Pairwise马尔科夫模型下的势均衡多目标多伯努利滤波器

由于在实际应用中目标模型不一定满足隐马尔科夫模型(Hidden Markov model,HMM)隐含的马尔科夫假设和独立性假设条件,一种更为一般化的Pairwise马尔科夫模型(Pairwise Markov model,PMM)被提出.它放宽了HMM的结构性限制,可以有效地处理更为复杂的目标跟踪场景.本文针对杂波环境下的多目标跟踪问题,提出一种在PMM框架下的势均衡多目标多伯努利(Cardinality balanced multi-target multi-Bernoulli,CBMe MBer)滤波器,并给出它在线性高斯PMM条件下的高斯混合(Gaussian mixture,GM)实...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 43; no. 12; pp. 2100 - 2108
Main Author 张光华;韩崇昭;连峰;曾令豪
Format Journal Article
LanguageChinese
Published 西安交通大学智能网络与网络安全教育部重点实验室 西安710049 2017
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
DOI10.16383/j.aas.2017.c160430

Cover

Abstract 由于在实际应用中目标模型不一定满足隐马尔科夫模型(Hidden Markov model,HMM)隐含的马尔科夫假设和独立性假设条件,一种更为一般化的Pairwise马尔科夫模型(Pairwise Markov model,PMM)被提出.它放宽了HMM的结构性限制,可以有效地处理更为复杂的目标跟踪场景.本文针对杂波环境下的多目标跟踪问题,提出一种在PMM框架下的势均衡多目标多伯努利(Cardinality balanced multi-target multi-Bernoulli,CBMe MBer)滤波器,并给出它在线性高斯PMM条件下的高斯混合(Gaussian mixture,GM)实现.最后,采用一种满足HMM局部物理特性的线性高斯PMM,将本文所提算法与概率假设密度(Probability hypothesis density,PHD)滤波器进行比较.实验结果表明本文所提算法的跟踪性能优于PHD滤波器.
AbstractList 由于在实际应用中目标模型不一定满足隐马尔科夫模型(Hidden Markov model, HMM) 隐含的马尔科夫假设和独立性假设条件,一种更为一般化的Pairwise 马尔科夫模型(Pairwise Markov model, PMM) 被提出.它放宽了HMM 的结构性限制,可以有效地处理更为复杂的目标跟踪场景.本文针对杂波环境下的多目标跟踪问题,提出一种在PMM 框架下的势均衡多目标多伯努利(Cardinality balanced multi-target multi-Bernoulli, CBMeMBer) 滤波器,并给出它在线性高斯PMM条件下的高斯混合(Gaussian mixture, GM) 实现.最后,采用一种满足HMM 局部物理特性的线性高斯PMM,将本文所提算法与概率假设密度(Probability hypothesis density, PHD) 滤波器进行比较.实验结果表明本文所提算法的跟踪性能优于PHD滤波器.
由于在实际应用中目标模型不一定满足隐马尔科夫模型(Hidden Markov model,HMM)隐含的马尔科夫假设和独立性假设条件,一种更为一般化的Pairwise马尔科夫模型(Pairwise Markov model,PMM)被提出.它放宽了HMM的结构性限制,可以有效地处理更为复杂的目标跟踪场景.本文针对杂波环境下的多目标跟踪问题,提出一种在PMM框架下的势均衡多目标多伯努利(Cardinality balanced multi-target multi-Bernoulli,CBMe MBer)滤波器,并给出它在线性高斯PMM条件下的高斯混合(Gaussian mixture,GM)实现.最后,采用一种满足HMM局部物理特性的线性高斯PMM,将本文所提算法与概率假设密度(Probability hypothesis density,PHD)滤波器进行比较.实验结果表明本文所提算法的跟踪性能优于PHD滤波器.
Abstract_FL Because the Markovian and independence assumptions,which are implicitly implied in hidden Markov model (HMM), may not be satisfied by the target model in some practical applications, a more general pairwise Markov model (PMM)has been proposed. PMM relaxes the structural limitations of HMM and can effectively deal with more complex target tracking scenarios. In this paper, a cardinality balanced multi-target multi-Bernoulli (CBMeMBer) filter in the framework of PMM is proposed for multi-target tracking in clutter environment, and a closed-form solution to the CB-MeMBer filter under linear Gaussian PMM is presented. Finally,the proposed algorithm is compared with the probability hypothesis density (PHD) filter via simulations using a particular linear Gaussian PMM, which keeps the local physical properties of HMM.Simulation results show that the tracking performance of the proposed algorithm is better than that of the PHD filter.
Author 张光华;韩崇昭;连峰;曾令豪
AuthorAffiliation 西安交通大学智能网络与网络安全教育部重点实验室,西安710049
AuthorAffiliation_xml – name: 西安交通大学智能网络与网络安全教育部重点实验室 西安710049
Author_FL HAN Chong-Zhao
ZENG Ling-Hao
ZHANG Guang-Hua
LIAN Feng
Author_FL_xml – sequence: 1
  fullname: ZHANG Guang-Hua
– sequence: 2
  fullname: HAN Chong-Zhao
– sequence: 3
  fullname: LIAN Feng
– sequence: 4
  fullname: ZENG Ling-Hao
Author_xml – sequence: 1
  fullname: 张光华;韩崇昭;连峰;曾令豪
BookMark eNotkD9Lw0AAxQ-pYK39BG4Obon3L3e5UYpWoaBD93K5JG2KppogVWdBaSfBxYpipWCrooKLoOCX6aX6LTyp03vDj_fgNw9ycSsOAFhE0EaMuGSlaUuZ2hgibivEICVwBuSRy6mFIBY5kIfYoRZFDpsDxTSNPENSLjCBeVDellHSjtLgZ_SkXy8m9-d68JgN-_qmO37vTnonuvOlr0-_-3096E2unrPbU1PGny-686DPRtnHIHu705fDBTAbyp00KP5nAVTX16qlDauyVd4srVYs5bjUwqFSNFQIQxEwX_iOGxAVKsIxor7iPMRKESo8wQPmCcahg4SPuI8FZjB0MCmA5elsW8ahjOu1Zusgic1h7dhvHHp_Dsy4UVAAS1NQNVpxfT8y6F4S7crkqMa4USE4csgvUphziQ
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16383/j.aas.2017.c160430
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Cardinality Balanced Multi-target Multi-Bernoulli Filter for Pairwise Markov Model
DocumentTitle_FL Cardinality Balanced Multi-target Multi-Bernoulli Filter for Pairwise Markov Model
EISSN 1874-1029
EndPage 2108
ExternalDocumentID zdhxb201712004
674159715
GrantInformation_xml – fundername: 国家重点基础研究发展计划(973计划); 国家自然科学基金创新研究群体; 国家自然科学基金(61573271,61473217,61370037)资助Supported by National Basic Research Program of China(973 Program); Foundation for Innovative Research Groups of the National Natural Science Foundation of China; National Natural Science Foundation of China
  funderid: (2013CB329405); (61221063); (2013CB329405); (61221063); (61573271,61473217,61370037)
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
92L
AAIKJ
AALRI
AAQFI
AAXUO
ACGFS
ADEZE
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CQIGP
CS3
CUBFJ
CW9
EBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
ABWVN
ACRPL
ADNMO
PSX
ID FETCH-LOGICAL-c584-2fcc4fc1209e6d9d58e3cfc37214dc77f2cc349b97e6b9670519d17d29260f523
ISSN 0254-4156
IngestDate Thu May 29 04:10:30 EDT 2025
Wed Feb 14 09:55:13 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords 隐马尔科夫模型
pairwise Markov model (PMM)
Hidden Markov model (HMM)
随机有限集
高斯混合
Pairwise马尔科夫模型
multi-target tracking
Gaussian mixture(GM)
多目标跟踪
多伯努利密度
random finite set
multi-Bernoulli density
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c584-2fcc4fc1209e6d9d58e3cfc37214dc77f2cc349b97e6b9670519d17d29260f523
Notes ZHANG Guang-Hua1 ,HAN Chong-Zhao1 ,LIAN Feng1 ,ZENG Ling-Hao1( 1. Ministry of Education Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an 710049)
Because the Markovian and independence assumptions, which are implicitly implied in hidden Markov model (HMM), may not be satisfied by the target model in some practical applications, a more general pairwise Markov model (PMM) has been proposed. PMM relaxes the structural limitations of HMM and can effectively deal with more complex target tracking scenarios. In this paper, a cardinality balanced multi-target multi-Bernoulli (CBMeMBer) filter in the framework of PMM is proposed for multi-target tracking in clutter environment, and a closed-form solution to the CB- MeMBer filter under linear Gaussian PMM is presented. Finally, the proposed algorithm is compared with the probability hypothesis density (PHD) filter via simulations using a particular linear Gaussian PMM, which keeps the local physical properties of HMM. Simula
PageCount 9
ParticipantIDs wanfang_journals_zdhxb201712004
chongqing_primary_674159715
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 自动化学报
PublicationTitleAlternate Acta Automatica Sinica
PublicationTitle_FL Acta Automatica Sinica
PublicationYear 2017
Publisher 西安交通大学智能网络与网络安全教育部重点实验室 西安710049
Publisher_xml – name: 西安交通大学智能网络与网络安全教育部重点实验室 西安710049
SSID ssib017479230
ssib001102911
ssib006576350
ssib051375349
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 2.1639915
Snippet 由于在实际应用中目标模型不一定满足隐马尔科夫模型(Hidden Markov model,HMM)隐含的马尔科夫假设和独立性假设条件,一种更为一般化的Pairwise马尔科夫模型(Pairwise Markov...
由于在实际应用中目标模型不一定满足隐马尔科夫模型(Hidden Markov model, HMM) 隐含的马尔科夫假设和独立性假设条件,一种更为一般化的Pairwise 马尔科夫模型(Pairwise Markov model, PMM) 被提出.它放宽了HMM...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 2100
SubjectTerms 隐马尔科夫模型;Pairwise马尔科夫模型;多目标跟踪;随机有限集;多伯努利密度;高斯混合
Title Pairwise马尔科夫模型下的势均衡多目标多伯努利滤波器
URI http://lib.cqvip.com/qk/90250X/201712/674159715.html
https://d.wanfangdata.com.cn/periodical/zdhxb201712004
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9VAcCntRQ_iJ9b60YN7fPUlu9mP4-Y1r0VUPFTp7ZHPtpdX7QdKz0KlPQlerCg-KdiqqOBFUPDPNO_pT_DmzCbvvYhFVAjJ7O5kMjuTzM5sshNCLodp4kEUgD_NEFGNJw7Hxcq6xngauoknszDFBc7Xb4jZW_zqvDc_MvKj8tXS-lo0FW8cuq7kf7QKdaBXXCX7D5odEIUKgEG_sAcNw_6vdHwzXFq5t7Sa0kBTA1uDBh7161RzGkhqJNUO1hhOjU8DQY2ixtbogCqo4dRXFgBMQxXHJmWo37Q401RJGthTTJ8OoCGyT01gCdYtzqAJCDaoaZZ0jLGAQt4A2fcRDQFGjWsvATyrqnuMlwOC5YkGGUagQbWwV5mmRiAFbPL694rtdAN5QVzYtAWA_YAyH2Wjm5YFQOOWX0G1QmLYqrC7IA9sZSg8ZkUFXfQD26GCa0ADMZjqJEmxGrS0ohAB1zBKLQa8wsoryWH8KadaymGgyBbVv93dX4x6vV5xEKCoDh18wJQxO_qEISaCd-RU7AjMqTYcawdfQAr05LTE9AhjroTjKBmb8a_dNkNfFhmsGF9Pg32t-GrCw1yCw7LEN-KVV9hQZmwYG0LkiakiB2X8cYCozAV4DoPIFWPxwo3xMK2TnaAs5Vem7MJOXvm9i5iaZHG5vXAXHC67_q2dhe2Fiqs2d5wcK2OsSVM8MCfIyMbiSXK0knnzFJnpPzrf99_mHx73Xj3Kd9909zr58-2DT9u9nQf51tf82ea3Tiff3ek9fdd9sQnAwZf3-dbr_OF-9_Nu9-PL_MneaTLXDOYas7XynyK1GFztmpvFMc9iXDCeikQnnkpZnMUM-sqTWMrMjWMQQqRlKiItJAY4iSMTV0Pcn3kuO0NG28vt9CyZ1G4kuQqZzhzNQTdhKiPpesxzlMhiNxonEwOJtO4UqWNaA7WPk0uljFqlQVltbSSL9yMUqoNG7twfz58gRxCzmAw8T0bXVtbTC-Aer0UXyxvpJy3pkus
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pairwise%E9%A9%AC%E5%B0%94%E7%A7%91%E5%A4%AB%E6%A8%A1%E5%9E%8B%E4%B8%8B%E7%9A%84%E5%8A%BF%E5%9D%87%E8%A1%A1%E5%A4%9A%E7%9B%AE%E6%A0%87%E5%A4%9A%E4%BC%AF%E5%8A%AA%E5%88%A9%E6%BB%A4%E6%B3%A2%E5%99%A8&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E5%85%89%E5%8D%8E%3B%E9%9F%A9%E5%B4%87%E6%98%AD%3B%E8%BF%9E%E5%B3%B0%3B%E6%9B%BE%E4%BB%A4%E8%B1%AA&rft.date=2017&rft.issn=0254-4156&rft.eissn=1874-1029&rft.volume=43&rft.issue=12&rft.spage=2100&rft.epage=2108&rft_id=info:doi/10.16383%2Fj.aas.2017.c160430&rft.externalDocID=674159715
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg