High-efficiency broadband achromatic metalens for near-IR biological imaging window
Over the past years, broadband achromatic metalenses have been intensively studied due to their great potential for applications in consumer and industry products. Even though significant progress has been made, the efficiency of technologically relevant silicon metalenses is limited by the intrinsi...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 5560 - 7 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.09.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Over the past years, broadband achromatic metalenses have been intensively studied due to their great potential for applications in consumer and industry products. Even though significant progress has been made, the efficiency of technologically relevant silicon metalenses is limited by the intrinsic material loss above the bandgap. In turn, the recently proposed achromatic metalens utilizing transparent, high-index materials such as titanium dioxide has been restricted by the small thickness and showed relatively low focusing efficiency at longer wavelengths. Consequently, metalens-based optical imaging in the biological transparency window has so far been severely limited. Herein, we experimentally demonstrate a polarization-insensitive, broadband titanium dioxide achromatic metalens for applications in the near-infrared biological imaging. A large-scale fabrication technology has been developed to produce titanium dioxide nanopillars with record-high aspect ratios featuring pillar heights of 1.5 µm and ~90° vertical sidewalls. The demonstrated metalens exhibits dramatically increased group delay range, and the spectral range of achromatism is substantially extended to the wavelength range of 650–1000 nm with an average efficiency of 77.1%–88.5% and a numerical aperture of 0.24–0.1. This research paves a solid step towards practical applications of flat photonics.
Though broadband achromatic metalens are attractive for biological applications, existing metalenses show limited performance in the biological imaging window. Here, the authors report high-efficiency broadband achromatic metalens featuring record-high aspect ratio titanium dioxide metasurfaces. |
---|---|
AbstractList | Over the past years, broadband achromatic metalenses have been intensively studied due to their great potential for applications in consumer and industry products. Even though significant progress has been made, the efficiency of technologically relevant silicon metalenses is limited by the intrinsic material loss above the bandgap. In turn, the recently proposed achromatic metalens utilizing transparent, high-index materials such as titanium dioxide has been restricted by the small thickness and showed relatively low focusing efficiency at longer wavelengths. Consequently, metalens-based optical imaging in the biological transparency window has so far been severely limited. Herein, we experimentally demonstrate a polarization-insensitive, broadband titanium dioxide achromatic metalens for applications in the near-infrared biological imaging. A large-scale fabrication technology has been developed to produce titanium dioxide nanopillars with record-high aspect ratios featuring pillar heights of 1.5 µm and ~90° vertical sidewalls. The demonstrated metalens exhibits dramatically increased group delay range, and the spectral range of achromatism is substantially extended to the wavelength range of 650–1000 nm with an average efficiency of 77.1%–88.5% and a numerical aperture of 0.24–0.1. This research paves a solid step towards practical applications of flat photonics. Over the past years, broadband achromatic metalenses have been intensively studied due to their great potential for applications in consumer and industry products. Even though significant progress has been made, the efficiency of technologically relevant silicon metalenses is limited by the intrinsic material loss above the bandgap. In turn, the recently proposed achromatic metalens utilizing transparent, high-index materials such as titanium dioxide has been restricted by the small thickness and showed relatively low focusing efficiency at longer wavelengths. Consequently, metalens-based optical imaging in the biological transparency window has so far been severely limited. Herein, we experimentally demonstrate a polarization-insensitive, broadband titanium dioxide achromatic metalens for applications in the near-infrared biological imaging. A large-scale fabrication technology has been developed to produce titanium dioxide nanopillars with record-high aspect ratios featuring pillar heights of 1.5 µm and ~90° vertical sidewalls. The demonstrated metalens exhibits dramatically increased group delay range, and the spectral range of achromatism is substantially extended to the wavelength range of 650–1000 nm with an average efficiency of 77.1%–88.5% and a numerical aperture of 0.24–0.1. This research paves a solid step towards practical applications of flat photonics. Though broadband achromatic metalens are attractive for biological applications, existing metalenses show limited performance in the biological imaging window. Here, the authors report high-efficiency broadband achromatic metalens featuring record-high aspect ratio titanium dioxide metasurfaces. Though broadband achromatic metalens are attractive for biological applications, existing metalenses show limited performance in the biological imaging window. Here, the authors report high-efficiency broadband achromatic metalens featuring record-high aspect ratio titanium dioxide metasurfaces. Over the past years, broadband achromatic metalenses have been intensively studied due to their great potential for applications in consumer and industry products. Even though significant progress has been made, the efficiency of technologically relevant silicon metalenses is limited by the intrinsic material loss above the bandgap. In turn, the recently proposed achromatic metalens utilizing transparent, high-index materials such as titanium dioxide has been restricted by the small thickness and showed relatively low focusing efficiency at longer wavelengths. Consequently, metalens-based optical imaging in the biological transparency window has so far been severely limited. Herein, we experimentally demonstrate a polarization-insensitive, broadband titanium dioxide achromatic metalens for applications in the near-infrared biological imaging. A large-scale fabrication technology has been developed to produce titanium dioxide nanopillars with record-high aspect ratios featuring pillar heights of 1.5 µm and ~90° vertical sidewalls. The demonstrated metalens exhibits dramatically increased group delay range, and the spectral range of achromatism is substantially extended to the wavelength range of 650–1000 nm with an average efficiency of 77.1%–88.5% and a numerical aperture of 0.24–0.1. This research paves a solid step towards practical applications of flat photonics.Though broadband achromatic metalens are attractive for biological applications, existing metalenses show limited performance in the biological imaging window. Here, the authors report high-efficiency broadband achromatic metalens featuring record-high aspect ratio titanium dioxide metasurfaces. Over the past years, broadband achromatic metalenses have been intensively studied due to their great potential for applications in consumer and industry products. Even though significant progress has been made, the efficiency of technologically relevant silicon metalenses is limited by the intrinsic material loss above the bandgap. In turn, the recently proposed achromatic metalens utilizing transparent, high-index materials such as titanium dioxide has been restricted by the small thickness and showed relatively low focusing efficiency at longer wavelengths. Consequently, metalens-based optical imaging in the biological transparency window has so far been severely limited. Herein, we experimentally demonstrate a polarization-insensitive, broadband titanium dioxide achromatic metalens for applications in the near-infrared biological imaging. A large-scale fabrication technology has been developed to produce titanium dioxide nanopillars with record-high aspect ratios featuring pillar heights of 1.5 µm and ~90° vertical sidewalls. The demonstrated metalens exhibits dramatically increased group delay range, and the spectral range of achromatism is substantially extended to the wavelength range of 650-1000 nm with an average efficiency of 77.1%-88.5% and a numerical aperture of 0.24-0.1. This research paves a solid step towards practical applications of flat photonics.Over the past years, broadband achromatic metalenses have been intensively studied due to their great potential for applications in consumer and industry products. Even though significant progress has been made, the efficiency of technologically relevant silicon metalenses is limited by the intrinsic material loss above the bandgap. In turn, the recently proposed achromatic metalens utilizing transparent, high-index materials such as titanium dioxide has been restricted by the small thickness and showed relatively low focusing efficiency at longer wavelengths. Consequently, metalens-based optical imaging in the biological transparency window has so far been severely limited. Herein, we experimentally demonstrate a polarization-insensitive, broadband titanium dioxide achromatic metalens for applications in the near-infrared biological imaging. A large-scale fabrication technology has been developed to produce titanium dioxide nanopillars with record-high aspect ratios featuring pillar heights of 1.5 µm and ~90° vertical sidewalls. The demonstrated metalens exhibits dramatically increased group delay range, and the spectral range of achromatism is substantially extended to the wavelength range of 650-1000 nm with an average efficiency of 77.1%-88.5% and a numerical aperture of 0.24-0.1. This research paves a solid step towards practical applications of flat photonics. |
ArticleNumber | 5560 |
Author | Chen, Qinmiao Boltasseva, Alexandra Wang, Yujie Yang, Wenhong Han, Jiecai Jin, Limin Song, Qinghai Ma, Xing Ji, Ziheng Shalaev, Vladimir M. Xiao, Shumin |
Author_xml | – sequence: 1 givenname: Yujie surname: Wang fullname: Wang, Yujie organization: State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen) – sequence: 2 givenname: Qinmiao surname: Chen fullname: Chen, Qinmiao organization: State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen) – sequence: 3 givenname: Wenhong surname: Yang fullname: Yang, Wenhong organization: State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen) – sequence: 4 givenname: Ziheng surname: Ji fullname: Ji, Ziheng organization: State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen) – sequence: 5 givenname: Limin orcidid: 0000-0002-2697-8811 surname: Jin fullname: Jin, Limin organization: State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen) – sequence: 6 givenname: Xing orcidid: 0000-0002-2248-4806 surname: Ma fullname: Ma, Xing organization: State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen) – sequence: 7 givenname: Qinghai orcidid: 0000-0003-1048-411X surname: Song fullname: Song, Qinghai organization: State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen) – sequence: 8 givenname: Alexandra orcidid: 0000-0001-8905-2605 surname: Boltasseva fullname: Boltasseva, Alexandra organization: School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University – sequence: 9 givenname: Jiecai surname: Han fullname: Han, Jiecai organization: National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology – sequence: 10 givenname: Vladimir M. orcidid: 0000-0001-8976-1102 surname: Shalaev fullname: Shalaev, Vladimir M. organization: School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University – sequence: 11 givenname: Shumin orcidid: 0000-0002-0751-9556 surname: Xiao fullname: Xiao, Shumin email: shumin.xiao@hit.edu.cn organization: State Key Laboratory on Tunable laser Technology, Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen), National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Collaborative Innovation Center of Extreme Optics, Shanxi University |
BookMark | eNp9Uk1v1DAUtFARLaV_gFMkLlxS_BknFyRUQbtSJSQ-ztaL85z1KmsXO0vVf4_TVEB7qC-2_GbG8_zmNTkKMSAhbxk9Z1S0H7JkstE15azmSne67l6QE04lq5nm4ui_8zE5y3lHyxIda6V8RY6FVLKVHT0h36_8uK3ROW89BntX9SnC0EMYKrDbFPcwe1vtcYYJQ65cTFVASPXmW9X7OMXRW5gqv4fRh7G69WGIt2_ISwdTxrOH_ZT8_PL5x8VVff31cnPx6bq2qhVz7QZokFnOFEjpKHUAmktFexCDdgOqrmkoR971XFghhoVFXekasFR6Jk7JZtUdIuzMTSou0p2J4M39RUyjgVTsT2iQFmHniphtpKYdUOakc1og1a0FVbQ-rlo3h36Pg8UwJ5geiT6uBL81Y_xtWqmUatoi8P5BIMVfB8yz2ftscZogYDxkU4akhKZcNQX67gl0Fw8plK9aULITvOVLd3xF2RRzTuj-mmHULBEwawRMiYC5j4DpCql9QrJ-LiOMi2k_PU8VKzWXd8KI6Z-rZ1h_AL7Zxjk |
CitedBy_id | crossref_primary_10_1002_lpor_202100732 crossref_primary_10_1002_adom_202201478 crossref_primary_10_1364_OL_466126 crossref_primary_10_1002_adma_202208884 crossref_primary_10_1016_j_optcom_2024_130340 crossref_primary_10_1038_s41377_022_00885_7 crossref_primary_10_1002_adom_202203095 crossref_primary_10_1016_j_optmat_2025_116801 crossref_primary_10_1021_acsnano_4c12546 crossref_primary_10_1364_OE_450601 crossref_primary_10_1109_TIM_2022_3216675 crossref_primary_10_37188_lam_2024_005 crossref_primary_10_1117_1_APN_3_2_026002 crossref_primary_10_1515_nanoph_2022_0803 crossref_primary_10_1515_nanoph_2021_0660 crossref_primary_10_1021_acsphotonics_2c01534 crossref_primary_10_3788_PI_2024_R04 crossref_primary_10_1063_5_0078804 crossref_primary_10_3788_LOP232584 crossref_primary_10_1016_j_rinp_2023_106308 crossref_primary_10_1080_00223131_2023_2276409 crossref_primary_10_3788_LOP232217 crossref_primary_10_3390_nano14060513 crossref_primary_10_1109_JPHOT_2023_3243409 crossref_primary_10_1364_OE_534872 crossref_primary_10_3390_nano13071235 crossref_primary_10_1515_nanoph_2021_0638 crossref_primary_10_1021_acs_nanolett_3c02439 crossref_primary_10_1016_j_mtphys_2023_101273 crossref_primary_10_3390_nano13182503 crossref_primary_10_1002_lpor_202200351 crossref_primary_10_1364_OL_549532 crossref_primary_10_1002_lpor_202300729 crossref_primary_10_1063_5_0220043 crossref_primary_10_1364_AO_510342 crossref_primary_10_1021_acs_nanolett_4c01218 crossref_primary_10_3788_AOS221877 crossref_primary_10_1038_s41467_023_42137_1 crossref_primary_10_1103_PhysRevLett_131_193801 crossref_primary_10_1021_acs_nanolett_3c03416 crossref_primary_10_1038_s41563_025_02121_0 crossref_primary_10_1002_lpor_202300731 crossref_primary_10_1002_lpor_202200368 crossref_primary_10_1016_j_optcom_2024_130381 crossref_primary_10_1021_acs_chemrev_2c00012 crossref_primary_10_29026_oea_2022_220058 crossref_primary_10_1515_nanoph_2023_0746 crossref_primary_10_1063_5_0204694 crossref_primary_10_1016_j_jsamd_2023_100560 crossref_primary_10_1109_JPHOT_2023_3289588 crossref_primary_10_1002_andp_202400230 crossref_primary_10_1021_acsnano_4c13213 crossref_primary_10_1364_OE_550883 crossref_primary_10_1002_advs_202204664 crossref_primary_10_1002_andp_202300197 crossref_primary_10_1364_AO_511899 crossref_primary_10_1364_OL_520289 crossref_primary_10_1002_adma_202312303 crossref_primary_10_1039_D4NA00661E crossref_primary_10_1364_OL_499942 crossref_primary_10_1038_s44310_024_00010_z crossref_primary_10_1364_OE_499585 crossref_primary_10_1038_s41467_024_53701_8 crossref_primary_10_1021_acs_nanolett_4c03787 crossref_primary_10_1002_lpor_202300880 crossref_primary_10_34133_ultrafastscience_0018 crossref_primary_10_1088_2631_7990_ad6838 crossref_primary_10_35848_1882_0786_ac4677 crossref_primary_10_1002_smsc_202300273 crossref_primary_10_1002_adom_202401431 crossref_primary_10_1016_j_infrared_2024_105521 crossref_primary_10_1088_2515_7647_ad1a3b crossref_primary_10_1364_OL_497776 crossref_primary_10_1002_lpor_202401398 crossref_primary_10_1038_s41467_023_38858_y crossref_primary_10_3788_AOS231991 crossref_primary_10_1364_OE_525690 crossref_primary_10_1515_nanoph_2021_0684 crossref_primary_10_29026_oea_2024_240122 crossref_primary_10_1038_s41377_024_01565_4 crossref_primary_10_1364_OE_504892 crossref_primary_10_1002_lpor_202401962 crossref_primary_10_1021_acs_nanolett_4c02231 crossref_primary_10_3390_nano13142106 crossref_primary_10_1103_PhysRevApplied_22_044010 crossref_primary_10_1364_JOSAB_451850 crossref_primary_10_3390_mi15040540 crossref_primary_10_1126_sciadv_ado4847 crossref_primary_10_3788_AOS231152 crossref_primary_10_1021_acsphotonics_2c01488 crossref_primary_10_1016_j_optcom_2025_131673 crossref_primary_10_3390_nano14171438 crossref_primary_10_1063_5_0177734 crossref_primary_10_1088_2040_8986_ad5dcc crossref_primary_10_1364_PRJ_471282 crossref_primary_10_1007_s40684_023_00580_x crossref_primary_10_1002_adom_202300394 crossref_primary_10_1007_s12648_024_03330_0 crossref_primary_10_29026_oea_2024_230216 crossref_primary_10_1002_adma_202304161 crossref_primary_10_1038_s41467_024_46946_w crossref_primary_10_1088_1361_6528_ac547b crossref_primary_10_1121_10_0034239 crossref_primary_10_34133_adi_0023 crossref_primary_10_3788_AOS240670 crossref_primary_10_1002_lpor_202400886 crossref_primary_10_1117_1_JOM_4_4_041402 crossref_primary_10_1364_OE_553798 crossref_primary_10_1002_adom_202202270 crossref_primary_10_1063_5_0120717 crossref_primary_10_1364_AO_479338 crossref_primary_10_1364_JOSAB_488592 crossref_primary_10_1515_nanoph_2024_0547 crossref_primary_10_1016_j_optcom_2024_130975 crossref_primary_10_1364_PRJ_455459 crossref_primary_10_1088_1361_6463_adbaff crossref_primary_10_1364_OL_464571 crossref_primary_10_3389_fphy_2022_1093284 crossref_primary_10_1063_5_0253958 crossref_primary_10_1126_sciadv_adj9262 crossref_primary_10_3788_PI_2023_R04 crossref_primary_10_3788_PI_2023_R01 crossref_primary_10_29026_oes_2024_240017 crossref_primary_10_1021_acsphotonics_2c00178 crossref_primary_10_4236_opj_2023_136007 crossref_primary_10_1103_PhysRevLett_134_096902 crossref_primary_10_1016_j_optcom_2024_130845 crossref_primary_10_1021_acsphotonics_4c01530 crossref_primary_10_1038_s41377_024_01725_6 crossref_primary_10_1002_lpor_202401993 crossref_primary_10_1038_s41377_023_01093_7 crossref_primary_10_1038_s41467_024_50965_y crossref_primary_10_1088_2040_8986_ad9598 crossref_primary_10_1117_1_AP_4_4_046006 crossref_primary_10_1364_OE_512108 crossref_primary_10_3390_photonics12010031 crossref_primary_10_1002_adpr_202400077 crossref_primary_10_1038_s41377_022_00930_5 crossref_primary_10_1117_1_OE_62_8_087102 crossref_primary_10_1515_nanoph_2022_0183 crossref_primary_10_1002_adfm_202302821 crossref_primary_10_1016_j_matdes_2024_112631 crossref_primary_10_1002_lpor_202402298 crossref_primary_10_29026_oea_2024_230126 crossref_primary_10_1002_adom_202402833 crossref_primary_10_1364_OE_506471 crossref_primary_10_1002_admi_202202103 crossref_primary_10_1364_OPTICA_474650 crossref_primary_10_1038_s42005_024_01598_6 crossref_primary_10_1038_s44287_024_00057_2 crossref_primary_10_1016_j_rinp_2023_106591 crossref_primary_10_1364_AO_539933 crossref_primary_10_1002_adfm_202212053 crossref_primary_10_1016_j_scib_2024_04_056 crossref_primary_10_1063_5_0102539 crossref_primary_10_1021_acsanm_2c01815 crossref_primary_10_1038_s41598_024_75834_y crossref_primary_10_3390_nano13182561 crossref_primary_10_1364_OE_496492 crossref_primary_10_1016_j_optcom_2023_129703 crossref_primary_10_1002_adom_202300077 crossref_primary_10_1063_5_0207446 crossref_primary_10_3390_photonics12010061 crossref_primary_10_1088_2040_8986_adab82 crossref_primary_10_1021_acs_nanolett_3c04112 crossref_primary_10_3390_mi14010169 crossref_primary_10_29026_oes_2024_230035 crossref_primary_10_1016_j_optcom_2024_131062 crossref_primary_10_1117_1_APN_2_5_056002 crossref_primary_10_1021_acsphotonics_2c01171 crossref_primary_10_3390_nano12091500 crossref_primary_10_1038_s41377_022_01024_y crossref_primary_10_1364_PRJ_513990 crossref_primary_10_1021_acsphotonics_2c02029 crossref_primary_10_3390_nano13202765 crossref_primary_10_1038_s41377_024_01738_1 crossref_primary_10_1016_j_optlastec_2025_112550 crossref_primary_10_1016_j_eng_2023_07_008 crossref_primary_10_1021_acs_nanolett_2c00572 crossref_primary_10_1186_s40580_023_00372_8 crossref_primary_10_1364_OL_539172 crossref_primary_10_3390_s22176590 crossref_primary_10_1088_1361_6463_ac59fb crossref_primary_10_1002_lpor_202401542 crossref_primary_10_1021_acsphotonics_3c01078 crossref_primary_10_1109_LPT_2023_3326311 crossref_primary_10_1021_acsphotonics_3c01073 crossref_primary_10_1021_acs_nanolett_2c00486 crossref_primary_10_37188_lam_2023_009 crossref_primary_10_1002_lpor_202200712 crossref_primary_10_1088_1361_6463_ad800f crossref_primary_10_1021_acs_nanolett_4c02063 crossref_primary_10_1002_adom_202203149 crossref_primary_10_1063_5_0216387 crossref_primary_10_1002_adma_202109255 crossref_primary_10_1364_OE_500688 crossref_primary_10_1364_OME_442605 crossref_primary_10_1364_OE_539454 crossref_primary_10_1038_s41377_024_01656_2 crossref_primary_10_1038_s41377_024_01731_8 crossref_primary_10_1038_s42005_024_01601_0 crossref_primary_10_1039_D2NR03827G crossref_primary_10_1016_j_rinp_2022_105972 crossref_primary_10_1364_PRJ_449284 |
Cites_doi | 10.1002/lpor.201600295 10.1063/1.5144918 10.1038/s41565-017-0052-4 10.1364/OL.29.001593 10.1038/s41578-020-0203-3 10.1088/1464-4258/4/5/358 10.1021/acs.nanolett.9b03333 10.1038/ncomms8069 10.1021/acs.nanolett.8b01737 10.1038/s41566-018-0224-2 10.1038/s41467-020-17646-y 10.1038/s41467-020-17015-9 10.1126/science.aam8100 10.1038/s41467-020-15972-9 10.1364/OL.36.000451 10.1126/science.aaf6644 10.1021/acs.nanolett.8b01570 10.1364/OPTICA.6.000805 10.1038/s41598-018-21169-4 10.1038/s41467-019-08305-y 10.1038/s41377-018-0078-x 10.1038/s41565-017-0034-6 10.1002/lpor.201500041 10.1038/s41566-019-0536-x 10.1126/science.1253213 10.1021/nn405387t 10.1021/acs.nanolett.6b05137 10.1038/s41467-020-16136-5 10.1021/acs.nanolett.0c01105 10.1038/nphoton.2016.121 10.1364/OL.16.001921 10.1126/science.1214686 10.1126/science.1108759 10.1126/science.aag2472 10.1364/JOSAA.16.001143 10.1002/lpor.202000448 10.1038/s41565-018-0347-0 10.1364/OL.27.001141 10.1126/science.1210713 10.1038/s41467-017-00166-7 10.1002/adom.201300215 10.1038/srep21545 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021. The Author(s). |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-021-25797-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 7 |
ExternalDocumentID | oai_doaj_org_article_e0450ffe29c64709a01f4ff73e078ca5 PMC8455568 10_1038_s41467_021_25797_9 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c583t-fda6e1c215a44f00faa72450ba3d7fde596602e29b23c33dc5830f146ae966b13 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:26:37 EDT 2025 Thu Aug 21 17:56:18 EDT 2025 Fri Jul 11 15:15:16 EDT 2025 Wed Aug 13 07:17:04 EDT 2025 Tue Jul 01 04:17:35 EDT 2025 Thu Apr 24 22:51:37 EDT 2025 Fri Feb 21 02:39:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-fda6e1c215a44f00faa72450ba3d7fde596602e29b23c33dc5830f146ae966b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0751-9556 0000-0002-2248-4806 0000-0003-1048-411X 0000-0001-8905-2605 0000-0002-2697-8811 0000-0001-8976-1102 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-25797-9 |
PMID | 34548490 |
PQID | 2574932821 |
PQPubID | 546298 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e0450ffe29c64709a01f4ff73e078ca5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8455568 proquest_miscellaneous_2575370256 proquest_journals_2574932821 crossref_primary_10_1038_s41467_021_25797_9 crossref_citationtrail_10_1038_s41467_021_25797_9 springer_journals_10_1038_s41467_021_25797_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-21 |
PublicationDateYYYYMMDD | 2021-09-21 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | LeeMSLImaging with blazed-binary diffractive elementsJ. Opt. A20024s119s12410.1088/1464-4258/4/5/358 KockWEMetallic delay lensesBell Syst. Tech.194834321339 ChenW-TA broadband achromatic metalens for focusing and imaging in the visibleNat. Nanotechnol.2018132202262018NatNa..13..220C1:CAS:528:DC%2BC1cXis1OitQ%3D%3D2929238210.1038/s41565-017-0034-6 YoonGKimKHuhDLeeHRhoJSingle-step manufacturing of hierarchical dielectric metalens in the visibleNat. Commun.2020112020NatCo..11.2268Y1:CAS:528:DC%2BB3cXptVertbs%3D32385266721102710.1038/s41467-020-16136-5 KhorasaninejadMCapassoFMetalenses: versatile multifunctional photonic componentsScience2017358eaam81002898279610.1126/science.aam81001:CAS:528:DC%2BC2sXhvVOit7jM ArbabiAHorieYBallAJBagheriMFaraonASubwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmit arraysNat. Commun.201562015NatCo...6.7069A1:CAS:528:DC%2BC2MXhtF2ks77M2594711810.1038/ncomms8069 KuznetsovAIMiroshnichenkoAEBrongersmaMLKivsharYSLuk’yanchukBOptically resonant dielectric nanostructuresScience2016354aag24722785685110.1126/science.aag24721:CAS:528:DC%2BC28XhvFGrtbzO BanerjiSImaging with flat optics: metalenses or diffractive lenses?Optica201968058102019Optic...6..805B1:CAS:528:DC%2BB3cXotlOmtQ%3D%3D10.1364/OPTICA.6.000805 IshiiSKildishevAVShalaevVMChenK-PDrachevVPMetal nanoslit lenses with polarization-selective designOpt. Lett.2011364514532011OptL...36..451I1:CAS:528:DC%2BC3MXktlagu7Y%3D2132641910.1364/OL.36.000451 ParkJ-SAll-glass, large metalens at visible wavelength using deep-ultraviolet projection lithographyNano Lett.202019867386822019NanoL..19.8673P10.1021/acs.nanolett.9b033331:CAS:528:DC%2BC1MXitFGrsL%2FE KhorasaninejadMMetalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imagingScience2016352119011942016Sci...352.1190K1:CAS:528:DC%2BC28XoslOqsL0%3D2725725110.1126/science.aaf6644 WangSA broadband achromatic metalens in the visibleNat. Nanotechnol.2018132272322018NatNa..13..227W1:CAS:528:DC%2BC1cXhvVCgt7s%3D2937920410.1038/s41565-017-0052-4 MohammadNMeemMShenBWangPMenonRBroadband imaging with one planar diffractive lensSci. Rep.201882018NatSR...8.2799M29434257580950510.1038/s41598-018-21169-41:CAS:528:DC%2BC1cXhs1Cltb7K WangPMohammadNMenonRChromatic-aberration-corrected diffractive lenses for ultra-broadband focusingSci. Rep.201662016NatSR...621545W1:CAS:528:DC%2BC28XisFSlurc%3D26868264475146810.1038/srep21545 BomzonZBienerGKleinerVHasmanESpace-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratingsOpt. Lett.200227114111432002OptL...27.1141B1802638710.1364/OL.27.001141 ChenWTZhuAYSislerJBharwaniZCapassoFA broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructuresNat. Commun.2019102019NatCo..10..355C1:CAS:528:DC%2BC1cXisFWitLrI30664662634108010.1038/s41467-019-08305-y LinDFanPHasmanEBrongersmaMLDielectric gradient metasurface optical elementsScience20143452983022014Sci...345..298L1:CAS:528:DC%2BC2cXhtFCqs7nI2503548810.1126/science.1253213 SauvanCLalannePLeeMSLBroadband blazing with artificial dielectricsOpt. Lett.200429159315952004OptL...29.1593S1530982910.1364/OL.29.001593 LiangHUltrahigh numerical aperture metalens at visible wavelengthsNano Lett.201818446044662018NanoL..18.4460L1:CAS:528:DC%2BC1cXhtF2ru7jL2994012210.1021/acs.nanolett.8b01570 RogersETFFar-field unlabeled super-resolution imaging with superoscillatory illuminationAPL Photon.202050661072020APLP....5f6107R1:CAS:528:DC%2BB3cXhsVKmt7vI10.1063/1.5144918 PahlevaninezhadHNat. Photon.2018125405472018NaPho..12..540P1:CAS:528:DC%2BC1cXhsVWhtrbL10.1038/s41566-018-0224-2 FangNLeeHSunCZhangXSub-diffraction-limited optical imaging with a silver superlensScience20053085345372005Sci...308..534F1:CAS:528:DC%2BD2MXjtlOjtrs%3D1584584910.1126/science.1108759 SchlickriedeCNonlinear imaging with all-dielectric metasurfacesNano Lett.202020437043762020NanoL..20.4370S1:CAS:528:DC%2BB3cXoslOmu7Y%3D3237461610.1021/acs.nanolett.0c01105 ChenWTZhuAYCapassoFFlat optics with dispersion-engineered metasurfaceNat. Rev. Mater.202056046202020NatRM...5..604C10.1038/s41578-020-0203-3 GissiblTThieleSHerkommerAGiessenHTwo-photon direct laser writing of ultracompact multi-lens objectivesNat. Photon.2017105545602016NaPho..10..554G10.1038/nphoton.2016.1211:CAS:528:DC%2BC28XhtVyhsL3I BalliFSultanMLamiSKHastingsJTA hybrid achromatic metalensNat. Commun.2020112020NatCo..11.3892B1:STN:280:DC%2BB38fhtlWrtA%3D%3D32753583740342510.1038/s41467-020-17646-y LalannePChavelPMetalenses at visible wavelengths: past, present, perspectivesLaser Photon. Rev.20171116002952017LPRv...1100295L10.1002/lpor.2016002951:CAS:528:DC%2BC2sXotVehtrs%3D YuYFHigh transmission dielectric metasurface with 2π phase control at visible wavelengthsLaser Photon. Rev.201594124182015LPRv....9..412Y1:CAS:528:DC%2BC2MXht1WrtrbN10.1002/lpor.201500041 RibotCBroadband and efficient diffractionAdv. Opt. Mat.2013148949310.1002/adom.201300215 Gigli, C. et al. Fundamental limitations of Huygens metasurfaces for optical beam shaping. Laser Photon. Rev.15, 2000448 (2021). NiXEmaniNKKildishevAVBoltassevaAShalaevVMBroadband light bending with plasmonic nanoantennasScience20123354272012Sci...335..427N1:CAS:528:DC%2BC38XhtFajsLc%3D2219441410.1126/science.1214686 ArbabiETwo-photon microscopy with a double wavelength metasurface objective lensNano Lett.201818494349482018NanoL..18.4943A1:CAS:528:DC%2BC1cXhtlCntr3M3001611010.1021/acs.nanolett.8b01737 ShresthaSOvervigACLuMSteinAYuNBroadband achromatic dielectric metalensesLight Sci. Appl.201872018LSA.....7...85S30416721622016110.1038/s41377-018-0078-x1:CAS:528:DC%2BC1cXitFejsbbE EngelbergJLevyUThe advantages of metalenses over diffractive lensesNat. Commun.2020112020NatCo..11.1991E1:CAS:528:DC%2BB3cXot1amtL4%3D32332770718185710.1038/s41467-020-15972-9 StorkWStreiblNHaidnerHKipferPArtificial distributed-index media fabricated by zero-order gratingsOpt. Lett.199116192119231991OptL...16.1921S1:STN:280:DC%2BD1MnltFKitA%3D%3D1978418110.1364/OL.16.001921 KhorasaninejadMAchromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersionNano Lett.201717181918242017NanoL..17.1819K1:CAS:528:DC%2BC2sXhs12qtrs%3D2812523410.1021/acs.nanolett.6b05137 ZhuHAmplified spontaneous emission and lasing from Lanthanide-doped uo-conversion nanocrystalsACS Nano2013711420114261:CAS:528:DC%2BC3sXhvVGkurnF2426685310.1021/nn405387t KwonHArbabiEKamaliSMFaraji-DanaMFaraonASingle-shot quantitative phase gradient microscopy using a system of multifunctional metasurfacesNat. Photon.2020141092019NaPho..14..109K1:CAS:528:DC%2BC1MXitVCksLvN10.1038/s41566-019-0536-x YuNLight propagation with phase discontinuities: generalized laws of reflection and refractionScience20113343333372011Sci...334..333Y1:CAS:528:DC%2BC3MXhtlahsr3M2188573310.1126/science.1210713 LinRJAchromatic metalens array for full-colour light-field imagingNat. Nanotechnol.2019142272312019NatNa..14..227L1:CAS:528:DC%2BC1MXmtVGitbc%3D3066475310.1038/s41565-018-0347-0 WangSBroadband achromatic optical metasurface devicesNat. Commun.201782017NatCo...8..187W28775300554315710.1038/s41467-017-00166-71:CAS:528:DC%2BC1cXosl2it78%3D LalannePAstileanSChavelPCambrilELaunoisHDesign and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoffJ. Opt. Soc. Am. A199916114311561999OSAJ...16.1143L10.1364/JOSAA.16.001143 NdaoAOctave bandwidth photonic fishnet-achromatic-metalensNat. Commun.2020112020NatCo..11.3205N1:CAS:528:DC%2BB3cXht1yms7bI32587251731678410.1038/s41467-020-17015-9 E Arbabi (25797_CR38) 2018; 18 H Kwon (25797_CR41) 2020; 14 A Arbabi (25797_CR13) 2015; 6 N Mohammad (25797_CR35) 2018; 8 X Ni (25797_CR11) 2012; 335 T Gissibl (25797_CR3) 2017; 10 N Fang (25797_CR2) 2005; 308 J-S Park (25797_CR40) 2020; 19 H Pahlevaninezhad (25797_CR1) 2018; 12 WT Chen (25797_CR5) 2020; 5 YF Yu (25797_CR14) 2015; 9 F Balli (25797_CR20) 2020; 11 M Khorasaninejad (25797_CR22) 2017; 17 WE Kock (25797_CR7) 1948; 34 RJ Lin (25797_CR23) 2019; 14 Z Bomzon (25797_CR24) 2002; 27 S Ishii (25797_CR9) 2011; 36 S Wang (25797_CR18) 2018; 13 A Ndao (25797_CR32) 2020; 11 AI Kuznetsov (25797_CR25) 2016; 354 H Liang (25797_CR16) 2018; 18 J Engelberg (25797_CR34) 2020; 11 ETF Rogers (25797_CR43) 2020; 5 G Yoon (25797_CR29) 2020; 11 M Khorasaninejad (25797_CR4) 2017; 358 P Lalanne (25797_CR6) 2017; 11 N Yu (25797_CR10) 2011; 334 S Shrestha (25797_CR19) 2018; 7 W Stork (25797_CR8) 1991; 16 C Sauvan (25797_CR26) 2004; 29 M Khorasaninejad (25797_CR15) 2016; 352 W-T Chen (25797_CR17) 2018; 13 D Lin (25797_CR12) 2014; 345 H Zhu (25797_CR39) 2013; 7 WT Chen (25797_CR37) 2019; 10 P Wang (25797_CR36) 2016; 6 MSL Lee (25797_CR31) 2002; 4 S Banerji (25797_CR33) 2019; 6 C Schlickriede (25797_CR42) 2020; 20 C Ribot (25797_CR27) 2013; 1 S Wang (25797_CR21) 2017; 8 25797_CR28 P Lalanne (25797_CR30) 1999; 16 |
References_xml | – reference: ChenWTZhuAYCapassoFFlat optics with dispersion-engineered metasurfaceNat. Rev. Mater.202056046202020NatRM...5..604C10.1038/s41578-020-0203-3 – reference: GissiblTThieleSHerkommerAGiessenHTwo-photon direct laser writing of ultracompact multi-lens objectivesNat. Photon.2017105545602016NaPho..10..554G10.1038/nphoton.2016.1211:CAS:528:DC%2BC28XhtVyhsL3I – reference: RibotCBroadband and efficient diffractionAdv. Opt. Mat.2013148949310.1002/adom.201300215 – reference: BalliFSultanMLamiSKHastingsJTA hybrid achromatic metalensNat. Commun.2020112020NatCo..11.3892B1:STN:280:DC%2BB38fhtlWrtA%3D%3D32753583740342510.1038/s41467-020-17646-y – reference: KockWEMetallic delay lensesBell Syst. Tech.194834321339 – reference: RogersETFFar-field unlabeled super-resolution imaging with superoscillatory illuminationAPL Photon.202050661072020APLP....5f6107R1:CAS:528:DC%2BB3cXhsVKmt7vI10.1063/1.5144918 – reference: YoonGKimKHuhDLeeHRhoJSingle-step manufacturing of hierarchical dielectric metalens in the visibleNat. Commun.2020112020NatCo..11.2268Y1:CAS:528:DC%2BB3cXptVertbs%3D32385266721102710.1038/s41467-020-16136-5 – reference: BomzonZBienerGKleinerVHasmanESpace-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratingsOpt. Lett.200227114111432002OptL...27.1141B1802638710.1364/OL.27.001141 – reference: LeeMSLImaging with blazed-binary diffractive elementsJ. Opt. A20024s119s12410.1088/1464-4258/4/5/358 – reference: ZhuHAmplified spontaneous emission and lasing from Lanthanide-doped uo-conversion nanocrystalsACS Nano2013711420114261:CAS:528:DC%2BC3sXhvVGkurnF2426685310.1021/nn405387t – reference: LalannePAstileanSChavelPCambrilELaunoisHDesign and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoffJ. Opt. Soc. Am. A199916114311561999OSAJ...16.1143L10.1364/JOSAA.16.001143 – reference: ArbabiETwo-photon microscopy with a double wavelength metasurface objective lensNano Lett.201818494349482018NanoL..18.4943A1:CAS:528:DC%2BC1cXhtlCntr3M3001611010.1021/acs.nanolett.8b01737 – reference: ArbabiAHorieYBallAJBagheriMFaraonASubwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmit arraysNat. Commun.201562015NatCo...6.7069A1:CAS:528:DC%2BC2MXhtF2ks77M2594711810.1038/ncomms8069 – reference: LinRJAchromatic metalens array for full-colour light-field imagingNat. Nanotechnol.2019142272312019NatNa..14..227L1:CAS:528:DC%2BC1MXmtVGitbc%3D3066475310.1038/s41565-018-0347-0 – reference: PahlevaninezhadHNat. Photon.2018125405472018NaPho..12..540P1:CAS:528:DC%2BC1cXhsVWhtrbL10.1038/s41566-018-0224-2 – reference: YuYFHigh transmission dielectric metasurface with 2π phase control at visible wavelengthsLaser Photon. Rev.201594124182015LPRv....9..412Y1:CAS:528:DC%2BC2MXht1WrtrbN10.1002/lpor.201500041 – reference: BanerjiSImaging with flat optics: metalenses or diffractive lenses?Optica201968058102019Optic...6..805B1:CAS:528:DC%2BB3cXotlOmtQ%3D%3D10.1364/OPTICA.6.000805 – reference: WangSBroadband achromatic optical metasurface devicesNat. Commun.201782017NatCo...8..187W28775300554315710.1038/s41467-017-00166-71:CAS:528:DC%2BC1cXosl2it78%3D – reference: FangNLeeHSunCZhangXSub-diffraction-limited optical imaging with a silver superlensScience20053085345372005Sci...308..534F1:CAS:528:DC%2BD2MXjtlOjtrs%3D1584584910.1126/science.1108759 – reference: KhorasaninejadMCapassoFMetalenses: versatile multifunctional photonic componentsScience2017358eaam81002898279610.1126/science.aam81001:CAS:528:DC%2BC2sXhvVOit7jM – reference: NiXEmaniNKKildishevAVBoltassevaAShalaevVMBroadband light bending with plasmonic nanoantennasScience20123354272012Sci...335..427N1:CAS:528:DC%2BC38XhtFajsLc%3D2219441410.1126/science.1214686 – reference: WangPMohammadNMenonRChromatic-aberration-corrected diffractive lenses for ultra-broadband focusingSci. Rep.201662016NatSR...621545W1:CAS:528:DC%2BC28XisFSlurc%3D26868264475146810.1038/srep21545 – reference: SauvanCLalannePLeeMSLBroadband blazing with artificial dielectricsOpt. Lett.200429159315952004OptL...29.1593S1530982910.1364/OL.29.001593 – reference: ShresthaSOvervigACLuMSteinAYuNBroadband achromatic dielectric metalensesLight Sci. Appl.201872018LSA.....7...85S30416721622016110.1038/s41377-018-0078-x1:CAS:528:DC%2BC1cXitFejsbbE – reference: LinDFanPHasmanEBrongersmaMLDielectric gradient metasurface optical elementsScience20143452983022014Sci...345..298L1:CAS:528:DC%2BC2cXhtFCqs7nI2503548810.1126/science.1253213 – reference: SchlickriedeCNonlinear imaging with all-dielectric metasurfacesNano Lett.202020437043762020NanoL..20.4370S1:CAS:528:DC%2BB3cXoslOmu7Y%3D3237461610.1021/acs.nanolett.0c01105 – reference: WangSA broadband achromatic metalens in the visibleNat. Nanotechnol.2018132272322018NatNa..13..227W1:CAS:528:DC%2BC1cXhvVCgt7s%3D2937920410.1038/s41565-017-0052-4 – reference: KwonHArbabiEKamaliSMFaraji-DanaMFaraonASingle-shot quantitative phase gradient microscopy using a system of multifunctional metasurfacesNat. Photon.2020141092019NaPho..14..109K1:CAS:528:DC%2BC1MXitVCksLvN10.1038/s41566-019-0536-x – reference: KhorasaninejadMAchromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersionNano Lett.201717181918242017NanoL..17.1819K1:CAS:528:DC%2BC2sXhs12qtrs%3D2812523410.1021/acs.nanolett.6b05137 – reference: ChenWTZhuAYSislerJBharwaniZCapassoFA broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructuresNat. Commun.2019102019NatCo..10..355C1:CAS:528:DC%2BC1cXisFWitLrI30664662634108010.1038/s41467-019-08305-y – reference: LalannePChavelPMetalenses at visible wavelengths: past, present, perspectivesLaser Photon. Rev.20171116002952017LPRv...1100295L10.1002/lpor.2016002951:CAS:528:DC%2BC2sXotVehtrs%3D – reference: YuNLight propagation with phase discontinuities: generalized laws of reflection and refractionScience20113343333372011Sci...334..333Y1:CAS:528:DC%2BC3MXhtlahsr3M2188573310.1126/science.1210713 – reference: NdaoAOctave bandwidth photonic fishnet-achromatic-metalensNat. Commun.2020112020NatCo..11.3205N1:CAS:528:DC%2BB3cXht1yms7bI32587251731678410.1038/s41467-020-17015-9 – reference: IshiiSKildishevAVShalaevVMChenK-PDrachevVPMetal nanoslit lenses with polarization-selective designOpt. Lett.2011364514532011OptL...36..451I1:CAS:528:DC%2BC3MXktlagu7Y%3D2132641910.1364/OL.36.000451 – reference: StorkWStreiblNHaidnerHKipferPArtificial distributed-index media fabricated by zero-order gratingsOpt. Lett.199116192119231991OptL...16.1921S1:STN:280:DC%2BD1MnltFKitA%3D%3D1978418110.1364/OL.16.001921 – reference: Gigli, C. et al. Fundamental limitations of Huygens metasurfaces for optical beam shaping. Laser Photon. Rev.15, 2000448 (2021). – reference: MohammadNMeemMShenBWangPMenonRBroadband imaging with one planar diffractive lensSci. Rep.201882018NatSR...8.2799M29434257580950510.1038/s41598-018-21169-41:CAS:528:DC%2BC1cXhs1Cltb7K – reference: ChenW-TA broadband achromatic metalens for focusing and imaging in the visibleNat. Nanotechnol.2018132202262018NatNa..13..220C1:CAS:528:DC%2BC1cXis1OitQ%3D%3D2929238210.1038/s41565-017-0034-6 – reference: LiangHUltrahigh numerical aperture metalens at visible wavelengthsNano Lett.201818446044662018NanoL..18.4460L1:CAS:528:DC%2BC1cXhtF2ru7jL2994012210.1021/acs.nanolett.8b01570 – reference: EngelbergJLevyUThe advantages of metalenses over diffractive lensesNat. Commun.2020112020NatCo..11.1991E1:CAS:528:DC%2BB3cXot1amtL4%3D32332770718185710.1038/s41467-020-15972-9 – reference: KhorasaninejadMMetalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imagingScience2016352119011942016Sci...352.1190K1:CAS:528:DC%2BC28XoslOqsL0%3D2725725110.1126/science.aaf6644 – reference: KuznetsovAIMiroshnichenkoAEBrongersmaMLKivsharYSLuk’yanchukBOptically resonant dielectric nanostructuresScience2016354aag24722785685110.1126/science.aag24721:CAS:528:DC%2BC28XhvFGrtbzO – reference: ParkJ-SAll-glass, large metalens at visible wavelength using deep-ultraviolet projection lithographyNano Lett.202019867386822019NanoL..19.8673P10.1021/acs.nanolett.9b033331:CAS:528:DC%2BC1MXitFGrsL%2FE – volume: 11 start-page: 1600295 year: 2017 ident: 25797_CR6 publication-title: Laser Photon. Rev. doi: 10.1002/lpor.201600295 – volume: 5 start-page: 066107 year: 2020 ident: 25797_CR43 publication-title: APL Photon. doi: 10.1063/1.5144918 – volume: 13 start-page: 227 year: 2018 ident: 25797_CR18 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-017-0052-4 – volume: 29 start-page: 1593 year: 2004 ident: 25797_CR26 publication-title: Opt. Lett. doi: 10.1364/OL.29.001593 – volume: 5 start-page: 604 year: 2020 ident: 25797_CR5 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0203-3 – volume: 4 start-page: s119 year: 2002 ident: 25797_CR31 publication-title: J. Opt. A doi: 10.1088/1464-4258/4/5/358 – volume: 19 start-page: 8673 year: 2020 ident: 25797_CR40 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b03333 – volume: 6 year: 2015 ident: 25797_CR13 publication-title: Nat. Commun. doi: 10.1038/ncomms8069 – volume: 18 start-page: 4943 year: 2018 ident: 25797_CR38 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01737 – volume: 12 start-page: 540 year: 2018 ident: 25797_CR1 publication-title: Nat. Photon. doi: 10.1038/s41566-018-0224-2 – volume: 11 year: 2020 ident: 25797_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17646-y – volume: 11 year: 2020 ident: 25797_CR32 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17015-9 – volume: 358 start-page: eaam8100 year: 2017 ident: 25797_CR4 publication-title: Science doi: 10.1126/science.aam8100 – volume: 11 year: 2020 ident: 25797_CR34 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15972-9 – volume: 36 start-page: 451 year: 2011 ident: 25797_CR9 publication-title: Opt. Lett. doi: 10.1364/OL.36.000451 – volume: 352 start-page: 1190 year: 2016 ident: 25797_CR15 publication-title: Science doi: 10.1126/science.aaf6644 – volume: 18 start-page: 4460 year: 2018 ident: 25797_CR16 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01570 – volume: 6 start-page: 805 year: 2019 ident: 25797_CR33 publication-title: Optica doi: 10.1364/OPTICA.6.000805 – volume: 8 year: 2018 ident: 25797_CR35 publication-title: Sci. Rep. doi: 10.1038/s41598-018-21169-4 – volume: 10 year: 2019 ident: 25797_CR37 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08305-y – volume: 7 year: 2018 ident: 25797_CR19 publication-title: Light Sci. Appl. doi: 10.1038/s41377-018-0078-x – volume: 13 start-page: 220 year: 2018 ident: 25797_CR17 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-017-0034-6 – volume: 9 start-page: 412 year: 2015 ident: 25797_CR14 publication-title: Laser Photon. Rev. doi: 10.1002/lpor.201500041 – volume: 14 start-page: 109 year: 2020 ident: 25797_CR41 publication-title: Nat. Photon. doi: 10.1038/s41566-019-0536-x – volume: 345 start-page: 298 year: 2014 ident: 25797_CR12 publication-title: Science doi: 10.1126/science.1253213 – volume: 7 start-page: 11420 year: 2013 ident: 25797_CR39 publication-title: ACS Nano doi: 10.1021/nn405387t – volume: 34 start-page: 321 year: 1948 ident: 25797_CR7 publication-title: Bell Syst. Tech. – volume: 17 start-page: 1819 year: 2017 ident: 25797_CR22 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05137 – volume: 11 year: 2020 ident: 25797_CR29 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16136-5 – volume: 20 start-page: 4370 year: 2020 ident: 25797_CR42 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c01105 – volume: 10 start-page: 554 year: 2017 ident: 25797_CR3 publication-title: Nat. Photon. doi: 10.1038/nphoton.2016.121 – volume: 16 start-page: 1921 year: 1991 ident: 25797_CR8 publication-title: Opt. Lett. doi: 10.1364/OL.16.001921 – volume: 335 start-page: 427 year: 2012 ident: 25797_CR11 publication-title: Science doi: 10.1126/science.1214686 – volume: 308 start-page: 534 year: 2005 ident: 25797_CR2 publication-title: Science doi: 10.1126/science.1108759 – volume: 354 start-page: aag2472 year: 2016 ident: 25797_CR25 publication-title: Science doi: 10.1126/science.aag2472 – volume: 16 start-page: 1143 year: 1999 ident: 25797_CR30 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.16.001143 – ident: 25797_CR28 doi: 10.1002/lpor.202000448 – volume: 14 start-page: 227 year: 2019 ident: 25797_CR23 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0347-0 – volume: 27 start-page: 1141 year: 2002 ident: 25797_CR24 publication-title: Opt. Lett. doi: 10.1364/OL.27.001141 – volume: 334 start-page: 333 year: 2011 ident: 25797_CR10 publication-title: Science doi: 10.1126/science.1210713 – volume: 8 year: 2017 ident: 25797_CR21 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00166-7 – volume: 1 start-page: 489 year: 2013 ident: 25797_CR27 publication-title: Adv. Opt. Mat. doi: 10.1002/adom.201300215 – volume: 6 year: 2016 ident: 25797_CR36 publication-title: Sci. Rep. doi: 10.1038/srep21545 |
SSID | ssj0000391844 |
Score | 2.6887012 |
Snippet | Over the past years, broadband achromatic metalenses have been intensively studied due to their great potential for applications in consumer and industry... Though broadband achromatic metalens are attractive for biological applications, existing metalenses show limited performance in the biological imaging window.... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5560 |
SubjectTerms | 639/624/399/1015 639/925/357/1015 Achromatism Broadband Efficiency Fabrication Group delay High aspect ratio Humanities and Social Sciences Infrared imaging multidisciplinary Near infrared radiation Numerical aperture Science Science (multidisciplinary) Titanium Titanium dioxide Wavelengths |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFD5IQXAjPnG0lQjuNHQmybyWVSxV0IVa6C7kcUILdqbc3lL8956TmXvtFNSN20lCki8nOV8myXcAXlelw6QCSqcQpQkpSk9eW-pOmWRcnSLyr4HPX5qjY_PppD65EeqL74RN8sATcPtInKNMCVUfGtOWvSurZFJqNZJzCy6rl5LPu7GZymuw7mnrYuZXMqXu9i9NXhP4RgJZad_KfuGJsmD_gmXeviN566A0-5_DB3B_Jo7iYGrwQ7iDwyO4O4WS_PkYvvGFDYlZEIJfUwq_Gl30bojChdPVmJVZxTkS16aNqyCqKgYycvnxq5h0mHiwxNl5DlokrmmnPl4_gePDD9_fH8k5YIIMdafXMkXXYBXIiztjUlkm51pF8HmnY0uo1yzFqQhKr3TQOnKpMhEuDinFV_op7AzjgM9AdF51TnmiA-S_dB99Y7BpUhsaKldFV0C1Ac-GWU2cg1r8sPlUW3d2AtwS4DYDbvsC3mzLXExaGn_N_Y7HZJuTdbDzB7IOO1uH_Zd1FLC7GVE7T85LrsAQbe1UVcCrbTJNKz4rcQOOVzlPrVsmhAW0C0tYNGiZMpydZoHuztQs7FbA243N_K78zx1-_j86_ALuKbZxPjerdmFnvbrCPaJNa_8yz5BfsFwUFA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ilCCzISN7Dq2E7inBAgloIEB6BSb5aftBJNyu5WVf89M453q1Si19hO4vHY89kz_oaQ1zW3MQkfmRUxMuVTYA6sNpNaqKRsk0LEo4Fv39uDQ_X1qDkqB26rEla5WRPzQh1Gj2fk-6BaCrCGFvW7s78Ms0ahd7Wk0LhN7tRgaTCkSy8-b89YkP1cK1XuynCp91cqrwwYlwAv7DvWz-xRpu2fYc3rkZLX3KXZCi0ekPsFPtL303g_JLfi8IjcnRJKXj4mPzFsg8VMC4F3KqlbjjY4OwRq_fFyzPys9DQC4obtKwXASgdQdfblB53YmHDI6MlpTl1EL2C_Pl48IYeLT78-HrCSNoH5Rss1S8G2sfZgy61SifNkbSdUw52VoQPZN0jIKaLonZBeyoCteAK52AglrpZPyc4wDvEZodoJbYUDUABWTPbBtSq2bep8C-3qYCtSb4RnfOEUx9QWf0z2bUttJoEbELjJAjd9Rd5s25xNjBo31v6AY7KtiWzY-cG4_G3K5DIRcClPCbrkW9Xx3vI6qZQ6GQEAedtUZG8zoqZM0ZW5UqiKvNoWw-RCj4kd4nie6zSyQ1hYkW6mCbMfmpcMJ8eZplurBundKvJ2ozNXH_9_h5_f_K-75J5A7UW_WL1HdtbL8_gCYNHavcy6_w9qsgt2 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEB9qi-BFrB-4WiWCNw1mk-xu9vhaLPWBHqyF3kI-bcHuyusrpf99J9ndJ1tU6HWTIclksvNLZvILwPuSmRC5C9TwEKh00VOLXpsKxWWUpoo-pKOBr9_qoxO5PK1Ot4BPd2Fy0n6mtMy_6Sk77NOlzEs6JRSgkbUNbR_ATqJqR9veWSyWx8vNyUriPFdSjjdkmFB_EZ55oUzWP0OYd_Mj7wRJs-85fAKPR9BIFkM3d2ErdE_h4fCM5M0zOE7JGjRkMoh0k5LYVW-8NZ0nxp2t-szKSi4C4mzctBKEqaRDA6dfvpOBgylNFDm_yA8WkWvcpffXz-Hk8POPgyM6PpZAXaXEmkZv6lA69OBGyshYNKbhsmLWCN-gxqtEw8kDby0XTgifpFhEvZiAJbYUL2C767vwEoiyXBluEQqg7xKtt7UMdR0bV6Nc6U0B5aQ87UYm8fSgxS-dI9pC6UHhGhWus8J1W8CHjczvgUfjv7X305xsaiYO7PyhX_3Uo03ogGiUxYhDcrVsWGtYGWWMjQgIe5ypCtibZlSPC_MyNSARsipeFvBuU4xLKsVJTBf6q1ynEk0CgwU0M0uYdWhe0p2fZXJuJatE6lbAx8lm_jT-7wG_ul_11_CIJ2tO0bFyD7bXq6vwBsHR2r4dV8Mtd9YKsw priority: 102 providerName: Springer Nature |
Title | High-efficiency broadband achromatic metalens for near-IR biological imaging window |
URI | https://link.springer.com/article/10.1038/s41467-021-25797-9 https://www.proquest.com/docview/2574932821 https://www.proquest.com/docview/2575370256 https://pubmed.ncbi.nlm.nih.gov/PMC8455568 https://doaj.org/article/e0450ffe29c64709a01f4ff73e078ca5 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IVAviKdIKSsjcQNDYjtxckBou-pSVmqFWlbaW2Q7dlupTWi6Vem_Z-xkF7YqHLgkUmzL8XjG8_n1DcDbJFbWMWOpYtZSYVxFNXptynMmnFCpq6xfGjg4zPanYjJLZ2uwCHfUC_Dq3qmdjyc1bc8__Ly8_YwG_6m7Mp5_vBLB3P1hA1TAQtJiHTbRM0kf0eCgh_thZOYFTmhEf3fm_qJb8JALhPHCj9J_uKrA6L8CQ-8eoryzkxoc1PgxPOqRJRl2qvAE1mz9FB50sSZvn8GxP9FBbWCM8NctiW4bVWlVV0SZ07YJ1K3kwqIccGZLEMuSGq2Afj0iHVGT701ydhGiGpEbnMo3N89hOt77PtqnfUQFatKcz6mrVGYTg25eCeHi2CklmUhjrXglsVtSz9XJLCs044bzypeKHYpIWUzRCX8BG3VT25dAcs1yxTTiBXRwvKh0JmyWOWkyLJdUKoJkIbzS9HTjPurFeRm2vXledrIvUfZlkH1ZRPBuWeZHR7bxz9y7vk-WOT1RdvjQtCdlb3elRcgaO4dNMpmQcaHixAnnJLeIjYxKI9hZ9Gi5UD5fgUBcm7MkgjfLZLQ7v5miattchzwplx4xRiBXNGHlh1ZT6rPTwOCdi9Qzv0XwfqEzvyv_e4O3_7uiV7DFvI773bRkBzbm7bV9jWBqrgewLmcSn_n4ywA2h8PJ8QTfu3uH347w6ygbDcIyxSBY0i8qpiLT |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFOkFDASnMBqYjuvA0K8ll36OEAr9eY6ftCVaNLubrXqn-I3MnaSrVKJ3nqN7cQej2e-eOxvAN4ksbKOaUsVs5YK7Qyt0GtTXjDhhEqdsX5rYHcvGx-IH4fp4Rr87e_C-GOVvU0Mhto02u-Rb6FqCcQaBUs-np5RnzXKR1f7FBqtWmzbiyX-ss0_TL7i_L5lbPRt_8uYdlkFqE4LvqDOqMwmGl2dEsLFsVMqZyKNK8VNjl1LPV8ls6ysGNecG98qdmhQlMWSKuH43ltwW3D05P5m-uj7ak_Hs60XQnR3c2JebM1FsET-HAQOoMxpOfB_IU3AANtePZl5JTwbvN7oAdzv4Cr51OrXQ1iz9SO40yawvHgMv_wxEWoDDYW_w0mqWaNMpWpDlD6eNYEPlpxYRPj4u0wQIJMaZUgnP0nL_uRVhExPQqokspzWplk-gYMbEehTWK-b2j4DUlSsUKxCEIJek5emyoTNMpfrDNslRkWQ9MKTuuMw96k0_sgQS-eFbAUuUeAyCFyWEbxbtTltGTyurf3Zz8mqpmffDg-a2W_ZLWZpEQfHzuGQdCbyuFRx4oRzObcIuLRKI9jsZ1R2JmEuLxU4gterYlzMPkKjatuchzopzz0MjSAfaMKgQ8OSenocaMELkXo6uQje9zpz-fH_D3jj-r6-grvj_d0duTPZ234O95jXZB-TSzZhfTE7ty8Qki2ql2EdEDi66YX3D12dSFo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVCAuiKdYKGAkOIGVXdv7OiBEaaOGQlQVKvVmvH7QSHS3JKmi_jV-HWPvbqpUordeY3tjj-dlz_gbgDdJrKxj2lLFrKVCO0MrtNqUF0w4oVJnrL8a-DbJ9o7El-P0eAP-9m9hfFplrxODojaN9nfkQ2Qtgb5GwZKh69IiDnZGH8_-UF9Bykda-3IaLYvs24slHt_mH8Y7uNdvGRvt_vi8R7sKA1SnBV9QZ1RmE41mTwnh4tgplTORxpXiJsdpph67kllWVoxrzo0fFTtULspiS5Vw_O4t2Mz9qWgAm9u7k4PD1Q2Px14vhOhe6sS8GM5F0Es-KwKXU-a0XLOGoWjAmqd7NU_zSrA22MDRfbjXOa_kU8ttD2DD1g_hdlvO8uIRfPdJI9QGUAr_opNUs0aZStWGKH0yawI6LDm16O_j4Zmgu0xqpCIdH5IWC8ozDJmehsJJZDmtTbN8DEc3QtInMKib2j4FUlSsUKxClwRtKC9NlQmbZS7XGY5LjIog6YkndYdo7gtr_JYhss4L2RJcIsFlILgsI3i3GnPW4nlc23vb78mqp8fiDj80s1-yE21p0SuOncMl6UzkcanixAnncm7R_dIqjWCr31HZKYi5vGTnCF6vmlG0fbxG1bY5D31SnnunNIJ8jRPWJrTeUk9PAkh4IVIPLhfB-55nLv_8_wt-dv1cX8EdFDr5dTzZfw53mWdkH6BLtmCwmJ3bF-ifLaqXnSAQ-HnTsvcPLvNN7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-efficiency+broadband+achromatic+metalens+for+near-IR+biological+imaging+window&rft.jtitle=Nature+communications&rft.au=Wang%2C+Yujie&rft.au=Chen%2C+Qinmiao&rft.au=Yang%2C+Wenhong&rft.au=Ji%2C+Ziheng&rft.date=2021-09-21&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=12&rft_id=info:doi/10.1038%2Fs41467-021-25797-9&rft_id=info%3Apmid%2F34548490&rft.externalDocID=PMC8455568 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |