Homer 1a uncouples metabotropic glutamate receptor 5 from postsynaptic effectors

Metabotropic glutamate receptors (mGluRs) and Homer proteins play critical roles in neuronal functions including plasticity, nociception, epilepsy, and drug addiction. Furthermore, Homer proteins regulate mGluR1/5 function by acting as adapters and facilitating coupling to effectors such as the inos...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 104; no. 14; pp. 6055 - 6060
Main Authors Kammermeier, Paul J, Worley, Paul F
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 03.04.2007
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
DOI10.1073/pnas.0608991104

Cover

Abstract Metabotropic glutamate receptors (mGluRs) and Homer proteins play critical roles in neuronal functions including plasticity, nociception, epilepsy, and drug addiction. Furthermore, Homer proteins regulate mGluR1/5 function by acting as adapters and facilitating coupling to effectors such as the inositol triphosphate receptor. However, although Homer proteins and their interaction with mGluRs have been the subject of intense study, direct measurements of Homer-induced changes in postsynaptic mGluR-effector coupling have not been reported. This question was addressed here by examining glutamatergic excitatory postsynaptic currents (EPSCs) in rat autaptic hippocampal cultures. In most neurons, the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine strongly inhibited the EPSC acutely. This modulation occurred postsynaptically, was mediated primarily by mGluR5, and was inositol triphosphate receptor-dependent. Expression of the dominant negative, immediate early form of Homer, Homer 1a, strongly reduced EPSC modulation, but the W24A mutant of Homer 1a, which cannot bind mGluRs, had no effect. (S)-3,5-dihydroxyphenylglycine-mediated intracellular calcium responses in the processes of Homer 1a-expressing neurons were reduced compared with those in Homer 1a W24A-expressing cells. However, neither the distribution of mGluR5 nor the modulation of somatic calcium channels was altered by Homer 1a expression. These data demonstrate that Homer 1a can reduce mGluR5 coupling to postsynaptic effectors without relying on large changes in the subcellular distribution of the receptor. Thus, alteration of mGluR signaling by changes in Homer protein expression may represent a viable mechanism for fine-tuning synaptic strength in neurons.
AbstractList Metabotropic glutamate receptors (mGluRs) and Homer proteins play critical roles in neuronal functions including plasticity, nociception, epilepsy, and drug addiction. Furthermore, Homer proteins regulate mGluR1/5 function by acting as adapters and facilitating coupling to effectors such as the inositol triphosphate receptor. However, although Homer proteins and their interaction with mGluRs have been the subject of intense study, direct measurements of Homer-induced changes in postsynaptic mGluR-effector coupling have not been reported. This question was addressed here by examining glutamatergic excitatory postsynaptic currents (EPSCs) in rat autaptic hippocampal cultures. In most neurons, the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine strongly inhibited the EPSC acutely. This modulation occurred postsynaptically, was mediated primarily by mGluR5, and was inositol triphosphate receptor-dependent. Expression of the dominant negative, immediate early form of Homer, Homer 1a, strongly reduced EPSC modulation, but the W24A mutant of Homer 1a, which cannot bind mGluRs, had no effect. (S)-3,5-dihydroxyphenylglycine-mediated intracellular calcium responses in the processes of Homer 1a-expressing neurons were reduced compared with those in Homer 1a W24A-expressing cells. However, neither the distribution of mGluR5 nor the modulation of somatic calcium channels was altered by Homer 1a expression. These data demonstrate that Homer 1a can reduce mGluR5 coupling to postsynaptic effectors without relying on large changes in the subcellular distribution of the receptor. Thus, alteration of mGluR signaling by changes in Homer protein expression may represent a viable mechanism for fine-tuning synaptic strength in neurons.
Metabotropic glutamate receptors (mGluRs) and Homer proteins play critical roles in neuronal functions including plasticity, nociception, epilepsy, and drug addiction. Furthermore, Homer proteins regulate mGluR1/5 function by acting as adapters and facilitating coupling to effectors such as the inositol triphosphate receptor. However, although Homer proteins and their interaction with mGluRs have been the subject of intense study, direct measurements of Homer-induced changes in postsynaptic mGluR–effector coupling have not been reported. This question was addressed here by examining glutamatergic excitatory postsynaptic currents (EPSCs) in rat autaptic hippocampal cultures. In most neurons, the group I mGluR agonist ( S )-3,5-dihydroxyphenylglycine strongly inhibited the EPSC acutely. This modulation occurred postsynaptically, was mediated primarily by mGluR5, and was inositol triphosphate receptor-dependent. Expression of the dominant negative, immediate early form of Homer, Homer 1a, strongly reduced EPSC modulation, but the W24A mutant of Homer 1a, which cannot bind mGluRs, had no effect. ( S )-3,5-dihydroxyphenylglycine-mediated intracellular calcium responses in the processes of Homer 1a-expressing neurons were reduced compared with those in Homer 1a W24A-expressing cells. However, neither the distribution of mGluR5 nor the modulation of somatic calcium channels was altered by Homer 1a expression. These data demonstrate that Homer 1a can reduce mGluR5 coupling to postsynaptic effectors without relying on large changes in the subcellular distribution of the receptor. Thus, alteration of mGluR signaling by changes in Homer protein expression may represent a viable mechanism for fine-tuning synaptic strength in neurons. autapse calcium channel excitatory postsynaptic current hippocampal
Metabotropic glutamate receptors (mGluRs) and Homer proteins play critical roles in neuronal functions including plasticity, nociception, epilepsy, and drug addiction. Furthermore, Homer proteins regulate mGluR1/5 function by acting as adapters and facilitating coupling to effectors such as the inositol triphosphate receptor. However, although Homer proteins and their interaction with mGluRs have been the subject of intense study, direct measurements of Homer-induced changes in postsynaptic mGluR-effector coupling have not been reported. This question was addressed here by examining glutamatergic excitatory postsynaptic currents (EPSCs) in rat autaptic hippocampal cultures. In most neurons, the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine strongly inhibited the EPSC acutely. This modulation occurred postsynaptically, was mediated primarily by mGluR5, and was inositol triphosphate receptor-dependent. Expression of the dominant negative, immediate early form of Homer, Homer 1a, strongly reduced EPSC modulation, but the W24A mutant of Homer 1a, which cannot bind mGluRs, had no effect. (S)-3,5-dihydroxyphenylglycine-mediated intracellular calcium responses in the processes of Homer 1a-expressing neurons were reduced compared with those in Homer 1a W24A-expressing cells. However, neither the distribution of mGluR5 nor the modulation of somatic calcium channels was altered by Homer 1a expression. These data demonstrate that Homer 1a can reduce mGluR5 coupling to postsynaptic effectors without relying on large changes in the subcellular distribution of the receptor. Thus, alteration of mGluR signaling by changes in Homer protein expression may represent a viable mechanism for fine-tuning synaptic strength in neurons.Metabotropic glutamate receptors (mGluRs) and Homer proteins play critical roles in neuronal functions including plasticity, nociception, epilepsy, and drug addiction. Furthermore, Homer proteins regulate mGluR1/5 function by acting as adapters and facilitating coupling to effectors such as the inositol triphosphate receptor. However, although Homer proteins and their interaction with mGluRs have been the subject of intense study, direct measurements of Homer-induced changes in postsynaptic mGluR-effector coupling have not been reported. This question was addressed here by examining glutamatergic excitatory postsynaptic currents (EPSCs) in rat autaptic hippocampal cultures. In most neurons, the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine strongly inhibited the EPSC acutely. This modulation occurred postsynaptically, was mediated primarily by mGluR5, and was inositol triphosphate receptor-dependent. Expression of the dominant negative, immediate early form of Homer, Homer 1a, strongly reduced EPSC modulation, but the W24A mutant of Homer 1a, which cannot bind mGluRs, had no effect. (S)-3,5-dihydroxyphenylglycine-mediated intracellular calcium responses in the processes of Homer 1a-expressing neurons were reduced compared with those in Homer 1a W24A-expressing cells. However, neither the distribution of mGluR5 nor the modulation of somatic calcium channels was altered by Homer 1a expression. These data demonstrate that Homer 1a can reduce mGluR5 coupling to postsynaptic effectors without relying on large changes in the subcellular distribution of the receptor. Thus, alteration of mGluR signaling by changes in Homer protein expression may represent a viable mechanism for fine-tuning synaptic strength in neurons.
Metabotropic glutamate receptors (mGluRs) and Homer proteins play critical roles in neuronal functions including plasticity, nociception, epilepsy, and drug addiction. Furthermore, Homer proteins regulate mGluR1/5 function by acting as adapters and facilitating coupling to effectors such as the inositol triphosphate receptor. However, although Homer proteins and their interaction with mGluRs have been the subject of intense study, direct measurements of Homer-induced changes in postsynaptic mGluR–effector coupling have not been reported. This question was addressed here by examining glutamatergic excitatory postsynaptic currents (EPSCs) in rat autaptic hippocampal cultures. In most neurons, the group I mGluR agonist ( S )-3,5-dihydroxyphenylglycine strongly inhibited the EPSC acutely. This modulation occurred postsynaptically, was mediated primarily by mGluR5, and was inositol triphosphate receptor-dependent. Expression of the dominant negative, immediate early form of Homer, Homer 1a, strongly reduced EPSC modulation, but the W24A mutant of Homer 1a, which cannot bind mGluRs, had no effect. ( S )-3,5-dihydroxyphenylglycine-mediated intracellular calcium responses in the processes of Homer 1a-expressing neurons were reduced compared with those in Homer 1a W24A-expressing cells. However, neither the distribution of mGluR5 nor the modulation of somatic calcium channels was altered by Homer 1a expression. These data demonstrate that Homer 1a can reduce mGluR5 coupling to postsynaptic effectors without relying on large changes in the subcellular distribution of the receptor. Thus, alteration of mGluR signaling by changes in Homer protein expression may represent a viable mechanism for fine-tuning synaptic strength in neurons.
Metabotropic glutamate receptors (mGluRs) and Homer proteins play critical roles in neuronal functions including plasticity, nociception, epilepsy, and drug addiction. Furthermore, Homer proteins regulate mGluR1/5 function by acting as adapters and facilitating coupling to effectors such as the inositol triphosphate receptor. However, although Homer proteins and their interaction with mGluRs have been the subject of intense study, direct measurements of Homer-induced changes in postsynaptic mOluR-effector coupling have not been reported. This question was addressed here by examining glutamatergic excitatory postsynaptic currents (EPSCs) in rat autaptic hippocampal cultures. In most neurons, the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine strongly inhibited the EPSC acutely. This modulation occurred postsynaptically, was mediated primarily by mGluR5, and was inositol triphosphate receptor-dependent. Expression of the dominant negative, immediate early form of Homer, Homer la, strongly reduced EPSC modulation, but the W24A mutant of Homer la, which cannot bind mOluRs, had no effect. (S)-3,5-dihydroxyphenylglycine-mediated intracellular calcium responses in the processes of Homer la-expressing neurons were reduced compared with those in Homer 1a W24A-expressing cells. However, neither the distribution of mGluR5 nor the modulation of somatic calcium channels was altered by Homer 1a expression. These data demonstrate that Homer la can reduce mGluR5 coupling to postsynaptic effectors without relying on large changes in the subcellular distribution of the receptor. Thus, alteration of mGluR signaling by changes in Homer protein expression may represent a viable mechanism for fine-tuning synaptic strength in neurons. [PUBLICATION ABSTRACT]
Author Kammermeier, Paul J
Worley, Paul F
Author_xml – sequence: 1
  fullname: Kammermeier, Paul J
– sequence: 2
  fullname: Worley, Paul F
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17389377$$D View this record in MEDLINE/PubMed
BookMark eNqFks1v1DAQxS1URLeFMycg4oC4bDv-iu0LEqqAIlUCCXq2HMdeskriYDuI_vc42qULPbQX-zC_eZ55fifoaAyjQ-g5hjMMgp5Po0lnUINUCmNgj9AKg8Lrmik4QisAItaSEXaMTlLaAoDiEp6gYyyoVFSIFfp6GQYXK2yqebRhnnqXqsFl04Qcw9TZatPP2Qwmuyo666YcYsUrH8NQTSHldDOaKRfMee9sKaan6LE3fXLP9vcpuv744fvF5frqy6fPF--v1pZLmtet90q21pimZbL1VmFbi5ZBgxXHFhrurSRCAZGFcQ1nkvFaeKFq3pi2SJyidzvdaW4G11o35mh6PcVuMPFGB9Pp_ytj90Nvwi-NJcc15kXgzV4ghp-zS1kPXbKu783owpy0AMpBKPIgyAQFgcnDIC7Dq5pAAV_fAbdhjmOxSxPAlKhyFOjlvwvebvb37wpwvgNsDClF5w8I6CUdekmHPqSjdPA7HbbLJndhcajr7-l7tR9lKRxeYRozXQNfzHx7P6H93PfZ_c4FfbFDt6nk5ZYlnBFBCT885k3QZhO7pK-_LbYAiJoxQukfNRDqlQ
CitedBy_id crossref_primary_10_1523_JNEUROSCI_4738_07_2008
crossref_primary_10_1007_s10571_015_0198_2
crossref_primary_10_1038_s41386_022_01412_3
crossref_primary_10_1523_JNEUROSCI_0753_14_2014
crossref_primary_10_1523_JNEUROSCI_1846_13_2014
crossref_primary_10_1016_j_pnpbp_2009_02_009
crossref_primary_10_1016_j_phrs_2024_107081
crossref_primary_10_1038_npp_2014_308
crossref_primary_10_1523_JNEUROSCI_2244_09_2009
crossref_primary_10_3389_fncel_2018_00470
crossref_primary_10_1016_j_neuroscience_2020_02_019
crossref_primary_10_1111_cge_13422
crossref_primary_10_1371_journal_pgen_1005137
crossref_primary_10_1038_nm_f_1869
crossref_primary_10_1371_journal_pone_0223632
crossref_primary_10_1007_s00213_010_1954_0
crossref_primary_10_1016_j_ceca_2010_09_002
crossref_primary_10_1016_j_neuron_2015_07_010
crossref_primary_10_1038_s41380_020_00991_1
crossref_primary_10_1124_mol_116_104786
crossref_primary_10_1038_s41386_022_01356_8
crossref_primary_10_1016_j_neuropharm_2017_10_026
crossref_primary_10_1016_j_yebeh_2014_12_034
crossref_primary_10_1172_jci_insight_92385
crossref_primary_10_1152_jn_01101_2007
crossref_primary_10_1038_nn_3590
crossref_primary_10_1016_j_neubiorev_2022_104596
crossref_primary_10_7554_eLife_28751
crossref_primary_10_3389_fnagi_2014_00081
crossref_primary_10_1016_j_neuropharm_2020_108046
crossref_primary_10_1159_000500267
crossref_primary_10_1186_s12974_024_03088_6
crossref_primary_10_1016_j_neuropharm_2012_07_014
crossref_primary_10_1007_s00213_009_1600_x
crossref_primary_10_1523_JNEUROSCI_1830_08_2008
crossref_primary_10_1016_j_nlm_2007_08_012
crossref_primary_10_1016_j_pnpbp_2015_05_003
crossref_primary_10_1007_s00018_019_03276_1
crossref_primary_10_3389_fncel_2020_00104
crossref_primary_10_1016_j_biopsych_2012_07_030
crossref_primary_10_1016_j_neuropharm_2012_05_038
crossref_primary_10_1523_JNEUROSCI_1727_12_2013
crossref_primary_10_1002_syn_22097
crossref_primary_10_1124_mol_114_093468
crossref_primary_10_1124_pr_109_001735
crossref_primary_10_1016_j_jad_2023_07_003
crossref_primary_10_1111_epi_12034
crossref_primary_10_1371_journal_pone_0028666
crossref_primary_10_1016_j_neubiorev_2014_02_003
crossref_primary_10_1038_mp_2016_30
crossref_primary_10_1016_j_neuropharm_2013_03_011
crossref_primary_10_3390_ijms232315052
crossref_primary_10_1186_1471_2202_11_61
crossref_primary_10_1667_RR13475_1
crossref_primary_10_1038_cddis_2014_116
crossref_primary_10_1016_j_str_2018_10_011
crossref_primary_10_1177_0269881114542856
crossref_primary_10_3390_biom12070909
crossref_primary_10_3390_ijms23010075
crossref_primary_10_3389_fncir_2017_00061
crossref_primary_10_1038_nrm2803
crossref_primary_10_1016_j_brainres_2019_146640
crossref_primary_10_1111_bph_13281
crossref_primary_10_1016_j_neurobiolaging_2014_03_019
crossref_primary_10_1016_j_euroneuro_2011_11_006
crossref_primary_10_1016_j_neubiorev_2012_12_005
crossref_primary_10_1002_syn_20577
crossref_primary_10_1093_sleep_zsz190
crossref_primary_10_1111_j_1471_4159_2008_05726_x
crossref_primary_10_1523_JNEUROSCI_5019_07_2008
crossref_primary_10_1016_j_bbrc_2014_07_044
crossref_primary_10_1016_j_neuron_2019_08_017
crossref_primary_10_1124_jpet_116_238394
crossref_primary_10_1016_j_mce_2017_02_013
crossref_primary_10_1016_j_neuint_2009_02_019
crossref_primary_10_1002_dneu_20659
crossref_primary_10_2515_therapie_2008041
crossref_primary_10_1186_s12974_015_0356_y
crossref_primary_10_1016_j_biopsych_2018_02_012
crossref_primary_10_1016_j_cub_2020_09_008
crossref_primary_10_1016_j_neubiorev_2019_08_019
crossref_primary_10_1016_j_neuron_2019_07_011
crossref_primary_10_1016_j_eplepsyres_2012_04_011
crossref_primary_10_1038_s41380_022_01523_9
crossref_primary_10_1523_JNEUROSCI_4572_06_2007
crossref_primary_10_1097_FBP_0b013e32830c369f
crossref_primary_10_1155_2017_5959182
crossref_primary_10_1016_j_nlm_2016_08_010
crossref_primary_10_1093_sleep_zsz161
crossref_primary_10_1111_j_1476_5381_2011_01552_x
crossref_primary_10_1016_j_pneurobio_2011_05_003
crossref_primary_10_1016_j_pain_2013_03_035
crossref_primary_10_1016_j_neuint_2012_06_014
crossref_primary_10_1152_jn_00580_2012
crossref_primary_10_3389_fnins_2020_00188
crossref_primary_10_1016_j_nlm_2018_02_007
crossref_primary_10_1016_j_neuropharm_2017_11_001
Cites_doi 10.1016/j.neulet.2003.09.082
10.1113/jphysiol.2003.040188
10.1152/jn.1998.80.4.1932
10.1074/jbc.273.37.23969
10.1385/MN:29:3:213
10.1038/386284a0
10.1016/S0022-3565(24)29296-X
10.1016/S0896-6273(00)80588-7
10.1016/S0959-4388(99)80044-0
10.1038/sj.gt.3300458
10.1523/JNEUROSCI.20-23-08710.2000
10.1073/pnas.96.12.7041
10.1046/j.0953-816x.2001.01498.x
10.1073/pnas.88.17.7834
10.1523/JNEUROSCI.22-13-05452.2002
10.1113/jphysiol.1968.sp008525
10.1523/JNEUROSCI.22-23-10067.2002
10.1523/JNEUROSCI.17-19-07503.1997
10.1523/JNEUROSCI.5083-05.2006
10.1074/jbc.272.32.20291
10.1046/j.1432-1327.2000.01078.x
10.1523/JNEUROSCI.06-04-01061.1986
10.1523/JNEUROSCI.4822-04.2005
10.1074/jbc.272.29.18015
10.1016/S0165-0173(98)00050-2
10.1523/JNEUROSCI.21-22-09043.2001
10.1038/nm1406
10.1016/j.conb.2006.05.002
10.1016/S0092-8674(03)00716-5
10.1016/S0896-6273(00)80810-7
10.1016/S0896-6273(00)80589-9
10.1111/j.1460-9568.1996.tb01611.x
10.1186/1471-2202-7-1
10.1523/JNEUROSCI.4388-04.2005
10.1016/S0959-4388(00)00087-8
10.1111/j.1460-9568.2005.04165.x
10.1111/j.1469-7793.1999.0439m.x
10.1038/nn0901-873
10.1042/bj3410795
10.1113/jphysiol.1968.sp008469
10.1523/JNEUROSCI.20-19-07238.2000
10.1016/S0028-3908(99)00103-3
10.1523/JNEUROSCI.20-21-07871.2000
10.1074/jbc.274.36.25953
10.1016/S0169-328X(98)00251-4
10.1523/JNEUROSCI.23-15-06327.2003
ContentType Journal Article
Copyright Copyright 2007 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Apr 3, 2007
2007 by The National Academy of Sciences of the USA 2007
Copyright_xml – notice: Copyright 2007 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Apr 3, 2007
– notice: 2007 by The National Academy of Sciences of the USA 2007
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0608991104
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
AGRICOLA

MEDLINE - Academic


MEDLINE
Virology and AIDS Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 6060
ExternalDocumentID PMC1851615
1252874651
17389377
10_1073_pnas_0608991104
104_14_6055
25427325
US201300764423
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c583t-dff98dcaabd48dfc91c67d40b1951c0b5fc8279028caaeb5484567f7965bad583
ISSN 0027-8424
IngestDate Thu Aug 21 18:35:36 EDT 2025
Fri Sep 05 04:05:29 EDT 2025
Fri Sep 05 02:44:57 EDT 2025
Fri Sep 05 00:02:29 EDT 2025
Sun Aug 17 14:11:22 EDT 2025
Wed Feb 19 01:42:16 EST 2025
Thu Apr 24 22:51:44 EDT 2025
Tue Jul 01 02:38:37 EDT 2025
Thu May 30 08:49:43 EDT 2019
Wed Nov 11 00:29:40 EST 2020
Thu May 29 08:42:40 EDT 2025
Thu Apr 03 09:43:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c583t-dff98dcaabd48dfc91c67d40b1951c0b5fc8279028caaeb5484567f7965bad583
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Edited by Roger A. Nicoll, University of California, San Francisco, CA, and approved February 12, 2007
Author contributions: P.J.K. and P.F.W. designed research; P.J.K. performed research; P.J.K. and P.F.W. contributed new reagents/analytic tools; P.J.K. analyzed data; and P.J.K. and P.F.W. wrote the paper.
OpenAccessLink http://doi.org/10.1073/pnas.0608991104
PMID 17389377
PQID 201329013
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_19659620
pnas_primary_104_14_6055_fulltext
fao_agris_US201300764423
pubmed_primary_17389377
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1851615
crossref_primary_10_1073_pnas_0608991104
proquest_miscellaneous_47307122
crossref_citationtrail_10_1073_pnas_0608991104
pnas_primary_104_14_6055
proquest_journals_201329013
proquest_miscellaneous_70350792
jstor_primary_25427325
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-04-03
PublicationDateYYYYMMDD 2007-04-03
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-04-03
  day: 03
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2007
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_28_2
e_1_3_4_29_2
Schoepp DD (e_1_3_4_2_2) 2001; 299
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
Wong RK (e_1_3_4_47_2) 1999; 79
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
e_1_3_4_39_2
8758956 - Eur J Neurosci. 1996 Jul;8(7):1488-500
14698459 - Neurosci Lett. 2004 Jan 9;354(2):143-7
12640005 - J Physiol. 2003 May 1;548(Pt 3):723-30
9838041 - Brain Res Mol Brain Res. 1998 Dec 10;63(1):53-61
10514855 - Adv Neurol. 1999;79:685-98
10417346 - Biochem J. 1999 Aug 1;341 ( Pt 3):795-803
16026461 - Eur J Neurosci. 2005 Jun;21(12):3229-39
10464340 - J Biol Chem. 1999 Sep 3;274(36):25953-7
16393337 - BMC Neurosci. 2006;7:1
11561058 - J Pharmacol Exp Ther. 2001 Oct;299(1):12-20
4298821 - J Physiol. 1968 Jun;196(3):593-604
9727012 - J Biol Chem. 1998 Sep 11;273(37):23969-75
3701410 - J Neurosci. 1986 Apr;6(4):1061-79
11528416 - Nat Neurosci. 2001 Sep;4(9):873-4
12867517 - J Neurosci. 2003 Jul 16;23(15):6327-37
12451105 - J Neurosci. 2002 Dec 1;22(23):10067-71
15872106 - J Neurosci. 2005 May 4;25(18):4587-92
11050106 - J Neurosci. 2000 Nov 1;20(21):7871-9
4296699 - J Physiol. 1968 Mar;195(2):481-92
16704932 - Curr Opin Neurobiol. 2006 Jun;16(3):251-7
16855085 - J Neurosci. 2006 Jul 19;26(29):7575-80
11698615 - J Neurosci. 2001 Nov 15;21(22):9043-52
9069287 - Nature. 1997 Mar 20;386(6622):284-8
10359835 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):7041-6
10457061 - J Physiol. 1999 Sep 1;519 Pt 2:439-49
9242710 - J Biol Chem. 1997 Aug 8;272(32):20291-8
10851183 - Curr Opin Neurobiol. 2000 Jun;10(3):370-4
10530817 - Neuropharmacology. 1999 Oct;38(10):1553-67
10395580 - Curr Opin Neurobiol. 1999 Jun;9(3):299-304
9772250 - J Neurophysiol. 1998 Oct;80(4):1932-8
9218429 - J Biol Chem. 1997 Jul 18;272(29):18015-9
11007880 - J Neurosci. 2000 Oct 1;20(19):7238-45
10651798 - Eur J Biochem. 2000 Feb;267(3):634-9
9808459 - Neuron. 1998 Oct;21(4):717-26
1679238 - Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7834-8
16715092 - Nat Med. 2006 Jun;12(6):677-81
14505576 - Cell. 2003 Sep 19;114(6):777-89
9808458 - Neuron. 1998 Oct;21(4):707-16
12097497 - J Neurosci. 2002 Jul 1;22(13):5452-61
9295396 - J Neurosci. 1997 Oct 1;17(19):7503-22
15673681 - J Neurosci. 2005 Jan 26;25(4):990-1001
10433269 - Neuron. 1999 Jul;23(3):583-92
11102477 - J Neurosci. 2000 Dec 1;20(23):8710-6
9974152 - Brain Res Brain Res Rev. 1999 Jan;29(1):83-120
15181235 - Mol Neurobiol. 2004 Jun;29(3):213-27
11298789 - Eur J Neurosci. 2001 Apr;13(7):1292-302
9338010 - Gene Ther. 1997 Aug;4(8):815-22
References_xml – ident: e_1_3_4_37_2
  doi: 10.1016/j.neulet.2003.09.082
– ident: e_1_3_4_34_2
  doi: 10.1113/jphysiol.2003.040188
– ident: e_1_3_4_20_2
  doi: 10.1152/jn.1998.80.4.1932
– ident: e_1_3_4_10_2
  doi: 10.1074/jbc.273.37.23969
– ident: e_1_3_4_9_2
  doi: 10.1385/MN:29:3:213
– ident: e_1_3_4_4_2
  doi: 10.1038/386284a0
– volume: 299
  start-page: 12
  year: 2001
  ident: e_1_3_4_2_2
  publication-title: J Pharmacol Exp Ther
  doi: 10.1016/S0022-3565(24)29296-X
– ident: e_1_3_4_8_2
  doi: 10.1016/S0896-6273(00)80588-7
– ident: e_1_3_4_3_2
  doi: 10.1016/S0959-4388(99)80044-0
– ident: e_1_3_4_28_2
  doi: 10.1038/sj.gt.3300458
– ident: e_1_3_4_14_2
  doi: 10.1523/JNEUROSCI.20-23-08710.2000
– ident: e_1_3_4_29_2
  doi: 10.1073/pnas.96.12.7041
– ident: e_1_3_4_17_2
  doi: 10.1046/j.0953-816x.2001.01498.x
– ident: e_1_3_4_19_2
  doi: 10.1073/pnas.88.17.7834
– ident: e_1_3_4_35_2
  doi: 10.1523/JNEUROSCI.22-13-05452.2002
– ident: e_1_3_4_26_2
  doi: 10.1113/jphysiol.1968.sp008525
– ident: e_1_3_4_5_2
  doi: 10.1523/JNEUROSCI.22-23-10067.2002
– ident: e_1_3_4_24_2
  doi: 10.1523/JNEUROSCI.17-19-07503.1997
– ident: e_1_3_4_41_2
  doi: 10.1523/JNEUROSCI.5083-05.2006
– ident: e_1_3_4_11_2
  doi: 10.1074/jbc.272.32.20291
– ident: e_1_3_4_6_2
  doi: 10.1046/j.1432-1327.2000.01078.x
– ident: e_1_3_4_21_2
  doi: 10.1523/JNEUROSCI.06-04-01061.1986
– ident: e_1_3_4_38_2
  doi: 10.1523/JNEUROSCI.4822-04.2005
– ident: e_1_3_4_40_2
  doi: 10.1074/jbc.272.29.18015
– volume: 79
  start-page: 685
  year: 1999
  ident: e_1_3_4_47_2
  publication-title: Adv Neurol
– ident: e_1_3_4_1_2
  doi: 10.1016/S0165-0173(98)00050-2
– ident: e_1_3_4_43_2
  doi: 10.1523/JNEUROSCI.21-22-09043.2001
– ident: e_1_3_4_44_2
  doi: 10.1038/nm1406
– ident: e_1_3_4_45_2
  doi: 10.1016/j.conb.2006.05.002
– ident: e_1_3_4_12_2
  doi: 10.1016/S0092-8674(03)00716-5
– ident: e_1_3_4_32_2
  doi: 10.1016/S0896-6273(00)80810-7
– ident: e_1_3_4_7_2
  doi: 10.1016/S0896-6273(00)80589-9
– ident: e_1_3_4_23_2
  doi: 10.1111/j.1460-9568.1996.tb01611.x
– ident: e_1_3_4_16_2
  doi: 10.1186/1471-2202-7-1
– ident: e_1_3_4_39_2
  doi: 10.1523/JNEUROSCI.4388-04.2005
– ident: e_1_3_4_36_2
  doi: 10.1016/S0959-4388(00)00087-8
– ident: e_1_3_4_46_2
  doi: 10.1111/j.1460-9568.2005.04165.x
– ident: e_1_3_4_22_2
  doi: 10.1111/j.1469-7793.1999.0439m.x
– ident: e_1_3_4_42_2
  doi: 10.1038/nn0901-873
– ident: e_1_3_4_15_2
  doi: 10.1042/bj3410795
– ident: e_1_3_4_25_2
  doi: 10.1113/jphysiol.1968.sp008469
– ident: e_1_3_4_13_2
  doi: 10.1523/JNEUROSCI.20-19-07238.2000
– ident: e_1_3_4_27_2
  doi: 10.1016/S0028-3908(99)00103-3
– ident: e_1_3_4_33_2
  doi: 10.1523/JNEUROSCI.20-21-07871.2000
– ident: e_1_3_4_18_2
  doi: 10.1074/jbc.274.36.25953
– ident: e_1_3_4_30_2
  doi: 10.1016/S0169-328X(98)00251-4
– ident: e_1_3_4_31_2
  doi: 10.1523/JNEUROSCI.23-15-06327.2003
– reference: 16026461 - Eur J Neurosci. 2005 Jun;21(12):3229-39
– reference: 11007880 - J Neurosci. 2000 Oct 1;20(19):7238-45
– reference: 9242710 - J Biol Chem. 1997 Aug 8;272(32):20291-8
– reference: 1679238 - Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7834-8
– reference: 9808459 - Neuron. 1998 Oct;21(4):717-26
– reference: 10359835 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):7041-6
– reference: 11298789 - Eur J Neurosci. 2001 Apr;13(7):1292-302
– reference: 10395580 - Curr Opin Neurobiol. 1999 Jun;9(3):299-304
– reference: 11050106 - J Neurosci. 2000 Nov 1;20(21):7871-9
– reference: 16393337 - BMC Neurosci. 2006;7:1
– reference: 11528416 - Nat Neurosci. 2001 Sep;4(9):873-4
– reference: 12640005 - J Physiol. 2003 May 1;548(Pt 3):723-30
– reference: 9808458 - Neuron. 1998 Oct;21(4):707-16
– reference: 12867517 - J Neurosci. 2003 Jul 16;23(15):6327-37
– reference: 14698459 - Neurosci Lett. 2004 Jan 9;354(2):143-7
– reference: 15673681 - J Neurosci. 2005 Jan 26;25(4):990-1001
– reference: 9772250 - J Neurophysiol. 1998 Oct;80(4):1932-8
– reference: 12451105 - J Neurosci. 2002 Dec 1;22(23):10067-71
– reference: 9218429 - J Biol Chem. 1997 Jul 18;272(29):18015-9
– reference: 15181235 - Mol Neurobiol. 2004 Jun;29(3):213-27
– reference: 4296699 - J Physiol. 1968 Mar;195(2):481-92
– reference: 3701410 - J Neurosci. 1986 Apr;6(4):1061-79
– reference: 10851183 - Curr Opin Neurobiol. 2000 Jun;10(3):370-4
– reference: 10457061 - J Physiol. 1999 Sep 1;519 Pt 2:439-49
– reference: 10651798 - Eur J Biochem. 2000 Feb;267(3):634-9
– reference: 12097497 - J Neurosci. 2002 Jul 1;22(13):5452-61
– reference: 8758956 - Eur J Neurosci. 1996 Jul;8(7):1488-500
– reference: 16855085 - J Neurosci. 2006 Jul 19;26(29):7575-80
– reference: 9295396 - J Neurosci. 1997 Oct 1;17(19):7503-22
– reference: 11698615 - J Neurosci. 2001 Nov 15;21(22):9043-52
– reference: 9338010 - Gene Ther. 1997 Aug;4(8):815-22
– reference: 9974152 - Brain Res Brain Res Rev. 1999 Jan;29(1):83-120
– reference: 15872106 - J Neurosci. 2005 May 4;25(18):4587-92
– reference: 10433269 - Neuron. 1999 Jul;23(3):583-92
– reference: 11561058 - J Pharmacol Exp Ther. 2001 Oct;299(1):12-20
– reference: 10530817 - Neuropharmacology. 1999 Oct;38(10):1553-67
– reference: 16715092 - Nat Med. 2006 Jun;12(6):677-81
– reference: 10464340 - J Biol Chem. 1999 Sep 3;274(36):25953-7
– reference: 16704932 - Curr Opin Neurobiol. 2006 Jun;16(3):251-7
– reference: 10417346 - Biochem J. 1999 Aug 1;341 ( Pt 3):795-803
– reference: 9069287 - Nature. 1997 Mar 20;386(6622):284-8
– reference: 14505576 - Cell. 2003 Sep 19;114(6):777-89
– reference: 10514855 - Adv Neurol. 1999;79:685-98
– reference: 9838041 - Brain Res Mol Brain Res. 1998 Dec 10;63(1):53-61
– reference: 4298821 - J Physiol. 1968 Jun;196(3):593-604
– reference: 9727012 - J Biol Chem. 1998 Sep 11;273(37):23969-75
– reference: 11102477 - J Neurosci. 2000 Dec 1;20(23):8710-6
SSID ssj0009580
Score 2.2402544
Snippet Metabotropic glutamate receptors (mGluRs) and Homer proteins play critical roles in neuronal functions including plasticity, nociception, epilepsy, and drug...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6055
SubjectTerms Agonists
Animals
Barium
Biochemistry
Biological Sciences
Brain
Calcium
Calcium channels
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cells, Cultured
drug abuse
Electrophysiology
epilepsy
Fluorescence
Fluorescent Antibody Technique
glutamic acid
Hippocampus - cytology
Homer Scaffolding Proteins
inositols
Metabotropic glutamate receptors
mutants
Neurons
Neurons - cytology
Neurons - metabolism
Neuroscience
Neurosciences
nociception
Patch-Clamp Techniques
Physiological regulation
protein synthesis
Proteins
Rats
Receptor, Metabotropic Glutamate 5
Receptors
Receptors, Metabotropic Glutamate - genetics
Receptors, Metabotropic Glutamate - metabolism
Synapses - physiology
Title Homer 1a uncouples metabotropic glutamate receptor 5 from postsynaptic effectors
URI https://www.jstor.org/stable/25427325
http://www.pnas.org/content/104/14/6055.abstract
https://www.ncbi.nlm.nih.gov/pubmed/17389377
https://www.proquest.com/docview/201329013
https://www.proquest.com/docview/19659620
https://www.proquest.com/docview/47307122
https://www.proquest.com/docview/70350792
https://pubmed.ncbi.nlm.nih.gov/PMC1851615
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZouXBBFCgN5WEkDkVRljyc9e6xQpRVUVcr0UrcIsdJYKWSrDbZA_x6vnGeW-0i4BJF8cSOPF_mYY9nGHtLHlfse6kTjIVyBDSmM9U-JYJMBLyDTGaKdnSv5uPZjbj8Gg422s3pkioe6V87z5X8D1fxDHylU7L_wNmuUzzAPfiLKziM61_xmGqcr21PwXLUxWZ1m5b2VVqBrdW6WC21_QmDK5ikVJuBwleKtR3WB0qoRm_5M1crytdaZzAumn2dxlJddJqtbOMI5u3C4Xl_DKWRDaXt2It5X9T4s1kQ_5Eua0RQ_KF9Oeo0QLFulspNw8Voa-1BmpCVoA_N-MOwQ6HrQxGK-qh0J3TrosMtusRAhsLBCgf6GB6Wu1PWQzhRgeJclSOQwG_02k63E2jDBYaN5ocH7L4vpdnLn82GmZkn9Tml5ivb_E8yeH-n7y3T5SBTRRvDSolxQbrLSbkbazswXq4fsYeN18HPawgdsXtp_pgdtZPIz5rk4--esIXBFPcU7zDFh5jiHaZ4iykecsIUH2KKd5h6ym4uPl5_mDlN1Q1Hh5OgcpIsm04SrVSciEmS6amnxzIRbuzBGNduTEF_vqSkP6BJY3i8sMHxU0_HYawSdHHMDvMiT08Yn2gdh0GYjeGzCkxzDFtRQtPDZNfCk67FRu2ERrpJSU-VUW4jExohg4imNeo5YLGz7oVVnY1lP-kJOBSpb9CV0c0Xn3boXQnr3w8sdmzY1nXRIgTvmF76rgVc44gAabE3-5qirAnTsthpy_-okRJlRANTrAJGfd21QoTTvpzK02JTRiap59h391MI6GHp-f5-CkkRAnIKimc13vovlcYnkRaTW0jsCCjB_HZLvvxuEs3DlieH8Pm--TplD3qp8IIdVutN-hI2ehW_Mv_Yb8Cv5G4
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homer+1a+Uncouples+Metabotropic+Glutamate+Receptor+5+from+Postsynaptic+Effectors&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kammermeier%2C+Paul+J.&rft.au=Worley%2C+Paul+F.&rft.date=2007-04-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=104&rft.issue=14&rft.spage=6055&rft.epage=6060&rft_id=info:doi/10.1073%2Fpnas.0608991104&rft.externalDocID=25427325
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F14.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F104%2F14.cover.gif