Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials

GeTe is a promising mid-temperature thermoelectric compound but inevitably contains excessive Ge vacancies hindering its performance maximization. This work reveals that significant enhancement in the dimensionless figure of merit ( ZT ) could be realized by defect structure engineering from point d...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 6087 - 9
Main Authors Jiang, Yilin, Dong, Jinfeng, Zhuang, Hua-Lu, Yu, Jincheng, Su, Bin, Li, Hezhang, Pei, Jun, Sun, Fu-Hua, Zhou, Min, Hu, Haihua, Li, Jing-Wei, Han, Zhanran, Zhang, Bo-Ping, Mori, Takao, Li, Jing-Feng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.10.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract GeTe is a promising mid-temperature thermoelectric compound but inevitably contains excessive Ge vacancies hindering its performance maximization. This work reveals that significant enhancement in the dimensionless figure of merit ( ZT ) could be realized by defect structure engineering from point defects to line and plane defects of Ge vacancies. The evolved defects including dislocations and nanodomains enhance phonon scattering to reduce lattice thermal conductivity in GeTe. The accumulation of cationic vacancies toward the formation of dislocations and planar defects weakens the scattering against electronic carriers, securing the carrier mobility and power factor. This synergistic effect on electronic and thermal transport properties remarkably increases the quality factor. As a result, a maximum ZT  > 2.3 at 648 K and a record-high average ZT (300-798 K) were obtained for Bi 0.07 Ge 0.90 Te in lead-free GeTe-based compounds. This work demonstrates an important strategy for maximizing the thermoelectric performance of GeTe-based materials by engineering the defect structures, which could also be applied to other thermoelectric materials. The intrinsic high-concentration Ge vacancies in GeTe-based thermoelectric materials hinder their performance maximization. Here, the authors find that defect structure engineering strategy is effective for performance enhancement.
AbstractList GeTe is a promising mid-temperature thermoelectric compound but inevitably contains excessive Ge vacancies hindering its performance maximization. This work reveals that significant enhancement in the dimensionless figure of merit ( ZT ) could be realized by defect structure engineering from point defects to line and plane defects of Ge vacancies. The evolved defects including dislocations and nanodomains enhance phonon scattering to reduce lattice thermal conductivity in GeTe. The accumulation of cationic vacancies toward the formation of dislocations and planar defects weakens the scattering against electronic carriers, securing the carrier mobility and power factor. This synergistic effect on electronic and thermal transport properties remarkably increases the quality factor. As a result, a maximum ZT  > 2.3 at 648 K and a record-high average ZT (300-798 K) were obtained for Bi 0.07 Ge 0.90 Te in lead-free GeTe-based compounds. This work demonstrates an important strategy for maximizing the thermoelectric performance of GeTe-based materials by engineering the defect structures, which could also be applied to other thermoelectric materials. The intrinsic high-concentration Ge vacancies in GeTe-based thermoelectric materials hinder their performance maximization. Here, the authors find that defect structure engineering strategy is effective for performance enhancement.
GeTe is a promising mid-temperature thermoelectric compound but inevitably contains excessive Ge vacancies hindering its performance maximization. This work reveals that significant enhancement in the dimensionless figure of merit ( ZT ) could be realized by defect structure engineering from point defects to line and plane defects of Ge vacancies. The evolved defects including dislocations and nanodomains enhance phonon scattering to reduce lattice thermal conductivity in GeTe. The accumulation of cationic vacancies toward the formation of dislocations and planar defects weakens the scattering against electronic carriers, securing the carrier mobility and power factor. This synergistic effect on electronic and thermal transport properties remarkably increases the quality factor. As a result, a maximum ZT  > 2.3 at 648 K and a record-high average ZT (300-798 K) were obtained for Bi 0.07 Ge 0.90 Te in lead-free GeTe-based compounds. This work demonstrates an important strategy for maximizing the thermoelectric performance of GeTe-based materials by engineering the defect structures, which could also be applied to other thermoelectric materials.
The intrinsic high-concentration Ge vacancies in GeTe-based thermoelectric materials hinder their performance maximization. Here, the authors find that defect structure engineering strategy is effective for performance enhancement.
GeTe is a promising mid-temperature thermoelectric compound but inevitably contains excessive Ge vacancies hindering its performance maximization. This work reveals that significant enhancement in the dimensionless figure of merit (ZT) could be realized by defect structure engineering from point defects to line and plane defects of Ge vacancies. The evolved defects including dislocations and nanodomains enhance phonon scattering to reduce lattice thermal conductivity in GeTe. The accumulation of cationic vacancies toward the formation of dislocations and planar defects weakens the scattering against electronic carriers, securing the carrier mobility and power factor. This synergistic effect on electronic and thermal transport properties remarkably increases the quality factor. As a result, a maximum ZT > 2.3 at 648 K and a record-high average ZT (300-798 K) were obtained for Bi0.07Ge0.90Te in lead-free GeTe-based compounds. This work demonstrates an important strategy for maximizing the thermoelectric performance of GeTe-based materials by engineering the defect structures, which could also be applied to other thermoelectric materials.The intrinsic high-concentration Ge vacancies in GeTe-based thermoelectric materials hinder their performance maximization. Here, the authors find that defect structure engineering strategy is effective for performance enhancement.
GeTe is a promising mid-temperature thermoelectric compound but inevitably contains excessive Ge vacancies hindering its performance maximization. This work reveals that significant enhancement in the dimensionless figure of merit (ZT) could be realized by defect structure engineering from point defects to line and plane defects of Ge vacancies. The evolved defects including dislocations and nanodomains enhance phonon scattering to reduce lattice thermal conductivity in GeTe. The accumulation of cationic vacancies toward the formation of dislocations and planar defects weakens the scattering against electronic carriers, securing the carrier mobility and power factor. This synergistic effect on electronic and thermal transport properties remarkably increases the quality factor. As a result, a maximum ZT > 2.3 at 648 K and a record-high average ZT (300-798 K) were obtained for Bi0.07Ge0.90Te in lead-free GeTe-based compounds. This work demonstrates an important strategy for maximizing the thermoelectric performance of GeTe-based materials by engineering the defect structures, which could also be applied to other thermoelectric materials.GeTe is a promising mid-temperature thermoelectric compound but inevitably contains excessive Ge vacancies hindering its performance maximization. This work reveals that significant enhancement in the dimensionless figure of merit (ZT) could be realized by defect structure engineering from point defects to line and plane defects of Ge vacancies. The evolved defects including dislocations and nanodomains enhance phonon scattering to reduce lattice thermal conductivity in GeTe. The accumulation of cationic vacancies toward the formation of dislocations and planar defects weakens the scattering against electronic carriers, securing the carrier mobility and power factor. This synergistic effect on electronic and thermal transport properties remarkably increases the quality factor. As a result, a maximum ZT > 2.3 at 648 K and a record-high average ZT (300-798 K) were obtained for Bi0.07Ge0.90Te in lead-free GeTe-based compounds. This work demonstrates an important strategy for maximizing the thermoelectric performance of GeTe-based materials by engineering the defect structures, which could also be applied to other thermoelectric materials.
ArticleNumber 6087
Author Pei, Jun
Li, Jing-Wei
Sun, Fu-Hua
Dong, Jinfeng
Yu, Jincheng
Hu, Haihua
Mori, Takao
Zhang, Bo-Ping
Zhuang, Hua-Lu
Li, Hezhang
Jiang, Yilin
Han, Zhanran
Li, Jing-Feng
Zhou, Min
Su, Bin
Author_xml – sequence: 1
  givenname: Yilin
  orcidid: 0000-0002-8815-4260
  surname: Jiang
  fullname: Jiang, Yilin
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 2
  givenname: Jinfeng
  surname: Dong
  fullname: Dong, Jinfeng
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 3
  givenname: Hua-Lu
  surname: Zhuang
  fullname: Zhuang, Hua-Lu
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 4
  givenname: Jincheng
  orcidid: 0000-0002-3490-6965
  surname: Yu
  fullname: Yu, Jincheng
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 5
  givenname: Bin
  orcidid: 0000-0002-5547-8664
  surname: Su
  fullname: Su, Bin
  email: subin@tsinghua.edu.cn
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 6
  givenname: Hezhang
  surname: Li
  fullname: Li, Hezhang
  organization: International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS)
– sequence: 7
  givenname: Jun
  orcidid: 0000-0003-4718-7792
  surname: Pei
  fullname: Pei, Jun
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 8
  givenname: Fu-Hua
  surname: Sun
  fullname: Sun, Fu-Hua
  organization: Institute for Advanced Materials, Hubei Normal University
– sequence: 9
  givenname: Min
  orcidid: 0000-0001-5033-4605
  surname: Zhou
  fullname: Zhou, Min
  email: mzhou@mail.ipc.ac.cn
  organization: Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
– sequence: 10
  givenname: Haihua
  surname: Hu
  fullname: Hu, Haihua
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 11
  givenname: Jing-Wei
  surname: Li
  fullname: Li, Jing-Wei
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 12
  givenname: Zhanran
  surname: Han
  fullname: Han, Zhanran
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 13
  givenname: Bo-Ping
  surname: Zhang
  fullname: Zhang, Bo-Ping
  organization: The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing
– sequence: 14
  givenname: Takao
  orcidid: 0000-0003-2682-1846
  surname: Mori
  fullname: Mori, Takao
  email: MORI.Takao@nims.go.jp
  organization: International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), Graduate School of Pure and Applied Sciences, University of Tsukuba
– sequence: 15
  givenname: Jing-Feng
  orcidid: 0000-0002-0185-0512
  surname: Li
  fullname: Li, Jing-Feng
  email: jingfeng@mail.tsinghua.edu.cn
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Institute for Advanced Materials, Hubei Normal University
BookMark eNp9Uk1vFSEUJabG1to_4IrEjZtRvmZgNiamqbVJEzfPxLghwFzm8TJvqMA0sb9eXqdR20XZXALnnHvgntfoaI4zIPSWkg-UcPUxCyo62RDGGs6lFM3dC3TCiKANlYwf_bc_Rmc570hdvKdKiFfomHdM0I72J-jHxW2clhLijKPHA3hwBeeSFleWBBlPYIYwj7hEvA3jFv_c4DDjS9hAY02GAZctpH2EqfJScHhvCqRgpvwGvfS1wNlDPUXfv1xszr82198ur84_XzeuVbw0nrteGEl413rlOPheKUq5ddIxNjjStsQZ46yXDnormPQKWsuM6YngCiw_RVer7hDNTt-ksDfpt44m6PuDmEZtUgluAu1hGNzA-16aVhhKrKWW2PpAPjgPpqtan1atm8XuYXAwl2SmR6KPb-aw1WO81X3bqZbzKvD-QSDFXwvkovchO5gmM0NcsmaStYyQOpQKffcEuotLmutXHVBC9p1UBxRbUS7FnBP4v2Yo0Ycc6DUHuuZA3-dA31WSekJyoZjDjKvpMD1P5Ss11z7zCOmfq2dYfwCSjsr6
CitedBy_id crossref_primary_10_1002_idm2_12134
crossref_primary_10_1016_j_enconman_2025_119621
crossref_primary_10_1007_s12598_024_02852_0
crossref_primary_10_1021_acsaem_4c03344
crossref_primary_10_1016_j_cej_2023_145820
crossref_primary_10_1021_acsaem_3c02687
crossref_primary_10_1126_science_adg7196
crossref_primary_10_1021_jacs_3c12546
crossref_primary_10_1039_D3TA03522K
crossref_primary_10_1002_smll_202312206
crossref_primary_10_1002_aenm_202402552
crossref_primary_10_1002_adfm_202307864
crossref_primary_10_1002_adfm_202411054
crossref_primary_10_1002_adfm_202304512
crossref_primary_10_1002_smll_202412336
crossref_primary_10_1016_j_cej_2023_148135
crossref_primary_10_1016_j_actamat_2025_120736
crossref_primary_10_1021_acsnano_4c11732
crossref_primary_10_1007_s40820_023_01170_x
crossref_primary_10_1021_acsami_3c05226
crossref_primary_10_1021_acsami_3c09823
crossref_primary_10_1016_j_jallcom_2023_169687
crossref_primary_10_1002_adfm_202421837
crossref_primary_10_1021_acs_jpcc_3c06638
crossref_primary_10_1039_D4TA01087F
crossref_primary_10_1063_5_0199416
crossref_primary_10_1002_smll_202408864
crossref_primary_10_1016_j_vacuum_2024_113712
crossref_primary_10_1016_j_apenergy_2023_121584
crossref_primary_10_1016_j_jallcom_2023_173337
crossref_primary_10_1063_5_0230378
crossref_primary_10_1016_j_mtphys_2023_101260
crossref_primary_10_34133_research_0123
crossref_primary_10_1021_jacs_3c09643
crossref_primary_10_1038_s41524_023_01162_w
crossref_primary_10_1002_sstr_202400201
crossref_primary_10_20517_microstructures_2024_56
crossref_primary_10_1002_smll_202312145
crossref_primary_10_1007_s11664_024_11343_y
crossref_primary_10_1002_smll_202500333
crossref_primary_10_1007_s12598_024_02663_3
crossref_primary_10_1002_admi_202300711
crossref_primary_10_1016_j_gee_2024_08_008
crossref_primary_10_1002_adfm_202214771
crossref_primary_10_1016_j_nanoen_2025_110690
crossref_primary_10_1002_adfm_202401716
crossref_primary_10_1002_advs_202407413
crossref_primary_10_1016_j_mtphys_2023_101156
crossref_primary_10_1063_5_0159455
crossref_primary_10_1002_adfm_202407818
crossref_primary_10_1002_inf2_12514
crossref_primary_10_1039_D4EE04639K
crossref_primary_10_1016_j_jallcom_2024_174672
crossref_primary_10_1002_adfm_202313720
crossref_primary_10_1103_PhysRevMaterials_7_104602
crossref_primary_10_1002_adsu_202300234
crossref_primary_10_1016_j_actamat_2023_119410
crossref_primary_10_1002_smll_202306701
crossref_primary_10_1007_s11426_023_1912_8
crossref_primary_10_1038_s41467_024_53598_3
crossref_primary_10_1063_5_0247466
crossref_primary_10_1002_advs_202400870
crossref_primary_10_1016_j_actamat_2024_120132
crossref_primary_10_1039_D3TA00609C
crossref_primary_10_1016_j_mtphys_2024_101466
crossref_primary_10_1002_smll_202407556
crossref_primary_10_1007_s12598_023_02606_4
crossref_primary_10_1002_adma_202417597
crossref_primary_10_1016_j_mtcomm_2023_106564
crossref_primary_10_1038_s42254_024_00771_8
crossref_primary_10_1002_adfm_202301971
crossref_primary_10_1007_s12598_024_02747_0
crossref_primary_10_1016_j_actamat_2023_119644
crossref_primary_10_1039_D4TA03666B
crossref_primary_10_1002_adfm_202404021
crossref_primary_10_1021_accountsmr_4c00229
crossref_primary_10_1039_D4TA02197E
crossref_primary_10_1038_s41467_024_55490_6
crossref_primary_10_1039_D4TC03291H
crossref_primary_10_1039_D4CP02584A
crossref_primary_10_1088_1402_4896_ad9c31
crossref_primary_10_1002_smsc_202400147
crossref_primary_10_1002_aenm_202402479
crossref_primary_10_34133_energymatadv_0089
crossref_primary_10_1021_acsami_4c13775
crossref_primary_10_1063_5_0174274
crossref_primary_10_1016_j_mtphys_2023_101292
crossref_primary_10_1016_j_physrep_2023_11_001
crossref_primary_10_1002_pssa_202300425
crossref_primary_10_1007_s00339_024_07354_5
crossref_primary_10_1038_s41467_024_53599_2
crossref_primary_10_1039_D4YA00057A
crossref_primary_10_1126_science_ado1133
crossref_primary_10_1021_acsami_5c00810
crossref_primary_10_1002_adma_202208272
crossref_primary_10_54227_mlab_20230011
crossref_primary_10_1002_smll_202407459
crossref_primary_10_1016_j_jallcom_2024_174964
crossref_primary_10_1021_acsami_3c18607
crossref_primary_10_1039_D3TA05067J
crossref_primary_10_1021_acsami_4c02652
crossref_primary_10_1039_D4CP04219K
crossref_primary_10_1016_j_mtcomm_2024_108265
crossref_primary_10_1021_acsami_4c15281
crossref_primary_10_1016_j_xinn_2023_100522
crossref_primary_10_1007_s40195_023_01584_x
crossref_primary_10_1016_j_actamat_2025_120761
crossref_primary_10_1002_adfm_202403498
crossref_primary_10_1016_j_actamat_2025_120883
crossref_primary_10_1039_D4CP03178D
crossref_primary_10_1016_j_scib_2024_04_034
crossref_primary_10_1016_j_jmat_2024_02_014
crossref_primary_10_1002_adfm_202417260
crossref_primary_10_1038_s44287_023_00013_6
crossref_primary_10_1016_j_cej_2024_155652
crossref_primary_10_1016_j_mtphys_2023_101071
crossref_primary_10_1002_aelm_202300809
crossref_primary_10_1126_sciadv_adh0713
crossref_primary_10_1021_acsami_3c13305
crossref_primary_10_1016_j_ceramint_2024_04_313
crossref_primary_10_1021_acsami_4c08686
crossref_primary_10_1039_D4SC06615D
crossref_primary_10_1016_j_actamat_2024_120439
crossref_primary_10_1016_j_nanoen_2023_108930
crossref_primary_10_1103_PhysRevMaterials_8_033802
crossref_primary_10_1016_j_jeurceramsoc_2024_03_067
crossref_primary_10_1016_j_device_2024_100520
crossref_primary_10_1002_aenm_202403174
crossref_primary_10_1016_j_jclepro_2025_144955
crossref_primary_10_1016_j_scriptamat_2023_115931
crossref_primary_10_1088_2631_7990_acfd68
crossref_primary_10_1016_j_wear_2024_205559
crossref_primary_10_1016_j_ceramint_2024_08_085
crossref_primary_10_1002_aenm_202400340
crossref_primary_10_1016_j_jmat_2023_05_011
crossref_primary_10_1016_j_mtener_2024_101655
Cites_doi 10.1016/j.cej.2021.132275
10.1038/am.2017.8
10.1016/j.mtphys.2019.100096
10.1002/adma.202001537
10.1021/ja504896a
10.1038/nature13184
10.1103/PhysRevB.54.11169
10.1103/PhysRevB.59.1758
10.1002/aenm.201200970
10.1002/advs.201700341
10.1002/aenm.201801837
10.1039/D0TA02758H
10.1002/aenm.202102913
10.1103/PhysRevB.46.6131
10.1016/j.mtphys.2019.100094
10.1038/s41563-021-01064-6
10.1016/j.joule.2020.03.004
10.1016/j.joule.2018.02.016
10.1002/smll.201906921
10.1038/s41467-020-19867-7
10.1002/smll.202100915
10.1126/science.1159725
10.1021/acs.chemmater.5b03434
10.1002/adma.201705942
10.1039/D0TA08700A
10.1038/nmat3013
10.1039/C9EE00317G
10.1016/j.mtphys.2022.100617
10.1126/science.aaa4166
10.1039/C7EE03256K
10.1016/j.joule.2019.02.008
10.1126/science.abb3517
10.1002/adfm.202101214
10.1039/C9TA10436D
10.1038/ncomms13828
10.1126/science.aak9997
10.1039/C9TC00868C
10.1073/pnas.1802020115
10.1002/aenm.202000367
10.1021/acs.chemmater.6b04066
10.1103/PhysRevB.48.13115
10.1002/adma.202008773
10.1038/nmat3273
10.1038/nature09996
10.1016/j.mtphys.2022.100682
10.1016/j.actamat.2003.10.006
10.1002/adfm.201806613
10.1126/sciadv.abf2738
10.1021/jacs.8b09375
10.1038/s41467-021-25722-0
10.1038/am.2016.203
10.1103/PhysRev.120.1149
10.1080/14686996.2018.1530938
10.1039/C7TA10374C
10.1126/science.abq5815
10.1016/S1369-8001(02)00019-7
10.1002/aenm.202002588
10.1038/nature11439
10.1016/j.actamat.2015.03.015
10.1021/acsami.0c02155
10.1103/PhysRevLett.77.3865
10.1016/j.scriptamat.2011.05.005
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-33774-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_feddcd3997a54a10bb1b0bead3dcfea6
PMC9568533
10_1038_s41467_022_33774_z
GrantInformation_xml – fundername: the Basic Science Center Project of NSFC no. 51788104 and the National Key R&D Program of China no. 2018YFB0703603
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c583t-f3c94a70365f8c3ef988113bc7c22dc0550caacbf7ce9b427f8e5b2aa90438eb3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:25:53 EDT 2025
Thu Aug 21 18:39:58 EDT 2025
Fri Jul 11 01:48:47 EDT 2025
Wed Aug 13 09:51:12 EDT 2025
Tue Jul 01 00:58:28 EDT 2025
Thu Apr 24 23:08:10 EDT 2025
Fri Feb 21 02:38:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-f3c94a70365f8c3ef988113bc7c22dc0550caacbf7ce9b427f8e5b2aa90438eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4718-7792
0000-0002-5547-8664
0000-0002-8815-4260
0000-0003-2682-1846
0000-0002-0185-0512
0000-0002-3490-6965
0000-0001-5033-4605
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-33774-z
PMID 36241619
PQID 2724796783
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_feddcd3997a54a10bb1b0bead3dcfea6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9568533
proquest_miscellaneous_2725200723
proquest_journals_2724796783
crossref_primary_10_1038_s41467_022_33774_z
crossref_citationtrail_10_1038_s41467_022_33774_z
springer_journals_10_1038_s41467_022_33774_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-14
PublicationDateYYYYMMDD 2022-10-14
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Li (CR6) 2021; 12
Li, Zhang, Lin, Chen, Pei (CR37) 2017; 29
Zhao (CR11) 2014; 508
He, Tritt (CR1) 2017; 357
Chen (CR39) 2017; 8
Kim (CR8) 2015; 348
Biswas (CR7) 2012; 489
Liu (CR17) 2020; 10
Petsagkourakis (CR2) 2018; 19
Abdellaoui (CR45) 2021; 31
Guo (CR61) 2020; 8
Shuai, Sun, Tan, Mori (CR28) 2020; 16
Choi, Zhang, Chua (CR40) 2001; 4
Dong (CR29) 2019; 12
Zhang (CR16) 2020; 4
Wei (CR43) 2011; 65
Kresse, Furthmüller (CR57) 1996; 54
Chetty (CR54) 2019; 7
Chen, Wang, Wu (CR49) 2022; 22
Hong (CR22) 2018; 30
McCabe, Misra, Mitchell (CR44) 2004; 52
Wu (CR50) 2014; 136
Li (CR62) 2018; 2
Zhou (CR12) 2021; 20
Li (CR38) 2017; 4
Li (CR34) 2017; 9
Yin (CR32) 2021; 11
Jiang (CR51) 2022; 377
Zhang (CR24) 2022; 429
Li, Chen, Cai, Wen (CR25) 2018; 6
Liu (CR13) 2012; 11
Xing (CR48) 2021; 33
Kresse, Joubert (CR58) 1999; 59
Callaway, von Baeyer (CR47) 1960; 120
Ding (CR4) 2020; 11
Perumal, Roychowdhury, Negi, Datta, Biswas (CR36) 2015; 27
Perdew, Burke, Ernzerhof (CR59) 1996; 77
Agne, Hanus, Snyder (CR53) 2018; 11
Pei (CR5) 2011; 473
Liu (CR31) 2020; 10
Hong (CR26) 2018; 8
Kresse, Hafner (CR56) 1993; 48
Gelbstein, Davidow, Girard, Chung, Kanatzidis (CR19) 2013; 3
Chen (CR41) 2022; 24
Shuai (CR23) 2019; 9
Kraemer (CR3) 2011; 10
Wu (CR10) 2019; 3
Lee (CR14) 2015; 91
Bu (CR35) 2019; 9
Roychowdhury (CR55) 2021; 371
Feng (CR18) 2020; 8
Wu (CR21) 2017; 9
Snyder (CR52) 2020; 32
Chen (CR42) 2020; 12
Wu, Xie, Xu, He (CR15) 2019; 29
Xie (CR27) 2021; 17
Nshimyimana (CR20) 2020; 8
Cahill, Watson, Pohl (CR46) 1992; 46
Bu (CR30) 2021; 7
Liu (CR60) 2018; 115
Heremans (CR9) 2008; 321
Zhang (CR33) 2018; 140
L-D Zhao (33774_CR11) 2014; 508
R Zhang (33774_CR24) 2022; 429
Y Li (33774_CR25) 2018; 6
Z Bu (33774_CR30) 2021; 7
J Li (33774_CR34) 2017; 9
M Hong (33774_CR26) 2018; 8
G Kresse (33774_CR58) 1999; 59
JP Perdew (33774_CR59) 1996; 77
M Hong (33774_CR22) 2018; 30
S Chen (33774_CR41) 2022; 24
Z Guo (33774_CR61) 2020; 8
D Wu (33774_CR50) 2014; 136
A Li (33774_CR6) 2021; 12
J Shuai (33774_CR23) 2019; 9
RJ McCabe (33774_CR44) 2004; 52
R Chetty (33774_CR54) 2019; 7
C Zhou (33774_CR12) 2021; 20
I Petsagkourakis (33774_CR2) 2018; 19
L Xie (33774_CR27) 2021; 17
Z Liu (33774_CR60) 2018; 115
H Liu (33774_CR13) 2012; 11
X Zhang (33774_CR16) 2020; 4
T Xing (33774_CR48) 2021; 33
JP Heremans (33774_CR9) 2008; 321
HS Lee (33774_CR14) 2015; 91
L Wu (33774_CR21) 2017; 9
K Biswas (33774_CR7) 2012; 489
J Callaway (33774_CR47) 1960; 120
Y Gelbstein (33774_CR19) 2013; 3
E Nshimyimana (33774_CR20) 2020; 8
S Roychowdhury (33774_CR55) 2021; 371
D Wu (33774_CR15) 2019; 29
Z Chen (33774_CR39) 2017; 8
T Ding (33774_CR4) 2020; 11
J Li (33774_CR38) 2017; 4
J Li (33774_CR62) 2018; 2
YL Wei (33774_CR43) 2011; 65
GJ Snyder (33774_CR52) 2020; 32
Y Wu (33774_CR10) 2019; 3
W Liu (33774_CR17) 2020; 10
J Shuai (33774_CR28) 2020; 16
Y Pei (33774_CR5) 2011; 473
S Perumal (33774_CR36) 2015; 27
G Kresse (33774_CR57) 1996; 54
DG Cahill (33774_CR46) 1992; 46
Y Feng (33774_CR18) 2020; 8
J Li (33774_CR37) 2017; 29
L Abdellaoui (33774_CR45) 2021; 31
MT Agne (33774_CR53) 2018; 11
Z Liu (33774_CR31) 2020; 10
G Kresse (33774_CR56) 1993; 48
S Chen (33774_CR42) 2020; 12
J He (33774_CR1) 2017; 357
HW Choi (33774_CR40) 2001; 4
L-C Yin (33774_CR32) 2021; 11
Z Bu (33774_CR35) 2019; 9
X Zhang (33774_CR33) 2018; 140
SI Kim (33774_CR8) 2015; 348
D Kraemer (33774_CR3) 2011; 10
J Dong (33774_CR29) 2019; 12
B-C Chen (33774_CR49) 2022; 22
B Jiang (33774_CR51) 2022; 377
References_xml – volume: 429
  start-page: 132275
  year: 2022
  ident: CR24
  article-title: Intrinsic vacancy suppression and band convergence to enhance thermoelectric performance of (Ge, Bi, Sb)Te crystals
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132275
– volume: 9
  start-page: e353
  year: 2017
  end-page: e353
  ident: CR34
  article-title: Electronic origin of the high thermoelectric performance of GeTe among the p-type group IV monotellurides
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2017.8
– volume: 9
  start-page: 100096
  year: 2019
  ident: CR35
  article-title: Dilute Cu Te-alloying enables extraordinary performance of r-GeTe thermoelectrics
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2019.100096
– volume: 32
  start-page: 2001537
  year: 2020
  ident: CR52
  article-title: Weighted Mobility
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001537
– volume: 136
  start-page: 11412
  year: 2014
  end-page: 11419
  ident: CR50
  article-title: Origin of the high performance in GeTe-based thermoelectric materials upon Bi Te doping
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja504896a
– volume: 508
  start-page: 373
  year: 2014
  end-page: 377
  ident: CR11
  article-title: Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals
  publication-title: Nature
  doi: 10.1038/nature13184
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR57
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: CR58
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 3
  start-page: 815
  year: 2013
  end-page: 820
  ident: CR19
  article-title: Controlling metallurgical phase separation reactions of the Ge Pb Te alloy for high thermoelectric performance
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200970
– volume: 4
  start-page: 1700341
  year: 2017
  ident: CR38
  article-title: Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh performance GeTe thermoelectrics
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700341
– volume: 8
  start-page: 1801837
  year: 2018
  ident: CR26
  article-title: Arrays of planar vacancies in superior thermoelectric Ge Cd Bi Te with band convergence
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801837
– volume: 8
  start-page: 11370
  year: 2020
  end-page: 11380
  ident: CR18
  article-title: Band convergence and carrier-density fine-tuning as the electronic origin of high-average thermoelectric performance in Pb-doped GeTe-based alloys
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02758H
– volume: 11
  start-page: 2102913
  year: 2021
  ident: CR32
  article-title: High carrier mobility and high figure of merit in the CuBiSe alloyed GeTe
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102913
– volume: 46
  start-page: 6131
  year: 1992
  end-page: 6140
  ident: CR46
  article-title: Lower limit to the thermal conductivity of disordered crystals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.6131
– volume: 9
  start-page: 100094
  year: 2019
  ident: CR23
  article-title: Enhanced thermoelectric performance through crystal field engineering in transition metal–doped GeTe
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2019.100094
– volume: 20
  start-page: 1378
  year: 2021
  end-page: 1384
  ident: CR12
  article-title: Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01064-6
– volume: 4
  start-page: 986
  year: 2020
  end-page: 1003
  ident: CR16
  article-title: GeTe thermoelectrics
  publication-title: Joule
  doi: 10.1016/j.joule.2020.03.004
– volume: 2
  start-page: 976
  year: 2018
  end-page: 987
  ident: CR62
  article-title: Low-symmetry rhombohedral GeTe thermoelectrics
  publication-title: Joule
  doi: 10.1016/j.joule.2018.02.016
– volume: 16
  start-page: 1906921
  year: 2020
  ident: CR28
  article-title: Manipulating the Ge vacancies and Ge precipitates through Cr doping for realizing the high-performance GeTe thermoelectric material
  publication-title: Small
  doi: 10.1002/smll.201906921
– volume: 11
  year: 2020
  ident: CR4
  article-title: Scalable thermoelectric fibers for multifunctional textile-electronics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19867-7
– volume: 17
  start-page: 2100915
  year: 2021
  ident: CR27
  article-title: Enhanced thermoelectric performance in Ge Sb Te/FeGe composites enabled by hierarchical defects
  publication-title: Small
  doi: 10.1002/smll.202100915
– volume: 321
  start-page: 554
  year: 2008
  end-page: 557
  ident: CR9
  article-title: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states
  publication-title: Science
  doi: 10.1126/science.1159725
– volume: 27
  start-page: 7171
  year: 2015
  end-page: 7178
  ident: CR36
  article-title: High thermoelectric performance and enhanced mechanical stability of -type Ge Sb Te
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03434
– volume: 30
  start-page: 1705942
  year: 2018
  ident: CR22
  article-title: Realizing of 2.3 in Ge Sb In Te via reducing the phase‐transition temperature and introducing resonant energy doping
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705942
– volume: 8
  start-page: 21642
  year: 2020
  end-page: 21648
  ident: CR61
  article-title: Bi–Zn codoping in GeTe synergistically enhances band convergence and phonon scattering for high thermoelectric performance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08700A
– volume: 10
  start-page: 532
  year: 2011
  end-page: 538
  ident: CR3
  article-title: High-performance flat-panel solar thermoelectric generators with high thermal concentration
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3013
– volume: 12
  start-page: 1396
  year: 2019
  end-page: 1403
  ident: CR29
  article-title: Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00317G
– volume: 22
  start-page: 100617
  year: 2022
  ident: CR49
  article-title: Localized crystal imperfections coupled with phase diagram engineering yield high-performance rhombohedral GeTe thermoelectrics
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2022.100617
– volume: 348
  start-page: 109
  year: 2015
  end-page: 114
  ident: CR8
  article-title: Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics
  publication-title: Science
  doi: 10.1126/science.aaa4166
– volume: 11
  start-page: 609
  year: 2018
  end-page: 616
  ident: CR53
  article-title: Minimum thermal conductivity in the context of diffusion-mediated thermal transport
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE03256K
– volume: 3
  start-page: 1276
  year: 2019
  end-page: 1288
  ident: CR10
  article-title: Lattice strain advances thermoelectrics
  publication-title: Joule
  doi: 10.1016/j.joule.2019.02.008
– volume: 371
  start-page: 722
  year: 2021
  end-page: 727
  ident: CR55
  article-title: Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe
  publication-title: Science
  doi: 10.1126/science.abb3517
– volume: 31
  start-page: 2101214
  year: 2021
  ident: CR45
  article-title: Parallel dislocation networks and cottrell atmospheres reduce thermal conductivity of PbTe thermoelectrics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202101214
– volume: 8
  start-page: 1193
  year: 2020
  end-page: 1204
  ident: CR20
  article-title: Discordant nature of Cd in GeTe enhances phonon scattering and improves band convergence for high thermoelectric performance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA10436D
– volume: 8
  year: 2017
  ident: CR39
  article-title: Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13828
– volume: 357
  start-page: eaak9997
  year: 2017
  ident: CR1
  article-title: Advances in thermoelectric materials research: looking back and moving forward
  publication-title: Science
  doi: 10.1126/science.aak9997
– volume: 7
  start-page: 5184
  year: 2019
  end-page: 5192
  ident: CR54
  article-title: Power generation from the Cu Nb Ge S -based single thermoelectric element with Au diffusion barrier
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C9TC00868C
– volume: 115
  start-page: 5332
  year: 2018
  end-page: 5337
  ident: CR60
  article-title: Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1802020115
– volume: 10
  start-page: 2000367
  year: 2020
  ident: CR17
  article-title: High‐performance GeTe‐based thermoelectrics: from materials to devices
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000367
– volume: 29
  start-page: 605
  year: 2017
  end-page: 611
  ident: CR37
  article-title: Realizing the high thermoelectric performance of GeTe by Sb-doping and Se-alloying
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04066
– volume: 48
  start-page: 13115
  year: 1993
  end-page: 13118
  ident: CR56
  article-title: Ab initio molecular dynamics for open-shell transition metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.13115
– volume: 33
  start-page: 2008773
  year: 2021
  ident: CR48
  article-title: Ultralow lattice thermal conductivity and superhigh thermoelectric figure‐of‐merit in (Mg, Bi) co‐doped GeTe
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008773
– volume: 11
  start-page: 422
  year: 2012
  end-page: 425
  ident: CR13
  article-title: Copper ion liquid-like thermoelectrics
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3273
– volume: 473
  start-page: 66
  year: 2011
  end-page: 69
  ident: CR5
  article-title: Convergence of electronic bands for high performance bulk thermoelectrics
  publication-title: Nature
  doi: 10.1038/nature09996
– volume: 24
  start-page: 100682
  year: 2022
  ident: CR41
  article-title: The role of Ge vacancies and Sb doping in GeTe: a comparative study of thermoelectric transport properties in Sb Ge Te and Sb Ge Te compounds
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2022.100682
– volume: 52
  start-page: 705
  year: 2004
  end-page: 714
  ident: CR44
  article-title: Experimentally determined content of a geometrically necessary dislocation boundary in copper
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2003.10.006
– volume: 29
  start-page: 1806613
  year: 2019
  ident: CR15
  article-title: High thermoelectric performance achieved in GeTe-Bi Te pseudo‐binary via van der waals gap‐induced hierarchical ferroelectric domain structure
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806613
– volume: 7
  start-page: eabf2738
  year: 2021
  ident: CR30
  article-title: Realizing a 14% single-leg thermoelectric efficiency in GeTe alloys
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf2738
– volume: 140
  start-page: 15883
  year: 2018
  end-page: 15888
  ident: CR33
  article-title: Vacancy manipulation for thermoelectric enhancements in GeTe alloys
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b09375
– volume: 12
  year: 2021
  ident: CR6
  article-title: Demonstration of valley anisotropy utilized to enhance the thermoelectric power factor
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25722-0
– volume: 9
  start-page: e343
  year: 2017
  end-page: e343
  ident: CR21
  article-title: Resonant level-induced high thermoelectric response in indium-doped GeTe
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2016.203
– volume: 120
  start-page: 1149
  year: 1960
  end-page: 1154
  ident: CR47
  article-title: Effect of point imperfections on lattice thermal conductivity
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.120.1149
– volume: 19
  start-page: 836
  year: 2018
  end-page: 862
  ident: CR2
  article-title: Thermoelectric materials and applications for energy harvesting power generation
  publication-title: Sci. Technol. Adv. Mat.
  doi: 10.1080/14686996.2018.1530938
– volume: 6
  start-page: 4948
  year: 2018
  end-page: 4954
  ident: CR25
  article-title: An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10374C
– volume: 377
  start-page: 208
  year: 2022
  end-page: 213
  ident: CR51
  article-title: High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics
  publication-title: Science
  doi: 10.1126/science.abq5815
– volume: 4
  start-page: 567
  year: 2001
  end-page: 570
  ident: CR40
  article-title: Dislocation scattering in n-GaN
  publication-title: Mat. Sci. Semicon. Proc.
  doi: 10.1016/S1369-8001(02)00019-7
– volume: 10
  start-page: 2002588
  year: 2020
  ident: CR31
  article-title: High power factor and enhanced thermoelectric performance in Sc and Bi codoped GeTe: insights into the hidden role of rhombohedral distortion degree
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002588
– volume: 489
  start-page: 414
  year: 2012
  end-page: 418
  ident: CR7
  article-title: High-performance bulk thermoelectrics with all-scale hierarchical architectures
  publication-title: Nature
  doi: 10.1038/nature11439
– volume: 91
  start-page: 83
  year: 2015
  end-page: 90
  ident: CR14
  article-title: Herringbone structure in GeTe-based thermoelectric materials
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.03.015
– volume: 12
  start-page: 19664
  year: 2020
  end-page: 19673
  ident: CR42
  article-title: Vacancy-based defect regulation for high thermoelectric performance in Ge Sb Te compounds
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c02155
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR59
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 65
  start-page: 355
  year: 2011
  end-page: 358
  ident: CR43
  article-title: Dislocations, boundaries and slip systems in cube grains of rolled aluminium
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2011.05.005
– volume: 77
  start-page: 3865
  year: 1996
  ident: 33774_CR59
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 321
  start-page: 554
  year: 2008
  ident: 33774_CR9
  publication-title: Science
  doi: 10.1126/science.1159725
– volume: 4
  start-page: 567
  year: 2001
  ident: 33774_CR40
  publication-title: Mat. Sci. Semicon. Proc.
  doi: 10.1016/S1369-8001(02)00019-7
– volume: 4
  start-page: 1700341
  year: 2017
  ident: 33774_CR38
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700341
– volume: 33
  start-page: 2008773
  year: 2021
  ident: 33774_CR48
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008773
– volume: 120
  start-page: 1149
  year: 1960
  ident: 33774_CR47
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.120.1149
– volume: 7
  start-page: eabf2738
  year: 2021
  ident: 33774_CR30
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf2738
– volume: 429
  start-page: 132275
  year: 2022
  ident: 33774_CR24
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132275
– volume: 489
  start-page: 414
  year: 2012
  ident: 33774_CR7
  publication-title: Nature
  doi: 10.1038/nature11439
– volume: 8
  start-page: 1801837
  year: 2018
  ident: 33774_CR26
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801837
– volume: 348
  start-page: 109
  year: 2015
  ident: 33774_CR8
  publication-title: Science
  doi: 10.1126/science.aaa4166
– volume: 16
  start-page: 1906921
  year: 2020
  ident: 33774_CR28
  publication-title: Small
  doi: 10.1002/smll.201906921
– volume: 24
  start-page: 100682
  year: 2022
  ident: 33774_CR41
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2022.100682
– volume: 8
  start-page: 11370
  year: 2020
  ident: 33774_CR18
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02758H
– volume: 27
  start-page: 7171
  year: 2015
  ident: 33774_CR36
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03434
– volume: 9
  start-page: e353
  year: 2017
  ident: 33774_CR34
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2017.8
– volume: 19
  start-page: 836
  year: 2018
  ident: 33774_CR2
  publication-title: Sci. Technol. Adv. Mat.
  doi: 10.1080/14686996.2018.1530938
– volume: 12
  year: 2021
  ident: 33774_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25722-0
– volume: 115
  start-page: 5332
  year: 2018
  ident: 33774_CR60
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1802020115
– volume: 11
  year: 2020
  ident: 33774_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19867-7
– volume: 8
  start-page: 21642
  year: 2020
  ident: 33774_CR61
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08700A
– volume: 54
  start-page: 11169
  year: 1996
  ident: 33774_CR57
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 10
  start-page: 2002588
  year: 2020
  ident: 33774_CR31
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002588
– volume: 29
  start-page: 605
  year: 2017
  ident: 33774_CR37
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04066
– volume: 91
  start-page: 83
  year: 2015
  ident: 33774_CR14
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.03.015
– volume: 140
  start-page: 15883
  year: 2018
  ident: 33774_CR33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b09375
– volume: 8
  start-page: 1193
  year: 2020
  ident: 33774_CR20
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA10436D
– volume: 508
  start-page: 373
  year: 2014
  ident: 33774_CR11
  publication-title: Nature
  doi: 10.1038/nature13184
– volume: 11
  start-page: 609
  year: 2018
  ident: 33774_CR53
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE03256K
– volume: 4
  start-page: 986
  year: 2020
  ident: 33774_CR16
  publication-title: Joule
  doi: 10.1016/j.joule.2020.03.004
– volume: 48
  start-page: 13115
  year: 1993
  ident: 33774_CR56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.13115
– volume: 2
  start-page: 976
  year: 2018
  ident: 33774_CR62
  publication-title: Joule
  doi: 10.1016/j.joule.2018.02.016
– volume: 10
  start-page: 532
  year: 2011
  ident: 33774_CR3
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3013
– volume: 9
  start-page: e343
  year: 2017
  ident: 33774_CR21
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2016.203
– volume: 9
  start-page: 100094
  year: 2019
  ident: 33774_CR23
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2019.100094
– volume: 17
  start-page: 2100915
  year: 2021
  ident: 33774_CR27
  publication-title: Small
  doi: 10.1002/smll.202100915
– volume: 12
  start-page: 1396
  year: 2019
  ident: 33774_CR29
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00317G
– volume: 357
  start-page: eaak9997
  year: 2017
  ident: 33774_CR1
  publication-title: Science
  doi: 10.1126/science.aak9997
– volume: 3
  start-page: 1276
  year: 2019
  ident: 33774_CR10
  publication-title: Joule
  doi: 10.1016/j.joule.2019.02.008
– volume: 6
  start-page: 4948
  year: 2018
  ident: 33774_CR25
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10374C
– volume: 7
  start-page: 5184
  year: 2019
  ident: 33774_CR54
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C9TC00868C
– volume: 31
  start-page: 2101214
  year: 2021
  ident: 33774_CR45
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202101214
– volume: 136
  start-page: 11412
  year: 2014
  ident: 33774_CR50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja504896a
– volume: 11
  start-page: 2102913
  year: 2021
  ident: 33774_CR32
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102913
– volume: 46
  start-page: 6131
  year: 1992
  ident: 33774_CR46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.6131
– volume: 32
  start-page: 2001537
  year: 2020
  ident: 33774_CR52
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001537
– volume: 8
  year: 2017
  ident: 33774_CR39
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13828
– volume: 29
  start-page: 1806613
  year: 2019
  ident: 33774_CR15
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806613
– volume: 52
  start-page: 705
  year: 2004
  ident: 33774_CR44
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2003.10.006
– volume: 11
  start-page: 422
  year: 2012
  ident: 33774_CR13
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3273
– volume: 473
  start-page: 66
  year: 2011
  ident: 33774_CR5
  publication-title: Nature
  doi: 10.1038/nature09996
– volume: 30
  start-page: 1705942
  year: 2018
  ident: 33774_CR22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705942
– volume: 65
  start-page: 355
  year: 2011
  ident: 33774_CR43
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2011.05.005
– volume: 22
  start-page: 100617
  year: 2022
  ident: 33774_CR49
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2022.100617
– volume: 3
  start-page: 815
  year: 2013
  ident: 33774_CR19
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200970
– volume: 377
  start-page: 208
  year: 2022
  ident: 33774_CR51
  publication-title: Science
  doi: 10.1126/science.abq5815
– volume: 371
  start-page: 722
  year: 2021
  ident: 33774_CR55
  publication-title: Science
  doi: 10.1126/science.abb3517
– volume: 20
  start-page: 1378
  year: 2021
  ident: 33774_CR12
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01064-6
– volume: 9
  start-page: 100096
  year: 2019
  ident: 33774_CR35
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2019.100096
– volume: 12
  start-page: 19664
  year: 2020
  ident: 33774_CR42
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c02155
– volume: 10
  start-page: 2000367
  year: 2020
  ident: 33774_CR17
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000367
– volume: 59
  start-page: 1758
  year: 1999
  ident: 33774_CR58
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
SSID ssj0000391844
Score 2.677342
Snippet GeTe is a promising mid-temperature thermoelectric compound but inevitably contains excessive Ge vacancies hindering its performance maximization. This work...
The intrinsic high-concentration Ge vacancies in GeTe-based thermoelectric materials hinder their performance maximization. Here, the authors find that defect...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6087
SubjectTerms 147/143
639/301/1005/1007
639/301/299/2736
Carrier mobility
Evolution
Figure of merit
Humanities and Social Sciences
Lattice vacancies
Lead free
Maximization
multidisciplinary
Optimization
Performance enhancement
Point defects
Power factor
Scattering
Science
Science (multidisciplinary)
Synergistic effect
Thermal conductivity
Thermoelectric materials
Transport properties
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SKHgR6weuVongTUN389FkjyqtpYeeXuHhJSSTBB_UXaGvBfvXd5Lse3YL1YvXzSy7mfySmWEmvyHkg0dMuKAia73mTHJwzOFRzJwJaJxVMCoVts-zw5NzebpUyzutvnJNWKUHroo7SDEECGhGtVPSda33nW89zl8ESNEVsm20eXeCqXIGix5DFzndkmmFObiU5UwoxesCfR52M7NEhbB_5mXer5G8lygt9uf4KXkyOY70c_3hPfIoDs_Ibm0l-fs5WR5dTyCiY6Ih5ioNWslhrzCiphe1WJ6uR5oZiun3BV0N9FtcRJYNWaDZEfw51q44K6DoyFZsviDnx0eLryds6prAQBmxZklAL13m1VLJgIipN6brhAcNnAdoMSQB58AnDbH3kutkovLcuT4nBTG2fkl2hnGIrwgVCXKe0EFCtwtC7JNqExilJRxqXOCGdBsNWpgoxXNniwtbUtvC2Kp1i1q3Rev2piEft-_8qoQaf5X-khdmK5nJsMsDhIidIGL_BZGG7G-W1U479NJyzaXu0VSLhrzfDuPeygkTN8TxqshkVirNUUbP4DD7ofnIsPpRWLrzPUz0pRvyaQOcPx9_eMKv_8eE35DHPAM9F97IfbKDYItv0Xda-3dlm9wCxM0b9Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ikCBRmJG0RN_Fg7J9SibisOnLbSiovlJ6zUJoXdItFfz4zj3SqV6DV2FGc8nvnsGX9DyAcHOmGDjHXjFKsF87a2YIprqwM4Zxm0TJnt89vs9Ex8XcplOXBbl7TKrU3MhjoMHs_ID5hiQnVgWvnny181Vo3C6GopoXGfPGjB02BKl56f7M5YkP1cC1HuyjRcH6xFtgw5hZ0D8qmvJ_4o0_ZPsObtTMlb4dLsheZPyOMCH-nhON9Pyb3YPyMPx4KSf5-T5fGfokp0SDREzNWgI0XsFeyr6fmYMk83A0WeYvp9QVc9PYmLWKM7CxTh4MUw1sZZeQpwdtTQF-Rsfrz4clqX2gm1l5pv6sR9Jyyya8mkPY-p07ptufPKMxZ8AxsTb613SfnYOcFU0lE6Zm2HoUHYYb8ke_3Qx1eE8uQxWmh9AvDlQ-ySbJLXUgk_UzDNFWm3EjS-EItjfYtzkwPcXJtR6gakbrLUzXVFPu7euRxpNe7sfYQTs-uJlNj5wfD7hykrzKQYgg-At5SVwraNc61rHIiVB5-inVVkfzutpqzTtbnRqoq83zXDCsOwie3jcJX7IDeVYtBHTdRhMqBpS7_6mbm68TYmIOqKfNoqzs3H___Dr-8e6xvyiKEKY2KN2Cd7oEbxLWCjjXuXF8A_FCAQmQ
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKKyQuFZ8ipUVG4gYRiT_WznGpWqo9cGErrbhY9tiGlUqCulsk-usZO8miVIDENR4ryfjZ85IZPxPy2iEmrJehrJxipWBgS4tLcWm1x-AsvZYxq31-nF1cisVKrvYIG_fC5KL9LGmZl-mxOuzdRuQpnWvPOVKW8vYeOUhS7Yjtg_l88Wmx-7OSNM-1EMMOmYrrP3SeRKEs1j9hmHfrI-8kSXPsOX9IDgfSSOf9Yz4ie6F9TO73x0j-fEJWZz8GANEuUh9ShQbthWHxDTf0qi-Up9uOJnVi-nlJ1y39EJahTEHM00QCv3X9iThroEhie1w-JZfnZ8vTi3I4MaEEqfm2jBwaYZOmlowaeIiN1nXNHShgzEOFnyNgLbioIDROMBV1kI5Z26SEIH5XPyP7bdeG54TyCClHaCEi5QIfmiirCFoqATOFg1uQevSggUFOPJ1qcWVyWptr03vdoNdN9rq5LcibXZ_vvZjGP63fp4HZWSYh7Hyhu_5iBmCYGLwHjyxLWSlsXTlXu8qhW7mHGOysIMfjsJphdm4MU0yoBsM0L8irXTPOq5QssW3obrJNUqRSDG3UBA6TB5q2tOuvWaE77cFEHl2QtyNwft_87y989H_mL8gDliCdymvEMdlHWIUTZEhb93KYEr8AAIUQNg
  priority: 102
  providerName: Springer Nature
Title Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials
URI https://link.springer.com/article/10.1038/s41467-022-33774-z
https://www.proquest.com/docview/2724796783
https://www.proquest.com/docview/2725200723
https://pubmed.ncbi.nlm.nih.gov/PMC9568533
https://doaj.org/article/feddcd3997a54a10bb1b0bead3dcfea6
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEB_uA-VexE-MnmUF3zSaj0138yDSK-0dBQ_RFoovy35qoSZ61xPv_npnN0klx-mDLwkkG5LuzOz8pjP7G4AXCnVCmsLGiWJZTDMtY4lLcSy5QedcGF64wPZ5OjxZ0NmyWO5A1-6oncDzG0M7309qcbZ-_evH5Ts0-LfNlnH-5pwGcw916TnCmfhqF_bRMzHf0eB9C_fDypyXGNDQdu_MzY8ewG1c0z3sL3uuKjD692Do9SLKa5nU4KCmd-FOiyzJqFGFe7Bjq_twq-k1efkAlpOfrZaR2hFjfRkHadhjLzDkJuummp5sauIpjMnnOVlV5NjObew9nSEeKX6rm7Y5K00Q6TbK-xAW08l8fBK3bRViXfB8E7tcl1R64q3CcZ1bV3KeprnSTGeZ0QnGLFpKrRzTtlQ0Y47bQmVSlj5riMH3I9ir6so-BpI77ROJUjvEZdrY0hWJ07xgVA8ZakAEaTeDQrec4771xVqE3HfORSMAgQIQQQDiKoKX22e-N4wb_xx95AWzHenZssOF-uyLaI1POGuMNgjFmCyoTBOlUpUonNbcaGflMILDTqyi00CRsYyyEn15HsHz7W00Pp9RkZWtL8IYT1vFMhzDeurQ-6D-nWr1NdB4-42aCLYjeNUpzp-X__0HP_nvFz2Fg8wrui_HoYewhxpmnyGi2qgB7LIlwyOfHg9gfzSafZrh-Why-uEjXh0Px4PwX8UgmNNvy_MoEw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYIL4qkGChgJTrDqru2NvQeEeDRNaekplSIuxk-IVHYLSUHtj-I3MuPdTZVK9NZr1kl2x9-MP--MvyHkhQVMGF-GLLeSZYI5kxkIxZlRHhbn0qsyJrXPg-H4UHyaltM18rc_C4NllX1MTIHaNw7fkW8xyYSsILTyt8c_M-wahdnVvoVGC4u9cPoHtmzzN7sfYX5fMjbannwYZ11XgcyVii-yyF0lDOpOlVE5HmKlVFFw66RjzLscKLszxtkoXaisYDKqUFpmTIVJM9h7wu9eI9cFh5UcT6aPdpbvdFBtXQnRnc3JudqaixSJUsk8B6aVna2sf6lNwAq3vViZeSE9m1a90R1yu6Or9F2Lr7tkLdT3yI22geXpfTLd_t1BlzaR-oC1IbSVpD2BfTw9akv06aKhqItMv0zorKY7YRIyXD49Rfr5o2l78cwcBfrcesQDcnglVn1I1uumDhuE8ugwO2lcBLLnfKhimUenSincUAKsBqToLahdJ2SO_TSOdEqoc6Vbq2uwuk5W12cD8mr5neNWxuPS0e9xYpYjUYI7fdD8-qY7j9YxeO888DtpSmGK3NrC5hbMyr2LwQwHZLOfVt3Fhbk-R_GAPF9eBo_GNI2pQ3OSxqAWlmQwRq7AYeWGVq_Us-9JGxxPfwKDH5DXPXDO__z_D_zo8nt9Rm6OJ5_39f7uwd5jcoshnLGoR2ySdYBUeAK8bGGfJmeg5OtVe98_CUROyw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJxAviJ-iMMBI8ARRE8epnQeEGGvZGKom1EkVL8Y_odJIBu1A25_GX8edk3TqJPa218Ztk_N358-583eEvDCACe0Kn6RGsIQzqxMNoTjR0sHiXDhZhKj2ORnuHvKPs2K2Qf52Z2GwrLKLiTFQu9riO_IBE4yLEkJrPghtWcTBzvjt8c8EO0hhprVrp9FAZN-f_oHt2-LN3g7M9UvGxqPp-92k7TCQ2ELmyyTktuQaNaiKIG3uQyllluXGCsuYsynQd6u1NUFYXxrORJC-MEzrEhNosA-F371GNgXuinpkc3s0Ofi8esOD2uuS8_akTprLwYLHuBQL6HPgXcnZ2moYmwasMd2LdZoXkrVxDRzfJrda8krfNWi7QzZ8dZdcb9pZnt4js9HvFsi0DtR5rBShjUDtCezq6VFTsE-XNUWVZPplSucV_eCnPsHF1FEkoz_qpjPP3FIg041_3CeHV2LXB6RX1ZV_SGgeLOYqtQ1A_azzZSjSYGUhuB0KAFmfZJ0FlW1lzbG7xpGK6fVcqsbqCqyuotXVWZ-8Wn3nuBH1uHT0Nk7MaiQKcscP6l_fVOvfKnjnrAO2J3TBdZYak5nUgFlzZ4PXwz7Z6qZVtVFioc4x3SfPV5fBvzFpoytfn8QxqIwlGIwRa3BYu6H1K9X8e1QKx7OgwOf75HUHnPM___8DP7r8Xp-RG-B56tPeZP8xuckQzVjhw7dIDxDlnwBJW5qnrTdQ8vWqHfAf995UXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+defect+structures+leading+to+high+ZT+in+GeTe-based+thermoelectric+materials&rft.jtitle=Nature+communications&rft.au=Jiang%2C+Yilin&rft.au=Dong%2C+Jinfeng&rft.au=Zhuang%2C+Hua-Lu&rft.au=Yu%2C+Jincheng&rft.date=2022-10-14&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft_id=info:doi/10.1038%2Fs41467-022-33774-z&rft_id=info%3Apmid%2F36241619&rft.externalDocID=PMC9568533
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon