Pairwise马尔科夫模型下的势均衡多目标多伯努利滤波器
由于在实际应用中目标模型不一定满足隐马尔科夫模型(Hidden Markov model,HMM)隐含的马尔科夫假设和独立性假设条件,一种更为一般化的Pairwise马尔科夫模型(Pairwise Markov model,PMM)被提出.它放宽了HMM的结构性限制,可以有效地处理更为复杂的目标跟踪场景.本文针对杂波环境下的多目标跟踪问题,提出一种在PMM框架下的势均衡多目标多伯努利(Cardinality balanced multi-target multi-Bernoulli,CBMe MBer)滤波器,并给出它在线性高斯PMM条件下的高斯混合(Gaussian mixture,GM)实...
Saved in:
Published in | 自动化学报 Vol. 43; no. 12; pp. 2100 - 2108 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
西安交通大学智能网络与网络安全教育部重点实验室 西安710049
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0254-4156 1874-1029 |
DOI | 10.16383/j.aas.2017.c160430 |
Cover
Abstract | 由于在实际应用中目标模型不一定满足隐马尔科夫模型(Hidden Markov model,HMM)隐含的马尔科夫假设和独立性假设条件,一种更为一般化的Pairwise马尔科夫模型(Pairwise Markov model,PMM)被提出.它放宽了HMM的结构性限制,可以有效地处理更为复杂的目标跟踪场景.本文针对杂波环境下的多目标跟踪问题,提出一种在PMM框架下的势均衡多目标多伯努利(Cardinality balanced multi-target multi-Bernoulli,CBMe MBer)滤波器,并给出它在线性高斯PMM条件下的高斯混合(Gaussian mixture,GM)实现.最后,采用一种满足HMM局部物理特性的线性高斯PMM,将本文所提算法与概率假设密度(Probability hypothesis density,PHD)滤波器进行比较.实验结果表明本文所提算法的跟踪性能优于PHD滤波器. |
---|---|
AbstractList | 由于在实际应用中目标模型不一定满足隐马尔科夫模型(Hidden Markov model, HMM) 隐含的马尔科夫假设和独立性假设条件,一种更为一般化的Pairwise 马尔科夫模型(Pairwise Markov model, PMM) 被提出.它放宽了HMM 的结构性限制,可以有效地处理更为复杂的目标跟踪场景.本文针对杂波环境下的多目标跟踪问题,提出一种在PMM 框架下的势均衡多目标多伯努利(Cardinality balanced multi-target multi-Bernoulli, CBMeMBer) 滤波器,并给出它在线性高斯PMM条件下的高斯混合(Gaussian mixture, GM) 实现.最后,采用一种满足HMM 局部物理特性的线性高斯PMM,将本文所提算法与概率假设密度(Probability hypothesis density, PHD) 滤波器进行比较.实验结果表明本文所提算法的跟踪性能优于PHD滤波器. 由于在实际应用中目标模型不一定满足隐马尔科夫模型(Hidden Markov model,HMM)隐含的马尔科夫假设和独立性假设条件,一种更为一般化的Pairwise马尔科夫模型(Pairwise Markov model,PMM)被提出.它放宽了HMM的结构性限制,可以有效地处理更为复杂的目标跟踪场景.本文针对杂波环境下的多目标跟踪问题,提出一种在PMM框架下的势均衡多目标多伯努利(Cardinality balanced multi-target multi-Bernoulli,CBMe MBer)滤波器,并给出它在线性高斯PMM条件下的高斯混合(Gaussian mixture,GM)实现.最后,采用一种满足HMM局部物理特性的线性高斯PMM,将本文所提算法与概率假设密度(Probability hypothesis density,PHD)滤波器进行比较.实验结果表明本文所提算法的跟踪性能优于PHD滤波器. |
Abstract_FL | Because the Markovian and independence assumptions,which are implicitly implied in hidden Markov model (HMM), may not be satisfied by the target model in some practical applications, a more general pairwise Markov model (PMM)has been proposed. PMM relaxes the structural limitations of HMM and can effectively deal with more complex target tracking scenarios. In this paper, a cardinality balanced multi-target multi-Bernoulli (CBMeMBer) filter in the framework of PMM is proposed for multi-target tracking in clutter environment, and a closed-form solution to the CB-MeMBer filter under linear Gaussian PMM is presented. Finally,the proposed algorithm is compared with the probability hypothesis density (PHD) filter via simulations using a particular linear Gaussian PMM, which keeps the local physical properties of HMM.Simulation results show that the tracking performance of the proposed algorithm is better than that of the PHD filter. |
Author | 张光华;韩崇昭;连峰;曾令豪 |
AuthorAffiliation | 西安交通大学智能网络与网络安全教育部重点实验室,西安710049 |
AuthorAffiliation_xml | – name: 西安交通大学智能网络与网络安全教育部重点实验室 西安710049 |
Author_FL | HAN Chong-Zhao ZENG Ling-Hao ZHANG Guang-Hua LIAN Feng |
Author_FL_xml | – sequence: 1 fullname: ZHANG Guang-Hua – sequence: 2 fullname: HAN Chong-Zhao – sequence: 3 fullname: LIAN Feng – sequence: 4 fullname: ZENG Ling-Hao |
Author_xml | – sequence: 1 fullname: 张光华;韩崇昭;连峰;曾令豪 |
BookMark | eNotkD9Lw0AAxQ-pYK39BG4Obon3L3e5UYpWoaBD93K5JG2KppogVWdBaSfBxYpipWCrooKLoOCX6aX6LTyp03vDj_fgNw9ycSsOAFhE0EaMuGSlaUuZ2hgibivEICVwBuSRy6mFIBY5kIfYoRZFDpsDxTSNPENSLjCBeVDellHSjtLgZ_SkXy8m9-d68JgN-_qmO37vTnonuvOlr0-_-3096E2unrPbU1PGny-686DPRtnHIHu705fDBTAbyp00KP5nAVTX16qlDauyVd4srVYs5bjUwqFSNFQIQxEwX_iOGxAVKsIxor7iPMRKESo8wQPmCcahg4SPuI8FZjB0MCmA5elsW8ahjOu1Zusgic1h7dhvHHp_Dsy4UVAAS1NQNVpxfT8y6F4S7crkqMa4USE4csgvUphziQ |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.16383/j.aas.2017.c160430 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Cardinality Balanced Multi-target Multi-Bernoulli Filter for Pairwise Markov Model |
DocumentTitle_FL | Cardinality Balanced Multi-target Multi-Bernoulli Filter for Pairwise Markov Model |
EISSN | 1874-1029 |
EndPage | 2108 |
ExternalDocumentID | zdhxb201712004 674159715 |
GrantInformation_xml | – fundername: 国家重点基础研究发展计划(973计划); 国家自然科学基金创新研究群体; 国家自然科学基金(61573271,61473217,61370037)资助Supported by National Basic Research Program of China(973 Program); Foundation for Innovative Research Groups of the National Natural Science Foundation of China; National Natural Science Foundation of China funderid: (2013CB329405); (61221063); (2013CB329405); (61221063); (61573271,61473217,61370037) |
GroupedDBID | --K -0Y .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 457 4G. 5GY 5VS 5XA 5XJ 7-5 71M 8P~ 92H 92I 92L AAIKJ AALRI AAQFI AAXUO ACGFS ADEZE ADTZH AECPX AEKER AFTJW AGHFR AGYEJ AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS BLXMC CCEZO CQIGP CS3 CUBFJ CW9 EBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA HVGLF HZ~ IHE J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI ABWVN ACRPL ADNMO PSX |
ID | FETCH-LOGICAL-c584-2fcc4fc1209e6d9d58e3cfc37214dc77f2cc349b97e6b9670519d17d29260f523 |
ISSN | 0254-4156 |
IngestDate | Thu May 29 04:10:30 EDT 2025 Wed Feb 14 09:55:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | 隐马尔科夫模型 pairwise Markov model (PMM) Hidden Markov model (HMM) 随机有限集 高斯混合 Pairwise马尔科夫模型 multi-target tracking Gaussian mixture(GM) 多目标跟踪 多伯努利密度 random finite set multi-Bernoulli density |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c584-2fcc4fc1209e6d9d58e3cfc37214dc77f2cc349b97e6b9670519d17d29260f523 |
Notes | ZHANG Guang-Hua1 ,HAN Chong-Zhao1 ,LIAN Feng1 ,ZENG Ling-Hao1( 1. Ministry of Education Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an 710049) Because the Markovian and independence assumptions, which are implicitly implied in hidden Markov model (HMM), may not be satisfied by the target model in some practical applications, a more general pairwise Markov model (PMM) has been proposed. PMM relaxes the structural limitations of HMM and can effectively deal with more complex target tracking scenarios. In this paper, a cardinality balanced multi-target multi-Bernoulli (CBMeMBer) filter in the framework of PMM is proposed for multi-target tracking in clutter environment, and a closed-form solution to the CB- MeMBer filter under linear Gaussian PMM is presented. Finally, the proposed algorithm is compared with the probability hypothesis density (PHD) filter via simulations using a particular linear Gaussian PMM, which keeps the local physical properties of HMM. Simula |
PageCount | 9 |
ParticipantIDs | wanfang_journals_zdhxb201712004 chongqing_primary_674159715 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 自动化学报 |
PublicationTitleAlternate | Acta Automatica Sinica |
PublicationTitle_FL | Acta Automatica Sinica |
PublicationYear | 2017 |
Publisher | 西安交通大学智能网络与网络安全教育部重点实验室 西安710049 |
Publisher_xml | – name: 西安交通大学智能网络与网络安全教育部重点实验室 西安710049 |
SSID | ssib017479230 ssib001102911 ssib006576350 ssib051375349 ssib007293330 ssj0059721 ssib007290157 ssib023646446 ssib005904210 |
Score | 2.1639915 |
Snippet | 由于在实际应用中目标模型不一定满足隐马尔科夫模型(Hidden Markov model,HMM)隐含的马尔科夫假设和独立性假设条件,一种更为一般化的Pairwise马尔科夫模型(Pairwise Markov... 由于在实际应用中目标模型不一定满足隐马尔科夫模型(Hidden Markov model, HMM) 隐含的马尔科夫假设和独立性假设条件,一种更为一般化的Pairwise 马尔科夫模型(Pairwise Markov model, PMM) 被提出.它放宽了HMM... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 2100 |
SubjectTerms | 隐马尔科夫模型;Pairwise马尔科夫模型;多目标跟踪;随机有限集;多伯努利密度;高斯混合 |
Title | Pairwise马尔科夫模型下的势均衡多目标多伯努利滤波器 |
URI | http://lib.cqvip.com/qk/90250X/201712/674159715.html https://d.wanfangdata.com.cn/periodical/zdhxb201712004 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9VAcCntRQ_iJ9b60YN7fPUlu9mP4-Y1r0VUPFTp7ZHPtpdX7QdKz0KlPQlerCg-KdiqqOBFUPDPNO_pT_DmzCbvvYhFVAjJ7O5kMjuTzM5sshNCLodp4kEUgD_NEFGNJw7Hxcq6xngauoknszDFBc7Xb4jZW_zqvDc_MvKj8tXS-lo0FW8cuq7kf7QKdaBXXCX7D5odEIUKgEG_sAcNw_6vdHwzXFq5t7Sa0kBTA1uDBh7161RzGkhqJNUO1hhOjU8DQY2ixtbogCqo4dRXFgBMQxXHJmWo37Q401RJGthTTJ8OoCGyT01gCdYtzqAJCDaoaZZ0jLGAQt4A2fcRDQFGjWsvATyrqnuMlwOC5YkGGUagQbWwV5mmRiAFbPL694rtdAN5QVzYtAWA_YAyH2Wjm5YFQOOWX0G1QmLYqrC7IA9sZSg8ZkUFXfQD26GCa0ADMZjqJEmxGrS0ohAB1zBKLQa8wsoryWH8KadaymGgyBbVv93dX4x6vV5xEKCoDh18wJQxO_qEISaCd-RU7AjMqTYcawdfQAr05LTE9AhjroTjKBmb8a_dNkNfFhmsGF9Pg32t-GrCw1yCw7LEN-KVV9hQZmwYG0LkiakiB2X8cYCozAV4DoPIFWPxwo3xMK2TnaAs5Vem7MJOXvm9i5iaZHG5vXAXHC67_q2dhe2Fiqs2d5wcK2OsSVM8MCfIyMbiSXK0knnzFJnpPzrf99_mHx73Xj3Kd9909zr58-2DT9u9nQf51tf82ea3Tiff3ek9fdd9sQnAwZf3-dbr_OF-9_Nu9-PL_MneaTLXDOYas7XynyK1GFztmpvFMc9iXDCeikQnnkpZnMUM-sqTWMrMjWMQQqRlKiItJAY4iSMTV0Pcn3kuO0NG28vt9CyZ1G4kuQqZzhzNQTdhKiPpesxzlMhiNxonEwOJtO4UqWNaA7WPk0uljFqlQVltbSSL9yMUqoNG7twfz58gRxCzmAw8T0bXVtbTC-Aer0UXyxvpJy3pkus |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pairwise%E9%A9%AC%E5%B0%94%E7%A7%91%E5%A4%AB%E6%A8%A1%E5%9E%8B%E4%B8%8B%E7%9A%84%E5%8A%BF%E5%9D%87%E8%A1%A1%E5%A4%9A%E7%9B%AE%E6%A0%87%E5%A4%9A%E4%BC%AF%E5%8A%AA%E5%88%A9%E6%BB%A4%E6%B3%A2%E5%99%A8&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E5%85%89%E5%8D%8E%3B%E9%9F%A9%E5%B4%87%E6%98%AD%3B%E8%BF%9E%E5%B3%B0%3B%E6%9B%BE%E4%BB%A4%E8%B1%AA&rft.date=2017&rft.issn=0254-4156&rft.eissn=1874-1029&rft.volume=43&rft.issue=12&rft.spage=2100&rft.epage=2108&rft_id=info:doi/10.16383%2Fj.aas.2017.c160430&rft.externalDocID=674159715 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg |