Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis

Non-CG methylation is abundant in plants, but its functions are poorly understood. A new study has uncovered the contributions of each non-CG methyltransferase, including the poorly characterized methyltransferase CMT2, to DNA methylation patterning and gene silencing. The results suggest that non-C...

Full description

Saved in:
Bibliographic Details
Published inNature structural & molecular biology Vol. 21; no. 1; pp. 64 - 72
Main Authors Stroud, Hume, Do, Truman, Du, Jiamu, Zhong, Xuehua, Feng, Suhua, Johnson, Lianna, Patel, Dinshaw J, Jacobsen, Steven E
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.01.2014
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Non-CG methylation is abundant in plants, but its functions are poorly understood. A new study has uncovered the contributions of each non-CG methyltransferase, including the poorly characterized methyltransferase CMT2, to DNA methylation patterning and gene silencing. The results suggest that non-CG methyltransferases participate in self-reinforcing loop mechanisms with histone H3 K9 methylation and small RNAs to control gene silencing throughout the Arabidopsis genome. DNA methylation occurs in CG and non-CG sequence contexts. Non-CG methylation is abundant in plants and is mediated by CHROMOMETHYLASE (CMT) and DOMAINS REARRANGED METHYLTRANSFERASE (DRM) proteins; however, its roles remain poorly understood. Here we characterize the roles of non-CG methylation in Arabidopsis thaliana . We show that a poorly characterized methyltransferase, CMT2, is a functional methyltransferase in vitro and in vivo . CMT2 preferentially binds histone H3 Lys9 (H3K9) dimethylation and methylates non-CG cytosines that are regulated by H3K9 methylation. We revealed the contributions and redundancies between each non-CG methyltransferase in DNA methylation patterning and in regulating transcription. We also demonstrate extensive dependencies of small-RNA accumulation and H3K9 methylation patterning on non-CG methylation, suggesting self-reinforcing mechanisms between these epigenetic factors. The results suggest that non-CG methylation patterns are critical in shaping the landscapes of histone modification and small noncoding RNA.
AbstractList Non-CG methylation is abundant in plants, but its functions are poorly understood. A new study has uncovered the contributions of each non-CG methyltransferase, including the poorly characterized methyltransferase CMT2, to DNA methylation patterning and gene silencing. The results suggest that non-CG methyltransferases participate in self-reinforcing loop mechanisms with histone H3 K9 methylation and small RNAs to control gene silencing throughout the Arabidopsis genome. DNA methylation occurs in CG and non-CG sequence contexts. Non-CG methylation is abundant in plants and is mediated by CHROMOMETHYLASE (CMT) and DOMAINS REARRANGED METHYLTRANSFERASE (DRM) proteins; however, its roles remain poorly understood. Here we characterize the roles of non-CG methylation in Arabidopsis thaliana . We show that a poorly characterized methyltransferase, CMT2, is a functional methyltransferase in vitro and in vivo . CMT2 preferentially binds histone H3 Lys9 (H3K9) dimethylation and methylates non-CG cytosines that are regulated by H3K9 methylation. We revealed the contributions and redundancies between each non-CG methyltransferase in DNA methylation patterning and in regulating transcription. We also demonstrate extensive dependencies of small-RNA accumulation and H3K9 methylation patterning on non-CG methylation, suggesting self-reinforcing mechanisms between these epigenetic factors. The results suggest that non-CG methylation patterns are critical in shaping the landscapes of histone modification and small noncoding RNA.
DNA methylation occurs in CG and non-CG sequence contexts. Non-CG methylation is abundant in plants and is mediated by CHROMOMETHYLASE (CMT) and DOMAINS REARRANGED METHYLTRANSFERASE (DRM) proteins; however, its roles remain poorly understood. Here we characterize the roles of non-CG methylation in Arabidopsis thaliana. We show that a poorly characterized methyltransferase, CMT2, is a functional methyltransferase in vitro and in vivo. CMT2 preferentially binds histone H3 Lys9 (H3K9) dimethylation and methylates non-CG cytosines that are regulated by H3K9 methylation. We revealed the contributions and redundancies between each non-CG methyltransferase in DNA methylation patterning and in regulating transcription. We also demonstrate extensive dependencies of small-RNA accumulation and H3K9 methylation patterning on non-CG methylation, suggesting self-reinforcing mechanisms between these epigenetic factors. The results suggest that non-CG methylation patterns are critical in shaping the landscapes of histone modification and small noncoding RNA.
DNA methylation occurs in CG and non-CG sequence contexts. Non-CG methylation is abundant in plants and is mediated by CHROMOMETHYLASE (CMT) and DOMAINS REARRANGED METHYLTRANSFERASE (DRM) proteins; however, its roles remain poorly understood. Here we characterize the roles of non-CG methylation in Arabidopsis thaliana. We show that a poorly characterized methyltransferase, CMT2, is a functional methyltransferase in vitro and in vivo. CMT2 preferentially binds histone H3 Lys9 (H3K9) dimethylation and methylates non-CG cytosines that are regulated by H3K9 methylation. We revealed the contributions and redundancies between each non-CG methyltransferase in DNA methylation patterning and in regulating transcription. We also demonstrate extensive dependencies of small-RNA accumulation and H3K9 methylation patterning on non-CG methylation, suggesting self-reinforcing mechanisms between these epigenetic factors. The results suggest that non-CG methylation patterns are critical in shaping the landscapes of histone modification and small noncoding RNA. [PUBLICATION ABSTRACT]
DNA methylation occurs in CG and non-CG sequence contexts. Non-CG methylation is abundant in plants and is mediated by CHROMOMETHYLASE (CMT) and DOMAINS REARRANGED METHYLTRANSFERASE (DRM) proteins; however, its roles remain poorly understood. Here we characterize the roles of non-CG methylation in Arabidopsis thaliana. We show that a poorly characterized methyltransferase, CMT2, is a functional methyltransferase in vitro and in vivo. CMT2 preferentially binds histone H3 Lys9 (H3K9) dimethylation and methylates non-CG cytosines that are regulated by H3K9 methylation. We revealed the contributions and redundancies between each non-CG methyltransferase in DNA methylation patterning and in regulating transcription. We also demonstrate extensive dependencies of small-RNA accumulation and H3K9 methylation patterning on non-CG methylation, suggesting self-reinforcing mechanisms between these epigenetic factors. The results suggest that non-CG methylation patterns are critical in shaping the landscapes of histone modification and small noncoding RNA.DNA methylation occurs in CG and non-CG sequence contexts. Non-CG methylation is abundant in plants and is mediated by CHROMOMETHYLASE (CMT) and DOMAINS REARRANGED METHYLTRANSFERASE (DRM) proteins; however, its roles remain poorly understood. Here we characterize the roles of non-CG methylation in Arabidopsis thaliana. We show that a poorly characterized methyltransferase, CMT2, is a functional methyltransferase in vitro and in vivo. CMT2 preferentially binds histone H3 Lys9 (H3K9) dimethylation and methylates non-CG cytosines that are regulated by H3K9 methylation. We revealed the contributions and redundancies between each non-CG methyltransferase in DNA methylation patterning and in regulating transcription. We also demonstrate extensive dependencies of small-RNA accumulation and H3K9 methylation patterning on non-CG methylation, suggesting self-reinforcing mechanisms between these epigenetic factors. The results suggest that non-CG methylation patterns are critical in shaping the landscapes of histone modification and small noncoding RNA.
Audience Academic
Author Patel, Dinshaw J
Zhong, Xuehua
Stroud, Hume
Johnson, Lianna
Du, Jiamu
Jacobsen, Steven E
Feng, Suhua
Do, Truman
Author_xml – sequence: 1
  givenname: Hume
  surname: Stroud
  fullname: Stroud, Hume
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles
– sequence: 2
  givenname: Truman
  surname: Do
  fullname: Do, Truman
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles
– sequence: 3
  givenname: Jiamu
  surname: Du
  fullname: Du, Jiamu
  organization: Structural Biology Program, Memorial Sloan-Kettering Cancer Center
– sequence: 4
  givenname: Xuehua
  surname: Zhong
  fullname: Zhong, Xuehua
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Present address: Wisconsin Institute for Discovery, Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, USA
– sequence: 5
  givenname: Suhua
  surname: Feng
  fullname: Feng, Suhua
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Howard Hughes Medical Institute, University of California, Los Angeles
– sequence: 6
  givenname: Lianna
  surname: Johnson
  fullname: Johnson, Lianna
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles
– sequence: 7
  givenname: Dinshaw J
  surname: Patel
  fullname: Patel, Dinshaw J
  organization: Structural Biology Program, Memorial Sloan-Kettering Cancer Center
– sequence: 8
  givenname: Steven E
  surname: Jacobsen
  fullname: Jacobsen, Steven E
  email: jacobsen@ucla.edu
  organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Howard Hughes Medical Institute, University of California, Los Angeles
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24336224$$D View this record in MEDLINE/PubMed
BookMark eNqF0ktr3DAQAGBRUppHc-gfKIZe2oI3smVJ1nFZ2nQhtJA0ZyHLo10FW3YlGZJ_XzmbR7cNFGMk7G_GY80cowM3OEDoXYEXBSb1mQt9syg5oa_QUUErmgtR04OnvSCH6DiEG4xLSjl5gw7LihBWltURWn8fXL46z3qI27tORTu4bFQxgnchC1s1Qha3kMFoN-AgWp11yrVBzy-sy5ZeNbYdxmDDW_TaqC7A6cN6gq6_fvm5-pZf_Dhfr5YXuaY1ibmhAtcFE0xrVuISt0wZaoxiFJqi5YYY0mKGGyM0UA6NoJyDYg2rVVmmm5ygj7u8ox9-TRCi7G3Q0KW6YJiCLCipakxZWv9LK4E5IwxXiX74i94Mk3fpR5Li1f2BiWe1UR1I68wQvdJzUrkklAvGi6pOavGCSlcLvdWpdcam53sBn_YCkolwGzdqCkGury737fuHQqemh1aO3vbK38nHliZwtgPaDyF4MFLbeN_YVIXtZIHlPDRyHho5D83z558iHpO-ZD_vbEjGbcD_cU7_4N966czf
CitedBy_id crossref_primary_10_1073_pnas_1519067112
crossref_primary_10_1093_bioinformatics_btx633
crossref_primary_10_1093_nar_gkaa766
crossref_primary_10_3390_epigenomes5030019
crossref_primary_10_1186_s12864_025_11456_6
crossref_primary_10_1038_s41422_024_01027_x
crossref_primary_10_1093_nargab_lqab119
crossref_primary_10_1016_j_pbi_2022_102260
crossref_primary_10_1016_j_pbi_2023_102428
crossref_primary_10_1371_journal_pgen_1004446
crossref_primary_10_1007_s00299_019_02414_0
crossref_primary_10_1126_science_abg6130
crossref_primary_10_1007_s00018_014_1792_z
crossref_primary_10_1146_annurev_arplant_070523_041445
crossref_primary_10_3389_fpls_2022_850726
crossref_primary_10_3389_fgene_2020_00186
crossref_primary_10_1007_s00299_020_02558_4
crossref_primary_10_1016_j_celrep_2022_111699
crossref_primary_10_1186_s13059_017_1226_y
crossref_primary_10_1016_j_jhazmat_2023_132649
crossref_primary_10_3390_plants10122766
crossref_primary_10_1093_nar_gkab746
crossref_primary_10_1093_plcell_koab098
crossref_primary_10_1007_s11103_015_0328_8
crossref_primary_10_1038_s41477_023_01498_7
crossref_primary_10_1038_s41556_021_00661_6
crossref_primary_10_1016_j_pbi_2023_102436
crossref_primary_10_1073_pnas_2023347118
crossref_primary_10_1093_dnares_dsy008
crossref_primary_10_1093_plphys_kiae113
crossref_primary_10_3389_fnut_2021_800489
crossref_primary_10_1186_s13059_022_02768_x
crossref_primary_10_3390_plants12142654
crossref_primary_10_1186_s12870_024_05858_z
crossref_primary_10_1073_pnas_2125016118
crossref_primary_10_1016_j_tplants_2020_03_005
crossref_primary_10_1016_j_tig_2020_06_019
crossref_primary_10_1007_s13353_021_00648_x
crossref_primary_10_1186_s13059_017_1236_9
crossref_primary_10_7717_peerj_4945
crossref_primary_10_1186_s13059_024_03220_y
crossref_primary_10_1093_nargab_lqaa049
crossref_primary_10_1101_gr_279379_124
crossref_primary_10_1016_j_ygeno_2020_08_031
crossref_primary_10_1016_j_hpj_2024_02_009
crossref_primary_10_1128_JVI_00656_16
crossref_primary_10_3390_plants8050135
crossref_primary_10_1093_aob_mcac125
crossref_primary_10_1093_plphys_kiae583
crossref_primary_10_1111_tpj_16744
crossref_primary_10_3390_plants8120564
crossref_primary_10_1073_pnas_1716758114
crossref_primary_10_3390_ijms22189681
crossref_primary_10_1080_21541264_2020_1825906
crossref_primary_10_1111_pce_13324
crossref_primary_10_1186_s13059_016_1059_0
crossref_primary_10_3389_fpls_2022_1092067
crossref_primary_10_1371_journal_pgen_1005998
crossref_primary_10_1038_s41467_022_28940_2
crossref_primary_10_1101_gad_270876_115
crossref_primary_10_1002_tpg2_20320
crossref_primary_10_1093_jxb_eraa560
crossref_primary_10_1007_s12892_020_00072_3
crossref_primary_10_1073_pnas_1716300115
crossref_primary_10_1080_15592294_2021_2022066
crossref_primary_10_1093_dnares_dsx016
crossref_primary_10_1111_pbi_13337
crossref_primary_10_1111_tpj_15781
crossref_primary_10_1146_annurev_genet_120215_035254
crossref_primary_10_1016_j_molp_2019_06_004
crossref_primary_10_1038_s41598_019_39239_6
crossref_primary_10_1186_s13072_020_00361_9
crossref_primary_10_1007_s11676_021_01424_7
crossref_primary_10_1073_pnas_1619047114
crossref_primary_10_1093_plphys_kiac033
crossref_primary_10_1016_j_pbi_2023_102419
crossref_primary_10_1111_tpj_16875
crossref_primary_10_3390_ijms231810492
crossref_primary_10_1093_hr_uhad170
crossref_primary_10_3390_ijms24108514
crossref_primary_10_3390_ijms21093318
crossref_primary_10_1093_plcell_koad010
crossref_primary_10_1073_pnas_1515072113
crossref_primary_10_1002_2211_5463_12627
crossref_primary_10_1007_s00299_022_02901_x
crossref_primary_10_1016_j_pbi_2020_101990
crossref_primary_10_1016_j_pbi_2022_102248
crossref_primary_10_1007_s11103_023_01396_8
crossref_primary_10_1016_j_pbi_2016_12_007
crossref_primary_10_3390_genes13060992
crossref_primary_10_1016_j_pbi_2021_102060
crossref_primary_10_1186_s13059_017_1302_3
crossref_primary_10_1016_j_bbapap_2020_140592
crossref_primary_10_1007_s10265_021_01342_z
crossref_primary_10_1080_10409238_2017_1279119
crossref_primary_10_1371_journal_pone_0181669
crossref_primary_10_1042_BST20210908
crossref_primary_10_1093_plcell_koae034
crossref_primary_10_3390_ijms17060938
crossref_primary_10_1016_j_semcdb_2015_04_004
crossref_primary_10_1080_15592294_2015_1104446
crossref_primary_10_7554_eLife_69396
crossref_primary_10_1007_s12298_018_0566_8
crossref_primary_10_1111_nph_19311
crossref_primary_10_1093_plcell_koaf017
crossref_primary_10_1186_s13059_017_1313_0
crossref_primary_10_1093_jxb_erw310
crossref_primary_10_1042_EBC20190032
crossref_primary_10_1073_pnas_2107320118
crossref_primary_10_7554_eLife_62994
crossref_primary_10_1093_nar_gkad610
crossref_primary_10_1111_nph_17018
crossref_primary_10_1073_pnas_2402946121
crossref_primary_10_3389_fpls_2022_926305
crossref_primary_10_3390_plants10061096
crossref_primary_10_1093_dnares_dsx046
crossref_primary_10_1093_jxb_eraa132
crossref_primary_10_1016_j_plantsci_2015_06_015
crossref_primary_10_3389_fpls_2016_00447
crossref_primary_10_1098_rsob_240159
crossref_primary_10_1038_cr_2015_145
crossref_primary_10_1016_j_jia_2023_04_045
crossref_primary_10_1073_pnas_1406611111
crossref_primary_10_1016_j_cell_2014_06_006
crossref_primary_10_1038_s41477_020_0671_x
crossref_primary_10_1371_journal_pone_0191492
crossref_primary_10_1093_bfgp_elz024
crossref_primary_10_3390_genes10070544
crossref_primary_10_1186_s12859_019_2845_y
crossref_primary_10_1186_s13059_024_03163_4
crossref_primary_10_3389_fpls_2022_1111623
crossref_primary_10_1186_s12870_024_05285_0
crossref_primary_10_1371_journal_pgen_1006526
crossref_primary_10_3390_ijms21113783
crossref_primary_10_1038_s41467_019_10026_1
crossref_primary_10_1093_molbev_msae170
crossref_primary_10_1016_j_pbi_2022_102211
crossref_primary_10_1016_j_pbi_2021_102032
crossref_primary_10_1111_nph_17353
crossref_primary_10_1038_nplants_2016_58
crossref_primary_10_1093_plphys_kiae135
crossref_primary_10_1126_sciadv_abg5442
crossref_primary_10_3389_fpls_2021_703667
crossref_primary_10_1101_gr_204032_116
crossref_primary_10_1016_j_pbi_2019_02_008
crossref_primary_10_1038_s41467_021_23346_y
crossref_primary_10_1016_j_pbi_2020_08_007
crossref_primary_10_1073_pnas_1423603112
crossref_primary_10_3389_fcell_2023_1097780
crossref_primary_10_1016_j_pbi_2015_05_027
crossref_primary_10_1007_s10265_020_01185_0
crossref_primary_10_1111_ppl_12615
crossref_primary_10_3389_fpls_2020_00452
crossref_primary_10_1111_tpj_14531
crossref_primary_10_1186_s12864_023_09128_4
crossref_primary_10_7554_eLife_07808
crossref_primary_10_1038_s41467_024_51513_4
crossref_primary_10_1042_BCJ20160123
crossref_primary_10_1093_dnares_dsy021
crossref_primary_10_1038_s44319_024_00304_5
crossref_primary_10_1186_s12864_017_3542_8
crossref_primary_10_1016_j_compbiolchem_2016_12_002
crossref_primary_10_1111_mec_13573
crossref_primary_10_15252_embj_201489499
crossref_primary_10_1371_journal_pgen_1004842
crossref_primary_10_1038_s41467_017_02219_3
crossref_primary_10_3390_plants10091884
crossref_primary_10_1007_s12374_020_09258_2
crossref_primary_10_1007_s11033_023_08879_3
crossref_primary_10_1186_s12870_017_1070_y
crossref_primary_10_1080_07352689_2021_1920731
crossref_primary_10_1007_s10725_017_0323_y
crossref_primary_10_1007_s12010_018_2738_y
crossref_primary_10_1038_s41598_020_75432_8
crossref_primary_10_1016_j_neo_2015_02_006
crossref_primary_10_1101_gad_289397_116
crossref_primary_10_1093_g3journal_jkae004
crossref_primary_10_1038_s41467_022_31627_3
crossref_primary_10_1016_j_chemosphere_2019_04_076
crossref_primary_10_1111_nph_20225
crossref_primary_10_3389_fmolb_2022_888983
crossref_primary_10_3390_plants12213667
crossref_primary_10_3390_ijms21165753
crossref_primary_10_1093_jxb_eraf030
crossref_primary_10_1093_plphys_kiae072
crossref_primary_10_1111_pbi_12988
crossref_primary_10_1111_tpj_15848
crossref_primary_10_7554_eLife_19092
crossref_primary_10_1111_pce_14722
crossref_primary_10_3389_fpls_2020_595603
crossref_primary_10_1073_pnas_1921055117
crossref_primary_10_1073_pnas_2001290119
crossref_primary_10_7717_peerj_5199
crossref_primary_10_1016_j_molp_2021_06_006
crossref_primary_10_1016_j_hpj_2022_11_003
crossref_primary_10_1016_j_jplph_2016_07_019
crossref_primary_10_3389_fpls_2015_01049
crossref_primary_10_1186_s13059_020_02163_4
crossref_primary_10_3389_fpls_2022_933740
crossref_primary_10_1271_kagakutoseibutsu_55_810
crossref_primary_10_1038_s41477_025_01924_y
crossref_primary_10_1038_s41467_021_27320_6
crossref_primary_10_1111_mec_13550
crossref_primary_10_1093_nar_gkw1330
crossref_primary_10_1186_s13059_021_02359_2
crossref_primary_10_1038_s41598_017_13928_6
crossref_primary_10_7554_eLife_89353_3
crossref_primary_10_1038_s41467_021_22993_5
crossref_primary_10_3390_ijms19103196
crossref_primary_10_1038_nrg3685
crossref_primary_10_1038_nrg3683
crossref_primary_10_3390_ijms232415950
crossref_primary_10_1371_journal_pgen_1011358
crossref_primary_10_1002_reg2_73
crossref_primary_10_1038_s41598_018_24515_8
crossref_primary_10_1111_tpj_12545
crossref_primary_10_1038_s41467_019_08736_7
crossref_primary_10_1101_gr_278409_123
crossref_primary_10_1007_s11427_024_2784_3
crossref_primary_10_1016_j_molp_2018_02_006
crossref_primary_10_1038_s41580_024_00769_1
crossref_primary_10_1007_s13258_021_01199_5
crossref_primary_10_1038_s42003_020_1059_1
crossref_primary_10_1038_nrm4043
crossref_primary_10_1038_s41598_022_16530_7
crossref_primary_10_1371_journal_pone_0105267
crossref_primary_10_1073_pnas_1815441116
crossref_primary_10_1080_15476286_2017_1409930
crossref_primary_10_1007_s11295_024_01640_2
crossref_primary_10_1371_journal_pgen_1009034
crossref_primary_10_1016_j_jmb_2019_12_043
crossref_primary_10_1111_tpj_13526
crossref_primary_10_1186_s12864_018_5087_x
crossref_primary_10_1016_j_bbagrm_2016_08_009
crossref_primary_10_1007_s44154_022_00052_3
crossref_primary_10_1093_biomethods_bpw008
crossref_primary_10_1371_journal_pone_0279688
crossref_primary_10_1242_dev_194274
crossref_primary_10_1038_ncomms15122
crossref_primary_10_1016_j_bbagrm_2016_08_004
crossref_primary_10_1016_j_pbi_2023_102387
crossref_primary_10_1101_gad_299347_117
crossref_primary_10_1007_s11103_022_01330_4
crossref_primary_10_1007_s10725_018_0389_1
crossref_primary_10_1186_s13059_022_02750_7
crossref_primary_10_1016_j_tplants_2014_01_014
crossref_primary_10_7554_eLife_47891
crossref_primary_10_3390_plants12102057
crossref_primary_10_1098_rstb_2020_0123
crossref_primary_10_1021_acs_jafc_4c02650
crossref_primary_10_3389_fpls_2017_01247
crossref_primary_10_1038_s41467_024_49465_w
crossref_primary_10_1038_s41588_017_0008_5
crossref_primary_10_1186_s12864_018_4484_5
crossref_primary_10_1186_s12870_018_1553_5
crossref_primary_10_7717_peerj_8432
crossref_primary_10_1007_s40502_017_0337_5
crossref_primary_10_1371_journal_pgen_1011296
crossref_primary_10_1007_s00344_024_11462_0
crossref_primary_10_1111_imb_12917
crossref_primary_10_3390_cells11172700
crossref_primary_10_1111_mec_14736
crossref_primary_10_7554_eLife_58533
crossref_primary_10_1007_s13237_024_00502_5
crossref_primary_10_1371_journal_pone_0103145
crossref_primary_10_1038_s41467_020_19140_x
crossref_primary_10_1073_pnas_1600672113
crossref_primary_10_1186_s40529_022_00366_5
crossref_primary_10_3389_fpls_2021_769712
crossref_primary_10_3389_fmolb_2021_616623
crossref_primary_10_3390_foods10092198
crossref_primary_10_1371_journal_pgen_1005724
crossref_primary_10_1111_jipb_13200
crossref_primary_10_1038_s41598_019_38607_6
crossref_primary_10_1016_j_bbagrm_2014_04_011
crossref_primary_10_1093_nar_gkv958
crossref_primary_10_3389_fpls_2019_00243
crossref_primary_10_1186_s13072_017_0148_y
crossref_primary_10_1186_s13059_022_02641_x
crossref_primary_10_1101_gr_202465_115
crossref_primary_10_3389_fpls_2022_959053
crossref_primary_10_1186_s13059_020_02099_9
crossref_primary_10_1101_gr_182238_114
crossref_primary_10_1016_j_ygeno_2020_04_006
crossref_primary_10_1016_j_ygeno_2020_04_005
crossref_primary_10_1111_nph_18286
crossref_primary_10_3390_ijms22189877
crossref_primary_10_1038_s41467_022_32709_y
crossref_primary_10_1073_pnas_2011361117
crossref_primary_10_1093_nar_gkad306
crossref_primary_10_1093_nar_gkab128
crossref_primary_10_1007_s00412_017_0655_4
crossref_primary_10_3390_plants13141977
crossref_primary_10_1016_j_bbagrm_2016_07_012
crossref_primary_10_1016_j_pbi_2015_02_007
crossref_primary_10_3389_fpls_2022_1036764
crossref_primary_10_1038_s41576_021_00407_y
crossref_primary_10_1038_s41477_021_01086_7
crossref_primary_10_1186_1756_0500_7_721
crossref_primary_10_1007_s11427_021_1970_x
crossref_primary_10_7554_eLife_89353
crossref_primary_10_1126_science_aar7854
crossref_primary_10_1101_gr_253674_119
crossref_primary_10_1371_journal_pgen_1008492
crossref_primary_10_1073_pnas_1514680112
crossref_primary_10_1017_qpb_2023_14
crossref_primary_10_1111_nph_14874
crossref_primary_10_3390_biology11070954
crossref_primary_10_1016_j_pbi_2017_03_002
crossref_primary_10_1093_plphys_kiab531
crossref_primary_10_1186_s12870_024_05641_0
crossref_primary_10_1038_s41477_020_00843_4
crossref_primary_10_1146_annurev_phyto_010820_012805
crossref_primary_10_3390_genes10050344
crossref_primary_10_3390_plants12020241
crossref_primary_10_1111_tpj_12726
crossref_primary_10_1371_journal_pgen_1009326
crossref_primary_10_1016_j_cub_2019_12_015
crossref_primary_10_1016_j_molcel_2014_06_009
crossref_primary_10_1016_j_celrep_2023_112132
crossref_primary_10_1111_jipb_13883
crossref_primary_10_1038_s41467_021_27690_x
crossref_primary_10_3389_fpls_2014_00803
crossref_primary_10_1111_tpj_15098
crossref_primary_10_1038_s41467_020_20606_1
crossref_primary_10_1134_S1021443716020059
crossref_primary_10_1016_j_cub_2020_10_098
crossref_primary_10_1038_s41556_021_00658_1
crossref_primary_10_1266_ggs_21_00041
crossref_primary_10_1093_nar_gkx814
crossref_primary_10_1111_pbr_13148
crossref_primary_10_1007_s11033_023_08618_8
crossref_primary_10_1093_nar_gkac012
crossref_primary_10_3389_fpls_2023_1229495
crossref_primary_10_1002_wsbm_1411
crossref_primary_10_1186_s12864_022_08312_2
crossref_primary_10_1146_annurev_phyto_080615_100308
crossref_primary_10_3390_ijms22136783
crossref_primary_10_1016_j_devcel_2018_05_023
crossref_primary_10_1038_s41598_017_12510_4
crossref_primary_10_1016_j_jgg_2024_04_003
crossref_primary_10_1101_sqb_2019_84_040394
crossref_primary_10_1016_j_jplph_2022_153740
crossref_primary_10_1073_pnas_1420515111
crossref_primary_10_1101_gad_343871_120
crossref_primary_10_1186_s13059_017_1251_x
crossref_primary_10_3390_plants10071423
crossref_primary_10_1111_tpj_12952
crossref_primary_10_1111_nph_15818
crossref_primary_10_1534_genetics_120_303264
crossref_primary_10_1186_s13059_019_1672_9
crossref_primary_10_1016_j_molp_2015_10_008
crossref_primary_10_1111_jipb_13423
crossref_primary_10_1016_j_plaphy_2019_12_010
crossref_primary_10_1016_S2095_3119_21_63827_3
crossref_primary_10_1016_j_cell_2014_03_056
crossref_primary_10_1105_tpc_114_130120
crossref_primary_10_1111_jipb_12767
crossref_primary_10_3390_f13020288
crossref_primary_10_1093_nar_gky602
crossref_primary_10_1016_j_ygeno_2016_10_004
crossref_primary_10_3390_v10080402
crossref_primary_10_3390_f11101076
crossref_primary_10_1186_s13059_024_03466_6
crossref_primary_10_1093_plphys_kiae600
crossref_primary_10_1038_s41467_024_52114_x
crossref_primary_10_1093_jxb_ery292
crossref_primary_10_1093_plcell_koab319
crossref_primary_10_1007_s00497_021_00436_x
crossref_primary_10_1016_j_pbi_2024_102598
crossref_primary_10_1038_nrg_2017_45
crossref_primary_10_1186_s13059_016_1032_y
crossref_primary_10_1186_s42397_019_0033_2
crossref_primary_10_1007_s10142_016_0502_3
crossref_primary_10_1038_s41467_024_51246_4
crossref_primary_10_7717_peerj_4461
crossref_primary_10_1016_j_semcdb_2022_02_026
crossref_primary_10_1093_plphys_kiad622
crossref_primary_10_26508_lsa_201800197
crossref_primary_10_1093_plphys_kiad625
crossref_primary_10_1134_S0006297916020085
crossref_primary_10_3389_fpls_2019_00625
crossref_primary_10_1007_s00497_021_00422_3
crossref_primary_10_1007_s42976_022_00300_2
crossref_primary_10_1111_mec_13230
crossref_primary_10_1186_s12864_021_07600_7
crossref_primary_10_1038_s42003_020_01525_9
crossref_primary_10_3389_fpls_2022_899105
crossref_primary_10_1371_journal_pgen_1010345
crossref_primary_10_1016_j_molp_2025_01_019
crossref_primary_10_15252_embj_201798482
crossref_primary_10_1016_j_cell_2016_06_044
crossref_primary_10_3390_plants10020236
crossref_primary_10_1038_s41467_024_55387_4
crossref_primary_10_1016_j_celrep_2023_112163
crossref_primary_10_1038_s41422_018_0119_2
crossref_primary_10_1093_nar_gkae594
crossref_primary_10_1093_plphys_kiac525
crossref_primary_10_1111_nph_17804
crossref_primary_10_1016_j_biosystems_2021_104566
crossref_primary_10_1093_eep_dvw007
crossref_primary_10_1080_15592294_2023_2211362
crossref_primary_10_1534_g3_119_400659
crossref_primary_10_1002_pmic_202200104
crossref_primary_10_1104_pp_114_252106
crossref_primary_10_1093_treephys_tpad074
crossref_primary_10_1111_ppl_13149
crossref_primary_10_1111_aab_12280
crossref_primary_10_1371_journal_pgen_1010452
crossref_primary_10_7554_eLife_64593
crossref_primary_10_1016_j_plaphy_2021_01_024
crossref_primary_10_1038_ncomms11640
crossref_primary_10_1111_tpj_14098
crossref_primary_10_15252_embr_202256678
crossref_primary_10_3389_fpls_2022_888102
crossref_primary_10_1093_pcp_pcv036
crossref_primary_10_3389_fpls_2022_934379
crossref_primary_10_3390_plants12030437
crossref_primary_10_3390_ijms23158299
crossref_primary_10_7554_eLife_05255
crossref_primary_10_1093_jxb_erad427
crossref_primary_10_1038_s41467_020_14995_6
crossref_primary_10_1016_j_cell_2018_09_043
crossref_primary_10_1016_j_gde_2023_102147
crossref_primary_10_1093_nar_gkz618
crossref_primary_10_1073_pnas_1716945115
crossref_primary_10_1007_s40626_024_00335_2
crossref_primary_10_1093_nar_gkv258
crossref_primary_10_1093_treephys_tpaa097
crossref_primary_10_1073_pnas_1619074114
crossref_primary_10_7554_eLife_19893
crossref_primary_10_1093_plcell_koab117
crossref_primary_10_1371_journal_pone_0202137
crossref_primary_10_1002_tpg2_20027
crossref_primary_10_1007_s00299_021_02787_1
crossref_primary_10_1093_hr_uhad126
crossref_primary_10_1186_s12915_022_01362_8
crossref_primary_10_1093_plphys_kiac228
crossref_primary_10_1101_gr_215186_116
crossref_primary_10_1098_rspb_2019_0718
crossref_primary_10_1186_s13059_017_1229_8
crossref_primary_10_1038_nplants_2016_169
crossref_primary_10_1093_plcell_koad313
crossref_primary_10_1111_tpj_16137
crossref_primary_10_1038_s42003_023_04607_6
crossref_primary_10_1093_nar_gkw238
crossref_primary_10_1111_mpp_12850
crossref_primary_10_15252_embj_201694983
crossref_primary_10_3389_fpls_2022_1090967
crossref_primary_10_1186_s13059_016_1127_5
crossref_primary_10_1371_journal_pgen_1008993
crossref_primary_10_1002_elsc_201700019
crossref_primary_10_1016_j_pbi_2016_07_010
crossref_primary_10_1016_j_pbi_2021_102008
crossref_primary_10_1093_hr_uhad114
crossref_primary_10_1002_dvg_23399
crossref_primary_10_1016_j_gep_2017_04_001
crossref_primary_10_1073_pnas_1807796115
crossref_primary_10_1007_s00299_017_2223_z
crossref_primary_10_1093_plphys_kiad668
crossref_primary_10_7554_eLife_30674
crossref_primary_10_15252_msb_20188591
crossref_primary_10_1111_pbi_13049
crossref_primary_10_1186_s13059_017_1281_4
crossref_primary_10_1126_science_abi7489
crossref_primary_10_3389_fpls_2021_764999
crossref_primary_10_3389_fpls_2022_1017672
crossref_primary_10_1038_s41598_024_54862_8
crossref_primary_10_1111_febs_16633
crossref_primary_10_1371_journal_pgen_1009710
crossref_primary_10_1007_s00709_016_1008_5
crossref_primary_10_1007_s00425_022_03962_8
crossref_primary_10_1146_annurev_arplant_070122_025047
crossref_primary_10_7554_eLife_42530
crossref_primary_10_1016_j_plantsci_2022_111499
crossref_primary_10_1093_hr_uhac132
crossref_primary_10_1186_s13059_020_02190_1
crossref_primary_10_7554_eLife_72676
crossref_primary_10_1186_s12864_018_4708_8
crossref_primary_10_1002_tpg2_20049
crossref_primary_10_1101_gr_279532_124
crossref_primary_10_1111_pce_14490
crossref_primary_10_1101_gad_301499_117
crossref_primary_10_1111_tpj_13193
crossref_primary_10_1186_s12870_021_02953_3
crossref_primary_10_1038_s41467_022_28468_5
crossref_primary_10_1111_jipb_12979
crossref_primary_10_1111_pbi_13299
crossref_primary_10_1007_s00344_024_11533_2
crossref_primary_10_1111_jipb_12733
crossref_primary_10_3389_fpls_2023_1123211
crossref_primary_10_1186_s12864_018_4641_x
crossref_primary_10_3390_epigenomes1020010
crossref_primary_10_1111_tpj_16119
crossref_primary_10_1016_j_cell_2014_02_045
crossref_primary_10_1038_s41467_018_06965_w
crossref_primary_10_3390_agronomy12051039
crossref_primary_10_1093_nar_gkv244
crossref_primary_10_1126_science_abh0556
crossref_primary_10_3389_fgene_2022_819941
crossref_primary_10_1038_s41467_019_09496_0
crossref_primary_10_3390_genes13020339
crossref_primary_10_1186_s13059_017_1383_z
crossref_primary_10_1016_j_matbio_2018_02_015
crossref_primary_10_3390_plants7030059
crossref_primary_10_1111_nph_18876
crossref_primary_10_1111_tpj_15599
crossref_primary_10_3389_fpls_2021_596236
crossref_primary_10_3390_ijms21186700
crossref_primary_10_3390_ijms25147540
crossref_primary_10_1002_pld3_79
crossref_primary_10_1093_plcell_koab162
crossref_primary_10_1093_hr_uhae010
crossref_primary_10_1371_journal_pgen_1008324
crossref_primary_10_1101_gr_227116_117
crossref_primary_10_1371_journal_pgen_1006026
crossref_primary_10_1111_nph_15248
crossref_primary_10_1186_s12864_019_5499_2
crossref_primary_10_1016_j_str_2024_05_013
crossref_primary_10_1002_bies_201400097
crossref_primary_10_1038_s41586_022_05386_6
crossref_primary_10_3390_ijms21207457
crossref_primary_10_1038_s41467_022_32165_8
crossref_primary_10_1093_plcell_koab171
crossref_primary_10_1371_journal_pgen_1006141
crossref_primary_10_1186_s12864_016_3326_6
crossref_primary_10_1038_s41467_024_52239_z
crossref_primary_10_1186_s13059_019_1694_3
crossref_primary_10_1073_pnas_1809841115
crossref_primary_10_3390_genes8060159
crossref_primary_10_1016_j_pbi_2018_02_003
crossref_primary_10_1016_j_molcel_2014_07_008
crossref_primary_10_3390_cells10112952
crossref_primary_10_1093_hr_uhae005
crossref_primary_10_3390_plants13192700
crossref_primary_10_3390_horticulturae8070562
crossref_primary_10_1093_jxb_erac397
crossref_primary_10_1038_s41580_018_0016_z
crossref_primary_10_3390_ijms20123051
crossref_primary_10_1126_sciadv_adr2222
crossref_primary_10_1093_jxb_eru502
crossref_primary_10_1021_acs_jafc_3c08568
crossref_primary_10_26508_lsa_202000848
crossref_primary_10_1105_tpc_114_130427
crossref_primary_10_1371_journal_pgen_1005154
crossref_primary_10_1016_j_stress_2025_100812
crossref_primary_10_1186_s13059_017_1195_1
crossref_primary_10_3390_epigenomes4040025
crossref_primary_10_1016_j_pbi_2015_07_005
crossref_primary_10_1073_pnas_1413053112
crossref_primary_10_1016_j_jgg_2018_09_004
crossref_primary_10_1038_s41588_018_0115_y
crossref_primary_10_1186_s13059_019_1859_0
crossref_primary_10_3390_ijms20194683
crossref_primary_10_1016_j_molp_2017_10_002
crossref_primary_10_1093_plphys_kiac471
crossref_primary_10_7554_eLife_06671
crossref_primary_10_1186_s13059_023_02952_7
crossref_primary_10_3390_plants13101400
crossref_primary_10_1016_j_molp_2015_01_021
crossref_primary_10_1038_s41477_020_00810_z
crossref_primary_10_1371_journal_pgen_1005142
crossref_primary_10_1002_wrna_1310
crossref_primary_10_3390_genes11030285
crossref_primary_10_2478_s11756_019_00397_7
crossref_primary_10_1002_cbf_3101
crossref_primary_10_1016_j_jbc_2023_105433
crossref_primary_10_1111_nph_18729
crossref_primary_10_1007_s11427_017_9163_4
crossref_primary_10_1016_j_pbi_2017_01_005
Cites_doi 10.1038/sj.emboj.7600743
10.1101/gr.101907.109
10.1073/pnas.0611456104
10.4161/rna.25555
10.1038/nsmb.2354
10.1371/journal.pgen.1002808
10.1038/nature08514
10.1038/emboj.2010.227
10.1101/gad.1667808
10.1073/pnas.1300585110
10.1371/journal.pgen.0020083
10.1016/j.cell.2013.02.033
10.1126/science.1106910
10.1101/gad.197772.112
10.1038/nature731
10.1186/gb-2009-10-3-r25
10.1016/j.cell.2012.07.034
10.1126/science.1079695
10.1371/journal.pbio.0050057
10.1016/j.ymeth.2007.05.002
10.1016/j.cub.2007.01.009
10.1016/S0960-9822(02)00976-4
10.1016/j.cub.2012.07.061
10.1038/nrg2719
10.1073/pnas.97.10.5237
10.1093/emboj/cdf657
10.1371/journal.pgen.1003062
10.1007/978-1-61779-089-8_16
10.1038/emboj.2011.103
10.1038/ng.365
10.1038/nature12178
10.1016/j.cell.2011.12.035
10.1016/j.cell.2012.10.054
10.1126/science.1221472
10.1101/gr.147942.112
10.1105/tpc.106.041400
10.1073/pnas.0709632105
10.1093/nar/gki901
10.1093/nar/gkh992
10.1101/gad.348405
10.1093/genetics/149.1.307
ContentType Journal Article
Copyright Springer Nature America, Inc. 2013
COPYRIGHT 2014 Nature Publishing Group
Copyright Nature Publishing Group Jan 2014
Copyright_xml – notice: Springer Nature America, Inc. 2013
– notice: COPYRIGHT 2014 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jan 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QL
7QP
7QR
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PADUT
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
DOI 10.1038/nsmb.2735
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Nucleic Acids Abstracts

Research Library Prep
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1545-9985
EndPage 72
ExternalDocumentID 3173636481
A357967148
24336224
10_1038_nsmb_2735
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA016042
– fundername: NIGMS NIH HHS
  grantid: GM60398
– fundername: NIGMS NIH HHS
  grantid: F32GM096483-01
– fundername: NIGMS NIH HHS
  grantid: R37 GM060398
– fundername: Howard Hughes Medical Institute
– fundername: NCI NIH HHS
  grantid: P30 CA008748
GroupedDBID ---
-DZ
.55
.GJ
0R~
123
29M
36B
39C
3V.
4.4
53G
5BI
5S5
6TJ
70F
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABNNU
ABUWG
ACBWK
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACRPL
ACUHS
ADBBV
ADFRT
ADNMO
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGGDT
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
AIYXT
AJQPL
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
DB5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IH2
IHR
INH
INR
ISR
ITC
L-9
L7B
LK8
M0L
M1P
M2O
M7P
MVM
N9A
NNMJJ
O9-
ODYON
P2P
PADUT
PKN
PQQKQ
PROAC
PSQYO
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
X7M
XJT
ZXP
~8M
AAYXX
ACMFV
ACSTC
AETEA
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PMFND
7QL
7QP
7QR
7TK
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c583t-f59081696cc62020d6af5ffa65eb1d7f3f3d060bf9ce57eb9577ea6b68a228a23
IEDL.DBID 7X7
ISSN 1545-9993
1545-9985
IngestDate Thu Jul 10 22:24:42 EDT 2025
Fri Jul 11 04:55:16 EDT 2025
Fri Jul 25 09:11:38 EDT 2025
Tue Jun 17 21:01:31 EDT 2025
Tue Jun 10 20:32:06 EDT 2025
Fri Jun 27 03:59:50 EDT 2025
Thu Apr 03 06:57:37 EDT 2025
Thu Apr 24 23:04:19 EDT 2025
Tue Jul 01 01:59:38 EDT 2025
Fri Feb 21 02:40:18 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-f59081696cc62020d6af5ffa65eb1d7f3f3d060bf9ce57eb9577ea6b68a228a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://doi.org/10.1038/nsmb.2735
PMID 24336224
PQID 1474243369
PQPubID 27587
PageCount 9
ParticipantIDs proquest_miscellaneous_1534805615
proquest_miscellaneous_1490763604
proquest_journals_1474243369
gale_infotracmisc_A357967148
gale_infotracacademiconefile_A357967148
gale_incontextgauss_ISR_A357967148
pubmed_primary_24336224
crossref_citationtrail_10_1038_nsmb_2735
crossref_primary_10_1038_nsmb_2735
springer_journals_10_1038_nsmb_2735
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature structural & molecular biology
PublicationTitleAbbrev Nat Struct Mol Biol
PublicationTitleAlternate Nat Struct Mol Biol
PublicationYear 2014
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Stroud (CR38) 2012; 8
Wierzbicki (CR26) 2012; 26
Johnson (CR16) 2004; 32
Wierzbicki, Ream, Haag, Pikaard (CR35) 2009; 41
Jullien, Susaki, Yelagandula, Higashiyama, Berger (CR18) 2012; 22
Laurent (CR4) 2010; 20
Zhang (CR15) 2013; 110
Pontier (CR21) 2005; 19
Inagaki (CR30) 2010; 29
Zhang, Henderson, Lu, Green, Jacobsen (CR25) 2007; 104
Deleris (CR34) 2012; 8
Jackson, Lindroth, Cao, Jacobsen (CR12) 2002; 416
Johnson, Cao, Jacobsen (CR33) 2002; 12
Law, Jacobsen (CR1) 2010; 11
Lu, Meyers, Green (CR40) 2007; 43
Zemach (CR9) 2013; 153
Feng, Rubbi, Jacobsen, Pellegrini (CR37) 2011; 733
Xie (CR3) 2012; 148
Henderson, Jacobsen (CR19) 2008; 22
Zilberman, Cao, Jacobsen (CR22) 2003; 299
Soppe (CR32) 2002; 21
Langmead, Trapnell, Pop, Salzberg (CR39) 2009; 10
Law (CR14) 2013; 498
Zhong (CR28) 2012; 19
Meissner (CR5) 2005; 33
Stroud, Greenberg, Feng, Bernatavichute, Jacobsen (CR8) 2013; 152
Du (CR10) 2012; 151
Ramsahoye (CR6) 2000; 97
Mosher, Schwach, Studholme, Baulcombe (CR24) 2008; 105
Henikoff, Comai (CR13) 1998; 149
Kasschau (CR23) 2007; 5
Lister (CR2) 2009; 462
McCue, Nuthikattu, Slotkin (CR27) 2013; 10
Chan (CR36) 2006; 2
Mathieu, Probst, Paszkowski (CR31) 2005; 24
Herr, Jensen, Dalmay, Baulcombe (CR20) 2005; 308
Varley (CR7) 2013; 23
Ebbs, Bender (CR11) 2006; 18
Johnson (CR29) 2007; 17
Moissiard (CR41) 2012; 336
Roudier (CR17) 2011; 30
R Lister (BFnsmb2735_CR2) 2009; 462
F Roudier (BFnsmb2735_CR17) 2011; 30
ML Ebbs (BFnsmb2735_CR11) 2006; 18
W Xie (BFnsmb2735_CR3) 2012; 148
X Zhang (BFnsmb2735_CR25) 2007; 104
A Meissner (BFnsmb2735_CR5) 2005; 33
BH Ramsahoye (BFnsmb2735_CR6) 2000; 97
B Langmead (BFnsmb2735_CR39) 2009; 10
O Mathieu (BFnsmb2735_CR31) 2005; 24
S Inagaki (BFnsmb2735_CR30) 2010; 29
JA Law (BFnsmb2735_CR14) 2013; 498
X Zhong (BFnsmb2735_CR28) 2012; 19
J Du (BFnsmb2735_CR10) 2012; 151
WJ Soppe (BFnsmb2735_CR32) 2002; 21
C Lu (BFnsmb2735_CR40) 2007; 43
KE Varley (BFnsmb2735_CR7) 2013; 23
JP Jackson (BFnsmb2735_CR12) 2002; 416
L Johnson (BFnsmb2735_CR33) 2002; 12
IR Henderson (BFnsmb2735_CR19) 2008; 22
AD McCue (BFnsmb2735_CR27) 2013; 10
A Deleris (BFnsmb2735_CR34) 2012; 8
SW Chan (BFnsmb2735_CR36) 2006; 2
A Zemach (BFnsmb2735_CR9) 2013; 153
KD Kasschau (BFnsmb2735_CR23) 2007; 5
H Stroud (BFnsmb2735_CR38) 2012; 8
AT Wierzbicki (BFnsmb2735_CR26) 2012; 26
JA Law (BFnsmb2735_CR1) 2010; 11
H Stroud (BFnsmb2735_CR8) 2013; 152
D Zilberman (BFnsmb2735_CR22) 2003; 299
L Johnson (BFnsmb2735_CR16) 2004; 32
S Henikoff (BFnsmb2735_CR13) 1998; 149
LM Johnson (BFnsmb2735_CR29) 2007; 17
PE Jullien (BFnsmb2735_CR18) 2012; 22
S Feng (BFnsmb2735_CR37) 2011; 733
L Laurent (BFnsmb2735_CR4) 2010; 20
H Zhang (BFnsmb2735_CR15) 2013; 110
D Pontier (BFnsmb2735_CR21) 2005; 19
RA Mosher (BFnsmb2735_CR24) 2008; 105
G Moissiard (BFnsmb2735_CR41) 2012; 336
AJ Herr (BFnsmb2735_CR20) 2005; 308
AT Wierzbicki (BFnsmb2735_CR35) 2009; 41
References_xml – volume: 24
  start-page: 2783
  year: 2005
  end-page: 2791
  ident: CR31
  article-title: Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600743
– volume: 20
  start-page: 320
  year: 2010
  end-page: 331
  ident: CR4
  article-title: Dynamic changes in the human methylome during differentiation
  publication-title: Genome Res.
  doi: 10.1101/gr.101907.109
– volume: 104
  start-page: 4536
  year: 2007
  end-page: 4541
  ident: CR25
  article-title: Role of RNA polymerase IV in plant small RNA metabolism
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0611456104
– volume: 10
  start-page: 1379
  year: 2013
  end-page: 1395
  ident: CR27
  article-title: Genome-wide identification of genes regulated in by transposable element small interfering RNAs
  publication-title: RNA Biol.
  doi: 10.4161/rna.25555
– volume: 19
  start-page: 870
  year: 2012
  end-page: 875
  ident: CR28
  article-title: DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2354
– volume: 8
  start-page: e1002808
  year: 2012
  ident: CR38
  article-title: DNA methyltransferases are required to induce heterochromatic re-replication in
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002808
– volume: 462
  start-page: 315
  year: 2009
  end-page: 322
  ident: CR2
  article-title: Human DNA methylomes at base resolution show widespread epigenomic differences
  publication-title: Nature
  doi: 10.1038/nature08514
– volume: 29
  start-page: 3496
  year: 2010
  end-page: 3506
  ident: CR30
  article-title: Autocatalytic differentiation of epigenetic modifications within the genome
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.227
– volume: 22
  start-page: 1597
  year: 2008
  end-page: 1606
  ident: CR19
  article-title: Tandem repeats upstream of the endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading
  publication-title: Genes Dev.
  doi: 10.1101/gad.1667808
– volume: 110
  start-page: 8290
  year: 2013
  end-page: 8295
  ident: CR15
  article-title: DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IV
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1300585110
– volume: 2
  start-page: e83
  year: 2006
  ident: CR36
  article-title: RNAi, DRD1, and histone methylation actively target developmentally important non-CG DNA methylation in
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0020083
– volume: 153
  start-page: 193
  year: 2013
  end-page: 205
  ident: CR9
  article-title: The nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.033
– volume: 149
  start-page: 307
  year: 1998
  end-page: 318
  ident: CR13
  article-title: A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in
  publication-title: Genetics
– volume: 308
  start-page: 118
  year: 2005
  end-page: 120
  ident: CR20
  article-title: RNA polymerase IV directs silencing of endogenous DNA
  publication-title: Science
  doi: 10.1126/science.1106910
– volume: 26
  start-page: 1825
  year: 2012
  end-page: 1836
  ident: CR26
  article-title: Spatial and functional relationships among Pol V-associated loci, Pol IV-dependent siRNAs, and cytosine methylation in the epigenome
  publication-title: Genes Dev.
  doi: 10.1101/gad.197772.112
– volume: 416
  start-page: 556
  year: 2002
  end-page: 560
  ident: CR12
  article-title: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase
  publication-title: Nature
  doi: 10.1038/nature731
– volume: 10
  start-page: R25
  year: 2009
  ident: CR39
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-3-r25
– volume: 151
  start-page: 167
  year: 2012
  end-page: 180
  ident: CR10
  article-title: Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants
  publication-title: Cell
  doi: 10.1016/j.cell.2012.07.034
– volume: 299
  start-page: 716
  year: 2003
  end-page: 719
  ident: CR22
  article-title: ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation
  publication-title: Science
  doi: 10.1126/science.1079695
– volume: 5
  start-page: e57
  year: 2007
  ident: CR23
  article-title: Genome-wide profiling and analysis of siRNAs
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050057
– volume: 43
  start-page: 110
  year: 2007
  end-page: 117
  ident: CR40
  article-title: Construction of small RNA cDNA libraries for deep sequencing
  publication-title: Methods
  doi: 10.1016/j.ymeth.2007.05.002
– volume: 17
  start-page: 379
  year: 2007
  end-page: 384
  ident: CR29
  article-title: The SRA methyl-cytosine-binding domain links DNA and histone methylation
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2007.01.009
– volume: 12
  start-page: 1360
  year: 2002
  end-page: 1367
  ident: CR33
  article-title: Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)00976-4
– volume: 22
  start-page: 1825
  year: 2012
  end-page: 1830
  ident: CR18
  article-title: DNA methylation dynamics during sexual reproduction in
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2012.07.061
– volume: 11
  start-page: 204
  year: 2010
  end-page: 220
  ident: CR1
  article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2719
– volume: 97
  start-page: 5237
  year: 2000
  end-page: 5242
  ident: CR6
  article-title: Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.97.10.5237
– volume: 21
  start-page: 6549
  year: 2002
  end-page: 6559
  ident: CR32
  article-title: DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf657
– volume: 8
  start-page: e1003062
  year: 2012
  ident: CR34
  article-title: Loss of the DNA methyltransferase MET1 induces H3K9 hypermethylation at PcG target genes and redistribution of H3K27 trimethylation to transposons in
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003062
– volume: 733
  start-page: 223
  year: 2011
  end-page: 238
  ident: CR37
  article-title: Determining DNA methylation profiles using sequencing
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61779-089-8_16
– volume: 30
  start-page: 1928
  year: 2011
  end-page: 1938
  ident: CR17
  article-title: Integrative epigenomic mapping defines four main chromatin states in
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.103
– volume: 41
  start-page: 630
  year: 2009
  end-page: 634
  ident: CR35
  article-title: RNA polymerase V transcription guides ARGONAUTE4 to chromatin
  publication-title: Nat. Genet.
  doi: 10.1038/ng.365
– volume: 498
  start-page: 385
  year: 2013
  end-page: 389
  ident: CR14
  article-title: Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1
  publication-title: Nature
  doi: 10.1038/nature12178
– volume: 148
  start-page: 816
  year: 2012
  end-page: 831
  ident: CR3
  article-title: Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome
  publication-title: Cell
  doi: 10.1016/j.cell.2011.12.035
– volume: 152
  start-page: 352
  year: 2013
  end-page: 364
  ident: CR8
  article-title: Comprehensive analysis of silencing mutants reveals complex regulation of the methylome
  publication-title: Cell
  doi: 10.1016/j.cell.2012.10.054
– volume: 336
  start-page: 1448
  year: 2012
  end-page: 1451
  ident: CR41
  article-title: MORC family ATPases required for heterochromatin condensation and gene silencing
  publication-title: Science
  doi: 10.1126/science.1221472
– volume: 23
  start-page: 555
  year: 2013
  end-page: 567
  ident: CR7
  article-title: Dynamic DNA methylation across diverse human cell lines and tissues
  publication-title: Genome Res.
  doi: 10.1101/gr.147942.112
– volume: 18
  start-page: 1166
  year: 2006
  end-page: 1176
  ident: CR11
  article-title: Locus-specific control of DNA methylation by the SUVH5 histone methyltransferase
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.041400
– volume: 105
  start-page: 3145
  year: 2008
  end-page: 3150
  ident: CR24
  article-title: PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0709632105
– volume: 33
  start-page: 5868
  year: 2005
  end-page: 5877
  ident: CR5
  article-title: Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki901
– volume: 32
  start-page: 6511
  year: 2004
  end-page: 6518
  ident: CR16
  article-title: Mass spectrometry analysis of histone H3 reveals distinct combinations of post-translational modifications
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh992
– volume: 19
  start-page: 2030
  year: 2005
  end-page: 2040
  ident: CR21
  article-title: Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in
  publication-title: Genes Dev.
  doi: 10.1101/gad.348405
– volume: 17
  start-page: 379
  year: 2007
  ident: BFnsmb2735_CR29
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2007.01.009
– volume: 10
  start-page: 1379
  year: 2013
  ident: BFnsmb2735_CR27
  publication-title: RNA Biol.
  doi: 10.4161/rna.25555
– volume: 12
  start-page: 1360
  year: 2002
  ident: BFnsmb2735_CR33
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)00976-4
– volume: 5
  start-page: e57
  year: 2007
  ident: BFnsmb2735_CR23
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050057
– volume: 336
  start-page: 1448
  year: 2012
  ident: BFnsmb2735_CR41
  publication-title: Science
  doi: 10.1126/science.1221472
– volume: 20
  start-page: 320
  year: 2010
  ident: BFnsmb2735_CR4
  publication-title: Genome Res.
  doi: 10.1101/gr.101907.109
– volume: 18
  start-page: 1166
  year: 2006
  ident: BFnsmb2735_CR11
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.041400
– volume: 26
  start-page: 1825
  year: 2012
  ident: BFnsmb2735_CR26
  publication-title: Genes Dev.
  doi: 10.1101/gad.197772.112
– volume: 33
  start-page: 5868
  year: 2005
  ident: BFnsmb2735_CR5
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki901
– volume: 148
  start-page: 816
  year: 2012
  ident: BFnsmb2735_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2011.12.035
– volume: 299
  start-page: 716
  year: 2003
  ident: BFnsmb2735_CR22
  publication-title: Science
  doi: 10.1126/science.1079695
– volume: 149
  start-page: 307
  year: 1998
  ident: BFnsmb2735_CR13
  publication-title: Genetics
  doi: 10.1093/genetics/149.1.307
– volume: 21
  start-page: 6549
  year: 2002
  ident: BFnsmb2735_CR32
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf657
– volume: 2
  start-page: e83
  year: 2006
  ident: BFnsmb2735_CR36
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0020083
– volume: 104
  start-page: 4536
  year: 2007
  ident: BFnsmb2735_CR25
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0611456104
– volume: 30
  start-page: 1928
  year: 2011
  ident: BFnsmb2735_CR17
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.103
– volume: 105
  start-page: 3145
  year: 2008
  ident: BFnsmb2735_CR24
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0709632105
– volume: 10
  start-page: R25
  year: 2009
  ident: BFnsmb2735_CR39
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-3-r25
– volume: 24
  start-page: 2783
  year: 2005
  ident: BFnsmb2735_CR31
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600743
– volume: 416
  start-page: 556
  year: 2002
  ident: BFnsmb2735_CR12
  publication-title: Nature
  doi: 10.1038/nature731
– volume: 11
  start-page: 204
  year: 2010
  ident: BFnsmb2735_CR1
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2719
– volume: 41
  start-page: 630
  year: 2009
  ident: BFnsmb2735_CR35
  publication-title: Nat. Genet.
  doi: 10.1038/ng.365
– volume: 308
  start-page: 118
  year: 2005
  ident: BFnsmb2735_CR20
  publication-title: Science
  doi: 10.1126/science.1106910
– volume: 153
  start-page: 193
  year: 2013
  ident: BFnsmb2735_CR9
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.033
– volume: 8
  start-page: e1002808
  year: 2012
  ident: BFnsmb2735_CR38
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002808
– volume: 32
  start-page: 6511
  year: 2004
  ident: BFnsmb2735_CR16
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh992
– volume: 29
  start-page: 3496
  year: 2010
  ident: BFnsmb2735_CR30
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.227
– volume: 152
  start-page: 352
  year: 2013
  ident: BFnsmb2735_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2012.10.054
– volume: 462
  start-page: 315
  year: 2009
  ident: BFnsmb2735_CR2
  publication-title: Nature
  doi: 10.1038/nature08514
– volume: 43
  start-page: 110
  year: 2007
  ident: BFnsmb2735_CR40
  publication-title: Methods
  doi: 10.1016/j.ymeth.2007.05.002
– volume: 19
  start-page: 2030
  year: 2005
  ident: BFnsmb2735_CR21
  publication-title: Genes Dev.
  doi: 10.1101/gad.348405
– volume: 23
  start-page: 555
  year: 2013
  ident: BFnsmb2735_CR7
  publication-title: Genome Res.
  doi: 10.1101/gr.147942.112
– volume: 498
  start-page: 385
  year: 2013
  ident: BFnsmb2735_CR14
  publication-title: Nature
  doi: 10.1038/nature12178
– volume: 22
  start-page: 1597
  year: 2008
  ident: BFnsmb2735_CR19
  publication-title: Genes Dev.
  doi: 10.1101/gad.1667808
– volume: 733
  start-page: 223
  year: 2011
  ident: BFnsmb2735_CR37
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61779-089-8_16
– volume: 97
  start-page: 5237
  year: 2000
  ident: BFnsmb2735_CR6
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.97.10.5237
– volume: 22
  start-page: 1825
  year: 2012
  ident: BFnsmb2735_CR18
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2012.07.061
– volume: 8
  start-page: e1003062
  year: 2012
  ident: BFnsmb2735_CR34
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003062
– volume: 110
  start-page: 8290
  year: 2013
  ident: BFnsmb2735_CR15
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1300585110
– volume: 19
  start-page: 870
  year: 2012
  ident: BFnsmb2735_CR28
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2354
– volume: 151
  start-page: 167
  year: 2012
  ident: BFnsmb2735_CR10
  publication-title: Cell
  doi: 10.1016/j.cell.2012.07.034
SSID ssj0025573
Score 2.6157253
Snippet Non-CG methylation is abundant in plants, but its functions are poorly understood. A new study has uncovered the contributions of each non-CG...
DNA methylation occurs in CG and non-CG sequence contexts. Non-CG methylation is abundant in plants and is mediated by CHROMOMETHYLASE (CMT) and DOMAINS...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 64
SubjectTerms 631/208/176/1988
631/449
Arabidopsis - genetics
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis Proteins - physiology
Arabidopsis thaliana
Biochemistry
Biological Microscopy
Chromatin
Deoxyribonucleic acid
DNA
DNA Methylation
DNA, Plant
Epigenesis, Genetic
Epigenetic inheritance
Epigenetics
Genetic aspects
Genetic research
Life Sciences
Membrane Biology
Methylation
Molecular biology
Physiological aspects
Protein Structure
Proteins
Title Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis
URI https://link.springer.com/article/10.1038/nsmb.2735
https://www.ncbi.nlm.nih.gov/pubmed/24336224
https://www.proquest.com/docview/1474243369
https://www.proquest.com/docview/1490763604
https://www.proquest.com/docview/1534805615
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZaUKVeEH2SQlH6kNqLS3YdO8kJUQSFSl1VtEh7i_xsV6JOWu8e-PfMJM7CrioOOXni2OOJ_dkz_oaQ9xzTDWSZoRkvM5prXlJlTEZHxiiptLNF52j_NhFnl_nXKZ_GA7cQwyqHObGbqE2j8Yz8YJTDJi5nTFSH7V-KWaPQuxpTaDwkm0hdhlZdTG83XJx3HmZECRSAEBuYhVh54MMf9QmWbr6yHq3PyneWpTU_abf8nG6TrYgb06N-oJ-QB9Y_JY_6TJLXz8j5pPH0-EuKCaGv-_C2tO2oM31Iw2_Z2hSQXmpbJN_Ee4tpd8cXo5_SmYdqpZqZpg2z8Jxcnp78PD6jMUsCBcWyOXWYtXwkKqG1GAP4M0I67pwUHKZhUzjmmMlEplylLS-sqnhRWCmUKOV4DA97QTZ84-0OSZ2VnElunAZg4YxVJSu1URYgRVmM1SghHwdd1TpSiGMmi6u6c2Wzska11qjWhLxdirY9b8Z_hVDhNfJQeAx0-SUXIdTnPy7qI4aXZAvYrCXkQxRyDXxMy3hvAJqM1FUrknsrkvCj6NXiYVzr-KOG-tasEvJmWYxvYvCZt80CZaqsQF61_B4ZzvISd2PQqZe9zSz73dUPUCkh7wYjutOAdaW8ur-Zu-QxYLa8PwXaIxvzfwv7GnDRXO13xr9PNj-fTL5f3ADGfw2T
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEaIXxLuBAuEluIR649hJDghVhbJL2z1AK-3N-AkrQRLIrtD-KX4jM3lsuyvUWw85ZeI4k7HnG8-LkBcc2w1QaiPKMxolhmeRtpZGA2u10sa7tHG0H4_F8DT5NOGTDfK3z4XBsMp-T2w2alsaPCPfHSRgxCWMifxd9SvCrlHoXe1baLRicegWf8Bkq9-O3sP_fRnHBx9O9odR11UggomwWeSxy_dA5MIYAZY_tUJ57r0SHLYtm3rmmaWCap8bx1Onc56mTgktMhXHcDEY9wq5CoqXorGXTs4MPM4bjzaikgiAF-srGbFst6h_6jcAFfiK_lvXAufU4JpftlF3BzfJjQ6nhnutYN0iG664Ta61nSsXd8hoXBbR_scQG1Av2nC6sGpKdRZ1WH9XlQsBWYauwmKfmCcZNjnFGG0VTgsYVumpLat6Wt8lp5fCv3tksygLt01C7xRniltvAMh463TGMmO1AwiTpbEeBOR1zytpupLl2Dnjh2xc5yyTyFaJbA3IsyVp1dbp-C8RMlxi3YsCA2u-qXldy9GXz3KPYVJuCsZhQF51RL6ElxnV5SnAlLFU1grlzgolLEyzerv_r7LbGGp5JsYBebq8jU9isFvhyjnS5DTFOm7JBTScJRlaf_BR91uZWX53Mz5As4A874Xo3ATWmfLg4mk-IdeHJ8dH8mg0PnxItgAvJu0J1A7ZnP2eu0eAyWb6cbMQQvL1slfeP1l3SXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-CG+methylation+patterns+shape+the+epigenetic+landscape+in+Arabidopsis&rft.jtitle=Nature+structural+%26+molecular+biology&rft.au=Stroud%2C+Hume&rft.au=Do%2C+Truman&rft.au=Du%2C+Jiamu&rft.au=Zhong%2C+Xuehua&rft.date=2014-01-01&rft.pub=Nature+Publishing+Group&rft.issn=1545-9993&rft.eissn=1545-9985&rft.volume=21&rft.issue=1&rft.spage=64&rft_id=info:doi/10.1038%2Fnsmb.2735&rft.externalDocID=3173636481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-9993&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-9993&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-9993&client=summon