Genetic evidence of intercontinental movement of avian influenza in a migratory bird: the northern pintail (Anas acuta)

The role of migratory birds in the movement of the highly pathogenic (HP) avian influenza H5N1 remains a subject of debate. Testing hypotheses regarding intercontinental movement of low pathogenic avian influenza (LPAI) viruses will help evaluate the potential that wild birds could carry Asian-origi...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology Vol. 17; no. 21; pp. 4754 - 4762
Main Authors KOEHLER, ANSON V, PEARCE, JOHN M, FLINT, PAUL L, FRANSON, J. CHRISTIAN, IP, HON S
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.11.2008
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The role of migratory birds in the movement of the highly pathogenic (HP) avian influenza H5N1 remains a subject of debate. Testing hypotheses regarding intercontinental movement of low pathogenic avian influenza (LPAI) viruses will help evaluate the potential that wild birds could carry Asian-origin strains of HP avian influenza to North America during migration. Previous North American assessments of LPAI genetic variation have found few Asian reassortment events. Here, we present results from whole-genome analyses of LPAI isolates collected in Alaska from the northern pintail (Anas acuta), a species that migrates between North America and Asia. Phylogenetic analyses confirmed the genetic divergence between Asian and North American strains of LPAI, but also suggested inter-continental virus exchange and at a higher frequency than previously documented. In 38 isolates from Alaska, nearly half (44.7%) had at least one gene segment more closely related to Asian than to North American strains of LPAI. Additionally, sequences of several Asian LPAI isolates from GenBank clustered more closely with North American northern pintail isolates than with other Asian origin viruses. Our data support the role of wild birds in the intercontinental transfer of influenza viruses, and reveal a higher degree of transfer in Alaska than elsewhere in North America.
AbstractList The role of migratory birds in the movement of the highly pathogenic (HP) avian influenza H5N1 remains a subject of debate. Testing hypotheses regarding intercontinental movement of low pathogenic avian influenza (LPAI) viruses will help evaluate the potential that wild birds could carry Asian‐origin strains of HP avian influenza to North America during migration. Previous North American assessments of LPAI genetic variation have found few Asian reassortment events. Here, we present results from whole‐genome analyses of LPAI isolates collected in Alaska from the northern pintail (Anas acuta), a species that migrates between North America and Asia. Phylogenetic analyses confirmed the genetic divergence between Asian and North American strains of LPAI, but also suggested inter‐continental virus exchange and at a higher frequency than previously documented. In 38 isolates from Alaska, nearly half (44.7%) had at least one gene segment more closely related to Asian than to North American strains of LPAI. Additionally, sequences of several Asian LPAI isolates from GenBank clustered more closely with North American northern pintail isolates than with other Asian origin viruses. Our data support the role of wild birds in the intercontinental transfer of influenza viruses, and reveal a higher degree of transfer in Alaska than elsewhere in North America.
The role of migratory birds in the movement of the highly pathogenic (HP) avian influenza H5N1 remains a subject of debate. Testing hypotheses regarding intercontinental movement of low pathogenic avian influenza (LPAI) viruses will help evaluate the potential that wild birds could carry Asian-origin strains of HP avian influenza to North America during migration. Previous North American assessments of LPAI genetic variation have found few Asian reassortment events. Here, we present results from whole-genome analyses of LPAI isolates collected in Alaska from the northern pintail (Anas acuta), a species that migrates between North America and Asia. Phylogenetic analyses confirmed the genetic divergence between Asian and North American strains of LPAI, but also suggested inter-continental virus exchange and at a higher frequency than previously documented. In 38 isolates from Alaska, nearly half (44.7%) had at least one gene segment more closely related to Asian than to North American strains of LPAI. Additionally, sequences of several Asian LPAI isolates from GenBank clustered more closely with North American northern pintail isolates than with other Asian origin viruses. Our data support the role of wild birds in the intercontinental transfer of influenza viruses, and reveal a higher degree of transfer in Alaska than elsewhere in North America. [PUBLICATION ABSTRACT]
The role of migratory birds in the movement of the highly pathogenic (HP) avian influenza H5N1 remains a subject of debate. Testing hypotheses regarding intercontinental movement of low pathogenic avian influenza (LPAI) viruses will help evaluate the potential that wild birds could carry Asian-origin strains of HP avian influenza to North America during migration. Previous North American assessments of LPAI genetic variation have found few Asian reassortment events. Here, we present results from whole-genome analyses of LPAI isolates collected in Alaska from the northern pintail (Anas acuta), a species that migrates between North America and Asia. Phylogenetic analyses confirmed the genetic divergence between Asian and North American strains of LPAI, but also suggested inter-continental virus exchange and at a higher frequency than previously documented. In 38 isolates from Alaska, nearly half (44.7%) had at least one gene segment more closely related to Asian than to North American strains of LPAI. Additionally, sequences of several Asian LPAI isolates from GenBank clustered more closely with North American northern pintail isolates than with other Asian origin viruses. Our data support the role of wild birds in the intercontinental transfer of influenza viruses, and reveal a higher degree of transfer in Alaska than elsewhere in North America.The role of migratory birds in the movement of the highly pathogenic (HP) avian influenza H5N1 remains a subject of debate. Testing hypotheses regarding intercontinental movement of low pathogenic avian influenza (LPAI) viruses will help evaluate the potential that wild birds could carry Asian-origin strains of HP avian influenza to North America during migration. Previous North American assessments of LPAI genetic variation have found few Asian reassortment events. Here, we present results from whole-genome analyses of LPAI isolates collected in Alaska from the northern pintail (Anas acuta), a species that migrates between North America and Asia. Phylogenetic analyses confirmed the genetic divergence between Asian and North American strains of LPAI, but also suggested inter-continental virus exchange and at a higher frequency than previously documented. In 38 isolates from Alaska, nearly half (44.7%) had at least one gene segment more closely related to Asian than to North American strains of LPAI. Additionally, sequences of several Asian LPAI isolates from GenBank clustered more closely with North American northern pintail isolates than with other Asian origin viruses. Our data support the role of wild birds in the intercontinental transfer of influenza viruses, and reveal a higher degree of transfer in Alaska than elsewhere in North America.
The role of migratory birds in the movement of the highly pathogenic (HP) avian influenza H5N1 remains a subject of debate. Testing hypotheses regarding intercontinental movement of low pathogenic avian influenza (LPAI) viruses will help evaluate the potential that wild birds could carry Asian‐origin strains of HP avian influenza to North America during migration. Previous North American assessments of LPAI genetic variation have found few Asian reassortment events. Here, we present results from whole‐genome analyses of LPAI isolates collected in Alaska from the northern pintail ( Anas acuta ), a species that migrates between North America and Asia. Phylogenetic analyses confirmed the genetic divergence between Asian and North American strains of LPAI, but also suggested inter‐continental virus exchange and at a higher frequency than previously documented. In 38 isolates from Alaska, nearly half (44.7%) had at least one gene segment more closely related to Asian than to North American strains of LPAI. Additionally, sequences of several Asian LPAI isolates from GenBank clustered more closely with North American northern pintail isolates than with other Asian origin viruses. Our data support the role of wild birds in the intercontinental transfer of influenza viruses, and reveal a higher degree of transfer in Alaska than elsewhere in North America.
Author KOEHLER, ANSON V.
PEARCE, JOHN M.
FLINT, PAUL L.
FRANSON, J. CHRISTIAN
IP, HON S.
Author_xml – sequence: 1
  fullname: KOEHLER, ANSON V
– sequence: 2
  fullname: PEARCE, JOHN M
– sequence: 3
  fullname: FLINT, PAUL L
– sequence: 4
  fullname: FRANSON, J. CHRISTIAN
– sequence: 5
  fullname: IP, HON S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19140989$$D View this record in MEDLINE/PubMed
BookMark eNqNkl9v0zAUxSM0xLrBVwCLB7Q9pNhx7MRIIE3VKH8KPJRpe7Nuk5vhkjjFTrqWT4-zjiHthfrlXtm_c6yrc4-iA9tajCLC6JiF83o5ZlyKOFHp1TihNB9TrgQfbx5Fo_uHg2hElUxiRnN-GB15v6SU8USIJ9EhUyylKlej6GaKFjtTEFybEm2BpK2IsR26orWdsWg7qEnTrrEJ7fAIawM2IFXdo_0NoSNAGnPtoGvdliyMK9-Q7gcS27pQnCWr4AemJidnFjyBou_g9Gn0uILa47O7ehxdvD__PvkQz75NP07OZnEh8pTHKSuKUnKZ5UqhLBJMxYKWFWQ0UVgmCy5BhKkocA7hppKVQkiyTOU0gypMfhy92vmuXPurR9_pxvgC6xostr3XUikhciX_C6Y5S6Tcw5EpxZi4dXz5AFy2vbNhWp0wKvOMSRWg53dQv2iw1CtnGnBb_TehAOQ7oHCt9w6rfwjVwzLopR4y10PmelgGfbsMehOk7x5IC9NBZ0KwLuSxj8HbncGNqXG798f6y_lk6II-3umN73Bzrwf3U8uMZ0Jffp3q7Ory86fZXOl54F_s-ApaDdfOeH0xT4Z8mZAsZYr_AdLc5kM
CitedBy_id crossref_primary_10_1016_j_virol_2010_02_006
crossref_primary_10_1038_srep23380
crossref_primary_10_1016_j_meegid_2014_01_014
crossref_primary_10_1016_j_prevetmed_2020_105234
crossref_primary_10_1111_j_1600_0706_2010_18961_x
crossref_primary_10_1111_j_1752_4571_2009_00071_x
crossref_primary_10_1371_journal_pone_0050834
crossref_primary_10_1637_8746_032709_Reg_1
crossref_primary_10_3201_eid2302_161616
crossref_primary_10_3382_ps_2013_03105
crossref_primary_10_1556_avet_2013_017
crossref_primary_10_1111_tbed_13136
crossref_primary_10_1016_j_virol_2014_04_009
crossref_primary_10_1038_srep09484
crossref_primary_10_1371_journal_pone_0057614
crossref_primary_10_1016_j_meegid_2014_06_007
crossref_primary_10_1017_S0950268810002372
crossref_primary_10_2743_jve_15_45
crossref_primary_10_1111_1365_2656_12581
crossref_primary_10_1371_journal_pone_0086999
crossref_primary_10_3390_v12101085
crossref_primary_10_1371_journal_pone_0014454
crossref_primary_10_1007_s11262_009_0423_5
crossref_primary_10_1890_14_1820_1
crossref_primary_10_2807_1560_7917_ES2015_20_12_21069
crossref_primary_10_1371_journal_pone_0092075
crossref_primary_10_1111_tbed_12213
crossref_primary_10_3109_1040841X_2013_870967
crossref_primary_10_1111_j_1749_6632_2010_05451_x
crossref_primary_10_1111_mec_12101
crossref_primary_10_18470_1992_1098_2022_2_233_263
crossref_primary_10_1007_s11262_011_0706_5
crossref_primary_10_1525_cond_2011_100009
crossref_primary_10_1371_journal_pone_0090826
crossref_primary_10_1186_s12862_019_1431_2
crossref_primary_10_1098_rspb_2010_0026
crossref_primary_10_1002_ece3_6039
crossref_primary_10_1007_s11262_020_01797_7
crossref_primary_10_1089_vbz_2010_0246
crossref_primary_10_3201_eid1608_100032
crossref_primary_10_1111_j_1365_294X_2010_04908_x
crossref_primary_10_1111_irv_12250
crossref_primary_10_3390_v15051121
crossref_primary_10_1111_irv_12253
crossref_primary_10_1111_j_1600_048X_2011_05320_x
crossref_primary_10_1111_eva_12156
crossref_primary_10_3390_microorganisms11102601
crossref_primary_10_1016_j_virusres_2009_12_002
crossref_primary_10_1186_1471_2334_10_187
crossref_primary_10_1016_j_meegid_2014_05_029
crossref_primary_10_1051_cagri_2016037
crossref_primary_10_1016_j_virol_2018_02_002
crossref_primary_10_1128_JVI_02193_20
crossref_primary_10_1111_2041_210X_12897
crossref_primary_10_1371_journal_pone_0020664
crossref_primary_10_1016_j_cll_2009_10_005
crossref_primary_10_2217_fvl_12_45
crossref_primary_10_1093_icb_icw055
crossref_primary_10_1111_tbed_13181
crossref_primary_10_1371_journal_pone_0063270
crossref_primary_10_3390_v15020483
crossref_primary_10_1111_tbed_12244
crossref_primary_10_1637_0005_2086_64_2_109
crossref_primary_10_1139_cjm_2013_0507
crossref_primary_10_1016_j_virol_2010_07_031
crossref_primary_10_1016_j_meegid_2018_09_001
crossref_primary_10_1016_j_prevetmed_2013_11_011
crossref_primary_10_1007_s00705_009_0550_2
crossref_primary_10_1111_j_1365_2664_2010_01845_x
crossref_primary_10_1016_j_ijppaw_2014_12_004
crossref_primary_10_1371_journal_pone_0026118
crossref_primary_10_1371_journal_pone_0144524
crossref_primary_10_1098_rstb_2018_0257
crossref_primary_10_1007_s11262_010_0504_5
crossref_primary_10_1186_1471_2458_14_1113
crossref_primary_10_1016_j_ecolmodel_2014_08_005
crossref_primary_10_1016_j_virusres_2009_02_018
crossref_primary_10_1111_j_1749_4877_2009_00180_x
crossref_primary_10_1637_8766_033109_ResNote_1
crossref_primary_10_1007_s00705_012_1323_x
crossref_primary_10_1186_s12985_015_0377_2
crossref_primary_10_1016_j_envint_2018_06_018
crossref_primary_10_1111_tbed_13226
crossref_primary_10_1016_j_meegid_2011_09_011
crossref_primary_10_1186_1743_422X_10_112
crossref_primary_10_1016_j_epidem_2009_11_003
crossref_primary_10_1637_8741_032509_Reg_1
crossref_primary_10_1128_mSphere_00362_16
crossref_primary_10_1371_journal_pone_0104360
crossref_primary_10_1637_11476_072616_ResNote
crossref_primary_10_1525_auk_2011_128_2_205
crossref_primary_10_1111_j_1474_919X_2010_01010_x
crossref_primary_10_1093_icb_icw030
crossref_primary_10_1016_j_ygeno_2009_09_005
crossref_primary_10_1007_s00705_010_0839_1
crossref_primary_10_1111_brv_12704
crossref_primary_10_3109_1040841X_2014_920291
crossref_primary_10_1371_journal_pone_0195327
crossref_primary_10_1111_j_1461_0248_2011_01703_x
crossref_primary_10_1099_vir_0_046581_0
crossref_primary_10_1017_S1466252310000058
crossref_primary_10_1371_journal_pone_0218506
crossref_primary_10_1637_10849_042214_Reg_1
crossref_primary_10_1099_vir_0_029728_0
crossref_primary_10_1016_j_virusres_2009_07_015
crossref_primary_10_12688_wellcomeopenres_22770_1
crossref_primary_10_1007_s12665_016_5289_y
crossref_primary_10_1007_s00705_013_1761_0
crossref_primary_10_1128_JVI_00728_15
crossref_primary_10_1016_j_prevetmed_2014_09_014
crossref_primary_10_1186_1743_422X_10_179
crossref_primary_10_1111_tbed_12872
crossref_primary_10_1371_journal_pone_0031471
Cites_doi 10.3201/eid1304.061072
10.1128/JVI.78.16.8771-8779.2004
10.1016/j.jviromet.2007.01.015
10.1128/jcm.35.10.2623-2627.1997
10.1128/JVI.66.2.1129-1138.1992
10.1007/BF01322743
10.1007/s00705-007-0994-1
10.1016/j.virol.2008.01.041
10.1111/j.1095-8312.2004.00368.x
10.1046/j.1365-2540.2001.00895.x
10.1139/z05-125
10.1186/1743-422X-5-71
10.3201/eid1408.080078
10.3201/eid1211.060652
10.1073/pnas.0609227103
10.1637/7575-040106R1.1
10.1128/MMBR.56.1.152-179.1992
10.1642/0078-6594(2006)60[3:AIIWBS]2.0.CO;2
10.1139/m80-108
10.1186/1743-422X-4-132
10.1139/z96-112
10.3201/eid1404.071016
10.1016/0042-6822(87)90353-9
10.1128/jvi.71.8.6128-6135.1997
10.1007/s007050170002
10.1126/science.1121586
10.1016/j.jviromet.2006.03.027
10.1007/s00705-005-0543-8
10.1637/8035-062507-Reg
10.1093/bioinformatics/12.4.357
10.1111/j.1474-919X.2007.00699.x
10.2193/0022-541X(2005)069[1202:ASASFO]2.0.CO;2
10.3201/eid1409.080655
10.1099/vir.0.83369-0
10.3201/eid1305.070013
10.1016/j.jviromet.2004.08.008
10.1128/JVI.02005-07
10.1111/j.0908-8857.2004.03297.x
10.1007/s11262-008-0230-4
10.1099/0022-1317-80-12-3167
10.1016/j.virusres.2004.12.004
10.3201/eid1401.061562
ContentType Journal Article
Copyright 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd
Journal compilation © 2008 Blackwell Publishing Ltd
Copyright_xml – notice: 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd
– notice: Journal compilation © 2008 Blackwell Publishing Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7U9
F1W
H94
H95
L.G
7S9
L.6
7X8
DOI 10.1111/j.1365-294X.2008.03953.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Virology and AIDS Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Entomology Abstracts
MEDLINE - Academic
AGRICOLA
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 4762
ExternalDocumentID 1583208271
19140989
10_1111_j_1365_294X_2008_03953_x
MEC3953
ark_67375_WNG_7XWKJLS9_S
US201301561419
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations Asia
North America
USA, Alaska
Alaska
GeographicLocations_xml – name: North America
– name: Asia
– name: USA, Alaska
– name: Alaska
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7U9
F1W
H94
H95
L.G
7S9
L.6
7X8
ID FETCH-LOGICAL-c5843-41ccd6367899e6c2e45b0dfa7029ed2b36a50130a33a29ef6f9ea2779807af083
IEDL.DBID DR2
ISSN 0962-1083
1365-294X
IngestDate Fri Jul 11 07:29:24 EDT 2025
Fri Jul 11 15:40:12 EDT 2025
Fri Jul 11 10:19:43 EDT 2025
Wed Aug 13 04:26:47 EDT 2025
Mon Jul 21 06:05:24 EDT 2025
Thu Apr 24 22:50:10 EDT 2025
Tue Jul 01 01:21:45 EDT 2025
Wed Jan 22 17:06:05 EST 2025
Wed Oct 30 09:59:12 EDT 2024
Wed Dec 27 18:31:58 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5843-41ccd6367899e6c2e45b0dfa7029ed2b36a50130a33a29ef6f9ea2779807af083
Notes http://dx.doi.org/10.1111/j.1365-294X.2008.03953.x
ark:/67375/WNG-7XWKJLS9-S
istex:2FA4C76022387AB0E4B5F4B899128B20D9D669B9
ArticleID:MEC3953
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 19140989
PQID 210687169
PQPubID 31465
PageCount 9
ParticipantIDs proquest_miscellaneous_69955896
proquest_miscellaneous_48126608
proquest_miscellaneous_19911596
proquest_journals_210687169
pubmed_primary_19140989
crossref_primary_10_1111_j_1365_294X_2008_03953_x
crossref_citationtrail_10_1111_j_1365_294X_2008_03953_x
wiley_primary_10_1111_j_1365_294X_2008_03953_x_MEC3953
istex_primary_ark_67375_WNG_7XWKJLS9_S
fao_agris_US201301561419
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2008
PublicationDateYYYYMMDD 2008-11-01
PublicationDate_xml – month: 11
  year: 2008
  text: November 2008
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Oxford
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2008
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
References Li OTW, Barr I, Leung CYH et al . (2007) Reliable universal RT-PCR assays for studying influenza polymerase subunit gene sequences from all 16 haemagglutinin subtypes. Journal of Virology Methods, 142, 218-222.
Kida H, Kawaoka Y, Naeve C, Webster RG (1987) Antigenic and genetic conservation of H3 influenza virus in wild ducks. Virology, 159, 109-119.
Krauss S, Obert CA, Franks J et al . (2007) Influenza in migratory birds and evidence of limited intercontinental virus exchange. Public Library of Science, Pathogens, 3, 1684-1693.
Bao Y, Bolotov P, Dernovoy D et al . (2008) The influenza virus resource at the national center for biotechnology information. Journal of Virology, 82, 596-601.
Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiology Review, 56, 152-179.
Brown JD, Stallknecht DE, Beck JR, Suarez DL, Swayne DE (2006) Susceptibility of North American ducks and gulls to H5N1 highly pathogenic avian influenza viruses. Emerging Infectious Diseases, 12, 1663-1670.
Sharp GB, Kawaoka Y, Jones DJ et al . (1997) Coinfection of wild ducks by influenza A viruses: distribution patterns and biological significance. Journal of Virology, 71, 6128-6135.
Parmley EJ, Bastien N, Booth TF et al . (2008) Wild bird influenza survey, Canada, 2005. Emerging Infectious Diseases, 14, 84-87.
Cronin MA, Grand JB, Esler D, Derksen DV, Scribner KT (1996) Breeding populations of northern pintails have similar mitochondrial DNA. Canadian Journal of Zoology, 74, 992-999.
Dugan VG, Chen R, Spiro DJ et al . (2008) The evolutionary genetics and emergence of avian influenza viruses in wild birds. Public Library of Science, Pathogens, 4, e1000076.
Kim HM, Oh JH, Seo SH et al . (2008) Genetic characterization of avian influenza viruses isolated from waterfowl in southern part of South Korea in 2006. Virus Genes, 37, 49-51.
Uchida Y, Mase M, Yoneda K et al . (2008) Highly pathogenic avian influenza virus (H5N1) isolated from whooper swans, Japan. Emerging Infectious Diseases, 14, 1427-1429.
Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Bioinformatics, 12, 357-358.
Phipps LP, Essen SC, Brown IH (2004) Genetic subtyping of influenza A viruses using RT-PCR with a single set of primers based on conserved sequences within the HA2 coding region. Journal of Virology Methods, 122, 119-122.
Flint PL (2007) Applying the scientific method when assessing the influence of migratory birds on the dispersal of H5N1. Virology Journal, 4, 132.
Ip H, Flint PL, Franson JC et al . (2008) Prevalence of influenza A viruses in wild migratory birds in Alaska: patterns of variation in detection at the crossroads of intercontinental flyways. Virology Journal, 5, 71.
Jahangir A, Watanabe Y, Chinen O et al . (2008) Surveillance of avian influenza viruses in northern pintails (Anas acuta) in Tohoku District, Japan. Avian Diseases, 52, 49-53.
Runstadler JA, Happ GM, Slemons RD (2007) Using RT-PCR analysis and virus isolation to determine the prevalence of avian influenza virus infections in ducks at Minto Flats State Game Refuge, Alaska, during August 2005. Archives of Virology, 152, 1901-1910.
Chan CH, Lin KL, Chan Y et al . (2006) Amplification of the entire genome of influenza A virus H1N1 and H3N2 subtypes by reverse-transcription polymerase chain reaction. Journal of Virology Methods, 136, 38-43.
Bean WJ, Schell M, Katz J et al . (1992) Evolution of the H3 influenza virus hemagglutinin from human and nonhuman hosts. Journal of Virology, 66, 1129-1138.
Hinshaw VS, Webster RG, Turner B (1980) The perpetuation of orthomyxoviruses and paramyxoviruses in Canadian waterfowl. Canadian Journal of Microbiology, 26, 622-629.
Gauthier-Clerc M, Lebarbenchon C, Thomas F (2007) Recent expansion of highly pathogenic avian influenza H5N1: a critical review. Ibis, 149, 202-214.
Wallensten A, Munster VJ, Elmberg J, Osterhaus ADME, Foucheir RAM, Olsen B (2005) Multiple gene segment reassortment between Eurasian and American lineages of influenza A virus (H6N2) in guillemot (Uria aalge). Archives of Virology, 150, 1685-1692.
Marakova NV, Kaverin NV, Krauss S, Senne D, Webster RG (1999) Transmission of Eurasian avian H2 influenza virus to shorebirds in North America. Journal of General Virology, 80, 3167-3171.
Salzberg SL, Kingsford C, Cattoli G et al . (2007) Genome analysis linking recent European and African influenza (H5N1) viruses. Emerging Infectious Diseases, 13, 713-718.
Miyabayashi Y, Mundkur T (1999) Atlas of Key Sites for Anatidae in the East Asian Flyway. Wetlands International, Tokyo, Japan.
Kear J (2005) Bird Families of the World: Ducks, Geese, and Swans. Oxford University Press Inc., New York.
Lang AS, Kelly A, Runstadler JA (2008) Prevalence and diversity of avian influenza viruses in environmental reservoirs. Journal of General Virology, 89, 509-519.
Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR (2001) Universal primer set for the full-length amplification of all influenza A viruses. Archives of Virology, 146, 2275-2289.
Swofford DL (2003) paup* Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sinauer Associates, Sunderland, Massachusetts.
Kilpatrick AM, Chmura AA, Gibbons DW, Fleischer RC, Marra PP, Daszak P (2006) Predicting the global spread of H5N1 avian influenza. Proceedings of the National Academy of Sciences, USA, 103, 19368-19373.
Miller MR, Takekawa JY, Fleskes JP, Orthmeyer DL, Casazza ML, Perry WM (2005) Spring migration of northern pintail from California's Central Valley wintering area tracked with satellite telemetry: routes, timing, and destinations. Canadian Journal of Zoology, 83, 1314-1332.
Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574.
Clark L, Hall J (2006) Avian influenza in wild birds: status as reservoirs, and risks to humans and agriculture. Ornithological Monographs, 60, 3-29.
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
Kalthoff D, Breithaupt A, Teifke JP et al . (2008) Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans. Emerging Infectious Diseases, 14, 1267-1270.
Feare CJ (2007) The role of wild birds in the spread of HPAI H5N1. Avian Diseases, 51, 440-447.
Obenauer JC, Denson J, Mehta PK et al . (2006) Large-scale sequence analysis of avian influenza isolates. Science, 311, 1562-1563.
Ito T, Okazaki K, Kawaoka Y, Takada A, Webster RG, Kida H (1995) Perpetuation of influenza A viruses in Alaskan waterfowl reservoirs. Archives of Virology, 140, 1163-1172.
Perennou C, Mundkur T, Scott DA (1994) The Asian Waterfowl Census 1987-91: Distribution and Status of Asian Waterfowl. IWRB Publication 24, Kuala Lumpur, Malaysia and Slimbridge, UK.
Widjaja L, Krauss SL, Webby RJ, Xie T, Webster RG (2004) Matrix gene of influenza A viruses from wild aquatic birds: ecology and emergence of influenza A viruses. Journal of Virology, 78, 8771-8779.
Wang R, Soll L, Dugan V et al . (2008) Examining the hemagglutinin subtype diversity among wild duck-origin influenza A viruses using ethanol-fixed cloacal swabs and a novel RT-PCR method. Virology, 375, 182-189.
Nicolai CA, Flint PL, Wege ML (2005) Annual survival and site fidelity of northern pintails banded on the Yukon-Kuskokwim Delta, Alaska. Journal of Wildlife Management, 69, 1202-1210.
Zou S (1997) A practical approach to genetic screening for influenza virus variants. Journal of Clinical Microbiology, 35, 2623-2627.
Keawcharoen J, Van Riel D, Van Amerongen G et al . (2008) Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1). Emerging Infectious Diseases, 14, 600-607.
Posada D, Crandall KA (1998) ModelTest: testing the model of DNA substitution. Bioinformatics, 14, 817-818.
Winker K, McCracken KG, Gibson DD et al . (2007) Movements of birds and avian influenza from Asia into Alaska. Emerging Infectious Diseases, 13, 547-552.
Purchase HG, Arp LH, Domermuth CH, Pearson JE (1989) A Laboratory Manual for the Isolation and Identification of Avian Pathogens, 3rd edn. Kendall/Hunt Publishing Co., Dubuque, Iowa, USA.
Bragstad K, Jørgensen PH, Handberg KJ, Mellergaard S, Corbet S, Fomsgaard A (2005) New avian influenza A virus subtype combination H5N7 identified in Danish mallard ducks. Virus Research, 109, 181-190.
2004; 122
1980; 26
2001; 146
2005; 150
2007; 149
2006; 12
2007; 142
2008; 14
2008; 37
1996; 74
2008; 5
2005
1994
1999; 41
2007; 51
2008; 52
2003; 19
2003
2008; 4
2005; 83
1999; 80
1992; 56
2007; 13
2006; 136
1996; 12
1999
2005; 69
2006; 311
2006; 60
1997; 71
1987; 159
2007; 152
2004; 78
1997; 35
2005; 109
2008; 89
2007; 4
2007; 3
2008; 375
1992; 66
1995; 140
2008; 82
2006; 103
1998; 14
1989
e_1_2_6_32_1
Marakova NV (e_1_2_6_28_1) 1999; 80
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_41_1
Dugan VG (e_1_2_6_9_1) 2008; 4
Krauss S (e_1_2_6_25_1) 2007; 3
e_1_2_6_5_1
e_1_2_6_7_1
Sharp GB (e_1_2_6_42_1) 1997; 71
e_1_2_6_24_1
Purchase HG (e_1_2_6_38_1) 1989
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_31_1
Zou S (e_1_2_6_50_1) 1997; 35
Perennou C (e_1_2_6_35_1) 1994
e_1_2_6_14_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
Kear J (e_1_2_6_20_1) 2005
Swofford DL (e_1_2_6_43_1) 2003
e_1_2_6_21_1
e_1_2_6_40_1
Miyabayashi Y (e_1_2_6_30_1) 1999
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Dugan VG, Chen R, Spiro DJ et al . (2008) The evolutionary genetics and emergence of avian influenza viruses in wild birds. Public Library of Science, Pathogens, 4, e1000076.
– reference: Miller MR, Takekawa JY, Fleskes JP, Orthmeyer DL, Casazza ML, Perry WM (2005) Spring migration of northern pintail from California's Central Valley wintering area tracked with satellite telemetry: routes, timing, and destinations. Canadian Journal of Zoology, 83, 1314-1332.
– reference: Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiology Review, 56, 152-179.
– reference: Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR (2001) Universal primer set for the full-length amplification of all influenza A viruses. Archives of Virology, 146, 2275-2289.
– reference: Posada D, Crandall KA (1998) ModelTest: testing the model of DNA substitution. Bioinformatics, 14, 817-818.
– reference: Purchase HG, Arp LH, Domermuth CH, Pearson JE (1989) A Laboratory Manual for the Isolation and Identification of Avian Pathogens, 3rd edn. Kendall/Hunt Publishing Co., Dubuque, Iowa, USA.
– reference: Obenauer JC, Denson J, Mehta PK et al . (2006) Large-scale sequence analysis of avian influenza isolates. Science, 311, 1562-1563.
– reference: Swofford DL (2003) paup* Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sinauer Associates, Sunderland, Massachusetts.
– reference: Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
– reference: Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574.
– reference: Parmley EJ, Bastien N, Booth TF et al . (2008) Wild bird influenza survey, Canada, 2005. Emerging Infectious Diseases, 14, 84-87.
– reference: Keawcharoen J, Van Riel D, Van Amerongen G et al . (2008) Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1). Emerging Infectious Diseases, 14, 600-607.
– reference: Runstadler JA, Happ GM, Slemons RD (2007) Using RT-PCR analysis and virus isolation to determine the prevalence of avian influenza virus infections in ducks at Minto Flats State Game Refuge, Alaska, during August 2005. Archives of Virology, 152, 1901-1910.
– reference: Kilpatrick AM, Chmura AA, Gibbons DW, Fleischer RC, Marra PP, Daszak P (2006) Predicting the global spread of H5N1 avian influenza. Proceedings of the National Academy of Sciences, USA, 103, 19368-19373.
– reference: Winker K, McCracken KG, Gibson DD et al . (2007) Movements of birds and avian influenza from Asia into Alaska. Emerging Infectious Diseases, 13, 547-552.
– reference: Wang R, Soll L, Dugan V et al . (2008) Examining the hemagglutinin subtype diversity among wild duck-origin influenza A viruses using ethanol-fixed cloacal swabs and a novel RT-PCR method. Virology, 375, 182-189.
– reference: Krauss S, Obert CA, Franks J et al . (2007) Influenza in migratory birds and evidence of limited intercontinental virus exchange. Public Library of Science, Pathogens, 3, 1684-1693.
– reference: Sharp GB, Kawaoka Y, Jones DJ et al . (1997) Coinfection of wild ducks by influenza A viruses: distribution patterns and biological significance. Journal of Virology, 71, 6128-6135.
– reference: Ip H, Flint PL, Franson JC et al . (2008) Prevalence of influenza A viruses in wild migratory birds in Alaska: patterns of variation in detection at the crossroads of intercontinental flyways. Virology Journal, 5, 71.
– reference: Cronin MA, Grand JB, Esler D, Derksen DV, Scribner KT (1996) Breeding populations of northern pintails have similar mitochondrial DNA. Canadian Journal of Zoology, 74, 992-999.
– reference: Widjaja L, Krauss SL, Webby RJ, Xie T, Webster RG (2004) Matrix gene of influenza A viruses from wild aquatic birds: ecology and emergence of influenza A viruses. Journal of Virology, 78, 8771-8779.
– reference: Salzberg SL, Kingsford C, Cattoli G et al . (2007) Genome analysis linking recent European and African influenza (H5N1) viruses. Emerging Infectious Diseases, 13, 713-718.
– reference: Hinshaw VS, Webster RG, Turner B (1980) The perpetuation of orthomyxoviruses and paramyxoviruses in Canadian waterfowl. Canadian Journal of Microbiology, 26, 622-629.
– reference: Flint PL (2007) Applying the scientific method when assessing the influence of migratory birds on the dispersal of H5N1. Virology Journal, 4, 132.
– reference: Li OTW, Barr I, Leung CYH et al . (2007) Reliable universal RT-PCR assays for studying influenza polymerase subunit gene sequences from all 16 haemagglutinin subtypes. Journal of Virology Methods, 142, 218-222.
– reference: Phipps LP, Essen SC, Brown IH (2004) Genetic subtyping of influenza A viruses using RT-PCR with a single set of primers based on conserved sequences within the HA2 coding region. Journal of Virology Methods, 122, 119-122.
– reference: Ito T, Okazaki K, Kawaoka Y, Takada A, Webster RG, Kida H (1995) Perpetuation of influenza A viruses in Alaskan waterfowl reservoirs. Archives of Virology, 140, 1163-1172.
– reference: Lang AS, Kelly A, Runstadler JA (2008) Prevalence and diversity of avian influenza viruses in environmental reservoirs. Journal of General Virology, 89, 509-519.
– reference: Bragstad K, Jørgensen PH, Handberg KJ, Mellergaard S, Corbet S, Fomsgaard A (2005) New avian influenza A virus subtype combination H5N7 identified in Danish mallard ducks. Virus Research, 109, 181-190.
– reference: Kida H, Kawaoka Y, Naeve C, Webster RG (1987) Antigenic and genetic conservation of H3 influenza virus in wild ducks. Virology, 159, 109-119.
– reference: Clark L, Hall J (2006) Avian influenza in wild birds: status as reservoirs, and risks to humans and agriculture. Ornithological Monographs, 60, 3-29.
– reference: Marakova NV, Kaverin NV, Krauss S, Senne D, Webster RG (1999) Transmission of Eurasian avian H2 influenza virus to shorebirds in North America. Journal of General Virology, 80, 3167-3171.
– reference: Kear J (2005) Bird Families of the World: Ducks, Geese, and Swans. Oxford University Press Inc., New York.
– reference: Nicolai CA, Flint PL, Wege ML (2005) Annual survival and site fidelity of northern pintails banded on the Yukon-Kuskokwim Delta, Alaska. Journal of Wildlife Management, 69, 1202-1210.
– reference: Miyabayashi Y, Mundkur T (1999) Atlas of Key Sites for Anatidae in the East Asian Flyway. Wetlands International, Tokyo, Japan.
– reference: Bao Y, Bolotov P, Dernovoy D et al . (2008) The influenza virus resource at the national center for biotechnology information. Journal of Virology, 82, 596-601.
– reference: Perennou C, Mundkur T, Scott DA (1994) The Asian Waterfowl Census 1987-91: Distribution and Status of Asian Waterfowl. IWRB Publication 24, Kuala Lumpur, Malaysia and Slimbridge, UK.
– reference: Jahangir A, Watanabe Y, Chinen O et al . (2008) Surveillance of avian influenza viruses in northern pintails (Anas acuta) in Tohoku District, Japan. Avian Diseases, 52, 49-53.
– reference: Kalthoff D, Breithaupt A, Teifke JP et al . (2008) Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans. Emerging Infectious Diseases, 14, 1267-1270.
– reference: Uchida Y, Mase M, Yoneda K et al . (2008) Highly pathogenic avian influenza virus (H5N1) isolated from whooper swans, Japan. Emerging Infectious Diseases, 14, 1427-1429.
– reference: Gauthier-Clerc M, Lebarbenchon C, Thomas F (2007) Recent expansion of highly pathogenic avian influenza H5N1: a critical review. Ibis, 149, 202-214.
– reference: Zou S (1997) A practical approach to genetic screening for influenza virus variants. Journal of Clinical Microbiology, 35, 2623-2627.
– reference: Kim HM, Oh JH, Seo SH et al . (2008) Genetic characterization of avian influenza viruses isolated from waterfowl in southern part of South Korea in 2006. Virus Genes, 37, 49-51.
– reference: Brown JD, Stallknecht DE, Beck JR, Suarez DL, Swayne DE (2006) Susceptibility of North American ducks and gulls to H5N1 highly pathogenic avian influenza viruses. Emerging Infectious Diseases, 12, 1663-1670.
– reference: Feare CJ (2007) The role of wild birds in the spread of HPAI H5N1. Avian Diseases, 51, 440-447.
– reference: Wallensten A, Munster VJ, Elmberg J, Osterhaus ADME, Foucheir RAM, Olsen B (2005) Multiple gene segment reassortment between Eurasian and American lineages of influenza A virus (H6N2) in guillemot (Uria aalge). Archives of Virology, 150, 1685-1692.
– reference: Bean WJ, Schell M, Katz J et al . (1992) Evolution of the H3 influenza virus hemagglutinin from human and nonhuman hosts. Journal of Virology, 66, 1129-1138.
– reference: Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Bioinformatics, 12, 357-358.
– reference: Chan CH, Lin KL, Chan Y et al . (2006) Amplification of the entire genome of influenza A virus H1N1 and H3N2 subtypes by reverse-transcription polymerase chain reaction. Journal of Virology Methods, 136, 38-43.
– volume: 66
  start-page: 1129
  year: 1992
  end-page: 1138
  article-title: Evolution of the H3 influenza virus hemagglutinin from human and nonhuman hosts
  publication-title: Journal of Virology
– volume: 13
  start-page: 713
  year: 2007
  end-page: 718
  article-title: Genome analysis linking recent European and African influenza (H5N1) viruses
  publication-title: Emerging Infectious Diseases
– year: 2005
– volume: 146
  start-page: 2275
  year: 2001
  end-page: 2289
  article-title: Universal primer set for the full‐length amplification of all influenza A viruses
  publication-title: Archives of Virology
– volume: 4
  start-page: 132
  year: 2007
  article-title: Applying the scientific method when assessing the influence of migratory birds on the dispersal of H5N1
  publication-title: Virology Journal
– year: 1989
– volume: 3
  start-page: 1684
  year: 2007
  end-page: 1693
  article-title: Influenza in migratory birds and evidence of limited intercontinental virus exchange
  publication-title: Public Library of Science, Pathogens
– volume: 12
  start-page: 1663
  year: 2006
  end-page: 1670
  article-title: Susceptibility of North American ducks and gulls to H5N1 highly pathogenic avian influenza viruses
  publication-title: Emerging Infectious Diseases
– volume: 69
  start-page: 1202
  year: 2005
  end-page: 1210
  article-title: Annual survival and site fidelity of northern pintails banded on the Yukon‐Kuskokwim Delta, Alaska
  publication-title: Journal of Wildlife Management
– volume: 26
  start-page: 622
  year: 1980
  end-page: 629
  article-title: The perpetuation of orthomyxoviruses and paramyxoviruses in Canadian waterfowl
  publication-title: Canadian Journal of Microbiology
– volume: 82
  start-page: 596
  year: 2008
  end-page: 601
  article-title: The influenza virus resource at the national center for biotechnology information
  publication-title: Journal of Virology
– volume: 311
  start-page: 1562
  year: 2006
  end-page: 1563
  article-title: Large‐scale sequence analysis of avian influenza isolates
  publication-title: Science
– volume: 71
  start-page: 6128
  year: 1997
  end-page: 6135
  article-title: Coinfection of wild ducks by influenza A viruses: distribution patterns and biological significance
  publication-title: Journal of Virology
– volume: 140
  start-page: 1163
  year: 1995
  end-page: 1172
  article-title: Perpetuation of influenza A viruses in Alaskan waterfowl reservoirs
  publication-title: Archives of Virology
– year: 1994
– volume: 109
  start-page: 181
  year: 2005
  end-page: 190
  article-title: New avian influenza A virus subtype combination H5N7 identified in Danish mallard ducks
  publication-title: Virus Research
– volume: 12
  start-page: 357
  year: 1996
  end-page: 358
  article-title: TreeView: an application to display phylogenetic trees on personal computers
  publication-title: Bioinformatics
– volume: 74
  start-page: 992
  year: 1996
  end-page: 999
  article-title: Breeding populations of northern pintails have similar mitochondrial DNA
  publication-title: Canadian Journal of Zoology
– volume: 14
  start-page: 817
  year: 1998
  end-page: 818
  article-title: ModelTest: testing the model of DNA substitution
  publication-title: Bioinformatics
– volume: 19
  start-page: 1572
  year: 2003
  end-page: 1574
  article-title: MrBayes 3: Bayesian phylogenetic inference under mixed models
  publication-title: Bioinformatics
– volume: 14
  start-page: 600
  year: 2008
  end-page: 607
  article-title: Wild ducks as long‐distance vectors of highly pathogenic avian influenza virus (H5N1)
  publication-title: Emerging Infectious Diseases
– volume: 122
  start-page: 119
  year: 2004
  end-page: 122
  article-title: Genetic subtyping of influenza A viruses using RT‐PCR with a single set of primers based on conserved sequences within the HA2 coding region
  publication-title: Journal of Virology Methods
– volume: 60
  start-page: 3
  year: 2006
  end-page: 29
  article-title: Avian influenza in wild birds: status as reservoirs, and risks to humans and agriculture
  publication-title: Ornithological Monographs
– volume: 52
  start-page: 49
  year: 2008
  end-page: 53
  article-title: Surveillance of avian influenza viruses in northern pintails ( ) in Tohoku District, Japan
  publication-title: Avian Diseases
– volume: 149
  start-page: 202
  year: 2007
  end-page: 214
  article-title: Recent expansion of highly pathogenic avian influenza H5N1: a critical review
  publication-title: Ibis
– volume: 14
  start-page: 1267
  year: 2008
  end-page: 1270
  article-title: Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans
  publication-title: Emerging Infectious Diseases
– volume: 41
  start-page: 95
  year: 1999
  end-page: 98
  article-title: BioEdit: a user‐friendly biological sequence alignment editor and analysis program for Windows 95/98/NT
  publication-title: Nucleic Acids Symposium Series
– volume: 13
  start-page: 547
  year: 2007
  end-page: 552
  article-title: Movements of birds and avian influenza from Asia into Alaska
  publication-title: Emerging Infectious Diseases
– year: 2003
– volume: 78
  start-page: 8771
  year: 2004
  end-page: 8779
  article-title: Matrix gene of influenza A viruses from wild aquatic birds: ecology and emergence of influenza A viruses
  publication-title: Journal of Virology
– volume: 35
  start-page: 2623
  year: 1997
  end-page: 2627
  article-title: A practical approach to genetic screening for influenza virus variants
  publication-title: Journal of Clinical Microbiology
– volume: 5
  start-page: 71
  year: 2008
  article-title: Prevalence of influenza A viruses in wild migratory birds in Alaska: patterns of variation in detection at the crossroads of intercontinental flyways
  publication-title: Virology Journal
– volume: 142
  start-page: 218
  year: 2007
  end-page: 222
  article-title: Reliable universal RT‐PCR assays for studying influenza polymerase subunit gene sequences from all 16 haemagglutinin subtypes
  publication-title: Journal of Virology Methods
– volume: 14
  start-page: 1427
  year: 2008
  end-page: 1429
  article-title: Highly pathogenic avian influenza virus (H5N1) isolated from whooper swans, Japan
  publication-title: Emerging Infectious Diseases
– volume: 159
  start-page: 109
  year: 1987
  end-page: 119
  article-title: Antigenic and genetic conservation of H3 influenza virus in wild ducks
  publication-title: Virology
– volume: 89
  start-page: 509
  year: 2008
  end-page: 519
  article-title: Prevalence and diversity of avian influenza viruses in environmental reservoirs
  publication-title: Journal of General Virology
– volume: 152
  start-page: 1901
  year: 2007
  end-page: 1910
  article-title: Using RT‐PCR analysis and virus isolation to determine the prevalence of avian influenza virus infections in ducks at Minto Flats State Game Refuge, Alaska, during August 2005
  publication-title: Archives of Virology
– volume: 83
  start-page: 1314
  year: 2005
  end-page: 1332
  article-title: Spring migration of northern pintail from California's Central Valley wintering area tracked with satellite telemetry: routes, timing, and destinations
  publication-title: Canadian Journal of Zoology
– volume: 37
  start-page: 49
  year: 2008
  end-page: 51
  article-title: Genetic characterization of avian influenza viruses isolated from waterfowl in southern part of South Korea in 2006
  publication-title: Virus Genes
– volume: 56
  start-page: 152
  year: 1992
  end-page: 179
  article-title: Evolution and ecology of influenza A viruses
  publication-title: Microbiology Review
– volume: 150
  start-page: 1685
  year: 2005
  end-page: 1692
  article-title: Multiple gene segment reassortment between Eurasian and American lineages of influenza A virus (H6N2) in guillemot (
  publication-title: Archives of Virology
– volume: 103
  start-page: 19368
  year: 2006
  end-page: 19373
  article-title: Predicting the global spread of H5N1 avian influenza
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 80
  start-page: 3167
  year: 1999
  end-page: 3171
  article-title: Transmission of Eurasian avian H2 influenza virus to shorebirds in North America
  publication-title: Journal of General Virology
– volume: 4
  start-page: e1000076
  year: 2008
  article-title: The evolutionary genetics and emergence of avian influenza viruses in wild birds
  publication-title: Public Library of Science, Pathogens
– volume: 14
  start-page: 84
  year: 2008
  end-page: 87
  article-title: Wild bird influenza survey, Canada, 2005
  publication-title: Emerging Infectious Diseases
– volume: 136
  start-page: 38
  year: 2006
  end-page: 43
  article-title: Amplification of the entire genome of influenza A virus H1N1 and H3N2 subtypes by reverse‐transcription polymerase chain reaction
  publication-title: Journal of Virology Methods
– volume: 375
  start-page: 182
  year: 2008
  end-page: 189
  article-title: Examining the hemagglutinin subtype diversity among wild duck‐origin influenza A viruses using ethanol‐fixed cloacal swabs and a novel RT‐PCR method
  publication-title: Virology
– volume: 51
  start-page: 440
  year: 2007
  end-page: 447
  article-title: The role of wild birds in the spread of HPAI H5N1
  publication-title: Avian Diseases
– year: 1999
– ident: e_1_2_6_49_1
  doi: 10.3201/eid1304.061072
– ident: e_1_2_6_48_1
  doi: 10.1128/JVI.78.16.8771-8779.2004
– ident: e_1_2_6_27_1
  doi: 10.1016/j.jviromet.2007.01.015
– volume: 35
  start-page: 2623
  year: 1997
  ident: e_1_2_6_50_1
  article-title: A practical approach to genetic screening for influenza virus variants
  publication-title: Journal of Clinical Microbiology
  doi: 10.1128/jcm.35.10.2623-2627.1997
– ident: e_1_2_6_3_1
  doi: 10.1128/JVI.66.2.1129-1138.1992
– ident: e_1_2_6_17_1
  doi: 10.1007/BF01322743
– ident: e_1_2_6_40_1
  doi: 10.1007/s00705-007-0994-1
– ident: e_1_2_6_46_1
  doi: 10.1016/j.virol.2008.01.041
– volume-title: paup* Phylogenetic Analysis Using Parsimony (*and Other Methods)
  year: 2003
  ident: e_1_2_6_43_1
– volume-title: A Laboratory Manual for the Isolation and Identification of Avian Pathogens
  year: 1989
  ident: e_1_2_6_38_1
– ident: e_1_2_6_37_1
  doi: 10.1111/j.1095-8312.2004.00368.x
– ident: e_1_2_6_13_1
  doi: 10.1046/j.1365-2540.2001.00895.x
– ident: e_1_2_6_29_1
  doi: 10.1139/z05-125
– ident: e_1_2_6_16_1
  doi: 10.1186/1743-422X-5-71
– ident: e_1_2_6_19_1
  doi: 10.3201/eid1408.080078
– volume: 4
  start-page: e1000076
  year: 2008
  ident: e_1_2_6_9_1
  article-title: The evolutionary genetics and emergence of avian influenza viruses in wild birds
  publication-title: Public Library of Science, Pathogens
– volume-title: Bird Families of the World: Ducks, Geese, and Swans
  year: 2005
  ident: e_1_2_6_20_1
– volume-title: Atlas of Key Sites for Anatidae in the East Asian Flyway
  year: 1999
  ident: e_1_2_6_30_1
– ident: e_1_2_6_5_1
  doi: 10.3201/eid1211.060652
– ident: e_1_2_6_23_1
  doi: 10.1073/pnas.0609227103
– volume-title: The Asian Waterfowl Census 1987–91: Distribution and Status of Asian Waterfowl
  year: 1994
  ident: e_1_2_6_35_1
– ident: e_1_2_6_10_1
  doi: 10.1637/7575-040106R1.1
– ident: e_1_2_6_47_1
  doi: 10.1128/MMBR.56.1.152-179.1992
– ident: e_1_2_6_7_1
  doi: 10.1642/0078-6594(2006)60[3:AIIWBS]2.0.CO;2
– ident: e_1_2_6_14_1
  doi: 10.1139/m80-108
– ident: e_1_2_6_11_1
  doi: 10.1186/1743-422X-4-132
– ident: e_1_2_6_8_1
  doi: 10.1139/z96-112
– ident: e_1_2_6_21_1
  doi: 10.3201/eid1404.071016
– ident: e_1_2_6_22_1
  doi: 10.1016/0042-6822(87)90353-9
– volume: 71
  start-page: 6128
  year: 1997
  ident: e_1_2_6_42_1
  article-title: Coinfection of wild ducks by influenza A viruses: distribution patterns and biological significance
  publication-title: Journal of Virology
  doi: 10.1128/jvi.71.8.6128-6135.1997
– ident: e_1_2_6_15_1
  doi: 10.1007/s007050170002
– ident: e_1_2_6_32_1
  doi: 10.1126/science.1121586
– ident: e_1_2_6_6_1
  doi: 10.1016/j.jviromet.2006.03.027
– ident: e_1_2_6_45_1
  doi: 10.1007/s00705-005-0543-8
– ident: e_1_2_6_18_1
  doi: 10.1637/8035-062507-Reg
– ident: e_1_2_6_33_1
  doi: 10.1093/bioinformatics/12.4.357
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1474-919X.2007.00699.x
– ident: e_1_2_6_31_1
  doi: 10.2193/0022-541X(2005)069[1202:ASASFO]2.0.CO;2
– volume: 3
  start-page: 1684
  year: 2007
  ident: e_1_2_6_25_1
  article-title: Influenza in migratory birds and evidence of limited intercontinental virus exchange
  publication-title: Public Library of Science, Pathogens
– ident: e_1_2_6_44_1
  doi: 10.3201/eid1409.080655
– ident: e_1_2_6_26_1
  doi: 10.1099/vir.0.83369-0
– ident: e_1_2_6_41_1
  doi: 10.3201/eid1305.070013
– ident: e_1_2_6_36_1
  doi: 10.1016/j.jviromet.2004.08.008
– ident: e_1_2_6_2_1
  doi: 10.1128/JVI.02005-07
– ident: e_1_2_6_39_1
  doi: 10.1111/j.0908-8857.2004.03297.x
– ident: e_1_2_6_24_1
  doi: 10.1007/s11262-008-0230-4
– volume: 80
  start-page: 3167
  year: 1999
  ident: e_1_2_6_28_1
  article-title: Transmission of Eurasian avian H2 influenza virus to shorebirds in North America
  publication-title: Journal of General Virology
  doi: 10.1099/0022-1317-80-12-3167
– ident: e_1_2_6_4_1
  doi: 10.1016/j.virusres.2004.12.004
– ident: e_1_2_6_34_1
  doi: 10.3201/eid1401.061562
SSID ssj0013255
Score 2.3177757
Snippet The role of migratory birds in the movement of the highly pathogenic (HP) avian influenza H5N1 remains a subject of debate. Testing hypotheses regarding...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4754
SubjectTerms Alaska
Anas
Anas acuta
Animal Migration
Animals
Asia
Aves
Avian flu
avian influenza
Bird migration
Disease transmission
Ducks
Ducks - virology
Ecology
genes
genetic databases
Genetic diversity
genetic variation
genetics
Genome, Viral
Influenza A Virus, H5N1 Subtype
Influenza A Virus, H5N1 Subtype - genetics
Influenza in Birds
Influenza in Birds - genetics
Influenza in Birds - virology
low pathogenic
migration
migratory behavior
Migratory birds
Migratory species
Molecular biology
North America
Phylogeny
Population genetics
Reassortant Viruses
Reassortant Viruses - genetics
reassortment
RNA, Viral
RNA, Viral - genetics
Sequence Analysis, RNA
virology
virus sequencing
waterfowl
wild birds
Title Genetic evidence of intercontinental movement of avian influenza in a migratory bird: the northern pintail (Anas acuta)
URI https://api.istex.fr/ark:/67375/WNG-7XWKJLS9-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-294X.2008.03953.x
https://www.ncbi.nlm.nih.gov/pubmed/19140989
https://www.proquest.com/docview/210687169
https://www.proquest.com/docview/19911596
https://www.proquest.com/docview/48126608
https://www.proquest.com/docview/69955896
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgEhIvjO-V8eEHhOAhVeIkTszbNHVMg-2BUq1v1sUfU9UtnfoB2_567py0rGiTJsSbFduX2jmff-6df8fYe8icL1NbRuS6jTIbx1GV2CxChGSFtJBCuPV-eCT3B9nBMB-28U90F6bhh1j94UYrI9hrWuBQzdYXeYjQUtmwDYlMVZ52CU9SBeGj7-KaQyEkQEXALtDylOl6UM-NgtZ2qvseJohfaeovbgKj69g2bE57m2y8HFYTkzLuLuZV11z9xfj4f8b9mD1qMSzfaZTuCbvn6qfsQZPV8hJLvcCEffmM_SJSa2zEXZu7lE88J4KKKUXI4y-hq5j8bBI4y-dUCT9RXbFJyJxyBVjiwM9GJ00wAK9GU_uZI2blNfmb3LTm5ygPRqf8404NMw5mMYdPz9lgr_djdz9qMz1EBgFQGmWJMVamuHEq5aQRLsur2HooYqGcFVUqIScXK6Qp4BMvvXIgikKVcQEeP-cLtlFParfFeO6N8AZBh4MksxmehrxMTOGdEEllbNVhxfKratPSoFM2jlN97TiEE6xpgtsknTTB-qLDklXP84YK5A59tlBxNJygxdaDvqBBJES-mqgO-xC0aSULpmOKsityfXz0RRfD468H3_pK9ztse6luujUwM40ndUlnXRTzblWLloHcPVC7yWKmKagNwaq8vUWG6E7KuLy9hVQqz0uS8bLR8z8jV0SVVuL7ZdDWO0-JPuztUunVv3bcZg9D0E64EPqabcynC_cGkeG8ehvW_G9RsFGy
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCMEL37AyYH5ACB5SJU7ixLxNU0fZ2j7QVeub5fhjqtalUz_29ddz56RlRZs0Id6sxL7El_P5d7nzHSGfVWJdHps8QNdtkJgwDIrIJAEgJMO4UbHyp967Pd4eJPvDdFiXA8KzMFV-iNUPN1wZXl_jAscf0uur3IdoiWRYx0TGIo2bACgfYYFvb1_9YjdcCr4EKkB2Bronj9fDem6ltLZXPXRqAggWmX95GxxdR7d-e9p7TsbLiVVRKSfNxbxo6uu_cj7-p5m_IM9qGEt3Krl7SR7Y8hV5XBW2vIJWyyfDvnpNLjCvNXSiti5fSieOYo6KKQbJw6vgaUx6OvFpy-d4U52DxEIXXzzlWkGLKno6Oq7iAWgxmprvFGArLdHlZKclPQN6ajSmX3dKNaNKL-bq2xsy2Gsd7raDuthDoAEDxUESaW14DHunEJZrZpO0CI1TWciENayIuUrRy6riWMEVx52wimWZyMNMOfieb8lGOSntJqGp08xpwB1WRYlJwCByPNKZs4xFhTZFg2TLzyp1nQkdC3KM5Q2LCBgskcF1nU5ksLxskGg18qzKBnKPMZsgOVIdg9KWgz7DSUSYfzUSDfLFi9OKlpqeYKBdlsqj3g-ZDY8O9jt9IfsNsrWUN1nrmJkEY52juQtktld3QTmgx0eVdrKYSYxrA7zK7-6RAMDjPMzv7sGFSNMcabyrBP3PzAVmS8vh-dyL671ZIrutXWy9_9eB2-RJ-7DbkZ2fvYMt8tTH8PjzoR_Ixny6sB8BKM6LT14B_AZhoVXN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCMQL37BuwPyAEDykSpzEiXmbtpaxjwpRqvXNcvwxVd3Sqh9j21_PnZOWFW3ShHizGvtaX-7OP9c_3xHyQSXW5bHJAzy6DRIThkERmSQAhGQYNypW_tb7UYfv9ZL9ftqv-U94F6bKD7H8ww09w8drdPCxcatO7hlaIunXlMhYpHET8OSDhIc5WvjuD3btRMFXQAXEziD05PEqq-dGSStL1X2nRgBgUfcXN6HRVXDrV6f2UzJczKsipQyb81nR1Fd_pXz8PxN_Rp7UIJZuV1b3nNyz5QvysCpreQmtlk-FffmS_MKs1tCJ2rp4KR05ihkqJkiRh1-CdzHp2cgnLZ_hQ3UO9gpdfOmUKwUtqujZ4KRiA9BiMDFfKIBWWuKBk52UdAzy1OCUftou1ZQqPZ-pz69Ir936ubMX1KUeAg0IKA6SSGvDY1g5hbBcM5ukRWicykImrGFFzFWKZ6wqjhV84rgTVrEsE3mYKQev8zVZK0elXSc0dZo5DajDqigxCWyHHI905ixjUaFN0SDZ4q1KXedBx3Icp_LafggULFHBdZVOVLC8aJBoOXJc5QK5w5h1MBypTiBky16X4SQizL4aiQb56K1pKUtNhkizy1J53Pkqs_7xwf5hV8hug2wuzE3WEWYqYavOcbMLYraWTyE04HmPKu1oPpXIagO0ym_vkQC84-Ast_fgQqRpjjLeVHb-Z-YCc6Xl8P3cW-udVSKPWjvY2vjXgVvk0ffdtjz81jnYJI89gcdfDn1L1maTuX0HKHFWvPfu_xslTVSF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+evidence+of+intercontinental+movement+of+avian+influenza+in+a+migratory+bird%3A+the+northern+pintail+%28Anas+acuta%29&rft.jtitle=Molecular+ecology&rft.au=KOEHLER%2C+ANSON+V.&rft.au=PEARCE%2C+JOHN+M.&rft.au=FLINT%2C+PAUL+L.&rft.au=FRANSON%2C+J.+CHRISTIAN&rft.date=2008-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=17&rft.issue=21&rft.spage=4754&rft.epage=4762&rft_id=info:doi/10.1111%2Fj.1365-294X.2008.03953.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_7XWKJLS9_S
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon