Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network

Breast cancer is a common malignancy and a leading cause of cancer-related deaths in women worldwide. Its early diagnosis can significantly reduce the morbidity and mortality rates in women. To this end, histopathological diagnosis is usually followed as the gold standard approach. However, this pro...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 15600 - 21
Main Authors Hameed, Zabit, Garcia-Zapirain, Begonya, Aguirre, José Javier, Isaza-Ruget, Mario Arturo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 16.09.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-022-19278-2

Cover

Loading…
Abstract Breast cancer is a common malignancy and a leading cause of cancer-related deaths in women worldwide. Its early diagnosis can significantly reduce the morbidity and mortality rates in women. To this end, histopathological diagnosis is usually followed as the gold standard approach. However, this process is tedious, labor-intensive, and may be subject to inter-reader variability. Accordingly, an automatic diagnostic system can assist to improve the quality of diagnosis. This paper presents a deep learning approach to automatically classify hematoxylin-eosin-stained breast cancer microscopy images into normal tissue, benign lesion, in situ carcinoma, and invasive carcinoma using our collected dataset. Our proposed model exploited six intermediate layers of the Xception (Extreme Inception) network to retrieve robust and abstract features from input images. First, we optimized the proposed model on the original (unnormalized) dataset using 5-fold cross-validation. Then, we investigated its performance on four normalized datasets resulting from Reinhard, Ruifrok, Macenko, and Vahadane stain normalization. For original images, our proposed framework yielded an accuracy of 98% along with a kappa score of 0.969. Also, it achieved an average AUC-ROC score of 0.998 as well as a mean AUC-PR value of 0.995. Specifically, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. For normalized images, the proposed architecture performed better for Makenko normalization compared to the other three techniques. In this case, the proposed model achieved an accuracy of 97.79% together with a kappa score of 0.965. Also, it attained an average AUC-ROC score of 0.997 and a mean AUC-PR value of 0.991. Especially, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. These results demonstrate that our proposed model outperformed the baseline AlexNet as well as state-of-the-art VGG16, VGG19, Inception-v3, and Xception models with their default settings. Furthermore, it can be inferred that although stain normalization techniques offered competitive performance, they could not surpass the results of the original dataset.
AbstractList Breast cancer is a common malignancy and a leading cause of cancer-related deaths in women worldwide. Its early diagnosis can significantly reduce the morbidity and mortality rates in women. To this end, histopathological diagnosis is usually followed as the gold standard approach. However, this process is tedious, labor-intensive, and may be subject to inter-reader variability. Accordingly, an automatic diagnostic system can assist to improve the quality of diagnosis. This paper presents a deep learning approach to automatically classify hematoxylin-eosin-stained breast cancer microscopy images into normal tissue, benign lesion, in situ carcinoma, and invasive carcinoma using our collected dataset. Our proposed model exploited six intermediate layers of the Xception (Extreme Inception) network to retrieve robust and abstract features from input images. First, we optimized the proposed model on the original (unnormalized) dataset using 5-fold cross-validation. Then, we investigated its performance on four normalized datasets resulting from Reinhard, Ruifrok, Macenko, and Vahadane stain normalization. For original images, our proposed framework yielded an accuracy of 98% along with a kappa score of 0.969. Also, it achieved an average AUC-ROC score of 0.998 as well as a mean AUC-PR value of 0.995. Specifically, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. For normalized images, the proposed architecture performed better for Makenko normalization compared to the other three techniques. In this case, the proposed model achieved an accuracy of 97.79% together with a kappa score of 0.965. Also, it attained an average AUC-ROC score of 0.997 and a mean AUC-PR value of 0.991. Especially, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. These results demonstrate that our proposed model outperformed the baseline AlexNet as well as state-of-the-art VGG16, VGG19, Inception-v3, and Xception models with their default settings. Furthermore, it can be inferred that although stain normalization techniques offered competitive performance, they could not surpass the results of the original dataset.
Breast cancer is a common malignancy and a leading cause of cancer-related deaths in women worldwide. Its early diagnosis can significantly reduce the morbidity and mortality rates in women. To this end, histopathological diagnosis is usually followed as the gold standard approach. However, this process is tedious, labor-intensive, and may be subject to inter-reader variability. Accordingly, an automatic diagnostic system can assist to improve the quality of diagnosis. This paper presents a deep learning approach to automatically classify hematoxylin-eosin-stained breast cancer microscopy images into normal tissue, benign lesion, in situ carcinoma, and invasive carcinoma using our collected dataset. Our proposed model exploited six intermediate layers of the Xception (Extreme Inception) network to retrieve robust and abstract features from input images. First, we optimized the proposed model on the original (unnormalized) dataset using 5-fold cross-validation. Then, we investigated its performance on four normalized datasets resulting from Reinhard, Ruifrok, Macenko, and Vahadane stain normalization. For original images, our proposed framework yielded an accuracy of 98% along with a kappa score of 0.969. Also, it achieved an average AUC-ROC score of 0.998 as well as a mean AUC-PR value of 0.995. Specifically, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. For normalized images, the proposed architecture performed better for Makenko normalization compared to the other three techniques. In this case, the proposed model achieved an accuracy of 97.79% together with a kappa score of 0.965. Also, it attained an average AUC-ROC score of 0.997 and a mean AUC-PR value of 0.991. Especially, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. These results demonstrate that our proposed model outperformed the baseline AlexNet as well as state-of-the-art VGG16, VGG19, Inception-v3, and Xception models with their default settings. Furthermore, it can be inferred that although stain normalization techniques offered competitive performance, they could not surpass the results of the original dataset.Breast cancer is a common malignancy and a leading cause of cancer-related deaths in women worldwide. Its early diagnosis can significantly reduce the morbidity and mortality rates in women. To this end, histopathological diagnosis is usually followed as the gold standard approach. However, this process is tedious, labor-intensive, and may be subject to inter-reader variability. Accordingly, an automatic diagnostic system can assist to improve the quality of diagnosis. This paper presents a deep learning approach to automatically classify hematoxylin-eosin-stained breast cancer microscopy images into normal tissue, benign lesion, in situ carcinoma, and invasive carcinoma using our collected dataset. Our proposed model exploited six intermediate layers of the Xception (Extreme Inception) network to retrieve robust and abstract features from input images. First, we optimized the proposed model on the original (unnormalized) dataset using 5-fold cross-validation. Then, we investigated its performance on four normalized datasets resulting from Reinhard, Ruifrok, Macenko, and Vahadane stain normalization. For original images, our proposed framework yielded an accuracy of 98% along with a kappa score of 0.969. Also, it achieved an average AUC-ROC score of 0.998 as well as a mean AUC-PR value of 0.995. Specifically, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. For normalized images, the proposed architecture performed better for Makenko normalization compared to the other three techniques. In this case, the proposed model achieved an accuracy of 97.79% together with a kappa score of 0.965. Also, it attained an average AUC-ROC score of 0.997 and a mean AUC-PR value of 0.991. Especially, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. These results demonstrate that our proposed model outperformed the baseline AlexNet as well as state-of-the-art VGG16, VGG19, Inception-v3, and Xception models with their default settings. Furthermore, it can be inferred that although stain normalization techniques offered competitive performance, they could not surpass the results of the original dataset.
Abstract Breast cancer is a common malignancy and a leading cause of cancer-related deaths in women worldwide. Its early diagnosis can significantly reduce the morbidity and mortality rates in women. To this end, histopathological diagnosis is usually followed as the gold standard approach. However, this process is tedious, labor-intensive, and may be subject to inter-reader variability. Accordingly, an automatic diagnostic system can assist to improve the quality of diagnosis. This paper presents a deep learning approach to automatically classify hematoxylin-eosin-stained breast cancer microscopy images into normal tissue, benign lesion, in situ carcinoma, and invasive carcinoma using our collected dataset. Our proposed model exploited six intermediate layers of the Xception (Extreme Inception) network to retrieve robust and abstract features from input images. First, we optimized the proposed model on the original (unnormalized) dataset using 5-fold cross-validation. Then, we investigated its performance on four normalized datasets resulting from Reinhard, Ruifrok, Macenko, and Vahadane stain normalization. For original images, our proposed framework yielded an accuracy of 98% along with a kappa score of 0.969. Also, it achieved an average AUC-ROC score of 0.998 as well as a mean AUC-PR value of 0.995. Specifically, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. For normalized images, the proposed architecture performed better for Makenko normalization compared to the other three techniques. In this case, the proposed model achieved an accuracy of 97.79% together with a kappa score of 0.965. Also, it attained an average AUC-ROC score of 0.997 and a mean AUC-PR value of 0.991. Especially, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. These results demonstrate that our proposed model outperformed the baseline AlexNet as well as state-of-the-art VGG16, VGG19, Inception-v3, and Xception models with their default settings. Furthermore, it can be inferred that although stain normalization techniques offered competitive performance, they could not surpass the results of the original dataset.
ArticleNumber 15600
Author Aguirre, José Javier
Hameed, Zabit
Isaza-Ruget, Mario Arturo
Garcia-Zapirain, Begonya
Author_xml – sequence: 1
  givenname: Zabit
  surname: Hameed
  fullname: Hameed, Zabit
  email: zabithameed@deusto.es
  organization: eVida Research Group, University of Deusto
– sequence: 2
  givenname: Begonya
  surname: Garcia-Zapirain
  fullname: Garcia-Zapirain, Begonya
  organization: eVida Research Group, University of Deusto
– sequence: 3
  givenname: José Javier
  surname: Aguirre
  fullname: Aguirre, José Javier
  organization: Bioaraba Health Research Institute, Oncology Diagnostics and Therapeutics Area, Department of Pathological Anatomy, University Hospital of Alava, NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Biokeralty Reseach Institute
– sequence: 4
  givenname: Mario Arturo
  surname: Isaza-Ruget
  fullname: Isaza-Ruget, Mario Arturo
  organization: Fundación Universitaria Sanitas
BookMark eNp9kj1vFDEQhlcoiISQP0BliYZmg7_2ww0SioBECqKB2rK9s3s-fPZhew-l4q_jvY2ApIgLjzUz7-MZe15WJz54qKrXBF8SzPp3iZNG9DWmtCaCdn1Nn1VnFPOmpozSk__Op9VFSltcVkMFJ-JFdcpaQjgl_Kz6_WV22RqnUkLH3Y7WqGyDR2FEOoJKGRnlDUS0sSmHvcqb4MJ0h-xOTZDQnKyf0G7BODiAQyOoPMcSKYABYI9M8Ifg5gWqHPIwx6PJv0L88ap6PiqX4OLenlffP338dnVd3379fHP14bY2Tc9yDUxr3fWsHRhpGj4OHeMGAJMRm5YZbIamIYLjFuNW9wNXVIsGE9oCoZoozs6rm5U7BLWV-1iKj3cyKCuPjhAnqeLyECA1xj00WinKgSuhNB-Lh3ccBKa9wIX1fmXtZ72DwYDPpaMH0IcRbzdyCgcpWi7aXhTA23tADD9nSFnubDLgnPIQ5iRpRxrO244tqW8epW7DHMs7rlkYd6RduqNrlokhpQjj32IIlsu4yHVcZBkXeRwXSYuofyQyNh-_vhRt3dNStkpTucdPEP9V9YTqD6J615s
CitedBy_id crossref_primary_10_1007_s11042_024_18639_5
crossref_primary_10_3390_s23020656
crossref_primary_10_1007_s00530_024_01295_y
crossref_primary_10_1109_ACCESS_2024_3374650
crossref_primary_10_3390_cancers15164144
crossref_primary_10_1007_s11042_023_15176_5
crossref_primary_10_1002_ima_23124
crossref_primary_10_1093_comjnl_bxad127
crossref_primary_10_1109_ACCESS_2022_3232307
crossref_primary_10_1016_j_ctarc_2023_100717
crossref_primary_10_1016_j_heliyon_2024_e26413
crossref_primary_10_1038_s41598_024_83948_6
crossref_primary_10_1016_j_media_2024_103163
crossref_primary_10_1038_s41598_023_31275_7
crossref_primary_10_1371_journal_pdig_0000391
crossref_primary_10_1186_s12859_024_06007_x
crossref_primary_10_1007_s11042_025_20755_9
crossref_primary_10_1016_j_bspc_2024_106406
crossref_primary_10_1038_s41598_023_46619_6
crossref_primary_10_1007_s12530_025_09673_1
crossref_primary_10_1007_s10278_024_01041_w
crossref_primary_10_1155_2022_2731364
crossref_primary_10_1109_ACCESS_2022_3227437
crossref_primary_10_3390_computation11040081
crossref_primary_10_1016_j_csbj_2023_12_042
crossref_primary_10_1140_epjs_s11734_025_01510_5
crossref_primary_10_3233_JIFS_231776
crossref_primary_10_47836_pjst_32_5_23
crossref_primary_10_1016_j_jare_2024_11_013
crossref_primary_10_3390_app122211375
crossref_primary_10_1007_s11042_023_17895_1
crossref_primary_10_1016_j_jpi_2023_100357
crossref_primary_10_1007_s11042_024_20271_2
crossref_primary_10_1038_s41598_024_66543_7
crossref_primary_10_1007_s41870_023_01533_y
crossref_primary_10_56294_sctconf202235
crossref_primary_10_1016_j_modpat_2022_100086
crossref_primary_10_1109_ACCESS_2023_3288425
Cites_doi 10.1109/TBME.2014.2303852
10.1109/TPAMI.2002.1017623
10.3390/cancers12113337
10.1007/s00428-014-1593-7
10.1109/TBME.2015.2496264
10.1016/j.ymeth.2019.06.014
10.1186/s12911-019-0913-x
10.1016/j.ipm.2009.03.002
10.1007/BF00158587
10.1038/s41598-017-17204-5
10.1016/j.ejrad.2012.03.005
10.3322/caac.21660
10.1001/jama.2015.1405
10.1371/journal.pone.0267955
10.1016/j.icte.2021.11.010
10.1016/j.compbiomed.2020.104129
10.1016/j.micron.2018.07.005
10.3390/s20164373
10.2991/ijcis.d.210301.002
10.1038/nature14539
10.1371/journal.pone.0214587
10.3390/s17071572
10.1016/j.gendis.2018.05.001
10.1016/j.media.2019.05.010
10.1109/5.726791
10.1038/s41598-019-50587-1
10.1016/j.breast.2019.12.007
10.1109/38.946629
10.1109/ICTC46691.2019.8939878
10.1109/CVPR.2015.7298594
10.1609/aaai.v31i1.11231
10.1109/ISBI.2009.5193250
10.1109/ICCV.1999.790410
10.1007/11744023_32
10.1109/CVPR.2016.308
10.1109/CVPR.2016.90
10.1109/ISBI.2015.7164042
10.1109/CVPR.2017.195
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-19278-2
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 21
ExternalDocumentID oai_doaj_org_article_b008e5baa24e4a9ab4f008474e902890
PMC9649689
10_1038_s41598_022_19278_2
GrantInformation_xml – fundername: Basque Country project MIFLUDAN (Elkartek call)
– fundername: eVida Research Group IT 905-16
– fundername: FPI (formación de personal investigador) Grant
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c583t-e3bbb7836d31554fd734cee01f0c63c0cd5519406006b8d4a2b950126e12b1a43
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Wed Aug 27 01:28:39 EDT 2025
Thu Aug 21 18:39:31 EDT 2025
Mon Jul 21 09:22:48 EDT 2025
Wed Aug 13 04:55:17 EDT 2025
Thu Apr 24 23:09:06 EDT 2025
Tue Jul 01 00:55:02 EDT 2025
Fri Feb 21 02:36:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-e3bbb7836d31554fd734cee01f0c63c0cd5519406006b8d4a2b950126e12b1a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/b008e5baa24e4a9ab4f008474e902890
PMID 36114214
PQID 2715007164
PQPubID 2041939
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_b008e5baa24e4a9ab4f008474e902890
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9649689
proquest_miscellaneous_2715446739
proquest_journals_2715007164
crossref_primary_10_1038_s41598_022_19278_2
crossref_citationtrail_10_1038_s41598_022_19278_2
springer_journals_10_1038_s41598_022_19278_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-16
PublicationDateYYYYMMDD 2022-09-16
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Rączkowski, Możejko, Zambonelli, Szczurek (CR45) 2019; 9
Sharma, Kumar (CR26) 2022; 8
LeCun, Bengio, Hinton (CR14) 2015; 521
Roy, Kumar Jain, Lal, Kini (CR37) 2018; 114
CR19
Sung (CR1) 2021; 71
CR18
CR17
CR39
CR15
Ibrahim (CR10) 2020; 49
CR35
Hao (CR47) 2022; 17
CR12
CR34
CR11
Salvi, Acharya, Molinari, Meiburger (CR30) 2021; 128
Veta, Pluim, Van Diest, Viergever (CR6) 2014; 61
Hameed, Zahia, Garcia-Zapirain, Javier Aguirre, María Vanegas (CR8) 2020; 20
Ruifrok, Johnston (CR33) 2001; 23
Bankhead (CR31) 2017; 7
Feng (CR2) 2018; 5
Reinhard, Adhikhmin, Gooch, Shirley (CR32) 2001; 21
Aresta (CR22) 2019; 56
Yan (CR27) 2020; 173
Bianconi, Kather, Reyes-Aldasoro (CR28) 2020; 12
Vuong, Simpson, Green, Cummings, Lakhani (CR3) 2014; 465
CR29
Dromain (CR4) 2013; 82
CR25
CR46
Lyon (CR36) 1994; 26
Wang (CR5) 2017; 17
CR43
CR20
CR42
Elmore (CR9) 2015; 313
CR41
CR40
LeCun, Bottou, Bengio, Haffner (CR16) 1998; 86
Elfgen (CR7) 2019; 14
Ojala, Pietikainen, Maenpaa (CR13) 2002; 24
Spanhol, Oliveira, Petitjean, Heutte (CR21) 2015; 63
Jiang, Chen, Zhang, Xiao (CR23) 2019; 14
Sokolova, Lapalme (CR44) 2009; 45
Elmannai, Hamdi, AlGarni (CR24) 2021; 14
Zhu (CR38) 2019; 19
M Salvi (19278_CR30) 2021; 128
19278_CR15
19278_CR12
19278_CR34
19278_CR35
19278_CR11
FA Spanhol (19278_CR21) 2015; 63
S Roy (19278_CR37) 2018; 114
S Sharma (19278_CR26) 2022; 8
19278_CR18
HO Lyon (19278_CR36) 1994; 26
19278_CR19
19278_CR17
19278_CR39
H Sung (19278_CR1) 2021; 71
A Ibrahim (19278_CR10) 2020; 49
R Yan (19278_CR27) 2020; 173
M Sokolova (19278_CR44) 2009; 45
19278_CR40
G Aresta (19278_CR22) 2019; 56
P Bankhead (19278_CR31) 2017; 7
Y Jiang (19278_CR23) 2019; 14
D Vuong (19278_CR3) 2014; 465
19278_CR25
M Veta (19278_CR6) 2014; 61
C Zhu (19278_CR38) 2019; 19
E Reinhard (19278_CR32) 2001; 21
19278_CR46
F Bianconi (19278_CR28) 2020; 12
19278_CR43
Z Hameed (19278_CR8) 2020; 20
19278_CR41
19278_CR20
19278_CR42
H Elmannai (19278_CR24) 2021; 14
19278_CR29
C Dromain (19278_CR4) 2013; 82
Ł Rączkowski (19278_CR45) 2019; 9
C Elfgen (19278_CR7) 2019; 14
Y LeCun (19278_CR16) 1998; 86
L Wang (19278_CR5) 2017; 17
AC Ruifrok (19278_CR33) 2001; 23
Y Feng (19278_CR2) 2018; 5
JG Elmore (19278_CR9) 2015; 313
Y LeCun (19278_CR14) 2015; 521
T Ojala (19278_CR13) 2002; 24
Y Hao (19278_CR47) 2022; 17
References_xml – volume: 61
  start-page: 1400
  year: 2014
  end-page: 1411
  ident: CR6
  article-title: Breast cancer histopathology image analysis: A review
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2303852
– ident: CR18
– ident: CR43
– volume: 24
  start-page: 971
  year: 2002
  end-page: 987
  ident: CR13
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1017623
– volume: 12
  start-page: 3337
  year: 2020
  ident: CR28
  article-title: Experimental assessment of color deconvolution and color normalization for automated classification of histology images stained with hematoxylin and eosin
  publication-title: Cancers
  doi: 10.3390/cancers12113337
– volume: 465
  start-page: 1
  year: 2014
  end-page: 14
  ident: CR3
  article-title: Molecular classification of breast cancer
  publication-title: Virchows Arch.
  doi: 10.1007/s00428-014-1593-7
– ident: CR39
– volume: 14
  start-page: 1
  year: 2019
  end-page: 8
  ident: CR7
  article-title: Comparative analysis of confocal microscopy on fresh breast core needle biopsies and conventional histology
  publication-title: Diagnost. Pathol.
– ident: CR12
– volume: 63
  start-page: 1455
  year: 2015
  end-page: 1462
  ident: CR21
  article-title: A dataset for breast cancer histopathological image classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2496264
– volume: 173
  start-page: 52
  year: 2020
  end-page: 60
  ident: CR27
  article-title: Breast cancer histopathological image classification using a hybrid deep neural network
  publication-title: Methods
  doi: 10.1016/j.ymeth.2019.06.014
– volume: 19
  start-page: 1
  year: 2019
  end-page: 17
  ident: CR38
  article-title: Breast cancer histopathology image classification through assembling multiple compact cnns
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-019-0913-x
– volume: 45
  start-page: 427
  year: 2009
  end-page: 437
  ident: CR44
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2009.03.002
– ident: CR35
– volume: 26
  start-page: 533
  year: 1994
  end-page: 544
  ident: CR36
  article-title: Standardization of reagents and methods used in cytological and histological practice with emphasis on dyes, stains and chromogenic reagents
  publication-title: Histochem. J.
  doi: 10.1007/BF00158587
– ident: CR29
– volume: 7
  start-page: 1
  year: 2017
  end-page: 7
  ident: CR31
  article-title: Qupath: Open source software for digital pathology image analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17204-5
– ident: CR40
– volume: 82
  start-page: 417
  year: 2013
  end-page: 423
  ident: CR4
  article-title: Computed-aided diagnosis (CAD) in the detection of breast cancer
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2012.03.005
– ident: CR25
– volume: 71
  start-page: 209
  year: 2021
  end-page: 249
  ident: CR1
  article-title: Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21660
– ident: CR42
– volume: 313
  start-page: 1122
  year: 2015
  end-page: 1132
  ident: CR9
  article-title: Diagnostic concordance among pathologists interpreting breast biopsy specimens
  publication-title: JAMA
  doi: 10.1001/jama.2015.1405
– ident: CR46
– volume: 17
  year: 2022
  ident: CR47
  article-title: Breast cancer histopathological images classification based on deep semantic features and gray level co-occurrence matrix
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0267955
– ident: CR19
– volume: 8
  start-page: 101
  year: 2022
  end-page: 108
  ident: CR26
  article-title: The xception model: A potential feature extractor in breast cancer histology images classification
  publication-title: ICT Express
  doi: 10.1016/j.icte.2021.11.010
– volume: 128
  year: 2021
  ident: CR30
  article-title: The impact of pre-and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104129
– volume: 23
  start-page: 291
  year: 2001
  end-page: 299
  ident: CR33
  article-title: Quantification of histochemical staining by color deconvolution
  publication-title: Anal. Quant. Cytol. Histol.
– ident: CR15
– volume: 114
  start-page: 42
  year: 2018
  end-page: 61
  ident: CR37
  article-title: A study about color normalization methods for histopathology images
  publication-title: Micron
  doi: 10.1016/j.micron.2018.07.005
– ident: CR17
– volume: 20
  start-page: 4373
  year: 2020
  ident: CR8
  article-title: Breast cancer histopathology image classification using an ensemble of deep learning models
  publication-title: Sensors
  doi: 10.3390/s20164373
– volume: 14
  start-page: 1003
  year: 2021
  end-page: 1013
  ident: CR24
  article-title: Deep learning models combining for breast cancer histopathology image classification
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.2991/ijcis.d.210301.002
– ident: CR11
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR14
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 14
  year: 2019
  ident: CR23
  article-title: Breast cancer histopathological image classification using convolutional neural networks with small se-resnet module
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0214587
– volume: 17
  start-page: 1572
  year: 2017
  ident: CR5
  article-title: Early diagnosis of breast cancer
  publication-title: Sensors
  doi: 10.3390/s17071572
– volume: 5
  start-page: 77
  year: 2018
  end-page: 106
  ident: CR2
  article-title: Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis
  publication-title: Genes Dis.
  doi: 10.1016/j.gendis.2018.05.001
– volume: 56
  start-page: 122
  year: 2019
  end-page: 139
  ident: CR22
  article-title: Bach: Grand challenge on breast cancer histology images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.05.010
– ident: CR34
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: CR16
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: CR41
– volume: 9
  start-page: 1
  year: 2019
  end-page: 12
  ident: CR45
  article-title: Ara: Accurate, reliable and active histopathological image classification framework with Bayesian deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50587-1
– volume: 49
  start-page: 267
  year: 2020
  end-page: 273
  ident: CR10
  article-title: Artificial intelligence in digital breast pathology: Techniques and applications
  publication-title: The Breast
  doi: 10.1016/j.breast.2019.12.007
– ident: CR20
– volume: 21
  start-page: 34
  year: 2001
  end-page: 41
  ident: CR32
  article-title: Color transfer between images
  publication-title: IEEE Comput. Graph. Appl.
  doi: 10.1109/38.946629
– volume: 63
  start-page: 1455
  year: 2015
  ident: 19278_CR21
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2496264
– volume: 12
  start-page: 3337
  year: 2020
  ident: 19278_CR28
  publication-title: Cancers
  doi: 10.3390/cancers12113337
– ident: 19278_CR29
  doi: 10.1109/ICTC46691.2019.8939878
– volume: 7
  start-page: 1
  year: 2017
  ident: 19278_CR31
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17204-5
– volume: 82
  start-page: 417
  year: 2013
  ident: 19278_CR4
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2012.03.005
– volume: 24
  start-page: 971
  year: 2002
  ident: 19278_CR13
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1017623
– volume: 19
  start-page: 1
  year: 2019
  ident: 19278_CR38
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-019-0913-x
– volume: 21
  start-page: 34
  year: 2001
  ident: 19278_CR32
  publication-title: IEEE Comput. Graph. Appl.
  doi: 10.1109/38.946629
– volume: 17
  year: 2022
  ident: 19278_CR47
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0267955
– volume: 8
  start-page: 101
  year: 2022
  ident: 19278_CR26
  publication-title: ICT Express
  doi: 10.1016/j.icte.2021.11.010
– volume: 20
  start-page: 4373
  year: 2020
  ident: 19278_CR8
  publication-title: Sensors
  doi: 10.3390/s20164373
– ident: 19278_CR17
– volume: 17
  start-page: 1572
  year: 2017
  ident: 19278_CR5
  publication-title: Sensors
  doi: 10.3390/s17071572
– volume: 521
  start-page: 436
  year: 2015
  ident: 19278_CR14
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 49
  start-page: 267
  year: 2020
  ident: 19278_CR10
  publication-title: The Breast
  doi: 10.1016/j.breast.2019.12.007
– ident: 19278_CR15
– volume: 173
  start-page: 52
  year: 2020
  ident: 19278_CR27
  publication-title: Methods
  doi: 10.1016/j.ymeth.2019.06.014
– ident: 19278_CR40
– ident: 19278_CR46
– volume: 45
  start-page: 427
  year: 2009
  ident: 19278_CR44
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2009.03.002
– ident: 19278_CR19
  doi: 10.1109/CVPR.2015.7298594
– ident: 19278_CR43
  doi: 10.1609/aaai.v31i1.11231
– volume: 86
  start-page: 2278
  year: 1998
  ident: 19278_CR16
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: 19278_CR34
  doi: 10.1109/ISBI.2009.5193250
– volume: 14
  start-page: 1003
  year: 2021
  ident: 19278_CR24
  publication-title: Int. J. Comput. Intell. Syst.
  doi: 10.2991/ijcis.d.210301.002
– volume: 114
  start-page: 42
  year: 2018
  ident: 19278_CR37
  publication-title: Micron
  doi: 10.1016/j.micron.2018.07.005
– ident: 19278_CR11
  doi: 10.1109/ICCV.1999.790410
– volume: 23
  start-page: 291
  year: 2001
  ident: 19278_CR33
  publication-title: Anal. Quant. Cytol. Histol.
– volume: 26
  start-page: 533
  year: 1994
  ident: 19278_CR36
  publication-title: Histochem. J.
  doi: 10.1007/BF00158587
– volume: 71
  start-page: 209
  year: 2021
  ident: 19278_CR1
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21660
– volume: 9
  start-page: 1
  year: 2019
  ident: 19278_CR45
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50587-1
– volume: 14
  start-page: 1
  year: 2019
  ident: 19278_CR7
  publication-title: Diagnost. Pathol.
– volume: 56
  start-page: 122
  year: 2019
  ident: 19278_CR22
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.05.010
– volume: 128
  year: 2021
  ident: 19278_CR30
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104129
– ident: 19278_CR41
– volume: 61
  start-page: 1400
  year: 2014
  ident: 19278_CR6
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2303852
– volume: 14
  year: 2019
  ident: 19278_CR23
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0214587
– volume: 313
  start-page: 1122
  year: 2015
  ident: 19278_CR9
  publication-title: JAMA
  doi: 10.1001/jama.2015.1405
– ident: 19278_CR39
– ident: 19278_CR12
  doi: 10.1007/11744023_32
– ident: 19278_CR18
– volume: 465
  start-page: 1
  year: 2014
  ident: 19278_CR3
  publication-title: Virchows Arch.
  doi: 10.1007/s00428-014-1593-7
– ident: 19278_CR42
  doi: 10.1109/CVPR.2016.308
– ident: 19278_CR20
  doi: 10.1109/CVPR.2016.90
– ident: 19278_CR35
  doi: 10.1109/ISBI.2015.7164042
– ident: 19278_CR25
  doi: 10.1109/CVPR.2017.195
– volume: 5
  start-page: 77
  year: 2018
  ident: 19278_CR2
  publication-title: Genes Dis.
  doi: 10.1016/j.gendis.2018.05.001
SSID ssj0000529419
Score 2.520756
Snippet Breast cancer is a common malignancy and a leading cause of cancer-related deaths in women worldwide. Its early diagnosis can significantly reduce the...
Abstract Breast cancer is a common malignancy and a leading cause of cancer-related deaths in women worldwide. Its early diagnosis can significantly reduce the...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15600
SubjectTerms 631/114/1305
631/114/1564
639/166/985
639/705/117
Breast cancer
Datasets
Deep learning
Diagnosis
Histopathology
Humanities and Social Sciences
Invasiveness
Malignancy
Morbidity
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ikCBRmJG0RNbCeOTwgQVYUEJyrtzbIdu1QqyXazPXDirzMz8W6VSvSykTZ21pt52jPzDWPvQOOb2otQpthXpRLBlM64ugRTUTmXTPAN1jt__9GenKpvq2aVD9ymnFa504mkqPsx4Bn5kdDgulTo3X9cX5bYNQqjq7mFxl12D6HLcPOlV3p_xoJRLFWbXCtTye5oAnuFNWWwAwPXBjZQYmGPCLZ_4WvezJS8ES4lK3T8iD3M7iP_NNP7MbsThyfs_txQ8s9T9pfqaQN6xJw-MRGI3j0fE_eYgL7lAQm94YQ0jA2JaS4__w2aZeKYB3_GKc3wAvOJeIoE_TnhA_oY1xzz1DO_wkoQD5MulE3-jJ0ef_355aTMLRbK0HRyW0bpvcdCjl6iY5F6LRWYzapOVWhlqEIPHpUBow_C6bteOeFNAzatjbXwtVPyOTsYxiG-YFypkKQDkfbaKa07n0wvWpGqFGRylS9YvXvRNmT8cWyDcWEpDi47OxPHAnEsEceKgr3fz1nP6Bu3jv6M9NuPRORs-mLcnNksiBbUTBcb75xQUQFbepWwp4BW0VDQtWCHO-rbLM6TvWa-gr3d3wZBxOiKG-J4NY-BvbWWpmB6wTWLBS3vDOe_CNLbtMq0Hcz8sOOv6x___x9-eftaX7EHAjkdG160h-xgu7mKr8GF2vo3JCf_APriHNE
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEB5KRfBF1CqurSVC33R1N8luNg8iVixFqE8e9C0k2aQWzr327gr2qf96Z7K7J1uqT77cwm2yv2Ym8w2Z-QbgAFd8XTru8xjaIpfc69xqW-boKgpro_auonrnk-_18Ux-O61Ot2BsdzR8wNW9oR31k5ot5-9_X15_QoP_2JeMNx9W6ISoUAzDKsQrGBXhkvwAPZOiVg4nA9zvub65lqUeamfunzrxT4nGf4I972ZO3tk-TV7p6Ak8HuAk-9zL_ylshe4ZPOwbTF7vwE2qr_WEkFn6pcSgJAu2iMxRQvqaeRL8kiXmYWpQnOay81-40qwY5cWfsZR2OKf8IhZDogJd0QXaEC4Y5a0P-otPQvyY6ZCyy5_D7Ojrjy_H-dByIfdVI9Z5EM45KuxoBQGN2Coh0Y0WZSx8LXzhW0RYGkEAGqtrWmm50xX6uDqU3JVWihew3S268BKYlD4KiybulJVKNS7qltc8FtGLaAuXQTl-aOMHPnJqizE3aV9cNKYXjkHhmCQcwzN4u5lz0bNx_HP0IclvM5KYtNMfi-WZGQzT4LLThMpZy2WQqKZORuoxoGTQaRM2g71R-mbUTsMV4uiCQs0M3mxOo2HSbovtwuKqH4OxthI6AzXRmskDTc905z8Txbeupa4bnPlu1K8_N__7C7_6Hy-8C4842QO1yaj3YHu9vAqvEXit3X6ypluzJizn
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB-OE8EX8RN7nhLBNy2mSfqRR108DkGfPLi3kKTJeXB2j929B5_8152Ztis9VPBlC9ukzWY-s_ObGYDXqPFtFVQsc-plaVS0pbe-KtFUSO-zjaGmfOfPX5rTM_PpvD4_ADXnwjBon0taspqe0WHvtmhoKBkMj07ok-DJB9XuHSrdTjC-VbPa_69CkStT2Sk_RuruD1MXNohL9S_8y9voyFshUrY8Jw_g_uQyivfjIh_CQRoewd2xieSPx_CTc2gjecGCPwn8w_st1lkEAp3vRCTibgRXF6YmxDxXXH5HbbIVhH2_EAwtvCIMkciJ92ZLD-hTuhaETZ94FFdCNTD5wgjyJ3B28vHr6rSc2iqUse70rkw6hEDJG70mZyL3rTZoKmWVZWx0lLFHL8qioUeBDF1vvAq2RjvWpEqFyhv9FA6H9ZCegTAmZu1RjEPrTdt2IdteNSrLHHX2MhRQzRvt4lRznFpfXDmOfevOjcRxSBzHxHGqgDf7OddjxY1_jv5A9NuPpGrZ_MV6c-Em7nGoWrpUB--VSQZZMZhMfQRakywHWgs4nqnvJhHeOtWiryzpOFnAq_1tFD6KqPghrW_GMXiebrUtoF1wzWJByzvD5Tcu420bY5sOZ76d-ev3y__-g4_-b_hzuKeI86npRXMMh7vNTXqBbtQuvGS5-QW4Thq7
  priority: 102
  providerName: Springer Nature
Title Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network
URI https://link.springer.com/article/10.1038/s41598-022-19278-2
https://www.proquest.com/docview/2715007164
https://www.proquest.com/docview/2715446739
https://pubmed.ncbi.nlm.nih.gov/PMC9649689
https://doaj.org/article/b008e5baa24e4a9ab4f008474e902890
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9QwDLbGJiReEAwQhXHKJN6gok3Spnm8nTZNJ21CwKR7i5I0gUmjN-1uDzzx17HT3rFOAl54aaUmadPYjm3F_gzwFnd8XTru8xjaIpfc69xqW-aoKgpro_auonzns_P69ELOF9XiTqkvignr4YH7haMih02onLVcBomvcTISBrySQadDMtp9UefdcaZ6VG-uZamHLJlCNB9WqKkomwx9LzRq0HXiI02UAPtHVub9GMl7B6VJ_5w8gceD4cim_YSfwk7o9uFhX0ryxzP4mTJpPdnCLF0pBCitOltG5ij0fM08kfiGJYxhKkWcxrLL77inrBhFwH9lKcDwiiKJWAwJ9HNFL2hDuGYUoT5wKs6EkDDTLcWRP4eLk-Mvs9N8KK6Q-6oR6zwI5xylcLSCTIrYKiFRYRZlLHwtfOFbtKU0qnsUS9e00nKnK9RmdSi5K60UL2C3W3bhJTApfRQWhdkpK5VqXNQtr3ksohfRFi6DcrPQxg_I41QA48qkE3DRmJ44BoljEnEMz-Dddsx1j7vx195HRL9tT8LMTg-Qk8zASeZfnJTBwYb6ZhDkleEKLeaCnMoMDrfNKIJ0rmK7sLzt-6BXrYTOQI24ZjShcUt3-S2Beeta6rrBke83_PX743_-4Vf_44dfwyNO8kAFMeoD2F3f3IY3aGKt3QQeqIWawN50Ov88x_vR8fnHT_h0Vs8mSdLweiabX6yDKsU
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8anRBcEJ9a2AAjwQmiJbabxAeEGGzq2FYhtEm7Gduxx6TRdm0ntBP_EX8j7zlJp05it11SKbETN-_TeR8_gDeo8VVuuUuDr7NUcqdSo0yeoqnIjAnK2T7VOx8Mi8GR_HrcP16Bv10tDKVVdjoxKup67Ogb-SYv0XXJyLv_ODlPCTWKoqsdhEbDFnv-8jdu2WYfdr8gfd9yvrN9-HmQtqgCqetXYp56Ya2l2oVakC0NdSkkWoosD5krhMtcjU6EQjuH_GirWhpuVR_VeOFzbnMjBd73DqxKgQN6sLq1Pfz2ffFVh-JmMldtdU4mqs0ZWkiqYsM9HzpTuGXjSxYwAgUsebfXczOvBWij3dt5CA9ah5V9ajjsEaz40WO420BYXj6BP7GC15EPzuKRUo8itdk4MEsp73PmiLWmLPY2JgjkOJed_kJdNmOUeX_CYmLjGWUwseBjs9EZ3aD2fsIoM76VEFwJdeCMPzF__Skc3crrfwa90Xjk14BJ6YIwqERsaWRZVjaomhc8ZMGJYDKbQN69aO3ajucEvHGmY-RdVLohjkbi6EgczRN4t5gzafp93Dh6i-i3GEm9uuOJ8fREt6KvUbFVvm-N4dJLFAQrA6EYlNKrGOZNYKOjvm4VyExfsXsCrxeXUfQpnmNGfnzRjMHdfClUAuUS1ywtaPnK6PRnbCKuCqmKCme-7_jr6uH__8PPb17rK7g3ODzY1_u7w711uM-J6wluo9iA3nx64V-gAze3L1upYfDjtgX1H-0CWdQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4qkGChgJThBtYjtxfEAIKKuWQsWBSnsztmOXSmWzbLZCPfG_-HXMOMlWqURvvWSlxE68macz38wQ8gI0vsotc2nwdZYK5lRqlMlTMBWZMUE5W2C-85eDcvdQfJoVsw3yd8iFQVjloBOjoq4bh9_IJ0yC65Khdz8JPSzi68707eJXih2kMNI6tNPoWGTfn_2G7Vv7Zm8HaP2SsenHbx92077DQOqKiq9Sz621mMdQc7SroZZcgNXI8pC5krvM1eBQKLB5wJu2qoVhVhWg0kufM5sbweG-18h1ycFsgizJmVx_38EImshVn6eT8WrSgq3EfDbY_YFbBZs3NrKFsWXAyM-9iNK8EKqNFnB6h9zuXVf6ruO1u2TDz--RG10zy7P75E_M5XXojdN4RBBSpDttArUIfl9Rh0y2pLHKMTZDjnPp8U_Qai1FDP4RjRDHE8Qy0eBj2dEWb1B7v6CIke9lBVaCtTjjT0SyPyCHV_LyH5LNeTP3W4QK4QI3oE6sNELKygZVs5KFLDgeTGYTkg8vWru-9jm24DjRMQbPK90RRwNxdCSOZgl5tZ6z6Cp_XDr6PdJvPRKrdscTzfJI90pAg4qrfGGNYcILEAkrAvYzkMKrGPBNyPZAfd2rklafM35Cnq8vgxLAyI6Z--a0GwP7eslVQuSIa0YLGl-ZH_-I5cRVKVRZwczXA3-dP_z_f_jR5Wt9Rm6CeOrPewf7j8kthkyPfTfKbbK5Wp76J-DJrezTKDKUfL9qGf0HG-tcpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiclass+classification+of+breast+cancer+histopathology+images+using+multilevel+features+of+deep+convolutional+neural+network&rft.jtitle=Scientific+reports&rft.au=Zabit+Hameed&rft.au=Begonya+Garcia-Zapirain&rft.au=Jos%C3%A9+Javier+Aguirre&rft.au=Mario+Arturo+Isaza-Ruget&rft.date=2022-09-16&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=21&rft_id=info:doi/10.1038%2Fs41598-022-19278-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b008e5baa24e4a9ab4f008474e902890
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon