基于区分性Model Pushing的语种识别方法

提出一种区分性Model Pushing方法,将SVM训练出的支持向量沿最优分类面的法线方向进行适当移动,增大不同语种间的区分性,然后将移动后的支持向量反向应用于GMM。该方法既保留了SVM的区分性信息,又利用了GMM在短时语音上的优势,同时增加了目标与非目标的区分度。实验结果表明,区分性Model Pushing能有效地提高识别性能。...

Full description

Saved in:
Bibliographic Details
Published in电子技术应用 Vol. 38; no. 4; pp. 113 - 116
Main Author 刘伟伟 吉立新 李邵梅 徐文
Format Journal Article
LanguageChinese
Published 61906部队,江西鹰潭335000%国家数字交换系统工程技术研究中心,河南郑州,450002%61906部队,江西鹰潭,335000 2012
国家数字交换系统工程技术研究中心,河南郑州450002
Subjects
Online AccessGet full text
ISSN0258-7998
DOI10.3969/j.issn.0258-7998.2012.04.034

Cover

Abstract 提出一种区分性Model Pushing方法,将SVM训练出的支持向量沿最优分类面的法线方向进行适当移动,增大不同语种间的区分性,然后将移动后的支持向量反向应用于GMM。该方法既保留了SVM的区分性信息,又利用了GMM在短时语音上的优势,同时增加了目标与非目标的区分度。实验结果表明,区分性Model Pushing能有效地提高识别性能。
AbstractList 提出一种区分性Model Pushing方法,将SVM训练出的支持向量沿最优分类面的法线方向进行适当移动,增大不同语种间的区分性,然后将移动后的支持向量反向应用于GMM。该方法既保留了SVM的区分性信息,又利用了GMM在短时语音上的优势,同时增加了目标与非目标的区分度。实验结果表明,区分性Model Pushing能有效地提高识别性能。
TN912.3; 提出一种区分性Model Pushing方法,将SVM训练出的支持向量沿最优分类面的法线方向进行适当移动,增大不同语种间的区分性,然后将移动后的支持向量反向应用于GMM.该方法既保留了SVM的区分性信息,又利用了GMM在短时语音上的优势,同时增加了目标与非目标的区分度.实验结果表明,区分性Model Pushing能有效地提高识别性能.
Author 刘伟伟 吉立新 李邵梅 徐文
AuthorAffiliation 国家数字交换系统工程技术研究中心,河南郑州450002 61906部队,江西鹰潭335000
AuthorAffiliation_xml – name: 国家数字交换系统工程技术研究中心,河南郑州450002;61906部队,江西鹰潭335000%国家数字交换系统工程技术研究中心,河南郑州,450002%61906部队,江西鹰潭,335000
Author_FL Xu Wen
Liu Weiwei
Li Shaomei
Ji Lixin
Author_FL_xml – sequence: 1
  fullname: Liu Weiwei
– sequence: 2
  fullname: Ji Lixin
– sequence: 3
  fullname: Li Shaomei
– sequence: 4
  fullname: Xu Wen
Author_xml – sequence: 1
  fullname: 刘伟伟 吉立新 李邵梅 徐文
BookMark eNo9jz1LAzEcxjNUsNZ-BwXB6c4k_-SSjFLUChUduh-5XO96pea0oUidHKR0UDcdXBw7iHRwsp_Ha_sxPKk4PfDw43nZQhWb2w5CewT7oAJ10PMz56yPKZeeUEr6FBPqY-ZjYBVU_fc3Ud25LMKYEEwlhyoixdv8e_5UPMyLyXhxNz3L405_52LouplNl6_3q9nHcvq4mo2Lyfvi5Wvx-byNNhLdd536n9ZQ-_io3Wh6rfOT08ZhyzNcMk8IYEpoE0XAWZBQwWIVaS6liQOsQIJWOjA8AqEkxACK64AGnHNqsIyEgRraX8feaJtom4a9fDiwZWEY3_bcaPT7ELPyX0nurknTzW16Xe4OrwbZpR6MQkYYcCIY_ABucGFM
ClassificationCodes TN912.3
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.0258-7998.2012.04.034
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Language recognition based on discriminative Model Pushing
DocumentTitle_FL Language recognition based on discriminative Model Pushing
EndPage 116
ExternalDocumentID dzjsyy201204034
41435174
GrantInformation_xml – fundername: 国家863计划重点项目
  funderid: (2011AA010603)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
GROUPED_DOAJ
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c584-773497acbb3546f274d9ba588cd609383a9a6c5b37983d3395a6265552c08b7c3
ISSN 0258-7998
IngestDate Thu May 29 04:04:52 EDT 2025
Wed Feb 14 10:47:13 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 语种识别
高斯混合模型超矢量-支持向量机
超平面法向量
区分性Model Pushing
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c584-773497acbb3546f274d9ba588cd609383a9a6c5b37983d3395a6265552c08b7c3
Notes language recognition; discriminative Model Pushing; gaussian mixture model super vector-support vector machine; normal vector to hyperplanes
To improve the performance of short utterances in this model, this work proposes discriminative Model Pushing that moves the support vectors in the direction of the normal to the separation hyperplanes trained by SVM. Then the moved support vectors are pushed back to GMM. By this means, the discriminative information of SVM and the advantage of GMM in short utter- ances recognition are retained, and the diversity between targets and nontargets is enhanced. Experimental results demonstrate that the proposed discriminative Model Pushing produce improvement over the baseline GMM-UBM, GSV-SVM and Model Pushing.
Liu Weiwei, Ji Lixin, Li Shaomei, Xu Wen (1. National Digital Switching System Engineering&Technological R&D Center, Zhengzhou 450002, China; 2. Unit 61906, Yingtan 335000, China)
11-2305/TN
PageCount 4
ParticipantIDs wanfang_journals_dzjsyy201204034
chongqing_primary_41435174
PublicationCentury 2000
PublicationDate 2012
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationTitle 电子技术应用
PublicationTitleAlternate Application of Electronic Technique
PublicationTitle_FL Application of Electronic Technique
PublicationYear 2012
Publisher 61906部队,江西鹰潭335000%国家数字交换系统工程技术研究中心,河南郑州,450002%61906部队,江西鹰潭,335000
国家数字交换系统工程技术研究中心,河南郑州450002
Publisher_xml – name: 61906部队,江西鹰潭335000%国家数字交换系统工程技术研究中心,河南郑州,450002%61906部队,江西鹰潭,335000
– name: 国家数字交换系统工程技术研究中心,河南郑州450002
SSID ssib001102853
ssib017479494
ssib038074684
ssib051374551
ssj0042189
ssib023646353
Score 1.8654791
Snippet 提出一种区分性Model Pushing方法,将SVM训练出的支持向量沿最优分类面的法线方向进行适当移动,增大不同语种间的区分性,然后将移动后的支持向量反向应用于GMM。该方法既保留了SVM的区分性信息,又利用了GMM在短时语音上的优势,同时增加了目标与非目标的区分度。实验结果表明,区分性Model...
TN912.3; 提出一种区分性Model Pushing方法,将SVM训练出的支持向量沿最优分类面的法线方向进行适当移动,增大不同语种间的区分性,然后将移动后的支持向量反向应用于GMM.该方法既保留了SVM的区分性信息,又利用了GMM在短时语音上的优势,同时增加了目标与非目标的区分度.实验结果表明,区分性Model...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 113
SubjectTerms Pushing
区分性Model
语种识别
超平面法向量
高斯混合模型超矢量-支持向量机
Title 基于区分性Model Pushing的语种识别方法
URI http://lib.cqvip.com/qk/90393X/201204/41435174.html
https://d.wanfangdata.com.cn/periodical/dzjsyy201204034
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR09bxMx1ApFQnRAfIqWD2Wop-rK3dk-2-NdclGFBFOQukW-u6QVQwo0HZqpA6o6ABsMLIipA0IdmMjvIWl_Bu_5nMuBUAUsJ8v3_N7zvRf7vRe_Z0LWhAHNGBjpmUJwj_fDgaclHhMrWGEYrH9ZgAnOT55Gm8_44y2x1Wh8rp1a2h9lG_n4j3kl_yNV6AO5YpbsP0i2Qgod0Ab5whMkDM-_kjFNBdUdmsQ05fhUKfaolu2BhqIqommEpxliibeeYZjOxpxoKqmGAZymisYdGrexJ5ZUtV0PjrQo4gRR6IgmGhsJo-V9lXOT1qIC8gLhAY_2LckYqeLAFmKDV8ATgJXAcXWA1hHRyk6hhdOZN9bt9HyqtOUtoarixF-3rbadsaYqtOQjGodUCTsuSR0jAO72WhfbCOqBzlAoT-ryhur5Ss1UTSN5bdkNynxWt4MHZfbm75sD05G2mwMS2KgI4PG-0Ja7dVHVX8tvczQowW27RC6HUgai5rVbixMNtIXFA4CwwC2WOCzPDyZd9R7L-_NokRosAia5ENWpJA4Wl_XY5txdIWuO9UcXMY6VQXZ2h9svQYNs-tlwYIbbNUupe51ccy5OMy719QZpjHdukuVa4ctbJJh-mvyYvJu-mUyPj2aHJ1Y3m043zz6-Pj_9enby9vz0aHr8Zfbh--zb-9uk20m7rU3PXd7h5WDTgtPGuJYmzzImeDQIJS90ZoRSeRH5milmtIlykTGpFSsY08KAay2ECHNfZTJnd8jScHfYv0ua-Oc1IALDV_W5jEyWaT_3-zkfCMUAeIWsVnPvvShrtPTmYlshTfcxeu6Hu9crxs_3Dg7w68E6xfjqRePvkasIWAbd7pOl0av9_gMwQ0fZQ6sIPwEfX2ND
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%8C%BA%E5%88%86%E6%80%A7Model+Pushing%E7%9A%84%E8%AF%AD%E7%A7%8D%E8%AF%86%E5%88%AB%E6%96%B9%E6%B3%95&rft.jtitle=%E7%94%B5%E5%AD%90%E6%8A%80%E6%9C%AF%E5%BA%94%E7%94%A8&rft.au=%E5%88%98%E4%BC%9F%E4%BC%9F+%E5%90%89%E7%AB%8B%E6%96%B0+%E6%9D%8E%E9%82%B5%E6%A2%85+%E5%BE%90%E6%96%87&rft.date=2012&rft.issn=0258-7998&rft.volume=38&rft.issue=4&rft.spage=113&rft.epage=116&rft_id=info:doi/10.3969%2Fj.issn.0258-7998.2012.04.034&rft.externalDocID=41435174
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90393X%2F90393X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdzjsyy%2Fdzjsyy.jpg