Rashba effect modulation in two-dimensional A 2 B 2 Te 6 (A = Sb and Bi; B = Si and Ge) materials via charge transfer

Designing two-dimensional (2D) Rashba semiconductors, exploring the underlying mechanism of the Rashba effect, and further proposing efficient and controllable approaches are crucial for the development of spintronics. On the basis of first-principles calculations, we here theoretically designed all...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 17; no. 29; pp. 17247 - 17255
Main Authors Wu, Haipeng, Tian, Qikun, Wei, Jinghui, Xing, Ziyu, Qin, Guangzhao, Qin, Zhenzhen
Format Journal Article
LanguageEnglish
Published England 24.07.2025
Online AccessGet full text

Cover

Loading…
Abstract Designing two-dimensional (2D) Rashba semiconductors, exploring the underlying mechanism of the Rashba effect, and further proposing efficient and controllable approaches are crucial for the development of spintronics. On the basis of first-principles calculations, we here theoretically designed all possible types (typical, inverse, and composite) of Janus structures and successfully achieved numerous ideal 2D Rashba semiconductors from a series of five atomic-layer A 2 B 2 Te 6 (A = Sb and Bi; B = Si and Ge) materials. Considering the different Rashba constant α R and its modulation trend under an external electric field, we comprehensively analyzed the intrinsic electric field E in in terms of work function, electrostatic potential, dipole moment, and inner charge transfer. Inspired by the quantitative relationship between charge transfer and the strength of E in and even the α R , we proposed a straightforward strategy of introducing a single adatom onto the surface of a 2D monolayer to introduce and modulate the Rashba effect. Lastly, we also examined the growth feasibility and electronic structures of the Janus Sb 2 Ge 2 Se 3 Te 3 system and Janus-adsorbed systems on a 2D BN substrate. Our work not only conducts a detailed analysis of A 2 B 2 Te 6 -based Rashba systems but also proposes a new strategy for efficiently and controllably modulating the α R through the reconfiguration of charge transfer.
AbstractList Designing two-dimensional (2D) Rashba semiconductors, exploring the underlying mechanism of the Rashba effect, and further proposing efficient and controllable approaches are crucial for the development of spintronics. On the basis of first-principles calculations, we here theoretically designed all possible types (typical, inverse, and composite) of Janus structures and successfully achieved numerous ideal 2D Rashba semiconductors from a series of five atomic-layer A 2 B 2 Te 6 (A = Sb and Bi; B = Si and Ge) materials. Considering the different Rashba constant α R and its modulation trend under an external electric field, we comprehensively analyzed the intrinsic electric field E in in terms of work function, electrostatic potential, dipole moment, and inner charge transfer. Inspired by the quantitative relationship between charge transfer and the strength of E in and even the α R , we proposed a straightforward strategy of introducing a single adatom onto the surface of a 2D monolayer to introduce and modulate the Rashba effect. Lastly, we also examined the growth feasibility and electronic structures of the Janus Sb 2 Ge 2 Se 3 Te 3 system and Janus-adsorbed systems on a 2D BN substrate. Our work not only conducts a detailed analysis of A 2 B 2 Te 6 -based Rashba systems but also proposes a new strategy for efficiently and controllably modulating the α R through the reconfiguration of charge transfer.
Designing two-dimensional (2D) Rashba semiconductors, exploring the underlying mechanism of the Rashba effect, and further proposing efficient and controllable approaches are crucial for the development of spintronics. On the basis of first-principles calculations, we here theoretically designed all possible types (typical, inverse, and composite) of Janus structures and successfully achieved numerous ideal 2D Rashba semiconductors from a series of five atomic-layer A B Te (A = Sb and Bi; B = Si and Ge) materials. Considering the different Rashba constant and its modulation trend under an external electric field, we comprehensively analyzed the intrinsic electric field in terms of work function, electrostatic potential, dipole moment, and inner charge transfer. Inspired by the quantitative relationship between charge transfer and the strength of and even the , we proposed a straightforward strategy of introducing a single adatom onto the surface of a 2D monolayer to introduce and modulate the Rashba effect. Lastly, we also examined the growth feasibility and electronic structures of the Janus Sb Ge Se Te system and Janus-adsorbed systems on a 2D BN substrate. Our work not only conducts a detailed analysis of A B Te -based Rashba systems but also proposes a new strategy for efficiently and controllably modulating the through the reconfiguration of charge transfer.
Author Wu, Haipeng
Qin, Guangzhao
Tian, Qikun
Qin, Zhenzhen
Wei, Jinghui
Xing, Ziyu
Author_xml – sequence: 1
  givenname: Haipeng
  surname: Wu
  fullname: Wu, Haipeng
  organization: Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, P. R. China
– sequence: 2
  givenname: Qikun
  surname: Tian
  fullname: Tian, Qikun
  organization: State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
– sequence: 3
  givenname: Jinghui
  surname: Wei
  fullname: Wei, Jinghui
  organization: Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, P. R. China
– sequence: 4
  givenname: Ziyu
  surname: Xing
  fullname: Xing, Ziyu
  organization: Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, P. R. China
– sequence: 5
  givenname: Guangzhao
  orcidid: 0000-0001-6770-1096
  surname: Qin
  fullname: Qin, Guangzhao
  organization: State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
– sequence: 6
  givenname: Zhenzhen
  orcidid: 0000-0001-6481-0211
  surname: Qin
  fullname: Qin, Zhenzhen
  organization: Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40635664$$D View this record in MEDLINE/PubMed
BookMark eNpFkFtLAzEQhYNU7EVf_AEyjyqsJk120iA-tPUKRaH2fcnmYle6uyXZKv57V6v1YZg5cz4G5vRJp6orR8gxoxeMcnV5I57mVCBl0z3SG1JBE87lsLObUXRJP8Y3SlFx5AekKyjyFFH0yGau4zLX4Lx3poGytpuVboq6gqKC5qNObFG6KrYLvYIxDGHS1sIBwukYruElB11ZmBRXrdHK4kfeuzModeNCoVcR3gsNZqnDq4Mm6Cp6Fw7Jvm8td_TbB2Rxd7uYPiSz5_vH6XiWmHQkEqG0sVaNUAk5UkKo1HqPaao5YyhHyJjEnEmD3FCrtJBOeW8kWmsdaun5gJxsz643eelstg5FqcNn9vd-C5xvARPqGIPzO4TR7Dvb7D9b_gUe72cZ
Cites_doi 10.1016/j.apsusc.2021.150873
10.1103/PhysRevB.92.165404
10.1021/acs.jpcc.1c03647
10.1002/andp.201400137
10.1103/PhysRevB.97.235404
10.1063/5.0251060
10.1021/acsami.1c09267
10.1016/j.scriptamat.2015.07.021
10.1103/PhysRevLett.104.126803
10.1103/PhysRevB.95.165401
10.1103/PhysRevB.108.115130
10.1039/D1SC05836C
10.1103/PhysRevB.54.11169
10.1063/5.0258804
10.1039/D0TA01999B
10.1103/PhysRevB.103.035414
10.1021/acs.nanolett.0c04429
10.1063/1.4942104
10.1016/j.physe.2021.114768
10.1103/PhysRevB.74.075418
10.1038/s41565-022-01183-4
10.1016/j.nanoen.2018.07.041
10.1039/D0TC00003E
10.1016/j.mssp.2022.107061
10.1103/PhysRevB.109.L121402
10.1103/Physics.2.50
10.1038/nnano.2017.100
10.1039/C8CP05426F
10.1016/j.jmmm.2024.172108
10.1107/S0021889811038970
10.1038/nmat4360
10.1103/PhysRevB.103.075421
10.1103/PhysRevLett.77.3865
10.1039/D0RA00674B
10.1103/PhysRevB.107.075443
10.1038/nphys675
10.1103/PhysRevB.13.5188
10.1103/PhysRevB.68.081302
10.1039/D3CP02479B
10.1103/PhysRevB.106.115307
10.1039/D1NR04323D
10.1063/5.0225691
10.1103/PhysRevB.104.075435
10.1103/PhysRevMaterials.7.044604
10.1021/acsami.1c23351
10.1103/PhysRevB.104.155152
10.1103/PhysRevB.101.014451
10.1103/PhysRevB.50.17953
10.1039/D0CP00627K
10.1103/PhysRevB.103.165404
10.1103/PhysRevB.109.205408
ContentType Journal Article
DBID AAYXX
CITATION
NPM
DOI 10.1039/D4NR04601C
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 17255
ExternalDocumentID 40635664
10_1039_D4NR04601C
Genre Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
NPM
ID FETCH-LOGICAL-c584-49acdd986947894495dff655a31167861176b17c63c0d9a47e9ffc76ddde6a7f3
ISSN 2040-3364
IngestDate Fri Jul 25 01:50:13 EDT 2025
Thu Jul 31 00:41:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c584-49acdd986947894495dff655a31167861176b17c63c0d9a47e9ffc76ddde6a7f3
ORCID 0000-0001-6770-1096
0000-0001-6481-0211
PMID 40635664
PageCount 9
ParticipantIDs pubmed_primary_40635664
crossref_primary_10_1039_D4NR04601C
PublicationCentury 2000
PublicationDate 2025-07-24
2025-Jul-24
PublicationDateYYYYMMDD 2025-07-24
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-24
  day: 24
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2025
References Wang (D4NR04601C/cit4/1) 2025; 126
Chen (D4NR04601C/cit16/1) 2020; 10
Kong (D4NR04601C/cit24/1) 2021; 104
Liu (D4NR04601C/cit21/1) 2021; 103
Rezavand (D4NR04601C/cit46/1) 2022; 152
Guo (D4NR04601C/cit25/1) 2023; 7
Monkhorst (D4NR04601C/cit37/1) 1976; 13
Lu (D4NR04601C/cit10/1) 2017; 12
Shi (D4NR04601C/cit32/1) 2021; 125
Yuan (D4NR04601C/cit52/1) 2018; 52
Huda (D4NR04601C/cit55/1) 2006; 74
Tian (D4NR04601C/cit9/1) 2021; 13
Song (D4NR04601C/cit20/1) 2024; 599
Wei (D4NR04601C/cit13/1) 2024; 109
Li (D4NR04601C/cit31/1) 2021; 567
Perdew (D4NR04601C/cit36/1) 1996; 77
Wu (D4NR04601C/cit15/1) 2021; 21
Manchon (D4NR04601C/cit1/1) 2015; 14
Qin (D4NR04601C/cit28/1) 2020; 101
Ghobadi (D4NR04601C/cit8/1) 2021; 33
Ghobadi (D4NR04601C/cit23/1) 2023; 107
Tang (D4NR04601C/cit39/1) 2009; 21
Is (D4NR04601C/cit27/1) 2023; 35
Kresse (D4NR04601C/cit34/1) 1996; 54
Mohanta (D4NR04601C/cit26/1) 2021; 13
Wang (D4NR04601C/cit30/1) 2021; 33
J. Wei (D4NR04601C/cit56/1) 2025; 126
Montes-García (D4NR04601C/cit11/1) 2022; 13
Absor (D4NR04601C/cit54/1) 2016; 6
Momma (D4NR04601C/cit40/1) 2011; 44
Petrić (D4NR04601C/cit42/1) 2021; 103
Hu (D4NR04601C/cit18/1) 2018; 97
Togo (D4NR04601C/cit38/1) 2015; 108
Chen (D4NR04601C/cit29/1) 2022; 106
Awschalom (D4NR04601C/cit5/1) 2009; 2
Yu (D4NR04601C/cit14/1) 2024; 109
Jang (D4NR04601C/cit43/1) 2022; 14
Ju (D4NR04601C/cit49/1) 2020; 22
Zhang (D4NR04601C/cit12/1) 2020; 8
Caviglia (D4NR04601C/cit47/1) 2010; 104
Yu (D4NR04601C/cit50/1) 2021; 104
Liu (D4NR04601C/cit19/1) 2020; 8
Blöchl (D4NR04601C/cit35/1) 1994; 50
Zibouche (D4NR04601C/cit53/1) 2014; 526
Tian (D4NR04601C/cit22/1) 2023; 108
Rezavand (D4NR04601C/cit44/1) 2021; 132
Ganichev (D4NR04601C/cit7/1) 2003; 68
Chen (D4NR04601C/cit51/1) 2020; 10
Domaretskiy (D4NR04601C/cit48/1) 2022; 17
Yao (D4NR04601C/cit45/1) 2017; 95
Zhu (D4NR04601C/cit17/1) 2018; 20
Ma (D4NR04601C/cit3/1) 2025; 126
Meier (D4NR04601C/cit2/1) 2007; 3
Dyrdal (D4NR04601C/cit6/1) 2015; 92
Zhang (D4NR04601C/cit33/1) 2023; 25
Babaee Touski (D4NR04601C/cit41/1) 2021; 103
References_xml – volume: 567
  start-page: 150873
  year: 2021
  ident: D4NR04601C/cit31/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.150873
– volume: 92
  start-page: 165404
  year: 2015
  ident: D4NR04601C/cit6/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.92.165404
– volume: 125
  start-page: 16413
  year: 2021
  ident: D4NR04601C/cit32/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c03647
– volume: 526
  start-page: 395
  year: 2014
  ident: D4NR04601C/cit53/1
  publication-title: Ann. Phys.
  doi: 10.1002/andp.201400137
– volume: 21
  start-page: 084204
  year: 2009
  ident: D4NR04601C/cit39/1
  publication-title: J. Phys.: Condens. Matter
– volume: 97
  start-page: 235404
  year: 2018
  ident: D4NR04601C/cit18/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.235404
– volume: 126
  start-page: 052103
  year: 2025
  ident: D4NR04601C/cit3/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0251060
– volume: 13
  start-page: 40872
  year: 2021
  ident: D4NR04601C/cit26/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c09267
– volume: 108
  start-page: 1
  year: 2015
  ident: D4NR04601C/cit38/1
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2015.07.021
– volume: 104
  start-page: 126803
  year: 2010
  ident: D4NR04601C/cit47/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.126803
– volume: 95
  start-page: 165401
  year: 2017
  ident: D4NR04601C/cit45/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.165401
– volume: 108
  start-page: 115130
  year: 2023
  ident: D4NR04601C/cit22/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.108.115130
– volume: 13
  start-page: 315
  year: 2022
  ident: D4NR04601C/cit11/1
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC05836C
– volume: 54
  start-page: 11169
  year: 1996
  ident: D4NR04601C/cit34/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
– volume: 126
  start-page: 163104
  year: 2025
  ident: D4NR04601C/cit56/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0258804
– volume: 8
  start-page: 8813
  year: 2020
  ident: D4NR04601C/cit12/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA01999B
– volume: 35
  start-page: 253001
  year: 2023
  ident: D4NR04601C/cit27/1
  publication-title: J. Phys.: Condens. Matter
– volume: 103
  start-page: 035414
  year: 2021
  ident: D4NR04601C/cit42/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.035414
– volume: 21
  start-page: 740
  year: 2021
  ident: D4NR04601C/cit15/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c04429
– volume: 6
  start-page: 025309
  year: 2016
  ident: D4NR04601C/cit54/1
  publication-title: AIP Adv.
  doi: 10.1063/1.4942104
– volume: 132
  start-page: 114768
  year: 2021
  ident: D4NR04601C/cit44/1
  publication-title: Phys. E
  doi: 10.1016/j.physe.2021.114768
– volume: 74
  start-page: 075418
  year: 2006
  ident: D4NR04601C/cit55/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.74.075418
– volume: 17
  start-page: 1078
  year: 2022
  ident: D4NR04601C/cit48/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01183-4
– volume: 52
  start-page: 163
  year: 2018
  ident: D4NR04601C/cit52/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.07.041
– volume: 8
  start-page: 5143
  year: 2020
  ident: D4NR04601C/cit19/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC00003E
– volume: 152
  start-page: 107061
  year: 2022
  ident: D4NR04601C/cit46/1
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2022.107061
– volume: 109
  start-page: L121402
  year: 2024
  ident: D4NR04601C/cit14/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.109.L121402
– volume: 2
  start-page: 50
  year: 2009
  ident: D4NR04601C/cit5/1
  publication-title: Physics
  doi: 10.1103/Physics.2.50
– volume: 12
  start-page: 744
  year: 2017
  ident: D4NR04601C/cit10/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.100
– volume: 20
  start-page: 30133
  year: 2018
  ident: D4NR04601C/cit17/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP05426F
– volume: 599
  start-page: 172108
  year: 2024
  ident: D4NR04601C/cit20/1
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2024.172108
– volume: 44
  start-page: 1272
  year: 2011
  ident: D4NR04601C/cit40/1
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889811038970
– volume: 14
  start-page: 871
  year: 2015
  ident: D4NR04601C/cit1/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4360
– volume: 103
  start-page: 075421
  year: 2021
  ident: D4NR04601C/cit21/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.075421
– volume: 77
  start-page: 3865
  year: 1996
  ident: D4NR04601C/cit36/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 10
  start-page: 6388
  year: 2020
  ident: D4NR04601C/cit51/1
  publication-title: RSC Adv.
  doi: 10.1039/D0RA00674B
– volume: 107
  start-page: 075443
  year: 2023
  ident: D4NR04601C/cit23/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.107.075443
– volume: 3
  start-page: 650
  year: 2007
  ident: D4NR04601C/cit2/1
  publication-title: Nat. Phys.
  doi: 10.1038/nphys675
– volume: 13
  start-page: 5188
  year: 1976
  ident: D4NR04601C/cit37/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 68
  start-page: 081302
  year: 2003
  ident: D4NR04601C/cit7/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.68.081302
– volume: 33
  start-page: 085502
  year: 2021
  ident: D4NR04601C/cit8/1
  publication-title: J. Phys.: Condens. Matter
– volume: 25
  start-page: 25029
  year: 2023
  ident: D4NR04601C/cit33/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D3CP02479B
– volume: 106
  start-page: 115307
  year: 2022
  ident: D4NR04601C/cit29/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.106.115307
– volume: 13
  start-page: 18032
  year: 2021
  ident: D4NR04601C/cit9/1
  publication-title: Nanoscale
  doi: 10.1039/D1NR04323D
– volume: 126
  start-page: 042201
  year: 2025
  ident: D4NR04601C/cit4/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0225691
– volume: 33
  start-page: 045501
  year: 2021
  ident: D4NR04601C/cit30/1
  publication-title: J. Phys.: Condens. Matter
– volume: 104
  start-page: 075435
  year: 2021
  ident: D4NR04601C/cit50/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.075435
– volume: 7
  start-page: 044604
  year: 2023
  ident: D4NR04601C/cit25/1
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.7.044604
– volume: 14
  start-page: 1270
  year: 2022
  ident: D4NR04601C/cit43/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c23351
– volume: 104
  start-page: 155152
  year: 2021
  ident: D4NR04601C/cit24/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.155152
– volume: 10
  start-page: 6388
  year: 2020
  ident: D4NR04601C/cit16/1
  publication-title: RSC Adv.
  doi: 10.1039/D0RA00674B
– volume: 101
  start-page: 014451
  year: 2020
  ident: D4NR04601C/cit28/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.014451
– volume: 50
  start-page: 17953
  year: 1994
  ident: D4NR04601C/cit35/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.50.17953
– volume: 22
  start-page: 9148
  year: 2020
  ident: D4NR04601C/cit49/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP00627K
– volume: 103
  start-page: 165404
  year: 2021
  ident: D4NR04601C/cit41/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.165404
– volume: 109
  start-page: 205408
  year: 2024
  ident: D4NR04601C/cit13/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.109.205408
SSID ssj0069363
Score 2.4680786
Snippet Designing two-dimensional (2D) Rashba semiconductors, exploring the underlying mechanism of the Rashba effect, and further proposing efficient and controllable...
SourceID pubmed
crossref
SourceType Index Database
StartPage 17247
Title Rashba effect modulation in two-dimensional A 2 B 2 Te 6 (A = Sb and Bi; B = Si and Ge) materials via charge transfer
URI https://www.ncbi.nlm.nih.gov/pubmed/40635664
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ta9QwGA-6gWwfxHfnGwEVlNJ5bdL0gvih3fTGhIFbZYdfjqRNWBn2ju2q6F_vk5e2d76A-qGlTXo9mufH8_ySPPkFoWc6llSIpAqVTkhIIylDnoxkGMeCCs4To1Fusi2O2MFHejhNpsOAvl1dspS75fffriv5H6tCGdjVrJL9B8v2L4UCuAb7whksDOe_svGxuDyTwudkmE1t_F5cNnnx6zysjHS_k90ABxAHORyFCpihlVnwnOwHJ9LOHuS1kfLPXVFtiyZGrikAPus-JPhSi8DKKimzrQSQXZ_W64kteOn5Jdh7mOppbVQT9UL54GiTfd1464f6vO1ReapsRsEhBNGztu5Kp36zlU_1t3Z1aCJOzJinWxG9q6wLi02-IiHpur9NV3Dlhzuc9wQy5eQ3f_HrI2JkUSvaXJiJ3KhcfQhssvhsLQzkhAA9pUNs6zMOu6qraDOGDgV4xM3sfT457aI244SRTr6W8FfDX22ha92P17jLWi_EspHiBrruuxE4c5i4ia6o5hbaXhGXvI1ahw7s0IEHdOC6wT-hA2c4xjkchcIMv8jwG3wiMcAA5_VrqIDb2t5O1EvcYwIDJrDDBO4wcQcV794Weweh32QjLIF7hpSLsqr4mHGajjmF7nKlNUsSQcwE3ZhFUcpklJaMlKOKC5oqrnWZsgrCIhOpJnfRRjNv1H2ENa2AXCca3keAZEdCa4gGqfH546iUox30tGu92cJJqcxsCgThs316dGybe28H3XMN2z_Ttf6DP9Y8RFsD_B6hjeVFqx4DV1zKJ97MPwDbYWG4
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rashba+effect+modulation+in+two-dimensional+A+2+B+2+Te+6+%28A+%3D+Sb+and+Bi%3B+B+%3D+Si+and+Ge%29+materials+via+charge+transfer&rft.jtitle=Nanoscale&rft.au=Wu%2C+Haipeng&rft.au=Tian%2C+Qikun&rft.au=Wei%2C+Jinghui&rft.au=Xing%2C+Ziyu&rft.date=2025-07-24&rft.eissn=2040-3372&rft.volume=17&rft.issue=29&rft.spage=17247&rft_id=info:doi/10.1039%2Fd4nr04601c&rft_id=info%3Apmid%2F40635664&rft.externalDocID=40635664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon