Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis
Non-CG methylation is abundant in plants, but its functions are poorly understood. A new study has uncovered the contributions of each non-CG methyltransferase, including the poorly characterized methyltransferase CMT2, to DNA methylation patterning and gene silencing. The results suggest that non-C...
Saved in:
Published in | Nature structural & molecular biology Vol. 21; no. 1; pp. 64 - 72 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.01.2014
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Non-CG methylation is abundant in plants, but its functions are poorly understood. A new study has uncovered the contributions of each non-CG methyltransferase, including the poorly characterized methyltransferase CMT2, to DNA methylation patterning and gene silencing. The results suggest that non-CG methyltransferases participate in self-reinforcing loop mechanisms with histone H3 K9 methylation and small RNAs to control gene silencing throughout the
Arabidopsis
genome.
DNA methylation occurs in CG and non-CG sequence contexts. Non-CG methylation is abundant in plants and is mediated by CHROMOMETHYLASE (CMT) and DOMAINS REARRANGED METHYLTRANSFERASE (DRM) proteins; however, its roles remain poorly understood. Here we characterize the roles of non-CG methylation in
Arabidopsis thaliana
. We show that a poorly characterized methyltransferase, CMT2, is a functional methyltransferase
in vitro
and
in vivo
. CMT2 preferentially binds histone H3 Lys9 (H3K9) dimethylation and methylates non-CG cytosines that are regulated by H3K9 methylation. We revealed the contributions and redundancies between each non-CG methyltransferase in DNA methylation patterning and in regulating transcription. We also demonstrate extensive dependencies of small-RNA accumulation and H3K9 methylation patterning on non-CG methylation, suggesting self-reinforcing mechanisms between these epigenetic factors. The results suggest that non-CG methylation patterns are critical in shaping the landscapes of histone modification and small noncoding RNA. |
---|---|
AbstractList | Non-CG methylation is abundant in plants, but its functions are poorly understood. A new study has uncovered the contributions of each non-CG methyltransferase, including the poorly characterized methyltransferase CMT2, to DNA methylation patterning and gene silencing. The results suggest that non-CG methyltransferases participate in self-reinforcing loop mechanisms with histone H3 K9 methylation and small RNAs to control gene silencing throughout the
Arabidopsis
genome.
DNA methylation occurs in CG and non-CG sequence contexts. Non-CG methylation is abundant in plants and is mediated by CHROMOMETHYLASE (CMT) and DOMAINS REARRANGED METHYLTRANSFERASE (DRM) proteins; however, its roles remain poorly understood. Here we characterize the roles of non-CG methylation in
Arabidopsis thaliana
. We show that a poorly characterized methyltransferase, CMT2, is a functional methyltransferase
in vitro
and
in vivo
. CMT2 preferentially binds histone H3 Lys9 (H3K9) dimethylation and methylates non-CG cytosines that are regulated by H3K9 methylation. We revealed the contributions and redundancies between each non-CG methyltransferase in DNA methylation patterning and in regulating transcription. We also demonstrate extensive dependencies of small-RNA accumulation and H3K9 methylation patterning on non-CG methylation, suggesting self-reinforcing mechanisms between these epigenetic factors. The results suggest that non-CG methylation patterns are critical in shaping the landscapes of histone modification and small noncoding RNA. DNA methylation occurs in CG and non-CG sequence contexts. Non-CG methylation is abundant in plants and is mediated by CHROMOMETHYLASE (CMT) and DOMAINS REARRANGED METHYLTRANSFERASE (DRM) proteins; however, its roles remain poorly understood. Here we characterize the roles of non-CG methylation in Arabidopsis thaliana. We show that a poorly characterized methyltransferase, CMT2, is a functional methyltransferase in vitro and in vivo. CMT2 preferentially binds histone H3 Lys9 (H3K9) dimethylation and methylates non-CG cytosines that are regulated by H3K9 methylation. We revealed the contributions and redundancies between each non-CG methyltransferase in DNA methylation patterning and in regulating transcription. We also demonstrate extensive dependencies of small-RNA accumulation and H3K9 methylation patterning on non-CG methylation, suggesting self-reinforcing mechanisms between these epigenetic factors. The results suggest that non-CG methylation patterns are critical in shaping the landscapes of histone modification and small noncoding RNA. DNA methylation occurs in CG and non-CG sequence contexts. Non-CG methylation is abundant in plants and is mediated by CHROMOMETHYLASE (CMT) and DOMAINS REARRANGED METHYLTRANSFERASE (DRM) proteins; however, its roles remain poorly understood. Here we characterize the roles of non-CG methylation in Arabidopsis thaliana. We show that a poorly characterized methyltransferase, CMT2, is a functional methyltransferase in vitro and in vivo. CMT2 preferentially binds histone H3 Lys9 (H3K9) dimethylation and methylates non-CG cytosines that are regulated by H3K9 methylation. We revealed the contributions and redundancies between each non-CG methyltransferase in DNA methylation patterning and in regulating transcription. We also demonstrate extensive dependencies of small-RNA accumulation and H3K9 methylation patterning on non-CG methylation, suggesting self-reinforcing mechanisms between these epigenetic factors. The results suggest that non-CG methylation patterns are critical in shaping the landscapes of histone modification and small noncoding RNA. [PUBLICATION ABSTRACT] DNA methylation occurs in CG and non-CG sequence contexts. Non-CG methylation is abundant in plants and is mediated by CHROMOMETHYLASE (CMT) and DOMAINS REARRANGED METHYLTRANSFERASE (DRM) proteins; however, its roles remain poorly understood. Here we characterize the roles of non-CG methylation in Arabidopsis thaliana. We show that a poorly characterized methyltransferase, CMT2, is a functional methyltransferase in vitro and in vivo. CMT2 preferentially binds histone H3 Lys9 (H3K9) dimethylation and methylates non-CG cytosines that are regulated by H3K9 methylation. We revealed the contributions and redundancies between each non-CG methyltransferase in DNA methylation patterning and in regulating transcription. We also demonstrate extensive dependencies of small-RNA accumulation and H3K9 methylation patterning on non-CG methylation, suggesting self-reinforcing mechanisms between these epigenetic factors. The results suggest that non-CG methylation patterns are critical in shaping the landscapes of histone modification and small noncoding RNA.DNA methylation occurs in CG and non-CG sequence contexts. Non-CG methylation is abundant in plants and is mediated by CHROMOMETHYLASE (CMT) and DOMAINS REARRANGED METHYLTRANSFERASE (DRM) proteins; however, its roles remain poorly understood. Here we characterize the roles of non-CG methylation in Arabidopsis thaliana. We show that a poorly characterized methyltransferase, CMT2, is a functional methyltransferase in vitro and in vivo. CMT2 preferentially binds histone H3 Lys9 (H3K9) dimethylation and methylates non-CG cytosines that are regulated by H3K9 methylation. We revealed the contributions and redundancies between each non-CG methyltransferase in DNA methylation patterning and in regulating transcription. We also demonstrate extensive dependencies of small-RNA accumulation and H3K9 methylation patterning on non-CG methylation, suggesting self-reinforcing mechanisms between these epigenetic factors. The results suggest that non-CG methylation patterns are critical in shaping the landscapes of histone modification and small noncoding RNA. |
Audience | Academic |
Author | Patel, Dinshaw J Zhong, Xuehua Stroud, Hume Johnson, Lianna Du, Jiamu Jacobsen, Steven E Feng, Suhua Do, Truman |
Author_xml | – sequence: 1 givenname: Hume surname: Stroud fullname: Stroud, Hume organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles – sequence: 2 givenname: Truman surname: Do fullname: Do, Truman organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles – sequence: 3 givenname: Jiamu surname: Du fullname: Du, Jiamu organization: Structural Biology Program, Memorial Sloan-Kettering Cancer Center – sequence: 4 givenname: Xuehua surname: Zhong fullname: Zhong, Xuehua organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Present address: Wisconsin Institute for Discovery, Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, USA – sequence: 5 givenname: Suhua surname: Feng fullname: Feng, Suhua organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Howard Hughes Medical Institute, University of California, Los Angeles – sequence: 6 givenname: Lianna surname: Johnson fullname: Johnson, Lianna organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles – sequence: 7 givenname: Dinshaw J surname: Patel fullname: Patel, Dinshaw J organization: Structural Biology Program, Memorial Sloan-Kettering Cancer Center – sequence: 8 givenname: Steven E surname: Jacobsen fullname: Jacobsen, Steven E email: jacobsen@ucla.edu organization: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Howard Hughes Medical Institute, University of California, Los Angeles |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24336224$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0ktr3DAQAGBRUppHc-gfKIZe2oI3smVJ1nFZ2nQhtJA0ZyHLo10FW3YlGZJ_XzmbR7cNFGMk7G_GY80cowM3OEDoXYEXBSb1mQt9syg5oa_QUUErmgtR04OnvSCH6DiEG4xLSjl5gw7LihBWltURWn8fXL46z3qI27tORTu4bFQxgnchC1s1Qha3kMFoN-AgWp11yrVBzy-sy5ZeNbYdxmDDW_TaqC7A6cN6gq6_fvm5-pZf_Dhfr5YXuaY1ibmhAtcFE0xrVuISt0wZaoxiFJqi5YYY0mKGGyM0UA6NoJyDYg2rVVmmm5ygj7u8ox9-TRCi7G3Q0KW6YJiCLCipakxZWv9LK4E5IwxXiX74i94Mk3fpR5Li1f2BiWe1UR1I68wQvdJzUrkklAvGi6pOavGCSlcLvdWpdcam53sBn_YCkolwGzdqCkGury737fuHQqemh1aO3vbK38nHliZwtgPaDyF4MFLbeN_YVIXtZIHlPDRyHho5D83z558iHpO-ZD_vbEjGbcD_cU7_4N966czf |
CitedBy_id | crossref_primary_10_1073_pnas_1519067112 crossref_primary_10_1093_bioinformatics_btx633 crossref_primary_10_1093_nar_gkaa766 crossref_primary_10_3390_epigenomes5030019 crossref_primary_10_1186_s12864_025_11456_6 crossref_primary_10_1038_s41422_024_01027_x crossref_primary_10_1093_nargab_lqab119 crossref_primary_10_1016_j_pbi_2022_102260 crossref_primary_10_1016_j_pbi_2023_102428 crossref_primary_10_1371_journal_pgen_1004446 crossref_primary_10_1007_s00299_019_02414_0 crossref_primary_10_1126_science_abg6130 crossref_primary_10_1007_s00018_014_1792_z crossref_primary_10_1146_annurev_arplant_070523_041445 crossref_primary_10_3389_fpls_2022_850726 crossref_primary_10_3389_fgene_2020_00186 crossref_primary_10_1007_s00299_020_02558_4 crossref_primary_10_1016_j_celrep_2022_111699 crossref_primary_10_1186_s13059_017_1226_y crossref_primary_10_1016_j_jhazmat_2023_132649 crossref_primary_10_3390_plants10122766 crossref_primary_10_1093_nar_gkab746 crossref_primary_10_1093_plcell_koab098 crossref_primary_10_1007_s11103_015_0328_8 crossref_primary_10_1038_s41477_023_01498_7 crossref_primary_10_1038_s41556_021_00661_6 crossref_primary_10_1016_j_pbi_2023_102436 crossref_primary_10_1073_pnas_2023347118 crossref_primary_10_1093_dnares_dsy008 crossref_primary_10_1093_plphys_kiae113 crossref_primary_10_3389_fnut_2021_800489 crossref_primary_10_1186_s13059_022_02768_x crossref_primary_10_3390_plants12142654 crossref_primary_10_1186_s12870_024_05858_z crossref_primary_10_1073_pnas_2125016118 crossref_primary_10_1016_j_tplants_2020_03_005 crossref_primary_10_1016_j_tig_2020_06_019 crossref_primary_10_1007_s13353_021_00648_x crossref_primary_10_1186_s13059_017_1236_9 crossref_primary_10_7717_peerj_4945 crossref_primary_10_1186_s13059_024_03220_y crossref_primary_10_1093_nargab_lqaa049 crossref_primary_10_1101_gr_279379_124 crossref_primary_10_1016_j_ygeno_2020_08_031 crossref_primary_10_1016_j_hpj_2024_02_009 crossref_primary_10_1128_JVI_00656_16 crossref_primary_10_3390_plants8050135 crossref_primary_10_1093_aob_mcac125 crossref_primary_10_1093_plphys_kiae583 crossref_primary_10_1111_tpj_16744 crossref_primary_10_3390_plants8120564 crossref_primary_10_1073_pnas_1716758114 crossref_primary_10_3390_ijms22189681 crossref_primary_10_1080_21541264_2020_1825906 crossref_primary_10_1111_pce_13324 crossref_primary_10_1186_s13059_016_1059_0 crossref_primary_10_3389_fpls_2022_1092067 crossref_primary_10_1371_journal_pgen_1005998 crossref_primary_10_1038_s41467_022_28940_2 crossref_primary_10_1101_gad_270876_115 crossref_primary_10_1002_tpg2_20320 crossref_primary_10_1093_jxb_eraa560 crossref_primary_10_1007_s12892_020_00072_3 crossref_primary_10_1073_pnas_1716300115 crossref_primary_10_1080_15592294_2021_2022066 crossref_primary_10_1093_dnares_dsx016 crossref_primary_10_1111_pbi_13337 crossref_primary_10_1111_tpj_15781 crossref_primary_10_1146_annurev_genet_120215_035254 crossref_primary_10_1016_j_molp_2019_06_004 crossref_primary_10_1038_s41598_019_39239_6 crossref_primary_10_1186_s13072_020_00361_9 crossref_primary_10_1007_s11676_021_01424_7 crossref_primary_10_1073_pnas_1619047114 crossref_primary_10_1093_plphys_kiac033 crossref_primary_10_1016_j_pbi_2023_102419 crossref_primary_10_1111_tpj_16875 crossref_primary_10_3390_ijms231810492 crossref_primary_10_1093_hr_uhad170 crossref_primary_10_3390_ijms24108514 crossref_primary_10_3390_ijms21093318 crossref_primary_10_1093_plcell_koad010 crossref_primary_10_1073_pnas_1515072113 crossref_primary_10_1002_2211_5463_12627 crossref_primary_10_1007_s00299_022_02901_x crossref_primary_10_1016_j_pbi_2020_101990 crossref_primary_10_1016_j_pbi_2022_102248 crossref_primary_10_1007_s11103_023_01396_8 crossref_primary_10_1016_j_pbi_2016_12_007 crossref_primary_10_3390_genes13060992 crossref_primary_10_1016_j_pbi_2021_102060 crossref_primary_10_1186_s13059_017_1302_3 crossref_primary_10_1016_j_bbapap_2020_140592 crossref_primary_10_1007_s10265_021_01342_z crossref_primary_10_1080_10409238_2017_1279119 crossref_primary_10_1371_journal_pone_0181669 crossref_primary_10_1042_BST20210908 crossref_primary_10_1093_plcell_koae034 crossref_primary_10_3390_ijms17060938 crossref_primary_10_1016_j_semcdb_2015_04_004 crossref_primary_10_1080_15592294_2015_1104446 crossref_primary_10_7554_eLife_69396 crossref_primary_10_1007_s12298_018_0566_8 crossref_primary_10_1111_nph_19311 crossref_primary_10_1093_plcell_koaf017 crossref_primary_10_1186_s13059_017_1313_0 crossref_primary_10_1093_jxb_erw310 crossref_primary_10_1042_EBC20190032 crossref_primary_10_1073_pnas_2107320118 crossref_primary_10_7554_eLife_62994 crossref_primary_10_1093_nar_gkad610 crossref_primary_10_1111_nph_17018 crossref_primary_10_1073_pnas_2402946121 crossref_primary_10_3389_fpls_2022_926305 crossref_primary_10_3390_plants10061096 crossref_primary_10_1093_dnares_dsx046 crossref_primary_10_1093_jxb_eraa132 crossref_primary_10_1016_j_plantsci_2015_06_015 crossref_primary_10_3389_fpls_2016_00447 crossref_primary_10_1098_rsob_240159 crossref_primary_10_1038_cr_2015_145 crossref_primary_10_1016_j_jia_2023_04_045 crossref_primary_10_1073_pnas_1406611111 crossref_primary_10_1016_j_cell_2014_06_006 crossref_primary_10_1038_s41477_020_0671_x crossref_primary_10_1371_journal_pone_0191492 crossref_primary_10_1093_bfgp_elz024 crossref_primary_10_3390_genes10070544 crossref_primary_10_1186_s12859_019_2845_y crossref_primary_10_1186_s13059_024_03163_4 crossref_primary_10_3389_fpls_2022_1111623 crossref_primary_10_1186_s12870_024_05285_0 crossref_primary_10_1371_journal_pgen_1006526 crossref_primary_10_3390_ijms21113783 crossref_primary_10_1038_s41467_019_10026_1 crossref_primary_10_1093_molbev_msae170 crossref_primary_10_1016_j_pbi_2022_102211 crossref_primary_10_1016_j_pbi_2021_102032 crossref_primary_10_1111_nph_17353 crossref_primary_10_1038_nplants_2016_58 crossref_primary_10_1093_plphys_kiae135 crossref_primary_10_1126_sciadv_abg5442 crossref_primary_10_3389_fpls_2021_703667 crossref_primary_10_1101_gr_204032_116 crossref_primary_10_1016_j_pbi_2019_02_008 crossref_primary_10_1038_s41467_021_23346_y crossref_primary_10_1016_j_pbi_2020_08_007 crossref_primary_10_1073_pnas_1423603112 crossref_primary_10_3389_fcell_2023_1097780 crossref_primary_10_1016_j_pbi_2015_05_027 crossref_primary_10_1007_s10265_020_01185_0 crossref_primary_10_1111_ppl_12615 crossref_primary_10_3389_fpls_2020_00452 crossref_primary_10_1111_tpj_14531 crossref_primary_10_1186_s12864_023_09128_4 crossref_primary_10_7554_eLife_07808 crossref_primary_10_1038_s41467_024_51513_4 crossref_primary_10_1042_BCJ20160123 crossref_primary_10_1093_dnares_dsy021 crossref_primary_10_1038_s44319_024_00304_5 crossref_primary_10_1186_s12864_017_3542_8 crossref_primary_10_1016_j_compbiolchem_2016_12_002 crossref_primary_10_1111_mec_13573 crossref_primary_10_15252_embj_201489499 crossref_primary_10_1371_journal_pgen_1004842 crossref_primary_10_1038_s41467_017_02219_3 crossref_primary_10_3390_plants10091884 crossref_primary_10_1007_s12374_020_09258_2 crossref_primary_10_1007_s11033_023_08879_3 crossref_primary_10_1186_s12870_017_1070_y crossref_primary_10_1080_07352689_2021_1920731 crossref_primary_10_1007_s10725_017_0323_y crossref_primary_10_1007_s12010_018_2738_y crossref_primary_10_1038_s41598_020_75432_8 crossref_primary_10_1016_j_neo_2015_02_006 crossref_primary_10_1101_gad_289397_116 crossref_primary_10_1093_g3journal_jkae004 crossref_primary_10_1038_s41467_022_31627_3 crossref_primary_10_1016_j_chemosphere_2019_04_076 crossref_primary_10_1111_nph_20225 crossref_primary_10_3389_fmolb_2022_888983 crossref_primary_10_3390_plants12213667 crossref_primary_10_3390_ijms21165753 crossref_primary_10_1093_jxb_eraf030 crossref_primary_10_1093_plphys_kiae072 crossref_primary_10_1111_pbi_12988 crossref_primary_10_1111_tpj_15848 crossref_primary_10_7554_eLife_19092 crossref_primary_10_1111_pce_14722 crossref_primary_10_3389_fpls_2020_595603 crossref_primary_10_1073_pnas_1921055117 crossref_primary_10_1073_pnas_2001290119 crossref_primary_10_7717_peerj_5199 crossref_primary_10_1016_j_molp_2021_06_006 crossref_primary_10_1016_j_hpj_2022_11_003 crossref_primary_10_1016_j_jplph_2016_07_019 crossref_primary_10_3389_fpls_2015_01049 crossref_primary_10_1186_s13059_020_02163_4 crossref_primary_10_3389_fpls_2022_933740 crossref_primary_10_1271_kagakutoseibutsu_55_810 crossref_primary_10_1038_s41477_025_01924_y crossref_primary_10_1038_s41467_021_27320_6 crossref_primary_10_1111_mec_13550 crossref_primary_10_1093_nar_gkw1330 crossref_primary_10_1186_s13059_021_02359_2 crossref_primary_10_1038_s41598_017_13928_6 crossref_primary_10_7554_eLife_89353_3 crossref_primary_10_1038_s41467_021_22993_5 crossref_primary_10_3390_ijms19103196 crossref_primary_10_1038_nrg3685 crossref_primary_10_1038_nrg3683 crossref_primary_10_3390_ijms232415950 crossref_primary_10_1371_journal_pgen_1011358 crossref_primary_10_1002_reg2_73 crossref_primary_10_1038_s41598_018_24515_8 crossref_primary_10_1111_tpj_12545 crossref_primary_10_1038_s41467_019_08736_7 crossref_primary_10_1101_gr_278409_123 crossref_primary_10_1007_s11427_024_2784_3 crossref_primary_10_1016_j_molp_2018_02_006 crossref_primary_10_1038_s41580_024_00769_1 crossref_primary_10_1007_s13258_021_01199_5 crossref_primary_10_1038_s42003_020_1059_1 crossref_primary_10_1038_nrm4043 crossref_primary_10_1038_s41598_022_16530_7 crossref_primary_10_1371_journal_pone_0105267 crossref_primary_10_1073_pnas_1815441116 crossref_primary_10_1080_15476286_2017_1409930 crossref_primary_10_1007_s11295_024_01640_2 crossref_primary_10_1371_journal_pgen_1009034 crossref_primary_10_1016_j_jmb_2019_12_043 crossref_primary_10_1111_tpj_13526 crossref_primary_10_1186_s12864_018_5087_x crossref_primary_10_1016_j_bbagrm_2016_08_009 crossref_primary_10_1007_s44154_022_00052_3 crossref_primary_10_1093_biomethods_bpw008 crossref_primary_10_1371_journal_pone_0279688 crossref_primary_10_1242_dev_194274 crossref_primary_10_1038_ncomms15122 crossref_primary_10_1016_j_bbagrm_2016_08_004 crossref_primary_10_1016_j_pbi_2023_102387 crossref_primary_10_1101_gad_299347_117 crossref_primary_10_1007_s11103_022_01330_4 crossref_primary_10_1007_s10725_018_0389_1 crossref_primary_10_1186_s13059_022_02750_7 crossref_primary_10_1016_j_tplants_2014_01_014 crossref_primary_10_7554_eLife_47891 crossref_primary_10_3390_plants12102057 crossref_primary_10_1098_rstb_2020_0123 crossref_primary_10_1021_acs_jafc_4c02650 crossref_primary_10_3389_fpls_2017_01247 crossref_primary_10_1038_s41467_024_49465_w crossref_primary_10_1038_s41588_017_0008_5 crossref_primary_10_1186_s12864_018_4484_5 crossref_primary_10_1186_s12870_018_1553_5 crossref_primary_10_7717_peerj_8432 crossref_primary_10_1007_s40502_017_0337_5 crossref_primary_10_1371_journal_pgen_1011296 crossref_primary_10_1007_s00344_024_11462_0 crossref_primary_10_1111_imb_12917 crossref_primary_10_3390_cells11172700 crossref_primary_10_1111_mec_14736 crossref_primary_10_7554_eLife_58533 crossref_primary_10_1007_s13237_024_00502_5 crossref_primary_10_1371_journal_pone_0103145 crossref_primary_10_1038_s41467_020_19140_x crossref_primary_10_1073_pnas_1600672113 crossref_primary_10_1186_s40529_022_00366_5 crossref_primary_10_3389_fpls_2021_769712 crossref_primary_10_3389_fmolb_2021_616623 crossref_primary_10_3390_foods10092198 crossref_primary_10_1371_journal_pgen_1005724 crossref_primary_10_1111_jipb_13200 crossref_primary_10_1038_s41598_019_38607_6 crossref_primary_10_1016_j_bbagrm_2014_04_011 crossref_primary_10_1093_nar_gkv958 crossref_primary_10_3389_fpls_2019_00243 crossref_primary_10_1186_s13072_017_0148_y crossref_primary_10_1186_s13059_022_02641_x crossref_primary_10_1101_gr_202465_115 crossref_primary_10_3389_fpls_2022_959053 crossref_primary_10_1186_s13059_020_02099_9 crossref_primary_10_1101_gr_182238_114 crossref_primary_10_1016_j_ygeno_2020_04_006 crossref_primary_10_1016_j_ygeno_2020_04_005 crossref_primary_10_1111_nph_18286 crossref_primary_10_3390_ijms22189877 crossref_primary_10_1038_s41467_022_32709_y crossref_primary_10_1073_pnas_2011361117 crossref_primary_10_1093_nar_gkad306 crossref_primary_10_1093_nar_gkab128 crossref_primary_10_1007_s00412_017_0655_4 crossref_primary_10_3390_plants13141977 crossref_primary_10_1016_j_bbagrm_2016_07_012 crossref_primary_10_1016_j_pbi_2015_02_007 crossref_primary_10_3389_fpls_2022_1036764 crossref_primary_10_1038_s41576_021_00407_y crossref_primary_10_1038_s41477_021_01086_7 crossref_primary_10_1186_1756_0500_7_721 crossref_primary_10_1007_s11427_021_1970_x crossref_primary_10_7554_eLife_89353 crossref_primary_10_1126_science_aar7854 crossref_primary_10_1101_gr_253674_119 crossref_primary_10_1371_journal_pgen_1008492 crossref_primary_10_1073_pnas_1514680112 crossref_primary_10_1017_qpb_2023_14 crossref_primary_10_1111_nph_14874 crossref_primary_10_3390_biology11070954 crossref_primary_10_1016_j_pbi_2017_03_002 crossref_primary_10_1093_plphys_kiab531 crossref_primary_10_1186_s12870_024_05641_0 crossref_primary_10_1038_s41477_020_00843_4 crossref_primary_10_1146_annurev_phyto_010820_012805 crossref_primary_10_3390_genes10050344 crossref_primary_10_3390_plants12020241 crossref_primary_10_1111_tpj_12726 crossref_primary_10_1371_journal_pgen_1009326 crossref_primary_10_1016_j_cub_2019_12_015 crossref_primary_10_1016_j_molcel_2014_06_009 crossref_primary_10_1016_j_celrep_2023_112132 crossref_primary_10_1111_jipb_13883 crossref_primary_10_1038_s41467_021_27690_x crossref_primary_10_3389_fpls_2014_00803 crossref_primary_10_1111_tpj_15098 crossref_primary_10_1038_s41467_020_20606_1 crossref_primary_10_1134_S1021443716020059 crossref_primary_10_1016_j_cub_2020_10_098 crossref_primary_10_1038_s41556_021_00658_1 crossref_primary_10_1266_ggs_21_00041 crossref_primary_10_1093_nar_gkx814 crossref_primary_10_1111_pbr_13148 crossref_primary_10_1007_s11033_023_08618_8 crossref_primary_10_1093_nar_gkac012 crossref_primary_10_3389_fpls_2023_1229495 crossref_primary_10_1002_wsbm_1411 crossref_primary_10_1186_s12864_022_08312_2 crossref_primary_10_1146_annurev_phyto_080615_100308 crossref_primary_10_3390_ijms22136783 crossref_primary_10_1016_j_devcel_2018_05_023 crossref_primary_10_1038_s41598_017_12510_4 crossref_primary_10_1016_j_jgg_2024_04_003 crossref_primary_10_1101_sqb_2019_84_040394 crossref_primary_10_1016_j_jplph_2022_153740 crossref_primary_10_1073_pnas_1420515111 crossref_primary_10_1101_gad_343871_120 crossref_primary_10_1186_s13059_017_1251_x crossref_primary_10_3390_plants10071423 crossref_primary_10_1111_tpj_12952 crossref_primary_10_1111_nph_15818 crossref_primary_10_1534_genetics_120_303264 crossref_primary_10_1186_s13059_019_1672_9 crossref_primary_10_1016_j_molp_2015_10_008 crossref_primary_10_1111_jipb_13423 crossref_primary_10_1016_j_plaphy_2019_12_010 crossref_primary_10_1016_S2095_3119_21_63827_3 crossref_primary_10_1016_j_cell_2014_03_056 crossref_primary_10_1105_tpc_114_130120 crossref_primary_10_1111_jipb_12767 crossref_primary_10_3390_f13020288 crossref_primary_10_1093_nar_gky602 crossref_primary_10_1016_j_ygeno_2016_10_004 crossref_primary_10_3390_v10080402 crossref_primary_10_3390_f11101076 crossref_primary_10_1186_s13059_024_03466_6 crossref_primary_10_1093_plphys_kiae600 crossref_primary_10_1038_s41467_024_52114_x crossref_primary_10_1093_jxb_ery292 crossref_primary_10_1093_plcell_koab319 crossref_primary_10_1007_s00497_021_00436_x crossref_primary_10_1016_j_pbi_2024_102598 crossref_primary_10_1038_nrg_2017_45 crossref_primary_10_1186_s13059_016_1032_y crossref_primary_10_1186_s42397_019_0033_2 crossref_primary_10_1007_s10142_016_0502_3 crossref_primary_10_1038_s41467_024_51246_4 crossref_primary_10_7717_peerj_4461 crossref_primary_10_1016_j_semcdb_2022_02_026 crossref_primary_10_1093_plphys_kiad622 crossref_primary_10_26508_lsa_201800197 crossref_primary_10_1093_plphys_kiad625 crossref_primary_10_1134_S0006297916020085 crossref_primary_10_3389_fpls_2019_00625 crossref_primary_10_1007_s00497_021_00422_3 crossref_primary_10_1007_s42976_022_00300_2 crossref_primary_10_1111_mec_13230 crossref_primary_10_1186_s12864_021_07600_7 crossref_primary_10_1038_s42003_020_01525_9 crossref_primary_10_3389_fpls_2022_899105 crossref_primary_10_1371_journal_pgen_1010345 crossref_primary_10_1016_j_molp_2025_01_019 crossref_primary_10_15252_embj_201798482 crossref_primary_10_1016_j_cell_2016_06_044 crossref_primary_10_3390_plants10020236 crossref_primary_10_1038_s41467_024_55387_4 crossref_primary_10_1016_j_celrep_2023_112163 crossref_primary_10_1038_s41422_018_0119_2 crossref_primary_10_1093_nar_gkae594 crossref_primary_10_1093_plphys_kiac525 crossref_primary_10_1111_nph_17804 crossref_primary_10_1016_j_biosystems_2021_104566 crossref_primary_10_1093_eep_dvw007 crossref_primary_10_1080_15592294_2023_2211362 crossref_primary_10_1534_g3_119_400659 crossref_primary_10_1002_pmic_202200104 crossref_primary_10_1104_pp_114_252106 crossref_primary_10_1093_treephys_tpad074 crossref_primary_10_1111_ppl_13149 crossref_primary_10_1111_aab_12280 crossref_primary_10_1371_journal_pgen_1010452 crossref_primary_10_7554_eLife_64593 crossref_primary_10_1016_j_plaphy_2021_01_024 crossref_primary_10_1038_ncomms11640 crossref_primary_10_1111_tpj_14098 crossref_primary_10_15252_embr_202256678 crossref_primary_10_3389_fpls_2022_888102 crossref_primary_10_1093_pcp_pcv036 crossref_primary_10_3389_fpls_2022_934379 crossref_primary_10_3390_plants12030437 crossref_primary_10_3390_ijms23158299 crossref_primary_10_7554_eLife_05255 crossref_primary_10_1093_jxb_erad427 crossref_primary_10_1038_s41467_020_14995_6 crossref_primary_10_1016_j_cell_2018_09_043 crossref_primary_10_1016_j_gde_2023_102147 crossref_primary_10_1093_nar_gkz618 crossref_primary_10_1073_pnas_1716945115 crossref_primary_10_1007_s40626_024_00335_2 crossref_primary_10_1093_nar_gkv258 crossref_primary_10_1093_treephys_tpaa097 crossref_primary_10_1073_pnas_1619074114 crossref_primary_10_7554_eLife_19893 crossref_primary_10_1093_plcell_koab117 crossref_primary_10_1371_journal_pone_0202137 crossref_primary_10_1002_tpg2_20027 crossref_primary_10_1007_s00299_021_02787_1 crossref_primary_10_1093_hr_uhad126 crossref_primary_10_1186_s12915_022_01362_8 crossref_primary_10_1093_plphys_kiac228 crossref_primary_10_1101_gr_215186_116 crossref_primary_10_1098_rspb_2019_0718 crossref_primary_10_1186_s13059_017_1229_8 crossref_primary_10_1038_nplants_2016_169 crossref_primary_10_1093_plcell_koad313 crossref_primary_10_1111_tpj_16137 crossref_primary_10_1038_s42003_023_04607_6 crossref_primary_10_1093_nar_gkw238 crossref_primary_10_1111_mpp_12850 crossref_primary_10_15252_embj_201694983 crossref_primary_10_3389_fpls_2022_1090967 crossref_primary_10_1186_s13059_016_1127_5 crossref_primary_10_1371_journal_pgen_1008993 crossref_primary_10_1002_elsc_201700019 crossref_primary_10_1016_j_pbi_2016_07_010 crossref_primary_10_1016_j_pbi_2021_102008 crossref_primary_10_1093_hr_uhad114 crossref_primary_10_1002_dvg_23399 crossref_primary_10_1016_j_gep_2017_04_001 crossref_primary_10_1073_pnas_1807796115 crossref_primary_10_1007_s00299_017_2223_z crossref_primary_10_1093_plphys_kiad668 crossref_primary_10_7554_eLife_30674 crossref_primary_10_15252_msb_20188591 crossref_primary_10_1111_pbi_13049 crossref_primary_10_1186_s13059_017_1281_4 crossref_primary_10_1126_science_abi7489 crossref_primary_10_3389_fpls_2021_764999 crossref_primary_10_3389_fpls_2022_1017672 crossref_primary_10_1038_s41598_024_54862_8 crossref_primary_10_1111_febs_16633 crossref_primary_10_1371_journal_pgen_1009710 crossref_primary_10_1007_s00709_016_1008_5 crossref_primary_10_1007_s00425_022_03962_8 crossref_primary_10_1146_annurev_arplant_070122_025047 crossref_primary_10_7554_eLife_42530 crossref_primary_10_1016_j_plantsci_2022_111499 crossref_primary_10_1093_hr_uhac132 crossref_primary_10_1186_s13059_020_02190_1 crossref_primary_10_7554_eLife_72676 crossref_primary_10_1186_s12864_018_4708_8 crossref_primary_10_1002_tpg2_20049 crossref_primary_10_1101_gr_279532_124 crossref_primary_10_1111_pce_14490 crossref_primary_10_1101_gad_301499_117 crossref_primary_10_1111_tpj_13193 crossref_primary_10_1186_s12870_021_02953_3 crossref_primary_10_1038_s41467_022_28468_5 crossref_primary_10_1111_jipb_12979 crossref_primary_10_1111_pbi_13299 crossref_primary_10_1007_s00344_024_11533_2 crossref_primary_10_1111_jipb_12733 crossref_primary_10_3389_fpls_2023_1123211 crossref_primary_10_1186_s12864_018_4641_x crossref_primary_10_3390_epigenomes1020010 crossref_primary_10_1111_tpj_16119 crossref_primary_10_1016_j_cell_2014_02_045 crossref_primary_10_1038_s41467_018_06965_w crossref_primary_10_3390_agronomy12051039 crossref_primary_10_1093_nar_gkv244 crossref_primary_10_1126_science_abh0556 crossref_primary_10_3389_fgene_2022_819941 crossref_primary_10_1038_s41467_019_09496_0 crossref_primary_10_3390_genes13020339 crossref_primary_10_1186_s13059_017_1383_z crossref_primary_10_1016_j_matbio_2018_02_015 crossref_primary_10_3390_plants7030059 crossref_primary_10_1111_nph_18876 crossref_primary_10_1111_tpj_15599 crossref_primary_10_3389_fpls_2021_596236 crossref_primary_10_3390_ijms21186700 crossref_primary_10_3390_ijms25147540 crossref_primary_10_1002_pld3_79 crossref_primary_10_1093_plcell_koab162 crossref_primary_10_1093_hr_uhae010 crossref_primary_10_1371_journal_pgen_1008324 crossref_primary_10_1101_gr_227116_117 crossref_primary_10_1371_journal_pgen_1006026 crossref_primary_10_1111_nph_15248 crossref_primary_10_1186_s12864_019_5499_2 crossref_primary_10_1016_j_str_2024_05_013 crossref_primary_10_1002_bies_201400097 crossref_primary_10_1038_s41586_022_05386_6 crossref_primary_10_3390_ijms21207457 crossref_primary_10_1038_s41467_022_32165_8 crossref_primary_10_1093_plcell_koab171 crossref_primary_10_1371_journal_pgen_1006141 crossref_primary_10_1186_s12864_016_3326_6 crossref_primary_10_1038_s41467_024_52239_z crossref_primary_10_1186_s13059_019_1694_3 crossref_primary_10_1073_pnas_1809841115 crossref_primary_10_3390_genes8060159 crossref_primary_10_1016_j_pbi_2018_02_003 crossref_primary_10_1016_j_molcel_2014_07_008 crossref_primary_10_3390_cells10112952 crossref_primary_10_1093_hr_uhae005 crossref_primary_10_3390_plants13192700 crossref_primary_10_3390_horticulturae8070562 crossref_primary_10_1093_jxb_erac397 crossref_primary_10_1038_s41580_018_0016_z crossref_primary_10_3390_ijms20123051 crossref_primary_10_1126_sciadv_adr2222 crossref_primary_10_1093_jxb_eru502 crossref_primary_10_1021_acs_jafc_3c08568 crossref_primary_10_26508_lsa_202000848 crossref_primary_10_1105_tpc_114_130427 crossref_primary_10_1371_journal_pgen_1005154 crossref_primary_10_1016_j_stress_2025_100812 crossref_primary_10_1186_s13059_017_1195_1 crossref_primary_10_3390_epigenomes4040025 crossref_primary_10_1016_j_pbi_2015_07_005 crossref_primary_10_1073_pnas_1413053112 crossref_primary_10_1016_j_jgg_2018_09_004 crossref_primary_10_1038_s41588_018_0115_y crossref_primary_10_1186_s13059_019_1859_0 crossref_primary_10_3390_ijms20194683 crossref_primary_10_1016_j_molp_2017_10_002 crossref_primary_10_1093_plphys_kiac471 crossref_primary_10_7554_eLife_06671 crossref_primary_10_1186_s13059_023_02952_7 crossref_primary_10_3390_plants13101400 crossref_primary_10_1016_j_molp_2015_01_021 crossref_primary_10_1038_s41477_020_00810_z crossref_primary_10_1371_journal_pgen_1005142 crossref_primary_10_1002_wrna_1310 crossref_primary_10_3390_genes11030285 crossref_primary_10_2478_s11756_019_00397_7 crossref_primary_10_1002_cbf_3101 crossref_primary_10_1016_j_jbc_2023_105433 crossref_primary_10_1111_nph_18729 crossref_primary_10_1007_s11427_017_9163_4 crossref_primary_10_1016_j_pbi_2017_01_005 |
Cites_doi | 10.1038/sj.emboj.7600743 10.1101/gr.101907.109 10.1073/pnas.0611456104 10.4161/rna.25555 10.1038/nsmb.2354 10.1371/journal.pgen.1002808 10.1038/nature08514 10.1038/emboj.2010.227 10.1101/gad.1667808 10.1073/pnas.1300585110 10.1371/journal.pgen.0020083 10.1016/j.cell.2013.02.033 10.1126/science.1106910 10.1101/gad.197772.112 10.1038/nature731 10.1186/gb-2009-10-3-r25 10.1016/j.cell.2012.07.034 10.1126/science.1079695 10.1371/journal.pbio.0050057 10.1016/j.ymeth.2007.05.002 10.1016/j.cub.2007.01.009 10.1016/S0960-9822(02)00976-4 10.1016/j.cub.2012.07.061 10.1038/nrg2719 10.1073/pnas.97.10.5237 10.1093/emboj/cdf657 10.1371/journal.pgen.1003062 10.1007/978-1-61779-089-8_16 10.1038/emboj.2011.103 10.1038/ng.365 10.1038/nature12178 10.1016/j.cell.2011.12.035 10.1016/j.cell.2012.10.054 10.1126/science.1221472 10.1101/gr.147942.112 10.1105/tpc.106.041400 10.1073/pnas.0709632105 10.1093/nar/gki901 10.1093/nar/gkh992 10.1101/gad.348405 10.1093/genetics/149.1.307 |
ContentType | Journal Article |
Copyright | Springer Nature America, Inc. 2013 COPYRIGHT 2014 Nature Publishing Group Copyright Nature Publishing Group Jan 2014 |
Copyright_xml | – notice: Springer Nature America, Inc. 2013 – notice: COPYRIGHT 2014 Nature Publishing Group – notice: Copyright Nature Publishing Group Jan 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7QP 7QR 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PADUT PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 |
DOI | 10.1038/nsmb.2735 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Research Library China ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Nucleic Acids Abstracts Research Library Prep MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1545-9985 |
EndPage | 72 |
ExternalDocumentID | 3173636481 A357967148 24336224 10_1038_nsmb_2735 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA016042 – fundername: NIGMS NIH HHS grantid: GM60398 – fundername: NIGMS NIH HHS grantid: F32GM096483-01 – fundername: NIGMS NIH HHS grantid: R37 GM060398 – fundername: Howard Hughes Medical Institute – fundername: NCI NIH HHS grantid: P30 CA008748 |
GroupedDBID | --- -DZ .55 .GJ 0R~ 123 29M 36B 39C 3V. 4.4 53G 5BI 5S5 6TJ 70F 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABNNU ABUWG ACBWK ACGFO ACGFS ACIWK ACNCT ACPRK ACRPL ACUHS ADBBV ADFRT ADNMO AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT AJQPL ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU DB5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ IAO IGS IH2 IHR INH INR ISR ITC L-9 L7B LK8 M0L M1P M2O M7P MVM N9A NNMJJ O9- ODYON P2P PADUT PKN PQQKQ PROAC PSQYO Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP X7M XJT ZXP ~8M AAYXX ACMFV ACSTC AETEA AFANA ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM PMFND 7QL 7QP 7QR 7TK 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c583t-f59081696cc62020d6af5ffa65eb1d7f3f3d060bf9ce57eb9577ea6b68a228a23 |
IEDL.DBID | 7X7 |
ISSN | 1545-9993 1545-9985 |
IngestDate | Thu Jul 10 22:24:42 EDT 2025 Fri Jul 11 04:55:16 EDT 2025 Fri Jul 25 09:11:38 EDT 2025 Tue Jun 17 21:01:31 EDT 2025 Tue Jun 10 20:32:06 EDT 2025 Fri Jun 27 03:59:50 EDT 2025 Thu Apr 03 06:57:37 EDT 2025 Thu Apr 24 23:04:19 EDT 2025 Tue Jul 01 01:59:38 EDT 2025 Fri Feb 21 02:40:18 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-f59081696cc62020d6af5ffa65eb1d7f3f3d060bf9ce57eb9577ea6b68a228a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://doi.org/10.1038/nsmb.2735 |
PMID | 24336224 |
PQID | 1474243369 |
PQPubID | 27587 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1534805615 proquest_miscellaneous_1490763604 proquest_journals_1474243369 gale_infotracmisc_A357967148 gale_infotracacademiconefile_A357967148 gale_incontextgauss_ISR_A357967148 pubmed_primary_24336224 crossref_citationtrail_10_1038_nsmb_2735 crossref_primary_10_1038_nsmb_2735 springer_journals_10_1038_nsmb_2735 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature structural & molecular biology |
PublicationTitleAbbrev | Nat Struct Mol Biol |
PublicationTitleAlternate | Nat Struct Mol Biol |
PublicationYear | 2014 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Stroud (CR38) 2012; 8 Wierzbicki (CR26) 2012; 26 Johnson (CR16) 2004; 32 Wierzbicki, Ream, Haag, Pikaard (CR35) 2009; 41 Jullien, Susaki, Yelagandula, Higashiyama, Berger (CR18) 2012; 22 Laurent (CR4) 2010; 20 Zhang (CR15) 2013; 110 Pontier (CR21) 2005; 19 Inagaki (CR30) 2010; 29 Zhang, Henderson, Lu, Green, Jacobsen (CR25) 2007; 104 Deleris (CR34) 2012; 8 Jackson, Lindroth, Cao, Jacobsen (CR12) 2002; 416 Johnson, Cao, Jacobsen (CR33) 2002; 12 Law, Jacobsen (CR1) 2010; 11 Lu, Meyers, Green (CR40) 2007; 43 Zemach (CR9) 2013; 153 Feng, Rubbi, Jacobsen, Pellegrini (CR37) 2011; 733 Xie (CR3) 2012; 148 Henderson, Jacobsen (CR19) 2008; 22 Zilberman, Cao, Jacobsen (CR22) 2003; 299 Soppe (CR32) 2002; 21 Langmead, Trapnell, Pop, Salzberg (CR39) 2009; 10 Law (CR14) 2013; 498 Zhong (CR28) 2012; 19 Meissner (CR5) 2005; 33 Stroud, Greenberg, Feng, Bernatavichute, Jacobsen (CR8) 2013; 152 Du (CR10) 2012; 151 Ramsahoye (CR6) 2000; 97 Mosher, Schwach, Studholme, Baulcombe (CR24) 2008; 105 Henikoff, Comai (CR13) 1998; 149 Kasschau (CR23) 2007; 5 Lister (CR2) 2009; 462 McCue, Nuthikattu, Slotkin (CR27) 2013; 10 Chan (CR36) 2006; 2 Mathieu, Probst, Paszkowski (CR31) 2005; 24 Herr, Jensen, Dalmay, Baulcombe (CR20) 2005; 308 Varley (CR7) 2013; 23 Ebbs, Bender (CR11) 2006; 18 Johnson (CR29) 2007; 17 Moissiard (CR41) 2012; 336 Roudier (CR17) 2011; 30 R Lister (BFnsmb2735_CR2) 2009; 462 F Roudier (BFnsmb2735_CR17) 2011; 30 ML Ebbs (BFnsmb2735_CR11) 2006; 18 W Xie (BFnsmb2735_CR3) 2012; 148 X Zhang (BFnsmb2735_CR25) 2007; 104 A Meissner (BFnsmb2735_CR5) 2005; 33 BH Ramsahoye (BFnsmb2735_CR6) 2000; 97 B Langmead (BFnsmb2735_CR39) 2009; 10 O Mathieu (BFnsmb2735_CR31) 2005; 24 S Inagaki (BFnsmb2735_CR30) 2010; 29 JA Law (BFnsmb2735_CR14) 2013; 498 X Zhong (BFnsmb2735_CR28) 2012; 19 J Du (BFnsmb2735_CR10) 2012; 151 WJ Soppe (BFnsmb2735_CR32) 2002; 21 C Lu (BFnsmb2735_CR40) 2007; 43 KE Varley (BFnsmb2735_CR7) 2013; 23 JP Jackson (BFnsmb2735_CR12) 2002; 416 L Johnson (BFnsmb2735_CR33) 2002; 12 IR Henderson (BFnsmb2735_CR19) 2008; 22 AD McCue (BFnsmb2735_CR27) 2013; 10 A Deleris (BFnsmb2735_CR34) 2012; 8 SW Chan (BFnsmb2735_CR36) 2006; 2 A Zemach (BFnsmb2735_CR9) 2013; 153 KD Kasschau (BFnsmb2735_CR23) 2007; 5 H Stroud (BFnsmb2735_CR38) 2012; 8 AT Wierzbicki (BFnsmb2735_CR26) 2012; 26 JA Law (BFnsmb2735_CR1) 2010; 11 H Stroud (BFnsmb2735_CR8) 2013; 152 D Zilberman (BFnsmb2735_CR22) 2003; 299 L Johnson (BFnsmb2735_CR16) 2004; 32 S Henikoff (BFnsmb2735_CR13) 1998; 149 LM Johnson (BFnsmb2735_CR29) 2007; 17 PE Jullien (BFnsmb2735_CR18) 2012; 22 S Feng (BFnsmb2735_CR37) 2011; 733 L Laurent (BFnsmb2735_CR4) 2010; 20 H Zhang (BFnsmb2735_CR15) 2013; 110 D Pontier (BFnsmb2735_CR21) 2005; 19 RA Mosher (BFnsmb2735_CR24) 2008; 105 G Moissiard (BFnsmb2735_CR41) 2012; 336 AJ Herr (BFnsmb2735_CR20) 2005; 308 AT Wierzbicki (BFnsmb2735_CR35) 2009; 41 |
References_xml | – volume: 24 start-page: 2783 year: 2005 end-page: 2791 ident: CR31 article-title: Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in publication-title: EMBO J. doi: 10.1038/sj.emboj.7600743 – volume: 20 start-page: 320 year: 2010 end-page: 331 ident: CR4 article-title: Dynamic changes in the human methylome during differentiation publication-title: Genome Res. doi: 10.1101/gr.101907.109 – volume: 104 start-page: 4536 year: 2007 end-page: 4541 ident: CR25 article-title: Role of RNA polymerase IV in plant small RNA metabolism publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0611456104 – volume: 10 start-page: 1379 year: 2013 end-page: 1395 ident: CR27 article-title: Genome-wide identification of genes regulated in by transposable element small interfering RNAs publication-title: RNA Biol. doi: 10.4161/rna.25555 – volume: 19 start-page: 870 year: 2012 end-page: 875 ident: CR28 article-title: DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2354 – volume: 8 start-page: e1002808 year: 2012 ident: CR38 article-title: DNA methyltransferases are required to induce heterochromatic re-replication in publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002808 – volume: 462 start-page: 315 year: 2009 end-page: 322 ident: CR2 article-title: Human DNA methylomes at base resolution show widespread epigenomic differences publication-title: Nature doi: 10.1038/nature08514 – volume: 29 start-page: 3496 year: 2010 end-page: 3506 ident: CR30 article-title: Autocatalytic differentiation of epigenetic modifications within the genome publication-title: EMBO J. doi: 10.1038/emboj.2010.227 – volume: 22 start-page: 1597 year: 2008 end-page: 1606 ident: CR19 article-title: Tandem repeats upstream of the endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading publication-title: Genes Dev. doi: 10.1101/gad.1667808 – volume: 110 start-page: 8290 year: 2013 end-page: 8295 ident: CR15 article-title: DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IV publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1300585110 – volume: 2 start-page: e83 year: 2006 ident: CR36 article-title: RNAi, DRD1, and histone methylation actively target developmentally important non-CG DNA methylation in publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0020083 – volume: 153 start-page: 193 year: 2013 end-page: 205 ident: CR9 article-title: The nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin publication-title: Cell doi: 10.1016/j.cell.2013.02.033 – volume: 149 start-page: 307 year: 1998 end-page: 318 ident: CR13 article-title: A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in publication-title: Genetics – volume: 308 start-page: 118 year: 2005 end-page: 120 ident: CR20 article-title: RNA polymerase IV directs silencing of endogenous DNA publication-title: Science doi: 10.1126/science.1106910 – volume: 26 start-page: 1825 year: 2012 end-page: 1836 ident: CR26 article-title: Spatial and functional relationships among Pol V-associated loci, Pol IV-dependent siRNAs, and cytosine methylation in the epigenome publication-title: Genes Dev. doi: 10.1101/gad.197772.112 – volume: 416 start-page: 556 year: 2002 end-page: 560 ident: CR12 article-title: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase publication-title: Nature doi: 10.1038/nature731 – volume: 10 start-page: R25 year: 2009 ident: CR39 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r25 – volume: 151 start-page: 167 year: 2012 end-page: 180 ident: CR10 article-title: Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants publication-title: Cell doi: 10.1016/j.cell.2012.07.034 – volume: 299 start-page: 716 year: 2003 end-page: 719 ident: CR22 article-title: ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation publication-title: Science doi: 10.1126/science.1079695 – volume: 5 start-page: e57 year: 2007 ident: CR23 article-title: Genome-wide profiling and analysis of siRNAs publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050057 – volume: 43 start-page: 110 year: 2007 end-page: 117 ident: CR40 article-title: Construction of small RNA cDNA libraries for deep sequencing publication-title: Methods doi: 10.1016/j.ymeth.2007.05.002 – volume: 17 start-page: 379 year: 2007 end-page: 384 ident: CR29 article-title: The SRA methyl-cytosine-binding domain links DNA and histone methylation publication-title: Curr. Biol. doi: 10.1016/j.cub.2007.01.009 – volume: 12 start-page: 1360 year: 2002 end-page: 1367 ident: CR33 article-title: Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)00976-4 – volume: 22 start-page: 1825 year: 2012 end-page: 1830 ident: CR18 article-title: DNA methylation dynamics during sexual reproduction in publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.07.061 – volume: 11 start-page: 204 year: 2010 end-page: 220 ident: CR1 article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2719 – volume: 97 start-page: 5237 year: 2000 end-page: 5242 ident: CR6 article-title: Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.10.5237 – volume: 21 start-page: 6549 year: 2002 end-page: 6559 ident: CR32 article-title: DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in publication-title: EMBO J. doi: 10.1093/emboj/cdf657 – volume: 8 start-page: e1003062 year: 2012 ident: CR34 article-title: Loss of the DNA methyltransferase MET1 induces H3K9 hypermethylation at PcG target genes and redistribution of H3K27 trimethylation to transposons in publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003062 – volume: 733 start-page: 223 year: 2011 end-page: 238 ident: CR37 article-title: Determining DNA methylation profiles using sequencing publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-089-8_16 – volume: 30 start-page: 1928 year: 2011 end-page: 1938 ident: CR17 article-title: Integrative epigenomic mapping defines four main chromatin states in publication-title: EMBO J. doi: 10.1038/emboj.2011.103 – volume: 41 start-page: 630 year: 2009 end-page: 634 ident: CR35 article-title: RNA polymerase V transcription guides ARGONAUTE4 to chromatin publication-title: Nat. Genet. doi: 10.1038/ng.365 – volume: 498 start-page: 385 year: 2013 end-page: 389 ident: CR14 article-title: Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1 publication-title: Nature doi: 10.1038/nature12178 – volume: 148 start-page: 816 year: 2012 end-page: 831 ident: CR3 article-title: Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome publication-title: Cell doi: 10.1016/j.cell.2011.12.035 – volume: 152 start-page: 352 year: 2013 end-page: 364 ident: CR8 article-title: Comprehensive analysis of silencing mutants reveals complex regulation of the methylome publication-title: Cell doi: 10.1016/j.cell.2012.10.054 – volume: 336 start-page: 1448 year: 2012 end-page: 1451 ident: CR41 article-title: MORC family ATPases required for heterochromatin condensation and gene silencing publication-title: Science doi: 10.1126/science.1221472 – volume: 23 start-page: 555 year: 2013 end-page: 567 ident: CR7 article-title: Dynamic DNA methylation across diverse human cell lines and tissues publication-title: Genome Res. doi: 10.1101/gr.147942.112 – volume: 18 start-page: 1166 year: 2006 end-page: 1176 ident: CR11 article-title: Locus-specific control of DNA methylation by the SUVH5 histone methyltransferase publication-title: Plant Cell doi: 10.1105/tpc.106.041400 – volume: 105 start-page: 3145 year: 2008 end-page: 3150 ident: CR24 article-title: PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0709632105 – volume: 33 start-page: 5868 year: 2005 end-page: 5877 ident: CR5 article-title: Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki901 – volume: 32 start-page: 6511 year: 2004 end-page: 6518 ident: CR16 article-title: Mass spectrometry analysis of histone H3 reveals distinct combinations of post-translational modifications publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh992 – volume: 19 start-page: 2030 year: 2005 end-page: 2040 ident: CR21 article-title: Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in publication-title: Genes Dev. doi: 10.1101/gad.348405 – volume: 17 start-page: 379 year: 2007 ident: BFnsmb2735_CR29 publication-title: Curr. Biol. doi: 10.1016/j.cub.2007.01.009 – volume: 10 start-page: 1379 year: 2013 ident: BFnsmb2735_CR27 publication-title: RNA Biol. doi: 10.4161/rna.25555 – volume: 12 start-page: 1360 year: 2002 ident: BFnsmb2735_CR33 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)00976-4 – volume: 5 start-page: e57 year: 2007 ident: BFnsmb2735_CR23 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050057 – volume: 336 start-page: 1448 year: 2012 ident: BFnsmb2735_CR41 publication-title: Science doi: 10.1126/science.1221472 – volume: 20 start-page: 320 year: 2010 ident: BFnsmb2735_CR4 publication-title: Genome Res. doi: 10.1101/gr.101907.109 – volume: 18 start-page: 1166 year: 2006 ident: BFnsmb2735_CR11 publication-title: Plant Cell doi: 10.1105/tpc.106.041400 – volume: 26 start-page: 1825 year: 2012 ident: BFnsmb2735_CR26 publication-title: Genes Dev. doi: 10.1101/gad.197772.112 – volume: 33 start-page: 5868 year: 2005 ident: BFnsmb2735_CR5 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki901 – volume: 148 start-page: 816 year: 2012 ident: BFnsmb2735_CR3 publication-title: Cell doi: 10.1016/j.cell.2011.12.035 – volume: 299 start-page: 716 year: 2003 ident: BFnsmb2735_CR22 publication-title: Science doi: 10.1126/science.1079695 – volume: 149 start-page: 307 year: 1998 ident: BFnsmb2735_CR13 publication-title: Genetics doi: 10.1093/genetics/149.1.307 – volume: 21 start-page: 6549 year: 2002 ident: BFnsmb2735_CR32 publication-title: EMBO J. doi: 10.1093/emboj/cdf657 – volume: 2 start-page: e83 year: 2006 ident: BFnsmb2735_CR36 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0020083 – volume: 104 start-page: 4536 year: 2007 ident: BFnsmb2735_CR25 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0611456104 – volume: 30 start-page: 1928 year: 2011 ident: BFnsmb2735_CR17 publication-title: EMBO J. doi: 10.1038/emboj.2011.103 – volume: 105 start-page: 3145 year: 2008 ident: BFnsmb2735_CR24 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0709632105 – volume: 10 start-page: R25 year: 2009 ident: BFnsmb2735_CR39 publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r25 – volume: 24 start-page: 2783 year: 2005 ident: BFnsmb2735_CR31 publication-title: EMBO J. doi: 10.1038/sj.emboj.7600743 – volume: 416 start-page: 556 year: 2002 ident: BFnsmb2735_CR12 publication-title: Nature doi: 10.1038/nature731 – volume: 11 start-page: 204 year: 2010 ident: BFnsmb2735_CR1 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2719 – volume: 41 start-page: 630 year: 2009 ident: BFnsmb2735_CR35 publication-title: Nat. Genet. doi: 10.1038/ng.365 – volume: 308 start-page: 118 year: 2005 ident: BFnsmb2735_CR20 publication-title: Science doi: 10.1126/science.1106910 – volume: 153 start-page: 193 year: 2013 ident: BFnsmb2735_CR9 publication-title: Cell doi: 10.1016/j.cell.2013.02.033 – volume: 8 start-page: e1002808 year: 2012 ident: BFnsmb2735_CR38 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002808 – volume: 32 start-page: 6511 year: 2004 ident: BFnsmb2735_CR16 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh992 – volume: 29 start-page: 3496 year: 2010 ident: BFnsmb2735_CR30 publication-title: EMBO J. doi: 10.1038/emboj.2010.227 – volume: 152 start-page: 352 year: 2013 ident: BFnsmb2735_CR8 publication-title: Cell doi: 10.1016/j.cell.2012.10.054 – volume: 462 start-page: 315 year: 2009 ident: BFnsmb2735_CR2 publication-title: Nature doi: 10.1038/nature08514 – volume: 43 start-page: 110 year: 2007 ident: BFnsmb2735_CR40 publication-title: Methods doi: 10.1016/j.ymeth.2007.05.002 – volume: 19 start-page: 2030 year: 2005 ident: BFnsmb2735_CR21 publication-title: Genes Dev. doi: 10.1101/gad.348405 – volume: 23 start-page: 555 year: 2013 ident: BFnsmb2735_CR7 publication-title: Genome Res. doi: 10.1101/gr.147942.112 – volume: 498 start-page: 385 year: 2013 ident: BFnsmb2735_CR14 publication-title: Nature doi: 10.1038/nature12178 – volume: 22 start-page: 1597 year: 2008 ident: BFnsmb2735_CR19 publication-title: Genes Dev. doi: 10.1101/gad.1667808 – volume: 733 start-page: 223 year: 2011 ident: BFnsmb2735_CR37 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-089-8_16 – volume: 97 start-page: 5237 year: 2000 ident: BFnsmb2735_CR6 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.10.5237 – volume: 22 start-page: 1825 year: 2012 ident: BFnsmb2735_CR18 publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.07.061 – volume: 8 start-page: e1003062 year: 2012 ident: BFnsmb2735_CR34 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003062 – volume: 110 start-page: 8290 year: 2013 ident: BFnsmb2735_CR15 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1300585110 – volume: 19 start-page: 870 year: 2012 ident: BFnsmb2735_CR28 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2354 – volume: 151 start-page: 167 year: 2012 ident: BFnsmb2735_CR10 publication-title: Cell doi: 10.1016/j.cell.2012.07.034 |
SSID | ssj0025573 |
Score | 2.6157253 |
Snippet | Non-CG methylation is abundant in plants, but its functions are poorly understood. A new study has uncovered the contributions of each non-CG... DNA methylation occurs in CG and non-CG sequence contexts. Non-CG methylation is abundant in plants and is mediated by CHROMOMETHYLASE (CMT) and DOMAINS... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 64 |
SubjectTerms | 631/208/176/1988 631/449 Arabidopsis - genetics Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis Proteins - physiology Arabidopsis thaliana Biochemistry Biological Microscopy Chromatin Deoxyribonucleic acid DNA DNA Methylation DNA, Plant Epigenesis, Genetic Epigenetic inheritance Epigenetics Genetic aspects Genetic research Life Sciences Membrane Biology Methylation Molecular biology Physiological aspects Protein Structure Proteins |
Title | Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis |
URI | https://link.springer.com/article/10.1038/nsmb.2735 https://www.ncbi.nlm.nih.gov/pubmed/24336224 https://www.proquest.com/docview/1474243369 https://www.proquest.com/docview/1490763604 https://www.proquest.com/docview/1534805615 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZaUKVeEH2SQlH6kNqLS3YdO8kJUQSFSl1VtEh7i_xsV6JOWu8e-PfMJM7CrioOOXni2OOJ_dkz_oaQ9xzTDWSZoRkvM5prXlJlTEZHxiiptLNF52j_NhFnl_nXKZ_GA7cQwyqHObGbqE2j8Yz8YJTDJi5nTFSH7V-KWaPQuxpTaDwkm0hdhlZdTG83XJx3HmZECRSAEBuYhVh54MMf9QmWbr6yHq3PyneWpTU_abf8nG6TrYgb06N-oJ-QB9Y_JY_6TJLXz8j5pPH0-EuKCaGv-_C2tO2oM31Iw2_Z2hSQXmpbJN_Ee4tpd8cXo5_SmYdqpZqZpg2z8Jxcnp78PD6jMUsCBcWyOXWYtXwkKqG1GAP4M0I67pwUHKZhUzjmmMlEplylLS-sqnhRWCmUKOV4DA97QTZ84-0OSZ2VnElunAZg4YxVJSu1URYgRVmM1SghHwdd1TpSiGMmi6u6c2Wzska11qjWhLxdirY9b8Z_hVDhNfJQeAx0-SUXIdTnPy7qI4aXZAvYrCXkQxRyDXxMy3hvAJqM1FUrknsrkvCj6NXiYVzr-KOG-tasEvJmWYxvYvCZt80CZaqsQF61_B4ZzvISd2PQqZe9zSz73dUPUCkh7wYjutOAdaW8ur-Zu-QxYLa8PwXaIxvzfwv7GnDRXO13xr9PNj-fTL5f3ADGfw2T |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEaIXxLuBAuEluIR649hJDghVhbJL2z1AK-3N-AkrQRLIrtD-KX4jM3lsuyvUWw85ZeI4k7HnG8-LkBcc2w1QaiPKMxolhmeRtpZGA2u10sa7tHG0H4_F8DT5NOGTDfK3z4XBsMp-T2w2alsaPCPfHSRgxCWMifxd9SvCrlHoXe1baLRicegWf8Bkq9-O3sP_fRnHBx9O9odR11UggomwWeSxy_dA5MIYAZY_tUJ57r0SHLYtm3rmmaWCap8bx1Onc56mTgktMhXHcDEY9wq5CoqXorGXTs4MPM4bjzaikgiAF-srGbFst6h_6jcAFfiK_lvXAufU4JpftlF3BzfJjQ6nhnutYN0iG664Ta61nSsXd8hoXBbR_scQG1Av2nC6sGpKdRZ1WH9XlQsBWYauwmKfmCcZNjnFGG0VTgsYVumpLat6Wt8lp5fCv3tksygLt01C7xRniltvAMh463TGMmO1AwiTpbEeBOR1zytpupLl2Dnjh2xc5yyTyFaJbA3IsyVp1dbp-C8RMlxi3YsCA2u-qXldy9GXz3KPYVJuCsZhQF51RL6ElxnV5SnAlLFU1grlzgolLEyzerv_r7LbGGp5JsYBebq8jU9isFvhyjnS5DTFOm7JBTScJRlaf_BR91uZWX53Mz5As4A874Xo3ATWmfLg4mk-IdeHJ8dH8mg0PnxItgAvJu0J1A7ZnP2eu0eAyWb6cbMQQvL1slfeP1l3SXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-CG+methylation+patterns+shape+the+epigenetic+landscape+in+Arabidopsis&rft.jtitle=Nature+structural+%26+molecular+biology&rft.au=Stroud%2C+Hume&rft.au=Do%2C+Truman&rft.au=Du%2C+Jiamu&rft.au=Zhong%2C+Xuehua&rft.date=2014-01-01&rft.pub=Nature+Publishing+Group&rft.issn=1545-9993&rft.eissn=1545-9985&rft.volume=21&rft.issue=1&rft.spage=64&rft_id=info:doi/10.1038%2Fnsmb.2735&rft.externalDocID=3173636481 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-9993&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-9993&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-9993&client=summon |