一种基于分类回归树的无人车汇流决策方法
决策规划是无人驾驶技术中的重要环节.由于道路结构变化或障碍物引起的车辆被动换道多采用基于逻辑规则或优化算法的决策方式.本文以通行量为优化目标,提出一种基于分类回归树(Classification and regression tree,CART)的汇流决策方法.依据交通流参数,选择大量具有代表性的车辆汇流场景.对场景中车辆的汇流决策序列进行编码,采用遗传算法搜索使得通行量最大的决策方案.将寻优获得的大量汇流决策序列作为样本,训练分类回归树.选取车辆自身信息及与周围车辆的关系等以描述环境特征,运用分类回归树描述环境特征与决策结果的映射关系,获得一种通行量最优的汇流决策方法.在软件中进行仿真实验,...
Saved in:
Published in | 自动化学报 Vol. 44; no. 1; pp. 35 - 43 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
上海交通大学机器人所 上海200240%上海交通大学自动化系 上海200240
2018
上海市北斗导航与位置服务重点实验室 上海200240 |
Subjects | |
Online Access | Get full text |
ISSN | 0254-4156 1874-1029 |
DOI | 10.16383/j.aas.2018.c160457 |
Cover
Abstract | 决策规划是无人驾驶技术中的重要环节.由于道路结构变化或障碍物引起的车辆被动换道多采用基于逻辑规则或优化算法的决策方式.本文以通行量为优化目标,提出一种基于分类回归树(Classification and regression tree,CART)的汇流决策方法.依据交通流参数,选择大量具有代表性的车辆汇流场景.对场景中车辆的汇流决策序列进行编码,采用遗传算法搜索使得通行量最大的决策方案.将寻优获得的大量汇流决策序列作为样本,训练分类回归树.选取车辆自身信息及与周围车辆的关系等以描述环境特征,运用分类回归树描述环境特征与决策结果的映射关系,获得一种通行量最优的汇流决策方法.在软件中进行仿真实验,对比既有方法,基于分类回归树的汇流方法能够有效减少汇流行为对车流的扰动,在大流量情形下依旧能保持较高的通行效率.此外,该方法对实际实施中可能存在的环境感知误差,如定位误差,有一定的鲁棒性. |
---|---|
AbstractList | 决策规划是无人驾驶技术中的重要环节.由于道路结构变化或障碍物引起的车辆被动换道多采用基于逻辑规则或优化算法的决策方式.本文以通行量为优化目标,提出一种基于分类回归树(Classification and regression tree, CART) 的汇流决策方法.依据交通流参数,选择大量具有代表性的车辆汇流场景.对场景中车辆的汇流决策序列进行编码,采用遗传算法搜索使得通行量最大的决策方案.将寻优获得的大量汇流决策序列作为样本,训练分类回归树.选取车辆自身信息及与周围车辆的关系等以描述环境特征,运用分类回归树描述环境特征与决策结果的映射关系,获得一种通行量最优的汇流决策方法.在软件中进行仿真实验,对比既有方法,基于分类回归树的汇流方法能够有效减少汇流行为对车流的扰动,在大流量情形下依旧能保持较高的通行效率.此外,该方法对实际实施中可能存在的环境感知误差,如定位误差,有一定的鲁棒性. 决策规划是无人驾驶技术中的重要环节.由于道路结构变化或障碍物引起的车辆被动换道多采用基于逻辑规则或优化算法的决策方式.本文以通行量为优化目标,提出一种基于分类回归树(Classification and regression tree,CART)的汇流决策方法.依据交通流参数,选择大量具有代表性的车辆汇流场景.对场景中车辆的汇流决策序列进行编码,采用遗传算法搜索使得通行量最大的决策方案.将寻优获得的大量汇流决策序列作为样本,训练分类回归树.选取车辆自身信息及与周围车辆的关系等以描述环境特征,运用分类回归树描述环境特征与决策结果的映射关系,获得一种通行量最优的汇流决策方法.在软件中进行仿真实验,对比既有方法,基于分类回归树的汇流方法能够有效减少汇流行为对车流的扰动,在大流量情形下依旧能保持较高的通行效率.此外,该方法对实际实施中可能存在的环境感知误差,如定位误差,有一定的鲁棒性. |
Abstract_FL | Decision-making and planning are important technologies of unmanned vehicle. Logical rule and optimization algorithm are commonly applied to passive merging strategy for road structure change or obstacles. A traffic merging strategy aiming to improve throughput is proposed in this paper. According to different traffic parameters, a large number of typical traffic merging scenarios are selected. For vehicles in different scenarios,decision sequences are encoded and optimal merging decision is obtained by genetic algorithm based on remainder stochastic sampling with replacement (RSSR).Those optimal decisions are used to train classification and regression tree(CART).Specifically,the environmental feature is described by vehicle state and relationship between other vehicles around. Then the relationship between environmental features and decision is modeled by classification and regression tree. Compared with the previous merging strategy it is shown by simulation that the merging strategy based on CART can effectively mitigate disturbance on traffic flow, brought by merging maneuver, and maintain a high through efficiency even in large flow circumstances. Moreover,this method is also rather robust to environmental perception errors,such as positioning error which may exist in implementation. |
Author | 苏锑;杨明;王春香;唐卫;王冰 |
AuthorAffiliation | 上海交通大学机器人所,上海200240;上海交通大学自动化系,上海200240;上海市北斗导航与位置服务重点实验室,上海200240 |
AuthorAffiliation_xml | – name: 上海交通大学机器人所 上海200240%上海交通大学自动化系 上海200240;上海市北斗导航与位置服务重点实验室 上海200240 |
Author_FL | YANG Ming WANG Bing SU Ti TANG Wei WANG Chun-Xiang |
Author_FL_xml | – sequence: 1 fullname: SU Ti – sequence: 2 fullname: YANG Ming – sequence: 3 fullname: WANG Chun-Xiang – sequence: 4 fullname: TANG Wei – sequence: 5 fullname: WANG Bing |
Author_xml | – sequence: 1 fullname: 苏锑;杨明;王春香;唐卫;王冰 |
BookMark | eNotj0tLw0AUhQepYK39Be5cuEu8k3lkZinFFxTcdF8mk0wfaKoN4mOlIK0bBQUrKGhXunJRiqCR_psm8WcYqZtzFufj3HsWUSHshAFCyxhszIkga21bqch2AAtbYw6UuXOoiIVLLQyOLKAiOIxaFDO-gMpR1PIAu9SVDoEiktPP8-ztOnmJp_FNctXLRt_J03MyuUuHt9njZfownMbxz-Q1HfXTj4ukN87eB-ngKx3fL6F5o_aioPzvJVTb3KhVtq3q7tZOZb1qaSZoLsajGjPBAk0hwEH-pWaSOC7RoCUXwmeESc41GK6ZIn4eUG4ED6gx1CcltDqrPVahUWGj3u4cdcP8YP3Mb554f6sBA9AcXJmButkJG4etHD3otvZV97TOXUok45KRXzEobBg |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.16383/j.aas.2018.c160457 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Classification and Regression Tree Based Traffic Merging for Method Self-driving Vehicles |
DocumentTitle_FL | Classification and Regression Tree Based Traffic Merging for Method Self-driving Vehicles |
EISSN | 1874-1029 |
EndPage | 43 |
ExternalDocumentID | zdhxb201801004 674395695 |
GrantInformation_xml | – fundername: 国家自然科学基金; 国家磁约束核聚变能研究专项(2012 GB102002)资助Supported by National Natural Science Foundation of China; National Magnetic Confinement Fusion Energy Research Project funderid: (91420101); (91420101); (2012GB102002) |
GroupedDBID | --K -0Y .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 457 4G. 5GY 5VS 5XA 5XJ 7-5 71M 8P~ 92H 92I 92L AAIKJ AALRI AAQFI AAXUO ACGFS ADEZE ADTZH AECPX AEKER AFTJW AGHFR AGYEJ AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS BLXMC CCEZO CQIGP CS3 CUBFJ CW9 EBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA HVGLF HZ~ IHE J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI ABWVN ACRPL ADNMO PSX |
ID | FETCH-LOGICAL-c584-c5fb4c1585ec40e1e018c593273c0c9688d535966c0f6c5a3d73c46f86e4ff4d3 |
ISSN | 0254-4156 |
IngestDate | Thu May 29 04:10:30 EDT 2025 Wed Feb 14 09:55:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | genetic algorithm simulation of urban mobility (SUMO) 汇流决策 遗传算法 Merging strategy 分类回归树 classification and regression tree(CART) 交通流仿真 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c584-c5fb4c1585ec40e1e018c593273c0c9688d535966c0f6c5a3d73c46f86e4ff4d3 |
Notes | SU Ti1, YANG Ming2,3, WANG Chun-Xiang1, TANG Wei2, 3, WANG Bing2,3 (1. Research Institute of Robotics, Shanghai Jiao Tong Univer- sity, Shanghai 200240 2. Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 3. Shanghai Key Lab of Navigation and Location Services, Shanghai 200240) Decision-making and planning are important technologies of unmanned vehicle. Logical rule and optimization algorithm are commonly applied to passive merging strategy for road structure change or obstacles. A traffic merging strategy aiming to improve throughput is proposed in this paper. According to different traffic parameters, a large number of typical traffic merging scenarios are selected. For vehicles in different scenarios, decision sequences are encoded and optimal merging decision is obtained by genetic algorithm based on remainder stochastic sampling with replacement (RSSR). Those optimal decisions are used to train classification and regression tree (CART). Specifically, the environmental feature is des |
PageCount | 9 |
ParticipantIDs | wanfang_journals_zdhxb201801004 chongqing_primary_674395695 |
PublicationCentury | 2000 |
PublicationDate | 2018 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018 |
PublicationDecade | 2010 |
PublicationTitle | 自动化学报 |
PublicationTitleAlternate | Acta Automatica Sinica |
PublicationTitle_FL | Acta Automatica Sinica |
PublicationYear | 2018 |
Publisher | 上海交通大学机器人所 上海200240%上海交通大学自动化系 上海200240 上海市北斗导航与位置服务重点实验室 上海200240 |
Publisher_xml | – name: 上海交通大学机器人所 上海200240%上海交通大学自动化系 上海200240 – name: 上海市北斗导航与位置服务重点实验室 上海200240 |
SSID | ssib017479230 ssib001102911 ssib006576350 ssib051375349 ssib007293330 ssj0059721 ssib007290157 ssib023646446 ssib005904210 |
Score | 2.2045245 |
Snippet | 决策规划是无人驾驶技术中的重要环节.由于道路结构变化或障碍物引起的车辆被动换道多采用基于逻辑规则或优化算法的决策方式.本文以通行量为优化目标,提出一种基于分类回归树(Classification and regression... 决策规划是无人驾驶技术中的重要环节.由于道路结构变化或障碍物引起的车辆被动换道多采用基于逻辑规则或优化算法的决策方式.本文以通行量为优化目标,提出一种基于分类回归树(Classification and regression tree, CART)... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 35 |
SubjectTerms | 汇流决策;遗传算法;分类回归树;交通流仿真 |
Title | 一种基于分类回归树的无人车汇流决策方法 |
URI | http://lib.cqvip.com/qk/90250X/201801/674395695.html https://d.wanfangdata.com.cn/periodical/zdhxb201801004 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27bhQx0ApJAwXiKUJ4pMDlhX34Wa6TDRFCVAGlO-3urZPqEuAioVQgoUADEkgECSRIBRVFFCHBoXwKXe6Oz2DG3txtFISAxvKOZ8aP2R3PeO0xIdeYiMCTBQnYXJUN8Dfyhs7jsqFL-MpLwWxu3QbZ22LhDru5xJfGxn7Udi2td_KZYuO350r-R6oAA7niKdl_kOyQKQAgD_KFFCQM6V_JmKaMGoWbFVJJE0nVHE051fPUJK4ooSpFiAIcgTgmpMY4HEO1KzJzVEc0FTQJqA4RRwMVQ4iWCPR8kKFC5ERgEfBR0mWAeeiqgHzsmgEMHQ6kRjucmPobLg-MYGQF5EniCBOaKJeZdYQcOfhasIgfvBGOyFA1T1NNNcPGxsbVM-cYQEZhdxEoMaNMBUw4kgBLrV0pd-SBqxNozWES35WgvhpSV914rL-B7qif2bw6V5LBRFOtqVT63sebPPRee-Xt46ZUZoAPHnVkggF1FbsZJssw2HuoZopQgFksR_PpcJcjnu8A91PzY2QikjLk42Tihrl1NxnZq9i2moLlGnRozR4THOMFjp4l_vWu_aaG5zge-X_gXWI4yOEzXg4gav4-D2PwTtHf9qYKx9BNbhGyGroqLBd28vrRLmL4kZXV9vI9MKrcGbe2zdrLNXNs8RQ5WflR04n_KE6TsY2VM-RELbrmWaL3vz4afHre-9Dd777oPdsc7HzvvXvf23vV3345ePuk_2Z7v9v9ufexv_O0_-Vxb3N38Hmrv_Wtv_v6HFmcTxdnFxrVTSGNAgxoSGzOihA837JgQRmW0OiCg2ci4yIotFCqxWMOjn0RWFHwLG5BARNWiZJZy1rxeTLeXm2XF8h0KbPQsgJIYOxsFClpdZYVUWZlDtVEk2RqOAbNNR8QpjkU9CS5Wo1Ks1ITD5obrZWHOQ5jgMEZL_6RfoocR0y_xHeJjHfur5eXwejt5FeqV-cXFpeFEA |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%A7%8D%E5%9F%BA%E4%BA%8E%E5%88%86%E7%B1%BB%E5%9B%9E%E5%BD%92%E6%A0%91%E7%9A%84%E6%97%A0%E4%BA%BA%E8%BD%A6%E6%B1%87%E6%B5%81%E5%86%B3%E7%AD%96%E6%96%B9%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E8%8B%8F%E9%94%91%3B%E6%9D%A8%E6%98%8E%3B%E7%8E%8B%E6%98%A5%E9%A6%99%3B%E5%94%90%E5%8D%AB%3B%E7%8E%8B%E5%86%B0&rft.date=2018&rft.issn=0254-4156&rft.eissn=1874-1029&rft.volume=44&rft.issue=1&rft.spage=35&rft.epage=43&rft_id=info:doi/10.16383%2Fj.aas.2018.c160457&rft.externalDocID=674395695 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg |