一种基于分类回归树的无人车汇流决策方法

决策规划是无人驾驶技术中的重要环节.由于道路结构变化或障碍物引起的车辆被动换道多采用基于逻辑规则或优化算法的决策方式.本文以通行量为优化目标,提出一种基于分类回归树(Classification and regression tree,CART)的汇流决策方法.依据交通流参数,选择大量具有代表性的车辆汇流场景.对场景中车辆的汇流决策序列进行编码,采用遗传算法搜索使得通行量最大的决策方案.将寻优获得的大量汇流决策序列作为样本,训练分类回归树.选取车辆自身信息及与周围车辆的关系等以描述环境特征,运用分类回归树描述环境特征与决策结果的映射关系,获得一种通行量最优的汇流决策方法.在软件中进行仿真实验,...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 44; no. 1; pp. 35 - 43
Main Author 苏锑;杨明;王春香;唐卫;王冰
Format Journal Article
LanguageChinese
Published 上海交通大学机器人所 上海200240%上海交通大学自动化系 上海200240 2018
上海市北斗导航与位置服务重点实验室 上海200240
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
DOI10.16383/j.aas.2018.c160457

Cover

Abstract 决策规划是无人驾驶技术中的重要环节.由于道路结构变化或障碍物引起的车辆被动换道多采用基于逻辑规则或优化算法的决策方式.本文以通行量为优化目标,提出一种基于分类回归树(Classification and regression tree,CART)的汇流决策方法.依据交通流参数,选择大量具有代表性的车辆汇流场景.对场景中车辆的汇流决策序列进行编码,采用遗传算法搜索使得通行量最大的决策方案.将寻优获得的大量汇流决策序列作为样本,训练分类回归树.选取车辆自身信息及与周围车辆的关系等以描述环境特征,运用分类回归树描述环境特征与决策结果的映射关系,获得一种通行量最优的汇流决策方法.在软件中进行仿真实验,对比既有方法,基于分类回归树的汇流方法能够有效减少汇流行为对车流的扰动,在大流量情形下依旧能保持较高的通行效率.此外,该方法对实际实施中可能存在的环境感知误差,如定位误差,有一定的鲁棒性.
AbstractList 决策规划是无人驾驶技术中的重要环节.由于道路结构变化或障碍物引起的车辆被动换道多采用基于逻辑规则或优化算法的决策方式.本文以通行量为优化目标,提出一种基于分类回归树(Classification and regression tree, CART) 的汇流决策方法.依据交通流参数,选择大量具有代表性的车辆汇流场景.对场景中车辆的汇流决策序列进行编码,采用遗传算法搜索使得通行量最大的决策方案.将寻优获得的大量汇流决策序列作为样本,训练分类回归树.选取车辆自身信息及与周围车辆的关系等以描述环境特征,运用分类回归树描述环境特征与决策结果的映射关系,获得一种通行量最优的汇流决策方法.在软件中进行仿真实验,对比既有方法,基于分类回归树的汇流方法能够有效减少汇流行为对车流的扰动,在大流量情形下依旧能保持较高的通行效率.此外,该方法对实际实施中可能存在的环境感知误差,如定位误差,有一定的鲁棒性.
决策规划是无人驾驶技术中的重要环节.由于道路结构变化或障碍物引起的车辆被动换道多采用基于逻辑规则或优化算法的决策方式.本文以通行量为优化目标,提出一种基于分类回归树(Classification and regression tree,CART)的汇流决策方法.依据交通流参数,选择大量具有代表性的车辆汇流场景.对场景中车辆的汇流决策序列进行编码,采用遗传算法搜索使得通行量最大的决策方案.将寻优获得的大量汇流决策序列作为样本,训练分类回归树.选取车辆自身信息及与周围车辆的关系等以描述环境特征,运用分类回归树描述环境特征与决策结果的映射关系,获得一种通行量最优的汇流决策方法.在软件中进行仿真实验,对比既有方法,基于分类回归树的汇流方法能够有效减少汇流行为对车流的扰动,在大流量情形下依旧能保持较高的通行效率.此外,该方法对实际实施中可能存在的环境感知误差,如定位误差,有一定的鲁棒性.
Abstract_FL Decision-making and planning are important technologies of unmanned vehicle. Logical rule and optimization algorithm are commonly applied to passive merging strategy for road structure change or obstacles. A traffic merging strategy aiming to improve throughput is proposed in this paper. According to different traffic parameters, a large number of typical traffic merging scenarios are selected. For vehicles in different scenarios,decision sequences are encoded and optimal merging decision is obtained by genetic algorithm based on remainder stochastic sampling with replacement (RSSR).Those optimal decisions are used to train classification and regression tree(CART).Specifically,the environmental feature is described by vehicle state and relationship between other vehicles around. Then the relationship between environmental features and decision is modeled by classification and regression tree. Compared with the previous merging strategy it is shown by simulation that the merging strategy based on CART can effectively mitigate disturbance on traffic flow, brought by merging maneuver, and maintain a high through efficiency even in large flow circumstances. Moreover,this method is also rather robust to environmental perception errors,such as positioning error which may exist in implementation.
Author 苏锑;杨明;王春香;唐卫;王冰
AuthorAffiliation 上海交通大学机器人所,上海200240;上海交通大学自动化系,上海200240;上海市北斗导航与位置服务重点实验室,上海200240
AuthorAffiliation_xml – name: 上海交通大学机器人所 上海200240%上海交通大学自动化系 上海200240;上海市北斗导航与位置服务重点实验室 上海200240
Author_FL YANG Ming
WANG Bing
SU Ti
TANG Wei
WANG Chun-Xiang
Author_FL_xml – sequence: 1
  fullname: SU Ti
– sequence: 2
  fullname: YANG Ming
– sequence: 3
  fullname: WANG Chun-Xiang
– sequence: 4
  fullname: TANG Wei
– sequence: 5
  fullname: WANG Bing
Author_xml – sequence: 1
  fullname: 苏锑;杨明;王春香;唐卫;王冰
BookMark eNotj0tLw0AUhQepYK39Be5cuEu8k3lkZinFFxTcdF8mk0wfaKoN4mOlIK0bBQUrKGhXunJRiqCR_psm8WcYqZtzFufj3HsWUSHshAFCyxhszIkga21bqch2AAtbYw6UuXOoiIVLLQyOLKAiOIxaFDO-gMpR1PIAu9SVDoEiktPP8-ztOnmJp_FNctXLRt_J03MyuUuHt9njZfownMbxz-Q1HfXTj4ukN87eB-ngKx3fL6F5o_aioPzvJVTb3KhVtq3q7tZOZb1qaSZoLsajGjPBAk0hwEH-pWaSOC7RoCUXwmeESc41GK6ZIn4eUG4ED6gx1CcltDqrPVahUWGj3u4cdcP8YP3Mb554f6sBA9AcXJmButkJG4etHD3otvZV97TOXUok45KRXzEobBg
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16383/j.aas.2018.c160457
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Classification and Regression Tree Based Traffic Merging for Method Self-driving Vehicles
DocumentTitle_FL Classification and Regression Tree Based Traffic Merging for Method Self-driving Vehicles
EISSN 1874-1029
EndPage 43
ExternalDocumentID zdhxb201801004
674395695
GrantInformation_xml – fundername: 国家自然科学基金; 国家磁约束核聚变能研究专项(2012 GB102002)资助Supported by National Natural Science Foundation of China; National Magnetic Confinement Fusion Energy Research Project
  funderid: (91420101); (91420101); (2012GB102002)
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
92L
AAIKJ
AALRI
AAQFI
AAXUO
ACGFS
ADEZE
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CQIGP
CS3
CUBFJ
CW9
EBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
ABWVN
ACRPL
ADNMO
PSX
ID FETCH-LOGICAL-c584-c5fb4c1585ec40e1e018c593273c0c9688d535966c0f6c5a3d73c46f86e4ff4d3
ISSN 0254-4156
IngestDate Thu May 29 04:10:30 EDT 2025
Wed Feb 14 09:55:47 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords genetic algorithm
simulation of urban mobility (SUMO)
汇流决策
遗传算法
Merging strategy
分类回归树
classification and regression tree(CART)
交通流仿真
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c584-c5fb4c1585ec40e1e018c593273c0c9688d535966c0f6c5a3d73c46f86e4ff4d3
Notes SU Ti1, YANG Ming2,3, WANG Chun-Xiang1, TANG Wei2, 3, WANG Bing2,3 (1. Research Institute of Robotics, Shanghai Jiao Tong Univer- sity, Shanghai 200240 2. Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 3. Shanghai Key Lab of Navigation and Location Services, Shanghai 200240)
Decision-making and planning are important technologies of unmanned vehicle. Logical rule and optimization algorithm are commonly applied to passive merging strategy for road structure change or obstacles. A traffic merging strategy aiming to improve throughput is proposed in this paper. According to different traffic parameters, a large number of typical traffic merging scenarios are selected. For vehicles in different scenarios, decision sequences are encoded and optimal merging decision is obtained by genetic algorithm based on remainder stochastic sampling with replacement (RSSR). Those optimal decisions are used to train classification and regression tree (CART). Specifically, the environmental feature is des
PageCount 9
ParticipantIDs wanfang_journals_zdhxb201801004
chongqing_primary_674395695
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle 自动化学报
PublicationTitleAlternate Acta Automatica Sinica
PublicationTitle_FL Acta Automatica Sinica
PublicationYear 2018
Publisher 上海交通大学机器人所 上海200240%上海交通大学自动化系 上海200240
上海市北斗导航与位置服务重点实验室 上海200240
Publisher_xml – name: 上海交通大学机器人所 上海200240%上海交通大学自动化系 上海200240
– name: 上海市北斗导航与位置服务重点实验室 上海200240
SSID ssib017479230
ssib001102911
ssib006576350
ssib051375349
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 2.2045245
Snippet 决策规划是无人驾驶技术中的重要环节.由于道路结构变化或障碍物引起的车辆被动换道多采用基于逻辑规则或优化算法的决策方式.本文以通行量为优化目标,提出一种基于分类回归树(Classification and regression...
决策规划是无人驾驶技术中的重要环节.由于道路结构变化或障碍物引起的车辆被动换道多采用基于逻辑规则或优化算法的决策方式.本文以通行量为优化目标,提出一种基于分类回归树(Classification and regression tree, CART)...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 35
SubjectTerms 汇流决策;遗传算法;分类回归树;交通流仿真
Title 一种基于分类回归树的无人车汇流决策方法
URI http://lib.cqvip.com/qk/90250X/201801/674395695.html
https://d.wanfangdata.com.cn/periodical/zdhxb201801004
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27bhQx0ApJAwXiKUJ4pMDlhX34Wa6TDRFCVAGlO-3urZPqEuAioVQgoUADEkgECSRIBRVFFCHBoXwKXe6Oz2DG3txtFISAxvKOZ8aP2R3PeO0xIdeYiMCTBQnYXJUN8Dfyhs7jsqFL-MpLwWxu3QbZ22LhDru5xJfGxn7Udi2td_KZYuO350r-R6oAA7niKdl_kOyQKQAgD_KFFCQM6V_JmKaMGoWbFVJJE0nVHE051fPUJK4ooSpFiAIcgTgmpMY4HEO1KzJzVEc0FTQJqA4RRwMVQ4iWCPR8kKFC5ERgEfBR0mWAeeiqgHzsmgEMHQ6kRjucmPobLg-MYGQF5EniCBOaKJeZdYQcOfhasIgfvBGOyFA1T1NNNcPGxsbVM-cYQEZhdxEoMaNMBUw4kgBLrV0pd-SBqxNozWES35WgvhpSV914rL-B7qif2bw6V5LBRFOtqVT63sebPPRee-Xt46ZUZoAPHnVkggF1FbsZJssw2HuoZopQgFksR_PpcJcjnu8A91PzY2QikjLk42Tihrl1NxnZq9i2moLlGnRozR4THOMFjp4l_vWu_aaG5zge-X_gXWI4yOEzXg4gav4-D2PwTtHf9qYKx9BNbhGyGroqLBd28vrRLmL4kZXV9vI9MKrcGbe2zdrLNXNs8RQ5WflR04n_KE6TsY2VM-RELbrmWaL3vz4afHre-9Dd777oPdsc7HzvvXvf23vV3345ePuk_2Z7v9v9ufexv_O0_-Vxb3N38Hmrv_Wtv_v6HFmcTxdnFxrVTSGNAgxoSGzOihA837JgQRmW0OiCg2ci4yIotFCqxWMOjn0RWFHwLG5BARNWiZJZy1rxeTLeXm2XF8h0KbPQsgJIYOxsFClpdZYVUWZlDtVEk2RqOAbNNR8QpjkU9CS5Wo1Ks1ITD5obrZWHOQ5jgMEZL_6RfoocR0y_xHeJjHfur5eXwejt5FeqV-cXFpeFEA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%A7%8D%E5%9F%BA%E4%BA%8E%E5%88%86%E7%B1%BB%E5%9B%9E%E5%BD%92%E6%A0%91%E7%9A%84%E6%97%A0%E4%BA%BA%E8%BD%A6%E6%B1%87%E6%B5%81%E5%86%B3%E7%AD%96%E6%96%B9%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E8%8B%8F%E9%94%91%3B%E6%9D%A8%E6%98%8E%3B%E7%8E%8B%E6%98%A5%E9%A6%99%3B%E5%94%90%E5%8D%AB%3B%E7%8E%8B%E5%86%B0&rft.date=2018&rft.issn=0254-4156&rft.eissn=1874-1029&rft.volume=44&rft.issue=1&rft.spage=35&rft.epage=43&rft_id=info:doi/10.16383%2Fj.aas.2018.c160457&rft.externalDocID=674395695
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg