Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network
Breast cancer is a common malignancy and a leading cause of cancer-related deaths in women worldwide. Its early diagnosis can significantly reduce the morbidity and mortality rates in women. To this end, histopathological diagnosis is usually followed as the gold standard approach. However, this pro...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 15600 - 21 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.09.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-022-19278-2 |
Cover
Loading…
Abstract | Breast cancer is a common malignancy and a leading cause of cancer-related deaths in women worldwide. Its early diagnosis can significantly reduce the morbidity and mortality rates in women. To this end, histopathological diagnosis is usually followed as the gold standard approach. However, this process is tedious, labor-intensive, and may be subject to inter-reader variability. Accordingly, an automatic diagnostic system can assist to improve the quality of diagnosis. This paper presents a deep learning approach to automatically classify hematoxylin-eosin-stained breast cancer microscopy images into normal tissue, benign lesion, in situ carcinoma, and invasive carcinoma using our collected dataset. Our proposed model exploited six intermediate layers of the Xception (Extreme Inception) network to retrieve robust and abstract features from input images. First, we optimized the proposed model on the original (unnormalized) dataset using 5-fold cross-validation. Then, we investigated its performance on four normalized datasets resulting from Reinhard, Ruifrok, Macenko, and Vahadane stain normalization. For original images, our proposed framework yielded an accuracy of 98% along with a kappa score of 0.969. Also, it achieved an average AUC-ROC score of 0.998 as well as a mean AUC-PR value of 0.995. Specifically, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. For normalized images, the proposed architecture performed better for Makenko normalization compared to the other three techniques. In this case, the proposed model achieved an accuracy of 97.79% together with a kappa score of 0.965. Also, it attained an average AUC-ROC score of 0.997 and a mean AUC-PR value of 0.991. Especially, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. These results demonstrate that our proposed model outperformed the baseline AlexNet as well as state-of-the-art VGG16, VGG19, Inception-v3, and Xception models with their default settings. Furthermore, it can be inferred that although stain normalization techniques offered competitive performance, they could not surpass the results of the original dataset. |
---|---|
AbstractList | Breast cancer is a common malignancy and a leading cause of cancer-related deaths in women worldwide. Its early diagnosis can significantly reduce the morbidity and mortality rates in women. To this end, histopathological diagnosis is usually followed as the gold standard approach. However, this process is tedious, labor-intensive, and may be subject to inter-reader variability. Accordingly, an automatic diagnostic system can assist to improve the quality of diagnosis. This paper presents a deep learning approach to automatically classify hematoxylin-eosin-stained breast cancer microscopy images into normal tissue, benign lesion, in situ carcinoma, and invasive carcinoma using our collected dataset. Our proposed model exploited six intermediate layers of the Xception (Extreme Inception) network to retrieve robust and abstract features from input images. First, we optimized the proposed model on the original (unnormalized) dataset using 5-fold cross-validation. Then, we investigated its performance on four normalized datasets resulting from Reinhard, Ruifrok, Macenko, and Vahadane stain normalization. For original images, our proposed framework yielded an accuracy of 98% along with a kappa score of 0.969. Also, it achieved an average AUC-ROC score of 0.998 as well as a mean AUC-PR value of 0.995. Specifically, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. For normalized images, the proposed architecture performed better for Makenko normalization compared to the other three techniques. In this case, the proposed model achieved an accuracy of 97.79% together with a kappa score of 0.965. Also, it attained an average AUC-ROC score of 0.997 and a mean AUC-PR value of 0.991. Especially, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. These results demonstrate that our proposed model outperformed the baseline AlexNet as well as state-of-the-art VGG16, VGG19, Inception-v3, and Xception models with their default settings. Furthermore, it can be inferred that although stain normalization techniques offered competitive performance, they could not surpass the results of the original dataset. Breast cancer is a common malignancy and a leading cause of cancer-related deaths in women worldwide. Its early diagnosis can significantly reduce the morbidity and mortality rates in women. To this end, histopathological diagnosis is usually followed as the gold standard approach. However, this process is tedious, labor-intensive, and may be subject to inter-reader variability. Accordingly, an automatic diagnostic system can assist to improve the quality of diagnosis. This paper presents a deep learning approach to automatically classify hematoxylin-eosin-stained breast cancer microscopy images into normal tissue, benign lesion, in situ carcinoma, and invasive carcinoma using our collected dataset. Our proposed model exploited six intermediate layers of the Xception (Extreme Inception) network to retrieve robust and abstract features from input images. First, we optimized the proposed model on the original (unnormalized) dataset using 5-fold cross-validation. Then, we investigated its performance on four normalized datasets resulting from Reinhard, Ruifrok, Macenko, and Vahadane stain normalization. For original images, our proposed framework yielded an accuracy of 98% along with a kappa score of 0.969. Also, it achieved an average AUC-ROC score of 0.998 as well as a mean AUC-PR value of 0.995. Specifically, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. For normalized images, the proposed architecture performed better for Makenko normalization compared to the other three techniques. In this case, the proposed model achieved an accuracy of 97.79% together with a kappa score of 0.965. Also, it attained an average AUC-ROC score of 0.997 and a mean AUC-PR value of 0.991. Especially, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. These results demonstrate that our proposed model outperformed the baseline AlexNet as well as state-of-the-art VGG16, VGG19, Inception-v3, and Xception models with their default settings. Furthermore, it can be inferred that although stain normalization techniques offered competitive performance, they could not surpass the results of the original dataset.Breast cancer is a common malignancy and a leading cause of cancer-related deaths in women worldwide. Its early diagnosis can significantly reduce the morbidity and mortality rates in women. To this end, histopathological diagnosis is usually followed as the gold standard approach. However, this process is tedious, labor-intensive, and may be subject to inter-reader variability. Accordingly, an automatic diagnostic system can assist to improve the quality of diagnosis. This paper presents a deep learning approach to automatically classify hematoxylin-eosin-stained breast cancer microscopy images into normal tissue, benign lesion, in situ carcinoma, and invasive carcinoma using our collected dataset. Our proposed model exploited six intermediate layers of the Xception (Extreme Inception) network to retrieve robust and abstract features from input images. First, we optimized the proposed model on the original (unnormalized) dataset using 5-fold cross-validation. Then, we investigated its performance on four normalized datasets resulting from Reinhard, Ruifrok, Macenko, and Vahadane stain normalization. For original images, our proposed framework yielded an accuracy of 98% along with a kappa score of 0.969. Also, it achieved an average AUC-ROC score of 0.998 as well as a mean AUC-PR value of 0.995. Specifically, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. For normalized images, the proposed architecture performed better for Makenko normalization compared to the other three techniques. In this case, the proposed model achieved an accuracy of 97.79% together with a kappa score of 0.965. Also, it attained an average AUC-ROC score of 0.997 and a mean AUC-PR value of 0.991. Especially, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. These results demonstrate that our proposed model outperformed the baseline AlexNet as well as state-of-the-art VGG16, VGG19, Inception-v3, and Xception models with their default settings. Furthermore, it can be inferred that although stain normalization techniques offered competitive performance, they could not surpass the results of the original dataset. Abstract Breast cancer is a common malignancy and a leading cause of cancer-related deaths in women worldwide. Its early diagnosis can significantly reduce the morbidity and mortality rates in women. To this end, histopathological diagnosis is usually followed as the gold standard approach. However, this process is tedious, labor-intensive, and may be subject to inter-reader variability. Accordingly, an automatic diagnostic system can assist to improve the quality of diagnosis. This paper presents a deep learning approach to automatically classify hematoxylin-eosin-stained breast cancer microscopy images into normal tissue, benign lesion, in situ carcinoma, and invasive carcinoma using our collected dataset. Our proposed model exploited six intermediate layers of the Xception (Extreme Inception) network to retrieve robust and abstract features from input images. First, we optimized the proposed model on the original (unnormalized) dataset using 5-fold cross-validation. Then, we investigated its performance on four normalized datasets resulting from Reinhard, Ruifrok, Macenko, and Vahadane stain normalization. For original images, our proposed framework yielded an accuracy of 98% along with a kappa score of 0.969. Also, it achieved an average AUC-ROC score of 0.998 as well as a mean AUC-PR value of 0.995. Specifically, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. For normalized images, the proposed architecture performed better for Makenko normalization compared to the other three techniques. In this case, the proposed model achieved an accuracy of 97.79% together with a kappa score of 0.965. Also, it attained an average AUC-ROC score of 0.997 and a mean AUC-PR value of 0.991. Especially, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. These results demonstrate that our proposed model outperformed the baseline AlexNet as well as state-of-the-art VGG16, VGG19, Inception-v3, and Xception models with their default settings. Furthermore, it can be inferred that although stain normalization techniques offered competitive performance, they could not surpass the results of the original dataset. |
ArticleNumber | 15600 |
Author | Aguirre, José Javier Hameed, Zabit Isaza-Ruget, Mario Arturo Garcia-Zapirain, Begonya |
Author_xml | – sequence: 1 givenname: Zabit surname: Hameed fullname: Hameed, Zabit email: zabithameed@deusto.es organization: eVida Research Group, University of Deusto – sequence: 2 givenname: Begonya surname: Garcia-Zapirain fullname: Garcia-Zapirain, Begonya organization: eVida Research Group, University of Deusto – sequence: 3 givenname: José Javier surname: Aguirre fullname: Aguirre, José Javier organization: Bioaraba Health Research Institute, Oncology Diagnostics and Therapeutics Area, Department of Pathological Anatomy, University Hospital of Alava, NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Biokeralty Reseach Institute – sequence: 4 givenname: Mario Arturo surname: Isaza-Ruget fullname: Isaza-Ruget, Mario Arturo organization: Fundación Universitaria Sanitas |
BookMark | eNp9kj1vFDEQhlcoiISQP0BliYZmg7_2ww0SioBECqKB2rK9s3s-fPZhew-l4q_jvY2ApIgLjzUz7-MZe15WJz54qKrXBF8SzPp3iZNG9DWmtCaCdn1Nn1VnFPOmpozSk__Op9VFSltcVkMFJ-JFdcpaQjgl_Kz6_WV22RqnUkLH3Y7WqGyDR2FEOoJKGRnlDUS0sSmHvcqb4MJ0h-xOTZDQnKyf0G7BODiAQyOoPMcSKYABYI9M8Ifg5gWqHPIwx6PJv0L88ap6PiqX4OLenlffP338dnVd3379fHP14bY2Tc9yDUxr3fWsHRhpGj4OHeMGAJMRm5YZbIamIYLjFuNW9wNXVIsGE9oCoZoozs6rm5U7BLWV-1iKj3cyKCuPjhAnqeLyECA1xj00WinKgSuhNB-Lh3ccBKa9wIX1fmXtZ72DwYDPpaMH0IcRbzdyCgcpWi7aXhTA23tADD9nSFnubDLgnPIQ5iRpRxrO244tqW8epW7DHMs7rlkYd6RduqNrlokhpQjj32IIlsu4yHVcZBkXeRwXSYuofyQyNh-_vhRt3dNStkpTucdPEP9V9YTqD6J615s |
CitedBy_id | crossref_primary_10_1007_s11042_024_18639_5 crossref_primary_10_3390_s23020656 crossref_primary_10_1007_s00530_024_01295_y crossref_primary_10_1109_ACCESS_2024_3374650 crossref_primary_10_3390_cancers15164144 crossref_primary_10_1007_s11042_023_15176_5 crossref_primary_10_1002_ima_23124 crossref_primary_10_1093_comjnl_bxad127 crossref_primary_10_1109_ACCESS_2022_3232307 crossref_primary_10_1016_j_ctarc_2023_100717 crossref_primary_10_1016_j_heliyon_2024_e26413 crossref_primary_10_1038_s41598_024_83948_6 crossref_primary_10_1016_j_media_2024_103163 crossref_primary_10_1038_s41598_023_31275_7 crossref_primary_10_1371_journal_pdig_0000391 crossref_primary_10_1186_s12859_024_06007_x crossref_primary_10_1007_s11042_025_20755_9 crossref_primary_10_1016_j_bspc_2024_106406 crossref_primary_10_1038_s41598_023_46619_6 crossref_primary_10_1007_s12530_025_09673_1 crossref_primary_10_1007_s10278_024_01041_w crossref_primary_10_1155_2022_2731364 crossref_primary_10_1109_ACCESS_2022_3227437 crossref_primary_10_3390_computation11040081 crossref_primary_10_1016_j_csbj_2023_12_042 crossref_primary_10_1140_epjs_s11734_025_01510_5 crossref_primary_10_3233_JIFS_231776 crossref_primary_10_47836_pjst_32_5_23 crossref_primary_10_1016_j_jare_2024_11_013 crossref_primary_10_3390_app122211375 crossref_primary_10_1007_s11042_023_17895_1 crossref_primary_10_1016_j_jpi_2023_100357 crossref_primary_10_1007_s11042_024_20271_2 crossref_primary_10_1038_s41598_024_66543_7 crossref_primary_10_1007_s41870_023_01533_y crossref_primary_10_56294_sctconf202235 crossref_primary_10_1016_j_modpat_2022_100086 crossref_primary_10_1109_ACCESS_2023_3288425 |
Cites_doi | 10.1109/TBME.2014.2303852 10.1109/TPAMI.2002.1017623 10.3390/cancers12113337 10.1007/s00428-014-1593-7 10.1109/TBME.2015.2496264 10.1016/j.ymeth.2019.06.014 10.1186/s12911-019-0913-x 10.1016/j.ipm.2009.03.002 10.1007/BF00158587 10.1038/s41598-017-17204-5 10.1016/j.ejrad.2012.03.005 10.3322/caac.21660 10.1001/jama.2015.1405 10.1371/journal.pone.0267955 10.1016/j.icte.2021.11.010 10.1016/j.compbiomed.2020.104129 10.1016/j.micron.2018.07.005 10.3390/s20164373 10.2991/ijcis.d.210301.002 10.1038/nature14539 10.1371/journal.pone.0214587 10.3390/s17071572 10.1016/j.gendis.2018.05.001 10.1016/j.media.2019.05.010 10.1109/5.726791 10.1038/s41598-019-50587-1 10.1016/j.breast.2019.12.007 10.1109/38.946629 10.1109/ICTC46691.2019.8939878 10.1109/CVPR.2015.7298594 10.1609/aaai.v31i1.11231 10.1109/ISBI.2009.5193250 10.1109/ICCV.1999.790410 10.1007/11744023_32 10.1109/CVPR.2016.308 10.1109/CVPR.2016.90 10.1109/ISBI.2015.7164042 10.1109/CVPR.2017.195 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-022-19278-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_b008e5baa24e4a9ab4f008474e902890 PMC9649689 10_1038_s41598_022_19278_2 |
GrantInformation_xml | – fundername: Basque Country project MIFLUDAN (Elkartek call) – fundername: eVida Research Group IT 905-16 – fundername: FPI (formación de personal investigador) Grant – fundername: ; |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c583t-e3bbb7836d31554fd734cee01f0c63c0cd5519406006b8d4a2b950126e12b1a43 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:28:39 EDT 2025 Thu Aug 21 18:39:31 EDT 2025 Mon Jul 21 09:22:48 EDT 2025 Wed Aug 13 04:55:17 EDT 2025 Thu Apr 24 23:09:06 EDT 2025 Tue Jul 01 00:55:02 EDT 2025 Fri Feb 21 02:36:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-e3bbb7836d31554fd734cee01f0c63c0cd5519406006b8d4a2b950126e12b1a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/b008e5baa24e4a9ab4f008474e902890 |
PMID | 36114214 |
PQID | 2715007164 |
PQPubID | 2041939 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b008e5baa24e4a9ab4f008474e902890 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9649689 proquest_miscellaneous_2715446739 proquest_journals_2715007164 crossref_primary_10_1038_s41598_022_19278_2 crossref_citationtrail_10_1038_s41598_022_19278_2 springer_journals_10_1038_s41598_022_19278_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-16 |
PublicationDateYYYYMMDD | 2022-09-16 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Rączkowski, Możejko, Zambonelli, Szczurek (CR45) 2019; 9 Sharma, Kumar (CR26) 2022; 8 LeCun, Bengio, Hinton (CR14) 2015; 521 Roy, Kumar Jain, Lal, Kini (CR37) 2018; 114 CR19 Sung (CR1) 2021; 71 CR18 CR17 CR39 CR15 Ibrahim (CR10) 2020; 49 CR35 Hao (CR47) 2022; 17 CR12 CR34 CR11 Salvi, Acharya, Molinari, Meiburger (CR30) 2021; 128 Veta, Pluim, Van Diest, Viergever (CR6) 2014; 61 Hameed, Zahia, Garcia-Zapirain, Javier Aguirre, María Vanegas (CR8) 2020; 20 Ruifrok, Johnston (CR33) 2001; 23 Bankhead (CR31) 2017; 7 Feng (CR2) 2018; 5 Reinhard, Adhikhmin, Gooch, Shirley (CR32) 2001; 21 Aresta (CR22) 2019; 56 Yan (CR27) 2020; 173 Bianconi, Kather, Reyes-Aldasoro (CR28) 2020; 12 Vuong, Simpson, Green, Cummings, Lakhani (CR3) 2014; 465 CR29 Dromain (CR4) 2013; 82 CR25 CR46 Lyon (CR36) 1994; 26 Wang (CR5) 2017; 17 CR43 CR20 CR42 Elmore (CR9) 2015; 313 CR41 CR40 LeCun, Bottou, Bengio, Haffner (CR16) 1998; 86 Elfgen (CR7) 2019; 14 Ojala, Pietikainen, Maenpaa (CR13) 2002; 24 Spanhol, Oliveira, Petitjean, Heutte (CR21) 2015; 63 Jiang, Chen, Zhang, Xiao (CR23) 2019; 14 Sokolova, Lapalme (CR44) 2009; 45 Elmannai, Hamdi, AlGarni (CR24) 2021; 14 Zhu (CR38) 2019; 19 M Salvi (19278_CR30) 2021; 128 19278_CR15 19278_CR12 19278_CR34 19278_CR35 19278_CR11 FA Spanhol (19278_CR21) 2015; 63 S Roy (19278_CR37) 2018; 114 S Sharma (19278_CR26) 2022; 8 19278_CR18 HO Lyon (19278_CR36) 1994; 26 19278_CR19 19278_CR17 19278_CR39 H Sung (19278_CR1) 2021; 71 A Ibrahim (19278_CR10) 2020; 49 R Yan (19278_CR27) 2020; 173 M Sokolova (19278_CR44) 2009; 45 19278_CR40 G Aresta (19278_CR22) 2019; 56 P Bankhead (19278_CR31) 2017; 7 Y Jiang (19278_CR23) 2019; 14 D Vuong (19278_CR3) 2014; 465 19278_CR25 M Veta (19278_CR6) 2014; 61 C Zhu (19278_CR38) 2019; 19 E Reinhard (19278_CR32) 2001; 21 19278_CR46 F Bianconi (19278_CR28) 2020; 12 19278_CR43 Z Hameed (19278_CR8) 2020; 20 19278_CR41 19278_CR20 19278_CR42 H Elmannai (19278_CR24) 2021; 14 19278_CR29 C Dromain (19278_CR4) 2013; 82 Ł Rączkowski (19278_CR45) 2019; 9 C Elfgen (19278_CR7) 2019; 14 Y LeCun (19278_CR16) 1998; 86 L Wang (19278_CR5) 2017; 17 AC Ruifrok (19278_CR33) 2001; 23 Y Feng (19278_CR2) 2018; 5 JG Elmore (19278_CR9) 2015; 313 Y LeCun (19278_CR14) 2015; 521 T Ojala (19278_CR13) 2002; 24 Y Hao (19278_CR47) 2022; 17 |
References_xml | – volume: 61 start-page: 1400 year: 2014 end-page: 1411 ident: CR6 article-title: Breast cancer histopathology image analysis: A review publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2303852 – ident: CR18 – ident: CR43 – volume: 24 start-page: 971 year: 2002 end-page: 987 ident: CR13 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2002.1017623 – volume: 12 start-page: 3337 year: 2020 ident: CR28 article-title: Experimental assessment of color deconvolution and color normalization for automated classification of histology images stained with hematoxylin and eosin publication-title: Cancers doi: 10.3390/cancers12113337 – volume: 465 start-page: 1 year: 2014 end-page: 14 ident: CR3 article-title: Molecular classification of breast cancer publication-title: Virchows Arch. doi: 10.1007/s00428-014-1593-7 – ident: CR39 – volume: 14 start-page: 1 year: 2019 end-page: 8 ident: CR7 article-title: Comparative analysis of confocal microscopy on fresh breast core needle biopsies and conventional histology publication-title: Diagnost. Pathol. – ident: CR12 – volume: 63 start-page: 1455 year: 2015 end-page: 1462 ident: CR21 article-title: A dataset for breast cancer histopathological image classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2496264 – volume: 173 start-page: 52 year: 2020 end-page: 60 ident: CR27 article-title: Breast cancer histopathological image classification using a hybrid deep neural network publication-title: Methods doi: 10.1016/j.ymeth.2019.06.014 – volume: 19 start-page: 1 year: 2019 end-page: 17 ident: CR38 article-title: Breast cancer histopathology image classification through assembling multiple compact cnns publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-019-0913-x – volume: 45 start-page: 427 year: 2009 end-page: 437 ident: CR44 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2009.03.002 – ident: CR35 – volume: 26 start-page: 533 year: 1994 end-page: 544 ident: CR36 article-title: Standardization of reagents and methods used in cytological and histological practice with emphasis on dyes, stains and chromogenic reagents publication-title: Histochem. J. doi: 10.1007/BF00158587 – ident: CR29 – volume: 7 start-page: 1 year: 2017 end-page: 7 ident: CR31 article-title: Qupath: Open source software for digital pathology image analysis publication-title: Sci. Rep. doi: 10.1038/s41598-017-17204-5 – ident: CR40 – volume: 82 start-page: 417 year: 2013 end-page: 423 ident: CR4 article-title: Computed-aided diagnosis (CAD) in the detection of breast cancer publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2012.03.005 – ident: CR25 – volume: 71 start-page: 209 year: 2021 end-page: 249 ident: CR1 article-title: Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21660 – ident: CR42 – volume: 313 start-page: 1122 year: 2015 end-page: 1132 ident: CR9 article-title: Diagnostic concordance among pathologists interpreting breast biopsy specimens publication-title: JAMA doi: 10.1001/jama.2015.1405 – ident: CR46 – volume: 17 year: 2022 ident: CR47 article-title: Breast cancer histopathological images classification based on deep semantic features and gray level co-occurrence matrix publication-title: PLoS ONE doi: 10.1371/journal.pone.0267955 – ident: CR19 – volume: 8 start-page: 101 year: 2022 end-page: 108 ident: CR26 article-title: The xception model: A potential feature extractor in breast cancer histology images classification publication-title: ICT Express doi: 10.1016/j.icte.2021.11.010 – volume: 128 year: 2021 ident: CR30 article-title: The impact of pre-and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.104129 – volume: 23 start-page: 291 year: 2001 end-page: 299 ident: CR33 article-title: Quantification of histochemical staining by color deconvolution publication-title: Anal. Quant. Cytol. Histol. – ident: CR15 – volume: 114 start-page: 42 year: 2018 end-page: 61 ident: CR37 article-title: A study about color normalization methods for histopathology images publication-title: Micron doi: 10.1016/j.micron.2018.07.005 – ident: CR17 – volume: 20 start-page: 4373 year: 2020 ident: CR8 article-title: Breast cancer histopathology image classification using an ensemble of deep learning models publication-title: Sensors doi: 10.3390/s20164373 – volume: 14 start-page: 1003 year: 2021 end-page: 1013 ident: CR24 article-title: Deep learning models combining for breast cancer histopathology image classification publication-title: Int. J. Comput. Intell. Syst. doi: 10.2991/ijcis.d.210301.002 – ident: CR11 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR14 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 14 year: 2019 ident: CR23 article-title: Breast cancer histopathological image classification using convolutional neural networks with small se-resnet module publication-title: PLoS ONE doi: 10.1371/journal.pone.0214587 – volume: 17 start-page: 1572 year: 2017 ident: CR5 article-title: Early diagnosis of breast cancer publication-title: Sensors doi: 10.3390/s17071572 – volume: 5 start-page: 77 year: 2018 end-page: 106 ident: CR2 article-title: Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis publication-title: Genes Dis. doi: 10.1016/j.gendis.2018.05.001 – volume: 56 start-page: 122 year: 2019 end-page: 139 ident: CR22 article-title: Bach: Grand challenge on breast cancer histology images publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.05.010 – ident: CR34 – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: CR16 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: CR41 – volume: 9 start-page: 1 year: 2019 end-page: 12 ident: CR45 article-title: Ara: Accurate, reliable and active histopathological image classification framework with Bayesian deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-019-50587-1 – volume: 49 start-page: 267 year: 2020 end-page: 273 ident: CR10 article-title: Artificial intelligence in digital breast pathology: Techniques and applications publication-title: The Breast doi: 10.1016/j.breast.2019.12.007 – ident: CR20 – volume: 21 start-page: 34 year: 2001 end-page: 41 ident: CR32 article-title: Color transfer between images publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/38.946629 – volume: 63 start-page: 1455 year: 2015 ident: 19278_CR21 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2496264 – volume: 12 start-page: 3337 year: 2020 ident: 19278_CR28 publication-title: Cancers doi: 10.3390/cancers12113337 – ident: 19278_CR29 doi: 10.1109/ICTC46691.2019.8939878 – volume: 7 start-page: 1 year: 2017 ident: 19278_CR31 publication-title: Sci. Rep. doi: 10.1038/s41598-017-17204-5 – volume: 82 start-page: 417 year: 2013 ident: 19278_CR4 publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2012.03.005 – volume: 24 start-page: 971 year: 2002 ident: 19278_CR13 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2002.1017623 – volume: 19 start-page: 1 year: 2019 ident: 19278_CR38 publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-019-0913-x – volume: 21 start-page: 34 year: 2001 ident: 19278_CR32 publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/38.946629 – volume: 17 year: 2022 ident: 19278_CR47 publication-title: PLoS ONE doi: 10.1371/journal.pone.0267955 – volume: 8 start-page: 101 year: 2022 ident: 19278_CR26 publication-title: ICT Express doi: 10.1016/j.icte.2021.11.010 – volume: 20 start-page: 4373 year: 2020 ident: 19278_CR8 publication-title: Sensors doi: 10.3390/s20164373 – ident: 19278_CR17 – volume: 17 start-page: 1572 year: 2017 ident: 19278_CR5 publication-title: Sensors doi: 10.3390/s17071572 – volume: 521 start-page: 436 year: 2015 ident: 19278_CR14 publication-title: Nature doi: 10.1038/nature14539 – volume: 49 start-page: 267 year: 2020 ident: 19278_CR10 publication-title: The Breast doi: 10.1016/j.breast.2019.12.007 – ident: 19278_CR15 – volume: 173 start-page: 52 year: 2020 ident: 19278_CR27 publication-title: Methods doi: 10.1016/j.ymeth.2019.06.014 – ident: 19278_CR40 – ident: 19278_CR46 – volume: 45 start-page: 427 year: 2009 ident: 19278_CR44 publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2009.03.002 – ident: 19278_CR19 doi: 10.1109/CVPR.2015.7298594 – ident: 19278_CR43 doi: 10.1609/aaai.v31i1.11231 – volume: 86 start-page: 2278 year: 1998 ident: 19278_CR16 publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: 19278_CR34 doi: 10.1109/ISBI.2009.5193250 – volume: 14 start-page: 1003 year: 2021 ident: 19278_CR24 publication-title: Int. J. Comput. Intell. Syst. doi: 10.2991/ijcis.d.210301.002 – volume: 114 start-page: 42 year: 2018 ident: 19278_CR37 publication-title: Micron doi: 10.1016/j.micron.2018.07.005 – ident: 19278_CR11 doi: 10.1109/ICCV.1999.790410 – volume: 23 start-page: 291 year: 2001 ident: 19278_CR33 publication-title: Anal. Quant. Cytol. Histol. – volume: 26 start-page: 533 year: 1994 ident: 19278_CR36 publication-title: Histochem. J. doi: 10.1007/BF00158587 – volume: 71 start-page: 209 year: 2021 ident: 19278_CR1 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21660 – volume: 9 start-page: 1 year: 2019 ident: 19278_CR45 publication-title: Sci. Rep. doi: 10.1038/s41598-019-50587-1 – volume: 14 start-page: 1 year: 2019 ident: 19278_CR7 publication-title: Diagnost. Pathol. – volume: 56 start-page: 122 year: 2019 ident: 19278_CR22 publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.05.010 – volume: 128 year: 2021 ident: 19278_CR30 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.104129 – ident: 19278_CR41 – volume: 61 start-page: 1400 year: 2014 ident: 19278_CR6 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2303852 – volume: 14 year: 2019 ident: 19278_CR23 publication-title: PLoS ONE doi: 10.1371/journal.pone.0214587 – volume: 313 start-page: 1122 year: 2015 ident: 19278_CR9 publication-title: JAMA doi: 10.1001/jama.2015.1405 – ident: 19278_CR39 – ident: 19278_CR12 doi: 10.1007/11744023_32 – ident: 19278_CR18 – volume: 465 start-page: 1 year: 2014 ident: 19278_CR3 publication-title: Virchows Arch. doi: 10.1007/s00428-014-1593-7 – ident: 19278_CR42 doi: 10.1109/CVPR.2016.308 – ident: 19278_CR20 doi: 10.1109/CVPR.2016.90 – ident: 19278_CR35 doi: 10.1109/ISBI.2015.7164042 – ident: 19278_CR25 doi: 10.1109/CVPR.2017.195 – volume: 5 start-page: 77 year: 2018 ident: 19278_CR2 publication-title: Genes Dis. doi: 10.1016/j.gendis.2018.05.001 |
SSID | ssj0000529419 |
Score | 2.520756 |
Snippet | Breast cancer is a common malignancy and a leading cause of cancer-related deaths in women worldwide. Its early diagnosis can significantly reduce the... Abstract Breast cancer is a common malignancy and a leading cause of cancer-related deaths in women worldwide. Its early diagnosis can significantly reduce the... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 15600 |
SubjectTerms | 631/114/1305 631/114/1564 639/166/985 639/705/117 Breast cancer Datasets Deep learning Diagnosis Histopathology Humanities and Social Sciences Invasiveness Malignancy Morbidity multidisciplinary Neural networks Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ikCBRmJG0RNbCeOTwgQVYUEJyrtzbIdu1QqyXazPXDirzMz8W6VSvSykTZ21pt52jPzDWPvQOOb2otQpthXpRLBlM64ugRTUTmXTPAN1jt__9GenKpvq2aVD9ymnFa504mkqPsx4Bn5kdDgulTo3X9cX5bYNQqjq7mFxl12D6HLcPOlV3p_xoJRLFWbXCtTye5oAnuFNWWwAwPXBjZQYmGPCLZ_4WvezJS8ES4lK3T8iD3M7iP_NNP7MbsThyfs_txQ8s9T9pfqaQN6xJw-MRGI3j0fE_eYgL7lAQm94YQ0jA2JaS4__w2aZeKYB3_GKc3wAvOJeIoE_TnhA_oY1xzz1DO_wkoQD5MulE3-jJ0ef_355aTMLRbK0HRyW0bpvcdCjl6iY5F6LRWYzapOVWhlqEIPHpUBow_C6bteOeFNAzatjbXwtVPyOTsYxiG-YFypkKQDkfbaKa07n0wvWpGqFGRylS9YvXvRNmT8cWyDcWEpDi47OxPHAnEsEceKgr3fz1nP6Bu3jv6M9NuPRORs-mLcnNksiBbUTBcb75xQUQFbepWwp4BW0VDQtWCHO-rbLM6TvWa-gr3d3wZBxOiKG-J4NY-BvbWWpmB6wTWLBS3vDOe_CNLbtMq0Hcz8sOOv6x___x9-eftaX7EHAjkdG160h-xgu7mKr8GF2vo3JCf_APriHNE priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEB5KRfBF1CqurSVC33R1N8luNg8iVixFqE8e9C0k2aQWzr327gr2qf96Z7K7J1uqT77cwm2yv2Ym8w2Z-QbgAFd8XTru8xjaIpfc69xqW-boKgpro_auonrnk-_18Ux-O61Ot2BsdzR8wNW9oR31k5ot5-9_X15_QoP_2JeMNx9W6ISoUAzDKsQrGBXhkvwAPZOiVg4nA9zvub65lqUeamfunzrxT4nGf4I972ZO3tk-TV7p6Ak8HuAk-9zL_ylshe4ZPOwbTF7vwE2qr_WEkFn6pcSgJAu2iMxRQvqaeRL8kiXmYWpQnOay81-40qwY5cWfsZR2OKf8IhZDogJd0QXaEC4Y5a0P-otPQvyY6ZCyy5_D7Ojrjy_H-dByIfdVI9Z5EM45KuxoBQGN2Coh0Y0WZSx8LXzhW0RYGkEAGqtrWmm50xX6uDqU3JVWihew3S268BKYlD4KiybulJVKNS7qltc8FtGLaAuXQTl-aOMHPnJqizE3aV9cNKYXjkHhmCQcwzN4u5lz0bNx_HP0IclvM5KYtNMfi-WZGQzT4LLThMpZy2WQqKZORuoxoGTQaRM2g71R-mbUTsMV4uiCQs0M3mxOo2HSbovtwuKqH4OxthI6AzXRmskDTc905z8Txbeupa4bnPlu1K8_N__7C7_6Hy-8C4842QO1yaj3YHu9vAqvEXit3X6ypluzJizn priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB-OE8EX8RN7nhLBNy2mSfqRR108DkGfPLi3kKTJeXB2j929B5_8152Ztis9VPBlC9ukzWY-s_ObGYDXqPFtFVQsc-plaVS0pbe-KtFUSO-zjaGmfOfPX5rTM_PpvD4_ADXnwjBon0taspqe0WHvtmhoKBkMj07ok-DJB9XuHSrdTjC-VbPa_69CkStT2Sk_RuruD1MXNohL9S_8y9voyFshUrY8Jw_g_uQyivfjIh_CQRoewd2xieSPx_CTc2gjecGCPwn8w_st1lkEAp3vRCTibgRXF6YmxDxXXH5HbbIVhH2_EAwtvCIMkciJ92ZLD-hTuhaETZ94FFdCNTD5wgjyJ3B28vHr6rSc2iqUse70rkw6hEDJG70mZyL3rTZoKmWVZWx0lLFHL8qioUeBDF1vvAq2RjvWpEqFyhv9FA6H9ZCegTAmZu1RjEPrTdt2IdteNSrLHHX2MhRQzRvt4lRznFpfXDmOfevOjcRxSBzHxHGqgDf7OddjxY1_jv5A9NuPpGrZ_MV6c-Em7nGoWrpUB--VSQZZMZhMfQRakywHWgs4nqnvJhHeOtWiryzpOFnAq_1tFD6KqPghrW_GMXiebrUtoF1wzWJByzvD5Tcu420bY5sOZ76d-ev3y__-g4_-b_hzuKeI86npRXMMh7vNTXqBbtQuvGS5-QW4Thq7 priority: 102 providerName: Springer Nature |
Title | Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network |
URI | https://link.springer.com/article/10.1038/s41598-022-19278-2 https://www.proquest.com/docview/2715007164 https://www.proquest.com/docview/2715446739 https://pubmed.ncbi.nlm.nih.gov/PMC9649689 https://doaj.org/article/b008e5baa24e4a9ab4f008474e902890 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9QwDLbGJiReEAwQhXHKJN6gok3Spnm8nTZNJ21CwKR7i5I0gUmjN-1uDzzx17HT3rFOAl54aaUmadPYjm3F_gzwFnd8XTru8xjaIpfc69xqW-aoKgpro_auonzns_P69ELOF9XiTqkvignr4YH7haMih02onLVcBomvcTISBrySQadDMtp9UefdcaZ6VG-uZamHLJlCNB9WqKkomwx9LzRq0HXiI02UAPtHVub9GMl7B6VJ_5w8gceD4cim_YSfwk7o9uFhX0ryxzP4mTJpPdnCLF0pBCitOltG5ij0fM08kfiGJYxhKkWcxrLL77inrBhFwH9lKcDwiiKJWAwJ9HNFL2hDuGYUoT5wKs6EkDDTLcWRP4eLk-Mvs9N8KK6Q-6oR6zwI5xylcLSCTIrYKiFRYRZlLHwtfOFbtKU0qnsUS9e00nKnK9RmdSi5K60UL2C3W3bhJTApfRQWhdkpK5VqXNQtr3ksohfRFi6DcrPQxg_I41QA48qkE3DRmJ44BoljEnEMz-Dddsx1j7vx195HRL9tT8LMTg-Qk8zASeZfnJTBwYb6ZhDkleEKLeaCnMoMDrfNKIJ0rmK7sLzt-6BXrYTOQI24ZjShcUt3-S2Beeta6rrBke83_PX743_-4Vf_44dfwyNO8kAFMeoD2F3f3IY3aGKt3QQeqIWawN50Ov88x_vR8fnHT_h0Vs8mSdLweiabX6yDKsU |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8anRBcEJ9a2AAjwQmiJbabxAeEGGzq2FYhtEm7Gduxx6TRdm0ntBP_EX8j7zlJp05it11SKbETN-_TeR8_gDeo8VVuuUuDr7NUcqdSo0yeoqnIjAnK2T7VOx8Mi8GR_HrcP16Bv10tDKVVdjoxKup67Ogb-SYv0XXJyLv_ODlPCTWKoqsdhEbDFnv-8jdu2WYfdr8gfd9yvrN9-HmQtqgCqetXYp56Ya2l2oVakC0NdSkkWoosD5krhMtcjU6EQjuH_GirWhpuVR_VeOFzbnMjBd73DqxKgQN6sLq1Pfz2ffFVh-JmMldtdU4mqs0ZWkiqYsM9HzpTuGXjSxYwAgUsebfXczOvBWij3dt5CA9ah5V9ajjsEaz40WO420BYXj6BP7GC15EPzuKRUo8itdk4MEsp73PmiLWmLPY2JgjkOJed_kJdNmOUeX_CYmLjGWUwseBjs9EZ3aD2fsIoM76VEFwJdeCMPzF__Skc3crrfwa90Xjk14BJ6YIwqERsaWRZVjaomhc8ZMGJYDKbQN69aO3ajucEvHGmY-RdVLohjkbi6EgczRN4t5gzafp93Dh6i-i3GEm9uuOJ8fREt6KvUbFVvm-N4dJLFAQrA6EYlNKrGOZNYKOjvm4VyExfsXsCrxeXUfQpnmNGfnzRjMHdfClUAuUS1ywtaPnK6PRnbCKuCqmKCme-7_jr6uH__8PPb17rK7g3ODzY1_u7w711uM-J6wluo9iA3nx64V-gAze3L1upYfDjtgX1H-0CWdQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4qkGChgJThBtYjtxfEAIKKuWQsWBSnsztmOXSmWzbLZCPfG_-HXMOMlWqURvvWSlxE68macz38wQ8gI0vsotc2nwdZYK5lRqlMlTMBWZMUE5W2C-85eDcvdQfJoVsw3yd8iFQVjloBOjoq4bh9_IJ0yC65Khdz8JPSzi68707eJXih2kMNI6tNPoWGTfn_2G7Vv7Zm8HaP2SsenHbx92077DQOqKiq9Sz621mMdQc7SroZZcgNXI8pC5krvM1eBQKLB5wJu2qoVhVhWg0kufM5sbweG-18h1ycFsgizJmVx_38EImshVn6eT8WrSgq3EfDbY_YFbBZs3NrKFsWXAyM-9iNK8EKqNFnB6h9zuXVf6ruO1u2TDz--RG10zy7P75E_M5XXojdN4RBBSpDttArUIfl9Rh0y2pLHKMTZDjnPp8U_Qai1FDP4RjRDHE8Qy0eBj2dEWb1B7v6CIke9lBVaCtTjjT0SyPyCHV_LyH5LNeTP3W4QK4QI3oE6sNELKygZVs5KFLDgeTGYTkg8vWru-9jm24DjRMQbPK90RRwNxdCSOZgl5tZ6z6Cp_XDr6PdJvPRKrdscTzfJI90pAg4qrfGGNYcILEAkrAvYzkMKrGPBNyPZAfd2rklafM35Cnq8vgxLAyI6Z--a0GwP7eslVQuSIa0YLGl-ZH_-I5cRVKVRZwczXA3-dP_z_f_jR5Wt9Rm6CeOrPewf7j8kthkyPfTfKbbK5Wp76J-DJrezTKDKUfL9qGf0HG-tcpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiclass+classification+of+breast+cancer+histopathology+images+using+multilevel+features+of+deep+convolutional+neural+network&rft.jtitle=Scientific+reports&rft.au=Zabit+Hameed&rft.au=Begonya+Garcia-Zapirain&rft.au=Jos%C3%A9+Javier+Aguirre&rft.au=Mario+Arturo+Isaza-Ruget&rft.date=2022-09-16&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=21&rft_id=info:doi/10.1038%2Fs41598-022-19278-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b008e5baa24e4a9ab4f008474e902890 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |