Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials
GeTe is a promising mid-temperature thermoelectric compound but inevitably contains excessive Ge vacancies hindering its performance maximization. This work reveals that significant enhancement in the dimensionless figure of merit ( ZT ) could be realized by defect structure engineering from point d...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 6087 - 9 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.10.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | GeTe is a promising mid-temperature thermoelectric compound but inevitably contains excessive Ge vacancies hindering its performance maximization. This work reveals that significant enhancement in the dimensionless figure of merit (
ZT
) could be realized by defect structure engineering from point defects to line and plane defects of Ge vacancies. The evolved defects including dislocations and nanodomains enhance phonon scattering to reduce lattice thermal conductivity in GeTe. The accumulation of cationic vacancies toward the formation of dislocations and planar defects weakens the scattering against electronic carriers, securing the carrier mobility and power factor. This synergistic effect on electronic and thermal transport properties remarkably increases the quality factor. As a result, a maximum
ZT
> 2.3 at 648 K and a record-high average
ZT
(300-798 K) were obtained for Bi
0.07
Ge
0.90
Te in lead-free GeTe-based compounds. This work demonstrates an important strategy for maximizing the thermoelectric performance of GeTe-based materials by engineering the defect structures, which could also be applied to other thermoelectric materials.
The intrinsic high-concentration Ge vacancies in GeTe-based thermoelectric materials hinder their performance maximization. Here, the authors find that defect structure engineering strategy is effective for performance enhancement. |
---|---|
AbstractList | GeTe is a promising mid-temperature thermoelectric compound but inevitably contains excessive Ge vacancies hindering its performance maximization. This work reveals that significant enhancement in the dimensionless figure of merit (
ZT
) could be realized by defect structure engineering from point defects to line and plane defects of Ge vacancies. The evolved defects including dislocations and nanodomains enhance phonon scattering to reduce lattice thermal conductivity in GeTe. The accumulation of cationic vacancies toward the formation of dislocations and planar defects weakens the scattering against electronic carriers, securing the carrier mobility and power factor. This synergistic effect on electronic and thermal transport properties remarkably increases the quality factor. As a result, a maximum
ZT
> 2.3 at 648 K and a record-high average
ZT
(300-798 K) were obtained for Bi
0.07
Ge
0.90
Te in lead-free GeTe-based compounds. This work demonstrates an important strategy for maximizing the thermoelectric performance of GeTe-based materials by engineering the defect structures, which could also be applied to other thermoelectric materials.
The intrinsic high-concentration Ge vacancies in GeTe-based thermoelectric materials hinder their performance maximization. Here, the authors find that defect structure engineering strategy is effective for performance enhancement. GeTe is a promising mid-temperature thermoelectric compound but inevitably contains excessive Ge vacancies hindering its performance maximization. This work reveals that significant enhancement in the dimensionless figure of merit ( ZT ) could be realized by defect structure engineering from point defects to line and plane defects of Ge vacancies. The evolved defects including dislocations and nanodomains enhance phonon scattering to reduce lattice thermal conductivity in GeTe. The accumulation of cationic vacancies toward the formation of dislocations and planar defects weakens the scattering against electronic carriers, securing the carrier mobility and power factor. This synergistic effect on electronic and thermal transport properties remarkably increases the quality factor. As a result, a maximum ZT > 2.3 at 648 K and a record-high average ZT (300-798 K) were obtained for Bi 0.07 Ge 0.90 Te in lead-free GeTe-based compounds. This work demonstrates an important strategy for maximizing the thermoelectric performance of GeTe-based materials by engineering the defect structures, which could also be applied to other thermoelectric materials. The intrinsic high-concentration Ge vacancies in GeTe-based thermoelectric materials hinder their performance maximization. Here, the authors find that defect structure engineering strategy is effective for performance enhancement. GeTe is a promising mid-temperature thermoelectric compound but inevitably contains excessive Ge vacancies hindering its performance maximization. This work reveals that significant enhancement in the dimensionless figure of merit (ZT) could be realized by defect structure engineering from point defects to line and plane defects of Ge vacancies. The evolved defects including dislocations and nanodomains enhance phonon scattering to reduce lattice thermal conductivity in GeTe. The accumulation of cationic vacancies toward the formation of dislocations and planar defects weakens the scattering against electronic carriers, securing the carrier mobility and power factor. This synergistic effect on electronic and thermal transport properties remarkably increases the quality factor. As a result, a maximum ZT > 2.3 at 648 K and a record-high average ZT (300-798 K) were obtained for Bi0.07Ge0.90Te in lead-free GeTe-based compounds. This work demonstrates an important strategy for maximizing the thermoelectric performance of GeTe-based materials by engineering the defect structures, which could also be applied to other thermoelectric materials.The intrinsic high-concentration Ge vacancies in GeTe-based thermoelectric materials hinder their performance maximization. Here, the authors find that defect structure engineering strategy is effective for performance enhancement. GeTe is a promising mid-temperature thermoelectric compound but inevitably contains excessive Ge vacancies hindering its performance maximization. This work reveals that significant enhancement in the dimensionless figure of merit (ZT) could be realized by defect structure engineering from point defects to line and plane defects of Ge vacancies. The evolved defects including dislocations and nanodomains enhance phonon scattering to reduce lattice thermal conductivity in GeTe. The accumulation of cationic vacancies toward the formation of dislocations and planar defects weakens the scattering against electronic carriers, securing the carrier mobility and power factor. This synergistic effect on electronic and thermal transport properties remarkably increases the quality factor. As a result, a maximum ZT > 2.3 at 648 K and a record-high average ZT (300-798 K) were obtained for Bi0.07Ge0.90Te in lead-free GeTe-based compounds. This work demonstrates an important strategy for maximizing the thermoelectric performance of GeTe-based materials by engineering the defect structures, which could also be applied to other thermoelectric materials.GeTe is a promising mid-temperature thermoelectric compound but inevitably contains excessive Ge vacancies hindering its performance maximization. This work reveals that significant enhancement in the dimensionless figure of merit (ZT) could be realized by defect structure engineering from point defects to line and plane defects of Ge vacancies. The evolved defects including dislocations and nanodomains enhance phonon scattering to reduce lattice thermal conductivity in GeTe. The accumulation of cationic vacancies toward the formation of dislocations and planar defects weakens the scattering against electronic carriers, securing the carrier mobility and power factor. This synergistic effect on electronic and thermal transport properties remarkably increases the quality factor. As a result, a maximum ZT > 2.3 at 648 K and a record-high average ZT (300-798 K) were obtained for Bi0.07Ge0.90Te in lead-free GeTe-based compounds. This work demonstrates an important strategy for maximizing the thermoelectric performance of GeTe-based materials by engineering the defect structures, which could also be applied to other thermoelectric materials. |
ArticleNumber | 6087 |
Author | Pei, Jun Li, Jing-Wei Sun, Fu-Hua Dong, Jinfeng Yu, Jincheng Hu, Haihua Mori, Takao Zhang, Bo-Ping Zhuang, Hua-Lu Li, Hezhang Jiang, Yilin Han, Zhanran Li, Jing-Feng Zhou, Min Su, Bin |
Author_xml | – sequence: 1 givenname: Yilin orcidid: 0000-0002-8815-4260 surname: Jiang fullname: Jiang, Yilin organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 2 givenname: Jinfeng surname: Dong fullname: Dong, Jinfeng organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 3 givenname: Hua-Lu surname: Zhuang fullname: Zhuang, Hua-Lu organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 4 givenname: Jincheng orcidid: 0000-0002-3490-6965 surname: Yu fullname: Yu, Jincheng organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 5 givenname: Bin orcidid: 0000-0002-5547-8664 surname: Su fullname: Su, Bin email: subin@tsinghua.edu.cn organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 6 givenname: Hezhang surname: Li fullname: Li, Hezhang organization: International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS) – sequence: 7 givenname: Jun orcidid: 0000-0003-4718-7792 surname: Pei fullname: Pei, Jun organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 8 givenname: Fu-Hua surname: Sun fullname: Sun, Fu-Hua organization: Institute for Advanced Materials, Hubei Normal University – sequence: 9 givenname: Min orcidid: 0000-0001-5033-4605 surname: Zhou fullname: Zhou, Min email: mzhou@mail.ipc.ac.cn organization: Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences – sequence: 10 givenname: Haihua surname: Hu fullname: Hu, Haihua organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 11 givenname: Jing-Wei surname: Li fullname: Li, Jing-Wei organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 12 givenname: Zhanran surname: Han fullname: Han, Zhanran organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 13 givenname: Bo-Ping surname: Zhang fullname: Zhang, Bo-Ping organization: The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing – sequence: 14 givenname: Takao orcidid: 0000-0003-2682-1846 surname: Mori fullname: Mori, Takao email: MORI.Takao@nims.go.jp organization: International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), Graduate School of Pure and Applied Sciences, University of Tsukuba – sequence: 15 givenname: Jing-Feng orcidid: 0000-0002-0185-0512 surname: Li fullname: Li, Jing-Feng email: jingfeng@mail.tsinghua.edu.cn organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Institute for Advanced Materials, Hubei Normal University |
BookMark | eNp9Uk1vFSEUJabG1to_4IrEjZtRvmZgNiamqbVJEzfPxLghwFzm8TJvqMA0sb9eXqdR20XZXALnnHvgntfoaI4zIPSWkg-UcPUxCyo62RDGGs6lFM3dC3TCiKANlYwf_bc_Rmc570hdvKdKiFfomHdM0I72J-jHxW2clhLijKPHA3hwBeeSFleWBBlPYIYwj7hEvA3jFv_c4DDjS9hAY02GAZctpH2EqfJScHhvCqRgpvwGvfS1wNlDPUXfv1xszr82198ur84_XzeuVbw0nrteGEl413rlOPheKUq5ddIxNjjStsQZ46yXDnormPQKWsuM6YngCiw_RVer7hDNTt-ksDfpt44m6PuDmEZtUgluAu1hGNzA-16aVhhKrKWW2PpAPjgPpqtan1atm8XuYXAwl2SmR6KPb-aw1WO81X3bqZbzKvD-QSDFXwvkovchO5gmM0NcsmaStYyQOpQKffcEuotLmutXHVBC9p1UBxRbUS7FnBP4v2Yo0Ycc6DUHuuZA3-dA31WSekJyoZjDjKvpMD1P5Ss11z7zCOmfq2dYfwCSjsr6 |
CitedBy_id | crossref_primary_10_1002_idm2_12134 crossref_primary_10_1016_j_enconman_2025_119621 crossref_primary_10_1007_s12598_024_02852_0 crossref_primary_10_1021_acsaem_4c03344 crossref_primary_10_1016_j_cej_2023_145820 crossref_primary_10_1021_acsaem_3c02687 crossref_primary_10_1126_science_adg7196 crossref_primary_10_1021_jacs_3c12546 crossref_primary_10_1039_D3TA03522K crossref_primary_10_1002_smll_202312206 crossref_primary_10_1002_aenm_202402552 crossref_primary_10_1002_adfm_202307864 crossref_primary_10_1002_adfm_202411054 crossref_primary_10_1002_adfm_202304512 crossref_primary_10_1002_smll_202412336 crossref_primary_10_1016_j_cej_2023_148135 crossref_primary_10_1016_j_actamat_2025_120736 crossref_primary_10_1021_acsnano_4c11732 crossref_primary_10_1007_s40820_023_01170_x crossref_primary_10_1021_acsami_3c05226 crossref_primary_10_1021_acsami_3c09823 crossref_primary_10_1016_j_jallcom_2023_169687 crossref_primary_10_1002_adfm_202421837 crossref_primary_10_1021_acs_jpcc_3c06638 crossref_primary_10_1039_D4TA01087F crossref_primary_10_1063_5_0199416 crossref_primary_10_1002_smll_202408864 crossref_primary_10_1016_j_vacuum_2024_113712 crossref_primary_10_1016_j_apenergy_2023_121584 crossref_primary_10_1016_j_jallcom_2023_173337 crossref_primary_10_1063_5_0230378 crossref_primary_10_1016_j_mtphys_2023_101260 crossref_primary_10_34133_research_0123 crossref_primary_10_1021_jacs_3c09643 crossref_primary_10_1038_s41524_023_01162_w crossref_primary_10_1002_sstr_202400201 crossref_primary_10_20517_microstructures_2024_56 crossref_primary_10_1002_smll_202312145 crossref_primary_10_1007_s11664_024_11343_y crossref_primary_10_1002_smll_202500333 crossref_primary_10_1007_s12598_024_02663_3 crossref_primary_10_1002_admi_202300711 crossref_primary_10_1016_j_gee_2024_08_008 crossref_primary_10_1002_adfm_202214771 crossref_primary_10_1016_j_nanoen_2025_110690 crossref_primary_10_1002_adfm_202401716 crossref_primary_10_1002_advs_202407413 crossref_primary_10_1016_j_mtphys_2023_101156 crossref_primary_10_1063_5_0159455 crossref_primary_10_1002_adfm_202407818 crossref_primary_10_1002_inf2_12514 crossref_primary_10_1039_D4EE04639K crossref_primary_10_1016_j_jallcom_2024_174672 crossref_primary_10_1002_adfm_202313720 crossref_primary_10_1103_PhysRevMaterials_7_104602 crossref_primary_10_1002_adsu_202300234 crossref_primary_10_1016_j_actamat_2023_119410 crossref_primary_10_1002_smll_202306701 crossref_primary_10_1007_s11426_023_1912_8 crossref_primary_10_1038_s41467_024_53598_3 crossref_primary_10_1063_5_0247466 crossref_primary_10_1002_advs_202400870 crossref_primary_10_1016_j_actamat_2024_120132 crossref_primary_10_1039_D3TA00609C crossref_primary_10_1016_j_mtphys_2024_101466 crossref_primary_10_1002_smll_202407556 crossref_primary_10_1007_s12598_023_02606_4 crossref_primary_10_1002_adma_202417597 crossref_primary_10_1016_j_mtcomm_2023_106564 crossref_primary_10_1038_s42254_024_00771_8 crossref_primary_10_1002_adfm_202301971 crossref_primary_10_1007_s12598_024_02747_0 crossref_primary_10_1016_j_actamat_2023_119644 crossref_primary_10_1039_D4TA03666B crossref_primary_10_1002_adfm_202404021 crossref_primary_10_1021_accountsmr_4c00229 crossref_primary_10_1039_D4TA02197E crossref_primary_10_1038_s41467_024_55490_6 crossref_primary_10_1039_D4TC03291H crossref_primary_10_1039_D4CP02584A crossref_primary_10_1088_1402_4896_ad9c31 crossref_primary_10_1002_smsc_202400147 crossref_primary_10_1002_aenm_202402479 crossref_primary_10_34133_energymatadv_0089 crossref_primary_10_1021_acsami_4c13775 crossref_primary_10_1063_5_0174274 crossref_primary_10_1016_j_mtphys_2023_101292 crossref_primary_10_1016_j_physrep_2023_11_001 crossref_primary_10_1002_pssa_202300425 crossref_primary_10_1007_s00339_024_07354_5 crossref_primary_10_1038_s41467_024_53599_2 crossref_primary_10_1039_D4YA00057A crossref_primary_10_1126_science_ado1133 crossref_primary_10_1021_acsami_5c00810 crossref_primary_10_1002_adma_202208272 crossref_primary_10_54227_mlab_20230011 crossref_primary_10_1002_smll_202407459 crossref_primary_10_1016_j_jallcom_2024_174964 crossref_primary_10_1021_acsami_3c18607 crossref_primary_10_1039_D3TA05067J crossref_primary_10_1021_acsami_4c02652 crossref_primary_10_1039_D4CP04219K crossref_primary_10_1016_j_mtcomm_2024_108265 crossref_primary_10_1021_acsami_4c15281 crossref_primary_10_1016_j_xinn_2023_100522 crossref_primary_10_1007_s40195_023_01584_x crossref_primary_10_1016_j_actamat_2025_120761 crossref_primary_10_1002_adfm_202403498 crossref_primary_10_1016_j_actamat_2025_120883 crossref_primary_10_1039_D4CP03178D crossref_primary_10_1016_j_scib_2024_04_034 crossref_primary_10_1016_j_jmat_2024_02_014 crossref_primary_10_1002_adfm_202417260 crossref_primary_10_1038_s44287_023_00013_6 crossref_primary_10_1016_j_cej_2024_155652 crossref_primary_10_1016_j_mtphys_2023_101071 crossref_primary_10_1002_aelm_202300809 crossref_primary_10_1126_sciadv_adh0713 crossref_primary_10_1021_acsami_3c13305 crossref_primary_10_1016_j_ceramint_2024_04_313 crossref_primary_10_1021_acsami_4c08686 crossref_primary_10_1039_D4SC06615D crossref_primary_10_1016_j_actamat_2024_120439 crossref_primary_10_1016_j_nanoen_2023_108930 crossref_primary_10_1103_PhysRevMaterials_8_033802 crossref_primary_10_1016_j_jeurceramsoc_2024_03_067 crossref_primary_10_1016_j_device_2024_100520 crossref_primary_10_1002_aenm_202403174 crossref_primary_10_1016_j_jclepro_2025_144955 crossref_primary_10_1016_j_scriptamat_2023_115931 crossref_primary_10_1088_2631_7990_acfd68 crossref_primary_10_1016_j_wear_2024_205559 crossref_primary_10_1016_j_ceramint_2024_08_085 crossref_primary_10_1002_aenm_202400340 crossref_primary_10_1016_j_jmat_2023_05_011 crossref_primary_10_1016_j_mtener_2024_101655 |
Cites_doi | 10.1016/j.cej.2021.132275 10.1038/am.2017.8 10.1016/j.mtphys.2019.100096 10.1002/adma.202001537 10.1021/ja504896a 10.1038/nature13184 10.1103/PhysRevB.54.11169 10.1103/PhysRevB.59.1758 10.1002/aenm.201200970 10.1002/advs.201700341 10.1002/aenm.201801837 10.1039/D0TA02758H 10.1002/aenm.202102913 10.1103/PhysRevB.46.6131 10.1016/j.mtphys.2019.100094 10.1038/s41563-021-01064-6 10.1016/j.joule.2020.03.004 10.1016/j.joule.2018.02.016 10.1002/smll.201906921 10.1038/s41467-020-19867-7 10.1002/smll.202100915 10.1126/science.1159725 10.1021/acs.chemmater.5b03434 10.1002/adma.201705942 10.1039/D0TA08700A 10.1038/nmat3013 10.1039/C9EE00317G 10.1016/j.mtphys.2022.100617 10.1126/science.aaa4166 10.1039/C7EE03256K 10.1016/j.joule.2019.02.008 10.1126/science.abb3517 10.1002/adfm.202101214 10.1039/C9TA10436D 10.1038/ncomms13828 10.1126/science.aak9997 10.1039/C9TC00868C 10.1073/pnas.1802020115 10.1002/aenm.202000367 10.1021/acs.chemmater.6b04066 10.1103/PhysRevB.48.13115 10.1002/adma.202008773 10.1038/nmat3273 10.1038/nature09996 10.1016/j.mtphys.2022.100682 10.1016/j.actamat.2003.10.006 10.1002/adfm.201806613 10.1126/sciadv.abf2738 10.1021/jacs.8b09375 10.1038/s41467-021-25722-0 10.1038/am.2016.203 10.1103/PhysRev.120.1149 10.1080/14686996.2018.1530938 10.1039/C7TA10374C 10.1126/science.abq5815 10.1016/S1369-8001(02)00019-7 10.1002/aenm.202002588 10.1038/nature11439 10.1016/j.actamat.2015.03.015 10.1021/acsami.0c02155 10.1103/PhysRevLett.77.3865 10.1016/j.scriptamat.2011.05.005 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-33774-z |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_feddcd3997a54a10bb1b0bead3dcfea6 PMC9568533 10_1038_s41467_022_33774_z |
GrantInformation_xml | – fundername: the Basic Science Center Project of NSFC no. 51788104 and the National Key R&D Program of China no. 2018YFB0703603 – fundername: ; |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c583t-f3c94a70365f8c3ef988113bc7c22dc0550caacbf7ce9b427f8e5b2aa90438eb3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:25:53 EDT 2025 Thu Aug 21 18:39:58 EDT 2025 Fri Jul 11 01:48:47 EDT 2025 Wed Aug 13 09:51:12 EDT 2025 Tue Jul 01 00:58:28 EDT 2025 Thu Apr 24 23:08:10 EDT 2025 Fri Feb 21 02:38:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-f3c94a70365f8c3ef988113bc7c22dc0550caacbf7ce9b427f8e5b2aa90438eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4718-7792 0000-0002-5547-8664 0000-0002-8815-4260 0000-0003-2682-1846 0000-0002-0185-0512 0000-0002-3490-6965 0000-0001-5033-4605 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-33774-z |
PMID | 36241619 |
PQID | 2724796783 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_feddcd3997a54a10bb1b0bead3dcfea6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9568533 proquest_miscellaneous_2725200723 proquest_journals_2724796783 crossref_primary_10_1038_s41467_022_33774_z crossref_citationtrail_10_1038_s41467_022_33774_z springer_journals_10_1038_s41467_022_33774_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-14 |
PublicationDateYYYYMMDD | 2022-10-14 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Li (CR6) 2021; 12 Li, Zhang, Lin, Chen, Pei (CR37) 2017; 29 Zhao (CR11) 2014; 508 He, Tritt (CR1) 2017; 357 Chen (CR39) 2017; 8 Kim (CR8) 2015; 348 Biswas (CR7) 2012; 489 Liu (CR17) 2020; 10 Petsagkourakis (CR2) 2018; 19 Abdellaoui (CR45) 2021; 31 Guo (CR61) 2020; 8 Shuai, Sun, Tan, Mori (CR28) 2020; 16 Choi, Zhang, Chua (CR40) 2001; 4 Dong (CR29) 2019; 12 Zhang (CR16) 2020; 4 Wei (CR43) 2011; 65 Kresse, Furthmüller (CR57) 1996; 54 Chetty (CR54) 2019; 7 Chen, Wang, Wu (CR49) 2022; 22 Hong (CR22) 2018; 30 McCabe, Misra, Mitchell (CR44) 2004; 52 Wu (CR50) 2014; 136 Li (CR62) 2018; 2 Zhou (CR12) 2021; 20 Li (CR38) 2017; 4 Li (CR34) 2017; 9 Yin (CR32) 2021; 11 Jiang (CR51) 2022; 377 Zhang (CR24) 2022; 429 Li, Chen, Cai, Wen (CR25) 2018; 6 Liu (CR13) 2012; 11 Xing (CR48) 2021; 33 Kresse, Joubert (CR58) 1999; 59 Callaway, von Baeyer (CR47) 1960; 120 Ding (CR4) 2020; 11 Perumal, Roychowdhury, Negi, Datta, Biswas (CR36) 2015; 27 Perdew, Burke, Ernzerhof (CR59) 1996; 77 Agne, Hanus, Snyder (CR53) 2018; 11 Pei (CR5) 2011; 473 Liu (CR31) 2020; 10 Hong (CR26) 2018; 8 Kresse, Hafner (CR56) 1993; 48 Gelbstein, Davidow, Girard, Chung, Kanatzidis (CR19) 2013; 3 Chen (CR41) 2022; 24 Shuai (CR23) 2019; 9 Kraemer (CR3) 2011; 10 Wu (CR10) 2019; 3 Lee (CR14) 2015; 91 Bu (CR35) 2019; 9 Roychowdhury (CR55) 2021; 371 Feng (CR18) 2020; 8 Wu (CR21) 2017; 9 Snyder (CR52) 2020; 32 Chen (CR42) 2020; 12 Wu, Xie, Xu, He (CR15) 2019; 29 Xie (CR27) 2021; 17 Nshimyimana (CR20) 2020; 8 Cahill, Watson, Pohl (CR46) 1992; 46 Bu (CR30) 2021; 7 Liu (CR60) 2018; 115 Heremans (CR9) 2008; 321 Zhang (CR33) 2018; 140 L-D Zhao (33774_CR11) 2014; 508 R Zhang (33774_CR24) 2022; 429 Y Li (33774_CR25) 2018; 6 Z Bu (33774_CR30) 2021; 7 J Li (33774_CR34) 2017; 9 M Hong (33774_CR26) 2018; 8 G Kresse (33774_CR58) 1999; 59 JP Perdew (33774_CR59) 1996; 77 M Hong (33774_CR22) 2018; 30 S Chen (33774_CR41) 2022; 24 Z Guo (33774_CR61) 2020; 8 D Wu (33774_CR50) 2014; 136 A Li (33774_CR6) 2021; 12 J Shuai (33774_CR23) 2019; 9 RJ McCabe (33774_CR44) 2004; 52 R Chetty (33774_CR54) 2019; 7 C Zhou (33774_CR12) 2021; 20 I Petsagkourakis (33774_CR2) 2018; 19 L Xie (33774_CR27) 2021; 17 Z Liu (33774_CR60) 2018; 115 H Liu (33774_CR13) 2012; 11 X Zhang (33774_CR16) 2020; 4 T Xing (33774_CR48) 2021; 33 JP Heremans (33774_CR9) 2008; 321 HS Lee (33774_CR14) 2015; 91 L Wu (33774_CR21) 2017; 9 K Biswas (33774_CR7) 2012; 489 J Callaway (33774_CR47) 1960; 120 Y Gelbstein (33774_CR19) 2013; 3 E Nshimyimana (33774_CR20) 2020; 8 S Roychowdhury (33774_CR55) 2021; 371 D Wu (33774_CR15) 2019; 29 Z Chen (33774_CR39) 2017; 8 T Ding (33774_CR4) 2020; 11 J Li (33774_CR38) 2017; 4 J Li (33774_CR62) 2018; 2 YL Wei (33774_CR43) 2011; 65 GJ Snyder (33774_CR52) 2020; 32 Y Wu (33774_CR10) 2019; 3 W Liu (33774_CR17) 2020; 10 J Shuai (33774_CR28) 2020; 16 Y Pei (33774_CR5) 2011; 473 S Perumal (33774_CR36) 2015; 27 G Kresse (33774_CR57) 1996; 54 DG Cahill (33774_CR46) 1992; 46 Y Feng (33774_CR18) 2020; 8 J Li (33774_CR37) 2017; 29 L Abdellaoui (33774_CR45) 2021; 31 MT Agne (33774_CR53) 2018; 11 Z Liu (33774_CR31) 2020; 10 G Kresse (33774_CR56) 1993; 48 S Chen (33774_CR42) 2020; 12 J He (33774_CR1) 2017; 357 HW Choi (33774_CR40) 2001; 4 L-C Yin (33774_CR32) 2021; 11 Z Bu (33774_CR35) 2019; 9 X Zhang (33774_CR33) 2018; 140 SI Kim (33774_CR8) 2015; 348 D Kraemer (33774_CR3) 2011; 10 J Dong (33774_CR29) 2019; 12 B-C Chen (33774_CR49) 2022; 22 B Jiang (33774_CR51) 2022; 377 |
References_xml | – volume: 429 start-page: 132275 year: 2022 ident: CR24 article-title: Intrinsic vacancy suppression and band convergence to enhance thermoelectric performance of (Ge, Bi, Sb)Te crystals publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132275 – volume: 9 start-page: e353 year: 2017 end-page: e353 ident: CR34 article-title: Electronic origin of the high thermoelectric performance of GeTe among the p-type group IV monotellurides publication-title: NPG Asia Mater. doi: 10.1038/am.2017.8 – volume: 9 start-page: 100096 year: 2019 ident: CR35 article-title: Dilute Cu Te-alloying enables extraordinary performance of r-GeTe thermoelectrics publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2019.100096 – volume: 32 start-page: 2001537 year: 2020 ident: CR52 article-title: Weighted Mobility publication-title: Adv. Mater. doi: 10.1002/adma.202001537 – volume: 136 start-page: 11412 year: 2014 end-page: 11419 ident: CR50 article-title: Origin of the high performance in GeTe-based thermoelectric materials upon Bi Te doping publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504896a – volume: 508 start-page: 373 year: 2014 end-page: 377 ident: CR11 article-title: Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals publication-title: Nature doi: 10.1038/nature13184 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR57 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR58 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 3 start-page: 815 year: 2013 end-page: 820 ident: CR19 article-title: Controlling metallurgical phase separation reactions of the Ge Pb Te alloy for high thermoelectric performance publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200970 – volume: 4 start-page: 1700341 year: 2017 ident: CR38 article-title: Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh performance GeTe thermoelectrics publication-title: Adv. Sci. doi: 10.1002/advs.201700341 – volume: 8 start-page: 1801837 year: 2018 ident: CR26 article-title: Arrays of planar vacancies in superior thermoelectric Ge Cd Bi Te with band convergence publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801837 – volume: 8 start-page: 11370 year: 2020 end-page: 11380 ident: CR18 article-title: Band convergence and carrier-density fine-tuning as the electronic origin of high-average thermoelectric performance in Pb-doped GeTe-based alloys publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02758H – volume: 11 start-page: 2102913 year: 2021 ident: CR32 article-title: High carrier mobility and high figure of merit in the CuBiSe alloyed GeTe publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102913 – volume: 46 start-page: 6131 year: 1992 end-page: 6140 ident: CR46 article-title: Lower limit to the thermal conductivity of disordered crystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.6131 – volume: 9 start-page: 100094 year: 2019 ident: CR23 article-title: Enhanced thermoelectric performance through crystal field engineering in transition metal–doped GeTe publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2019.100094 – volume: 20 start-page: 1378 year: 2021 end-page: 1384 ident: CR12 article-title: Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal publication-title: Nat. Mater. doi: 10.1038/s41563-021-01064-6 – volume: 4 start-page: 986 year: 2020 end-page: 1003 ident: CR16 article-title: GeTe thermoelectrics publication-title: Joule doi: 10.1016/j.joule.2020.03.004 – volume: 2 start-page: 976 year: 2018 end-page: 987 ident: CR62 article-title: Low-symmetry rhombohedral GeTe thermoelectrics publication-title: Joule doi: 10.1016/j.joule.2018.02.016 – volume: 16 start-page: 1906921 year: 2020 ident: CR28 article-title: Manipulating the Ge vacancies and Ge precipitates through Cr doping for realizing the high-performance GeTe thermoelectric material publication-title: Small doi: 10.1002/smll.201906921 – volume: 11 year: 2020 ident: CR4 article-title: Scalable thermoelectric fibers for multifunctional textile-electronics publication-title: Nat. Commun. doi: 10.1038/s41467-020-19867-7 – volume: 17 start-page: 2100915 year: 2021 ident: CR27 article-title: Enhanced thermoelectric performance in Ge Sb Te/FeGe composites enabled by hierarchical defects publication-title: Small doi: 10.1002/smll.202100915 – volume: 321 start-page: 554 year: 2008 end-page: 557 ident: CR9 article-title: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states publication-title: Science doi: 10.1126/science.1159725 – volume: 27 start-page: 7171 year: 2015 end-page: 7178 ident: CR36 article-title: High thermoelectric performance and enhanced mechanical stability of -type Ge Sb Te publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03434 – volume: 30 start-page: 1705942 year: 2018 ident: CR22 article-title: Realizing of 2.3 in Ge Sb In Te via reducing the phase‐transition temperature and introducing resonant energy doping publication-title: Adv. Mater. doi: 10.1002/adma.201705942 – volume: 8 start-page: 21642 year: 2020 end-page: 21648 ident: CR61 article-title: Bi–Zn codoping in GeTe synergistically enhances band convergence and phonon scattering for high thermoelectric performance publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08700A – volume: 10 start-page: 532 year: 2011 end-page: 538 ident: CR3 article-title: High-performance flat-panel solar thermoelectric generators with high thermal concentration publication-title: Nat. Mater. doi: 10.1038/nmat3013 – volume: 12 start-page: 1396 year: 2019 end-page: 1403 ident: CR29 article-title: Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00317G – volume: 22 start-page: 100617 year: 2022 ident: CR49 article-title: Localized crystal imperfections coupled with phase diagram engineering yield high-performance rhombohedral GeTe thermoelectrics publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2022.100617 – volume: 348 start-page: 109 year: 2015 end-page: 114 ident: CR8 article-title: Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics publication-title: Science doi: 10.1126/science.aaa4166 – volume: 11 start-page: 609 year: 2018 end-page: 616 ident: CR53 article-title: Minimum thermal conductivity in the context of diffusion-mediated thermal transport publication-title: Energy Environ. Sci. doi: 10.1039/C7EE03256K – volume: 3 start-page: 1276 year: 2019 end-page: 1288 ident: CR10 article-title: Lattice strain advances thermoelectrics publication-title: Joule doi: 10.1016/j.joule.2019.02.008 – volume: 371 start-page: 722 year: 2021 end-page: 727 ident: CR55 article-title: Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe publication-title: Science doi: 10.1126/science.abb3517 – volume: 31 start-page: 2101214 year: 2021 ident: CR45 article-title: Parallel dislocation networks and cottrell atmospheres reduce thermal conductivity of PbTe thermoelectrics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202101214 – volume: 8 start-page: 1193 year: 2020 end-page: 1204 ident: CR20 article-title: Discordant nature of Cd in GeTe enhances phonon scattering and improves band convergence for high thermoelectric performance publication-title: J. Mater. Chem. A doi: 10.1039/C9TA10436D – volume: 8 year: 2017 ident: CR39 article-title: Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics publication-title: Nat. Commun. doi: 10.1038/ncomms13828 – volume: 357 start-page: eaak9997 year: 2017 ident: CR1 article-title: Advances in thermoelectric materials research: looking back and moving forward publication-title: Science doi: 10.1126/science.aak9997 – volume: 7 start-page: 5184 year: 2019 end-page: 5192 ident: CR54 article-title: Power generation from the Cu Nb Ge S -based single thermoelectric element with Au diffusion barrier publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC00868C – volume: 115 start-page: 5332 year: 2018 end-page: 5337 ident: CR60 article-title: Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1802020115 – volume: 10 start-page: 2000367 year: 2020 ident: CR17 article-title: High‐performance GeTe‐based thermoelectrics: from materials to devices publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000367 – volume: 29 start-page: 605 year: 2017 end-page: 611 ident: CR37 article-title: Realizing the high thermoelectric performance of GeTe by Sb-doping and Se-alloying publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b04066 – volume: 48 start-page: 13115 year: 1993 end-page: 13118 ident: CR56 article-title: Ab initio molecular dynamics for open-shell transition metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.13115 – volume: 33 start-page: 2008773 year: 2021 ident: CR48 article-title: Ultralow lattice thermal conductivity and superhigh thermoelectric figure‐of‐merit in (Mg, Bi) co‐doped GeTe publication-title: Adv. Mater. doi: 10.1002/adma.202008773 – volume: 11 start-page: 422 year: 2012 end-page: 425 ident: CR13 article-title: Copper ion liquid-like thermoelectrics publication-title: Nat. Mater. doi: 10.1038/nmat3273 – volume: 473 start-page: 66 year: 2011 end-page: 69 ident: CR5 article-title: Convergence of electronic bands for high performance bulk thermoelectrics publication-title: Nature doi: 10.1038/nature09996 – volume: 24 start-page: 100682 year: 2022 ident: CR41 article-title: The role of Ge vacancies and Sb doping in GeTe: a comparative study of thermoelectric transport properties in Sb Ge Te and Sb Ge Te compounds publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2022.100682 – volume: 52 start-page: 705 year: 2004 end-page: 714 ident: CR44 article-title: Experimentally determined content of a geometrically necessary dislocation boundary in copper publication-title: Acta Mater. doi: 10.1016/j.actamat.2003.10.006 – volume: 29 start-page: 1806613 year: 2019 ident: CR15 article-title: High thermoelectric performance achieved in GeTe-Bi Te pseudo‐binary via van der waals gap‐induced hierarchical ferroelectric domain structure publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806613 – volume: 7 start-page: eabf2738 year: 2021 ident: CR30 article-title: Realizing a 14% single-leg thermoelectric efficiency in GeTe alloys publication-title: Sci. Adv. doi: 10.1126/sciadv.abf2738 – volume: 140 start-page: 15883 year: 2018 end-page: 15888 ident: CR33 article-title: Vacancy manipulation for thermoelectric enhancements in GeTe alloys publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09375 – volume: 12 year: 2021 ident: CR6 article-title: Demonstration of valley anisotropy utilized to enhance the thermoelectric power factor publication-title: Nat. Commun. doi: 10.1038/s41467-021-25722-0 – volume: 9 start-page: e343 year: 2017 end-page: e343 ident: CR21 article-title: Resonant level-induced high thermoelectric response in indium-doped GeTe publication-title: NPG Asia Mater. doi: 10.1038/am.2016.203 – volume: 120 start-page: 1149 year: 1960 end-page: 1154 ident: CR47 article-title: Effect of point imperfections on lattice thermal conductivity publication-title: Phys. Rev. doi: 10.1103/PhysRev.120.1149 – volume: 19 start-page: 836 year: 2018 end-page: 862 ident: CR2 article-title: Thermoelectric materials and applications for energy harvesting power generation publication-title: Sci. Technol. Adv. Mat. doi: 10.1080/14686996.2018.1530938 – volume: 6 start-page: 4948 year: 2018 end-page: 4954 ident: CR25 article-title: An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10374C – volume: 377 start-page: 208 year: 2022 end-page: 213 ident: CR51 article-title: High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics publication-title: Science doi: 10.1126/science.abq5815 – volume: 4 start-page: 567 year: 2001 end-page: 570 ident: CR40 article-title: Dislocation scattering in n-GaN publication-title: Mat. Sci. Semicon. Proc. doi: 10.1016/S1369-8001(02)00019-7 – volume: 10 start-page: 2002588 year: 2020 ident: CR31 article-title: High power factor and enhanced thermoelectric performance in Sc and Bi codoped GeTe: insights into the hidden role of rhombohedral distortion degree publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002588 – volume: 489 start-page: 414 year: 2012 end-page: 418 ident: CR7 article-title: High-performance bulk thermoelectrics with all-scale hierarchical architectures publication-title: Nature doi: 10.1038/nature11439 – volume: 91 start-page: 83 year: 2015 end-page: 90 ident: CR14 article-title: Herringbone structure in GeTe-based thermoelectric materials publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.03.015 – volume: 12 start-page: 19664 year: 2020 end-page: 19673 ident: CR42 article-title: Vacancy-based defect regulation for high thermoelectric performance in Ge Sb Te compounds publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c02155 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR59 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 65 start-page: 355 year: 2011 end-page: 358 ident: CR43 article-title: Dislocations, boundaries and slip systems in cube grains of rolled aluminium publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2011.05.005 – volume: 77 start-page: 3865 year: 1996 ident: 33774_CR59 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 321 start-page: 554 year: 2008 ident: 33774_CR9 publication-title: Science doi: 10.1126/science.1159725 – volume: 4 start-page: 567 year: 2001 ident: 33774_CR40 publication-title: Mat. Sci. Semicon. Proc. doi: 10.1016/S1369-8001(02)00019-7 – volume: 4 start-page: 1700341 year: 2017 ident: 33774_CR38 publication-title: Adv. Sci. doi: 10.1002/advs.201700341 – volume: 33 start-page: 2008773 year: 2021 ident: 33774_CR48 publication-title: Adv. Mater. doi: 10.1002/adma.202008773 – volume: 120 start-page: 1149 year: 1960 ident: 33774_CR47 publication-title: Phys. Rev. doi: 10.1103/PhysRev.120.1149 – volume: 7 start-page: eabf2738 year: 2021 ident: 33774_CR30 publication-title: Sci. Adv. doi: 10.1126/sciadv.abf2738 – volume: 429 start-page: 132275 year: 2022 ident: 33774_CR24 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132275 – volume: 489 start-page: 414 year: 2012 ident: 33774_CR7 publication-title: Nature doi: 10.1038/nature11439 – volume: 8 start-page: 1801837 year: 2018 ident: 33774_CR26 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801837 – volume: 348 start-page: 109 year: 2015 ident: 33774_CR8 publication-title: Science doi: 10.1126/science.aaa4166 – volume: 16 start-page: 1906921 year: 2020 ident: 33774_CR28 publication-title: Small doi: 10.1002/smll.201906921 – volume: 24 start-page: 100682 year: 2022 ident: 33774_CR41 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2022.100682 – volume: 8 start-page: 11370 year: 2020 ident: 33774_CR18 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02758H – volume: 27 start-page: 7171 year: 2015 ident: 33774_CR36 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03434 – volume: 9 start-page: e353 year: 2017 ident: 33774_CR34 publication-title: NPG Asia Mater. doi: 10.1038/am.2017.8 – volume: 19 start-page: 836 year: 2018 ident: 33774_CR2 publication-title: Sci. Technol. Adv. Mat. doi: 10.1080/14686996.2018.1530938 – volume: 12 year: 2021 ident: 33774_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25722-0 – volume: 115 start-page: 5332 year: 2018 ident: 33774_CR60 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1802020115 – volume: 11 year: 2020 ident: 33774_CR4 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19867-7 – volume: 8 start-page: 21642 year: 2020 ident: 33774_CR61 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08700A – volume: 54 start-page: 11169 year: 1996 ident: 33774_CR57 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 10 start-page: 2002588 year: 2020 ident: 33774_CR31 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002588 – volume: 29 start-page: 605 year: 2017 ident: 33774_CR37 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b04066 – volume: 91 start-page: 83 year: 2015 ident: 33774_CR14 publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.03.015 – volume: 140 start-page: 15883 year: 2018 ident: 33774_CR33 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09375 – volume: 8 start-page: 1193 year: 2020 ident: 33774_CR20 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA10436D – volume: 508 start-page: 373 year: 2014 ident: 33774_CR11 publication-title: Nature doi: 10.1038/nature13184 – volume: 11 start-page: 609 year: 2018 ident: 33774_CR53 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE03256K – volume: 4 start-page: 986 year: 2020 ident: 33774_CR16 publication-title: Joule doi: 10.1016/j.joule.2020.03.004 – volume: 48 start-page: 13115 year: 1993 ident: 33774_CR56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.13115 – volume: 2 start-page: 976 year: 2018 ident: 33774_CR62 publication-title: Joule doi: 10.1016/j.joule.2018.02.016 – volume: 10 start-page: 532 year: 2011 ident: 33774_CR3 publication-title: Nat. Mater. doi: 10.1038/nmat3013 – volume: 9 start-page: e343 year: 2017 ident: 33774_CR21 publication-title: NPG Asia Mater. doi: 10.1038/am.2016.203 – volume: 9 start-page: 100094 year: 2019 ident: 33774_CR23 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2019.100094 – volume: 17 start-page: 2100915 year: 2021 ident: 33774_CR27 publication-title: Small doi: 10.1002/smll.202100915 – volume: 12 start-page: 1396 year: 2019 ident: 33774_CR29 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00317G – volume: 357 start-page: eaak9997 year: 2017 ident: 33774_CR1 publication-title: Science doi: 10.1126/science.aak9997 – volume: 3 start-page: 1276 year: 2019 ident: 33774_CR10 publication-title: Joule doi: 10.1016/j.joule.2019.02.008 – volume: 6 start-page: 4948 year: 2018 ident: 33774_CR25 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10374C – volume: 7 start-page: 5184 year: 2019 ident: 33774_CR54 publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC00868C – volume: 31 start-page: 2101214 year: 2021 ident: 33774_CR45 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202101214 – volume: 136 start-page: 11412 year: 2014 ident: 33774_CR50 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja504896a – volume: 11 start-page: 2102913 year: 2021 ident: 33774_CR32 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102913 – volume: 46 start-page: 6131 year: 1992 ident: 33774_CR46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.6131 – volume: 32 start-page: 2001537 year: 2020 ident: 33774_CR52 publication-title: Adv. Mater. doi: 10.1002/adma.202001537 – volume: 8 year: 2017 ident: 33774_CR39 publication-title: Nat. Commun. doi: 10.1038/ncomms13828 – volume: 29 start-page: 1806613 year: 2019 ident: 33774_CR15 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806613 – volume: 52 start-page: 705 year: 2004 ident: 33774_CR44 publication-title: Acta Mater. doi: 10.1016/j.actamat.2003.10.006 – volume: 11 start-page: 422 year: 2012 ident: 33774_CR13 publication-title: Nat. Mater. doi: 10.1038/nmat3273 – volume: 473 start-page: 66 year: 2011 ident: 33774_CR5 publication-title: Nature doi: 10.1038/nature09996 – volume: 30 start-page: 1705942 year: 2018 ident: 33774_CR22 publication-title: Adv. Mater. doi: 10.1002/adma.201705942 – volume: 65 start-page: 355 year: 2011 ident: 33774_CR43 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2011.05.005 – volume: 22 start-page: 100617 year: 2022 ident: 33774_CR49 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2022.100617 – volume: 3 start-page: 815 year: 2013 ident: 33774_CR19 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200970 – volume: 377 start-page: 208 year: 2022 ident: 33774_CR51 publication-title: Science doi: 10.1126/science.abq5815 – volume: 371 start-page: 722 year: 2021 ident: 33774_CR55 publication-title: Science doi: 10.1126/science.abb3517 – volume: 20 start-page: 1378 year: 2021 ident: 33774_CR12 publication-title: Nat. Mater. doi: 10.1038/s41563-021-01064-6 – volume: 9 start-page: 100096 year: 2019 ident: 33774_CR35 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2019.100096 – volume: 12 start-page: 19664 year: 2020 ident: 33774_CR42 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c02155 – volume: 10 start-page: 2000367 year: 2020 ident: 33774_CR17 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000367 – volume: 59 start-page: 1758 year: 1999 ident: 33774_CR58 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 |
SSID | ssj0000391844 |
Score | 2.677342 |
Snippet | GeTe is a promising mid-temperature thermoelectric compound but inevitably contains excessive Ge vacancies hindering its performance maximization. This work... The intrinsic high-concentration Ge vacancies in GeTe-based thermoelectric materials hinder their performance maximization. Here, the authors find that defect... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6087 |
SubjectTerms | 147/143 639/301/1005/1007 639/301/299/2736 Carrier mobility Evolution Figure of merit Humanities and Social Sciences Lattice vacancies Lead free Maximization multidisciplinary Optimization Performance enhancement Point defects Power factor Scattering Science Science (multidisciplinary) Synergistic effect Thermal conductivity Thermoelectric materials Transport properties |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SKHgR6weuVongTUN389FkjyqtpYeeXuHhJSSTBB_UXaGvBfvXd5Lse3YL1YvXzSy7mfySmWEmvyHkg0dMuKAia73mTHJwzOFRzJwJaJxVMCoVts-zw5NzebpUyzutvnJNWKUHroo7SDEECGhGtVPSda33nW89zl8ESNEVsm20eXeCqXIGix5DFzndkmmFObiU5UwoxesCfR52M7NEhbB_5mXer5G8lygt9uf4KXkyOY70c_3hPfIoDs_Ibm0l-fs5WR5dTyCiY6Ih5ioNWslhrzCiphe1WJ6uR5oZiun3BV0N9FtcRJYNWaDZEfw51q44K6DoyFZsviDnx0eLryds6prAQBmxZklAL13m1VLJgIipN6brhAcNnAdoMSQB58AnDbH3kutkovLcuT4nBTG2fkl2hnGIrwgVCXKe0EFCtwtC7JNqExilJRxqXOCGdBsNWpgoxXNniwtbUtvC2Kp1i1q3Rev2piEft-_8qoQaf5X-khdmK5nJsMsDhIidIGL_BZGG7G-W1U479NJyzaXu0VSLhrzfDuPeygkTN8TxqshkVirNUUbP4DD7ofnIsPpRWLrzPUz0pRvyaQOcPx9_eMKv_8eE35DHPAM9F97IfbKDYItv0Xda-3dlm9wCxM0b9Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ikCBRmJG0RN_Fg7J9SibisOnLbSiovlJ6zUJoXdItFfz4zj3SqV6DV2FGc8nvnsGX9DyAcHOmGDjHXjFKsF87a2YIprqwM4Zxm0TJnt89vs9Ex8XcplOXBbl7TKrU3MhjoMHs_ID5hiQnVgWvnny181Vo3C6GopoXGfPGjB02BKl56f7M5YkP1cC1HuyjRcH6xFtgw5hZ0D8qmvJ_4o0_ZPsObtTMlb4dLsheZPyOMCH-nhON9Pyb3YPyMPx4KSf5-T5fGfokp0SDREzNWgI0XsFeyr6fmYMk83A0WeYvp9QVc9PYmLWKM7CxTh4MUw1sZZeQpwdtTQF-Rsfrz4clqX2gm1l5pv6sR9Jyyya8mkPY-p07ptufPKMxZ8AxsTb613SfnYOcFU0lE6Zm2HoUHYYb8ke_3Qx1eE8uQxWmh9AvDlQ-ySbJLXUgk_UzDNFWm3EjS-EItjfYtzkwPcXJtR6gakbrLUzXVFPu7euRxpNe7sfYQTs-uJlNj5wfD7hykrzKQYgg-At5SVwraNc61rHIiVB5-inVVkfzutpqzTtbnRqoq83zXDCsOwie3jcJX7IDeVYtBHTdRhMqBpS7_6mbm68TYmIOqKfNoqzs3H___Dr-8e6xvyiKEKY2KN2Cd7oEbxLWCjjXuXF8A_FCAQmQ priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKKyQuFZ8ipUVG4gYRiT_WznGpWqo9cGErrbhY9tiGlUqCulsk-usZO8miVIDENR4ryfjZ85IZPxPy2iEmrJehrJxipWBgS4tLcWm1x-AsvZYxq31-nF1cisVKrvYIG_fC5KL9LGmZl-mxOuzdRuQpnWvPOVKW8vYeOUhS7Yjtg_l88Wmx-7OSNM-1EMMOmYrrP3SeRKEs1j9hmHfrI-8kSXPsOX9IDgfSSOf9Yz4ie6F9TO73x0j-fEJWZz8GANEuUh9ShQbthWHxDTf0qi-Up9uOJnVi-nlJ1y39EJahTEHM00QCv3X9iThroEhie1w-JZfnZ8vTi3I4MaEEqfm2jBwaYZOmlowaeIiN1nXNHShgzEOFnyNgLbioIDROMBV1kI5Z26SEIH5XPyP7bdeG54TyCClHaCEi5QIfmiirCFoqATOFg1uQevSggUFOPJ1qcWVyWptr03vdoNdN9rq5LcibXZ_vvZjGP63fp4HZWSYh7Hyhu_5iBmCYGLwHjyxLWSlsXTlXu8qhW7mHGOysIMfjsJphdm4MU0yoBsM0L8irXTPOq5QssW3obrJNUqRSDG3UBA6TB5q2tOuvWaE77cFEHl2QtyNwft_87y989H_mL8gDliCdymvEMdlHWIUTZEhb93KYEr8AAIUQNg priority: 102 providerName: Springer Nature |
Title | Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials |
URI | https://link.springer.com/article/10.1038/s41467-022-33774-z https://www.proquest.com/docview/2724796783 https://www.proquest.com/docview/2725200723 https://pubmed.ncbi.nlm.nih.gov/PMC9568533 https://doaj.org/article/feddcd3997a54a10bb1b0bead3dcfea6 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEB_uA-VexE-MnmUF3zSaj0138yDSK-0dBQ_RFoovy35qoSZ61xPv_npnN0klx-mDLwkkG5LuzOz8pjP7G4AXCnVCmsLGiWJZTDMtY4lLcSy5QedcGF64wPZ5OjxZ0NmyWO5A1-6oncDzG0M7309qcbZ-_evH5Ts0-LfNlnH-5pwGcw916TnCmfhqF_bRMzHf0eB9C_fDypyXGNDQdu_MzY8ewG1c0z3sL3uuKjD692Do9SLKa5nU4KCmd-FOiyzJqFGFe7Bjq_twq-k1efkAlpOfrZaR2hFjfRkHadhjLzDkJuummp5sauIpjMnnOVlV5NjObew9nSEeKX6rm7Y5K00Q6TbK-xAW08l8fBK3bRViXfB8E7tcl1R64q3CcZ1bV3KeprnSTGeZ0QnGLFpKrRzTtlQ0Y47bQmVSlj5riMH3I9ir6so-BpI77ROJUjvEZdrY0hWJ07xgVA8ZakAEaTeDQrec4771xVqE3HfORSMAgQIQQQDiKoKX22e-N4wb_xx95AWzHenZssOF-uyLaI1POGuMNgjFmCyoTBOlUpUonNbcaGflMILDTqyi00CRsYyyEn15HsHz7W00Pp9RkZWtL8IYT1vFMhzDeurQ-6D-nWr1NdB4-42aCLYjeNUpzp-X__0HP_nvFz2Fg8wrui_HoYewhxpmnyGi2qgB7LIlwyOfHg9gfzSafZrh-Why-uEjXh0Px4PwX8UgmNNvy_MoEw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYIL4qkGChgJTrDqru2NvQeEeDRNaekplSIuxk-IVHYLSUHtj-I3MuPdTZVK9NZr1kl2x9-MP--MvyHkhQVMGF-GLLeSZYI5kxkIxZlRHhbn0qsyJrXPg-H4UHyaltM18rc_C4NllX1MTIHaNw7fkW8xyYSsILTyt8c_M-wahdnVvoVGC4u9cPoHtmzzN7sfYX5fMjbannwYZ11XgcyVii-yyF0lDOpOlVE5HmKlVFFw66RjzLscKLszxtkoXaisYDKqUFpmTIVJM9h7wu9eI9cFh5UcT6aPdpbvdFBtXQnRnc3JudqaixSJUsk8B6aVna2sf6lNwAq3vViZeSE9m1a90R1yu6Or9F2Lr7tkLdT3yI22geXpfTLd_t1BlzaR-oC1IbSVpD2BfTw9akv06aKhqItMv0zorKY7YRIyXD49Rfr5o2l78cwcBfrcesQDcnglVn1I1uumDhuE8ugwO2lcBLLnfKhimUenSincUAKsBqToLahdJ2SO_TSOdEqoc6Vbq2uwuk5W12cD8mr5neNWxuPS0e9xYpYjUYI7fdD8-qY7j9YxeO888DtpSmGK3NrC5hbMyr2LwQwHZLOfVt3Fhbk-R_GAPF9eBo_GNI2pQ3OSxqAWlmQwRq7AYeWGVq_Us-9JGxxPfwKDH5DXPXDO__z_D_zo8nt9Rm6OJ5_39f7uwd5jcoshnLGoR2ySdYBUeAK8bGGfJmeg5OtVe98_CUROyw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJxAviJ-iMMBI8ARRE8epnQeEGGvZGKom1EkVL8Y_odJIBu1A25_GX8edk3TqJPa218Ztk_N358-583eEvDCACe0Kn6RGsIQzqxMNoTjR0sHiXDhZhKj2ORnuHvKPs2K2Qf52Z2GwrLKLiTFQu9riO_IBE4yLEkJrPghtWcTBzvjt8c8EO0hhprVrp9FAZN-f_oHt2-LN3g7M9UvGxqPp-92k7TCQ2ELmyyTktuQaNaiKIG3uQyllluXGCsuYsynQd6u1NUFYXxrORJC-MEzrEhNosA-F371GNgXuinpkc3s0Ofi8esOD2uuS8_akTprLwYLHuBQL6HPgXcnZ2moYmwasMd2LdZoXkrVxDRzfJrda8krfNWi7QzZ8dZdcb9pZnt4js9HvFsi0DtR5rBShjUDtCezq6VFTsE-XNUWVZPplSucV_eCnPsHF1FEkoz_qpjPP3FIg041_3CeHV2LXB6RX1ZV_SGgeLOYqtQ1A_azzZSjSYGUhuB0KAFmfZJ0FlW1lzbG7xpGK6fVcqsbqCqyuotXVWZ-8Wn3nuBH1uHT0Nk7MaiQKcscP6l_fVOvfKnjnrAO2J3TBdZYak5nUgFlzZ4PXwz7Z6qZVtVFioc4x3SfPV5fBvzFpoytfn8QxqIwlGIwRa3BYu6H1K9X8e1QKx7OgwOf75HUHnPM___8DP7r8Xp-RG-B56tPeZP8xuckQzVjhw7dIDxDlnwBJW5qnrTdQ8vWqHfAf995UXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+defect+structures+leading+to+high+ZT+in+GeTe-based+thermoelectric+materials&rft.jtitle=Nature+communications&rft.au=Jiang%2C+Yilin&rft.au=Dong%2C+Jinfeng&rft.au=Zhuang%2C+Hua-Lu&rft.au=Yu%2C+Jincheng&rft.date=2022-10-14&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft_id=info:doi/10.1038%2Fs41467-022-33774-z&rft_id=info%3Apmid%2F36241619&rft.externalDocID=PMC9568533 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |