Rashba effect modulation in two-dimensional A 2 B 2 Te 6 (A = Sb and Bi; B = Si and Ge) materials via charge transfer
Designing two-dimensional (2D) Rashba semiconductors, exploring the underlying mechanism of the Rashba effect, and further proposing efficient and controllable approaches are crucial for the development of spintronics. On the basis of first-principles calculations, we here theoretically designed all...
Saved in:
Published in | Nanoscale Vol. 17; no. 29; pp. 17247 - 17255 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
24.07.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Designing two-dimensional (2D) Rashba semiconductors, exploring the underlying mechanism of the Rashba effect, and further proposing efficient and controllable approaches are crucial for the development of spintronics. On the basis of first-principles calculations, we here theoretically designed all possible types (typical, inverse, and composite) of Janus structures and successfully achieved numerous ideal 2D Rashba semiconductors from a series of five atomic-layer A 2 B 2 Te 6 (A = Sb and Bi; B = Si and Ge) materials. Considering the different Rashba constant α R and its modulation trend under an external electric field, we comprehensively analyzed the intrinsic electric field E in in terms of work function, electrostatic potential, dipole moment, and inner charge transfer. Inspired by the quantitative relationship between charge transfer and the strength of E in and even the α R , we proposed a straightforward strategy of introducing a single adatom onto the surface of a 2D monolayer to introduce and modulate the Rashba effect. Lastly, we also examined the growth feasibility and electronic structures of the Janus Sb 2 Ge 2 Se 3 Te 3 system and Janus-adsorbed systems on a 2D BN substrate. Our work not only conducts a detailed analysis of A 2 B 2 Te 6 -based Rashba systems but also proposes a new strategy for efficiently and controllably modulating the α R through the reconfiguration of charge transfer. |
---|---|
AbstractList | Designing two-dimensional (2D) Rashba semiconductors, exploring the underlying mechanism of the Rashba effect, and further proposing efficient and controllable approaches are crucial for the development of spintronics. On the basis of first-principles calculations, we here theoretically designed all possible types (typical, inverse, and composite) of Janus structures and successfully achieved numerous ideal 2D Rashba semiconductors from a series of five atomic-layer A 2 B 2 Te 6 (A = Sb and Bi; B = Si and Ge) materials. Considering the different Rashba constant α R and its modulation trend under an external electric field, we comprehensively analyzed the intrinsic electric field E in in terms of work function, electrostatic potential, dipole moment, and inner charge transfer. Inspired by the quantitative relationship between charge transfer and the strength of E in and even the α R , we proposed a straightforward strategy of introducing a single adatom onto the surface of a 2D monolayer to introduce and modulate the Rashba effect. Lastly, we also examined the growth feasibility and electronic structures of the Janus Sb 2 Ge 2 Se 3 Te 3 system and Janus-adsorbed systems on a 2D BN substrate. Our work not only conducts a detailed analysis of A 2 B 2 Te 6 -based Rashba systems but also proposes a new strategy for efficiently and controllably modulating the α R through the reconfiguration of charge transfer. Designing two-dimensional (2D) Rashba semiconductors, exploring the underlying mechanism of the Rashba effect, and further proposing efficient and controllable approaches are crucial for the development of spintronics. On the basis of first-principles calculations, we here theoretically designed all possible types (typical, inverse, and composite) of Janus structures and successfully achieved numerous ideal 2D Rashba semiconductors from a series of five atomic-layer A B Te (A = Sb and Bi; B = Si and Ge) materials. Considering the different Rashba constant and its modulation trend under an external electric field, we comprehensively analyzed the intrinsic electric field in terms of work function, electrostatic potential, dipole moment, and inner charge transfer. Inspired by the quantitative relationship between charge transfer and the strength of and even the , we proposed a straightforward strategy of introducing a single adatom onto the surface of a 2D monolayer to introduce and modulate the Rashba effect. Lastly, we also examined the growth feasibility and electronic structures of the Janus Sb Ge Se Te system and Janus-adsorbed systems on a 2D BN substrate. Our work not only conducts a detailed analysis of A B Te -based Rashba systems but also proposes a new strategy for efficiently and controllably modulating the through the reconfiguration of charge transfer. |
Author | Wu, Haipeng Qin, Guangzhao Tian, Qikun Qin, Zhenzhen Wei, Jinghui Xing, Ziyu |
Author_xml | – sequence: 1 givenname: Haipeng surname: Wu fullname: Wu, Haipeng organization: Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, P. R. China – sequence: 2 givenname: Qikun surname: Tian fullname: Tian, Qikun organization: State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China – sequence: 3 givenname: Jinghui surname: Wei fullname: Wei, Jinghui organization: Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, P. R. China – sequence: 4 givenname: Ziyu surname: Xing fullname: Xing, Ziyu organization: Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, P. R. China – sequence: 5 givenname: Guangzhao orcidid: 0000-0001-6770-1096 surname: Qin fullname: Qin, Guangzhao organization: State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China – sequence: 6 givenname: Zhenzhen orcidid: 0000-0001-6481-0211 surname: Qin fullname: Qin, Zhenzhen organization: Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40635664$$D View this record in MEDLINE/PubMed |
BookMark | eNpFkFtLAzEQhYNU7EVf_AEyjyqsJk120iA-tPUKRaH2fcnmYle6uyXZKv57V6v1YZg5cz4G5vRJp6orR8gxoxeMcnV5I57mVCBl0z3SG1JBE87lsLObUXRJP8Y3SlFx5AekKyjyFFH0yGau4zLX4Lx3poGytpuVboq6gqKC5qNObFG6KrYLvYIxDGHS1sIBwukYruElB11ZmBRXrdHK4kfeuzModeNCoVcR3gsNZqnDq4Mm6Cp6Fw7Jvm8td_TbB2Rxd7uYPiSz5_vH6XiWmHQkEqG0sVaNUAk5UkKo1HqPaao5YyhHyJjEnEmD3FCrtJBOeW8kWmsdaun5gJxsz643eelstg5FqcNn9vd-C5xvARPqGIPzO4TR7Dvb7D9b_gUe72cZ |
Cites_doi | 10.1016/j.apsusc.2021.150873 10.1103/PhysRevB.92.165404 10.1021/acs.jpcc.1c03647 10.1002/andp.201400137 10.1103/PhysRevB.97.235404 10.1063/5.0251060 10.1021/acsami.1c09267 10.1016/j.scriptamat.2015.07.021 10.1103/PhysRevLett.104.126803 10.1103/PhysRevB.95.165401 10.1103/PhysRevB.108.115130 10.1039/D1SC05836C 10.1103/PhysRevB.54.11169 10.1063/5.0258804 10.1039/D0TA01999B 10.1103/PhysRevB.103.035414 10.1021/acs.nanolett.0c04429 10.1063/1.4942104 10.1016/j.physe.2021.114768 10.1103/PhysRevB.74.075418 10.1038/s41565-022-01183-4 10.1016/j.nanoen.2018.07.041 10.1039/D0TC00003E 10.1016/j.mssp.2022.107061 10.1103/PhysRevB.109.L121402 10.1103/Physics.2.50 10.1038/nnano.2017.100 10.1039/C8CP05426F 10.1016/j.jmmm.2024.172108 10.1107/S0021889811038970 10.1038/nmat4360 10.1103/PhysRevB.103.075421 10.1103/PhysRevLett.77.3865 10.1039/D0RA00674B 10.1103/PhysRevB.107.075443 10.1038/nphys675 10.1103/PhysRevB.13.5188 10.1103/PhysRevB.68.081302 10.1039/D3CP02479B 10.1103/PhysRevB.106.115307 10.1039/D1NR04323D 10.1063/5.0225691 10.1103/PhysRevB.104.075435 10.1103/PhysRevMaterials.7.044604 10.1021/acsami.1c23351 10.1103/PhysRevB.104.155152 10.1103/PhysRevB.101.014451 10.1103/PhysRevB.50.17953 10.1039/D0CP00627K 10.1103/PhysRevB.103.165404 10.1103/PhysRevB.109.205408 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM |
DOI | 10.1039/D4NR04601C |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 17255 |
ExternalDocumentID | 40635664 10_1039_D4NR04601C |
Genre | Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION DU5 EBS ECGLT EE0 EF- F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RSCEA RVUXY NPM |
ID | FETCH-LOGICAL-c584-49acdd986947894495dff655a31167861176b17c63c0d9a47e9ffc76ddde6a7f3 |
ISSN | 2040-3364 |
IngestDate | Fri Jul 25 01:50:13 EDT 2025 Thu Jul 31 00:41:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c584-49acdd986947894495dff655a31167861176b17c63c0d9a47e9ffc76ddde6a7f3 |
ORCID | 0000-0001-6770-1096 0000-0001-6481-0211 |
PMID | 40635664 |
PageCount | 9 |
ParticipantIDs | pubmed_primary_40635664 crossref_primary_10_1039_D4NR04601C |
PublicationCentury | 2000 |
PublicationDate | 2025-07-24 2025-Jul-24 |
PublicationDateYYYYMMDD | 2025-07-24 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2025 |
References | Wang (D4NR04601C/cit4/1) 2025; 126 Chen (D4NR04601C/cit16/1) 2020; 10 Kong (D4NR04601C/cit24/1) 2021; 104 Liu (D4NR04601C/cit21/1) 2021; 103 Rezavand (D4NR04601C/cit46/1) 2022; 152 Guo (D4NR04601C/cit25/1) 2023; 7 Monkhorst (D4NR04601C/cit37/1) 1976; 13 Lu (D4NR04601C/cit10/1) 2017; 12 Shi (D4NR04601C/cit32/1) 2021; 125 Yuan (D4NR04601C/cit52/1) 2018; 52 Huda (D4NR04601C/cit55/1) 2006; 74 Tian (D4NR04601C/cit9/1) 2021; 13 Song (D4NR04601C/cit20/1) 2024; 599 Wei (D4NR04601C/cit13/1) 2024; 109 Li (D4NR04601C/cit31/1) 2021; 567 Perdew (D4NR04601C/cit36/1) 1996; 77 Wu (D4NR04601C/cit15/1) 2021; 21 Manchon (D4NR04601C/cit1/1) 2015; 14 Qin (D4NR04601C/cit28/1) 2020; 101 Ghobadi (D4NR04601C/cit8/1) 2021; 33 Ghobadi (D4NR04601C/cit23/1) 2023; 107 Tang (D4NR04601C/cit39/1) 2009; 21 Is (D4NR04601C/cit27/1) 2023; 35 Kresse (D4NR04601C/cit34/1) 1996; 54 Mohanta (D4NR04601C/cit26/1) 2021; 13 Wang (D4NR04601C/cit30/1) 2021; 33 J. Wei (D4NR04601C/cit56/1) 2025; 126 Montes-García (D4NR04601C/cit11/1) 2022; 13 Absor (D4NR04601C/cit54/1) 2016; 6 Momma (D4NR04601C/cit40/1) 2011; 44 Petrić (D4NR04601C/cit42/1) 2021; 103 Hu (D4NR04601C/cit18/1) 2018; 97 Togo (D4NR04601C/cit38/1) 2015; 108 Chen (D4NR04601C/cit29/1) 2022; 106 Awschalom (D4NR04601C/cit5/1) 2009; 2 Yu (D4NR04601C/cit14/1) 2024; 109 Jang (D4NR04601C/cit43/1) 2022; 14 Ju (D4NR04601C/cit49/1) 2020; 22 Zhang (D4NR04601C/cit12/1) 2020; 8 Caviglia (D4NR04601C/cit47/1) 2010; 104 Yu (D4NR04601C/cit50/1) 2021; 104 Liu (D4NR04601C/cit19/1) 2020; 8 Blöchl (D4NR04601C/cit35/1) 1994; 50 Zibouche (D4NR04601C/cit53/1) 2014; 526 Tian (D4NR04601C/cit22/1) 2023; 108 Rezavand (D4NR04601C/cit44/1) 2021; 132 Ganichev (D4NR04601C/cit7/1) 2003; 68 Chen (D4NR04601C/cit51/1) 2020; 10 Domaretskiy (D4NR04601C/cit48/1) 2022; 17 Yao (D4NR04601C/cit45/1) 2017; 95 Zhu (D4NR04601C/cit17/1) 2018; 20 Ma (D4NR04601C/cit3/1) 2025; 126 Meier (D4NR04601C/cit2/1) 2007; 3 Dyrdal (D4NR04601C/cit6/1) 2015; 92 Zhang (D4NR04601C/cit33/1) 2023; 25 Babaee Touski (D4NR04601C/cit41/1) 2021; 103 |
References_xml | – volume: 567 start-page: 150873 year: 2021 ident: D4NR04601C/cit31/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.150873 – volume: 92 start-page: 165404 year: 2015 ident: D4NR04601C/cit6/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.92.165404 – volume: 125 start-page: 16413 year: 2021 ident: D4NR04601C/cit32/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c03647 – volume: 526 start-page: 395 year: 2014 ident: D4NR04601C/cit53/1 publication-title: Ann. Phys. doi: 10.1002/andp.201400137 – volume: 21 start-page: 084204 year: 2009 ident: D4NR04601C/cit39/1 publication-title: J. Phys.: Condens. Matter – volume: 97 start-page: 235404 year: 2018 ident: D4NR04601C/cit18/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.235404 – volume: 126 start-page: 052103 year: 2025 ident: D4NR04601C/cit3/1 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0251060 – volume: 13 start-page: 40872 year: 2021 ident: D4NR04601C/cit26/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c09267 – volume: 108 start-page: 1 year: 2015 ident: D4NR04601C/cit38/1 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.07.021 – volume: 104 start-page: 126803 year: 2010 ident: D4NR04601C/cit47/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.126803 – volume: 95 start-page: 165401 year: 2017 ident: D4NR04601C/cit45/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.165401 – volume: 108 start-page: 115130 year: 2023 ident: D4NR04601C/cit22/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.108.115130 – volume: 13 start-page: 315 year: 2022 ident: D4NR04601C/cit11/1 publication-title: Chem. Sci. doi: 10.1039/D1SC05836C – volume: 54 start-page: 11169 year: 1996 ident: D4NR04601C/cit34/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.11169 – volume: 126 start-page: 163104 year: 2025 ident: D4NR04601C/cit56/1 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0258804 – volume: 8 start-page: 8813 year: 2020 ident: D4NR04601C/cit12/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA01999B – volume: 35 start-page: 253001 year: 2023 ident: D4NR04601C/cit27/1 publication-title: J. Phys.: Condens. Matter – volume: 103 start-page: 035414 year: 2021 ident: D4NR04601C/cit42/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.035414 – volume: 21 start-page: 740 year: 2021 ident: D4NR04601C/cit15/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04429 – volume: 6 start-page: 025309 year: 2016 ident: D4NR04601C/cit54/1 publication-title: AIP Adv. doi: 10.1063/1.4942104 – volume: 132 start-page: 114768 year: 2021 ident: D4NR04601C/cit44/1 publication-title: Phys. E doi: 10.1016/j.physe.2021.114768 – volume: 74 start-page: 075418 year: 2006 ident: D4NR04601C/cit55/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.74.075418 – volume: 17 start-page: 1078 year: 2022 ident: D4NR04601C/cit48/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01183-4 – volume: 52 start-page: 163 year: 2018 ident: D4NR04601C/cit52/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.041 – volume: 8 start-page: 5143 year: 2020 ident: D4NR04601C/cit19/1 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC00003E – volume: 152 start-page: 107061 year: 2022 ident: D4NR04601C/cit46/1 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2022.107061 – volume: 109 start-page: L121402 year: 2024 ident: D4NR04601C/cit14/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.109.L121402 – volume: 2 start-page: 50 year: 2009 ident: D4NR04601C/cit5/1 publication-title: Physics doi: 10.1103/Physics.2.50 – volume: 12 start-page: 744 year: 2017 ident: D4NR04601C/cit10/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.100 – volume: 20 start-page: 30133 year: 2018 ident: D4NR04601C/cit17/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP05426F – volume: 599 start-page: 172108 year: 2024 ident: D4NR04601C/cit20/1 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2024.172108 – volume: 44 start-page: 1272 year: 2011 ident: D4NR04601C/cit40/1 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889811038970 – volume: 14 start-page: 871 year: 2015 ident: D4NR04601C/cit1/1 publication-title: Nat. Mater. doi: 10.1038/nmat4360 – volume: 103 start-page: 075421 year: 2021 ident: D4NR04601C/cit21/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.075421 – volume: 77 start-page: 3865 year: 1996 ident: D4NR04601C/cit36/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 10 start-page: 6388 year: 2020 ident: D4NR04601C/cit51/1 publication-title: RSC Adv. doi: 10.1039/D0RA00674B – volume: 107 start-page: 075443 year: 2023 ident: D4NR04601C/cit23/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.107.075443 – volume: 3 start-page: 650 year: 2007 ident: D4NR04601C/cit2/1 publication-title: Nat. Phys. doi: 10.1038/nphys675 – volume: 13 start-page: 5188 year: 1976 ident: D4NR04601C/cit37/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 68 start-page: 081302 year: 2003 ident: D4NR04601C/cit7/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.68.081302 – volume: 33 start-page: 085502 year: 2021 ident: D4NR04601C/cit8/1 publication-title: J. Phys.: Condens. Matter – volume: 25 start-page: 25029 year: 2023 ident: D4NR04601C/cit33/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D3CP02479B – volume: 106 start-page: 115307 year: 2022 ident: D4NR04601C/cit29/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.115307 – volume: 13 start-page: 18032 year: 2021 ident: D4NR04601C/cit9/1 publication-title: Nanoscale doi: 10.1039/D1NR04323D – volume: 126 start-page: 042201 year: 2025 ident: D4NR04601C/cit4/1 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0225691 – volume: 33 start-page: 045501 year: 2021 ident: D4NR04601C/cit30/1 publication-title: J. Phys.: Condens. Matter – volume: 104 start-page: 075435 year: 2021 ident: D4NR04601C/cit50/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.075435 – volume: 7 start-page: 044604 year: 2023 ident: D4NR04601C/cit25/1 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.7.044604 – volume: 14 start-page: 1270 year: 2022 ident: D4NR04601C/cit43/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c23351 – volume: 104 start-page: 155152 year: 2021 ident: D4NR04601C/cit24/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.155152 – volume: 10 start-page: 6388 year: 2020 ident: D4NR04601C/cit16/1 publication-title: RSC Adv. doi: 10.1039/D0RA00674B – volume: 101 start-page: 014451 year: 2020 ident: D4NR04601C/cit28/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.014451 – volume: 50 start-page: 17953 year: 1994 ident: D4NR04601C/cit35/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.50.17953 – volume: 22 start-page: 9148 year: 2020 ident: D4NR04601C/cit49/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP00627K – volume: 103 start-page: 165404 year: 2021 ident: D4NR04601C/cit41/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.165404 – volume: 109 start-page: 205408 year: 2024 ident: D4NR04601C/cit13/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.109.205408 |
SSID | ssj0069363 |
Score | 2.4680786 |
Snippet | Designing two-dimensional (2D) Rashba semiconductors, exploring the underlying mechanism of the Rashba effect, and further proposing efficient and controllable... |
SourceID | pubmed crossref |
SourceType | Index Database |
StartPage | 17247 |
Title | Rashba effect modulation in two-dimensional A 2 B 2 Te 6 (A = Sb and Bi; B = Si and Ge) materials via charge transfer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40635664 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ta9QwGA-6gWwfxHfnGwEVlNJ5bdL0gvih3fTGhIFbZYdfjqRNWBn2ju2q6F_vk5e2d76A-qGlTXo9mufH8_ySPPkFoWc6llSIpAqVTkhIIylDnoxkGMeCCs4To1Fusi2O2MFHejhNpsOAvl1dspS75fffriv5H6tCGdjVrJL9B8v2L4UCuAb7whksDOe_svGxuDyTwudkmE1t_F5cNnnx6zysjHS_k90ABxAHORyFCpihlVnwnOwHJ9LOHuS1kfLPXVFtiyZGrikAPus-JPhSi8DKKimzrQSQXZ_W64kteOn5Jdh7mOppbVQT9UL54GiTfd1464f6vO1ReapsRsEhBNGztu5Kp36zlU_1t3Z1aCJOzJinWxG9q6wLi02-IiHpur9NV3Dlhzuc9wQy5eQ3f_HrI2JkUSvaXJiJ3KhcfQhssvhsLQzkhAA9pUNs6zMOu6qraDOGDgV4xM3sfT457aI244SRTr6W8FfDX22ha92P17jLWi_EspHiBrruuxE4c5i4ia6o5hbaXhGXvI1ahw7s0IEHdOC6wT-hA2c4xjkchcIMv8jwG3wiMcAA5_VrqIDb2t5O1EvcYwIDJrDDBO4wcQcV794Weweh32QjLIF7hpSLsqr4mHGajjmF7nKlNUsSQcwE3ZhFUcpklJaMlKOKC5oqrnWZsgrCIhOpJnfRRjNv1H2ENa2AXCca3keAZEdCa4gGqfH546iUox30tGu92cJJqcxsCgThs316dGybe28H3XMN2z_Ttf6DP9Y8RFsD_B6hjeVFqx4DV1zKJ97MPwDbYWG4 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rashba+effect+modulation+in+two-dimensional+A+2+B+2+Te+6+%28A+%3D+Sb+and+Bi%3B+B+%3D+Si+and+Ge%29+materials+via+charge+transfer&rft.jtitle=Nanoscale&rft.au=Wu%2C+Haipeng&rft.au=Tian%2C+Qikun&rft.au=Wei%2C+Jinghui&rft.au=Xing%2C+Ziyu&rft.date=2025-07-24&rft.eissn=2040-3372&rft.volume=17&rft.issue=29&rft.spage=17247&rft_id=info:doi/10.1039%2Fd4nr04601c&rft_id=info%3Apmid%2F40635664&rft.externalDocID=40635664 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |