Diastereodivergent chiral aldehyde catalysis for asymmetric 1,6-conjugated addition and Mannich reactions

Chiral aldehyde catalysis is a burgeoning strategy for the catalytic asymmetric α-functionalization of aminomethyl compounds. However, the reaction types are limited and to date include no examples of stereodivergent catalysis. In this work, we disclose two chiral aldehyde-catalysed diastereodiverge...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 5372 - 11
Main Authors Wen, Wei, Luo, Ming-Jing, Yuan, Yi, Liu, Jian-Hua, Wu, Zhu-Lian, Cai, Tian, Wu, Zhao-Wei, Ouyang, Qin, Guo, Qi-Xiang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.10.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chiral aldehyde catalysis is a burgeoning strategy for the catalytic asymmetric α-functionalization of aminomethyl compounds. However, the reaction types are limited and to date include no examples of stereodivergent catalysis. In this work, we disclose two chiral aldehyde-catalysed diastereodivergent reactions: a 1,6-conjugate addition of amino acids to para -quinone methides and a bio-inspired Mannich reaction of pyridinylmethanamines and imines. Both the syn - and anti -products of these two reactions can be obtained in moderate to high yields, diastereo- and enantioselectivities. Four potential reaction models produced by DFT calculations are proposed to explain the observed stereoselective control. Our work shows that chiral aldehyde catalysis based on a reversible imine formation principle is applicable for the α-functionalization of both amino acids and aryl methylamines, and holds potential to promote a range of asymmetric transformations diastereoselectively. Chiral aldehyde catalysis is a useful strategy in the catalytic asymmetric α-functionalization of amino methyl compounds but these reaction types are limited. Here, the authors report two chiral aldehyde-catalysed diastereodivergent reactions, namely, a 1,6-conjugate addition and a bio-inspired Mannich reaction.
AbstractList Chiral aldehyde catalysis is a burgeoning strategy for the catalytic asymmetric α-functionalization of aminomethyl compounds. However, the reaction types are limited and to date include no examples of stereodivergent catalysis. In this work, we disclose two chiral aldehyde-catalysed diastereodivergent reactions: a 1,6-conjugate addition of amino acids to para -quinone methides and a bio-inspired Mannich reaction of pyridinylmethanamines and imines. Both the syn - and anti -products of these two reactions can be obtained in moderate to high yields, diastereo- and enantioselectivities. Four potential reaction models produced by DFT calculations are proposed to explain the observed stereoselective control. Our work shows that chiral aldehyde catalysis based on a reversible imine formation principle is applicable for the α-functionalization of both amino acids and aryl methylamines, and holds potential to promote a range of asymmetric transformations diastereoselectively. Chiral aldehyde catalysis is a useful strategy in the catalytic asymmetric α-functionalization of amino methyl compounds but these reaction types are limited. Here, the authors report two chiral aldehyde-catalysed diastereodivergent reactions, namely, a 1,6-conjugate addition and a bio-inspired Mannich reaction.
Chiral aldehyde catalysis is a burgeoning strategy for the catalytic asymmetric α-functionalization of aminomethyl compounds. However, the reaction types are limited and to date include no examples of stereodivergent catalysis. In this work, we disclose two chiral aldehyde-catalysed diastereodivergent reactions: a 1,6-conjugate addition of amino acids to para-quinone methides and a bio-inspired Mannich reaction of pyridinylmethanamines and imines. Both the syn- and anti-products of these two reactions can be obtained in moderate to high yields, diastereo- and enantioselectivities. Four potential reaction models produced by DFT calculations are proposed to explain the observed stereoselective control. Our work shows that chiral aldehyde catalysis based on a reversible imine formation principle is applicable for the α-functionalization of both amino acids and aryl methylamines, and holds potential to promote a range of asymmetric transformations diastereoselectively.Chiral aldehyde catalysis is a useful strategy in the catalytic asymmetric α-functionalization of amino methyl compounds but these reaction types are limited. Here, the authors report two chiral aldehyde-catalysed diastereodivergent reactions, namely, a 1,6-conjugate addition and a bio-inspired Mannich reaction.
Chiral aldehyde catalysis is a useful strategy in the catalytic asymmetric α-functionalization of amino methyl compounds but these reaction types are limited. Here, the authors report two chiral aldehyde-catalysed diastereodivergent reactions, namely, a 1,6-conjugate addition and a bio-inspired Mannich reaction.
Chiral aldehyde catalysis is a burgeoning strategy for the catalytic asymmetric α-functionalization of aminomethyl compounds. However, the reaction types are limited and to date include no examples of stereodivergent catalysis. In this work, we disclose two chiral aldehyde-catalysed diastereodivergent reactions: a 1,6-conjugate addition of amino acids to para-quinone methides and a bio-inspired Mannich reaction of pyridinylmethanamines and imines. Both the syn- and anti-products of these two reactions can be obtained in moderate to high yields, diastereo- and enantioselectivities. Four potential reaction models produced by DFT calculations are proposed to explain the observed stereoselective control. Our work shows that chiral aldehyde catalysis based on a reversible imine formation principle is applicable for the α-functionalization of both amino acids and aryl methylamines, and holds potential to promote a range of asymmetric transformations diastereoselectively.Chiral aldehyde catalysis is a burgeoning strategy for the catalytic asymmetric α-functionalization of aminomethyl compounds. However, the reaction types are limited and to date include no examples of stereodivergent catalysis. In this work, we disclose two chiral aldehyde-catalysed diastereodivergent reactions: a 1,6-conjugate addition of amino acids to para-quinone methides and a bio-inspired Mannich reaction of pyridinylmethanamines and imines. Both the syn- and anti-products of these two reactions can be obtained in moderate to high yields, diastereo- and enantioselectivities. Four potential reaction models produced by DFT calculations are proposed to explain the observed stereoselective control. Our work shows that chiral aldehyde catalysis based on a reversible imine formation principle is applicable for the α-functionalization of both amino acids and aryl methylamines, and holds potential to promote a range of asymmetric transformations diastereoselectively.
Chiral aldehyde catalysis is a burgeoning strategy for the catalytic asymmetric α-functionalization of aminomethyl compounds. However, the reaction types are limited and to date include no examples of stereodivergent catalysis. In this work, we disclose two chiral aldehyde-catalysed diastereodivergent reactions: a 1,6-conjugate addition of amino acids to para -quinone methides and a bio-inspired Mannich reaction of pyridinylmethanamines and imines. Both the syn - and anti -products of these two reactions can be obtained in moderate to high yields, diastereo- and enantioselectivities. Four potential reaction models produced by DFT calculations are proposed to explain the observed stereoselective control. Our work shows that chiral aldehyde catalysis based on a reversible imine formation principle is applicable for the α-functionalization of both amino acids and aryl methylamines, and holds potential to promote a range of asymmetric transformations diastereoselectively.
ArticleNumber 5372
Author Wu, Zhao-Wei
Ouyang, Qin
Guo, Qi-Xiang
Yuan, Yi
Cai, Tian
Luo, Ming-Jing
Wen, Wei
Liu, Jian-Hua
Wu, Zhu-Lian
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0001-5100-8545
  surname: Wen
  fullname: Wen, Wei
  email: wenwei1989@swu.edu.cn
  organization: Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University
– sequence: 2
  givenname: Ming-Jing
  surname: Luo
  fullname: Luo, Ming-Jing
  organization: Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University
– sequence: 3
  givenname: Yi
  orcidid: 0000-0002-5377-5737
  surname: Yuan
  fullname: Yuan, Yi
  organization: College of Pharmacy, Third Military Medical University
– sequence: 4
  givenname: Jian-Hua
  orcidid: 0000-0002-0733-0980
  surname: Liu
  fullname: Liu, Jian-Hua
  organization: Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University
– sequence: 5
  givenname: Zhu-Lian
  orcidid: 0000-0001-8444-4028
  surname: Wu
  fullname: Wu, Zhu-Lian
  organization: Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University
– sequence: 6
  givenname: Tian
  orcidid: 0000-0003-3288-4288
  surname: Cai
  fullname: Cai, Tian
  organization: Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University
– sequence: 7
  givenname: Zhao-Wei
  orcidid: 0000-0002-7083-601X
  surname: Wu
  fullname: Wu, Zhao-Wei
  organization: Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University
– sequence: 8
  givenname: Qin
  orcidid: 0000-0002-1161-5102
  surname: Ouyang
  fullname: Ouyang, Qin
  email: ouyangq@tmmu.edu.cn
  organization: College of Pharmacy, Third Military Medical University
– sequence: 9
  givenname: Qi-Xiang
  orcidid: 0000-0002-0405-7958
  surname: Guo
  fullname: Guo, Qi-Xiang
  email: qxguo@swu.edu.cn
  organization: Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University
BookMark eNp9Uk1v1DAUjFAR_aB_gFMkLhwI-DNxLkioQKlUxAXO1ov9nPUqaxc7W2n_fZ2mCNpD38XW88w8ezyn1VGIAavqDSUfKOHqYxZUtF1DGGloz4Rs-IvqhBFBG9oxfvTf_rg6z3lLSvGeKiFeVceck77rmDip_BcPecaE0fpbTCOGuTYbn2CqYbK4OVisDcwwHbLPtYuphnzY7XBO3tT0fduYGLb7EWa0NVjrZx9DDcHWPyAEbzZ1QjBLM7-uXjqYMp4_rGfV729ff118b65_Xl5dfL5ujFR8bqxTrRS0Rzs4KZm0nZICBmdU3ykHRnDVswGkdWjBgZScCWsHIuRgyIDAz6qrVddG2Oqb5HeQDjqC1_eNmEYNafZmQg2iFG9VB2gEtHToe2MI6UnrBsfIovVp1brZDzu0prhTnHkk-vgk-I0e463upBKtJEXg3YNAin_2mGe989ngNEHAuM-6fJygtGUtL9C3T6DbuE-hWFVQHZWMKNIWlFpRJsWcEzpt_AyLwWW-nzQleomHXuOhSzz0fTz0MoA9of59x7MkvpJyAYcR079bPcO6A6a4z7A
CitedBy_id crossref_primary_10_1021_acs_orglett_3c00825
crossref_primary_10_12677_JOCR_2021_94009
crossref_primary_10_1021_acscatal_3c01770
crossref_primary_10_1002_ange_202206111
crossref_primary_10_1002_chem_202301348
crossref_primary_10_1002_ange_202200850
crossref_primary_10_1021_jacsau_3c00216
crossref_primary_10_1002_adsc_202100881
crossref_primary_10_1016_j_cclet_2021_09_042
crossref_primary_10_1016_j_jcat_2022_09_018
crossref_primary_10_1002_anie_202424843
crossref_primary_10_1002_ange_202411156
crossref_primary_10_1021_jacs_4c16928
crossref_primary_10_1021_acs_orglett_3c01399
crossref_primary_10_1021_jacs_2c02258
crossref_primary_10_1055_a_1973_4292
crossref_primary_10_1038_s41467_022_35062_2
crossref_primary_10_1002_anie_202104031
crossref_primary_10_1038_s41929_024_01230_4
crossref_primary_10_1002_ange_202104031
crossref_primary_10_1002_asia_202300731
crossref_primary_10_1007_s11426_023_1578_y
crossref_primary_10_6023_A21070345
crossref_primary_10_1038_s44160_022_00072_x
crossref_primary_10_1039_D3SC01294H
crossref_primary_10_1002_anie_202411156
crossref_primary_10_1021_acs_accounts_3c00804
crossref_primary_10_1021_acs_orglett_1c00143
crossref_primary_10_1002_advs_202400621
crossref_primary_10_1002_ejoc_202401038
crossref_primary_10_1039_D0QO01638A
crossref_primary_10_1246_cl_210215
crossref_primary_10_1021_acs_chemrev_4c00132
crossref_primary_10_1039_D5QO00280J
crossref_primary_10_1002_slct_202304341
crossref_primary_10_1002_anie_202206111
crossref_primary_10_1021_jacs_4c09840
crossref_primary_10_1002_anie_202402038
crossref_primary_10_1016_j_gresc_2022_03_007
crossref_primary_10_12677_jocr_2024_122021
crossref_primary_10_1002_ange_202424843
crossref_primary_10_1021_acscatal_3c00790
crossref_primary_10_1021_acs_orglett_1c01507
crossref_primary_10_1002_ange_202402038
crossref_primary_10_1038_s41467_022_30277_9
crossref_primary_10_2139_ssrn_4192560
crossref_primary_10_1002_anie_202200850
crossref_primary_10_3390_molecules26154432
crossref_primary_10_1021_jacs_1c07707
crossref_primary_10_1038_s41929_022_00875_3
crossref_primary_10_1039_D2CC00146B
crossref_primary_10_1039_D4CS00485J
crossref_primary_10_1134_S0022476624020069
crossref_primary_10_3389_fchem_2021_687817
crossref_primary_10_1021_jacs_4c16934
Cites_doi 10.1021/jacs.8b06676
10.1007/978-3-642-58571-5
10.1021/ja207847p
10.1055/s-0037-1610914
10.1002/chem.201203462
10.1002/cjoc.201800478
10.1021/cs200593c
10.1021/jacs.9b01910
10.1002/anie.201807302
10.1021/jacs.7b12174
10.1039/c3sc53314j
10.1007/s11426-018-9345-5
10.1126/science.1237068
10.1021/jacs.6b06156
10.1039/C4CS00507D
10.7164/antibiotics.44.582
10.1016/j.ccr.2007.03.010
10.1021/ja900084k
10.1016/j.bmc.2015.03.069
10.1021/om1004918
10.1002/adsc.201601188
10.1021/ja510475n
10.1021/jm020916b
10.1021/ja0670409
10.3390/catal8070254
10.1002/asia.201800415
10.1021/jacs.5b10554
10.1021/jacs.6b13340
10.1002/anie.201305933
10.1021/acscatal.5b02619
10.1021/ja303320x
10.1021/acs.joc.6b00390
10.1002/chem.201604617
10.1002/anie.201808700
10.1002/cctc.201500176
10.1021/ja804527r
10.1021/acs.joc.7b02750
10.1126/science.aat4210
10.3109/9781420092394
10.1016/S0031-9422(98)00484-1
10.1021/acs.chemrev.7b00561
10.1021/cr9002352
10.1021/acs.orglett.5b02895
10.1002/anie.201106321
10.1016/j.chempr.2018.08.011
10.1039/C7CC07352F
10.1021/acs.orglett.8b00072
10.1016/S0167-7799(98)01240-2
10.1021/acs.chemrev.7b00437
10.1021/ja00137a032
10.1002/anie.201303928
10.1021/ja00284a078
10.1039/c3cs60068h
10.1021/ja055545d
10.1021/ja208867g
10.1021/ja00335a051
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-020-19245-3
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_a44443687aec4a61b99cc00906fbf20a
PMC7584650
10_1038_s41467_020_19245_3
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22071199; 21871223
  funderid: https://doi.org/10.13039/501100001809
– fundername: ;
  grantid: 22071199; 21871223
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c583t-df865419edbf5525d7854abfc8978fac43892ba5dfedafa55324ddb045bc0bea3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:30:50 EDT 2025
Thu Aug 21 14:11:05 EDT 2025
Tue Aug 05 11:04:40 EDT 2025
Wed Aug 13 02:50:58 EDT 2025
Tue Jul 01 04:09:06 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Fri Feb 21 02:40:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-df865419edbf5525d7854abfc8978fac43892ba5dfedafa55324ddb045bc0bea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1161-5102
0000-0002-0405-7958
0000-0002-5377-5737
0000-0001-5100-8545
0000-0001-8444-4028
0000-0002-0733-0980
0000-0002-7083-601X
0000-0003-3288-4288
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-19245-3
PMID 33097724
PQID 2471520806
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_a44443687aec4a61b99cc00906fbf20a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7584650
proquest_miscellaneous_2454116263
proquest_journals_2471520806
crossref_citationtrail_10_1038_s41467_020_19245_3
crossref_primary_10_1038_s41467_020_19245_3
springer_journals_10_1038_s41467_020_19245_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-23
PublicationDateYYYYMMDD 2020-10-23
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Atta-ur-RahmanShahwarDChoudharyMISenerBTokerGBaserKHCAlkaloids of bongardia chrysogonum APhytochemistry1999503333361:CAS:528:DyaK1MXns1yqsQ%3D%3D10.1016/S0031-9422(98)00484-1
KrautwaldSSarlahDSchafrothMACarreiraEMEnantio- and diastereodivergent dual catalysis: α-allylation of branched aldehydesScience2008340106510682013Sci...340.1065K10.1126/science.12370681:CAS:528:DC%2BC3sXot1Sru7o%3D
ShiLChiral pyridoxal-catalyzed asymmetric biomimetic transamination of α-keto acidsOrg. Lett.201517578457871:CAS:528:DC%2BC2MXhvFWgt77O2658089310.1021/acs.orglett.5b02895
XuBCatalytic asymmetric direct α-alkylation of amino esters by aldehydes via imine activationChem. Sci.20145198819911:CAS:528:DC%2BC2cXlsFOrtbs%3D10.1039/c3sc53314j
OliveiraMTLupariaMAudisioDMaulideNDual catalysis becomes diastereodivergentAngew. Chem., Int. Ed.20135213149131521:CAS:528:DC%2BC3sXhs1WmtrrK10.1002/anie.201305933
WangQGuQYouS-LEnantioselective carbonyl catalysis enabled by chiral aldehydesAngew. Chem., Int. Ed.201958681868251:CAS:528:DC%2BC1MXks1Siu7Y%3D10.1002/anie.201808700
ZaiSSubstituent effects of pyridine-amine nickel catalyst precursors on ethylene polymerizationACS Catal.201224334401:CAS:528:DC%2BC38XitVersLg%3D10.1021/cs200593c
ChenJCarbonyl catalysis enables a biomimetic asymmetric Mannich reactionScience2018360143814422018Sci...360.1438C1:CAS:528:DC%2BC1cXht1SrtrbK2995497410.1126/science.aat4210
BeletskayaIPNájeraCYusMStereodivergent catalysisChem. Rev.2018118508052001:CAS:528:DC%2BC1cXnvFCiu7w%3D2967689510.1021/acs.chemrev.7b00561
HuoXHeRZhangXZhangWAn Ir/Zn dual catalysis for enantio- and diastereodivergent α-allylation of α-hydroxyketonesJ. Am. Chem. Soc.201613811093110961:CAS:528:DC%2BC28XhtlyqsrvL2754876110.1021/jacs.6b06156
Hesse, M. Alkaloids. Nature’s Curse or Blessing (Wiley-VCH, Weinheim, 2002).
SunLChenXYEndersDAldehyde catalysis: new options for asymmetric organocatalytic reactionsChem201842026202810.1016/j.chempr.2018.08.0111:CAS:528:DC%2BC1cXhslaht7nN
WenWChiral aldehyde catalysis for the catalytic asymmetric activation of glycine estersJ. Am. Chem. Soc.2018140977497801:CAS:528:DC%2BC1cXht12mtbbF2999540110.1021/jacs.8b06676
ParraATortosaMpara-Quinone methide: a new player in asymmetric catalysisChemCatChem20157152415261:CAS:528:DC%2BC2MXnt1Smt7c%3D10.1002/cctc.201500176
ChenJLiuYGongXShiLZhaoBBiomimetic chiral pyridoxal and pyridoxamine catalystsChin. J. Chem.2019371031121:CAS:528:DC%2BC1cXisF2gs77J
PatilMDGroganGBommariusAYunHRecent advances in ω-transaminase-mediated biocatalysis for the enantioselective synthesis of chiral aminesCatalysts2018825427810.3390/catal80702541:CAS:528:DC%2BC1cXhtlKksbnP
KanneDBAshworthDJChengMTMutterLCAboodLGSynthesis of the first highly potent bridged nicotinoid 9-Azabicyclo[4.2.1]nona[2,3-c]pyridine (pyrido[3,4-b]homotropane)J. Am. Chem. Soc.1986108786478651:CAS:528:DyaL2sXhvV2isw%3D%3D2228331610.1021/ja00284a078
TaylorPPPantaleoneDPSenkpeilRFFotheringhamIGNovel biosynthetic approaches to the production of unnatural amino acids using transaminasesTrends Biotechnol.1998164124181:CAS:528:DyaK1cXmslygt78%3D980783810.1016/S0167-7799(98)01240-2
LiuYEEnzyme-inspired axially chiral pyridoxamines armed with a cooperative lateral amine chain for enantioselective biomimetic transaminationJ. Am. Chem. Soc.201613807301073310.1021/jacs.5b105541:CAS:528:DC%2BC28XktFCrsA%3D%3D
ChenLLuoM-JZhuFWenWGuoQ-XCombining chiral aldehyde catalysis and transition-metal catalysis for enantioselective α-allylic alkylation of amino acid estersJ. Am. Chem. Soc.2019141515951631:CAS:528:DC%2BC1MXls1alur0%3D3089693710.1021/jacs.9b01910
MiyazakiMDiscovery of DS-5272 as a promising candidate: a potent and orally active p53–MDM2 interaction inhibitorBioorg. Med. Chem.201523236027671:CAS:528:DC%2BC2MXlvVeks7g%3D2588253110.1016/j.bmc.2015.03.069
BihanMZhaoJC-GAdvances in asymmetric diastereodivergent catalysisAdv. Synth. Catal.201735953457510.1002/adsc.2016011881:CAS:528:DC%2BC2sXht1Oitrs%3D
GuimondNMacDonaldMJLemieuxVBeaucheminAMCatalysis through temporary intramolecularity: mechanistic investigations on aldehyde-catalyzed cope-type hydroamination lead to yhe discovery of a more efficient tethering catalystJ. Am. Chem. Soc.201213416571165771:CAS:528:DC%2BC38Xhtlekt7fO2297100110.1021/ja303320x
ConfalonePNHuieEMThe stabilized iminium ylide-olefin [3+2] cycloaddition reaction. Total synthesis of Sceletium alkaloid A4J. Am. Chem. Soc.1984106717571781:CAS:528:DyaL2cXmtFWms7Y%3D10.1021/ja00335a051
BarattaWChiral pincer ruthenium and osmium complexes for the fast and efficient hydrogen transfer reduction of ketonesOrganometallics201029356335701:CAS:528:DC%2BC3cXpt1Slt78%3D10.1021/om1004918
KrautwaldSCarreiraEMStereodivergence in asymmetric catalysisJ. Am. Chem. Soc.2017139562756391:CAS:528:DC%2BC2sXlslOhs74%3D2838440210.1021/jacs.6b13340
CaruanaLKniepFJohansenTKPoulsenPHJørgensenKAA new organocatalytic concept for asymmetric α-alkylation of aldehydesJ. Am. Chem. Soc.201413615929159321:CAS:528:DC%2BC2cXhvVSjsrjJ2536929410.1021/ja510475n
Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. Comprehensive Asymmetric Catalysis, Vols. I–III (Springer, New York, 1999).
MacDonaldMJHespCRSchipperDJPesantMBeaucheminAMHighly enantioselective intermolecular hydroamination of allylic amines with chiral aldehydes as tethering ctalystsChem. -Eur. J.201319259726011:CAS:528:DC%2BC3sXntFGquw%3D%3D2330759110.1002/chem.201203462
BarókMUnexpected inversions in asymmetric reactions: reactions with chiral metal complexes, chiral organocatalysts, and heterogeneous chiralChem. Rev.20101101663170510.1021/cr90023521:CAS:528:DC%2BD1MXhtleisLrK
LiB-JEl-NachefCBeaucheminAMOrganocatalysis using aldehydes: the development and improvement of catalytic hydroaminations, hydrations and hydrolysesChem. Commun.20175313192132041:CAS:528:DC%2BC2sXhslCms7fP10.1039/C7CC07352F
ZhangZ-PXieK-XYangCLiMLiXAsymmetric synthesis of dihydrocoumarins through chiral phosphoric acid-catalyzed cycloannulation of para-quinone methides and azlactonesJ. Org. Chem.2018833643732018FrCh....6..364Z2921232310.1021/acs.joc.7b027501:CAS:528:DC%2BC2sXhvFaqtrnI
CanaryJWAllenCSCastagnettoJMWangYConformationally driven, propeller-like chirality in labile coordination complexesJ. Am. Chem. Soc.1995117848484851:CAS:528:DyaK2MXntFCntb8%3D10.1021/ja00137a032
KwongH-LChiral pyridine-containing ligands in asymmetric catalysisCoord. Chem. Rev.2007251218822221:CAS:528:DC%2BD2sXhtVeqs7zN10.1016/j.ccr.2007.03.010
LiW-JEnantioselective organocatalytic 1,6-addition of azlactones to para-quinone methides: an access to α,α-disubstituted and β,β-diaryl-α-amino acid estersOrg. Lett.201820114211451:CAS:528:DC%2BC1cXhsVKmtLY%3D2936397710.1021/acs.orglett.8b00072
LinLFengXCatalytic strategies for diastereodivergent synthesisChem. Eur. J.201723646464821:CAS:528:DC%2BC2sXitVGksrw%3D2785980610.1002/chem.201604617
GongL-ZChiral aldehyde catalysis: a highly promising concept in asymmetric catalysisSci. China Chem.201962341:CAS:528:DC%2BC1cXhs1KksrrN10.1007/s11426-018-9345-5
WeiLZhuQXuS-MChangXWangC-JStereodivergent synthesis of α,α-disubstituted α‑amino acids via synergistic Cu/Ir catalysisJ. Am. Chem. Soc.2018140150815131:CAS:528:DC%2BC1cXksVOhsQ%3D%3D2930357810.1021/jacs.7b12174
ZhangX-ZDiastereoselective and enantioselective synthesis of unsymmetric β,β-diaryl-α-amino acid esters via organocatalytic 1,6-conjugate addition of para-quinone methidesJ. Org. Chem.201681565556621:CAS:528:DC%2BC28Xos12ntbs%3D2722428510.1021/acs.joc.6b00390
HuangYWaljiAMLarsenCHMacMillanDWCEnantioselective organo-cascade catalysisJ. Am. Chem. Soc.200512715051150531:CAS:528:DC%2BD2MXhtVKmtLnM1624864310.1021/ja055545d
AokiMCyclothiazomycin, a novel polythiazole-containing peptide with renin nhibitory activityJ. Antibiot.1991445825881:CAS:528:DyaK3MXks12ruro%3D10.7164/antibiotics.44.582
LupariaMCatalytic asymmetric diastereodivergent deracemizationAngew. Chem., Int. Ed.20115012631126351:CAS:528:DC%2BC3MXhsVWlsb7F10.1002/anie.201106321
KellySAApplication of ω‑transaminases in the pharmaceutical industryChem. Rev.20181183493671:CAS:528:DC%2BC2sXhvFygsbbE2925191210.1021/acs.chemrev.7b00437
UllrichTConformationally constrained nicotines: polycyclic, bridged, and spiro-annulated analogues as novel ligands for the nicotinic acetylcholine receptorJ. Med. Chem.200245404740541:CAS:528:DC%2BD38XlvVGrsLw%3D1219032610.1021/jm020916b
Carreira, E. M. & Kvaerno, L. Classics in Stereoselective Synthesis (Wiley, Weinheim, 2009).
MacDonaldMJSchipperDJNgPJMoranJBeaucheminAMA catalytic tethering strategy: simple aldehydes catalyze intermolecular alkene hydroaminationsJ. Am. Chem. Soc.201113320100201031:CAS:528:DC%2BC3MXhsV2jurfE2209859510.1021/ja208867g
RaoXEfficient synthesis of (-)-Corynoline by enantioselective palladium-catalyzed α-arylation with sterically hindered substratesAngew. Chem. Int. Ed.20185712328123321:CAS:528:DC%2BC1cXhs1Whs7zJ10.1002/anie.201807302
HeF-SDirect asymmetric synthesis of β-bis-aryl-α-amino acid esters via enantioselective copper-catalyzed addition of p-quinone methidesACS Catal.201666526561:CAS:528:DC%2BC2MXitVygtrrO10.1021/acscatal.5b02619
WangBWuFWangYLiuXDengLControl of diastereoselectivity in tandem asymmetric reactions generating nonadjacent stereocenters with bifunctional catalysis by cinchona alkaloidsJ. Am. Chem. Soc.20071297687691:CAS:528:DC%2BD2sXlsFyl1724380610.1021/ja0670409
YanX-XHighly diastereoselective switchable enantioselective Mannich reaction of glycine derivatives with iminesJ. Am. Chem. Soc.200813014362143631:CAS:528:DC%2BD1cXht1Squ7nJ1884189210.1021/ja804527r
TianXDiastereodivergent asymmetric sulfa-Michael additions of α-branched enones using a single chiral organic catalystJ. Am. Chem. Soc.201113317934179411:CAS:528:DC%2BC3MXhtlSqsb%2FJ2193656110.1021/ja207847p
NojiriAKumagaiNShibasakiMLinking structural dynamics and functional diversity in asymmetric catalysisJ. Am. Chem. Soc.2009131377937841:CAS:528:DC%2BD1MXit1eksLs%3D1923186710.1021/ja900084k
XieYPanHLiuMXiaoXShiYProgress in asymmetric biomimetic transamination of carbonyl compoundsChem. Soc. Rev.201544174017481:CAS:528
Y Huang (19245_CR14) 2005; 127
S Zai (19245_CR51) 2012; 2
W Wen (19245_CR31) 2018; 140
S Krautwald (19245_CR15) 2008; 340
Y Xie (19245_CR45) 2015; 44
PN Confalone (19245_CR56) 1984; 106
W Baratta (19245_CR52) 2010; 29
H-L Kwong (19245_CR53) 2007; 251
J Chen (19245_CR32) 2018; 360
L Shi (19245_CR24) 2015; 17
JW Canary (19245_CR50) 1995; 117
YE Liu (19245_CR46) 2016; 138
L Wei (19245_CR19) 2018; 140
J Chen (19245_CR25) 2019; 37
DB Kanne (19245_CR57) 1986; 108
M Barók (19245_CR3) 2010; 110
A Parra (19245_CR34) 2015; 7
B List (19245_CR29) 2018; 14
J Escorihuela (19245_CR4) 2013; 42
X Huo (19245_CR16) 2016; 138
M Luparia (19245_CR12) 2011; 50
PP Taylor (19245_CR42) 1998; 16
Atta-ur-Rahman (19245_CR55) 1999; 50
X-Z Zhang (19245_CR39) 2016; 81
X-X Yan (19245_CR10) 2008; 130
A Nojiri (19245_CR13) 2009; 131
SA Kelly (19245_CR43) 2018; 118
MT Oliveira (19245_CR17) 2013; 52
X Rao (19245_CR58) 2018; 57
L-Z Gong (19245_CR27) 2019; 62
L Caruana (19245_CR37) 2014; 136
T Ullrich (19245_CR48) 2002; 45
MD Patil (19245_CR44) 2018; 8
L Chen (19245_CR33) 2019; 141
B Xu (19245_CR30) 2014; 5
W-J Li (19245_CR40) 2018; 20
L Lin (19245_CR7) 2017; 23
19245_CR54
M Bihan (19245_CR8) 2017; 359
L Sun (19245_CR28) 2018; 4
MJ MacDonald (19245_CR21) 2013; 19
Q Wang (19245_CR26) 2019; 58
M Miyazaki (19245_CR49) 2015; 23
IP Beletskaya (19245_CR6) 2018; 118
F-S He (19245_CR38) 2016; 6
Z-P Zhang (19245_CR41) 2018; 83
19245_CR1
S Krautwald (19245_CR18) 2017; 139
W Li (19245_CR35) 2018; 13
M Aoki (19245_CR47) 1991; 44
19245_CR2
B-J Li (19245_CR22) 2017; 53
19245_CR5
B Wang (19245_CR9) 2007; 129
W-D Chu (19245_CR36) 2013; 52
N Guimond (19245_CR23) 2012; 134
X Tian (19245_CR11) 2011; 133
MJ MacDonald (19245_CR20) 2011; 133
References_xml – reference: Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. Comprehensive Asymmetric Catalysis, Vols. I–III (Springer, New York, 1999).
– reference: BarattaWChiral pincer ruthenium and osmium complexes for the fast and efficient hydrogen transfer reduction of ketonesOrganometallics201029356335701:CAS:528:DC%2BC3cXpt1Slt78%3D10.1021/om1004918
– reference: UllrichTConformationally constrained nicotines: polycyclic, bridged, and spiro-annulated analogues as novel ligands for the nicotinic acetylcholine receptorJ. Med. Chem.200245404740541:CAS:528:DC%2BD38XlvVGrsLw%3D1219032610.1021/jm020916b
– reference: ZhangZ-PXieK-XYangCLiMLiXAsymmetric synthesis of dihydrocoumarins through chiral phosphoric acid-catalyzed cycloannulation of para-quinone methides and azlactonesJ. Org. Chem.2018833643732018FrCh....6..364Z2921232310.1021/acs.joc.7b027501:CAS:528:DC%2BC2sXhvFaqtrnI
– reference: ZaiSSubstituent effects of pyridine-amine nickel catalyst precursors on ethylene polymerizationACS Catal.201224334401:CAS:528:DC%2BC38XitVersLg%3D10.1021/cs200593c
– reference: BihanMZhaoJC-GAdvances in asymmetric diastereodivergent catalysisAdv. Synth. Catal.201735953457510.1002/adsc.2016011881:CAS:528:DC%2BC2sXht1Oitrs%3D
– reference: GongL-ZChiral aldehyde catalysis: a highly promising concept in asymmetric catalysisSci. China Chem.201962341:CAS:528:DC%2BC1cXhs1KksrrN10.1007/s11426-018-9345-5
– reference: LiW-JEnantioselective organocatalytic 1,6-addition of azlactones to para-quinone methides: an access to α,α-disubstituted and β,β-diaryl-α-amino acid estersOrg. Lett.201820114211451:CAS:528:DC%2BC1cXhsVKmtLY%3D2936397710.1021/acs.orglett.8b00072
– reference: PatilMDGroganGBommariusAYunHRecent advances in ω-transaminase-mediated biocatalysis for the enantioselective synthesis of chiral aminesCatalysts2018825427810.3390/catal80702541:CAS:528:DC%2BC1cXhtlKksbnP
– reference: LupariaMCatalytic asymmetric diastereodivergent deracemizationAngew. Chem., Int. Ed.20115012631126351:CAS:528:DC%2BC3MXhsVWlsb7F10.1002/anie.201106321
– reference: KrautwaldSSarlahDSchafrothMACarreiraEMEnantio- and diastereodivergent dual catalysis: α-allylation of branched aldehydesScience2008340106510682013Sci...340.1065K10.1126/science.12370681:CAS:528:DC%2BC3sXot1Sru7o%3D
– reference: ChenJCarbonyl catalysis enables a biomimetic asymmetric Mannich reactionScience2018360143814422018Sci...360.1438C1:CAS:528:DC%2BC1cXht1SrtrbK2995497410.1126/science.aat4210
– reference: MiyazakiMDiscovery of DS-5272 as a promising candidate: a potent and orally active p53–MDM2 interaction inhibitorBioorg. Med. Chem.201523236027671:CAS:528:DC%2BC2MXlvVeks7g%3D2588253110.1016/j.bmc.2015.03.069
– reference: Jozwiak, K. Lough, W. J. & Wainer, I. W. Drug Stereochemistry: Analytical Methods and Pharmacology, 3rd edn. (Informa, 2012).
– reference: ChenJLiuYGongXShiLZhaoBBiomimetic chiral pyridoxal and pyridoxamine catalystsChin. J. Chem.2019371031121:CAS:528:DC%2BC1cXisF2gs77J
– reference: LiuYEEnzyme-inspired axially chiral pyridoxamines armed with a cooperative lateral amine chain for enantioselective biomimetic transaminationJ. Am. Chem. Soc.201613807301073310.1021/jacs.5b105541:CAS:528:DC%2BC28XktFCrsA%3D%3D
– reference: Carreira, E. M. & Kvaerno, L. Classics in Stereoselective Synthesis (Wiley, Weinheim, 2009).
– reference: KellySAApplication of ω‑transaminases in the pharmaceutical industryChem. Rev.20181183493671:CAS:528:DC%2BC2sXhvFygsbbE2925191210.1021/acs.chemrev.7b00437
– reference: TianXDiastereodivergent asymmetric sulfa-Michael additions of α-branched enones using a single chiral organic catalystJ. Am. Chem. Soc.201113317934179411:CAS:528:DC%2BC3MXhtlSqsb%2FJ2193656110.1021/ja207847p
– reference: BeletskayaIPNájeraCYusMStereodivergent catalysisChem. Rev.2018118508052001:CAS:528:DC%2BC1cXnvFCiu7w%3D2967689510.1021/acs.chemrev.7b00561
– reference: HuangYWaljiAMLarsenCHMacMillanDWCEnantioselective organo-cascade catalysisJ. Am. Chem. Soc.200512715051150531:CAS:528:DC%2BD2MXhtVKmtLnM1624864310.1021/ja055545d
– reference: MacDonaldMJHespCRSchipperDJPesantMBeaucheminAMHighly enantioselective intermolecular hydroamination of allylic amines with chiral aldehydes as tethering ctalystsChem. -Eur. J.201319259726011:CAS:528:DC%2BC3sXntFGquw%3D%3D2330759110.1002/chem.201203462
– reference: KanneDBAshworthDJChengMTMutterLCAboodLGSynthesis of the first highly potent bridged nicotinoid 9-Azabicyclo[4.2.1]nona[2,3-c]pyridine (pyrido[3,4-b]homotropane)J. Am. Chem. Soc.1986108786478651:CAS:528:DyaL2sXhvV2isw%3D%3D2228331610.1021/ja00284a078
– reference: OliveiraMTLupariaMAudisioDMaulideNDual catalysis becomes diastereodivergentAngew. Chem., Int. Ed.20135213149131521:CAS:528:DC%2BC3sXhs1WmtrrK10.1002/anie.201305933
– reference: LiB-JEl-NachefCBeaucheminAMOrganocatalysis using aldehydes: the development and improvement of catalytic hydroaminations, hydrations and hydrolysesChem. Commun.20175313192132041:CAS:528:DC%2BC2sXhslCms7fP10.1039/C7CC07352F
– reference: ShiLChiral pyridoxal-catalyzed asymmetric biomimetic transamination of α-keto acidsOrg. Lett.201517578457871:CAS:528:DC%2BC2MXhvFWgt77O2658089310.1021/acs.orglett.5b02895
– reference: WangBWuFWangYLiuXDengLControl of diastereoselectivity in tandem asymmetric reactions generating nonadjacent stereocenters with bifunctional catalysis by cinchona alkaloidsJ. Am. Chem. Soc.20071297687691:CAS:528:DC%2BD2sXlsFyl1724380610.1021/ja0670409
– reference: HuoXHeRZhangXZhangWAn Ir/Zn dual catalysis for enantio- and diastereodivergent α-allylation of α-hydroxyketonesJ. Am. Chem. Soc.201613811093110961:CAS:528:DC%2BC28XhtlyqsrvL2754876110.1021/jacs.6b06156
– reference: EscorihuelaJBurguetebMILuisSVNew advances in dual stereocontrol for asymmetric reactionsChem. Soc. Rev.201342559556171:CAS:528:DC%2BC3sXot1ersLw%3D2359153910.1039/c3cs60068h
– reference: Hesse, M. Alkaloids. Nature’s Curse or Blessing (Wiley-VCH, Weinheim, 2002).
– reference: XuBCatalytic asymmetric direct α-alkylation of amino esters by aldehydes via imine activationChem. Sci.20145198819911:CAS:528:DC%2BC2cXlsFOrtbs%3D10.1039/c3sc53314j
– reference: KwongH-LChiral pyridine-containing ligands in asymmetric catalysisCoord. Chem. Rev.2007251218822221:CAS:528:DC%2BD2sXhtVeqs7zN10.1016/j.ccr.2007.03.010
– reference: SunLChenXYEndersDAldehyde catalysis: new options for asymmetric organocatalytic reactionsChem201842026202810.1016/j.chempr.2018.08.0111:CAS:528:DC%2BC1cXhslaht7nN
– reference: WeiLZhuQXuS-MChangXWangC-JStereodivergent synthesis of α,α-disubstituted α‑amino acids via synergistic Cu/Ir catalysisJ. Am. Chem. Soc.2018140150815131:CAS:528:DC%2BC1cXksVOhsQ%3D%3D2930357810.1021/jacs.7b12174
– reference: HeF-SDirect asymmetric synthesis of β-bis-aryl-α-amino acid esters via enantioselective copper-catalyzed addition of p-quinone methidesACS Catal.201666526561:CAS:528:DC%2BC2MXitVygtrrO10.1021/acscatal.5b02619
– reference: RaoXEfficient synthesis of (-)-Corynoline by enantioselective palladium-catalyzed α-arylation with sterically hindered substratesAngew. Chem. Int. Ed.20185712328123321:CAS:528:DC%2BC1cXhs1Whs7zJ10.1002/anie.201807302
– reference: BarókMUnexpected inversions in asymmetric reactions: reactions with chiral metal complexes, chiral organocatalysts, and heterogeneous chiralChem. Rev.20101101663170510.1021/cr90023521:CAS:528:DC%2BD1MXhtleisLrK
– reference: KrautwaldSCarreiraEMStereodivergence in asymmetric catalysisJ. Am. Chem. Soc.2017139562756391:CAS:528:DC%2BC2sXlslOhs74%3D2838440210.1021/jacs.6b13340
– reference: WangQGuQYouS-LEnantioselective carbonyl catalysis enabled by chiral aldehydesAngew. Chem., Int. Ed.201958681868251:CAS:528:DC%2BC1MXks1Siu7Y%3D10.1002/anie.201808700
– reference: LiWXuXZhangPLiPRecent advances in the catalytic enantioselective reactions of para-quinone methidesChem. Asian J.201813235023591:CAS:528:DC%2BC1cXhtVamtLfJ2967685510.1002/asia.201800415
– reference: ConfalonePNHuieEMThe stabilized iminium ylide-olefin [3+2] cycloaddition reaction. Total synthesis of Sceletium alkaloid A4J. Am. Chem. Soc.1984106717571781:CAS:528:DyaL2cXmtFWms7Y%3D10.1021/ja00335a051
– reference: ParraATortosaMpara-Quinone methide: a new player in asymmetric catalysisChemCatChem20157152415261:CAS:528:DC%2BC2MXnt1Smt7c%3D10.1002/cctc.201500176
– reference: Atta-ur-RahmanShahwarDChoudharyMISenerBTokerGBaserKHCAlkaloids of bongardia chrysogonum APhytochemistry1999503333361:CAS:528:DyaK1MXns1yqsQ%3D%3D10.1016/S0031-9422(98)00484-1
– reference: XieYPanHLiuMXiaoXShiYProgress in asymmetric biomimetic transamination of carbonyl compoundsChem. Soc. Rev.201544174017481:CAS:528:DC%2BC2MXhvFKgur8%3D2564526410.1039/C4CS00507D
– reference: LinLFengXCatalytic strategies for diastereodivergent synthesisChem. Eur. J.201723646464821:CAS:528:DC%2BC2sXitVGksrw%3D2785980610.1002/chem.201604617
– reference: YanX-XHighly diastereoselective switchable enantioselective Mannich reaction of glycine derivatives with iminesJ. Am. Chem. Soc.200813014362143631:CAS:528:DC%2BD1cXht1Squ7nJ1884189210.1021/ja804527r
– reference: CanaryJWAllenCSCastagnettoJMWangYConformationally driven, propeller-like chirality in labile coordination complexesJ. Am. Chem. Soc.1995117848484851:CAS:528:DyaK2MXntFCntb8%3D10.1021/ja00137a032
– reference: MacDonaldMJSchipperDJNgPJMoranJBeaucheminAMA catalytic tethering strategy: simple aldehydes catalyze intermolecular alkene hydroaminationsJ. Am. Chem. Soc.201113320100201031:CAS:528:DC%2BC3MXhsV2jurfE2209859510.1021/ja208867g
– reference: CaruanaLKniepFJohansenTKPoulsenPHJørgensenKAA new organocatalytic concept for asymmetric α-alkylation of aldehydesJ. Am. Chem. Soc.201413615929159321:CAS:528:DC%2BC2cXhvVSjsrjJ2536929410.1021/ja510475n
– reference: ChuW-DAsymmetric catalytic 1,6-conjugate addition/aromatization of para-quinone methides: enantioselective introduction of functionalized diarylmethine stereogenic centersAngew. Chem., Int. Ed.201352922992331:CAS:528:DC%2BC3sXhtFShtLrM10.1002/anie.201303928
– reference: ListBKennemurJLChiral-aldehyde-catalyzed α-functionalization of glycine estersSynfacts201814109410.1055/s-0037-1610914
– reference: GuimondNMacDonaldMJLemieuxVBeaucheminAMCatalysis through temporary intramolecularity: mechanistic investigations on aldehyde-catalyzed cope-type hydroamination lead to yhe discovery of a more efficient tethering catalystJ. Am. Chem. Soc.201213416571165771:CAS:528:DC%2BC38Xhtlekt7fO2297100110.1021/ja303320x
– reference: NojiriAKumagaiNShibasakiMLinking structural dynamics and functional diversity in asymmetric catalysisJ. Am. Chem. Soc.2009131377937841:CAS:528:DC%2BD1MXit1eksLs%3D1923186710.1021/ja900084k
– reference: TaylorPPPantaleoneDPSenkpeilRFFotheringhamIGNovel biosynthetic approaches to the production of unnatural amino acids using transaminasesTrends Biotechnol.1998164124181:CAS:528:DyaK1cXmslygt78%3D980783810.1016/S0167-7799(98)01240-2
– reference: WenWChiral aldehyde catalysis for the catalytic asymmetric activation of glycine estersJ. Am. Chem. Soc.2018140977497801:CAS:528:DC%2BC1cXht12mtbbF2999540110.1021/jacs.8b06676
– reference: ChenLLuoM-JZhuFWenWGuoQ-XCombining chiral aldehyde catalysis and transition-metal catalysis for enantioselective α-allylic alkylation of amino acid estersJ. Am. Chem. Soc.2019141515951631:CAS:528:DC%2BC1MXls1alur0%3D3089693710.1021/jacs.9b01910
– reference: AokiMCyclothiazomycin, a novel polythiazole-containing peptide with renin nhibitory activityJ. Antibiot.1991445825881:CAS:528:DyaK3MXks12ruro%3D10.7164/antibiotics.44.582
– reference: ZhangX-ZDiastereoselective and enantioselective synthesis of unsymmetric β,β-diaryl-α-amino acid esters via organocatalytic 1,6-conjugate addition of para-quinone methidesJ. Org. Chem.201681565556621:CAS:528:DC%2BC28Xos12ntbs%3D2722428510.1021/acs.joc.6b00390
– volume: 140
  start-page: 9774
  year: 2018
  ident: 19245_CR31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b06676
– ident: 19245_CR2
  doi: 10.1007/978-3-642-58571-5
– volume: 133
  start-page: 17934
  year: 2011
  ident: 19245_CR11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja207847p
– volume: 14
  start-page: 1094
  year: 2018
  ident: 19245_CR29
  publication-title: Synfacts
  doi: 10.1055/s-0037-1610914
– volume: 19
  start-page: 2597
  year: 2013
  ident: 19245_CR21
  publication-title: Chem. -Eur. J.
  doi: 10.1002/chem.201203462
– volume: 37
  start-page: 103
  year: 2019
  ident: 19245_CR25
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201800478
– volume: 2
  start-page: 433
  year: 2012
  ident: 19245_CR51
  publication-title: ACS Catal.
  doi: 10.1021/cs200593c
– volume: 141
  start-page: 5159
  year: 2019
  ident: 19245_CR33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b01910
– volume: 57
  start-page: 12328
  year: 2018
  ident: 19245_CR58
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201807302
– volume: 140
  start-page: 1508
  year: 2018
  ident: 19245_CR19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12174
– volume: 5
  start-page: 1988
  year: 2014
  ident: 19245_CR30
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc53314j
– volume: 62
  start-page: 3
  year: 2019
  ident: 19245_CR27
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-018-9345-5
– volume: 340
  start-page: 1065
  year: 2008
  ident: 19245_CR15
  publication-title: Science
  doi: 10.1126/science.1237068
– volume: 138
  start-page: 11093
  year: 2016
  ident: 19245_CR16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06156
– volume: 44
  start-page: 1740
  year: 2015
  ident: 19245_CR45
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00507D
– volume: 44
  start-page: 582
  year: 1991
  ident: 19245_CR47
  publication-title: J. Antibiot.
  doi: 10.7164/antibiotics.44.582
– volume: 251
  start-page: 2188
  year: 2007
  ident: 19245_CR53
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2007.03.010
– ident: 19245_CR54
– volume: 131
  start-page: 3779
  year: 2009
  ident: 19245_CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja900084k
– volume: 23
  start-page: 2360
  year: 2015
  ident: 19245_CR49
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2015.03.069
– volume: 29
  start-page: 3563
  year: 2010
  ident: 19245_CR52
  publication-title: Organometallics
  doi: 10.1021/om1004918
– volume: 359
  start-page: 534
  year: 2017
  ident: 19245_CR8
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201601188
– volume: 136
  start-page: 15929
  year: 2014
  ident: 19245_CR37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja510475n
– volume: 45
  start-page: 4047
  year: 2002
  ident: 19245_CR48
  publication-title: J. Med. Chem.
  doi: 10.1021/jm020916b
– volume: 129
  start-page: 768
  year: 2007
  ident: 19245_CR9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0670409
– volume: 8
  start-page: 254
  year: 2018
  ident: 19245_CR44
  publication-title: Catalysts
  doi: 10.3390/catal8070254
– volume: 13
  start-page: 2350
  year: 2018
  ident: 19245_CR35
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201800415
– volume: 138
  start-page: 0730
  year: 2016
  ident: 19245_CR46
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10554
– volume: 139
  start-page: 5627
  year: 2017
  ident: 19245_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b13340
– volume: 52
  start-page: 13149
  year: 2013
  ident: 19245_CR17
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201305933
– volume: 6
  start-page: 652
  year: 2016
  ident: 19245_CR38
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02619
– volume: 134
  start-page: 16571
  year: 2012
  ident: 19245_CR23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja303320x
– volume: 81
  start-page: 5655
  year: 2016
  ident: 19245_CR39
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.6b00390
– volume: 23
  start-page: 6464
  year: 2017
  ident: 19245_CR7
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201604617
– volume: 58
  start-page: 6818
  year: 2019
  ident: 19245_CR26
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201808700
– volume: 7
  start-page: 1524
  year: 2015
  ident: 19245_CR34
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201500176
– volume: 130
  start-page: 14362
  year: 2008
  ident: 19245_CR10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja804527r
– volume: 83
  start-page: 364
  year: 2018
  ident: 19245_CR41
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.7b02750
– volume: 360
  start-page: 1438
  year: 2018
  ident: 19245_CR32
  publication-title: Science
  doi: 10.1126/science.aat4210
– ident: 19245_CR1
  doi: 10.3109/9781420092394
– volume: 50
  start-page: 333
  year: 1999
  ident: 19245_CR55
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(98)00484-1
– volume: 118
  start-page: 5080
  year: 2018
  ident: 19245_CR6
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00561
– volume: 110
  start-page: 1663
  year: 2010
  ident: 19245_CR3
  publication-title: Chem. Rev.
  doi: 10.1021/cr9002352
– volume: 17
  start-page: 5784
  year: 2015
  ident: 19245_CR24
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.5b02895
– volume: 50
  start-page: 12631
  year: 2011
  ident: 19245_CR12
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201106321
– volume: 4
  start-page: 2026
  year: 2018
  ident: 19245_CR28
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.08.011
– volume: 53
  start-page: 13192
  year: 2017
  ident: 19245_CR22
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC07352F
– volume: 20
  start-page: 1142
  year: 2018
  ident: 19245_CR40
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b00072
– ident: 19245_CR5
– volume: 16
  start-page: 412
  year: 1998
  ident: 19245_CR42
  publication-title: Trends Biotechnol.
  doi: 10.1016/S0167-7799(98)01240-2
– volume: 118
  start-page: 349
  year: 2018
  ident: 19245_CR43
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00437
– volume: 117
  start-page: 8484
  year: 1995
  ident: 19245_CR50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00137a032
– volume: 52
  start-page: 9229
  year: 2013
  ident: 19245_CR36
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201303928
– volume: 108
  start-page: 7864
  year: 1986
  ident: 19245_CR57
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00284a078
– volume: 42
  start-page: 5595
  year: 2013
  ident: 19245_CR4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60068h
– volume: 127
  start-page: 15051
  year: 2005
  ident: 19245_CR14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja055545d
– volume: 133
  start-page: 20100
  year: 2011
  ident: 19245_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja208867g
– volume: 106
  start-page: 7175
  year: 1984
  ident: 19245_CR56
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00335a051
SSID ssj0000391844
Score 2.5395193
Snippet Chiral aldehyde catalysis is a burgeoning strategy for the catalytic asymmetric α-functionalization of aminomethyl compounds. However, the reaction types are...
Chiral aldehyde catalysis is a useful strategy in the catalytic asymmetric α-functionalization of amino methyl compounds but these reaction types are limited....
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5372
SubjectTerms 639/638/403/935
639/638/549/933
639/638/77/883
639/638/77/888
Aldehydes
Amino acids
Aromatic compounds
Asymmetry
Catalysis
Conjugates
Humanities and Social Sciences
Imines
Methyl compounds
multidisciplinary
Quinones
Science
Science (multidisciplinary)
Stereoselectivity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiKcIlMpI3GhUJ7YT5wgtVYUEJyr1Zo1f2qA2i9jdw_57Zpzs0lSiXMgxduLHjO1v7PE3jL1v264DA03ZgW9LlbpUdilWaKWINikBXmffnK_fmotL9eVKX90K9UU-YSM98NhxJ6DwkY1pIXoFTeW6znsEBqJJLtUiQyNc824ZU3kOlh2aLmq6JSOkOVmpPCeQtUQ2hy7lbCXKhP0zlHnXR_LOQWlef86fsMcTcOQfxwo_ZQ_i8Iw9HENJbp-z_qwH4jyIy0CeFnRhivtFj__kcB3iYhsiz1s1xEDCEalyWG1vbiielufVcVOiXfxjQ3tqgZOPEcmLwxA4RVHu_YIjuMxXIFYv2OX55--nF-UURqHEjpbrMiRDwb67GFzSutahNVqBS96gBZnAU_zz2oEOKQZIoDVirBAcYj3nhYsgX7KDYTnEV4zXxlcSBBgvJCIZAyGqJlVYgAmqMq5g1a5LrZ84xinUxbXNZ93S2FEMFsVgsxisLNiH_Tc_R4aNe3N_IkntcxI7dn6BOmMnnbH_0pmCHe7kbKchu7I1LtO6RgDdFOzdPhkHG52gwBCXG8qDHVkRgU_B2pl-zCo0Txn6RabtbgnraVGw450m_Sn87w1-_T8a_IY9qrPmi7KWh-xg_WsT3yKYWrujPG5-A24LHHs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ikCBRmJG7WaxHbsnBCvqkKCE5X2Zo1fbFCbtM3uYf89Hm92q1SiOSZO4nhs55vx-PsI-aBU24KGhrXgFBOxjayNoUpeSqmiKMHJnJvz81dzeiZ-LORiCriNU1rlbk7ME7UfHMbIj-s0i8o64Zvm0-UVQ9UoXF2dJDTukwdIXYYpXWqh9jEWZD_XQkx7ZUquj0eRZwb0mdDzkIzP_keZtn-GNW9nSt5aLs1_oZMn5PEEH-nnrb2fknuhf0YebgUlN89J960DZD4Ig8d8C9w2Rd2yS8-kcO7DcuMDzQEb5CGhCa9SGDcXF6iq5Wh11LDkHf9dY2TNU8w0QqtR6D1FLeXOLWmCmHkjxPiCnJ18__31lE1iCiw1N18xHzVKfrfB2yhlLb3SUoCNTic_MoJDFfTagvQxeIggZUJa3tuE-KwrbQD-khz0Qx9eEVprV3EoQbuSJzyjwQfRxCq9QHtRaVuQatekxk1M4yh4cW7yijfXZmsGk8xgshkML8jH_T2XW56NO0t_QUvtSyJHdj4xXP8x05AzINLBG60gOAFNZdvWuQQpyybaWJdQkMOdnc00cEdz080K8n5_OQ05XEeBPgxrLJMaskIan4KoWf-YVWh-pe-WmbxbIeKTZUGOdj3p5uX__-DXd9f1DXlU5z5dspofkoPV9Tq8TWBpZd_lEfEPZCkT7A
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals (WRLC)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXVF4iUJCRuNEIJ7YT51gWqgoJTlTqzRq_2KA2W3V3D_vvmfFmF6UCJHJM7NjxzMTf2ONvGHvXtl0HBpqyA9-WKnWp7FKs0EsRbVICvM6xOV-_NecX6sulvjxg9e4sTA7az5SW-Te9iw77sFTZpMnZIZdBl_Ieu0_U7aTVs2a2X1chxnOj1Hg-Rkjzh6qTOShT9U_w5d3oyDtbpHnmOTtij0bIyE-3nXzMDuLwhD3YJpHcPGX9px6I7SAuAsVY0FEp7uc9vpPDVYjzTYg8L9IQ9whHjMphubm-pkxanlcnTYke8c81raYFTtFFJCkOQ-CUP7n3c46wMh9-WD5jF2efv8_OyzGBQolDLFdlSIbSfHcxuKR1rUNrtAKXvEHfMYGnzOe1Ax1SDJBAa0RXIThEec4LF0E-Z4fDYogvGK-NryQIMF5IxDAGQlRNqrABE1RlXMGq3ZBaP7KLU5KLK5t3uaWxWzFYFIPNYrCyYO_3dW623Br_LP2RJLUvSbzY-cbi9ocd9cSCwks2poXoFTSV6zrvEUaKJrlUCyjY8U7OdjTWpa1xgtY1QuemYG_3j9HMaO8EhrhYUxkcyIqoewrWTvRj0qHpk6GfZ8LullCeFgU72WnS78b__sEv_6_4K_awzjouyloes8PV7Tq-RsC0cm-yhfwC9FoRug
  priority: 102
  providerName: Springer Nature
Title Diastereodivergent chiral aldehyde catalysis for asymmetric 1,6-conjugated addition and Mannich reactions
URI https://link.springer.com/article/10.1038/s41467-020-19245-3
https://www.proquest.com/docview/2471520806
https://www.proquest.com/docview/2454116263
https://pubmed.ncbi.nlm.nih.gov/PMC7584650
https://doaj.org/article/a44443687aec4a61b99cc00906fbf20a
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwEB7tIdC-IE4RWCoj8cYGctix84BQt-yyqrQrBFTqWzTxQYu6KfSQ6L9n7KZFXS08kIdEsp048czE3_iYD-CVlGWJCou4RC1j7koXl86m5KUk0vEEtQhrcy6viosB7w_FcA82dEdtA85vde08n9RgNnnz6-fqPRn8u_WWcfV2zoO5e0fIuxMizvfhkHom6Q31soX74c-cl-TQ8HbvzO23HsFdcvEJFWV8p6sKEf13YOjNRZQ3ZlJDB3V-H-61yJJ116rwAPZs8xDurLkmV49g_GGMPiiCnRq_FMPvqGJ6NKZnMpwYO1oZy8JYjg9RwgjKMpyvrq894ZZm6UkRk-P8fekH3Qzzi5C8QBk2hnma5bEeMUKfYY_E_DEMzs--9i7ilmchJknki9g45dnAS2tqJ0QmjFSCY-20IhfTofYE6VmNwjhr0KEQBMKMqQkM1jqpLeZP4KCZNvYpsEzpNMcElU5ygjoKjeWFS6kCZXiq6gjSTZNWug1C7rkwJlWYDM9VtZZIRRKpgkSqPILX23t-rENw_LP0qZfUtqQPnx0SprNvVWuNFXI68kJJtJpjkdZlqTWhzaRwtcsSjOB4I-dqo5JVRv24yAhhFxG83GaTNfopFmzsdOnLUEOmPsJPBHJHP3ZeaDenGY9CXG_pwaBIIjjZaNKfyv_-wc_-u6LncJQFzU_iLD-Gg8VsaV8QxFrUHdiXQ0lndf6xA4fdbv9Ln66nZ1efPlNqr-h1wuBFJ9jXb4UwKz0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4qkGChgJTjSqk9iJc0AIKNWWPk6t1JuZ-MEuarOluyu0f4rfyIw32Wor0VtzTLxx1vPwN_Z4PsbeVVVdg4YyrcFWqQx1SOvgM4xSRBWkAKtibs7hUTk4kd9P1eka-9ufhaG0yt4nRkftxpbWyLdz9KIqR3xTfrr4nRJrFO2u9hQaC7XY9_M_GLJNPu7toHzf5_nut-Ovg7RjFUix32KauqCJ-7r2rglK5cpVWklogtUYUAWwRAeeN6Bc8A4CKIWQw7kGoU9jReOhwPfeYXdx4hVkUdVptVzToWrrWsrubI4o9PZERk9EMRpFOiotVua_SBOwgm2vZ2Ze256Ns97uI_awg6v880K_HrM13z5h9xYElvOnbLQzAqq04MeO8jvomBa3wxG-k8OZ88O58zwuEFHdE474mMNkfn5OLF6WZ1tlitH4rxmt5DlOmU2kJRxax4m7eWSHHCFtPHgxecZObmWYn7P1dtz6DcZzbbMCBGgrCsRPGpyXZciwA-1kppuEZf2QGttVNieCjTMTd9gLbRZiMCgGE8VgioR9WP7mYlHX48bWX0hSy5ZUkzveGF_-NJ2JG5B4FaWuwFsJZdbUtbUIYUUZmpALSNhmL2fTOYqJuVLrhL1dPkYTp30baP14Rm1wIDMqG5SwakU_Vj5o9Uk7GsZi4RUhTCUSttVr0lXn___DL27-1jfs_uD48MAc7B3tv2QP8qjfIs2LTbY-vZz5VwjUps3raB2c_bhtc_wHxZlTRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4qkGChgJTjTaJLZj54AQsKxaChUHKu3NOH6wi9psaXaF9q_x65jxJlttJXprjomTOJ5HvrHH8xHySsqqMsqUaWWsTHmoQloFn0OUksnAM2NFzM35elTuH_PPYzHeIn_7vTCYVtn7xOio3cziHPmgAC8qCsA35SB0aRHfhqN3Z79TZJDCldaeTmOlIod--QfCt_btwRBk_booRp--f9xPO4aBFPrA5qkLCnmwK-_qIEQhnFSCmzpYBcFVMBapwYvaCBe8M8EIAfDDuRpgUG2z2hsGz71BbkomcrQxOZbr-R2svK447_bpZEwNWh69EsZrGPWIlG38CyNlwAbOvZyleWmpNv4BR_fI3Q660vcrXbtPtnzzgNxakVkuH5LpcGqw6oKfOcz1wC1b1E6m8ExqTpyfLJ2ncbIIa6BQwMrUtMvTU2T0sjTfK1OIzH8tcFbPUcxyQo2hpnEUeZyndkIB3sZNGO0jcnwtw_yYbDezxu8QWiibM5MZZTMGWEoZ53kZcniBcjxXdULyfki17aqcI9nGiY6r7UzplRg0iEFHMWiWkDfre85WNT6ubP0BJbVuifW544nZ-U_dmbs2HA5WKmm85abM66qyFuBsVoY6FJlJyG4vZ905jVZfqHhCXq4vg7njGo5p_GyBbWAgcywhlBC5oR8bHdq80kwnsXC4RLQpsoTs9Zp08fL_f_CTq_v6gtwGQ9RfDo4On5I7RVTvLC3YLtmeny_8M8Bs8_p5NA5Kfly3Nf4DZZlXfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diastereodivergent+chiral+aldehyde+catalysis+for+asymmetric+1%2C6-conjugated+addition+and+Mannich+reactions&rft.jtitle=Nature+communications&rft.au=Wen%2C+Wei&rft.au=Luo%2C+Ming-Jing&rft.au=Yuan%2C+Yi&rft.au=Liu%2C+Jian-Hua&rft.date=2020-10-23&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=11&rft_id=info:doi/10.1038%2Fs41467-020-19245-3&rft_id=info%3Apmid%2F33097724&rft.externalDocID=PMC7584650
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon