1
  doi: 10.1001/jama.2020.1585
– ident: e_1_2_12_15_1
  doi: 10.1016/j.cmet.2020.11.006
– ident: e_1_2_12_71_1
  doi: 10.1164/rccm.202006-2219LE
– ident: e_1_2_12_11_1
  doi: 10.1016/j.pharmthera.2011.01.014
– volume: 2020
  start-page: 11.088500
  issue: 05
  year: 2020
  ident: e_1_2_12_34_1
  article-title: Pericyte‐specific vascular expression of SARS‐CoV‐2 receptor ACE2 – Implications for microvascular inflammation and hypercoagulopathy in COVID‐19
  publication-title: bioRxiv
– ident: e_1_2_12_19_1
  doi: 10.1111/eci.13339
– ident: e_1_2_12_5_1
  doi: 10.1016/j.devcel.2011.07.001
– ident: e_1_2_12_87_1
  doi: 10.1371/journal.pone.0045499
– ident: e_1_2_12_44_1
  doi: 10.1113/jphysiol.2004.073098
– ident: e_1_2_12_4_1
  doi: 10.1038/jcbfm.2014.254
– ident: e_1_2_12_37_1
  doi: 10.1152/jappl.1999.86.5.1460
– ident: e_1_2_12_55_1
  doi: 10.1002/dad2.12032
– ident: e_1_2_12_69_1
  doi: 10.1001/jamacardio.2020.3557
– ident: e_1_2_12_45_1
  doi: 10.1097/ALN.0000000000003377
– ident: e_1_2_12_66_1
  doi: 10.1113/JP279223
– ident: e_1_2_12_6_1
  doi: 10.1038/nature09522
– ident: e_1_2_12_56_1
  doi: 10.1016/j.atherosclerosis.2008.03.024
– ident: e_1_2_12_8_1
  doi: 10.1007/s00134-020-06220-1
– ident: e_1_2_12_59_1
  doi: 10.1152/japplphysiol.00537.2020
– ident: e_1_2_12_73_1
  doi: 10.1152/ajpheart.1998.274.3.H1016
– year: 2018
  ident: e_1_2_12_50_1
  article-title: The relation between capillary transit times and hemoglobin saturation heterogeneity. Part 1: Theoretical models
  publication-title: Frontiers in Physiology
– ident: e_1_2_12_58_1
  doi: 10.7554/eLife.29280
– ident: e_1_2_12_63_1
  doi: 10.1016/j.neubiorev.2018.08.007
– ident: e_1_2_12_40_1
  doi: 10.1038/jcbfm.2011.153
– ident: e_1_2_12_72_1
  doi: 10.1210/er.2009-0035
– ident: e_1_2_12_80_1
– ident: e_1_2_12_29_1
  doi: 10.1016/j.jalz.2019.06.001
– ident: e_1_2_12_54_1
  doi: 10.1016/j.jalz.2017.02.007
– ident: e_1_2_12_65_1
  doi: 10.1002/jmv.25915
– ident: e_1_2_12_14_1
  doi: 10.1093/cvr/cvaa078
– ident: e_1_2_12_17_1
  doi: 10.1038/s41593-018-0329-4
– ident: e_1_2_12_77_1
  doi: 10.1084/jem.20202135
– ident: e_1_2_12_39_1
  doi: 10.1152/ajpheart.00945.2005
– ident: e_1_2_12_49_1
  doi: 10.1161/CIRCULATIONAHA.120.047549
– ident: e_1_2_12_52_1
  doi: 10.1038/s41593-020-00758-5
– ident: e_1_2_12_76_1
  doi: 10.1001/jamainternmed.2020.3313
– ident: e_1_2_12_23_1
  doi: 10.1056/NEJMra0910283
– ident: e_1_2_12_74_1
  doi: 10.1080/10739680590895028
– ident: e_1_2_12_24_1
  doi: 10.1016/j.neurobiolaging.2016.11.004
– ident: e_1_2_12_82_1
  doi: 10.1152/ajpheart.00117.2003
– ident: e_1_2_12_13_1
  doi: 10.1007/s00395-008-0749-5
– ident: e_1_2_12_32_1
  doi: 10.1016/S2666-5247(20)30115-4
– ident: e_1_2_12_84_1
  doi: 10.1016/S0140-6736(20)30937-5
– ident: e_1_2_12_51_1
  doi: 10.1161/CIRCULATIONAHA.120.051362
– ident: e_1_2_12_10_1
  doi: 10.1152/ajpheart.00679.2010
– ident: e_1_2_12_30_1
  doi: 10.1038/nature13165
– ident: e_1_2_12_89_1
  doi: 10.1038/nm.2022
– ident: e_1_2_12_36_1
  doi: 10.1378/chest.122.5.1774
– ident: e_1_2_12_43_1
  doi: 10.1111/j.1471-4159.1980.tb03721.x
– ident: e_1_2_12_28_1
  doi: 10.2353/ajpath.2007.061088
– year: 2020
  ident: e_1_2_12_27_1
  article-title: Antithrombotic therapy in patients with COVID‐19? ‐Rationale and Evidence‐
  publication-title: International Journal of Cardiology
– ident: e_1_2_12_53_1
  doi: 10.1016/j.biopsych.2008.11.029
– ident: e_1_2_12_85_1
  doi: 10.1161/01.RES.79.3.581
– volume: 24
  start-page: 909
  issue: 7
  year: 2009
  ident: e_1_2_12_20_1
  article-title: Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche
  publication-title: Histology and Histopathology
– ident: e_1_2_12_33_1
  doi: 10.1152/ajpheart.1993.264.3.H909
– ident: e_1_2_12_62_1
  doi: 10.1038/jcbfm.2013.18
– ident: e_1_2_12_75_1
  doi: 10.1126/science.3775368
– ident: e_1_2_12_68_1
  doi: 10.1084/jem.20111622
– ident: e_1_2_12_79_1
  doi: 10.1038/s41577-020-0343-0
– ident: e_1_2_12_88_1
  doi: 10.1016/S1473-3099(20)30701-5
– ident: e_1_2_12_9_1
  doi: 10.1152/japplphysiol.01155.2006
– ident: e_1_2_12_22_1
  doi: 10.1073/pnas.0812671106
– ident: e_1_2_12_61_1
  doi: 10.1111/aas.12581
– ident: e_1_2_12_25_1
  doi: 10.1161/CIRCULATIONAHA.120.049465
– ident: e_1_2_12_64_1
  doi: 10.1007/s00395-014-0409-x
– ident: e_1_2_12_81_1
  doi: 10.1016/0026-2862(79)90042-6
– ident: e_1_2_12_3_1
  doi: 10.1152/ajpheart.00384.2019
– ident: e_1_2_12_12_1
  doi: 10.1016/S1473-3099(20)30434-5
SSID ssj0001033904
Score 2.5752819
SecondaryResourceType review_article
Snippet Corona virus disease 2019 (COVID‐19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV‐2)....
Corona virus disease 2019 (COVID-19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS CoV-2)....
Abstract Corona virus disease 2019 (COVID‐19) causes symptoms from multiple organs after infection by severe acute respiratory syndrome corona virus 2 (SARS...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e14726
SubjectTerms Alzheimer's disease
Angiogenesis
Animals
Anosmia
Blood
Blood coagulation
brain
capillary dysfunction
Carbon dioxide
Cell size
Coronaviruses
COVID-19
COVID-19 - complications
COVID-19 - metabolism
COVID-19 - pathology
Diabetes mellitus
Endothelial cells
Heart
Humans
Hypertension
Hypoxemia
Hypoxia
Infections
Inflammation
Influenza
Injuries
long‐term symptoms
Lungs
microcirculation
Microvasculature
Microvessels - metabolism
Microvessels - pathology
Microvessels - virology
Mood
muscle
Olfaction disorders
Oxygen - blood
Oxygen - metabolism
Oxygen Consumption
Oxygenation
Pain
Pericytes
Permeability
Physiology
Post-Acute COVID-19 Syndrome
Rehabilitation
Respiratory diseases
SARS-CoV-2 - pathogenicity
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Short Review
Short Reviews
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT1wQUH5CCzJSxQGImjhjO-G2LFQLEj-itCqnyHFsdSU2WXVTib3xCLwEL8aTMONkV7uiggs5RcnIcTKf7W-c-WHsQCCJT8GaWIPPYtDGxLmyIq4cHjZR1njaGnj3Xk1O4O2ZPNso9UU-YX164P7DHZoqkQnOmdoDcv_cV7XGGVV5R1WXZB-6h2vehjEVdleSDI15GALyIE_hEHst8FRTGoWNJShk6r-KXv7pJbnJXsPyc3ST3Rh4Ix_1_b3FrrnmNtsdNWgzz5b8CQ-enGGLfJf9PB59Oubj9vTX9x-Ch2gVV_MZud6tHE95bWY4k3DT1HyxnM2xlQXvQxbDtVA6nI8_nL55hY2kxQs-3nC75q3n1sypYNHFkne03E07lKNC9bwPJV48513QKT9fzttvUxOaRTgjAvtoyTvs5Oj15_EkHsoxxJZYClqaua19USnpnfQaXGG1qCC3Jq3RDkqMdErU9BvQI2lJfeULpU2KqspwKlMmu8t2mrZx9xn3eWGUBBTABhIpTSFBaGOFLwAyqCL2dKWh0g65yqlkxteSbBZSZ0nqLIM6I3awFp73KTquFntJql6LUF7tcAHRVg5oK_-Ftojtr4BSDoN9UQrIkSbrhJ7xeH0bhyn9ezGNay-DDBB1LXTE7vW4WveEwt4yleQR01uI2-rq9p1meh5SgescCpBZxJ4FbP7t_cuPky8inD34H19ij10X5N4THNj32U53cekeIj_rqkdhKP4GxSs7Nw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLggSnkECjJSxQGImjh-JFzQslAtSDxEabWcIsex25XYJN1NJfbGT-BP8Mf4Jcw42e2uqJpTlIwsWzP2fDOeByF7DEB8zI0OFXdJyJXWYSoNCwsLj4mk0Q5dAx8_ydER_zAW497hNu_DKpdnoj-oy9qgj3yf8RSwiAKT4XVzFmLXKLxd7VtoXCc3sHQZhnSpsbrwsUQJmPS8T8vjacz3Ye4MXhUWU1hTRL5e_2Ug8_9YyXUM65XQwW1yq0ePdNCxe5tcs9UdsjOowHKeLugz6uM5vaN8h_w5HHw9pMP6-O-v34z6nBVb0ikG4C3DT2mpp3CeUF2VdL6YNjDKnHaJi_6bbyBOh5-P37-FQeLsFR2uBV_T2lGjG2xbNFvQFpXepAU6bFdPu4Ti-Uvaes7S00VT_5xoPywINchhlzN5lxwdvPs2HIV9U4bQIFYBezM1pcsKKZwVTnGbGcUKnhodl2ANRVpYyUq8DHQAXWJXuEwqHUtnEzjQpE7uka2qruwDQl2aaSk4EMAAkRA6E5wpbZjLOE94EZDnSw7lpq9Yjo0zfuRouSA7c2Rn7tkZkL0VcdMV6ric7A2yekWC1bX9h3p2kvebNddFJCLQ08pxsDdTV5QKtDgsATt9AcIKyO5SUPJ-y8_zCwENyNPVb9iseAOjK1ufexqOADZTAbnfydVqJpj8lsgoDYjakLiNqW7-qSanviC4SnnGRRKQF142r1p__mX0nfm3h1cv4hG5yTB8xweo75KtdnZuHwP-aosnfpP9AwvlNAg
  priority: 102
  providerName: ProQuest
– databaseName: WIley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXLggSnkECjJSxQGISBw_Em7LQrUgARWlVTlFjmN3V2KT1W4qNTd-An-CP8YvYcbJpl1RIZFTHhMn0cx4vnHmQcgeAxAfc6NDxV0ScqV1mErDwsLCZiJptMOlgY-f5OSIfzgRJ31sDubCdPUhhgU31Aw_X6OC66LrQsLTmGNr2mnL4EAxeZ3cwORaLJ3P-MHFEkuUgEfP-6w8vOvVxT0bdsiX678KY_4dKnkZwnobtH-b3OrBIx113N4m12x1h-yMKnCc5y19Rn04p18n3yG_DkdfDum4Pv794yejPmXFlnSO8Xfr6FNa6jlMJ1RXJV218wWMsqJd3qI_5_uH0_Hn4_dvYZA4e03Hl2Kvae2o0QvsWrRsaYM2b9YAHXarp10-8eolbTxj6bRd1Ocz7YcFmQYx7FIm75Kj_Xdfx5Ow78kQGoQq4G6mpnRZIYWzwiluM6NYwVOj4xKcoUgLK1mJ_wIdIJfYFS6TSsfS2QTmM6mTe2Srqiv7gFCXZloKDgQwQCSEzgRnShvmMs4TXgTk-ZpDuekLlmPfjO85Oi7IzhzZmXt2BmRvIF50dTquJnuDrB5IsLi2P1EvT_NeV3NdRCICM60cB3czdUWpwIjDJ2CjLwBYAdldC0rea_wqZzwFrKwifMbT4TLoKv6A0ZWtzzwNR_yaqYDc7-RqeBPMfUtklAZEbUjcxqtuXqlmU18PXKU84yIJyAsvm__6_vxg8o35vYf_Rf2I3GQYzOPD1XfJVrM8s48BjTXFE69zfwDJmTVi
  priority: 102
  providerName: Wiley-Blackwell
Title SARS CoV‐2 related microvascular damage and symptoms during and after COVID‐19: Consequences of capillary transit‐time changes, tissue hypoxia and inflammation
URI https://onlinelibrary.wiley.com/doi/abs/10.14814%2Fphy2.14726
https://www.ncbi.nlm.nih.gov/pubmed/33523608
https://www.proquest.com/docview/2489237026
https://www.proquest.com/docview/2484242397
https://pubmed.ncbi.nlm.nih.gov/PMC7849453
https://doaj.org/article/ab0502997f41448fbd72846fe0297509
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEF7158IFAeXHUKJFqjgABnu93rWREEpDq4DUErWkSk_Weu2lkRo7JK7U3HgEXoIX40mYWdtRAxESPkSWPd6sPTOeb9bzQ8geAxDvc61cyU3gcqmUGwnN3DSHTXtCK4NLA0fHoj_kn0bhaIO0zTibBzhf69phP6nh7PL19bfFe1D4d6jwPPL5G5gQg13JxCbZBpMkUUOPGpxvF1u8AHx73uTn_XHNikWyhfvXoc2_gyZvgllrjQ7vkNsNjKTdmu93yUZe3CM73QJc6MmCPqc2sNOumO-Qn6fdk1PaK89-ff_BqE1eyTM6wUi8Ng6VZmoCLxaqiozOF5MpjDKndQajPWY7idPe57OPH2AQP35LezeisGlpqFZT7F80W9AKrd-4AjrsW0_rzOL5K1pZFtOLxbS8His7LDxvEMg6efI-GR4efOn13aY7g6sRtIDjGenMxKkITR4ayfNYS5bySCs_A7fIU2EuWIZfBQ1gGN-kJhZS-cLkAbzZhAoekK2iLPJHhJooViLkQAADeGGo4pAzqTQzMecBTx3youVQopvS5dhB4zJBFwbZmSA7E8tOh-wtiad1xY71ZPvI6iUJltm2B8rZ16TR2kSlXuiBwZaGg-MZmTSTYM7hFrDlF0Ath-y2gpK0opswHgFqlh7-x7PladBa_BSjiry8sjQckWwsHfKwlqvlTDALLhBe5BC5InErU109U4wvbGVwGfGYh4FDXlrZ_Nf9J4P-ObN7j_-L-gm5xTCsxwau75KtanaVPwVcVqUdssn4AH7lSHbI9v7B8eCkY9c4OlYbfwP2NT5i
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QEuCCjQQAEjFQ5A1MRx4gQJoe221Za2S9U_lVNwEpuuxCbLbirYG4_AS3DloXgSxk6y3RVVb80pSkZWnPnxN_b8AKxSBPEuS4XNmfJsxoWwwyCldiLxSp0gFUpvDez1gu4x-3Dqny7AnyYXRodVNjbRGOqsSPUe-RplIWIRji7D--E3W3eN0qerTQuNSix25OQ7umzjd9sbyN8XlG5tHnW6dt1VwE71YosOU5hmKkoCX0lfcSajlNOEhalwM4TzjvBlQDN9mqVw7XVVoqKACzdQ0kONDISH496AReahK9OCxfXN3v7Bxa6O43mRw-pEQBa6bA3_FsVbrss3zCx9pkPAZbD2_-jMWdRslr2tO3C7xqukXQnYXViQ-T1Yaufoqw8m5CUxEaRma34Jfh-2Dw5Jpzj5-_MXJSZLRmZkoEP-moBXkokBWjAi8oyMJ4MhjjImVaqkeWZalpPOx5PtDRzEjd6Szky4NykUScVQN0oaTUipl9l-iXRlfyBJlcI8fkNKI0vkbDIsfvSFGRbVCCW_ytK8D8fXwrAH0MqLXC4DUWEkAp8hAQ7g-L6IfEa5SKmKGPNYYsGrhkNxWtdI1606vsbaV9LsjDU7Y8NOC1anxMOqNMjlZOua1VMSXc_bPChGX-LaPMQicXwHkQFXDD3cUCUZR9yAU9C9xRDTWbDSCEpcG5lxfKESFjyfvkbzoM98RC6Lc0PDNGSOuAUPK7mafolOt0MpDi3gcxI396nzb_L-mSlBzkMWMd-z4LWRzavmH-93P1Fz9-jqSTyDm92jvd14d7u38xhuUR08ZMLjV6BVjs7lE0R_ZfK0VjkCn69by_8BgtNxzQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLbGkBA3CBg_gQFGGlwAURPHiRMkhEpL1TIYE2NTuQqOY7NKNCltJ-gdj8BL8BI8Dk_COU7SdWLa3XIVJUdWnPPj79jnh5AtBiDe50q6gpvA5UJKN44UczMNl_IiJQ1uDbzbifr7_M0wHK6RP00uDIZVNjbRGuq8VLhH3mI8BiwiwGVomTosYrfbezn55mIHKTxpbdppVCKyrRffwX2bvRh0gdePGOu9_tjpu3WHAVfhwgvOU6xyk2RRaHRoBNeJEizjsZJ-DtDek6GOWI4nWwbWYd9kJomE9COjA9DOSAYw7gVyUQShjzomhuJ4f8cLgsTjdUogj33egv_G4FZgIYeVRdD2CjgN4P4fp7mKn-0C2LtKrtTIlbYrUbtG1nRxnWy0C_Daxwv6mNpYUrtJv0F-77U_7NFOefD35y9Gbb6MzukYg_-a0FeayzHYMiqLnM4W4wmMMqNV0qR9ZpuX0877g0EXBvGT57SzEvhNS0OVnGDLpOmCznHBHc2Bbj4aa1olM8-e0bmVKnq4mJQ_RtIOCwoFOlDla94g--fCrptkvSgLfZtQEycyCjkQwABeGMok5ExIxUzCecAzhzxpOJSqulo6Nu34mqLXhOxMkZ2pZadDtpbEk6pIyOlkr5DVSxKs7G0flNMvaW0oUpl5oQcYQRgOvm5sslwAgoApYJcxQHcO2WwEJa3NzSw9Vg6HPFy-BkOBpz-y0OWRpeEInhPhkFuVXC2_BBPvgsiLHSJOSNyJTz35phgd2mLkIuYJDwOHPLWyedb8093-J2bv7pw9iQfkEuh2-naws32XXGYYRWTj5DfJ-nx6pO8BDJxn962-UfL5vBX8H1kVdJ0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS+CoV%E2%80%902+related+microvascular+damage+and+symptoms+during+and+after+COVID%E2%80%9019%3A+Consequences+of+capillary+transit%E2%80%90time+changes%2C+tissue+hypoxia+and+inflammation&rft.jtitle=Physiological+reports&rft.au=%C3%98stergaard%2C+Leif&rft.date=2021-02-01&rft.eissn=2051-817X&rft.volume=9&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.14814%2Fphy2.14726&rft.externalDBID=10.14814%252Fphy2.14726&rft.externalDocID=PHY214726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-817X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-817X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-817X&client=summon