一种基于动态决策块的超启发式跨单元调度方法

对运输能力受限条件下的跨单元调度问题进行分析,提出一种基于动态决策块和蚁群优化(Ant colony optimization,ACO)的超启发式方法,同时解决跨单元生产调度和运输调度问题.在传统超启发式方法的基础上,采用动态决策块策略,通过蚁群算法合理划分决策块,并为决策块选择合适的规则.实验表明,采用动态决策块策略的超启发式方法比传统的超启发式方法具有更好的性能,本文所提的方法在最小化加权延迟总和目标方面有较好的优化能力并且具有较高的计算效率....

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 42; no. 4; pp. 524 - 534
Main Author 田云娜 李冬妮 刘兆赫 郑丹
Format Journal Article
LanguageChinese
Published 北京理工大学计算机学院智能信息技术北京市重点实验室 北京100081 2016
延安大学数学与计算机科学学院 延安 716000%北京理工大学计算机学院智能信息技术北京市重点实验室 北京100081
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
DOI10.16383/j.aas.2016.c150402

Cover

Abstract 对运输能力受限条件下的跨单元调度问题进行分析,提出一种基于动态决策块和蚁群优化(Ant colony optimization,ACO)的超启发式方法,同时解决跨单元生产调度和运输调度问题.在传统超启发式方法的基础上,采用动态决策块策略,通过蚁群算法合理划分决策块,并为决策块选择合适的规则.实验表明,采用动态决策块策略的超启发式方法比传统的超启发式方法具有更好的性能,本文所提的方法在最小化加权延迟总和目标方面有较好的优化能力并且具有较高的计算效率.
AbstractList 对运输能力受限条件下的跨单元调度问题进行分析,提出一种基于动态决策块和蚁群优化(Ant colony optimization, ACO)的超启发式方法,同时解决跨单元生产调度和运输调度问题。在传统超启发式方法的基础上,采用动态决策块策略,通过蚁群算法合理划分决策块,并为决策块选择合适的规则。实验表明,采用动态决策块策略的超启发式方法比传统的超启发式方法具有更好的性能,本文所提的方法在最小化加权延迟总和目标方面有较好的优化能力并且具有较高的计算效率。
对运输能力受限条件下的跨单元调度问题进行分析,提出一种基于动态决策块和蚁群优化(Ant colony optimization,ACO)的超启发式方法,同时解决跨单元生产调度和运输调度问题.在传统超启发式方法的基础上,采用动态决策块策略,通过蚁群算法合理划分决策块,并为决策块选择合适的规则.实验表明,采用动态决策块策略的超启发式方法比传统的超启发式方法具有更好的性能,本文所提的方法在最小化加权延迟总和目标方面有较好的优化能力并且具有较高的计算效率.
Abstract_FL In this paper, the inter-cell scheduling problem with a transportation capacity constraint is analyzed. An ant colony optimization (ACO)-based hyper-heuristic with dynamic decision blocks is proposed, which selects appropriate heuristic rules for production and transportation simultaneously. On the basis of traditional hyper-heuristics, a dynamic decision block strategy is proposed, in which several entities are grouped into a decision block under the guidance of pheromones, and appropriate heuristic rules are selected for each decision block. Comparisons between the proposed method and other hyper-heuristics with different decision block strategies are conducted. Computational results show a satisfying performance of the proposed method in minimizing total weighted tardiness with less computational costs.
Author 田云娜 李冬妮 刘兆赫 郑丹
AuthorAffiliation 北京理工大学计算机学院智能信息技术北京市重点实验室,北京100081 延安大学数学与计算机科学学院,延安716000
AuthorAffiliation_xml – name: 北京理工大学计算机学院智能信息技术北京市重点实验室 北京100081; 延安大学数学与计算机科学学院 延安 716000%北京理工大学计算机学院智能信息技术北京市重点实验室 北京100081
Author_FL LIU Zhao-He
ZHENG Dan
TIAN Yun-Na
LI Dong-Ni
Author_FL_xml – sequence: 1
  fullname: TIAN Yun-Na
– sequence: 2
  fullname: LI Dong-Ni
– sequence: 3
  fullname: LIU Zhao-He
– sequence: 4
  fullname: ZHENG Dan
Author_xml – sequence: 1
  fullname: 田云娜 李冬妮 刘兆赫 郑丹
BookMark eNotj7tKA0EARQeJYIz5AjsLu13nvTOVSPAFAZv0YXZ2Nw90o1nERxWJsRBitEgEQew0jSgEfAQ_J5PkMxyJ1W0O99y7CFJxLQ4BWEbQRZwIslZ1lUpcDBF3NWKQQjwH0kh41EEQyxRIQ8yoQxHjCyCbJBUfIo96EhOYBuujr8bkpW2ehqPhjbnujxsX5mowee2Zx_vJw-X0o2Vu30znzvx0pp990-6aVnP63jTD53HvezzoLoH5SO0nYfY_M6CwtVnI7Tj5ve3d3Ebe0UxYN7NyFEFNMZaBIoFPVRj5AtuBhAbCCxTXQghPhJxL7EFIJJYaC6JD6bGQZMDqrPZExZGKS8Vq7bgeW2HxPCif-n_f7W9ILbgyA3W5FpeOKhY9rFcOVP2syLlgjBLCyC-iYW7K
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16383/j.aas.2016.c150402
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate A Hyper-heuristic Approach with Dynamic Decision Blocks for Inter-cell Scheduling
DocumentTitle_FL A Hyper-heuristic Approach with Dynamic Decision Blocks for Inter-cell Scheduling
EISSN 1874-1029
EndPage 534
ExternalDocumentID zdhxb201604004
668554335
GrantInformation_xml – fundername: 国家自然科学基金(71401014)资助Supported by National Natural Science Foundation of China
  funderid: (71401014)
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
92L
AAIKJ
AALRI
AAQFI
AAXUO
ACGFS
ADEZE
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CQIGP
CS3
CUBFJ
CW9
EBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
ABWVN
ACRPL
ADNMO
PSX
ID FETCH-LOGICAL-c584-451561f0c4229da3db4aefb8210234d87da6c88878e66927003929c283ce975e3
ISSN 0254-4156
IngestDate Thu May 29 04:10:30 EDT 2025
Wed Feb 14 10:20:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 跨单元调度
超启发式
蚁群算法
动态决策块
inter-cell scheduling
Dynamic decision block
hyper-heuristic
ant colony optimization (ACO)
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c584-451561f0c4229da3db4aefb8210234d87da6c88878e66927003929c283ce975e3
Notes In this paper, the inter-cell scheduling problem with a transportation capacity constraint is analyzed. An ant colony optimization(ACO)-based hyper-heuristic with dynamic decision blocks is proposed, which selects appropriate heuristic rules for production and transportation simultaneously. On the basis of traditional hyper-heuristics, a dynamic decision block strategy is proposed, in which several entities are grouped into a decision block under the guidance of pheromones, and appropriate heuristic rules are selected for each decision block. Comparisons between the proposed method and other hyper-heuristics with different decision block strategies are conducted. Computational results show a satisfying performance of the proposed method in minimizing total weighted tardiness with less computational costs.
TIAN Yun-Na,LI Dong-Ni,LIU Zhao-He,ZHENG Dan ( 1. Beijing Key Laboratory of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, Beijing 100081 2. College of Mathem
PageCount 11
ParticipantIDs wanfang_journals_zdhxb201604004
chongqing_primary_668554335
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 自动化学报
PublicationTitleAlternate Acta Automatica Sinica
PublicationYear 2016
Publisher 北京理工大学计算机学院智能信息技术北京市重点实验室 北京100081
延安大学数学与计算机科学学院 延安 716000%北京理工大学计算机学院智能信息技术北京市重点实验室 北京100081
Publisher_xml – name: 北京理工大学计算机学院智能信息技术北京市重点实验室 北京100081
– name: 延安大学数学与计算机科学学院 延安 716000%北京理工大学计算机学院智能信息技术北京市重点实验室 北京100081
SSID ssib017479230
ssib001102911
ssib006576350
ssib051375349
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 2.1238477
Snippet 对运输能力受限条件下的跨单元调度问题进行分析,提出一种基于动态决策块和蚁群优化(Ant colony...
对运输能力受限条件下的跨单元调度问题进行分析,提出一种基于动态决策块和蚁群优化(Ant colony optimization,...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 524
SubjectTerms 动态决策块
蚁群算法
超启发式
跨单元调度
Title 一种基于动态决策块的超启发式跨单元调度方法
URI http://lib.cqvip.com/qk/90250X/201604/668554335.html
https://d.wanfangdata.com.cn/periodical/zdhxb201604004
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27btRAcBWSBgrEU4TwSMFWkcPZ3meF7IuPCAFVQOlOfuaqC49EQqmCQiiQQqBIkJAQHaRBIEXiEfE5cXKfwcyu785SEAIaa7yzszu7Y89jvTsm5BovRJzxNHfcQkKAknLpaJVwx08EzxhLlGdSbNy5K2bvsVvzfH5kpFfbtbS8lEynK789V_I_UoUykCuekv0HyQ4ahQKAQb5wBQnD9a9kTCNGQ4WbFSJJA0nVDI041S0aBgYVUBVhiQpooGgksKZyTYmgoW-oZqgWhgoAiSUaqBiNFA2hPjeoBg1ahqpFtSEPmwhjHWla5ti1NpWBRPkG1TAARzYCgb1DR6FGALq2_7zsu8VYX0FTQY1bAJoVb8CkbQFRvP-MGGYZ9mPHalkDUt2cMt3N9IcvaNA0OACiKVMEtVSfXWHYBXQIOI1cY1NmakNdXxax5zUrvQkxr4NxqTVxVq8rycDiVIsrleJnXu0BZzUtzu2x7soh4Ha19YitAc3lG2MTx5j33RXTKXjXrOENTetgw6MQuB3Q9_kxMuZJ6fJRMnYzvH0_GLquyF1N13IN6rTmmgmOqQOH9xI_gNe-WMO97w9DQQg0MTPk4B7_EyBqoT93fQhUMfS2XgvHLE5mPbKavCpDFw7y-tEhYiaSzmJ34SH4V-a4W7eIuws1z2zuFDlZhVSTgX0_TpORlc4ZcqKWaPMsubH_ffXw40b5fm9_72X5Yudg9Wn5fPfw03b57s3h22e9r-vlq8_l5uvy52bv2065sVWur_W-rJV7Hw62fxzsbp0jc61orjnrVL8OcVLwqB0GXrpwi0bKPE9nsZ8lLM4LUDyYqIRlSmaxSBXYV5ULoXHvBYYJKbjaaa4lz_3zZLS72M0vkMk4lyrOEggTMpdlHnjMeaZZUcgcnOW0kY-TicFMtB_YDDHtgbjHydVqbtqV3njcXsk6TxKcTGM_L_6RfoIcx5p2ze8SGV16tJxfBi94KblSPUC_ALCJiPw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%80%E7%A7%8D%E5%9F%BA%E4%BA%8E%E5%8A%A8%E6%80%81%E5%86%B3%E7%AD%96%E5%9D%97%E7%9A%84%E8%B6%85%E5%90%AF%E5%8F%91%E5%BC%8F%E8%B7%A8%E5%8D%95%E5%85%83%E8%B0%83%E5%BA%A6%E6%96%B9%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E7%94%B0%E4%BA%91%E5%A8%9C+%E6%9D%8E%E5%86%AC%E5%A6%AE+%E5%88%98%E5%85%86%E8%B5%AB+%E9%83%91%E4%B8%B9&rft.date=2016&rft.issn=0254-4156&rft.eissn=1874-1029&rft.volume=42&rft.issue=4&rft.spage=524&rft.epage=534&rft_id=info:doi/10.16383%2Fj.aas.2016.c150402&rft.externalDocID=668554335
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg