High-efficiency broadband achromatic metalens for near-IR biological imaging window

Over the past years, broadband achromatic metalenses have been intensively studied due to their great potential for applications in consumer and industry products. Even though significant progress has been made, the efficiency of technologically relevant silicon metalenses is limited by the intrinsi...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 5560 - 7
Main Authors Wang, Yujie, Chen, Qinmiao, Yang, Wenhong, Ji, Ziheng, Jin, Limin, Ma, Xing, Song, Qinghai, Boltasseva, Alexandra, Han, Jiecai, Shalaev, Vladimir M., Xiao, Shumin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.09.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Over the past years, broadband achromatic metalenses have been intensively studied due to their great potential for applications in consumer and industry products. Even though significant progress has been made, the efficiency of technologically relevant silicon metalenses is limited by the intrinsic material loss above the bandgap. In turn, the recently proposed achromatic metalens utilizing transparent, high-index materials such as titanium dioxide has been restricted by the small thickness and showed relatively low focusing efficiency at longer wavelengths. Consequently, metalens-based optical imaging in the biological transparency window has so far been severely limited. Herein, we experimentally demonstrate a polarization-insensitive, broadband titanium dioxide achromatic metalens for applications in the near-infrared biological imaging. A large-scale fabrication technology has been developed to produce titanium dioxide nanopillars with record-high aspect ratios featuring pillar heights of 1.5 µm and ~90° vertical sidewalls. The demonstrated metalens exhibits dramatically increased group delay range, and the spectral range of achromatism is substantially extended to the wavelength range of 650–1000 nm with an average efficiency of 77.1%–88.5% and a numerical aperture of 0.24–0.1. This research paves a solid step towards practical applications of flat photonics. Though broadband achromatic metalens are attractive for biological applications, existing metalenses show limited performance in the biological imaging window. Here, the authors report high-efficiency broadband achromatic metalens featuring record-high aspect ratio titanium dioxide metasurfaces.
AbstractList Over the past years, broadband achromatic metalenses have been intensively studied due to their great potential for applications in consumer and industry products. Even though significant progress has been made, the efficiency of technologically relevant silicon metalenses is limited by the intrinsic material loss above the bandgap. In turn, the recently proposed achromatic metalens utilizing transparent, high-index materials such as titanium dioxide has been restricted by the small thickness and showed relatively low focusing efficiency at longer wavelengths. Consequently, metalens-based optical imaging in the biological transparency window has so far been severely limited. Herein, we experimentally demonstrate a polarization-insensitive, broadband titanium dioxide achromatic metalens for applications in the near-infrared biological imaging. A large-scale fabrication technology has been developed to produce titanium dioxide nanopillars with record-high aspect ratios featuring pillar heights of 1.5 µm and ~90° vertical sidewalls. The demonstrated metalens exhibits dramatically increased group delay range, and the spectral range of achromatism is substantially extended to the wavelength range of 650–1000 nm with an average efficiency of 77.1%–88.5% and a numerical aperture of 0.24–0.1. This research paves a solid step towards practical applications of flat photonics.
Over the past years, broadband achromatic metalenses have been intensively studied due to their great potential for applications in consumer and industry products. Even though significant progress has been made, the efficiency of technologically relevant silicon metalenses is limited by the intrinsic material loss above the bandgap. In turn, the recently proposed achromatic metalens utilizing transparent, high-index materials such as titanium dioxide has been restricted by the small thickness and showed relatively low focusing efficiency at longer wavelengths. Consequently, metalens-based optical imaging in the biological transparency window has so far been severely limited. Herein, we experimentally demonstrate a polarization-insensitive, broadband titanium dioxide achromatic metalens for applications in the near-infrared biological imaging. A large-scale fabrication technology has been developed to produce titanium dioxide nanopillars with record-high aspect ratios featuring pillar heights of 1.5 µm and ~90° vertical sidewalls. The demonstrated metalens exhibits dramatically increased group delay range, and the spectral range of achromatism is substantially extended to the wavelength range of 650–1000 nm with an average efficiency of 77.1%–88.5% and a numerical aperture of 0.24–0.1. This research paves a solid step towards practical applications of flat photonics. Though broadband achromatic metalens are attractive for biological applications, existing metalenses show limited performance in the biological imaging window. Here, the authors report high-efficiency broadband achromatic metalens featuring record-high aspect ratio titanium dioxide metasurfaces.
Though broadband achromatic metalens are attractive for biological applications, existing metalenses show limited performance in the biological imaging window. Here, the authors report high-efficiency broadband achromatic metalens featuring record-high aspect ratio titanium dioxide metasurfaces.
Over the past years, broadband achromatic metalenses have been intensively studied due to their great potential for applications in consumer and industry products. Even though significant progress has been made, the efficiency of technologically relevant silicon metalenses is limited by the intrinsic material loss above the bandgap. In turn, the recently proposed achromatic metalens utilizing transparent, high-index materials such as titanium dioxide has been restricted by the small thickness and showed relatively low focusing efficiency at longer wavelengths. Consequently, metalens-based optical imaging in the biological transparency window has so far been severely limited. Herein, we experimentally demonstrate a polarization-insensitive, broadband titanium dioxide achromatic metalens for applications in the near-infrared biological imaging. A large-scale fabrication technology has been developed to produce titanium dioxide nanopillars with record-high aspect ratios featuring pillar heights of 1.5 µm and ~90° vertical sidewalls. The demonstrated metalens exhibits dramatically increased group delay range, and the spectral range of achromatism is substantially extended to the wavelength range of 650–1000 nm with an average efficiency of 77.1%–88.5% and a numerical aperture of 0.24–0.1. This research paves a solid step towards practical applications of flat photonics.Though broadband achromatic metalens are attractive for biological applications, existing metalenses show limited performance in the biological imaging window. Here, the authors report high-efficiency broadband achromatic metalens featuring record-high aspect ratio titanium dioxide metasurfaces.
Over the past years, broadband achromatic metalenses have been intensively studied due to their great potential for applications in consumer and industry products. Even though significant progress has been made, the efficiency of technologically relevant silicon metalenses is limited by the intrinsic material loss above the bandgap. In turn, the recently proposed achromatic metalens utilizing transparent, high-index materials such as titanium dioxide has been restricted by the small thickness and showed relatively low focusing efficiency at longer wavelengths. Consequently, metalens-based optical imaging in the biological transparency window has so far been severely limited. Herein, we experimentally demonstrate a polarization-insensitive, broadband titanium dioxide achromatic metalens for applications in the near-infrared biological imaging. A large-scale fabrication technology has been developed to produce titanium dioxide nanopillars with record-high aspect ratios featuring pillar heights of 1.5 µm and ~90° vertical sidewalls. The demonstrated metalens exhibits dramatically increased group delay range, and the spectral range of achromatism is substantially extended to the wavelength range of 650-1000 nm with an average efficiency of 77.1%-88.5% and a numerical aperture of 0.24-0.1. This research paves a solid step towards practical applications of flat photonics.Over the past years, broadband achromatic metalenses have been intensively studied due to their great potential for applications in consumer and industry products. Even though significant progress has been made, the efficiency of technologically relevant silicon metalenses is limited by the intrinsic material loss above the bandgap. In turn, the recently proposed achromatic metalens utilizing transparent, high-index materials such as titanium dioxide has been restricted by the small thickness and showed relatively low focusing efficiency at longer wavelengths. Consequently, metalens-based optical imaging in the biological transparency window has so far been severely limited. Herein, we experimentally demonstrate a polarization-insensitive, broadband titanium dioxide achromatic metalens for applications in the near-infrared biological imaging. A large-scale fabrication technology has been developed to produce titanium dioxide nanopillars with record-high aspect ratios featuring pillar heights of 1.5 µm and ~90° vertical sidewalls. The demonstrated metalens exhibits dramatically increased group delay range, and the spectral range of achromatism is substantially extended to the wavelength range of 650-1000 nm with an average efficiency of 77.1%-88.5% and a numerical aperture of 0.24-0.1. This research paves a solid step towards practical applications of flat photonics.
ArticleNumber 5560
Author Chen, Qinmiao
Boltasseva, Alexandra
Wang, Yujie
Yang, Wenhong
Han, Jiecai
Jin, Limin
Song, Qinghai
Ma, Xing
Ji, Ziheng
Shalaev, Vladimir M.
Xiao, Shumin
Author_xml – sequence: 1
  givenname: Yujie
  surname: Wang
  fullname: Wang, Yujie
  organization: State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen)
– sequence: 2
  givenname: Qinmiao
  surname: Chen
  fullname: Chen, Qinmiao
  organization: State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen)
– sequence: 3
  givenname: Wenhong
  surname: Yang
  fullname: Yang, Wenhong
  organization: State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen)
– sequence: 4
  givenname: Ziheng
  surname: Ji
  fullname: Ji, Ziheng
  organization: State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen)
– sequence: 5
  givenname: Limin
  orcidid: 0000-0002-2697-8811
  surname: Jin
  fullname: Jin, Limin
  organization: State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen)
– sequence: 6
  givenname: Xing
  orcidid: 0000-0002-2248-4806
  surname: Ma
  fullname: Ma, Xing
  organization: State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen)
– sequence: 7
  givenname: Qinghai
  orcidid: 0000-0003-1048-411X
  surname: Song
  fullname: Song, Qinghai
  organization: State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen)
– sequence: 8
  givenname: Alexandra
  orcidid: 0000-0001-8905-2605
  surname: Boltasseva
  fullname: Boltasseva, Alexandra
  organization: School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University
– sequence: 9
  givenname: Jiecai
  surname: Han
  fullname: Han, Jiecai
  organization: National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology
– sequence: 10
  givenname: Vladimir M.
  orcidid: 0000-0001-8976-1102
  surname: Shalaev
  fullname: Shalaev, Vladimir M.
  organization: School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University
– sequence: 11
  givenname: Shumin
  orcidid: 0000-0002-0751-9556
  surname: Xiao
  fullname: Xiao, Shumin
  email: shumin.xiao@hit.edu.cn
  organization: State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen), National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Collaborative Innovation Center of Extreme Optics, Shanxi University
BookMark eNp9Uk1v1DAUtFARLaV_gFMkLlxS_BknFyRUQbtSJSQ-ztaL85z1KmsXO0vVf4_TVEB7qC-2_GbG8_zmNTkKMSAhbxk9Z1S0H7JkstE15azmSne67l6QE04lq5nm4ui_8zE5y3lHyxIda6V8RY6FVLKVHT0h36_8uK3ROW89BntX9SnC0EMYKrDbFPcwe1vtcYYJQ65cTFVASPXmW9X7OMXRW5gqv4fRh7G69WGIt2_ISwdTxrOH_ZT8_PL5x8VVff31cnPx6bq2qhVz7QZokFnOFEjpKHUAmktFexCDdgOqrmkoR971XFghhoVFXekasFR6Jk7JZtUdIuzMTSou0p2J4M39RUyjgVTsT2iQFmHniphtpKYdUOakc1og1a0FVbQ-rlo3h36Pg8UwJ5geiT6uBL81Y_xtWqmUatoi8P5BIMVfB8yz2ftscZogYDxkU4akhKZcNQX67gl0Fw8plK9aULITvOVLd3xF2RRzTuj-mmHULBEwawRMiYC5j4DpCql9QrJ-LiOMi2k_PU8VKzWXd8KI6Z-rZ1h_AL7Zxjk
CitedBy_id crossref_primary_10_1002_lpor_202100732
crossref_primary_10_1002_adom_202201478
crossref_primary_10_1364_OL_466126
crossref_primary_10_1002_adma_202208884
crossref_primary_10_1016_j_optcom_2024_130340
crossref_primary_10_1038_s41377_022_00885_7
crossref_primary_10_1002_adom_202203095
crossref_primary_10_1016_j_optmat_2025_116801
crossref_primary_10_1021_acsnano_4c12546
crossref_primary_10_1364_OE_450601
crossref_primary_10_1109_TIM_2022_3216675
crossref_primary_10_37188_lam_2024_005
crossref_primary_10_1117_1_APN_3_2_026002
crossref_primary_10_1515_nanoph_2022_0803
crossref_primary_10_1515_nanoph_2021_0660
crossref_primary_10_1021_acsphotonics_2c01534
crossref_primary_10_3788_PI_2024_R04
crossref_primary_10_1063_5_0078804
crossref_primary_10_3788_LOP232584
crossref_primary_10_1016_j_rinp_2023_106308
crossref_primary_10_1080_00223131_2023_2276409
crossref_primary_10_3788_LOP232217
crossref_primary_10_3390_nano14060513
crossref_primary_10_1109_JPHOT_2023_3243409
crossref_primary_10_1364_OE_534872
crossref_primary_10_3390_nano13071235
crossref_primary_10_1515_nanoph_2021_0638
crossref_primary_10_1021_acs_nanolett_3c02439
crossref_primary_10_1016_j_mtphys_2023_101273
crossref_primary_10_3390_nano13182503
crossref_primary_10_1002_lpor_202200351
crossref_primary_10_1364_OL_549532
crossref_primary_10_1002_lpor_202300729
crossref_primary_10_1063_5_0220043
crossref_primary_10_1364_AO_510342
crossref_primary_10_1021_acs_nanolett_4c01218
crossref_primary_10_3788_AOS221877
crossref_primary_10_1038_s41467_023_42137_1
crossref_primary_10_1103_PhysRevLett_131_193801
crossref_primary_10_1021_acs_nanolett_3c03416
crossref_primary_10_1038_s41563_025_02121_0
crossref_primary_10_1002_lpor_202300731
crossref_primary_10_1002_lpor_202200368
crossref_primary_10_1016_j_optcom_2024_130381
crossref_primary_10_1021_acs_chemrev_2c00012
crossref_primary_10_29026_oea_2022_220058
crossref_primary_10_1515_nanoph_2023_0746
crossref_primary_10_1063_5_0204694
crossref_primary_10_1016_j_jsamd_2023_100560
crossref_primary_10_1109_JPHOT_2023_3289588
crossref_primary_10_1002_andp_202400230
crossref_primary_10_1021_acsnano_4c13213
crossref_primary_10_1364_OE_550883
crossref_primary_10_1002_advs_202204664
crossref_primary_10_1002_andp_202300197
crossref_primary_10_1364_AO_511899
crossref_primary_10_1364_OL_520289
crossref_primary_10_1002_adma_202312303
crossref_primary_10_1039_D4NA00661E
crossref_primary_10_1364_OL_499942
crossref_primary_10_1038_s44310_024_00010_z
crossref_primary_10_1364_OE_499585
crossref_primary_10_1038_s41467_024_53701_8
crossref_primary_10_1021_acs_nanolett_4c03787
crossref_primary_10_1002_lpor_202300880
crossref_primary_10_34133_ultrafastscience_0018
crossref_primary_10_1088_2631_7990_ad6838
crossref_primary_10_35848_1882_0786_ac4677
crossref_primary_10_1002_smsc_202300273
crossref_primary_10_1002_adom_202401431
crossref_primary_10_1016_j_infrared_2024_105521
crossref_primary_10_1088_2515_7647_ad1a3b
crossref_primary_10_1364_OL_497776
crossref_primary_10_1002_lpor_202401398
crossref_primary_10_1038_s41467_023_38858_y
crossref_primary_10_3788_AOS231991
crossref_primary_10_1364_OE_525690
crossref_primary_10_1515_nanoph_2021_0684
crossref_primary_10_29026_oea_2024_240122
crossref_primary_10_1038_s41377_024_01565_4
crossref_primary_10_1364_OE_504892
crossref_primary_10_1002_lpor_202401962
crossref_primary_10_1021_acs_nanolett_4c02231
crossref_primary_10_3390_nano13142106
crossref_primary_10_1103_PhysRevApplied_22_044010
crossref_primary_10_1364_JOSAB_451850
crossref_primary_10_3390_mi15040540
crossref_primary_10_1126_sciadv_ado4847
crossref_primary_10_3788_AOS231152
crossref_primary_10_1021_acsphotonics_2c01488
crossref_primary_10_1016_j_optcom_2025_131673
crossref_primary_10_3390_nano14171438
crossref_primary_10_1063_5_0177734
crossref_primary_10_1088_2040_8986_ad5dcc
crossref_primary_10_1364_PRJ_471282
crossref_primary_10_1007_s40684_023_00580_x
crossref_primary_10_1002_adom_202300394
crossref_primary_10_1007_s12648_024_03330_0
crossref_primary_10_29026_oea_2024_230216
crossref_primary_10_1002_adma_202304161
crossref_primary_10_1038_s41467_024_46946_w
crossref_primary_10_1088_1361_6528_ac547b
crossref_primary_10_1121_10_0034239
crossref_primary_10_34133_adi_0023
crossref_primary_10_3788_AOS240670
crossref_primary_10_1002_lpor_202400886
crossref_primary_10_1117_1_JOM_4_4_041402
crossref_primary_10_1364_OE_553798
crossref_primary_10_1002_adom_202202270
crossref_primary_10_1063_5_0120717
crossref_primary_10_1364_AO_479338
crossref_primary_10_1364_JOSAB_488592
crossref_primary_10_1515_nanoph_2024_0547
crossref_primary_10_1016_j_optcom_2024_130975
crossref_primary_10_1364_PRJ_455459
crossref_primary_10_1088_1361_6463_adbaff
crossref_primary_10_1364_OL_464571
crossref_primary_10_3389_fphy_2022_1093284
crossref_primary_10_1063_5_0253958
crossref_primary_10_1126_sciadv_adj9262
crossref_primary_10_3788_PI_2023_R04
crossref_primary_10_3788_PI_2023_R01
crossref_primary_10_29026_oes_2024_240017
crossref_primary_10_1021_acsphotonics_2c00178
crossref_primary_10_4236_opj_2023_136007
crossref_primary_10_1103_PhysRevLett_134_096902
crossref_primary_10_1016_j_optcom_2024_130845
crossref_primary_10_1021_acsphotonics_4c01530
crossref_primary_10_1038_s41377_024_01725_6
crossref_primary_10_1002_lpor_202401993
crossref_primary_10_1038_s41377_023_01093_7
crossref_primary_10_1038_s41467_024_50965_y
crossref_primary_10_1088_2040_8986_ad9598
crossref_primary_10_1117_1_AP_4_4_046006
crossref_primary_10_1364_OE_512108
crossref_primary_10_3390_photonics12010031
crossref_primary_10_1002_adpr_202400077
crossref_primary_10_1038_s41377_022_00930_5
crossref_primary_10_1117_1_OE_62_8_087102
crossref_primary_10_1515_nanoph_2022_0183
crossref_primary_10_1002_adfm_202302821
crossref_primary_10_1016_j_matdes_2024_112631
crossref_primary_10_1002_lpor_202402298
crossref_primary_10_29026_oea_2024_230126
crossref_primary_10_1002_adom_202402833
crossref_primary_10_1364_OE_506471
crossref_primary_10_1002_admi_202202103
crossref_primary_10_1364_OPTICA_474650
crossref_primary_10_1038_s42005_024_01598_6
crossref_primary_10_1038_s44287_024_00057_2
crossref_primary_10_1016_j_rinp_2023_106591
crossref_primary_10_1364_AO_539933
crossref_primary_10_1002_adfm_202212053
crossref_primary_10_1016_j_scib_2024_04_056
crossref_primary_10_1063_5_0102539
crossref_primary_10_1021_acsanm_2c01815
crossref_primary_10_1038_s41598_024_75834_y
crossref_primary_10_3390_nano13182561
crossref_primary_10_1364_OE_496492
crossref_primary_10_1016_j_optcom_2023_129703
crossref_primary_10_1002_adom_202300077
crossref_primary_10_1063_5_0207446
crossref_primary_10_3390_photonics12010061
crossref_primary_10_1088_2040_8986_adab82
crossref_primary_10_1021_acs_nanolett_3c04112
crossref_primary_10_3390_mi14010169
crossref_primary_10_29026_oes_2024_230035
crossref_primary_10_1016_j_optcom_2024_131062
crossref_primary_10_1117_1_APN_2_5_056002
crossref_primary_10_1021_acsphotonics_2c01171
crossref_primary_10_3390_nano12091500
crossref_primary_10_1038_s41377_022_01024_y
crossref_primary_10_1364_PRJ_513990
crossref_primary_10_1021_acsphotonics_2c02029
crossref_primary_10_3390_nano13202765
crossref_primary_10_1038_s41377_024_01738_1
crossref_primary_10_1016_j_optlastec_2025_112550
crossref_primary_10_1016_j_eng_2023_07_008
crossref_primary_10_1021_acs_nanolett_2c00572
crossref_primary_10_1186_s40580_023_00372_8
crossref_primary_10_1364_OL_539172
crossref_primary_10_3390_s22176590
crossref_primary_10_1088_1361_6463_ac59fb
crossref_primary_10_1002_lpor_202401542
crossref_primary_10_1021_acsphotonics_3c01078
crossref_primary_10_1109_LPT_2023_3326311
crossref_primary_10_1021_acsphotonics_3c01073
crossref_primary_10_1021_acs_nanolett_2c00486
crossref_primary_10_37188_lam_2023_009
crossref_primary_10_1002_lpor_202200712
crossref_primary_10_1088_1361_6463_ad800f
crossref_primary_10_1021_acs_nanolett_4c02063
crossref_primary_10_1002_adom_202203149
crossref_primary_10_1063_5_0216387
crossref_primary_10_1002_adma_202109255
crossref_primary_10_1364_OE_500688
crossref_primary_10_1364_OME_442605
crossref_primary_10_1364_OE_539454
crossref_primary_10_1038_s41377_024_01656_2
crossref_primary_10_1038_s41377_024_01731_8
crossref_primary_10_1038_s42005_024_01601_0
crossref_primary_10_1039_D2NR03827G
crossref_primary_10_1016_j_rinp_2022_105972
crossref_primary_10_1364_PRJ_449284
Cites_doi 10.1002/lpor.201600295
10.1063/1.5144918
10.1038/s41565-017-0052-4
10.1364/OL.29.001593
10.1038/s41578-020-0203-3
10.1088/1464-4258/4/5/358
10.1021/acs.nanolett.9b03333
10.1038/ncomms8069
10.1021/acs.nanolett.8b01737
10.1038/s41566-018-0224-2
10.1038/s41467-020-17646-y
10.1038/s41467-020-17015-9
10.1126/science.aam8100
10.1038/s41467-020-15972-9
10.1364/OL.36.000451
10.1126/science.aaf6644
10.1021/acs.nanolett.8b01570
10.1364/OPTICA.6.000805
10.1038/s41598-018-21169-4
10.1038/s41467-019-08305-y
10.1038/s41377-018-0078-x
10.1038/s41565-017-0034-6
10.1002/lpor.201500041
10.1038/s41566-019-0536-x
10.1126/science.1253213
10.1021/nn405387t
10.1021/acs.nanolett.6b05137
10.1038/s41467-020-16136-5
10.1021/acs.nanolett.0c01105
10.1038/nphoton.2016.121
10.1364/OL.16.001921
10.1126/science.1214686
10.1126/science.1108759
10.1126/science.aag2472
10.1364/JOSAA.16.001143
10.1002/lpor.202000448
10.1038/s41565-018-0347-0
10.1364/OL.27.001141
10.1126/science.1210713
10.1038/s41467-017-00166-7
10.1002/adom.201300215
10.1038/srep21545
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021. The Author(s).
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-25797-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 7
ExternalDocumentID oai_doaj_org_article_e0450ffe29c64709a01f4ff73e078ca5
PMC8455568
10_1038_s41467_021_25797_9
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c583t-fda6e1c215a44f00faa72450ba3d7fde596602e29b23c33dc5830f146ae966b13
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:26:37 EDT 2025
Thu Aug 21 17:56:18 EDT 2025
Fri Jul 11 15:15:16 EDT 2025
Wed Aug 13 07:17:04 EDT 2025
Tue Jul 01 04:17:35 EDT 2025
Thu Apr 24 22:51:37 EDT 2025
Fri Feb 21 02:39:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-fda6e1c215a44f00faa72450ba3d7fde596602e29b23c33dc5830f146ae966b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0751-9556
0000-0002-2248-4806
0000-0003-1048-411X
0000-0001-8905-2605
0000-0002-2697-8811
0000-0001-8976-1102
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-25797-9
PMID 34548490
PQID 2574932821
PQPubID 546298
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_e0450ffe29c64709a01f4ff73e078ca5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8455568
proquest_miscellaneous_2575370256
proquest_journals_2574932821
crossref_primary_10_1038_s41467_021_25797_9
crossref_citationtrail_10_1038_s41467_021_25797_9
springer_journals_10_1038_s41467_021_25797_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-21
PublicationDateYYYYMMDD 2021-09-21
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References LeeMSLImaging with blazed-binary diffractive elementsJ. Opt. A20024s119s12410.1088/1464-4258/4/5/358
KockWEMetallic delay lensesBell Syst. Tech.194834321339
ChenW-TA broadband achromatic metalens for focusing and imaging in the visibleNat. Nanotechnol.2018132202262018NatNa..13..220C1:CAS:528:DC%2BC1cXis1OitQ%3D%3D2929238210.1038/s41565-017-0034-6
YoonGKimKHuhDLeeHRhoJSingle-step manufacturing of hierarchical dielectric metalens in the visibleNat. Commun.2020112020NatCo..11.2268Y1:CAS:528:DC%2BB3cXptVertbs%3D32385266721102710.1038/s41467-020-16136-5
KhorasaninejadMCapassoFMetalenses: versatile multifunctional photonic componentsScience2017358eaam81002898279610.1126/science.aam81001:CAS:528:DC%2BC2sXhvVOit7jM
ArbabiAHorieYBallAJBagheriMFaraonASubwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmit arraysNat. Commun.201562015NatCo...6.7069A1:CAS:528:DC%2BC2MXhtF2ks77M2594711810.1038/ncomms8069
KuznetsovAIMiroshnichenkoAEBrongersmaMLKivsharYSLuk’yanchukBOptically resonant dielectric nanostructuresScience2016354aag24722785685110.1126/science.aag24721:CAS:528:DC%2BC28XhvFGrtbzO
BanerjiSImaging with flat optics: metalenses or diffractive lenses?Optica201968058102019Optic...6..805B1:CAS:528:DC%2BB3cXotlOmtQ%3D%3D10.1364/OPTICA.6.000805
IshiiSKildishevAVShalaevVMChenK-PDrachevVPMetal nanoslit lenses with polarization-selective designOpt. Lett.2011364514532011OptL...36..451I1:CAS:528:DC%2BC3MXktlagu7Y%3D2132641910.1364/OL.36.000451
ParkJ-SAll-glass, large metalens at visible wavelength using deep-ultraviolet projection lithographyNano Lett.202019867386822019NanoL..19.8673P10.1021/acs.nanolett.9b033331:CAS:528:DC%2BC1MXitFGrsL%2FE
KhorasaninejadMMetalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imagingScience2016352119011942016Sci...352.1190K1:CAS:528:DC%2BC28XoslOqsL0%3D2725725110.1126/science.aaf6644
WangSA broadband achromatic metalens in the visibleNat. Nanotechnol.2018132272322018NatNa..13..227W1:CAS:528:DC%2BC1cXhvVCgt7s%3D2937920410.1038/s41565-017-0052-4
MohammadNMeemMShenBWangPMenonRBroadband imaging with one planar diffractive lensSci. Rep.201882018NatSR...8.2799M29434257580950510.1038/s41598-018-21169-41:CAS:528:DC%2BC1cXhs1Cltb7K
WangPMohammadNMenonRChromatic-aberration-corrected diffractive lenses for ultra-broadband focusingSci. Rep.201662016NatSR...621545W1:CAS:528:DC%2BC28XisFSlurc%3D26868264475146810.1038/srep21545
BomzonZBienerGKleinerVHasmanESpace-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratingsOpt. Lett.200227114111432002OptL...27.1141B1802638710.1364/OL.27.001141
ChenWTZhuAYSislerJBharwaniZCapassoFA broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructuresNat. Commun.2019102019NatCo..10..355C1:CAS:528:DC%2BC1cXisFWitLrI30664662634108010.1038/s41467-019-08305-y
LinDFanPHasmanEBrongersmaMLDielectric gradient metasurface optical elementsScience20143452983022014Sci...345..298L1:CAS:528:DC%2BC2cXhtFCqs7nI2503548810.1126/science.1253213
SauvanCLalannePLeeMSLBroadband blazing with artificial dielectricsOpt. Lett.200429159315952004OptL...29.1593S1530982910.1364/OL.29.001593
LiangHUltrahigh numerical aperture metalens at visible wavelengthsNano Lett.201818446044662018NanoL..18.4460L1:CAS:528:DC%2BC1cXhtF2ru7jL2994012210.1021/acs.nanolett.8b01570
RogersETFFar-field unlabeled super-resolution imaging with superoscillatory illuminationAPL Photon.202050661072020APLP....5f6107R1:CAS:528:DC%2BB3cXhsVKmt7vI10.1063/1.5144918
PahlevaninezhadHNat. Photon.2018125405472018NaPho..12..540P1:CAS:528:DC%2BC1cXhsVWhtrbL10.1038/s41566-018-0224-2
FangNLeeHSunCZhangXSub-diffraction-limited optical imaging with a silver superlensScience20053085345372005Sci...308..534F1:CAS:528:DC%2BD2MXjtlOjtrs%3D1584584910.1126/science.1108759
SchlickriedeCNonlinear imaging with all-dielectric metasurfacesNano Lett.202020437043762020NanoL..20.4370S1:CAS:528:DC%2BB3cXoslOmu7Y%3D3237461610.1021/acs.nanolett.0c01105
ChenWTZhuAYCapassoFFlat optics with dispersion-engineered metasurfaceNat. Rev. Mater.202056046202020NatRM...5..604C10.1038/s41578-020-0203-3
GissiblTThieleSHerkommerAGiessenHTwo-photon direct laser writing of ultracompact multi-lens objectivesNat. Photon.2017105545602016NaPho..10..554G10.1038/nphoton.2016.1211:CAS:528:DC%2BC28XhtVyhsL3I
BalliFSultanMLamiSKHastingsJTA hybrid achromatic metalensNat. Commun.2020112020NatCo..11.3892B1:STN:280:DC%2BB38fhtlWrtA%3D%3D32753583740342510.1038/s41467-020-17646-y
LalannePChavelPMetalenses at visible wavelengths: past, present, perspectivesLaser Photon. Rev.20171116002952017LPRv...1100295L10.1002/lpor.2016002951:CAS:528:DC%2BC2sXotVehtrs%3D
YuYFHigh transmission dielectric metasurface with 2π phase control at visible wavelengthsLaser Photon. Rev.201594124182015LPRv....9..412Y1:CAS:528:DC%2BC2MXht1WrtrbN10.1002/lpor.201500041
RibotCBroadband and efficient diffractionAdv. Opt. Mat.2013148949310.1002/adom.201300215
Gigli, C. et al. Fundamental limitations of Huygens metasurfaces for optical beam shaping. Laser Photon. Rev.15, 2000448 (2021).
NiXEmaniNKKildishevAVBoltassevaAShalaevVMBroadband light bending with plasmonic nanoantennasScience20123354272012Sci...335..427N1:CAS:528:DC%2BC38XhtFajsLc%3D2219441410.1126/science.1214686
ArbabiETwo-photon microscopy with a double wavelength metasurface objective lensNano Lett.201818494349482018NanoL..18.4943A1:CAS:528:DC%2BC1cXhtlCntr3M3001611010.1021/acs.nanolett.8b01737
ShresthaSOvervigACLuMSteinAYuNBroadband achromatic dielectric metalensesLight Sci. Appl.201872018LSA.....7...85S30416721622016110.1038/s41377-018-0078-x1:CAS:528:DC%2BC1cXitFejsbbE
EngelbergJLevyUThe advantages of metalenses over diffractive lensesNat. Commun.2020112020NatCo..11.1991E1:CAS:528:DC%2BB3cXot1amtL4%3D32332770718185710.1038/s41467-020-15972-9
StorkWStreiblNHaidnerHKipferPArtificial distributed-index media fabricated by zero-order gratingsOpt. Lett.199116192119231991OptL...16.1921S1:STN:280:DC%2BD1MnltFKitA%3D%3D1978418110.1364/OL.16.001921
KhorasaninejadMAchromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersionNano Lett.201717181918242017NanoL..17.1819K1:CAS:528:DC%2BC2sXhs12qtrs%3D2812523410.1021/acs.nanolett.6b05137
ZhuHAmplified spontaneous emission and lasing from Lanthanide-doped uo-conversion nanocrystalsACS Nano2013711420114261:CAS:528:DC%2BC3sXhvVGkurnF2426685310.1021/nn405387t
KwonHArbabiEKamaliSMFaraji-DanaMFaraonASingle-shot quantitative phase gradient microscopy using a system of multifunctional metasurfacesNat. Photon.2020141092019NaPho..14..109K1:CAS:528:DC%2BC1MXitVCksLvN10.1038/s41566-019-0536-x
YuNLight propagation with phase discontinuities: generalized laws of reflection and refractionScience20113343333372011Sci...334..333Y1:CAS:528:DC%2BC3MXhtlahsr3M2188573310.1126/science.1210713
LinRJAchromatic metalens array for full-colour light-field imagingNat. Nanotechnol.2019142272312019NatNa..14..227L1:CAS:528:DC%2BC1MXmtVGitbc%3D3066475310.1038/s41565-018-0347-0
WangSBroadband achromatic optical metasurface devicesNat. Commun.201782017NatCo...8..187W28775300554315710.1038/s41467-017-00166-71:CAS:528:DC%2BC1cXosl2it78%3D
LalannePAstileanSChavelPCambrilELaunoisHDesign and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoffJ. Opt. Soc. Am. A199916114311561999OSAJ...16.1143L10.1364/JOSAA.16.001143
NdaoAOctave bandwidth photonic fishnet-achromatic-metalensNat. Commun.2020112020NatCo..11.3205N1:CAS:528:DC%2BB3cXht1yms7bI32587251731678410.1038/s41467-020-17015-9
E Arbabi (25797_CR38) 2018; 18
H Kwon (25797_CR41) 2020; 14
A Arbabi (25797_CR13) 2015; 6
N Mohammad (25797_CR35) 2018; 8
X Ni (25797_CR11) 2012; 335
T Gissibl (25797_CR3) 2017; 10
N Fang (25797_CR2) 2005; 308
J-S Park (25797_CR40) 2020; 19
H Pahlevaninezhad (25797_CR1) 2018; 12
WT Chen (25797_CR5) 2020; 5
YF Yu (25797_CR14) 2015; 9
F Balli (25797_CR20) 2020; 11
M Khorasaninejad (25797_CR22) 2017; 17
WE Kock (25797_CR7) 1948; 34
RJ Lin (25797_CR23) 2019; 14
Z Bomzon (25797_CR24) 2002; 27
S Ishii (25797_CR9) 2011; 36
S Wang (25797_CR18) 2018; 13
A Ndao (25797_CR32) 2020; 11
AI Kuznetsov (25797_CR25) 2016; 354
H Liang (25797_CR16) 2018; 18
J Engelberg (25797_CR34) 2020; 11
ETF Rogers (25797_CR43) 2020; 5
G Yoon (25797_CR29) 2020; 11
M Khorasaninejad (25797_CR4) 2017; 358
P Lalanne (25797_CR6) 2017; 11
N Yu (25797_CR10) 2011; 334
S Shrestha (25797_CR19) 2018; 7
W Stork (25797_CR8) 1991; 16
C Sauvan (25797_CR26) 2004; 29
M Khorasaninejad (25797_CR15) 2016; 352
W-T Chen (25797_CR17) 2018; 13
D Lin (25797_CR12) 2014; 345
H Zhu (25797_CR39) 2013; 7
WT Chen (25797_CR37) 2019; 10
P Wang (25797_CR36) 2016; 6
MSL Lee (25797_CR31) 2002; 4
S Banerji (25797_CR33) 2019; 6
C Schlickriede (25797_CR42) 2020; 20
C Ribot (25797_CR27) 2013; 1
S Wang (25797_CR21) 2017; 8
25797_CR28
P Lalanne (25797_CR30) 1999; 16
References_xml – reference: ChenWTZhuAYCapassoFFlat optics with dispersion-engineered metasurfaceNat. Rev. Mater.202056046202020NatRM...5..604C10.1038/s41578-020-0203-3
– reference: GissiblTThieleSHerkommerAGiessenHTwo-photon direct laser writing of ultracompact multi-lens objectivesNat. Photon.2017105545602016NaPho..10..554G10.1038/nphoton.2016.1211:CAS:528:DC%2BC28XhtVyhsL3I
– reference: RibotCBroadband and efficient diffractionAdv. Opt. Mat.2013148949310.1002/adom.201300215
– reference: BalliFSultanMLamiSKHastingsJTA hybrid achromatic metalensNat. Commun.2020112020NatCo..11.3892B1:STN:280:DC%2BB38fhtlWrtA%3D%3D32753583740342510.1038/s41467-020-17646-y
– reference: KockWEMetallic delay lensesBell Syst. Tech.194834321339
– reference: RogersETFFar-field unlabeled super-resolution imaging with superoscillatory illuminationAPL Photon.202050661072020APLP....5f6107R1:CAS:528:DC%2BB3cXhsVKmt7vI10.1063/1.5144918
– reference: YoonGKimKHuhDLeeHRhoJSingle-step manufacturing of hierarchical dielectric metalens in the visibleNat. Commun.2020112020NatCo..11.2268Y1:CAS:528:DC%2BB3cXptVertbs%3D32385266721102710.1038/s41467-020-16136-5
– reference: BomzonZBienerGKleinerVHasmanESpace-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratingsOpt. Lett.200227114111432002OptL...27.1141B1802638710.1364/OL.27.001141
– reference: LeeMSLImaging with blazed-binary diffractive elementsJ. Opt. A20024s119s12410.1088/1464-4258/4/5/358
– reference: ZhuHAmplified spontaneous emission and lasing from Lanthanide-doped uo-conversion nanocrystalsACS Nano2013711420114261:CAS:528:DC%2BC3sXhvVGkurnF2426685310.1021/nn405387t
– reference: LalannePAstileanSChavelPCambrilELaunoisHDesign and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoffJ. Opt. Soc. Am. A199916114311561999OSAJ...16.1143L10.1364/JOSAA.16.001143
– reference: ArbabiETwo-photon microscopy with a double wavelength metasurface objective lensNano Lett.201818494349482018NanoL..18.4943A1:CAS:528:DC%2BC1cXhtlCntr3M3001611010.1021/acs.nanolett.8b01737
– reference: ArbabiAHorieYBallAJBagheriMFaraonASubwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmit arraysNat. Commun.201562015NatCo...6.7069A1:CAS:528:DC%2BC2MXhtF2ks77M2594711810.1038/ncomms8069
– reference: LinRJAchromatic metalens array for full-colour light-field imagingNat. Nanotechnol.2019142272312019NatNa..14..227L1:CAS:528:DC%2BC1MXmtVGitbc%3D3066475310.1038/s41565-018-0347-0
– reference: PahlevaninezhadHNat. Photon.2018125405472018NaPho..12..540P1:CAS:528:DC%2BC1cXhsVWhtrbL10.1038/s41566-018-0224-2
– reference: YuYFHigh transmission dielectric metasurface with 2π phase control at visible wavelengthsLaser Photon. Rev.201594124182015LPRv....9..412Y1:CAS:528:DC%2BC2MXht1WrtrbN10.1002/lpor.201500041
– reference: BanerjiSImaging with flat optics: metalenses or diffractive lenses?Optica201968058102019Optic...6..805B1:CAS:528:DC%2BB3cXotlOmtQ%3D%3D10.1364/OPTICA.6.000805
– reference: WangSBroadband achromatic optical metasurface devicesNat. Commun.201782017NatCo...8..187W28775300554315710.1038/s41467-017-00166-71:CAS:528:DC%2BC1cXosl2it78%3D
– reference: FangNLeeHSunCZhangXSub-diffraction-limited optical imaging with a silver superlensScience20053085345372005Sci...308..534F1:CAS:528:DC%2BD2MXjtlOjtrs%3D1584584910.1126/science.1108759
– reference: KhorasaninejadMCapassoFMetalenses: versatile multifunctional photonic componentsScience2017358eaam81002898279610.1126/science.aam81001:CAS:528:DC%2BC2sXhvVOit7jM
– reference: NiXEmaniNKKildishevAVBoltassevaAShalaevVMBroadband light bending with plasmonic nanoantennasScience20123354272012Sci...335..427N1:CAS:528:DC%2BC38XhtFajsLc%3D2219441410.1126/science.1214686
– reference: WangPMohammadNMenonRChromatic-aberration-corrected diffractive lenses for ultra-broadband focusingSci. Rep.201662016NatSR...621545W1:CAS:528:DC%2BC28XisFSlurc%3D26868264475146810.1038/srep21545
– reference: SauvanCLalannePLeeMSLBroadband blazing with artificial dielectricsOpt. Lett.200429159315952004OptL...29.1593S1530982910.1364/OL.29.001593
– reference: ShresthaSOvervigACLuMSteinAYuNBroadband achromatic dielectric metalensesLight Sci. Appl.201872018LSA.....7...85S30416721622016110.1038/s41377-018-0078-x1:CAS:528:DC%2BC1cXitFejsbbE
– reference: LinDFanPHasmanEBrongersmaMLDielectric gradient metasurface optical elementsScience20143452983022014Sci...345..298L1:CAS:528:DC%2BC2cXhtFCqs7nI2503548810.1126/science.1253213
– reference: SchlickriedeCNonlinear imaging with all-dielectric metasurfacesNano Lett.202020437043762020NanoL..20.4370S1:CAS:528:DC%2BB3cXoslOmu7Y%3D3237461610.1021/acs.nanolett.0c01105
– reference: WangSA broadband achromatic metalens in the visibleNat. Nanotechnol.2018132272322018NatNa..13..227W1:CAS:528:DC%2BC1cXhvVCgt7s%3D2937920410.1038/s41565-017-0052-4
– reference: KwonHArbabiEKamaliSMFaraji-DanaMFaraonASingle-shot quantitative phase gradient microscopy using a system of multifunctional metasurfacesNat. Photon.2020141092019NaPho..14..109K1:CAS:528:DC%2BC1MXitVCksLvN10.1038/s41566-019-0536-x
– reference: KhorasaninejadMAchromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersionNano Lett.201717181918242017NanoL..17.1819K1:CAS:528:DC%2BC2sXhs12qtrs%3D2812523410.1021/acs.nanolett.6b05137
– reference: ChenWTZhuAYSislerJBharwaniZCapassoFA broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructuresNat. Commun.2019102019NatCo..10..355C1:CAS:528:DC%2BC1cXisFWitLrI30664662634108010.1038/s41467-019-08305-y
– reference: LalannePChavelPMetalenses at visible wavelengths: past, present, perspectivesLaser Photon. Rev.20171116002952017LPRv...1100295L10.1002/lpor.2016002951:CAS:528:DC%2BC2sXotVehtrs%3D
– reference: YuNLight propagation with phase discontinuities: generalized laws of reflection and refractionScience20113343333372011Sci...334..333Y1:CAS:528:DC%2BC3MXhtlahsr3M2188573310.1126/science.1210713
– reference: NdaoAOctave bandwidth photonic fishnet-achromatic-metalensNat. Commun.2020112020NatCo..11.3205N1:CAS:528:DC%2BB3cXht1yms7bI32587251731678410.1038/s41467-020-17015-9
– reference: IshiiSKildishevAVShalaevVMChenK-PDrachevVPMetal nanoslit lenses with polarization-selective designOpt. Lett.2011364514532011OptL...36..451I1:CAS:528:DC%2BC3MXktlagu7Y%3D2132641910.1364/OL.36.000451
– reference: StorkWStreiblNHaidnerHKipferPArtificial distributed-index media fabricated by zero-order gratingsOpt. Lett.199116192119231991OptL...16.1921S1:STN:280:DC%2BD1MnltFKitA%3D%3D1978418110.1364/OL.16.001921
– reference: Gigli, C. et al. Fundamental limitations of Huygens metasurfaces for optical beam shaping. Laser Photon. Rev.15, 2000448 (2021).
– reference: MohammadNMeemMShenBWangPMenonRBroadband imaging with one planar diffractive lensSci. Rep.201882018NatSR...8.2799M29434257580950510.1038/s41598-018-21169-41:CAS:528:DC%2BC1cXhs1Cltb7K
– reference: ChenW-TA broadband achromatic metalens for focusing and imaging in the visibleNat. Nanotechnol.2018132202262018NatNa..13..220C1:CAS:528:DC%2BC1cXis1OitQ%3D%3D2929238210.1038/s41565-017-0034-6
– reference: LiangHUltrahigh numerical aperture metalens at visible wavelengthsNano Lett.201818446044662018NanoL..18.4460L1:CAS:528:DC%2BC1cXhtF2ru7jL2994012210.1021/acs.nanolett.8b01570
– reference: EngelbergJLevyUThe advantages of metalenses over diffractive lensesNat. Commun.2020112020NatCo..11.1991E1:CAS:528:DC%2BB3cXot1amtL4%3D32332770718185710.1038/s41467-020-15972-9
– reference: KhorasaninejadMMetalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imagingScience2016352119011942016Sci...352.1190K1:CAS:528:DC%2BC28XoslOqsL0%3D2725725110.1126/science.aaf6644
– reference: KuznetsovAIMiroshnichenkoAEBrongersmaMLKivsharYSLuk’yanchukBOptically resonant dielectric nanostructuresScience2016354aag24722785685110.1126/science.aag24721:CAS:528:DC%2BC28XhvFGrtbzO
– reference: ParkJ-SAll-glass, large metalens at visible wavelength using deep-ultraviolet projection lithographyNano Lett.202019867386822019NanoL..19.8673P10.1021/acs.nanolett.9b033331:CAS:528:DC%2BC1MXitFGrsL%2FE
– volume: 11
  start-page: 1600295
  year: 2017
  ident: 25797_CR6
  publication-title: Laser Photon. Rev.
  doi: 10.1002/lpor.201600295
– volume: 5
  start-page: 066107
  year: 2020
  ident: 25797_CR43
  publication-title: APL Photon.
  doi: 10.1063/1.5144918
– volume: 13
  start-page: 227
  year: 2018
  ident: 25797_CR18
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-017-0052-4
– volume: 29
  start-page: 1593
  year: 2004
  ident: 25797_CR26
  publication-title: Opt. Lett.
  doi: 10.1364/OL.29.001593
– volume: 5
  start-page: 604
  year: 2020
  ident: 25797_CR5
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0203-3
– volume: 4
  start-page: s119
  year: 2002
  ident: 25797_CR31
  publication-title: J. Opt. A
  doi: 10.1088/1464-4258/4/5/358
– volume: 19
  start-page: 8673
  year: 2020
  ident: 25797_CR40
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b03333
– volume: 6
  year: 2015
  ident: 25797_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8069
– volume: 18
  start-page: 4943
  year: 2018
  ident: 25797_CR38
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01737
– volume: 12
  start-page: 540
  year: 2018
  ident: 25797_CR1
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-018-0224-2
– volume: 11
  year: 2020
  ident: 25797_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17646-y
– volume: 11
  year: 2020
  ident: 25797_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17015-9
– volume: 358
  start-page: eaam8100
  year: 2017
  ident: 25797_CR4
  publication-title: Science
  doi: 10.1126/science.aam8100
– volume: 11
  year: 2020
  ident: 25797_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15972-9
– volume: 36
  start-page: 451
  year: 2011
  ident: 25797_CR9
  publication-title: Opt. Lett.
  doi: 10.1364/OL.36.000451
– volume: 352
  start-page: 1190
  year: 2016
  ident: 25797_CR15
  publication-title: Science
  doi: 10.1126/science.aaf6644
– volume: 18
  start-page: 4460
  year: 2018
  ident: 25797_CR16
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01570
– volume: 6
  start-page: 805
  year: 2019
  ident: 25797_CR33
  publication-title: Optica
  doi: 10.1364/OPTICA.6.000805
– volume: 8
  year: 2018
  ident: 25797_CR35
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21169-4
– volume: 10
  year: 2019
  ident: 25797_CR37
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08305-y
– volume: 7
  year: 2018
  ident: 25797_CR19
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-018-0078-x
– volume: 13
  start-page: 220
  year: 2018
  ident: 25797_CR17
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-017-0034-6
– volume: 9
  start-page: 412
  year: 2015
  ident: 25797_CR14
  publication-title: Laser Photon. Rev.
  doi: 10.1002/lpor.201500041
– volume: 14
  start-page: 109
  year: 2020
  ident: 25797_CR41
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-019-0536-x
– volume: 345
  start-page: 298
  year: 2014
  ident: 25797_CR12
  publication-title: Science
  doi: 10.1126/science.1253213
– volume: 7
  start-page: 11420
  year: 2013
  ident: 25797_CR39
  publication-title: ACS Nano
  doi: 10.1021/nn405387t
– volume: 34
  start-page: 321
  year: 1948
  ident: 25797_CR7
  publication-title: Bell Syst. Tech.
– volume: 17
  start-page: 1819
  year: 2017
  ident: 25797_CR22
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05137
– volume: 11
  year: 2020
  ident: 25797_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16136-5
– volume: 20
  start-page: 4370
  year: 2020
  ident: 25797_CR42
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c01105
– volume: 10
  start-page: 554
  year: 2017
  ident: 25797_CR3
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2016.121
– volume: 16
  start-page: 1921
  year: 1991
  ident: 25797_CR8
  publication-title: Opt. Lett.
  doi: 10.1364/OL.16.001921
– volume: 335
  start-page: 427
  year: 2012
  ident: 25797_CR11
  publication-title: Science
  doi: 10.1126/science.1214686
– volume: 308
  start-page: 534
  year: 2005
  ident: 25797_CR2
  publication-title: Science
  doi: 10.1126/science.1108759
– volume: 354
  start-page: aag2472
  year: 2016
  ident: 25797_CR25
  publication-title: Science
  doi: 10.1126/science.aag2472
– volume: 16
  start-page: 1143
  year: 1999
  ident: 25797_CR30
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.16.001143
– ident: 25797_CR28
  doi: 10.1002/lpor.202000448
– volume: 14
  start-page: 227
  year: 2019
  ident: 25797_CR23
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0347-0
– volume: 27
  start-page: 1141
  year: 2002
  ident: 25797_CR24
  publication-title: Opt. Lett.
  doi: 10.1364/OL.27.001141
– volume: 334
  start-page: 333
  year: 2011
  ident: 25797_CR10
  publication-title: Science
  doi: 10.1126/science.1210713
– volume: 8
  year: 2017
  ident: 25797_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00166-7
– volume: 1
  start-page: 489
  year: 2013
  ident: 25797_CR27
  publication-title: Adv. Opt. Mat.
  doi: 10.1002/adom.201300215
– volume: 6
  year: 2016
  ident: 25797_CR36
  publication-title: Sci. Rep.
  doi: 10.1038/srep21545
SSID ssj0000391844
Score 2.6887012
Snippet Over the past years, broadband achromatic metalenses have been intensively studied due to their great potential for applications in consumer and industry...
Though broadband achromatic metalens are attractive for biological applications, existing metalenses show limited performance in the biological imaging window....
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5560
SubjectTerms 639/624/399/1015
639/925/357/1015
Achromatism
Broadband
Efficiency
Fabrication
Group delay
High aspect ratio
Humanities and Social Sciences
Infrared imaging
multidisciplinary
Near infrared radiation
Numerical aperture
Science
Science (multidisciplinary)
Titanium
Titanium dioxide
Wavelengths
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFD5IQXAjPnG0lQjuNHQmybyWVSxV0IVa6C7kcUILdqbc3lL8956TmXvtFNSN20lCki8nOV8myXcAXlelw6QCSqcQpQkpSk9eW-pOmWRcnSLyr4HPX5qjY_PppD65EeqL74RN8sATcPtInKNMCVUfGtOWvSurZFJqNZJzCy6rl5LPu7GZymuw7mnrYuZXMqXu9i9NXhP4RgJZad_KfuGJsmD_gmXeviN566A0-5_DB3B_Jo7iYGrwQ7iDwyO4O4WS_PkYvvGFDYlZEIJfUwq_Gl30bojChdPVmJVZxTkS16aNqyCqKgYycvnxq5h0mHiwxNl5DlokrmmnPl4_gePDD9_fH8k5YIIMdafXMkXXYBXIiztjUlkm51pF8HmnY0uo1yzFqQhKr3TQOnKpMhEuDinFV_op7AzjgM9AdF51TnmiA-S_dB99Y7BpUhsaKldFV0C1Ac-GWU2cg1r8sPlUW3d2AtwS4DYDbvsC3mzLXExaGn_N_Y7HZJuTdbDzB7IOO1uH_Zd1FLC7GVE7T85LrsAQbe1UVcCrbTJNKz4rcQOOVzlPrVsmhAW0C0tYNGiZMpydZoHuztQs7FbA243N_K78zx1-_j86_ALuKbZxPjerdmFnvbrCPaJNa_8yz5BfsFwUFA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ilCCzISN7Dq2E7inBAgloIEB6BSb5aftBJNyu5WVf89M453q1Si19hO4vHY89kz_oaQ1zW3MQkfmRUxMuVTYA6sNpNaqKRsk0LEo4Fv39uDQ_X1qDkqB26rEla5WRPzQh1Gj2fk-6BaCrCGFvW7s78Ms0ahd7Wk0LhN7tRgaTCkSy8-b89YkP1cK1XuynCp91cqrwwYlwAv7DvWz-xRpu2fYc3rkZLX3KXZCi0ekPsFPtL303g_JLfi8IjcnRJKXj4mPzFsg8VMC4F3KqlbjjY4OwRq_fFyzPys9DQC4obtKwXASgdQdfblB53YmHDI6MlpTl1EL2C_Pl48IYeLT78-HrCSNoH5Rss1S8G2sfZgy61SifNkbSdUw52VoQPZN0jIKaLonZBeyoCteAK52AglrpZPyc4wDvEZodoJbYUDUABWTPbBtSq2bep8C-3qYCtSb4RnfOEUx9QWf0z2bUttJoEbELjJAjd9Rd5s25xNjBo31v6AY7KtiWzY-cG4_G3K5DIRcClPCbrkW9Xx3vI6qZQ6GQEAedtUZG8zoqZM0ZW5UqiKvNoWw-RCj4kd4nie6zSyQ1hYkW6mCbMfmpcMJ8eZplurBundKvJ2ozNXH_9_h5_f_K-75J5A7UW_WL1HdtbL8_gCYNHavcy6_w9qsgt2
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEB9qi-BFrB-4WiWCNw1mk-xu9vhaLPWBHqyF3kI-bcHuyusrpf99J9ndJ1tU6HWTIclksvNLZvILwPuSmRC5C9TwEKh00VOLXpsKxWWUpoo-pKOBr9_qoxO5PK1Ot4BPd2Fy0n6mtMy_6Sk77NOlzEs6JRSgkbUNbR_ATqJqR9veWSyWx8vNyUriPFdSjjdkmFB_EZ55oUzWP0OYd_Mj7wRJs-85fAKPR9BIFkM3d2ErdE_h4fCM5M0zOE7JGjRkMoh0k5LYVW-8NZ0nxp2t-szKSi4C4mzctBKEqaRDA6dfvpOBgylNFDm_yA8WkWvcpffXz-Hk8POPgyM6PpZAXaXEmkZv6lA69OBGyshYNKbhsmLWCN-gxqtEw8kDby0XTgifpFhEvZiAJbYUL2C767vwEoiyXBluEQqg7xKtt7UMdR0bV6Nc6U0B5aQ87UYm8fSgxS-dI9pC6UHhGhWus8J1W8CHjczvgUfjv7X305xsaiYO7PyhX_3Uo03ogGiUxYhDcrVsWGtYGWWMjQgIe5ypCtibZlSPC_MyNSARsipeFvBuU4xLKsVJTBf6q1ynEk0CgwU0M0uYdWhe0p2fZXJuJatE6lbAx8lm_jT-7wG_ul_11_CIJ2tO0bFyD7bXq6vwBsHR2r4dV8Mtd9YKsw
  priority: 102
  providerName: Springer Nature
Title High-efficiency broadband achromatic metalens for near-IR biological imaging window
URI https://link.springer.com/article/10.1038/s41467-021-25797-9
https://www.proquest.com/docview/2574932821
https://www.proquest.com/docview/2575370256
https://pubmed.ncbi.nlm.nih.gov/PMC8455568
https://doaj.org/article/e0450ffe29c64709a01f4ff73e078ca5
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IVAviKdIKSsjcQNDYjtxckBou-pSVmqFWlbaW2Q7dlupTWi6Vem_Z-xkF7YqHLgkUmzL8XjG8_n1DcDbJFbWMWOpYtZSYVxFNXptynMmnFCpq6xfGjg4zPanYjJLZ2uwCHfUC_Dq3qmdjyc1bc8__Ly8_YwG_6m7Mp5_vBLB3P1hA1TAQtJiHTbRM0kf0eCgh_thZOYFTmhEf3fm_qJb8JALhPHCj9J_uKrA6L8CQ-8eoryzkxoc1PgxPOqRJRl2qvAE1mz9FB50sSZvn8GxP9FBbWCM8NctiW4bVWlVV0SZ07YJ1K3kwqIccGZLEMuSGq2Afj0iHVGT701ydhGiGpEbnMo3N89hOt77PtqnfUQFatKcz6mrVGYTg25eCeHi2CklmUhjrXglsVtSz9XJLCs044bzypeKHYpIWUzRCX8BG3VT25dAcs1yxTTiBXRwvKh0JmyWOWkyLJdUKoJkIbzS9HTjPurFeRm2vXledrIvUfZlkH1ZRPBuWeZHR7bxz9y7vk-WOT1RdvjQtCdlb3elRcgaO4dNMpmQcaHixAnnJLeIjYxKI9hZ9Gi5UD5fgUBcm7MkgjfLZLQ7v5miattchzwplx4xRiBXNGHlh1ZT6rPTwOCdi9Qzv0XwfqEzvyv_e4O3_7uiV7DFvI773bRkBzbm7bV9jWBqrgewLmcSn_n4ywA2h8PJ8QTfu3uH347w6ygbDcIyxSBY0i8qpiLT
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFOkFDASnMBqYjuvA0K8ll36OEAr9eY6ftCVaNLubrXqn-I3MnaSrVKJ3nqN7cQej2e-eOxvAN4ksbKOaUsVs5YK7Qyt0GtTXjDhhEqdsX5rYHcvGx-IH4fp4Rr87e_C-GOVvU0Mhto02u-Rb6FqCcQaBUs-np5RnzXKR1f7FBqtWmzbiyX-ss0_TL7i_L5lbPRt_8uYdlkFqE4LvqDOqMwmGl2dEsLFsVMqZyKNK8VNjl1LPV8ls6ysGNecG98qdmhQlMWSKuH43ltwW3D05P5m-uj7ak_Hs60XQnR3c2JebM1FsET-HAQOoMxpOfB_IU3AANtePZl5JTwbvN7oAdzv4Cr51OrXQ1iz9SO40yawvHgMv_wxEWoDDYW_w0mqWaNMpWpDlD6eNYEPlpxYRPj4u0wQIJMaZUgnP0nL_uRVhExPQqokspzWplk-gYMbEehTWK-b2j4DUlSsUKxCEIJek5emyoTNMpfrDNslRkWQ9MKTuuMw96k0_sgQS-eFbAUuUeAyCFyWEbxbtTltGTyurf3Zz8mqpmffDg-a2W_ZLWZpEQfHzuGQdCbyuFRx4oRzObcIuLRKI9jsZ1R2JmEuLxU4gterYlzMPkKjatuchzopzz0MjSAfaMKgQ8OSenocaMELkXo6uQje9zpz-fH_D3jj-r6-grvj_d0duTPZ234O95jXZB-TSzZhfTE7ty8Qki2ql2EdEDi66YX3D12dSFo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVCAuiKdYKGAkOIGVXdv7OiBEaaOGQlQVKvVmvH7QSHS3JKmi_jV-HWPvbqpUordeY3tjj-dlz_gbgDdJrKxj2lLFrKVCO0MrtNqUF0w4oVJnrL8a-DbJ9o7El-P0eAP-9m9hfFplrxODojaN9nfkQ2Qtgb5GwZKh69IiDnZGH8_-UF9Bykda-3IaLYvs24slHt_mH8Y7uNdvGRvt_vi8R7sKA1SnBV9QZ1RmE41mTwnh4tgplTORxpXiJsdpph67kllWVoxrzo0fFTtULspiS5Vw_O4t2Mz9qWgAm9u7k4PD1Q2Px14vhOhe6sS8GM5F0Es-KwKXU-a0XLOGoWjAmqd7NU_zSrA22MDRfbjXOa_kU8ttD2DD1g_hdlvO8uIRfPdJI9QGUAr_opNUs0aZStWGKH0yawI6LDm16O_j4Zmgu0xqpCIdH5IWC8ozDJmehsJJZDmtTbN8DEc3QtInMKib2j4FUlSsUKxClwRtKC9NlQmbZS7XGY5LjIog6YkndYdo7gtr_JYhss4L2RJcIsFlILgsI3i3GnPW4nlc23vb78mqp8fiDj80s1-yE21p0SuOncMl6UzkcanixAnncm7R_dIqjWCr31HZKYi5vGTnCF6vmlG0fbxG1bY5D31SnnunNIJ8jRPWJrTeUk9PAkh4IVIPLhfB-55nLv_8_wt-dv1cX8EdFDr5dTzZfw53mWdkH6BLtmCwmJ3bF-ifLaqXnSAQ-HnTsvcPLvNN7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-efficiency+broadband+achromatic+metalens+for+near-IR+biological+imaging+window&rft.jtitle=Nature+communications&rft.au=Wang%2C+Yujie&rft.au=Chen%2C+Qinmiao&rft.au=Yang%2C+Wenhong&rft.au=Ji%2C+Ziheng&rft.date=2021-09-21&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=12&rft_id=info:doi/10.1038%2Fs41467-021-25797-9&rft_id=info%3Apmid%2F34548490&rft.externalDocID=PMC8455568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon