Homer 1a uncouples metabotropic glutamate receptor 5 from postsynaptic effectors
Metabotropic glutamate receptors (mGluRs) and Homer proteins play critical roles in neuronal functions including plasticity, nociception, epilepsy, and drug addiction. Furthermore, Homer proteins regulate mGluR1/5 function by acting as adapters and facilitating coupling to effectors such as the inos...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 104; no. 14; pp. 6055 - 6060 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
03.04.2007
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 |
DOI | 10.1073/pnas.0608991104 |
Cover
Abstract | Metabotropic glutamate receptors (mGluRs) and Homer proteins play critical roles in neuronal functions including plasticity, nociception, epilepsy, and drug addiction. Furthermore, Homer proteins regulate mGluR1/5 function by acting as adapters and facilitating coupling to effectors such as the inositol triphosphate receptor. However, although Homer proteins and their interaction with mGluRs have been the subject of intense study, direct measurements of Homer-induced changes in postsynaptic mGluR-effector coupling have not been reported. This question was addressed here by examining glutamatergic excitatory postsynaptic currents (EPSCs) in rat autaptic hippocampal cultures. In most neurons, the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine strongly inhibited the EPSC acutely. This modulation occurred postsynaptically, was mediated primarily by mGluR5, and was inositol triphosphate receptor-dependent. Expression of the dominant negative, immediate early form of Homer, Homer 1a, strongly reduced EPSC modulation, but the W24A mutant of Homer 1a, which cannot bind mGluRs, had no effect. (S)-3,5-dihydroxyphenylglycine-mediated intracellular calcium responses in the processes of Homer 1a-expressing neurons were reduced compared with those in Homer 1a W24A-expressing cells. However, neither the distribution of mGluR5 nor the modulation of somatic calcium channels was altered by Homer 1a expression. These data demonstrate that Homer 1a can reduce mGluR5 coupling to postsynaptic effectors without relying on large changes in the subcellular distribution of the receptor. Thus, alteration of mGluR signaling by changes in Homer protein expression may represent a viable mechanism for fine-tuning synaptic strength in neurons. |
---|---|
AbstractList | Metabotropic glutamate receptors (mGluRs) and Homer proteins play critical roles in neuronal functions including plasticity, nociception, epilepsy, and drug addiction. Furthermore, Homer proteins regulate mGluR1/5 function by acting as adapters and facilitating coupling to effectors such as the inositol triphosphate receptor. However, although Homer proteins and their interaction with mGluRs have been the subject of intense study, direct measurements of Homer-induced changes in postsynaptic mGluR-effector coupling have not been reported. This question was addressed here by examining glutamatergic excitatory postsynaptic currents (EPSCs) in rat autaptic hippocampal cultures. In most neurons, the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine strongly inhibited the EPSC acutely. This modulation occurred postsynaptically, was mediated primarily by mGluR5, and was inositol triphosphate receptor-dependent. Expression of the dominant negative, immediate early form of Homer, Homer 1a, strongly reduced EPSC modulation, but the W24A mutant of Homer 1a, which cannot bind mGluRs, had no effect. (S)-3,5-dihydroxyphenylglycine-mediated intracellular calcium responses in the processes of Homer 1a-expressing neurons were reduced compared with those in Homer 1a W24A-expressing cells. However, neither the distribution of mGluR5 nor the modulation of somatic calcium channels was altered by Homer 1a expression. These data demonstrate that Homer 1a can reduce mGluR5 coupling to postsynaptic effectors without relying on large changes in the subcellular distribution of the receptor. Thus, alteration of mGluR signaling by changes in Homer protein expression may represent a viable mechanism for fine-tuning synaptic strength in neurons. Metabotropic glutamate receptors (mGluRs) and Homer proteins play critical roles in neuronal functions including plasticity, nociception, epilepsy, and drug addiction. Furthermore, Homer proteins regulate mGluR1/5 function by acting as adapters and facilitating coupling to effectors such as the inositol triphosphate receptor. However, although Homer proteins and their interaction with mGluRs have been the subject of intense study, direct measurements of Homer-induced changes in postsynaptic mGluR–effector coupling have not been reported. This question was addressed here by examining glutamatergic excitatory postsynaptic currents (EPSCs) in rat autaptic hippocampal cultures. In most neurons, the group I mGluR agonist ( S )-3,5-dihydroxyphenylglycine strongly inhibited the EPSC acutely. This modulation occurred postsynaptically, was mediated primarily by mGluR5, and was inositol triphosphate receptor-dependent. Expression of the dominant negative, immediate early form of Homer, Homer 1a, strongly reduced EPSC modulation, but the W24A mutant of Homer 1a, which cannot bind mGluRs, had no effect. ( S )-3,5-dihydroxyphenylglycine-mediated intracellular calcium responses in the processes of Homer 1a-expressing neurons were reduced compared with those in Homer 1a W24A-expressing cells. However, neither the distribution of mGluR5 nor the modulation of somatic calcium channels was altered by Homer 1a expression. These data demonstrate that Homer 1a can reduce mGluR5 coupling to postsynaptic effectors without relying on large changes in the subcellular distribution of the receptor. Thus, alteration of mGluR signaling by changes in Homer protein expression may represent a viable mechanism for fine-tuning synaptic strength in neurons. autapse calcium channel excitatory postsynaptic current hippocampal Metabotropic glutamate receptors (mGluRs) and Homer proteins play critical roles in neuronal functions including plasticity, nociception, epilepsy, and drug addiction. Furthermore, Homer proteins regulate mGluR1/5 function by acting as adapters and facilitating coupling to effectors such as the inositol triphosphate receptor. However, although Homer proteins and their interaction with mGluRs have been the subject of intense study, direct measurements of Homer-induced changes in postsynaptic mGluR-effector coupling have not been reported. This question was addressed here by examining glutamatergic excitatory postsynaptic currents (EPSCs) in rat autaptic hippocampal cultures. In most neurons, the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine strongly inhibited the EPSC acutely. This modulation occurred postsynaptically, was mediated primarily by mGluR5, and was inositol triphosphate receptor-dependent. Expression of the dominant negative, immediate early form of Homer, Homer 1a, strongly reduced EPSC modulation, but the W24A mutant of Homer 1a, which cannot bind mGluRs, had no effect. (S)-3,5-dihydroxyphenylglycine-mediated intracellular calcium responses in the processes of Homer 1a-expressing neurons were reduced compared with those in Homer 1a W24A-expressing cells. However, neither the distribution of mGluR5 nor the modulation of somatic calcium channels was altered by Homer 1a expression. These data demonstrate that Homer 1a can reduce mGluR5 coupling to postsynaptic effectors without relying on large changes in the subcellular distribution of the receptor. Thus, alteration of mGluR signaling by changes in Homer protein expression may represent a viable mechanism for fine-tuning synaptic strength in neurons.Metabotropic glutamate receptors (mGluRs) and Homer proteins play critical roles in neuronal functions including plasticity, nociception, epilepsy, and drug addiction. Furthermore, Homer proteins regulate mGluR1/5 function by acting as adapters and facilitating coupling to effectors such as the inositol triphosphate receptor. However, although Homer proteins and their interaction with mGluRs have been the subject of intense study, direct measurements of Homer-induced changes in postsynaptic mGluR-effector coupling have not been reported. This question was addressed here by examining glutamatergic excitatory postsynaptic currents (EPSCs) in rat autaptic hippocampal cultures. In most neurons, the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine strongly inhibited the EPSC acutely. This modulation occurred postsynaptically, was mediated primarily by mGluR5, and was inositol triphosphate receptor-dependent. Expression of the dominant negative, immediate early form of Homer, Homer 1a, strongly reduced EPSC modulation, but the W24A mutant of Homer 1a, which cannot bind mGluRs, had no effect. (S)-3,5-dihydroxyphenylglycine-mediated intracellular calcium responses in the processes of Homer 1a-expressing neurons were reduced compared with those in Homer 1a W24A-expressing cells. However, neither the distribution of mGluR5 nor the modulation of somatic calcium channels was altered by Homer 1a expression. These data demonstrate that Homer 1a can reduce mGluR5 coupling to postsynaptic effectors without relying on large changes in the subcellular distribution of the receptor. Thus, alteration of mGluR signaling by changes in Homer protein expression may represent a viable mechanism for fine-tuning synaptic strength in neurons. Metabotropic glutamate receptors (mGluRs) and Homer proteins play critical roles in neuronal functions including plasticity, nociception, epilepsy, and drug addiction. Furthermore, Homer proteins regulate mGluR1/5 function by acting as adapters and facilitating coupling to effectors such as the inositol triphosphate receptor. However, although Homer proteins and their interaction with mGluRs have been the subject of intense study, direct measurements of Homer-induced changes in postsynaptic mGluR–effector coupling have not been reported. This question was addressed here by examining glutamatergic excitatory postsynaptic currents (EPSCs) in rat autaptic hippocampal cultures. In most neurons, the group I mGluR agonist ( S )-3,5-dihydroxyphenylglycine strongly inhibited the EPSC acutely. This modulation occurred postsynaptically, was mediated primarily by mGluR5, and was inositol triphosphate receptor-dependent. Expression of the dominant negative, immediate early form of Homer, Homer 1a, strongly reduced EPSC modulation, but the W24A mutant of Homer 1a, which cannot bind mGluRs, had no effect. ( S )-3,5-dihydroxyphenylglycine-mediated intracellular calcium responses in the processes of Homer 1a-expressing neurons were reduced compared with those in Homer 1a W24A-expressing cells. However, neither the distribution of mGluR5 nor the modulation of somatic calcium channels was altered by Homer 1a expression. These data demonstrate that Homer 1a can reduce mGluR5 coupling to postsynaptic effectors without relying on large changes in the subcellular distribution of the receptor. Thus, alteration of mGluR signaling by changes in Homer protein expression may represent a viable mechanism for fine-tuning synaptic strength in neurons. Metabotropic glutamate receptors (mGluRs) and Homer proteins play critical roles in neuronal functions including plasticity, nociception, epilepsy, and drug addiction. Furthermore, Homer proteins regulate mGluR1/5 function by acting as adapters and facilitating coupling to effectors such as the inositol triphosphate receptor. However, although Homer proteins and their interaction with mGluRs have been the subject of intense study, direct measurements of Homer-induced changes in postsynaptic mOluR-effector coupling have not been reported. This question was addressed here by examining glutamatergic excitatory postsynaptic currents (EPSCs) in rat autaptic hippocampal cultures. In most neurons, the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine strongly inhibited the EPSC acutely. This modulation occurred postsynaptically, was mediated primarily by mGluR5, and was inositol triphosphate receptor-dependent. Expression of the dominant negative, immediate early form of Homer, Homer la, strongly reduced EPSC modulation, but the W24A mutant of Homer la, which cannot bind mOluRs, had no effect. (S)-3,5-dihydroxyphenylglycine-mediated intracellular calcium responses in the processes of Homer la-expressing neurons were reduced compared with those in Homer 1a W24A-expressing cells. However, neither the distribution of mGluR5 nor the modulation of somatic calcium channels was altered by Homer 1a expression. These data demonstrate that Homer la can reduce mGluR5 coupling to postsynaptic effectors without relying on large changes in the subcellular distribution of the receptor. Thus, alteration of mGluR signaling by changes in Homer protein expression may represent a viable mechanism for fine-tuning synaptic strength in neurons. [PUBLICATION ABSTRACT] |
Author | Kammermeier, Paul J Worley, Paul F |
Author_xml | – sequence: 1 fullname: Kammermeier, Paul J – sequence: 2 fullname: Worley, Paul F |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17389377$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1v1DAQxS1URLeFMycg4oC4bDv-iu0LEqqAIlUCCXq2HMdeskriYDuI_vc42qULPbQX-zC_eZ55fifoaAyjQ-g5hjMMgp5Po0lnUINUCmNgj9AKg8Lrmik4QisAItaSEXaMTlLaAoDiEp6gYyyoVFSIFfp6GQYXK2yqebRhnnqXqsFl04Qcw9TZatPP2Qwmuyo666YcYsUrH8NQTSHldDOaKRfMee9sKaan6LE3fXLP9vcpuv744fvF5frqy6fPF--v1pZLmtet90q21pimZbL1VmFbi5ZBgxXHFhrurSRCAZGFcQ1nkvFaeKFq3pi2SJyidzvdaW4G11o35mh6PcVuMPFGB9Pp_ytj90Nvwi-NJcc15kXgzV4ghp-zS1kPXbKu783owpy0AMpBKPIgyAQFgcnDIC7Dq5pAAV_fAbdhjmOxSxPAlKhyFOjlvwvebvb37wpwvgNsDClF5w8I6CUdekmHPqSjdPA7HbbLJndhcajr7-l7tR9lKRxeYRozXQNfzHx7P6H93PfZ_c4FfbFDt6nk5ZYlnBFBCT885k3QZhO7pK-_LbYAiJoxQukfNRDqlQ |
CitedBy_id | crossref_primary_10_1523_JNEUROSCI_4738_07_2008 crossref_primary_10_1007_s10571_015_0198_2 crossref_primary_10_1038_s41386_022_01412_3 crossref_primary_10_1523_JNEUROSCI_0753_14_2014 crossref_primary_10_1523_JNEUROSCI_1846_13_2014 crossref_primary_10_1016_j_pnpbp_2009_02_009 crossref_primary_10_1016_j_phrs_2024_107081 crossref_primary_10_1038_npp_2014_308 crossref_primary_10_1523_JNEUROSCI_2244_09_2009 crossref_primary_10_3389_fncel_2018_00470 crossref_primary_10_1016_j_neuroscience_2020_02_019 crossref_primary_10_1111_cge_13422 crossref_primary_10_1371_journal_pgen_1005137 crossref_primary_10_1038_nm_f_1869 crossref_primary_10_1371_journal_pone_0223632 crossref_primary_10_1007_s00213_010_1954_0 crossref_primary_10_1016_j_ceca_2010_09_002 crossref_primary_10_1016_j_neuron_2015_07_010 crossref_primary_10_1038_s41380_020_00991_1 crossref_primary_10_1124_mol_116_104786 crossref_primary_10_1038_s41386_022_01356_8 crossref_primary_10_1016_j_neuropharm_2017_10_026 crossref_primary_10_1016_j_yebeh_2014_12_034 crossref_primary_10_1172_jci_insight_92385 crossref_primary_10_1152_jn_01101_2007 crossref_primary_10_1038_nn_3590 crossref_primary_10_1016_j_neubiorev_2022_104596 crossref_primary_10_7554_eLife_28751 crossref_primary_10_3389_fnagi_2014_00081 crossref_primary_10_1016_j_neuropharm_2020_108046 crossref_primary_10_1159_000500267 crossref_primary_10_1186_s12974_024_03088_6 crossref_primary_10_1016_j_neuropharm_2012_07_014 crossref_primary_10_1007_s00213_009_1600_x crossref_primary_10_1523_JNEUROSCI_1830_08_2008 crossref_primary_10_1016_j_nlm_2007_08_012 crossref_primary_10_1016_j_pnpbp_2015_05_003 crossref_primary_10_1007_s00018_019_03276_1 crossref_primary_10_3389_fncel_2020_00104 crossref_primary_10_1016_j_biopsych_2012_07_030 crossref_primary_10_1016_j_neuropharm_2012_05_038 crossref_primary_10_1523_JNEUROSCI_1727_12_2013 crossref_primary_10_1002_syn_22097 crossref_primary_10_1124_mol_114_093468 crossref_primary_10_1124_pr_109_001735 crossref_primary_10_1016_j_jad_2023_07_003 crossref_primary_10_1111_epi_12034 crossref_primary_10_1371_journal_pone_0028666 crossref_primary_10_1016_j_neubiorev_2014_02_003 crossref_primary_10_1038_mp_2016_30 crossref_primary_10_1016_j_neuropharm_2013_03_011 crossref_primary_10_3390_ijms232315052 crossref_primary_10_1186_1471_2202_11_61 crossref_primary_10_1667_RR13475_1 crossref_primary_10_1038_cddis_2014_116 crossref_primary_10_1016_j_str_2018_10_011 crossref_primary_10_1177_0269881114542856 crossref_primary_10_3390_biom12070909 crossref_primary_10_3390_ijms23010075 crossref_primary_10_3389_fncir_2017_00061 crossref_primary_10_1038_nrm2803 crossref_primary_10_1016_j_brainres_2019_146640 crossref_primary_10_1111_bph_13281 crossref_primary_10_1016_j_neurobiolaging_2014_03_019 crossref_primary_10_1016_j_euroneuro_2011_11_006 crossref_primary_10_1016_j_neubiorev_2012_12_005 crossref_primary_10_1002_syn_20577 crossref_primary_10_1093_sleep_zsz190 crossref_primary_10_1111_j_1471_4159_2008_05726_x crossref_primary_10_1523_JNEUROSCI_5019_07_2008 crossref_primary_10_1016_j_bbrc_2014_07_044 crossref_primary_10_1016_j_neuron_2019_08_017 crossref_primary_10_1124_jpet_116_238394 crossref_primary_10_1016_j_mce_2017_02_013 crossref_primary_10_1016_j_neuint_2009_02_019 crossref_primary_10_1002_dneu_20659 crossref_primary_10_2515_therapie_2008041 crossref_primary_10_1186_s12974_015_0356_y crossref_primary_10_1016_j_biopsych_2018_02_012 crossref_primary_10_1016_j_cub_2020_09_008 crossref_primary_10_1016_j_neubiorev_2019_08_019 crossref_primary_10_1016_j_neuron_2019_07_011 crossref_primary_10_1016_j_eplepsyres_2012_04_011 crossref_primary_10_1038_s41380_022_01523_9 crossref_primary_10_1523_JNEUROSCI_4572_06_2007 crossref_primary_10_1097_FBP_0b013e32830c369f crossref_primary_10_1155_2017_5959182 crossref_primary_10_1016_j_nlm_2016_08_010 crossref_primary_10_1093_sleep_zsz161 crossref_primary_10_1111_j_1476_5381_2011_01552_x crossref_primary_10_1016_j_pneurobio_2011_05_003 crossref_primary_10_1016_j_pain_2013_03_035 crossref_primary_10_1016_j_neuint_2012_06_014 crossref_primary_10_1152_jn_00580_2012 crossref_primary_10_3389_fnins_2020_00188 crossref_primary_10_1016_j_nlm_2018_02_007 crossref_primary_10_1016_j_neuropharm_2017_11_001 |
Cites_doi | 10.1016/j.neulet.2003.09.082 10.1113/jphysiol.2003.040188 10.1152/jn.1998.80.4.1932 10.1074/jbc.273.37.23969 10.1385/MN:29:3:213 10.1038/386284a0 10.1016/S0022-3565(24)29296-X 10.1016/S0896-6273(00)80588-7 10.1016/S0959-4388(99)80044-0 10.1038/sj.gt.3300458 10.1523/JNEUROSCI.20-23-08710.2000 10.1073/pnas.96.12.7041 10.1046/j.0953-816x.2001.01498.x 10.1073/pnas.88.17.7834 10.1523/JNEUROSCI.22-13-05452.2002 10.1113/jphysiol.1968.sp008525 10.1523/JNEUROSCI.22-23-10067.2002 10.1523/JNEUROSCI.17-19-07503.1997 10.1523/JNEUROSCI.5083-05.2006 10.1074/jbc.272.32.20291 10.1046/j.1432-1327.2000.01078.x 10.1523/JNEUROSCI.06-04-01061.1986 10.1523/JNEUROSCI.4822-04.2005 10.1074/jbc.272.29.18015 10.1016/S0165-0173(98)00050-2 10.1523/JNEUROSCI.21-22-09043.2001 10.1038/nm1406 10.1016/j.conb.2006.05.002 10.1016/S0092-8674(03)00716-5 10.1016/S0896-6273(00)80810-7 10.1016/S0896-6273(00)80589-9 10.1111/j.1460-9568.1996.tb01611.x 10.1186/1471-2202-7-1 10.1523/JNEUROSCI.4388-04.2005 10.1016/S0959-4388(00)00087-8 10.1111/j.1460-9568.2005.04165.x 10.1111/j.1469-7793.1999.0439m.x 10.1038/nn0901-873 10.1042/bj3410795 10.1113/jphysiol.1968.sp008469 10.1523/JNEUROSCI.20-19-07238.2000 10.1016/S0028-3908(99)00103-3 10.1523/JNEUROSCI.20-21-07871.2000 10.1074/jbc.274.36.25953 10.1016/S0169-328X(98)00251-4 10.1523/JNEUROSCI.23-15-06327.2003 |
ContentType | Journal Article |
Copyright | Copyright 2007 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Apr 3, 2007 2007 by The National Academy of Sciences of the USA 2007 |
Copyright_xml | – notice: Copyright 2007 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Apr 3, 2007 – notice: 2007 by The National Academy of Sciences of the USA 2007 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0608991104 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts AGRICOLA MEDLINE - Academic MEDLINE Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 6060 |
ExternalDocumentID | PMC1851615 1252874651 17389377 10_1073_pnas_0608991104 104_14_6055 25427325 US201300764423 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c583t-dff98dcaabd48dfc91c67d40b1951c0b5fc8279028caaeb5484567f7965bad583 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 18:35:36 EDT 2025 Fri Sep 05 04:05:29 EDT 2025 Fri Sep 05 02:44:57 EDT 2025 Fri Sep 05 00:02:29 EDT 2025 Sun Aug 17 14:11:22 EDT 2025 Wed Feb 19 01:42:16 EST 2025 Thu Apr 24 22:51:44 EDT 2025 Tue Jul 01 02:38:37 EDT 2025 Thu May 30 08:49:43 EDT 2019 Wed Nov 11 00:29:40 EST 2020 Thu May 29 08:42:40 EDT 2025 Thu Apr 03 09:43:18 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c583t-dff98dcaabd48dfc91c67d40b1951c0b5fc8279028caaeb5484567f7965bad583 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Edited by Roger A. Nicoll, University of California, San Francisco, CA, and approved February 12, 2007 Author contributions: P.J.K. and P.F.W. designed research; P.J.K. performed research; P.J.K. and P.F.W. contributed new reagents/analytic tools; P.J.K. analyzed data; and P.J.K. and P.F.W. wrote the paper. |
OpenAccessLink | http://doi.org/10.1073/pnas.0608991104 |
PMID | 17389377 |
PQID | 201329013 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_19659620 pnas_primary_104_14_6055_fulltext fao_agris_US201300764423 pubmed_primary_17389377 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1851615 crossref_primary_10_1073_pnas_0608991104 proquest_miscellaneous_47307122 crossref_citationtrail_10_1073_pnas_0608991104 pnas_primary_104_14_6055 proquest_journals_201329013 proquest_miscellaneous_70350792 jstor_primary_25427325 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-04-03 |
PublicationDateYYYYMMDD | 2007-04-03 |
PublicationDate_xml | – month: 04 year: 2007 text: 2007-04-03 day: 03 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2007 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_28_2 e_1_3_4_29_2 Schoepp DD (e_1_3_4_2_2) 2001; 299 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 Wong RK (e_1_3_4_47_2) 1999; 79 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 e_1_3_4_39_2 8758956 - Eur J Neurosci. 1996 Jul;8(7):1488-500 14698459 - Neurosci Lett. 2004 Jan 9;354(2):143-7 12640005 - J Physiol. 2003 May 1;548(Pt 3):723-30 9838041 - Brain Res Mol Brain Res. 1998 Dec 10;63(1):53-61 10514855 - Adv Neurol. 1999;79:685-98 10417346 - Biochem J. 1999 Aug 1;341 ( Pt 3):795-803 16026461 - Eur J Neurosci. 2005 Jun;21(12):3229-39 10464340 - J Biol Chem. 1999 Sep 3;274(36):25953-7 16393337 - BMC Neurosci. 2006;7:1 11561058 - J Pharmacol Exp Ther. 2001 Oct;299(1):12-20 4298821 - J Physiol. 1968 Jun;196(3):593-604 9727012 - J Biol Chem. 1998 Sep 11;273(37):23969-75 3701410 - J Neurosci. 1986 Apr;6(4):1061-79 11528416 - Nat Neurosci. 2001 Sep;4(9):873-4 12867517 - J Neurosci. 2003 Jul 16;23(15):6327-37 12451105 - J Neurosci. 2002 Dec 1;22(23):10067-71 15872106 - J Neurosci. 2005 May 4;25(18):4587-92 11050106 - J Neurosci. 2000 Nov 1;20(21):7871-9 4296699 - J Physiol. 1968 Mar;195(2):481-92 16704932 - Curr Opin Neurobiol. 2006 Jun;16(3):251-7 16855085 - J Neurosci. 2006 Jul 19;26(29):7575-80 11698615 - J Neurosci. 2001 Nov 15;21(22):9043-52 9069287 - Nature. 1997 Mar 20;386(6622):284-8 10359835 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):7041-6 10457061 - J Physiol. 1999 Sep 1;519 Pt 2:439-49 9242710 - J Biol Chem. 1997 Aug 8;272(32):20291-8 10851183 - Curr Opin Neurobiol. 2000 Jun;10(3):370-4 10530817 - Neuropharmacology. 1999 Oct;38(10):1553-67 10395580 - Curr Opin Neurobiol. 1999 Jun;9(3):299-304 9772250 - J Neurophysiol. 1998 Oct;80(4):1932-8 9218429 - J Biol Chem. 1997 Jul 18;272(29):18015-9 11007880 - J Neurosci. 2000 Oct 1;20(19):7238-45 10651798 - Eur J Biochem. 2000 Feb;267(3):634-9 9808459 - Neuron. 1998 Oct;21(4):717-26 1679238 - Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7834-8 16715092 - Nat Med. 2006 Jun;12(6):677-81 14505576 - Cell. 2003 Sep 19;114(6):777-89 9808458 - Neuron. 1998 Oct;21(4):707-16 12097497 - J Neurosci. 2002 Jul 1;22(13):5452-61 9295396 - J Neurosci. 1997 Oct 1;17(19):7503-22 15673681 - J Neurosci. 2005 Jan 26;25(4):990-1001 10433269 - Neuron. 1999 Jul;23(3):583-92 11102477 - J Neurosci. 2000 Dec 1;20(23):8710-6 9974152 - Brain Res Brain Res Rev. 1999 Jan;29(1):83-120 15181235 - Mol Neurobiol. 2004 Jun;29(3):213-27 11298789 - Eur J Neurosci. 2001 Apr;13(7):1292-302 9338010 - Gene Ther. 1997 Aug;4(8):815-22 |
References_xml | – ident: e_1_3_4_37_2 doi: 10.1016/j.neulet.2003.09.082 – ident: e_1_3_4_34_2 doi: 10.1113/jphysiol.2003.040188 – ident: e_1_3_4_20_2 doi: 10.1152/jn.1998.80.4.1932 – ident: e_1_3_4_10_2 doi: 10.1074/jbc.273.37.23969 – ident: e_1_3_4_9_2 doi: 10.1385/MN:29:3:213 – ident: e_1_3_4_4_2 doi: 10.1038/386284a0 – volume: 299 start-page: 12 year: 2001 ident: e_1_3_4_2_2 publication-title: J Pharmacol Exp Ther doi: 10.1016/S0022-3565(24)29296-X – ident: e_1_3_4_8_2 doi: 10.1016/S0896-6273(00)80588-7 – ident: e_1_3_4_3_2 doi: 10.1016/S0959-4388(99)80044-0 – ident: e_1_3_4_28_2 doi: 10.1038/sj.gt.3300458 – ident: e_1_3_4_14_2 doi: 10.1523/JNEUROSCI.20-23-08710.2000 – ident: e_1_3_4_29_2 doi: 10.1073/pnas.96.12.7041 – ident: e_1_3_4_17_2 doi: 10.1046/j.0953-816x.2001.01498.x – ident: e_1_3_4_19_2 doi: 10.1073/pnas.88.17.7834 – ident: e_1_3_4_35_2 doi: 10.1523/JNEUROSCI.22-13-05452.2002 – ident: e_1_3_4_26_2 doi: 10.1113/jphysiol.1968.sp008525 – ident: e_1_3_4_5_2 doi: 10.1523/JNEUROSCI.22-23-10067.2002 – ident: e_1_3_4_24_2 doi: 10.1523/JNEUROSCI.17-19-07503.1997 – ident: e_1_3_4_41_2 doi: 10.1523/JNEUROSCI.5083-05.2006 – ident: e_1_3_4_11_2 doi: 10.1074/jbc.272.32.20291 – ident: e_1_3_4_6_2 doi: 10.1046/j.1432-1327.2000.01078.x – ident: e_1_3_4_21_2 doi: 10.1523/JNEUROSCI.06-04-01061.1986 – ident: e_1_3_4_38_2 doi: 10.1523/JNEUROSCI.4822-04.2005 – ident: e_1_3_4_40_2 doi: 10.1074/jbc.272.29.18015 – volume: 79 start-page: 685 year: 1999 ident: e_1_3_4_47_2 publication-title: Adv Neurol – ident: e_1_3_4_1_2 doi: 10.1016/S0165-0173(98)00050-2 – ident: e_1_3_4_43_2 doi: 10.1523/JNEUROSCI.21-22-09043.2001 – ident: e_1_3_4_44_2 doi: 10.1038/nm1406 – ident: e_1_3_4_45_2 doi: 10.1016/j.conb.2006.05.002 – ident: e_1_3_4_12_2 doi: 10.1016/S0092-8674(03)00716-5 – ident: e_1_3_4_32_2 doi: 10.1016/S0896-6273(00)80810-7 – ident: e_1_3_4_7_2 doi: 10.1016/S0896-6273(00)80589-9 – ident: e_1_3_4_23_2 doi: 10.1111/j.1460-9568.1996.tb01611.x – ident: e_1_3_4_16_2 doi: 10.1186/1471-2202-7-1 – ident: e_1_3_4_39_2 doi: 10.1523/JNEUROSCI.4388-04.2005 – ident: e_1_3_4_36_2 doi: 10.1016/S0959-4388(00)00087-8 – ident: e_1_3_4_46_2 doi: 10.1111/j.1460-9568.2005.04165.x – ident: e_1_3_4_22_2 doi: 10.1111/j.1469-7793.1999.0439m.x – ident: e_1_3_4_42_2 doi: 10.1038/nn0901-873 – ident: e_1_3_4_15_2 doi: 10.1042/bj3410795 – ident: e_1_3_4_25_2 doi: 10.1113/jphysiol.1968.sp008469 – ident: e_1_3_4_13_2 doi: 10.1523/JNEUROSCI.20-19-07238.2000 – ident: e_1_3_4_27_2 doi: 10.1016/S0028-3908(99)00103-3 – ident: e_1_3_4_33_2 doi: 10.1523/JNEUROSCI.20-21-07871.2000 – ident: e_1_3_4_18_2 doi: 10.1074/jbc.274.36.25953 – ident: e_1_3_4_30_2 doi: 10.1016/S0169-328X(98)00251-4 – ident: e_1_3_4_31_2 doi: 10.1523/JNEUROSCI.23-15-06327.2003 – reference: 16026461 - Eur J Neurosci. 2005 Jun;21(12):3229-39 – reference: 11007880 - J Neurosci. 2000 Oct 1;20(19):7238-45 – reference: 9242710 - J Biol Chem. 1997 Aug 8;272(32):20291-8 – reference: 1679238 - Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7834-8 – reference: 9808459 - Neuron. 1998 Oct;21(4):717-26 – reference: 10359835 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):7041-6 – reference: 11298789 - Eur J Neurosci. 2001 Apr;13(7):1292-302 – reference: 10395580 - Curr Opin Neurobiol. 1999 Jun;9(3):299-304 – reference: 11050106 - J Neurosci. 2000 Nov 1;20(21):7871-9 – reference: 16393337 - BMC Neurosci. 2006;7:1 – reference: 11528416 - Nat Neurosci. 2001 Sep;4(9):873-4 – reference: 12640005 - J Physiol. 2003 May 1;548(Pt 3):723-30 – reference: 9808458 - Neuron. 1998 Oct;21(4):707-16 – reference: 12867517 - J Neurosci. 2003 Jul 16;23(15):6327-37 – reference: 14698459 - Neurosci Lett. 2004 Jan 9;354(2):143-7 – reference: 15673681 - J Neurosci. 2005 Jan 26;25(4):990-1001 – reference: 9772250 - J Neurophysiol. 1998 Oct;80(4):1932-8 – reference: 12451105 - J Neurosci. 2002 Dec 1;22(23):10067-71 – reference: 9218429 - J Biol Chem. 1997 Jul 18;272(29):18015-9 – reference: 15181235 - Mol Neurobiol. 2004 Jun;29(3):213-27 – reference: 4296699 - J Physiol. 1968 Mar;195(2):481-92 – reference: 3701410 - J Neurosci. 1986 Apr;6(4):1061-79 – reference: 10851183 - Curr Opin Neurobiol. 2000 Jun;10(3):370-4 – reference: 10457061 - J Physiol. 1999 Sep 1;519 Pt 2:439-49 – reference: 10651798 - Eur J Biochem. 2000 Feb;267(3):634-9 – reference: 12097497 - J Neurosci. 2002 Jul 1;22(13):5452-61 – reference: 8758956 - Eur J Neurosci. 1996 Jul;8(7):1488-500 – reference: 16855085 - J Neurosci. 2006 Jul 19;26(29):7575-80 – reference: 9295396 - J Neurosci. 1997 Oct 1;17(19):7503-22 – reference: 11698615 - J Neurosci. 2001 Nov 15;21(22):9043-52 – reference: 9338010 - Gene Ther. 1997 Aug;4(8):815-22 – reference: 9974152 - Brain Res Brain Res Rev. 1999 Jan;29(1):83-120 – reference: 15872106 - J Neurosci. 2005 May 4;25(18):4587-92 – reference: 10433269 - Neuron. 1999 Jul;23(3):583-92 – reference: 11561058 - J Pharmacol Exp Ther. 2001 Oct;299(1):12-20 – reference: 10530817 - Neuropharmacology. 1999 Oct;38(10):1553-67 – reference: 16715092 - Nat Med. 2006 Jun;12(6):677-81 – reference: 10464340 - J Biol Chem. 1999 Sep 3;274(36):25953-7 – reference: 16704932 - Curr Opin Neurobiol. 2006 Jun;16(3):251-7 – reference: 10417346 - Biochem J. 1999 Aug 1;341 ( Pt 3):795-803 – reference: 9069287 - Nature. 1997 Mar 20;386(6622):284-8 – reference: 14505576 - Cell. 2003 Sep 19;114(6):777-89 – reference: 10514855 - Adv Neurol. 1999;79:685-98 – reference: 9838041 - Brain Res Mol Brain Res. 1998 Dec 10;63(1):53-61 – reference: 4298821 - J Physiol. 1968 Jun;196(3):593-604 – reference: 9727012 - J Biol Chem. 1998 Sep 11;273(37):23969-75 – reference: 11102477 - J Neurosci. 2000 Dec 1;20(23):8710-6 |
SSID | ssj0009580 |
Score | 2.2402544 |
Snippet | Metabotropic glutamate receptors (mGluRs) and Homer proteins play critical roles in neuronal functions including plasticity, nociception, epilepsy, and drug... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6055 |
SubjectTerms | Agonists Animals Barium Biochemistry Biological Sciences Brain Calcium Calcium channels Carrier Proteins - genetics Carrier Proteins - metabolism Cells, Cultured drug abuse Electrophysiology epilepsy Fluorescence Fluorescent Antibody Technique glutamic acid Hippocampus - cytology Homer Scaffolding Proteins inositols Metabotropic glutamate receptors mutants Neurons Neurons - cytology Neurons - metabolism Neuroscience Neurosciences nociception Patch-Clamp Techniques Physiological regulation protein synthesis Proteins Rats Receptor, Metabotropic Glutamate 5 Receptors Receptors, Metabotropic Glutamate - genetics Receptors, Metabotropic Glutamate - metabolism Synapses - physiology |
Title | Homer 1a uncouples metabotropic glutamate receptor 5 from postsynaptic effectors |
URI | https://www.jstor.org/stable/25427325 http://www.pnas.org/content/104/14/6055.abstract https://www.ncbi.nlm.nih.gov/pubmed/17389377 https://www.proquest.com/docview/201329013 https://www.proquest.com/docview/19659620 https://www.proquest.com/docview/47307122 https://www.proquest.com/docview/70350792 https://pubmed.ncbi.nlm.nih.gov/PMC1851615 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZouXBBFCgN5WEkDkVRljyc9e6xQpRVUVcr0UrcIsdJYKWSrDbZA_x6vnGeW-0i4BJF8cSOPF_mYY9nGHtLHlfse6kTjIVyBDSmM9U-JYJMBLyDTGaKdnSv5uPZjbj8Gg422s3pkioe6V87z5X8D1fxDHylU7L_wNmuUzzAPfiLKziM61_xmGqcr21PwXLUxWZ1m5b2VVqBrdW6WC21_QmDK5ikVJuBwleKtR3WB0qoRm_5M1crytdaZzAumn2dxlJddJqtbOMI5u3C4Xl_DKWRDaXt2It5X9T4s1kQ_5Eua0RQ_KF9Oeo0QLFulspNw8Voa-1BmpCVoA_N-MOwQ6HrQxGK-qh0J3TrosMtusRAhsLBCgf6GB6Wu1PWQzhRgeJclSOQwG_02k63E2jDBYaN5ocH7L4vpdnLn82GmZkn9Tml5ivb_E8yeH-n7y3T5SBTRRvDSolxQbrLSbkbazswXq4fsYeN18HPawgdsXtp_pgdtZPIz5rk4--esIXBFPcU7zDFh5jiHaZ4iykecsIUH2KKd5h6ym4uPl5_mDlN1Q1Hh5OgcpIsm04SrVSciEmS6amnxzIRbuzBGNduTEF_vqSkP6BJY3i8sMHxU0_HYawSdHHMDvMiT08Yn2gdh0GYjeGzCkxzDFtRQtPDZNfCk67FRu2ERrpJSU-VUW4jExohg4imNeo5YLGz7oVVnY1lP-kJOBSpb9CV0c0Xn3boXQnr3w8sdmzY1nXRIgTvmF76rgVc44gAabE3-5qirAnTsthpy_-okRJlRANTrAJGfd21QoTTvpzK02JTRiap59h391MI6GHp-f5-CkkRAnIKimc13vovlcYnkRaTW0jsCCjB_HZLvvxuEs3DlieH8Pm--TplD3qp8IIdVutN-hI2ehW_Mv_Yb8Cv5G4 |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homer+1a+Uncouples+Metabotropic+Glutamate+Receptor+5+from+Postsynaptic+Effectors&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kammermeier%2C+Paul+J.&rft.au=Worley%2C+Paul+F.&rft.date=2007-04-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=104&rft.issue=14&rft.spage=6055&rft.epage=6060&rft_id=info:doi/10.1073%2Fpnas.0608991104&rft.externalDocID=25427325 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F14.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F14.cover.gif |