Genetic evidence of intercontinental movement of avian influenza in a migratory bird: the northern pintail (Anas acuta)
The role of migratory birds in the movement of the highly pathogenic (HP) avian influenza H5N1 remains a subject of debate. Testing hypotheses regarding intercontinental movement of low pathogenic avian influenza (LPAI) viruses will help evaluate the potential that wild birds could carry Asian-origi...
Saved in:
Published in | Molecular ecology Vol. 17; no. 21; pp. 4754 - 4762 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.11.2008
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The role of migratory birds in the movement of the highly pathogenic (HP) avian influenza H5N1 remains a subject of debate. Testing hypotheses regarding intercontinental movement of low pathogenic avian influenza (LPAI) viruses will help evaluate the potential that wild birds could carry Asian-origin strains of HP avian influenza to North America during migration. Previous North American assessments of LPAI genetic variation have found few Asian reassortment events. Here, we present results from whole-genome analyses of LPAI isolates collected in Alaska from the northern pintail (Anas acuta), a species that migrates between North America and Asia. Phylogenetic analyses confirmed the genetic divergence between Asian and North American strains of LPAI, but also suggested inter-continental virus exchange and at a higher frequency than previously documented. In 38 isolates from Alaska, nearly half (44.7%) had at least one gene segment more closely related to Asian than to North American strains of LPAI. Additionally, sequences of several Asian LPAI isolates from GenBank clustered more closely with North American northern pintail isolates than with other Asian origin viruses. Our data support the role of wild birds in the intercontinental transfer of influenza viruses, and reveal a higher degree of transfer in Alaska than elsewhere in North America. |
---|---|
AbstractList | The role of migratory birds in the movement of the highly pathogenic (HP) avian influenza H5N1 remains a subject of debate. Testing hypotheses regarding intercontinental movement of low pathogenic avian influenza (LPAI) viruses will help evaluate the potential that wild birds could carry Asian‐origin strains of HP avian influenza to North America during migration. Previous North American assessments of LPAI genetic variation have found few Asian reassortment events. Here, we present results from whole‐genome analyses of LPAI isolates collected in Alaska from the northern pintail (Anas acuta), a species that migrates between North America and Asia. Phylogenetic analyses confirmed the genetic divergence between Asian and North American strains of LPAI, but also suggested inter‐continental virus exchange and at a higher frequency than previously documented. In 38 isolates from Alaska, nearly half (44.7%) had at least one gene segment more closely related to Asian than to North American strains of LPAI. Additionally, sequences of several Asian LPAI isolates from GenBank clustered more closely with North American northern pintail isolates than with other Asian origin viruses. Our data support the role of wild birds in the intercontinental transfer of influenza viruses, and reveal a higher degree of transfer in Alaska than elsewhere in North America. The role of migratory birds in the movement of the highly pathogenic (HP) avian influenza H5N1 remains a subject of debate. Testing hypotheses regarding intercontinental movement of low pathogenic avian influenza (LPAI) viruses will help evaluate the potential that wild birds could carry Asian-origin strains of HP avian influenza to North America during migration. Previous North American assessments of LPAI genetic variation have found few Asian reassortment events. Here, we present results from whole-genome analyses of LPAI isolates collected in Alaska from the northern pintail (Anas acuta), a species that migrates between North America and Asia. Phylogenetic analyses confirmed the genetic divergence between Asian and North American strains of LPAI, but also suggested inter-continental virus exchange and at a higher frequency than previously documented. In 38 isolates from Alaska, nearly half (44.7%) had at least one gene segment more closely related to Asian than to North American strains of LPAI. Additionally, sequences of several Asian LPAI isolates from GenBank clustered more closely with North American northern pintail isolates than with other Asian origin viruses. Our data support the role of wild birds in the intercontinental transfer of influenza viruses, and reveal a higher degree of transfer in Alaska than elsewhere in North America. [PUBLICATION ABSTRACT] The role of migratory birds in the movement of the highly pathogenic (HP) avian influenza H5N1 remains a subject of debate. Testing hypotheses regarding intercontinental movement of low pathogenic avian influenza (LPAI) viruses will help evaluate the potential that wild birds could carry Asian-origin strains of HP avian influenza to North America during migration. Previous North American assessments of LPAI genetic variation have found few Asian reassortment events. Here, we present results from whole-genome analyses of LPAI isolates collected in Alaska from the northern pintail (Anas acuta), a species that migrates between North America and Asia. Phylogenetic analyses confirmed the genetic divergence between Asian and North American strains of LPAI, but also suggested inter-continental virus exchange and at a higher frequency than previously documented. In 38 isolates from Alaska, nearly half (44.7%) had at least one gene segment more closely related to Asian than to North American strains of LPAI. Additionally, sequences of several Asian LPAI isolates from GenBank clustered more closely with North American northern pintail isolates than with other Asian origin viruses. Our data support the role of wild birds in the intercontinental transfer of influenza viruses, and reveal a higher degree of transfer in Alaska than elsewhere in North America.The role of migratory birds in the movement of the highly pathogenic (HP) avian influenza H5N1 remains a subject of debate. Testing hypotheses regarding intercontinental movement of low pathogenic avian influenza (LPAI) viruses will help evaluate the potential that wild birds could carry Asian-origin strains of HP avian influenza to North America during migration. Previous North American assessments of LPAI genetic variation have found few Asian reassortment events. Here, we present results from whole-genome analyses of LPAI isolates collected in Alaska from the northern pintail (Anas acuta), a species that migrates between North America and Asia. Phylogenetic analyses confirmed the genetic divergence between Asian and North American strains of LPAI, but also suggested inter-continental virus exchange and at a higher frequency than previously documented. In 38 isolates from Alaska, nearly half (44.7%) had at least one gene segment more closely related to Asian than to North American strains of LPAI. Additionally, sequences of several Asian LPAI isolates from GenBank clustered more closely with North American northern pintail isolates than with other Asian origin viruses. Our data support the role of wild birds in the intercontinental transfer of influenza viruses, and reveal a higher degree of transfer in Alaska than elsewhere in North America. The role of migratory birds in the movement of the highly pathogenic (HP) avian influenza H5N1 remains a subject of debate. Testing hypotheses regarding intercontinental movement of low pathogenic avian influenza (LPAI) viruses will help evaluate the potential that wild birds could carry Asian‐origin strains of HP avian influenza to North America during migration. Previous North American assessments of LPAI genetic variation have found few Asian reassortment events. Here, we present results from whole‐genome analyses of LPAI isolates collected in Alaska from the northern pintail ( Anas acuta ), a species that migrates between North America and Asia. Phylogenetic analyses confirmed the genetic divergence between Asian and North American strains of LPAI, but also suggested inter‐continental virus exchange and at a higher frequency than previously documented. In 38 isolates from Alaska, nearly half (44.7%) had at least one gene segment more closely related to Asian than to North American strains of LPAI. Additionally, sequences of several Asian LPAI isolates from GenBank clustered more closely with North American northern pintail isolates than with other Asian origin viruses. Our data support the role of wild birds in the intercontinental transfer of influenza viruses, and reveal a higher degree of transfer in Alaska than elsewhere in North America. |
Author | KOEHLER, ANSON V. PEARCE, JOHN M. FLINT, PAUL L. FRANSON, J. CHRISTIAN IP, HON S. |
Author_xml | – sequence: 1 fullname: KOEHLER, ANSON V – sequence: 2 fullname: PEARCE, JOHN M – sequence: 3 fullname: FLINT, PAUL L – sequence: 4 fullname: FRANSON, J. CHRISTIAN – sequence: 5 fullname: IP, HON S |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19140989$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl9v0zAUxSM0xLrBVwCLB7Q9pNhx7MRIIE3VKH8KPJRpe7Nuk5vhkjjFTrqWT4-zjiHthfrlXtm_c6yrc4-iA9tajCLC6JiF83o5ZlyKOFHp1TihNB9TrgQfbx5Fo_uHg2hElUxiRnN-GB15v6SU8USIJ9EhUyylKlej6GaKFjtTEFybEm2BpK2IsR26orWdsWg7qEnTrrEJ7fAIawM2IFXdo_0NoSNAGnPtoGvdliyMK9-Q7gcS27pQnCWr4AemJidnFjyBou_g9Gn0uILa47O7ehxdvD__PvkQz75NP07OZnEh8pTHKSuKUnKZ5UqhLBJMxYKWFWQ0UVgmCy5BhKkocA7hppKVQkiyTOU0gypMfhy92vmuXPurR9_pxvgC6xostr3XUikhciX_C6Y5S6Tcw5EpxZi4dXz5AFy2vbNhWp0wKvOMSRWg53dQv2iw1CtnGnBb_TehAOQ7oHCt9w6rfwjVwzLopR4y10PmelgGfbsMehOk7x5IC9NBZ0KwLuSxj8HbncGNqXG798f6y_lk6II-3umN73Bzrwf3U8uMZ0Jffp3q7Ory86fZXOl54F_s-ApaDdfOeH0xT4Z8mZAsZYr_AdLc5kM |
CitedBy_id | crossref_primary_10_1016_j_virol_2010_02_006 crossref_primary_10_1038_srep23380 crossref_primary_10_1016_j_meegid_2014_01_014 crossref_primary_10_1016_j_prevetmed_2020_105234 crossref_primary_10_1111_j_1600_0706_2010_18961_x crossref_primary_10_1111_j_1752_4571_2009_00071_x crossref_primary_10_1371_journal_pone_0050834 crossref_primary_10_1637_8746_032709_Reg_1 crossref_primary_10_3201_eid2302_161616 crossref_primary_10_3382_ps_2013_03105 crossref_primary_10_1556_avet_2013_017 crossref_primary_10_1111_tbed_13136 crossref_primary_10_1016_j_virol_2014_04_009 crossref_primary_10_1038_srep09484 crossref_primary_10_1371_journal_pone_0057614 crossref_primary_10_1016_j_meegid_2014_06_007 crossref_primary_10_1017_S0950268810002372 crossref_primary_10_2743_jve_15_45 crossref_primary_10_1111_1365_2656_12581 crossref_primary_10_1371_journal_pone_0086999 crossref_primary_10_3390_v12101085 crossref_primary_10_1371_journal_pone_0014454 crossref_primary_10_1007_s11262_009_0423_5 crossref_primary_10_1890_14_1820_1 crossref_primary_10_2807_1560_7917_ES2015_20_12_21069 crossref_primary_10_1371_journal_pone_0092075 crossref_primary_10_1111_tbed_12213 crossref_primary_10_3109_1040841X_2013_870967 crossref_primary_10_1111_j_1749_6632_2010_05451_x crossref_primary_10_1111_mec_12101 crossref_primary_10_18470_1992_1098_2022_2_233_263 crossref_primary_10_1007_s11262_011_0706_5 crossref_primary_10_1525_cond_2011_100009 crossref_primary_10_1371_journal_pone_0090826 crossref_primary_10_1186_s12862_019_1431_2 crossref_primary_10_1098_rspb_2010_0026 crossref_primary_10_1002_ece3_6039 crossref_primary_10_1007_s11262_020_01797_7 crossref_primary_10_1089_vbz_2010_0246 crossref_primary_10_3201_eid1608_100032 crossref_primary_10_1111_j_1365_294X_2010_04908_x crossref_primary_10_1111_irv_12250 crossref_primary_10_3390_v15051121 crossref_primary_10_1111_irv_12253 crossref_primary_10_1111_j_1600_048X_2011_05320_x crossref_primary_10_1111_eva_12156 crossref_primary_10_3390_microorganisms11102601 crossref_primary_10_1016_j_virusres_2009_12_002 crossref_primary_10_1186_1471_2334_10_187 crossref_primary_10_1016_j_meegid_2014_05_029 crossref_primary_10_1051_cagri_2016037 crossref_primary_10_1016_j_virol_2018_02_002 crossref_primary_10_1128_JVI_02193_20 crossref_primary_10_1111_2041_210X_12897 crossref_primary_10_1371_journal_pone_0020664 crossref_primary_10_1016_j_cll_2009_10_005 crossref_primary_10_2217_fvl_12_45 crossref_primary_10_1093_icb_icw055 crossref_primary_10_1111_tbed_13181 crossref_primary_10_1371_journal_pone_0063270 crossref_primary_10_3390_v15020483 crossref_primary_10_1111_tbed_12244 crossref_primary_10_1637_0005_2086_64_2_109 crossref_primary_10_1139_cjm_2013_0507 crossref_primary_10_1016_j_virol_2010_07_031 crossref_primary_10_1016_j_meegid_2018_09_001 crossref_primary_10_1016_j_prevetmed_2013_11_011 crossref_primary_10_1007_s00705_009_0550_2 crossref_primary_10_1111_j_1365_2664_2010_01845_x crossref_primary_10_1016_j_ijppaw_2014_12_004 crossref_primary_10_1371_journal_pone_0026118 crossref_primary_10_1371_journal_pone_0144524 crossref_primary_10_1098_rstb_2018_0257 crossref_primary_10_1007_s11262_010_0504_5 crossref_primary_10_1186_1471_2458_14_1113 crossref_primary_10_1016_j_ecolmodel_2014_08_005 crossref_primary_10_1016_j_virusres_2009_02_018 crossref_primary_10_1111_j_1749_4877_2009_00180_x crossref_primary_10_1637_8766_033109_ResNote_1 crossref_primary_10_1007_s00705_012_1323_x crossref_primary_10_1186_s12985_015_0377_2 crossref_primary_10_1016_j_envint_2018_06_018 crossref_primary_10_1111_tbed_13226 crossref_primary_10_1016_j_meegid_2011_09_011 crossref_primary_10_1186_1743_422X_10_112 crossref_primary_10_1016_j_epidem_2009_11_003 crossref_primary_10_1637_8741_032509_Reg_1 crossref_primary_10_1128_mSphere_00362_16 crossref_primary_10_1371_journal_pone_0104360 crossref_primary_10_1637_11476_072616_ResNote crossref_primary_10_1525_auk_2011_128_2_205 crossref_primary_10_1111_j_1474_919X_2010_01010_x crossref_primary_10_1093_icb_icw030 crossref_primary_10_1016_j_ygeno_2009_09_005 crossref_primary_10_1007_s00705_010_0839_1 crossref_primary_10_1111_brv_12704 crossref_primary_10_3109_1040841X_2014_920291 crossref_primary_10_1371_journal_pone_0195327 crossref_primary_10_1111_j_1461_0248_2011_01703_x crossref_primary_10_1099_vir_0_046581_0 crossref_primary_10_1017_S1466252310000058 crossref_primary_10_1371_journal_pone_0218506 crossref_primary_10_1637_10849_042214_Reg_1 crossref_primary_10_1099_vir_0_029728_0 crossref_primary_10_1016_j_virusres_2009_07_015 crossref_primary_10_12688_wellcomeopenres_22770_1 crossref_primary_10_1007_s12665_016_5289_y crossref_primary_10_1007_s00705_013_1761_0 crossref_primary_10_1128_JVI_00728_15 crossref_primary_10_1016_j_prevetmed_2014_09_014 crossref_primary_10_1186_1743_422X_10_179 crossref_primary_10_1111_tbed_12872 crossref_primary_10_1371_journal_pone_0031471 |
Cites_doi | 10.3201/eid1304.061072 10.1128/JVI.78.16.8771-8779.2004 10.1016/j.jviromet.2007.01.015 10.1128/jcm.35.10.2623-2627.1997 10.1128/JVI.66.2.1129-1138.1992 10.1007/BF01322743 10.1007/s00705-007-0994-1 10.1016/j.virol.2008.01.041 10.1111/j.1095-8312.2004.00368.x 10.1046/j.1365-2540.2001.00895.x 10.1139/z05-125 10.1186/1743-422X-5-71 10.3201/eid1408.080078 10.3201/eid1211.060652 10.1073/pnas.0609227103 10.1637/7575-040106R1.1 10.1128/MMBR.56.1.152-179.1992 10.1642/0078-6594(2006)60[3:AIIWBS]2.0.CO;2 10.1139/m80-108 10.1186/1743-422X-4-132 10.1139/z96-112 10.3201/eid1404.071016 10.1016/0042-6822(87)90353-9 10.1128/jvi.71.8.6128-6135.1997 10.1007/s007050170002 10.1126/science.1121586 10.1016/j.jviromet.2006.03.027 10.1007/s00705-005-0543-8 10.1637/8035-062507-Reg 10.1093/bioinformatics/12.4.357 10.1111/j.1474-919X.2007.00699.x 10.2193/0022-541X(2005)069[1202:ASASFO]2.0.CO;2 10.3201/eid1409.080655 10.1099/vir.0.83369-0 10.3201/eid1305.070013 10.1016/j.jviromet.2004.08.008 10.1128/JVI.02005-07 10.1111/j.0908-8857.2004.03297.x 10.1007/s11262-008-0230-4 10.1099/0022-1317-80-12-3167 10.1016/j.virusres.2004.12.004 10.3201/eid1401.061562 |
ContentType | Journal Article |
Copyright | 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd Journal compilation © 2008 Blackwell Publishing Ltd |
Copyright_xml | – notice: 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd – notice: Journal compilation © 2008 Blackwell Publishing Ltd |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7U9 F1W H94 H95 L.G 7S9 L.6 7X8 |
DOI | 10.1111/j.1365-294X.2008.03953.x |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Virology and AIDS Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional Entomology Abstracts MEDLINE - Academic AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1365-294X |
EndPage | 4762 |
ExternalDocumentID | 1583208271 19140989 10_1111_j_1365_294X_2008_03953_x MEC3953 ark_67375_WNG_7XWKJLS9_S US201301561419 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | Asia North America USA, Alaska Alaska |
GeographicLocations_xml | – name: North America – name: Asia – name: USA, Alaska – name: Alaska |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7U9 F1W H94 H95 L.G 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c5843-41ccd6367899e6c2e45b0dfa7029ed2b36a50130a33a29ef6f9ea2779807af083 |
IEDL.DBID | DR2 |
ISSN | 0962-1083 1365-294X |
IngestDate | Fri Jul 11 07:29:24 EDT 2025 Fri Jul 11 15:40:12 EDT 2025 Fri Jul 11 10:19:43 EDT 2025 Wed Aug 13 04:26:47 EDT 2025 Mon Jul 21 06:05:24 EDT 2025 Thu Apr 24 22:50:10 EDT 2025 Tue Jul 01 01:21:45 EDT 2025 Wed Jan 22 17:06:05 EST 2025 Wed Oct 30 09:59:12 EDT 2024 Wed Dec 27 18:31:58 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5843-41ccd6367899e6c2e45b0dfa7029ed2b36a50130a33a29ef6f9ea2779807af083 |
Notes | http://dx.doi.org/10.1111/j.1365-294X.2008.03953.x ark:/67375/WNG-7XWKJLS9-S istex:2FA4C76022387AB0E4B5F4B899128B20D9D669B9 ArticleID:MEC3953 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 19140989 |
PQID | 210687169 |
PQPubID | 31465 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_69955896 proquest_miscellaneous_48126608 proquest_miscellaneous_19911596 proquest_journals_210687169 pubmed_primary_19140989 crossref_primary_10_1111_j_1365_294X_2008_03953_x crossref_citationtrail_10_1111_j_1365_294X_2008_03953_x wiley_primary_10_1111_j_1365_294X_2008_03953_x_MEC3953 istex_primary_ark_67375_WNG_7XWKJLS9_S fao_agris_US201301561419 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2008 |
PublicationDateYYYYMMDD | 2008-11-01 |
PublicationDate_xml | – month: 11 year: 2008 text: November 2008 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
PublicationTitle | Molecular ecology |
PublicationTitleAlternate | Mol Ecol |
PublicationYear | 2008 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd |
References | Li OTW, Barr I, Leung CYH et al . (2007) Reliable universal RT-PCR assays for studying influenza polymerase subunit gene sequences from all 16 haemagglutinin subtypes. Journal of Virology Methods, 142, 218-222. Kida H, Kawaoka Y, Naeve C, Webster RG (1987) Antigenic and genetic conservation of H3 influenza virus in wild ducks. Virology, 159, 109-119. Krauss S, Obert CA, Franks J et al . (2007) Influenza in migratory birds and evidence of limited intercontinental virus exchange. Public Library of Science, Pathogens, 3, 1684-1693. Bao Y, Bolotov P, Dernovoy D et al . (2008) The influenza virus resource at the national center for biotechnology information. Journal of Virology, 82, 596-601. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiology Review, 56, 152-179. Brown JD, Stallknecht DE, Beck JR, Suarez DL, Swayne DE (2006) Susceptibility of North American ducks and gulls to H5N1 highly pathogenic avian influenza viruses. Emerging Infectious Diseases, 12, 1663-1670. Sharp GB, Kawaoka Y, Jones DJ et al . (1997) Coinfection of wild ducks by influenza A viruses: distribution patterns and biological significance. Journal of Virology, 71, 6128-6135. Parmley EJ, Bastien N, Booth TF et al . (2008) Wild bird influenza survey, Canada, 2005. Emerging Infectious Diseases, 14, 84-87. Cronin MA, Grand JB, Esler D, Derksen DV, Scribner KT (1996) Breeding populations of northern pintails have similar mitochondrial DNA. Canadian Journal of Zoology, 74, 992-999. Dugan VG, Chen R, Spiro DJ et al . (2008) The evolutionary genetics and emergence of avian influenza viruses in wild birds. Public Library of Science, Pathogens, 4, e1000076. Kim HM, Oh JH, Seo SH et al . (2008) Genetic characterization of avian influenza viruses isolated from waterfowl in southern part of South Korea in 2006. Virus Genes, 37, 49-51. Uchida Y, Mase M, Yoneda K et al . (2008) Highly pathogenic avian influenza virus (H5N1) isolated from whooper swans, Japan. Emerging Infectious Diseases, 14, 1427-1429. Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Bioinformatics, 12, 357-358. Phipps LP, Essen SC, Brown IH (2004) Genetic subtyping of influenza A viruses using RT-PCR with a single set of primers based on conserved sequences within the HA2 coding region. Journal of Virology Methods, 122, 119-122. Flint PL (2007) Applying the scientific method when assessing the influence of migratory birds on the dispersal of H5N1. Virology Journal, 4, 132. Ip H, Flint PL, Franson JC et al . (2008) Prevalence of influenza A viruses in wild migratory birds in Alaska: patterns of variation in detection at the crossroads of intercontinental flyways. Virology Journal, 5, 71. Jahangir A, Watanabe Y, Chinen O et al . (2008) Surveillance of avian influenza viruses in northern pintails (Anas acuta) in Tohoku District, Japan. Avian Diseases, 52, 49-53. Runstadler JA, Happ GM, Slemons RD (2007) Using RT-PCR analysis and virus isolation to determine the prevalence of avian influenza virus infections in ducks at Minto Flats State Game Refuge, Alaska, during August 2005. Archives of Virology, 152, 1901-1910. Chan CH, Lin KL, Chan Y et al . (2006) Amplification of the entire genome of influenza A virus H1N1 and H3N2 subtypes by reverse-transcription polymerase chain reaction. Journal of Virology Methods, 136, 38-43. Bean WJ, Schell M, Katz J et al . (1992) Evolution of the H3 influenza virus hemagglutinin from human and nonhuman hosts. Journal of Virology, 66, 1129-1138. Hinshaw VS, Webster RG, Turner B (1980) The perpetuation of orthomyxoviruses and paramyxoviruses in Canadian waterfowl. Canadian Journal of Microbiology, 26, 622-629. Gauthier-Clerc M, Lebarbenchon C, Thomas F (2007) Recent expansion of highly pathogenic avian influenza H5N1: a critical review. Ibis, 149, 202-214. Wallensten A, Munster VJ, Elmberg J, Osterhaus ADME, Foucheir RAM, Olsen B (2005) Multiple gene segment reassortment between Eurasian and American lineages of influenza A virus (H6N2) in guillemot (Uria aalge). Archives of Virology, 150, 1685-1692. Marakova NV, Kaverin NV, Krauss S, Senne D, Webster RG (1999) Transmission of Eurasian avian H2 influenza virus to shorebirds in North America. Journal of General Virology, 80, 3167-3171. Salzberg SL, Kingsford C, Cattoli G et al . (2007) Genome analysis linking recent European and African influenza (H5N1) viruses. Emerging Infectious Diseases, 13, 713-718. Miyabayashi Y, Mundkur T (1999) Atlas of Key Sites for Anatidae in the East Asian Flyway. Wetlands International, Tokyo, Japan. Kear J (2005) Bird Families of the World: Ducks, Geese, and Swans. Oxford University Press Inc., New York. Lang AS, Kelly A, Runstadler JA (2008) Prevalence and diversity of avian influenza viruses in environmental reservoirs. Journal of General Virology, 89, 509-519. Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR (2001) Universal primer set for the full-length amplification of all influenza A viruses. Archives of Virology, 146, 2275-2289. Swofford DL (2003) paup* Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sinauer Associates, Sunderland, Massachusetts. Kilpatrick AM, Chmura AA, Gibbons DW, Fleischer RC, Marra PP, Daszak P (2006) Predicting the global spread of H5N1 avian influenza. Proceedings of the National Academy of Sciences, USA, 103, 19368-19373. Miller MR, Takekawa JY, Fleskes JP, Orthmeyer DL, Casazza ML, Perry WM (2005) Spring migration of northern pintail from California's Central Valley wintering area tracked with satellite telemetry: routes, timing, and destinations. Canadian Journal of Zoology, 83, 1314-1332. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574. Clark L, Hall J (2006) Avian influenza in wild birds: status as reservoirs, and risks to humans and agriculture. Ornithological Monographs, 60, 3-29. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98. Kalthoff D, Breithaupt A, Teifke JP et al . (2008) Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans. Emerging Infectious Diseases, 14, 1267-1270. Feare CJ (2007) The role of wild birds in the spread of HPAI H5N1. Avian Diseases, 51, 440-447. Obenauer JC, Denson J, Mehta PK et al . (2006) Large-scale sequence analysis of avian influenza isolates. Science, 311, 1562-1563. Ito T, Okazaki K, Kawaoka Y, Takada A, Webster RG, Kida H (1995) Perpetuation of influenza A viruses in Alaskan waterfowl reservoirs. Archives of Virology, 140, 1163-1172. Perennou C, Mundkur T, Scott DA (1994) The Asian Waterfowl Census 1987-91: Distribution and Status of Asian Waterfowl. IWRB Publication 24, Kuala Lumpur, Malaysia and Slimbridge, UK. Widjaja L, Krauss SL, Webby RJ, Xie T, Webster RG (2004) Matrix gene of influenza A viruses from wild aquatic birds: ecology and emergence of influenza A viruses. Journal of Virology, 78, 8771-8779. Wang R, Soll L, Dugan V et al . (2008) Examining the hemagglutinin subtype diversity among wild duck-origin influenza A viruses using ethanol-fixed cloacal swabs and a novel RT-PCR method. Virology, 375, 182-189. Nicolai CA, Flint PL, Wege ML (2005) Annual survival and site fidelity of northern pintails banded on the Yukon-Kuskokwim Delta, Alaska. Journal of Wildlife Management, 69, 1202-1210. Zou S (1997) A practical approach to genetic screening for influenza virus variants. Journal of Clinical Microbiology, 35, 2623-2627. Keawcharoen J, Van Riel D, Van Amerongen G et al . (2008) Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1). Emerging Infectious Diseases, 14, 600-607. Posada D, Crandall KA (1998) ModelTest: testing the model of DNA substitution. Bioinformatics, 14, 817-818. Winker K, McCracken KG, Gibson DD et al . (2007) Movements of birds and avian influenza from Asia into Alaska. Emerging Infectious Diseases, 13, 547-552. Purchase HG, Arp LH, Domermuth CH, Pearson JE (1989) A Laboratory Manual for the Isolation and Identification of Avian Pathogens, 3rd edn. Kendall/Hunt Publishing Co., Dubuque, Iowa, USA. Bragstad K, Jørgensen PH, Handberg KJ, Mellergaard S, Corbet S, Fomsgaard A (2005) New avian influenza A virus subtype combination H5N7 identified in Danish mallard ducks. Virus Research, 109, 181-190. 2004; 122 1980; 26 2001; 146 2005; 150 2007; 149 2006; 12 2007; 142 2008; 14 2008; 37 1996; 74 2008; 5 2005 1994 1999; 41 2007; 51 2008; 52 2003; 19 2003 2008; 4 2005; 83 1999; 80 1992; 56 2007; 13 2006; 136 1996; 12 1999 2005; 69 2006; 311 2006; 60 1997; 71 1987; 159 2007; 152 2004; 78 1997; 35 2005; 109 2008; 89 2007; 4 2007; 3 2008; 375 1992; 66 1995; 140 2008; 82 2006; 103 1998; 14 1989 e_1_2_6_32_1 Marakova NV (e_1_2_6_28_1) 1999; 80 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_41_1 Dugan VG (e_1_2_6_9_1) 2008; 4 Krauss S (e_1_2_6_25_1) 2007; 3 e_1_2_6_5_1 e_1_2_6_7_1 Sharp GB (e_1_2_6_42_1) 1997; 71 e_1_2_6_24_1 Purchase HG (e_1_2_6_38_1) 1989 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_10_1 e_1_2_6_31_1 Zou S (e_1_2_6_50_1) 1997; 35 Perennou C (e_1_2_6_35_1) 1994 e_1_2_6_14_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 Kear J (e_1_2_6_20_1) 2005 Swofford DL (e_1_2_6_43_1) 2003 e_1_2_6_21_1 e_1_2_6_40_1 Miyabayashi Y (e_1_2_6_30_1) 1999 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Dugan VG, Chen R, Spiro DJ et al . (2008) The evolutionary genetics and emergence of avian influenza viruses in wild birds. Public Library of Science, Pathogens, 4, e1000076. – reference: Miller MR, Takekawa JY, Fleskes JP, Orthmeyer DL, Casazza ML, Perry WM (2005) Spring migration of northern pintail from California's Central Valley wintering area tracked with satellite telemetry: routes, timing, and destinations. Canadian Journal of Zoology, 83, 1314-1332. – reference: Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiology Review, 56, 152-179. – reference: Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR (2001) Universal primer set for the full-length amplification of all influenza A viruses. Archives of Virology, 146, 2275-2289. – reference: Posada D, Crandall KA (1998) ModelTest: testing the model of DNA substitution. Bioinformatics, 14, 817-818. – reference: Purchase HG, Arp LH, Domermuth CH, Pearson JE (1989) A Laboratory Manual for the Isolation and Identification of Avian Pathogens, 3rd edn. Kendall/Hunt Publishing Co., Dubuque, Iowa, USA. – reference: Obenauer JC, Denson J, Mehta PK et al . (2006) Large-scale sequence analysis of avian influenza isolates. Science, 311, 1562-1563. – reference: Swofford DL (2003) paup* Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sinauer Associates, Sunderland, Massachusetts. – reference: Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98. – reference: Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574. – reference: Parmley EJ, Bastien N, Booth TF et al . (2008) Wild bird influenza survey, Canada, 2005. Emerging Infectious Diseases, 14, 84-87. – reference: Keawcharoen J, Van Riel D, Van Amerongen G et al . (2008) Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1). Emerging Infectious Diseases, 14, 600-607. – reference: Runstadler JA, Happ GM, Slemons RD (2007) Using RT-PCR analysis and virus isolation to determine the prevalence of avian influenza virus infections in ducks at Minto Flats State Game Refuge, Alaska, during August 2005. Archives of Virology, 152, 1901-1910. – reference: Kilpatrick AM, Chmura AA, Gibbons DW, Fleischer RC, Marra PP, Daszak P (2006) Predicting the global spread of H5N1 avian influenza. Proceedings of the National Academy of Sciences, USA, 103, 19368-19373. – reference: Winker K, McCracken KG, Gibson DD et al . (2007) Movements of birds and avian influenza from Asia into Alaska. Emerging Infectious Diseases, 13, 547-552. – reference: Wang R, Soll L, Dugan V et al . (2008) Examining the hemagglutinin subtype diversity among wild duck-origin influenza A viruses using ethanol-fixed cloacal swabs and a novel RT-PCR method. Virology, 375, 182-189. – reference: Krauss S, Obert CA, Franks J et al . (2007) Influenza in migratory birds and evidence of limited intercontinental virus exchange. Public Library of Science, Pathogens, 3, 1684-1693. – reference: Sharp GB, Kawaoka Y, Jones DJ et al . (1997) Coinfection of wild ducks by influenza A viruses: distribution patterns and biological significance. Journal of Virology, 71, 6128-6135. – reference: Ip H, Flint PL, Franson JC et al . (2008) Prevalence of influenza A viruses in wild migratory birds in Alaska: patterns of variation in detection at the crossroads of intercontinental flyways. Virology Journal, 5, 71. – reference: Cronin MA, Grand JB, Esler D, Derksen DV, Scribner KT (1996) Breeding populations of northern pintails have similar mitochondrial DNA. Canadian Journal of Zoology, 74, 992-999. – reference: Widjaja L, Krauss SL, Webby RJ, Xie T, Webster RG (2004) Matrix gene of influenza A viruses from wild aquatic birds: ecology and emergence of influenza A viruses. Journal of Virology, 78, 8771-8779. – reference: Salzberg SL, Kingsford C, Cattoli G et al . (2007) Genome analysis linking recent European and African influenza (H5N1) viruses. Emerging Infectious Diseases, 13, 713-718. – reference: Hinshaw VS, Webster RG, Turner B (1980) The perpetuation of orthomyxoviruses and paramyxoviruses in Canadian waterfowl. Canadian Journal of Microbiology, 26, 622-629. – reference: Flint PL (2007) Applying the scientific method when assessing the influence of migratory birds on the dispersal of H5N1. Virology Journal, 4, 132. – reference: Li OTW, Barr I, Leung CYH et al . (2007) Reliable universal RT-PCR assays for studying influenza polymerase subunit gene sequences from all 16 haemagglutinin subtypes. Journal of Virology Methods, 142, 218-222. – reference: Phipps LP, Essen SC, Brown IH (2004) Genetic subtyping of influenza A viruses using RT-PCR with a single set of primers based on conserved sequences within the HA2 coding region. Journal of Virology Methods, 122, 119-122. – reference: Ito T, Okazaki K, Kawaoka Y, Takada A, Webster RG, Kida H (1995) Perpetuation of influenza A viruses in Alaskan waterfowl reservoirs. Archives of Virology, 140, 1163-1172. – reference: Lang AS, Kelly A, Runstadler JA (2008) Prevalence and diversity of avian influenza viruses in environmental reservoirs. Journal of General Virology, 89, 509-519. – reference: Bragstad K, Jørgensen PH, Handberg KJ, Mellergaard S, Corbet S, Fomsgaard A (2005) New avian influenza A virus subtype combination H5N7 identified in Danish mallard ducks. Virus Research, 109, 181-190. – reference: Kida H, Kawaoka Y, Naeve C, Webster RG (1987) Antigenic and genetic conservation of H3 influenza virus in wild ducks. Virology, 159, 109-119. – reference: Clark L, Hall J (2006) Avian influenza in wild birds: status as reservoirs, and risks to humans and agriculture. Ornithological Monographs, 60, 3-29. – reference: Marakova NV, Kaverin NV, Krauss S, Senne D, Webster RG (1999) Transmission of Eurasian avian H2 influenza virus to shorebirds in North America. Journal of General Virology, 80, 3167-3171. – reference: Kear J (2005) Bird Families of the World: Ducks, Geese, and Swans. Oxford University Press Inc., New York. – reference: Nicolai CA, Flint PL, Wege ML (2005) Annual survival and site fidelity of northern pintails banded on the Yukon-Kuskokwim Delta, Alaska. Journal of Wildlife Management, 69, 1202-1210. – reference: Miyabayashi Y, Mundkur T (1999) Atlas of Key Sites for Anatidae in the East Asian Flyway. Wetlands International, Tokyo, Japan. – reference: Bao Y, Bolotov P, Dernovoy D et al . (2008) The influenza virus resource at the national center for biotechnology information. Journal of Virology, 82, 596-601. – reference: Perennou C, Mundkur T, Scott DA (1994) The Asian Waterfowl Census 1987-91: Distribution and Status of Asian Waterfowl. IWRB Publication 24, Kuala Lumpur, Malaysia and Slimbridge, UK. – reference: Jahangir A, Watanabe Y, Chinen O et al . (2008) Surveillance of avian influenza viruses in northern pintails (Anas acuta) in Tohoku District, Japan. Avian Diseases, 52, 49-53. – reference: Kalthoff D, Breithaupt A, Teifke JP et al . (2008) Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans. Emerging Infectious Diseases, 14, 1267-1270. – reference: Uchida Y, Mase M, Yoneda K et al . (2008) Highly pathogenic avian influenza virus (H5N1) isolated from whooper swans, Japan. Emerging Infectious Diseases, 14, 1427-1429. – reference: Gauthier-Clerc M, Lebarbenchon C, Thomas F (2007) Recent expansion of highly pathogenic avian influenza H5N1: a critical review. Ibis, 149, 202-214. – reference: Zou S (1997) A practical approach to genetic screening for influenza virus variants. Journal of Clinical Microbiology, 35, 2623-2627. – reference: Kim HM, Oh JH, Seo SH et al . (2008) Genetic characterization of avian influenza viruses isolated from waterfowl in southern part of South Korea in 2006. Virus Genes, 37, 49-51. – reference: Brown JD, Stallknecht DE, Beck JR, Suarez DL, Swayne DE (2006) Susceptibility of North American ducks and gulls to H5N1 highly pathogenic avian influenza viruses. Emerging Infectious Diseases, 12, 1663-1670. – reference: Feare CJ (2007) The role of wild birds in the spread of HPAI H5N1. Avian Diseases, 51, 440-447. – reference: Wallensten A, Munster VJ, Elmberg J, Osterhaus ADME, Foucheir RAM, Olsen B (2005) Multiple gene segment reassortment between Eurasian and American lineages of influenza A virus (H6N2) in guillemot (Uria aalge). Archives of Virology, 150, 1685-1692. – reference: Bean WJ, Schell M, Katz J et al . (1992) Evolution of the H3 influenza virus hemagglutinin from human and nonhuman hosts. Journal of Virology, 66, 1129-1138. – reference: Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Bioinformatics, 12, 357-358. – reference: Chan CH, Lin KL, Chan Y et al . (2006) Amplification of the entire genome of influenza A virus H1N1 and H3N2 subtypes by reverse-transcription polymerase chain reaction. Journal of Virology Methods, 136, 38-43. – volume: 66 start-page: 1129 year: 1992 end-page: 1138 article-title: Evolution of the H3 influenza virus hemagglutinin from human and nonhuman hosts publication-title: Journal of Virology – volume: 13 start-page: 713 year: 2007 end-page: 718 article-title: Genome analysis linking recent European and African influenza (H5N1) viruses publication-title: Emerging Infectious Diseases – year: 2005 – volume: 146 start-page: 2275 year: 2001 end-page: 2289 article-title: Universal primer set for the full‐length amplification of all influenza A viruses publication-title: Archives of Virology – volume: 4 start-page: 132 year: 2007 article-title: Applying the scientific method when assessing the influence of migratory birds on the dispersal of H5N1 publication-title: Virology Journal – year: 1989 – volume: 3 start-page: 1684 year: 2007 end-page: 1693 article-title: Influenza in migratory birds and evidence of limited intercontinental virus exchange publication-title: Public Library of Science, Pathogens – volume: 12 start-page: 1663 year: 2006 end-page: 1670 article-title: Susceptibility of North American ducks and gulls to H5N1 highly pathogenic avian influenza viruses publication-title: Emerging Infectious Diseases – volume: 69 start-page: 1202 year: 2005 end-page: 1210 article-title: Annual survival and site fidelity of northern pintails banded on the Yukon‐Kuskokwim Delta, Alaska publication-title: Journal of Wildlife Management – volume: 26 start-page: 622 year: 1980 end-page: 629 article-title: The perpetuation of orthomyxoviruses and paramyxoviruses in Canadian waterfowl publication-title: Canadian Journal of Microbiology – volume: 82 start-page: 596 year: 2008 end-page: 601 article-title: The influenza virus resource at the national center for biotechnology information publication-title: Journal of Virology – volume: 311 start-page: 1562 year: 2006 end-page: 1563 article-title: Large‐scale sequence analysis of avian influenza isolates publication-title: Science – volume: 71 start-page: 6128 year: 1997 end-page: 6135 article-title: Coinfection of wild ducks by influenza A viruses: distribution patterns and biological significance publication-title: Journal of Virology – volume: 140 start-page: 1163 year: 1995 end-page: 1172 article-title: Perpetuation of influenza A viruses in Alaskan waterfowl reservoirs publication-title: Archives of Virology – year: 1994 – volume: 109 start-page: 181 year: 2005 end-page: 190 article-title: New avian influenza A virus subtype combination H5N7 identified in Danish mallard ducks publication-title: Virus Research – volume: 12 start-page: 357 year: 1996 end-page: 358 article-title: TreeView: an application to display phylogenetic trees on personal computers publication-title: Bioinformatics – volume: 74 start-page: 992 year: 1996 end-page: 999 article-title: Breeding populations of northern pintails have similar mitochondrial DNA publication-title: Canadian Journal of Zoology – volume: 14 start-page: 817 year: 1998 end-page: 818 article-title: ModelTest: testing the model of DNA substitution publication-title: Bioinformatics – volume: 19 start-page: 1572 year: 2003 end-page: 1574 article-title: MrBayes 3: Bayesian phylogenetic inference under mixed models publication-title: Bioinformatics – volume: 14 start-page: 600 year: 2008 end-page: 607 article-title: Wild ducks as long‐distance vectors of highly pathogenic avian influenza virus (H5N1) publication-title: Emerging Infectious Diseases – volume: 122 start-page: 119 year: 2004 end-page: 122 article-title: Genetic subtyping of influenza A viruses using RT‐PCR with a single set of primers based on conserved sequences within the HA2 coding region publication-title: Journal of Virology Methods – volume: 60 start-page: 3 year: 2006 end-page: 29 article-title: Avian influenza in wild birds: status as reservoirs, and risks to humans and agriculture publication-title: Ornithological Monographs – volume: 52 start-page: 49 year: 2008 end-page: 53 article-title: Surveillance of avian influenza viruses in northern pintails ( ) in Tohoku District, Japan publication-title: Avian Diseases – volume: 149 start-page: 202 year: 2007 end-page: 214 article-title: Recent expansion of highly pathogenic avian influenza H5N1: a critical review publication-title: Ibis – volume: 14 start-page: 1267 year: 2008 end-page: 1270 article-title: Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans publication-title: Emerging Infectious Diseases – volume: 41 start-page: 95 year: 1999 end-page: 98 article-title: BioEdit: a user‐friendly biological sequence alignment editor and analysis program for Windows 95/98/NT publication-title: Nucleic Acids Symposium Series – volume: 13 start-page: 547 year: 2007 end-page: 552 article-title: Movements of birds and avian influenza from Asia into Alaska publication-title: Emerging Infectious Diseases – year: 2003 – volume: 78 start-page: 8771 year: 2004 end-page: 8779 article-title: Matrix gene of influenza A viruses from wild aquatic birds: ecology and emergence of influenza A viruses publication-title: Journal of Virology – volume: 35 start-page: 2623 year: 1997 end-page: 2627 article-title: A practical approach to genetic screening for influenza virus variants publication-title: Journal of Clinical Microbiology – volume: 5 start-page: 71 year: 2008 article-title: Prevalence of influenza A viruses in wild migratory birds in Alaska: patterns of variation in detection at the crossroads of intercontinental flyways publication-title: Virology Journal – volume: 142 start-page: 218 year: 2007 end-page: 222 article-title: Reliable universal RT‐PCR assays for studying influenza polymerase subunit gene sequences from all 16 haemagglutinin subtypes publication-title: Journal of Virology Methods – volume: 14 start-page: 1427 year: 2008 end-page: 1429 article-title: Highly pathogenic avian influenza virus (H5N1) isolated from whooper swans, Japan publication-title: Emerging Infectious Diseases – volume: 159 start-page: 109 year: 1987 end-page: 119 article-title: Antigenic and genetic conservation of H3 influenza virus in wild ducks publication-title: Virology – volume: 89 start-page: 509 year: 2008 end-page: 519 article-title: Prevalence and diversity of avian influenza viruses in environmental reservoirs publication-title: Journal of General Virology – volume: 152 start-page: 1901 year: 2007 end-page: 1910 article-title: Using RT‐PCR analysis and virus isolation to determine the prevalence of avian influenza virus infections in ducks at Minto Flats State Game Refuge, Alaska, during August 2005 publication-title: Archives of Virology – volume: 83 start-page: 1314 year: 2005 end-page: 1332 article-title: Spring migration of northern pintail from California's Central Valley wintering area tracked with satellite telemetry: routes, timing, and destinations publication-title: Canadian Journal of Zoology – volume: 37 start-page: 49 year: 2008 end-page: 51 article-title: Genetic characterization of avian influenza viruses isolated from waterfowl in southern part of South Korea in 2006 publication-title: Virus Genes – volume: 56 start-page: 152 year: 1992 end-page: 179 article-title: Evolution and ecology of influenza A viruses publication-title: Microbiology Review – volume: 150 start-page: 1685 year: 2005 end-page: 1692 article-title: Multiple gene segment reassortment between Eurasian and American lineages of influenza A virus (H6N2) in guillemot ( publication-title: Archives of Virology – volume: 103 start-page: 19368 year: 2006 end-page: 19373 article-title: Predicting the global spread of H5N1 avian influenza publication-title: Proceedings of the National Academy of Sciences, USA – volume: 80 start-page: 3167 year: 1999 end-page: 3171 article-title: Transmission of Eurasian avian H2 influenza virus to shorebirds in North America publication-title: Journal of General Virology – volume: 4 start-page: e1000076 year: 2008 article-title: The evolutionary genetics and emergence of avian influenza viruses in wild birds publication-title: Public Library of Science, Pathogens – volume: 14 start-page: 84 year: 2008 end-page: 87 article-title: Wild bird influenza survey, Canada, 2005 publication-title: Emerging Infectious Diseases – volume: 136 start-page: 38 year: 2006 end-page: 43 article-title: Amplification of the entire genome of influenza A virus H1N1 and H3N2 subtypes by reverse‐transcription polymerase chain reaction publication-title: Journal of Virology Methods – volume: 375 start-page: 182 year: 2008 end-page: 189 article-title: Examining the hemagglutinin subtype diversity among wild duck‐origin influenza A viruses using ethanol‐fixed cloacal swabs and a novel RT‐PCR method publication-title: Virology – volume: 51 start-page: 440 year: 2007 end-page: 447 article-title: The role of wild birds in the spread of HPAI H5N1 publication-title: Avian Diseases – year: 1999 – ident: e_1_2_6_49_1 doi: 10.3201/eid1304.061072 – ident: e_1_2_6_48_1 doi: 10.1128/JVI.78.16.8771-8779.2004 – ident: e_1_2_6_27_1 doi: 10.1016/j.jviromet.2007.01.015 – volume: 35 start-page: 2623 year: 1997 ident: e_1_2_6_50_1 article-title: A practical approach to genetic screening for influenza virus variants publication-title: Journal of Clinical Microbiology doi: 10.1128/jcm.35.10.2623-2627.1997 – ident: e_1_2_6_3_1 doi: 10.1128/JVI.66.2.1129-1138.1992 – ident: e_1_2_6_17_1 doi: 10.1007/BF01322743 – ident: e_1_2_6_40_1 doi: 10.1007/s00705-007-0994-1 – ident: e_1_2_6_46_1 doi: 10.1016/j.virol.2008.01.041 – volume-title: paup* Phylogenetic Analysis Using Parsimony (*and Other Methods) year: 2003 ident: e_1_2_6_43_1 – volume-title: A Laboratory Manual for the Isolation and Identification of Avian Pathogens year: 1989 ident: e_1_2_6_38_1 – ident: e_1_2_6_37_1 doi: 10.1111/j.1095-8312.2004.00368.x – ident: e_1_2_6_13_1 doi: 10.1046/j.1365-2540.2001.00895.x – ident: e_1_2_6_29_1 doi: 10.1139/z05-125 – ident: e_1_2_6_16_1 doi: 10.1186/1743-422X-5-71 – ident: e_1_2_6_19_1 doi: 10.3201/eid1408.080078 – volume: 4 start-page: e1000076 year: 2008 ident: e_1_2_6_9_1 article-title: The evolutionary genetics and emergence of avian influenza viruses in wild birds publication-title: Public Library of Science, Pathogens – volume-title: Bird Families of the World: Ducks, Geese, and Swans year: 2005 ident: e_1_2_6_20_1 – volume-title: Atlas of Key Sites for Anatidae in the East Asian Flyway year: 1999 ident: e_1_2_6_30_1 – ident: e_1_2_6_5_1 doi: 10.3201/eid1211.060652 – ident: e_1_2_6_23_1 doi: 10.1073/pnas.0609227103 – volume-title: The Asian Waterfowl Census 1987–91: Distribution and Status of Asian Waterfowl year: 1994 ident: e_1_2_6_35_1 – ident: e_1_2_6_10_1 doi: 10.1637/7575-040106R1.1 – ident: e_1_2_6_47_1 doi: 10.1128/MMBR.56.1.152-179.1992 – ident: e_1_2_6_7_1 doi: 10.1642/0078-6594(2006)60[3:AIIWBS]2.0.CO;2 – ident: e_1_2_6_14_1 doi: 10.1139/m80-108 – ident: e_1_2_6_11_1 doi: 10.1186/1743-422X-4-132 – ident: e_1_2_6_8_1 doi: 10.1139/z96-112 – ident: e_1_2_6_21_1 doi: 10.3201/eid1404.071016 – ident: e_1_2_6_22_1 doi: 10.1016/0042-6822(87)90353-9 – volume: 71 start-page: 6128 year: 1997 ident: e_1_2_6_42_1 article-title: Coinfection of wild ducks by influenza A viruses: distribution patterns and biological significance publication-title: Journal of Virology doi: 10.1128/jvi.71.8.6128-6135.1997 – ident: e_1_2_6_15_1 doi: 10.1007/s007050170002 – ident: e_1_2_6_32_1 doi: 10.1126/science.1121586 – ident: e_1_2_6_6_1 doi: 10.1016/j.jviromet.2006.03.027 – ident: e_1_2_6_45_1 doi: 10.1007/s00705-005-0543-8 – ident: e_1_2_6_18_1 doi: 10.1637/8035-062507-Reg – ident: e_1_2_6_33_1 doi: 10.1093/bioinformatics/12.4.357 – ident: e_1_2_6_12_1 doi: 10.1111/j.1474-919X.2007.00699.x – ident: e_1_2_6_31_1 doi: 10.2193/0022-541X(2005)069[1202:ASASFO]2.0.CO;2 – volume: 3 start-page: 1684 year: 2007 ident: e_1_2_6_25_1 article-title: Influenza in migratory birds and evidence of limited intercontinental virus exchange publication-title: Public Library of Science, Pathogens – ident: e_1_2_6_44_1 doi: 10.3201/eid1409.080655 – ident: e_1_2_6_26_1 doi: 10.1099/vir.0.83369-0 – ident: e_1_2_6_41_1 doi: 10.3201/eid1305.070013 – ident: e_1_2_6_36_1 doi: 10.1016/j.jviromet.2004.08.008 – ident: e_1_2_6_2_1 doi: 10.1128/JVI.02005-07 – ident: e_1_2_6_39_1 doi: 10.1111/j.0908-8857.2004.03297.x – ident: e_1_2_6_24_1 doi: 10.1007/s11262-008-0230-4 – volume: 80 start-page: 3167 year: 1999 ident: e_1_2_6_28_1 article-title: Transmission of Eurasian avian H2 influenza virus to shorebirds in North America publication-title: Journal of General Virology doi: 10.1099/0022-1317-80-12-3167 – ident: e_1_2_6_4_1 doi: 10.1016/j.virusres.2004.12.004 – ident: e_1_2_6_34_1 doi: 10.3201/eid1401.061562 |
SSID | ssj0013255 |
Score | 2.3177757 |
Snippet | The role of migratory birds in the movement of the highly pathogenic (HP) avian influenza H5N1 remains a subject of debate. Testing hypotheses regarding... |
SourceID | proquest pubmed crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4754 |
SubjectTerms | Alaska Anas Anas acuta Animal Migration Animals Asia Aves Avian flu avian influenza Bird migration Disease transmission Ducks Ducks - virology Ecology genes genetic databases Genetic diversity genetic variation genetics Genome, Viral Influenza A Virus, H5N1 Subtype Influenza A Virus, H5N1 Subtype - genetics Influenza in Birds Influenza in Birds - genetics Influenza in Birds - virology low pathogenic migration migratory behavior Migratory birds Migratory species Molecular biology North America Phylogeny Population genetics Reassortant Viruses Reassortant Viruses - genetics reassortment RNA, Viral RNA, Viral - genetics Sequence Analysis, RNA virology virus sequencing waterfowl wild birds |
Title | Genetic evidence of intercontinental movement of avian influenza in a migratory bird: the northern pintail (Anas acuta) |
URI | https://api.istex.fr/ark:/67375/WNG-7XWKJLS9-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-294X.2008.03953.x https://www.ncbi.nlm.nih.gov/pubmed/19140989 https://www.proquest.com/docview/210687169 https://www.proquest.com/docview/19911596 https://www.proquest.com/docview/48126608 https://www.proquest.com/docview/69955896 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgEhIvjO-V8eEHhOAhVeIkTszbNHVMg-2BUq1v1sUfU9UtnfoB2_567py0rGiTJsSbFduX2jmff-6df8fYe8icL1NbRuS6jTIbx1GV2CxChGSFtJBCuPV-eCT3B9nBMB-28U90F6bhh1j94UYrI9hrWuBQzdYXeYjQUtmwDYlMVZ52CU9SBeGj7-KaQyEkQEXALtDylOl6UM-NgtZ2qvseJohfaeovbgKj69g2bE57m2y8HFYTkzLuLuZV11z9xfj4f8b9mD1qMSzfaZTuCbvn6qfsQZPV8hJLvcCEffmM_SJSa2zEXZu7lE88J4KKKUXI4y-hq5j8bBI4y-dUCT9RXbFJyJxyBVjiwM9GJ00wAK9GU_uZI2blNfmb3LTm5ygPRqf8404NMw5mMYdPz9lgr_djdz9qMz1EBgFQGmWJMVamuHEq5aQRLsur2HooYqGcFVUqIScXK6Qp4BMvvXIgikKVcQEeP-cLtlFParfFeO6N8AZBh4MksxmehrxMTOGdEEllbNVhxfKratPSoFM2jlN97TiEE6xpgtsknTTB-qLDklXP84YK5A59tlBxNJygxdaDvqBBJES-mqgO-xC0aSULpmOKsityfXz0RRfD468H3_pK9ztse6luujUwM40ndUlnXRTzblWLloHcPVC7yWKmKagNwaq8vUWG6E7KuLy9hVQqz0uS8bLR8z8jV0SVVuL7ZdDWO0-JPuztUunVv3bcZg9D0E64EPqabcynC_cGkeG8ehvW_G9RsFGy |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCMEL37AyYH5ACB5SJU7ixLxNU0fZ2j7QVeub5fhjqtalUz_29ddz56RlRZs0Id6sxL7El_P5d7nzHSGfVWJdHps8QNdtkJgwDIrIJAEgJMO4UbHyp967Pd4eJPvDdFiXA8KzMFV-iNUPN1wZXl_jAscf0uur3IdoiWRYx0TGIo2bACgfYYFvb1_9YjdcCr4EKkB2Bronj9fDem6ltLZXPXRqAggWmX95GxxdR7d-e9p7TsbLiVVRKSfNxbxo6uu_cj7-p5m_IM9qGEt3Krl7SR7Y8hV5XBW2vIJWyyfDvnpNLjCvNXSiti5fSieOYo6KKQbJw6vgaUx6OvFpy-d4U52DxEIXXzzlWkGLKno6Oq7iAWgxmprvFGArLdHlZKclPQN6ajSmX3dKNaNKL-bq2xsy2Gsd7raDuthDoAEDxUESaW14DHunEJZrZpO0CI1TWciENayIuUrRy6riWMEVx52wimWZyMNMOfieb8lGOSntJqGp08xpwB1WRYlJwCByPNKZs4xFhTZFg2TLzyp1nQkdC3KM5Q2LCBgskcF1nU5ksLxskGg18qzKBnKPMZsgOVIdg9KWgz7DSUSYfzUSDfLFi9OKlpqeYKBdlsqj3g-ZDY8O9jt9IfsNsrWUN1nrmJkEY52juQtktld3QTmgx0eVdrKYSYxrA7zK7-6RAMDjPMzv7sGFSNMcabyrBP3PzAVmS8vh-dyL671ZIrutXWy9_9eB2-RJ-7DbkZ2fvYMt8tTH8PjzoR_Ixny6sB8BKM6LT14B_AZhoVXN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCMQL37BuwPyAEDykSpzEiXmbtpaxjwpRqvXNcvwxVd3Sqh9j21_PnZOWFW3ShHizGvtaX-7OP9c_3xHyQSXW5bHJAzy6DRIThkERmSQAhGQYNypW_tb7UYfv9ZL9ftqv-U94F6bKD7H8ww09w8drdPCxcatO7hlaIunXlMhYpHET8OSDhIc5WvjuD3btRMFXQAXEziD05PEqq-dGSStL1X2nRgBgUfcXN6HRVXDrV6f2UzJczKsipQyb81nR1Fd_pXz8PxN_Rp7UIJZuV1b3nNyz5QvysCpreQmtlk-FffmS_MKs1tCJ2rp4KR05ihkqJkiRh1-CdzHp2cgnLZ_hQ3UO9gpdfOmUKwUtqujZ4KRiA9BiMDFfKIBWWuKBk52UdAzy1OCUftou1ZQqPZ-pz69Ir936ubMX1KUeAg0IKA6SSGvDY1g5hbBcM5ukRWicykImrGFFzFWKZ6wqjhV84rgTVrEsE3mYKQev8zVZK0elXSc0dZo5DajDqigxCWyHHI905ixjUaFN0SDZ4q1KXedBx3Icp_LafggULFHBdZVOVLC8aJBoOXJc5QK5w5h1MBypTiBky16X4SQizL4aiQb56K1pKUtNhkizy1J53Pkqs_7xwf5hV8hug2wuzE3WEWYqYavOcbMLYraWTyE04HmPKu1oPpXIagO0ym_vkQC84-Ast_fgQqRpjjLeVHb-Z-YCc6Xl8P3cW-udVSKPWjvY2vjXgVvk0ffdtjz81jnYJI89gcdfDn1L1maTuX0HKHFWvPfu_xslTVSF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+evidence+of+intercontinental+movement+of+avian+influenza+in+a+migratory+bird%3A+the+northern+pintail+%28Anas+acuta%29&rft.jtitle=Molecular+ecology&rft.au=KOEHLER%2C+ANSON+V.&rft.au=PEARCE%2C+JOHN+M.&rft.au=FLINT%2C+PAUL+L.&rft.au=FRANSON%2C+J.+CHRISTIAN&rft.date=2008-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=17&rft.issue=21&rft.spage=4754&rft.epage=4762&rft_id=info:doi/10.1111%2Fj.1365-294X.2008.03953.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_7XWKJLS9_S |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |