Diastereodivergent chiral aldehyde catalysis for asymmetric 1,6-conjugated addition and Mannich reactions
Chiral aldehyde catalysis is a burgeoning strategy for the catalytic asymmetric α-functionalization of aminomethyl compounds. However, the reaction types are limited and to date include no examples of stereodivergent catalysis. In this work, we disclose two chiral aldehyde-catalysed diastereodiverge...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 5372 - 11 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.10.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chiral aldehyde catalysis is a burgeoning strategy for the catalytic asymmetric α-functionalization of aminomethyl compounds. However, the reaction types are limited and to date include no examples of stereodivergent catalysis. In this work, we disclose two chiral aldehyde-catalysed diastereodivergent reactions: a 1,6-conjugate addition of amino acids to
para
-quinone methides and a bio-inspired Mannich reaction of pyridinylmethanamines and imines. Both the
syn
- and
anti
-products of these two reactions can be obtained in moderate to high yields, diastereo- and enantioselectivities. Four potential reaction models produced by DFT calculations are proposed to explain the observed stereoselective control. Our work shows that chiral aldehyde catalysis based on a reversible imine formation principle is applicable for the α-functionalization of both amino acids and aryl methylamines, and holds potential to promote a range of asymmetric transformations diastereoselectively.
Chiral aldehyde catalysis is a useful strategy in the catalytic asymmetric α-functionalization of amino methyl compounds but these reaction types are limited. Here, the authors report two chiral aldehyde-catalysed diastereodivergent reactions, namely, a 1,6-conjugate addition and a bio-inspired Mannich reaction. |
---|---|
AbstractList | Chiral aldehyde catalysis is a burgeoning strategy for the catalytic asymmetric α-functionalization of aminomethyl compounds. However, the reaction types are limited and to date include no examples of stereodivergent catalysis. In this work, we disclose two chiral aldehyde-catalysed diastereodivergent reactions: a 1,6-conjugate addition of amino acids to
para
-quinone methides and a bio-inspired Mannich reaction of pyridinylmethanamines and imines. Both the
syn
- and
anti
-products of these two reactions can be obtained in moderate to high yields, diastereo- and enantioselectivities. Four potential reaction models produced by DFT calculations are proposed to explain the observed stereoselective control. Our work shows that chiral aldehyde catalysis based on a reversible imine formation principle is applicable for the α-functionalization of both amino acids and aryl methylamines, and holds potential to promote a range of asymmetric transformations diastereoselectively.
Chiral aldehyde catalysis is a useful strategy in the catalytic asymmetric α-functionalization of amino methyl compounds but these reaction types are limited. Here, the authors report two chiral aldehyde-catalysed diastereodivergent reactions, namely, a 1,6-conjugate addition and a bio-inspired Mannich reaction. Chiral aldehyde catalysis is a burgeoning strategy for the catalytic asymmetric α-functionalization of aminomethyl compounds. However, the reaction types are limited and to date include no examples of stereodivergent catalysis. In this work, we disclose two chiral aldehyde-catalysed diastereodivergent reactions: a 1,6-conjugate addition of amino acids to para-quinone methides and a bio-inspired Mannich reaction of pyridinylmethanamines and imines. Both the syn- and anti-products of these two reactions can be obtained in moderate to high yields, diastereo- and enantioselectivities. Four potential reaction models produced by DFT calculations are proposed to explain the observed stereoselective control. Our work shows that chiral aldehyde catalysis based on a reversible imine formation principle is applicable for the α-functionalization of both amino acids and aryl methylamines, and holds potential to promote a range of asymmetric transformations diastereoselectively.Chiral aldehyde catalysis is a useful strategy in the catalytic asymmetric α-functionalization of amino methyl compounds but these reaction types are limited. Here, the authors report two chiral aldehyde-catalysed diastereodivergent reactions, namely, a 1,6-conjugate addition and a bio-inspired Mannich reaction. Chiral aldehyde catalysis is a useful strategy in the catalytic asymmetric α-functionalization of amino methyl compounds but these reaction types are limited. Here, the authors report two chiral aldehyde-catalysed diastereodivergent reactions, namely, a 1,6-conjugate addition and a bio-inspired Mannich reaction. Chiral aldehyde catalysis is a burgeoning strategy for the catalytic asymmetric α-functionalization of aminomethyl compounds. However, the reaction types are limited and to date include no examples of stereodivergent catalysis. In this work, we disclose two chiral aldehyde-catalysed diastereodivergent reactions: a 1,6-conjugate addition of amino acids to para-quinone methides and a bio-inspired Mannich reaction of pyridinylmethanamines and imines. Both the syn- and anti-products of these two reactions can be obtained in moderate to high yields, diastereo- and enantioselectivities. Four potential reaction models produced by DFT calculations are proposed to explain the observed stereoselective control. Our work shows that chiral aldehyde catalysis based on a reversible imine formation principle is applicable for the α-functionalization of both amino acids and aryl methylamines, and holds potential to promote a range of asymmetric transformations diastereoselectively.Chiral aldehyde catalysis is a burgeoning strategy for the catalytic asymmetric α-functionalization of aminomethyl compounds. However, the reaction types are limited and to date include no examples of stereodivergent catalysis. In this work, we disclose two chiral aldehyde-catalysed diastereodivergent reactions: a 1,6-conjugate addition of amino acids to para-quinone methides and a bio-inspired Mannich reaction of pyridinylmethanamines and imines. Both the syn- and anti-products of these two reactions can be obtained in moderate to high yields, diastereo- and enantioselectivities. Four potential reaction models produced by DFT calculations are proposed to explain the observed stereoselective control. Our work shows that chiral aldehyde catalysis based on a reversible imine formation principle is applicable for the α-functionalization of both amino acids and aryl methylamines, and holds potential to promote a range of asymmetric transformations diastereoselectively. Chiral aldehyde catalysis is a burgeoning strategy for the catalytic asymmetric α-functionalization of aminomethyl compounds. However, the reaction types are limited and to date include no examples of stereodivergent catalysis. In this work, we disclose two chiral aldehyde-catalysed diastereodivergent reactions: a 1,6-conjugate addition of amino acids to para -quinone methides and a bio-inspired Mannich reaction of pyridinylmethanamines and imines. Both the syn - and anti -products of these two reactions can be obtained in moderate to high yields, diastereo- and enantioselectivities. Four potential reaction models produced by DFT calculations are proposed to explain the observed stereoselective control. Our work shows that chiral aldehyde catalysis based on a reversible imine formation principle is applicable for the α-functionalization of both amino acids and aryl methylamines, and holds potential to promote a range of asymmetric transformations diastereoselectively. |
ArticleNumber | 5372 |
Author | Wu, Zhao-Wei Ouyang, Qin Guo, Qi-Xiang Yuan, Yi Cai, Tian Luo, Ming-Jing Wen, Wei Liu, Jian-Hua Wu, Zhu-Lian |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0001-5100-8545 surname: Wen fullname: Wen, Wei email: wenwei1989@swu.edu.cn organization: Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University – sequence: 2 givenname: Ming-Jing surname: Luo fullname: Luo, Ming-Jing organization: Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University – sequence: 3 givenname: Yi orcidid: 0000-0002-5377-5737 surname: Yuan fullname: Yuan, Yi organization: College of Pharmacy, Third Military Medical University – sequence: 4 givenname: Jian-Hua orcidid: 0000-0002-0733-0980 surname: Liu fullname: Liu, Jian-Hua organization: Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University – sequence: 5 givenname: Zhu-Lian orcidid: 0000-0001-8444-4028 surname: Wu fullname: Wu, Zhu-Lian organization: Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University – sequence: 6 givenname: Tian orcidid: 0000-0003-3288-4288 surname: Cai fullname: Cai, Tian organization: Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University – sequence: 7 givenname: Zhao-Wei orcidid: 0000-0002-7083-601X surname: Wu fullname: Wu, Zhao-Wei organization: Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University – sequence: 8 givenname: Qin orcidid: 0000-0002-1161-5102 surname: Ouyang fullname: Ouyang, Qin email: ouyangq@tmmu.edu.cn organization: College of Pharmacy, Third Military Medical University – sequence: 9 givenname: Qi-Xiang orcidid: 0000-0002-0405-7958 surname: Guo fullname: Guo, Qi-Xiang email: qxguo@swu.edu.cn organization: Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University |
BookMark | eNp9Uk1v1DAUjFAR_aB_gFMkLhwI-DNxLkioQKlUxAXO1ov9nPUqaxc7W2n_fZ2mCNpD38XW88w8ezyn1VGIAavqDSUfKOHqYxZUtF1DGGloz4Rs-IvqhBFBG9oxfvTf_rg6z3lLSvGeKiFeVceck77rmDip_BcPecaE0fpbTCOGuTYbn2CqYbK4OVisDcwwHbLPtYuphnzY7XBO3tT0fduYGLb7EWa0NVjrZx9DDcHWPyAEbzZ1QjBLM7-uXjqYMp4_rGfV729ff118b65_Xl5dfL5ujFR8bqxTrRS0Rzs4KZm0nZICBmdU3ykHRnDVswGkdWjBgZScCWsHIuRgyIDAz6qrVddG2Oqb5HeQDjqC1_eNmEYNafZmQg2iFG9VB2gEtHToe2MI6UnrBsfIovVp1brZDzu0prhTnHkk-vgk-I0e463upBKtJEXg3YNAin_2mGe989ngNEHAuM-6fJygtGUtL9C3T6DbuE-hWFVQHZWMKNIWlFpRJsWcEzpt_AyLwWW-nzQleomHXuOhSzz0fTz0MoA9of59x7MkvpJyAYcR079bPcO6A6a4z7A |
CitedBy_id | crossref_primary_10_1021_acs_orglett_3c00825 crossref_primary_10_12677_JOCR_2021_94009 crossref_primary_10_1021_acscatal_3c01770 crossref_primary_10_1002_ange_202206111 crossref_primary_10_1002_chem_202301348 crossref_primary_10_1002_ange_202200850 crossref_primary_10_1021_jacsau_3c00216 crossref_primary_10_1002_adsc_202100881 crossref_primary_10_1016_j_cclet_2021_09_042 crossref_primary_10_1016_j_jcat_2022_09_018 crossref_primary_10_1002_anie_202424843 crossref_primary_10_1002_ange_202411156 crossref_primary_10_1021_jacs_4c16928 crossref_primary_10_1021_acs_orglett_3c01399 crossref_primary_10_1021_jacs_2c02258 crossref_primary_10_1055_a_1973_4292 crossref_primary_10_1038_s41467_022_35062_2 crossref_primary_10_1002_anie_202104031 crossref_primary_10_1038_s41929_024_01230_4 crossref_primary_10_1002_ange_202104031 crossref_primary_10_1002_asia_202300731 crossref_primary_10_1007_s11426_023_1578_y crossref_primary_10_6023_A21070345 crossref_primary_10_1038_s44160_022_00072_x crossref_primary_10_1039_D3SC01294H crossref_primary_10_1002_anie_202411156 crossref_primary_10_1021_acs_accounts_3c00804 crossref_primary_10_1021_acs_orglett_1c00143 crossref_primary_10_1002_advs_202400621 crossref_primary_10_1002_ejoc_202401038 crossref_primary_10_1039_D0QO01638A crossref_primary_10_1246_cl_210215 crossref_primary_10_1021_acs_chemrev_4c00132 crossref_primary_10_1039_D5QO00280J crossref_primary_10_1002_slct_202304341 crossref_primary_10_1002_anie_202206111 crossref_primary_10_1021_jacs_4c09840 crossref_primary_10_1002_anie_202402038 crossref_primary_10_1016_j_gresc_2022_03_007 crossref_primary_10_12677_jocr_2024_122021 crossref_primary_10_1002_ange_202424843 crossref_primary_10_1021_acscatal_3c00790 crossref_primary_10_1021_acs_orglett_1c01507 crossref_primary_10_1002_ange_202402038 crossref_primary_10_1038_s41467_022_30277_9 crossref_primary_10_2139_ssrn_4192560 crossref_primary_10_1002_anie_202200850 crossref_primary_10_3390_molecules26154432 crossref_primary_10_1021_jacs_1c07707 crossref_primary_10_1038_s41929_022_00875_3 crossref_primary_10_1039_D2CC00146B crossref_primary_10_1039_D4CS00485J crossref_primary_10_1134_S0022476624020069 crossref_primary_10_3389_fchem_2021_687817 crossref_primary_10_1021_jacs_4c16934 |
Cites_doi | 10.1021/jacs.8b06676 10.1007/978-3-642-58571-5 10.1021/ja207847p 10.1055/s-0037-1610914 10.1002/chem.201203462 10.1002/cjoc.201800478 10.1021/cs200593c 10.1021/jacs.9b01910 10.1002/anie.201807302 10.1021/jacs.7b12174 10.1039/c3sc53314j 10.1007/s11426-018-9345-5 10.1126/science.1237068 10.1021/jacs.6b06156 10.1039/C4CS00507D 10.7164/antibiotics.44.582 10.1016/j.ccr.2007.03.010 10.1021/ja900084k 10.1016/j.bmc.2015.03.069 10.1021/om1004918 10.1002/adsc.201601188 10.1021/ja510475n 10.1021/jm020916b 10.1021/ja0670409 10.3390/catal8070254 10.1002/asia.201800415 10.1021/jacs.5b10554 10.1021/jacs.6b13340 10.1002/anie.201305933 10.1021/acscatal.5b02619 10.1021/ja303320x 10.1021/acs.joc.6b00390 10.1002/chem.201604617 10.1002/anie.201808700 10.1002/cctc.201500176 10.1021/ja804527r 10.1021/acs.joc.7b02750 10.1126/science.aat4210 10.3109/9781420092394 10.1016/S0031-9422(98)00484-1 10.1021/acs.chemrev.7b00561 10.1021/cr9002352 10.1021/acs.orglett.5b02895 10.1002/anie.201106321 10.1016/j.chempr.2018.08.011 10.1039/C7CC07352F 10.1021/acs.orglett.8b00072 10.1016/S0167-7799(98)01240-2 10.1021/acs.chemrev.7b00437 10.1021/ja00137a032 10.1002/anie.201303928 10.1021/ja00284a078 10.1039/c3cs60068h 10.1021/ja055545d 10.1021/ja208867g 10.1021/ja00335a051 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-020-19245-3 |
DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_a44443687aec4a61b99cc00906fbf20a PMC7584650 10_1038_s41467_020_19245_3 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22071199; 21871223 funderid: https://doi.org/10.13039/501100001809 – fundername: ; grantid: 22071199; 21871223 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c583t-df865419edbf5525d7854abfc8978fac43892ba5dfedafa55324ddb045bc0bea3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:50 EDT 2025 Thu Aug 21 14:11:05 EDT 2025 Tue Aug 05 11:04:40 EDT 2025 Wed Aug 13 02:50:58 EDT 2025 Tue Jul 01 04:09:06 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Fri Feb 21 02:40:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-df865419edbf5525d7854abfc8978fac43892ba5dfedafa55324ddb045bc0bea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1161-5102 0000-0002-0405-7958 0000-0002-5377-5737 0000-0001-5100-8545 0000-0001-8444-4028 0000-0002-0733-0980 0000-0002-7083-601X 0000-0003-3288-4288 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-19245-3 |
PMID | 33097724 |
PQID | 2471520806 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a44443687aec4a61b99cc00906fbf20a pubmedcentral_primary_oai_pubmedcentral_nih_gov_7584650 proquest_miscellaneous_2454116263 proquest_journals_2471520806 crossref_citationtrail_10_1038_s41467_020_19245_3 crossref_primary_10_1038_s41467_020_19245_3 springer_journals_10_1038_s41467_020_19245_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-23 |
PublicationDateYYYYMMDD | 2020-10-23 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Atta-ur-RahmanShahwarDChoudharyMISenerBTokerGBaserKHCAlkaloids of bongardia chrysogonum APhytochemistry1999503333361:CAS:528:DyaK1MXns1yqsQ%3D%3D10.1016/S0031-9422(98)00484-1 KrautwaldSSarlahDSchafrothMACarreiraEMEnantio- and diastereodivergent dual catalysis: α-allylation of branched aldehydesScience2008340106510682013Sci...340.1065K10.1126/science.12370681:CAS:528:DC%2BC3sXot1Sru7o%3D ShiLChiral pyridoxal-catalyzed asymmetric biomimetic transamination of α-keto acidsOrg. Lett.201517578457871:CAS:528:DC%2BC2MXhvFWgt77O2658089310.1021/acs.orglett.5b02895 XuBCatalytic asymmetric direct α-alkylation of amino esters by aldehydes via imine activationChem. Sci.20145198819911:CAS:528:DC%2BC2cXlsFOrtbs%3D10.1039/c3sc53314j OliveiraMTLupariaMAudisioDMaulideNDual catalysis becomes diastereodivergentAngew. Chem., Int. Ed.20135213149131521:CAS:528:DC%2BC3sXhs1WmtrrK10.1002/anie.201305933 WangQGuQYouS-LEnantioselective carbonyl catalysis enabled by chiral aldehydesAngew. Chem., Int. Ed.201958681868251:CAS:528:DC%2BC1MXks1Siu7Y%3D10.1002/anie.201808700 ZaiSSubstituent effects of pyridine-amine nickel catalyst precursors on ethylene polymerizationACS Catal.201224334401:CAS:528:DC%2BC38XitVersLg%3D10.1021/cs200593c ChenJCarbonyl catalysis enables a biomimetic asymmetric Mannich reactionScience2018360143814422018Sci...360.1438C1:CAS:528:DC%2BC1cXht1SrtrbK2995497410.1126/science.aat4210 BeletskayaIPNájeraCYusMStereodivergent catalysisChem. Rev.2018118508052001:CAS:528:DC%2BC1cXnvFCiu7w%3D2967689510.1021/acs.chemrev.7b00561 HuoXHeRZhangXZhangWAn Ir/Zn dual catalysis for enantio- and diastereodivergent α-allylation of α-hydroxyketonesJ. Am. Chem. Soc.201613811093110961:CAS:528:DC%2BC28XhtlyqsrvL2754876110.1021/jacs.6b06156 Hesse, M. Alkaloids. Nature’s Curse or Blessing (Wiley-VCH, Weinheim, 2002). SunLChenXYEndersDAldehyde catalysis: new options for asymmetric organocatalytic reactionsChem201842026202810.1016/j.chempr.2018.08.0111:CAS:528:DC%2BC1cXhslaht7nN WenWChiral aldehyde catalysis for the catalytic asymmetric activation of glycine estersJ. Am. Chem. Soc.2018140977497801:CAS:528:DC%2BC1cXht12mtbbF2999540110.1021/jacs.8b06676 ParraATortosaMpara-Quinone methide: a new player in asymmetric catalysisChemCatChem20157152415261:CAS:528:DC%2BC2MXnt1Smt7c%3D10.1002/cctc.201500176 ChenJLiuYGongXShiLZhaoBBiomimetic chiral pyridoxal and pyridoxamine catalystsChin. J. Chem.2019371031121:CAS:528:DC%2BC1cXisF2gs77J PatilMDGroganGBommariusAYunHRecent advances in ω-transaminase-mediated biocatalysis for the enantioselective synthesis of chiral aminesCatalysts2018825427810.3390/catal80702541:CAS:528:DC%2BC1cXhtlKksbnP KanneDBAshworthDJChengMTMutterLCAboodLGSynthesis of the first highly potent bridged nicotinoid 9-Azabicyclo[4.2.1]nona[2,3-c]pyridine (pyrido[3,4-b]homotropane)J. Am. Chem. Soc.1986108786478651:CAS:528:DyaL2sXhvV2isw%3D%3D2228331610.1021/ja00284a078 TaylorPPPantaleoneDPSenkpeilRFFotheringhamIGNovel biosynthetic approaches to the production of unnatural amino acids using transaminasesTrends Biotechnol.1998164124181:CAS:528:DyaK1cXmslygt78%3D980783810.1016/S0167-7799(98)01240-2 LiuYEEnzyme-inspired axially chiral pyridoxamines armed with a cooperative lateral amine chain for enantioselective biomimetic transaminationJ. Am. Chem. Soc.201613807301073310.1021/jacs.5b105541:CAS:528:DC%2BC28XktFCrsA%3D%3D ChenLLuoM-JZhuFWenWGuoQ-XCombining chiral aldehyde catalysis and transition-metal catalysis for enantioselective α-allylic alkylation of amino acid estersJ. Am. Chem. Soc.2019141515951631:CAS:528:DC%2BC1MXls1alur0%3D3089693710.1021/jacs.9b01910 MiyazakiMDiscovery of DS-5272 as a promising candidate: a potent and orally active p53–MDM2 interaction inhibitorBioorg. Med. Chem.201523236027671:CAS:528:DC%2BC2MXlvVeks7g%3D2588253110.1016/j.bmc.2015.03.069 BihanMZhaoJC-GAdvances in asymmetric diastereodivergent catalysisAdv. Synth. Catal.201735953457510.1002/adsc.2016011881:CAS:528:DC%2BC2sXht1Oitrs%3D GuimondNMacDonaldMJLemieuxVBeaucheminAMCatalysis through temporary intramolecularity: mechanistic investigations on aldehyde-catalyzed cope-type hydroamination lead to yhe discovery of a more efficient tethering catalystJ. Am. Chem. Soc.201213416571165771:CAS:528:DC%2BC38Xhtlekt7fO2297100110.1021/ja303320x ConfalonePNHuieEMThe stabilized iminium ylide-olefin [3+2] cycloaddition reaction. Total synthesis of Sceletium alkaloid A4J. Am. Chem. Soc.1984106717571781:CAS:528:DyaL2cXmtFWms7Y%3D10.1021/ja00335a051 BarattaWChiral pincer ruthenium and osmium complexes for the fast and efficient hydrogen transfer reduction of ketonesOrganometallics201029356335701:CAS:528:DC%2BC3cXpt1Slt78%3D10.1021/om1004918 KrautwaldSCarreiraEMStereodivergence in asymmetric catalysisJ. Am. Chem. Soc.2017139562756391:CAS:528:DC%2BC2sXlslOhs74%3D2838440210.1021/jacs.6b13340 CaruanaLKniepFJohansenTKPoulsenPHJørgensenKAA new organocatalytic concept for asymmetric α-alkylation of aldehydesJ. Am. Chem. Soc.201413615929159321:CAS:528:DC%2BC2cXhvVSjsrjJ2536929410.1021/ja510475n Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. Comprehensive Asymmetric Catalysis, Vols. I–III (Springer, New York, 1999). MacDonaldMJHespCRSchipperDJPesantMBeaucheminAMHighly enantioselective intermolecular hydroamination of allylic amines with chiral aldehydes as tethering ctalystsChem. -Eur. J.201319259726011:CAS:528:DC%2BC3sXntFGquw%3D%3D2330759110.1002/chem.201203462 BarókMUnexpected inversions in asymmetric reactions: reactions with chiral metal complexes, chiral organocatalysts, and heterogeneous chiralChem. Rev.20101101663170510.1021/cr90023521:CAS:528:DC%2BD1MXhtleisLrK LiB-JEl-NachefCBeaucheminAMOrganocatalysis using aldehydes: the development and improvement of catalytic hydroaminations, hydrations and hydrolysesChem. Commun.20175313192132041:CAS:528:DC%2BC2sXhslCms7fP10.1039/C7CC07352F ZhangZ-PXieK-XYangCLiMLiXAsymmetric synthesis of dihydrocoumarins through chiral phosphoric acid-catalyzed cycloannulation of para-quinone methides and azlactonesJ. Org. Chem.2018833643732018FrCh....6..364Z2921232310.1021/acs.joc.7b027501:CAS:528:DC%2BC2sXhvFaqtrnI CanaryJWAllenCSCastagnettoJMWangYConformationally driven, propeller-like chirality in labile coordination complexesJ. Am. Chem. Soc.1995117848484851:CAS:528:DyaK2MXntFCntb8%3D10.1021/ja00137a032 KwongH-LChiral pyridine-containing ligands in asymmetric catalysisCoord. Chem. Rev.2007251218822221:CAS:528:DC%2BD2sXhtVeqs7zN10.1016/j.ccr.2007.03.010 LiW-JEnantioselective organocatalytic 1,6-addition of azlactones to para-quinone methides: an access to α,α-disubstituted and β,β-diaryl-α-amino acid estersOrg. Lett.201820114211451:CAS:528:DC%2BC1cXhsVKmtLY%3D2936397710.1021/acs.orglett.8b00072 LinLFengXCatalytic strategies for diastereodivergent synthesisChem. Eur. J.201723646464821:CAS:528:DC%2BC2sXitVGksrw%3D2785980610.1002/chem.201604617 GongL-ZChiral aldehyde catalysis: a highly promising concept in asymmetric catalysisSci. China Chem.201962341:CAS:528:DC%2BC1cXhs1KksrrN10.1007/s11426-018-9345-5 WeiLZhuQXuS-MChangXWangC-JStereodivergent synthesis of α,α-disubstituted α‑amino acids via synergistic Cu/Ir catalysisJ. Am. Chem. Soc.2018140150815131:CAS:528:DC%2BC1cXksVOhsQ%3D%3D2930357810.1021/jacs.7b12174 ZhangX-ZDiastereoselective and enantioselective synthesis of unsymmetric β,β-diaryl-α-amino acid esters via organocatalytic 1,6-conjugate addition of para-quinone methidesJ. Org. Chem.201681565556621:CAS:528:DC%2BC28Xos12ntbs%3D2722428510.1021/acs.joc.6b00390 HuangYWaljiAMLarsenCHMacMillanDWCEnantioselective organo-cascade catalysisJ. Am. Chem. Soc.200512715051150531:CAS:528:DC%2BD2MXhtVKmtLnM1624864310.1021/ja055545d AokiMCyclothiazomycin, a novel polythiazole-containing peptide with renin nhibitory activityJ. Antibiot.1991445825881:CAS:528:DyaK3MXks12ruro%3D10.7164/antibiotics.44.582 LupariaMCatalytic asymmetric diastereodivergent deracemizationAngew. Chem., Int. Ed.20115012631126351:CAS:528:DC%2BC3MXhsVWlsb7F10.1002/anie.201106321 KellySAApplication of ω‑transaminases in the pharmaceutical industryChem. Rev.20181183493671:CAS:528:DC%2BC2sXhvFygsbbE2925191210.1021/acs.chemrev.7b00437 UllrichTConformationally constrained nicotines: polycyclic, bridged, and spiro-annulated analogues as novel ligands for the nicotinic acetylcholine receptorJ. Med. Chem.200245404740541:CAS:528:DC%2BD38XlvVGrsLw%3D1219032610.1021/jm020916b Carreira, E. M. & Kvaerno, L. Classics in Stereoselective Synthesis (Wiley, Weinheim, 2009). MacDonaldMJSchipperDJNgPJMoranJBeaucheminAMA catalytic tethering strategy: simple aldehydes catalyze intermolecular alkene hydroaminationsJ. Am. Chem. Soc.201113320100201031:CAS:528:DC%2BC3MXhsV2jurfE2209859510.1021/ja208867g RaoXEfficient synthesis of (-)-Corynoline by enantioselective palladium-catalyzed α-arylation with sterically hindered substratesAngew. Chem. Int. Ed.20185712328123321:CAS:528:DC%2BC1cXhs1Whs7zJ10.1002/anie.201807302 HeF-SDirect asymmetric synthesis of β-bis-aryl-α-amino acid esters via enantioselective copper-catalyzed addition of p-quinone methidesACS Catal.201666526561:CAS:528:DC%2BC2MXitVygtrrO10.1021/acscatal.5b02619 WangBWuFWangYLiuXDengLControl of diastereoselectivity in tandem asymmetric reactions generating nonadjacent stereocenters with bifunctional catalysis by cinchona alkaloidsJ. Am. Chem. Soc.20071297687691:CAS:528:DC%2BD2sXlsFyl1724380610.1021/ja0670409 YanX-XHighly diastereoselective switchable enantioselective Mannich reaction of glycine derivatives with iminesJ. Am. Chem. Soc.200813014362143631:CAS:528:DC%2BD1cXht1Squ7nJ1884189210.1021/ja804527r TianXDiastereodivergent asymmetric sulfa-Michael additions of α-branched enones using a single chiral organic catalystJ. Am. Chem. Soc.201113317934179411:CAS:528:DC%2BC3MXhtlSqsb%2FJ2193656110.1021/ja207847p NojiriAKumagaiNShibasakiMLinking structural dynamics and functional diversity in asymmetric catalysisJ. Am. Chem. Soc.2009131377937841:CAS:528:DC%2BD1MXit1eksLs%3D1923186710.1021/ja900084k XieYPanHLiuMXiaoXShiYProgress in asymmetric biomimetic transamination of carbonyl compoundsChem. Soc. Rev.201544174017481:CAS:528 Y Huang (19245_CR14) 2005; 127 S Zai (19245_CR51) 2012; 2 W Wen (19245_CR31) 2018; 140 S Krautwald (19245_CR15) 2008; 340 Y Xie (19245_CR45) 2015; 44 PN Confalone (19245_CR56) 1984; 106 W Baratta (19245_CR52) 2010; 29 H-L Kwong (19245_CR53) 2007; 251 J Chen (19245_CR32) 2018; 360 L Shi (19245_CR24) 2015; 17 JW Canary (19245_CR50) 1995; 117 YE Liu (19245_CR46) 2016; 138 L Wei (19245_CR19) 2018; 140 J Chen (19245_CR25) 2019; 37 DB Kanne (19245_CR57) 1986; 108 M Barók (19245_CR3) 2010; 110 A Parra (19245_CR34) 2015; 7 B List (19245_CR29) 2018; 14 J Escorihuela (19245_CR4) 2013; 42 X Huo (19245_CR16) 2016; 138 M Luparia (19245_CR12) 2011; 50 PP Taylor (19245_CR42) 1998; 16 Atta-ur-Rahman (19245_CR55) 1999; 50 X-Z Zhang (19245_CR39) 2016; 81 X-X Yan (19245_CR10) 2008; 130 A Nojiri (19245_CR13) 2009; 131 SA Kelly (19245_CR43) 2018; 118 MT Oliveira (19245_CR17) 2013; 52 X Rao (19245_CR58) 2018; 57 L-Z Gong (19245_CR27) 2019; 62 L Caruana (19245_CR37) 2014; 136 T Ullrich (19245_CR48) 2002; 45 MD Patil (19245_CR44) 2018; 8 L Chen (19245_CR33) 2019; 141 B Xu (19245_CR30) 2014; 5 W-J Li (19245_CR40) 2018; 20 L Lin (19245_CR7) 2017; 23 19245_CR54 M Bihan (19245_CR8) 2017; 359 L Sun (19245_CR28) 2018; 4 MJ MacDonald (19245_CR21) 2013; 19 Q Wang (19245_CR26) 2019; 58 M Miyazaki (19245_CR49) 2015; 23 IP Beletskaya (19245_CR6) 2018; 118 F-S He (19245_CR38) 2016; 6 Z-P Zhang (19245_CR41) 2018; 83 19245_CR1 S Krautwald (19245_CR18) 2017; 139 W Li (19245_CR35) 2018; 13 M Aoki (19245_CR47) 1991; 44 19245_CR2 B-J Li (19245_CR22) 2017; 53 19245_CR5 B Wang (19245_CR9) 2007; 129 W-D Chu (19245_CR36) 2013; 52 N Guimond (19245_CR23) 2012; 134 X Tian (19245_CR11) 2011; 133 MJ MacDonald (19245_CR20) 2011; 133 |
References_xml | – reference: Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. Comprehensive Asymmetric Catalysis, Vols. I–III (Springer, New York, 1999). – reference: BarattaWChiral pincer ruthenium and osmium complexes for the fast and efficient hydrogen transfer reduction of ketonesOrganometallics201029356335701:CAS:528:DC%2BC3cXpt1Slt78%3D10.1021/om1004918 – reference: UllrichTConformationally constrained nicotines: polycyclic, bridged, and spiro-annulated analogues as novel ligands for the nicotinic acetylcholine receptorJ. Med. Chem.200245404740541:CAS:528:DC%2BD38XlvVGrsLw%3D1219032610.1021/jm020916b – reference: ZhangZ-PXieK-XYangCLiMLiXAsymmetric synthesis of dihydrocoumarins through chiral phosphoric acid-catalyzed cycloannulation of para-quinone methides and azlactonesJ. Org. Chem.2018833643732018FrCh....6..364Z2921232310.1021/acs.joc.7b027501:CAS:528:DC%2BC2sXhvFaqtrnI – reference: ZaiSSubstituent effects of pyridine-amine nickel catalyst precursors on ethylene polymerizationACS Catal.201224334401:CAS:528:DC%2BC38XitVersLg%3D10.1021/cs200593c – reference: BihanMZhaoJC-GAdvances in asymmetric diastereodivergent catalysisAdv. Synth. Catal.201735953457510.1002/adsc.2016011881:CAS:528:DC%2BC2sXht1Oitrs%3D – reference: GongL-ZChiral aldehyde catalysis: a highly promising concept in asymmetric catalysisSci. China Chem.201962341:CAS:528:DC%2BC1cXhs1KksrrN10.1007/s11426-018-9345-5 – reference: LiW-JEnantioselective organocatalytic 1,6-addition of azlactones to para-quinone methides: an access to α,α-disubstituted and β,β-diaryl-α-amino acid estersOrg. Lett.201820114211451:CAS:528:DC%2BC1cXhsVKmtLY%3D2936397710.1021/acs.orglett.8b00072 – reference: PatilMDGroganGBommariusAYunHRecent advances in ω-transaminase-mediated biocatalysis for the enantioselective synthesis of chiral aminesCatalysts2018825427810.3390/catal80702541:CAS:528:DC%2BC1cXhtlKksbnP – reference: LupariaMCatalytic asymmetric diastereodivergent deracemizationAngew. Chem., Int. Ed.20115012631126351:CAS:528:DC%2BC3MXhsVWlsb7F10.1002/anie.201106321 – reference: KrautwaldSSarlahDSchafrothMACarreiraEMEnantio- and diastereodivergent dual catalysis: α-allylation of branched aldehydesScience2008340106510682013Sci...340.1065K10.1126/science.12370681:CAS:528:DC%2BC3sXot1Sru7o%3D – reference: ChenJCarbonyl catalysis enables a biomimetic asymmetric Mannich reactionScience2018360143814422018Sci...360.1438C1:CAS:528:DC%2BC1cXht1SrtrbK2995497410.1126/science.aat4210 – reference: MiyazakiMDiscovery of DS-5272 as a promising candidate: a potent and orally active p53–MDM2 interaction inhibitorBioorg. Med. Chem.201523236027671:CAS:528:DC%2BC2MXlvVeks7g%3D2588253110.1016/j.bmc.2015.03.069 – reference: Jozwiak, K. Lough, W. J. & Wainer, I. W. Drug Stereochemistry: Analytical Methods and Pharmacology, 3rd edn. (Informa, 2012). – reference: ChenJLiuYGongXShiLZhaoBBiomimetic chiral pyridoxal and pyridoxamine catalystsChin. J. Chem.2019371031121:CAS:528:DC%2BC1cXisF2gs77J – reference: LiuYEEnzyme-inspired axially chiral pyridoxamines armed with a cooperative lateral amine chain for enantioselective biomimetic transaminationJ. Am. Chem. Soc.201613807301073310.1021/jacs.5b105541:CAS:528:DC%2BC28XktFCrsA%3D%3D – reference: Carreira, E. M. & Kvaerno, L. Classics in Stereoselective Synthesis (Wiley, Weinheim, 2009). – reference: KellySAApplication of ω‑transaminases in the pharmaceutical industryChem. Rev.20181183493671:CAS:528:DC%2BC2sXhvFygsbbE2925191210.1021/acs.chemrev.7b00437 – reference: TianXDiastereodivergent asymmetric sulfa-Michael additions of α-branched enones using a single chiral organic catalystJ. Am. Chem. Soc.201113317934179411:CAS:528:DC%2BC3MXhtlSqsb%2FJ2193656110.1021/ja207847p – reference: BeletskayaIPNájeraCYusMStereodivergent catalysisChem. Rev.2018118508052001:CAS:528:DC%2BC1cXnvFCiu7w%3D2967689510.1021/acs.chemrev.7b00561 – reference: HuangYWaljiAMLarsenCHMacMillanDWCEnantioselective organo-cascade catalysisJ. Am. Chem. Soc.200512715051150531:CAS:528:DC%2BD2MXhtVKmtLnM1624864310.1021/ja055545d – reference: MacDonaldMJHespCRSchipperDJPesantMBeaucheminAMHighly enantioselective intermolecular hydroamination of allylic amines with chiral aldehydes as tethering ctalystsChem. -Eur. J.201319259726011:CAS:528:DC%2BC3sXntFGquw%3D%3D2330759110.1002/chem.201203462 – reference: KanneDBAshworthDJChengMTMutterLCAboodLGSynthesis of the first highly potent bridged nicotinoid 9-Azabicyclo[4.2.1]nona[2,3-c]pyridine (pyrido[3,4-b]homotropane)J. Am. Chem. Soc.1986108786478651:CAS:528:DyaL2sXhvV2isw%3D%3D2228331610.1021/ja00284a078 – reference: OliveiraMTLupariaMAudisioDMaulideNDual catalysis becomes diastereodivergentAngew. Chem., Int. Ed.20135213149131521:CAS:528:DC%2BC3sXhs1WmtrrK10.1002/anie.201305933 – reference: LiB-JEl-NachefCBeaucheminAMOrganocatalysis using aldehydes: the development and improvement of catalytic hydroaminations, hydrations and hydrolysesChem. Commun.20175313192132041:CAS:528:DC%2BC2sXhslCms7fP10.1039/C7CC07352F – reference: ShiLChiral pyridoxal-catalyzed asymmetric biomimetic transamination of α-keto acidsOrg. Lett.201517578457871:CAS:528:DC%2BC2MXhvFWgt77O2658089310.1021/acs.orglett.5b02895 – reference: WangBWuFWangYLiuXDengLControl of diastereoselectivity in tandem asymmetric reactions generating nonadjacent stereocenters with bifunctional catalysis by cinchona alkaloidsJ. Am. Chem. Soc.20071297687691:CAS:528:DC%2BD2sXlsFyl1724380610.1021/ja0670409 – reference: HuoXHeRZhangXZhangWAn Ir/Zn dual catalysis for enantio- and diastereodivergent α-allylation of α-hydroxyketonesJ. Am. Chem. Soc.201613811093110961:CAS:528:DC%2BC28XhtlyqsrvL2754876110.1021/jacs.6b06156 – reference: EscorihuelaJBurguetebMILuisSVNew advances in dual stereocontrol for asymmetric reactionsChem. Soc. Rev.201342559556171:CAS:528:DC%2BC3sXot1ersLw%3D2359153910.1039/c3cs60068h – reference: Hesse, M. Alkaloids. Nature’s Curse or Blessing (Wiley-VCH, Weinheim, 2002). – reference: XuBCatalytic asymmetric direct α-alkylation of amino esters by aldehydes via imine activationChem. Sci.20145198819911:CAS:528:DC%2BC2cXlsFOrtbs%3D10.1039/c3sc53314j – reference: KwongH-LChiral pyridine-containing ligands in asymmetric catalysisCoord. Chem. Rev.2007251218822221:CAS:528:DC%2BD2sXhtVeqs7zN10.1016/j.ccr.2007.03.010 – reference: SunLChenXYEndersDAldehyde catalysis: new options for asymmetric organocatalytic reactionsChem201842026202810.1016/j.chempr.2018.08.0111:CAS:528:DC%2BC1cXhslaht7nN – reference: WeiLZhuQXuS-MChangXWangC-JStereodivergent synthesis of α,α-disubstituted α‑amino acids via synergistic Cu/Ir catalysisJ. Am. Chem. Soc.2018140150815131:CAS:528:DC%2BC1cXksVOhsQ%3D%3D2930357810.1021/jacs.7b12174 – reference: HeF-SDirect asymmetric synthesis of β-bis-aryl-α-amino acid esters via enantioselective copper-catalyzed addition of p-quinone methidesACS Catal.201666526561:CAS:528:DC%2BC2MXitVygtrrO10.1021/acscatal.5b02619 – reference: RaoXEfficient synthesis of (-)-Corynoline by enantioselective palladium-catalyzed α-arylation with sterically hindered substratesAngew. Chem. Int. Ed.20185712328123321:CAS:528:DC%2BC1cXhs1Whs7zJ10.1002/anie.201807302 – reference: BarókMUnexpected inversions in asymmetric reactions: reactions with chiral metal complexes, chiral organocatalysts, and heterogeneous chiralChem. Rev.20101101663170510.1021/cr90023521:CAS:528:DC%2BD1MXhtleisLrK – reference: KrautwaldSCarreiraEMStereodivergence in asymmetric catalysisJ. Am. Chem. Soc.2017139562756391:CAS:528:DC%2BC2sXlslOhs74%3D2838440210.1021/jacs.6b13340 – reference: WangQGuQYouS-LEnantioselective carbonyl catalysis enabled by chiral aldehydesAngew. Chem., Int. Ed.201958681868251:CAS:528:DC%2BC1MXks1Siu7Y%3D10.1002/anie.201808700 – reference: LiWXuXZhangPLiPRecent advances in the catalytic enantioselective reactions of para-quinone methidesChem. Asian J.201813235023591:CAS:528:DC%2BC1cXhtVamtLfJ2967685510.1002/asia.201800415 – reference: ConfalonePNHuieEMThe stabilized iminium ylide-olefin [3+2] cycloaddition reaction. Total synthesis of Sceletium alkaloid A4J. Am. Chem. Soc.1984106717571781:CAS:528:DyaL2cXmtFWms7Y%3D10.1021/ja00335a051 – reference: ParraATortosaMpara-Quinone methide: a new player in asymmetric catalysisChemCatChem20157152415261:CAS:528:DC%2BC2MXnt1Smt7c%3D10.1002/cctc.201500176 – reference: Atta-ur-RahmanShahwarDChoudharyMISenerBTokerGBaserKHCAlkaloids of bongardia chrysogonum APhytochemistry1999503333361:CAS:528:DyaK1MXns1yqsQ%3D%3D10.1016/S0031-9422(98)00484-1 – reference: XieYPanHLiuMXiaoXShiYProgress in asymmetric biomimetic transamination of carbonyl compoundsChem. Soc. Rev.201544174017481:CAS:528:DC%2BC2MXhvFKgur8%3D2564526410.1039/C4CS00507D – reference: LinLFengXCatalytic strategies for diastereodivergent synthesisChem. Eur. J.201723646464821:CAS:528:DC%2BC2sXitVGksrw%3D2785980610.1002/chem.201604617 – reference: YanX-XHighly diastereoselective switchable enantioselective Mannich reaction of glycine derivatives with iminesJ. Am. Chem. Soc.200813014362143631:CAS:528:DC%2BD1cXht1Squ7nJ1884189210.1021/ja804527r – reference: CanaryJWAllenCSCastagnettoJMWangYConformationally driven, propeller-like chirality in labile coordination complexesJ. Am. Chem. Soc.1995117848484851:CAS:528:DyaK2MXntFCntb8%3D10.1021/ja00137a032 – reference: MacDonaldMJSchipperDJNgPJMoranJBeaucheminAMA catalytic tethering strategy: simple aldehydes catalyze intermolecular alkene hydroaminationsJ. Am. Chem. Soc.201113320100201031:CAS:528:DC%2BC3MXhsV2jurfE2209859510.1021/ja208867g – reference: CaruanaLKniepFJohansenTKPoulsenPHJørgensenKAA new organocatalytic concept for asymmetric α-alkylation of aldehydesJ. Am. Chem. Soc.201413615929159321:CAS:528:DC%2BC2cXhvVSjsrjJ2536929410.1021/ja510475n – reference: ChuW-DAsymmetric catalytic 1,6-conjugate addition/aromatization of para-quinone methides: enantioselective introduction of functionalized diarylmethine stereogenic centersAngew. Chem., Int. Ed.201352922992331:CAS:528:DC%2BC3sXhtFShtLrM10.1002/anie.201303928 – reference: ListBKennemurJLChiral-aldehyde-catalyzed α-functionalization of glycine estersSynfacts201814109410.1055/s-0037-1610914 – reference: GuimondNMacDonaldMJLemieuxVBeaucheminAMCatalysis through temporary intramolecularity: mechanistic investigations on aldehyde-catalyzed cope-type hydroamination lead to yhe discovery of a more efficient tethering catalystJ. Am. Chem. Soc.201213416571165771:CAS:528:DC%2BC38Xhtlekt7fO2297100110.1021/ja303320x – reference: NojiriAKumagaiNShibasakiMLinking structural dynamics and functional diversity in asymmetric catalysisJ. Am. Chem. Soc.2009131377937841:CAS:528:DC%2BD1MXit1eksLs%3D1923186710.1021/ja900084k – reference: TaylorPPPantaleoneDPSenkpeilRFFotheringhamIGNovel biosynthetic approaches to the production of unnatural amino acids using transaminasesTrends Biotechnol.1998164124181:CAS:528:DyaK1cXmslygt78%3D980783810.1016/S0167-7799(98)01240-2 – reference: WenWChiral aldehyde catalysis for the catalytic asymmetric activation of glycine estersJ. Am. Chem. Soc.2018140977497801:CAS:528:DC%2BC1cXht12mtbbF2999540110.1021/jacs.8b06676 – reference: ChenLLuoM-JZhuFWenWGuoQ-XCombining chiral aldehyde catalysis and transition-metal catalysis for enantioselective α-allylic alkylation of amino acid estersJ. Am. Chem. Soc.2019141515951631:CAS:528:DC%2BC1MXls1alur0%3D3089693710.1021/jacs.9b01910 – reference: AokiMCyclothiazomycin, a novel polythiazole-containing peptide with renin nhibitory activityJ. Antibiot.1991445825881:CAS:528:DyaK3MXks12ruro%3D10.7164/antibiotics.44.582 – reference: ZhangX-ZDiastereoselective and enantioselective synthesis of unsymmetric β,β-diaryl-α-amino acid esters via organocatalytic 1,6-conjugate addition of para-quinone methidesJ. Org. Chem.201681565556621:CAS:528:DC%2BC28Xos12ntbs%3D2722428510.1021/acs.joc.6b00390 – volume: 140 start-page: 9774 year: 2018 ident: 19245_CR31 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06676 – ident: 19245_CR2 doi: 10.1007/978-3-642-58571-5 – volume: 133 start-page: 17934 year: 2011 ident: 19245_CR11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207847p – volume: 14 start-page: 1094 year: 2018 ident: 19245_CR29 publication-title: Synfacts doi: 10.1055/s-0037-1610914 – volume: 19 start-page: 2597 year: 2013 ident: 19245_CR21 publication-title: Chem. -Eur. J. doi: 10.1002/chem.201203462 – volume: 37 start-page: 103 year: 2019 ident: 19245_CR25 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.201800478 – volume: 2 start-page: 433 year: 2012 ident: 19245_CR51 publication-title: ACS Catal. doi: 10.1021/cs200593c – volume: 141 start-page: 5159 year: 2019 ident: 19245_CR33 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b01910 – volume: 57 start-page: 12328 year: 2018 ident: 19245_CR58 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201807302 – volume: 140 start-page: 1508 year: 2018 ident: 19245_CR19 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12174 – volume: 5 start-page: 1988 year: 2014 ident: 19245_CR30 publication-title: Chem. Sci. doi: 10.1039/c3sc53314j – volume: 62 start-page: 3 year: 2019 ident: 19245_CR27 publication-title: Sci. China Chem. doi: 10.1007/s11426-018-9345-5 – volume: 340 start-page: 1065 year: 2008 ident: 19245_CR15 publication-title: Science doi: 10.1126/science.1237068 – volume: 138 start-page: 11093 year: 2016 ident: 19245_CR16 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06156 – volume: 44 start-page: 1740 year: 2015 ident: 19245_CR45 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00507D – volume: 44 start-page: 582 year: 1991 ident: 19245_CR47 publication-title: J. Antibiot. doi: 10.7164/antibiotics.44.582 – volume: 251 start-page: 2188 year: 2007 ident: 19245_CR53 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2007.03.010 – ident: 19245_CR54 – volume: 131 start-page: 3779 year: 2009 ident: 19245_CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja900084k – volume: 23 start-page: 2360 year: 2015 ident: 19245_CR49 publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2015.03.069 – volume: 29 start-page: 3563 year: 2010 ident: 19245_CR52 publication-title: Organometallics doi: 10.1021/om1004918 – volume: 359 start-page: 534 year: 2017 ident: 19245_CR8 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201601188 – volume: 136 start-page: 15929 year: 2014 ident: 19245_CR37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510475n – volume: 45 start-page: 4047 year: 2002 ident: 19245_CR48 publication-title: J. Med. Chem. doi: 10.1021/jm020916b – volume: 129 start-page: 768 year: 2007 ident: 19245_CR9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0670409 – volume: 8 start-page: 254 year: 2018 ident: 19245_CR44 publication-title: Catalysts doi: 10.3390/catal8070254 – volume: 13 start-page: 2350 year: 2018 ident: 19245_CR35 publication-title: Chem. Asian J. doi: 10.1002/asia.201800415 – volume: 138 start-page: 0730 year: 2016 ident: 19245_CR46 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10554 – volume: 139 start-page: 5627 year: 2017 ident: 19245_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b13340 – volume: 52 start-page: 13149 year: 2013 ident: 19245_CR17 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201305933 – volume: 6 start-page: 652 year: 2016 ident: 19245_CR38 publication-title: ACS Catal. doi: 10.1021/acscatal.5b02619 – volume: 134 start-page: 16571 year: 2012 ident: 19245_CR23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303320x – volume: 81 start-page: 5655 year: 2016 ident: 19245_CR39 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.6b00390 – volume: 23 start-page: 6464 year: 2017 ident: 19245_CR7 publication-title: Chem. Eur. J. doi: 10.1002/chem.201604617 – volume: 58 start-page: 6818 year: 2019 ident: 19245_CR26 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201808700 – volume: 7 start-page: 1524 year: 2015 ident: 19245_CR34 publication-title: ChemCatChem doi: 10.1002/cctc.201500176 – volume: 130 start-page: 14362 year: 2008 ident: 19245_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja804527r – volume: 83 start-page: 364 year: 2018 ident: 19245_CR41 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.7b02750 – volume: 360 start-page: 1438 year: 2018 ident: 19245_CR32 publication-title: Science doi: 10.1126/science.aat4210 – ident: 19245_CR1 doi: 10.3109/9781420092394 – volume: 50 start-page: 333 year: 1999 ident: 19245_CR55 publication-title: Phytochemistry doi: 10.1016/S0031-9422(98)00484-1 – volume: 118 start-page: 5080 year: 2018 ident: 19245_CR6 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00561 – volume: 110 start-page: 1663 year: 2010 ident: 19245_CR3 publication-title: Chem. Rev. doi: 10.1021/cr9002352 – volume: 17 start-page: 5784 year: 2015 ident: 19245_CR24 publication-title: Org. Lett. doi: 10.1021/acs.orglett.5b02895 – volume: 50 start-page: 12631 year: 2011 ident: 19245_CR12 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201106321 – volume: 4 start-page: 2026 year: 2018 ident: 19245_CR28 publication-title: Chem doi: 10.1016/j.chempr.2018.08.011 – volume: 53 start-page: 13192 year: 2017 ident: 19245_CR22 publication-title: Chem. Commun. doi: 10.1039/C7CC07352F – volume: 20 start-page: 1142 year: 2018 ident: 19245_CR40 publication-title: Org. Lett. doi: 10.1021/acs.orglett.8b00072 – ident: 19245_CR5 – volume: 16 start-page: 412 year: 1998 ident: 19245_CR42 publication-title: Trends Biotechnol. doi: 10.1016/S0167-7799(98)01240-2 – volume: 118 start-page: 349 year: 2018 ident: 19245_CR43 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00437 – volume: 117 start-page: 8484 year: 1995 ident: 19245_CR50 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00137a032 – volume: 52 start-page: 9229 year: 2013 ident: 19245_CR36 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201303928 – volume: 108 start-page: 7864 year: 1986 ident: 19245_CR57 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00284a078 – volume: 42 start-page: 5595 year: 2013 ident: 19245_CR4 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60068h – volume: 127 start-page: 15051 year: 2005 ident: 19245_CR14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja055545d – volume: 133 start-page: 20100 year: 2011 ident: 19245_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja208867g – volume: 106 start-page: 7175 year: 1984 ident: 19245_CR56 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00335a051 |
SSID | ssj0000391844 |
Score | 2.5395193 |
Snippet | Chiral aldehyde catalysis is a burgeoning strategy for the catalytic asymmetric α-functionalization of aminomethyl compounds. However, the reaction types are... Chiral aldehyde catalysis is a useful strategy in the catalytic asymmetric α-functionalization of amino methyl compounds but these reaction types are limited.... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5372 |
SubjectTerms | 639/638/403/935 639/638/549/933 639/638/77/883 639/638/77/888 Aldehydes Amino acids Aromatic compounds Asymmetry Catalysis Conjugates Humanities and Social Sciences Imines Methyl compounds multidisciplinary Quinones Science Science (multidisciplinary) Stereoselectivity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiKcIlMpI3GhUJ7YT5wgtVYUEJyr1Zo1f2qA2i9jdw_57Zpzs0lSiXMgxduLHjO1v7PE3jL1v264DA03ZgW9LlbpUdilWaKWINikBXmffnK_fmotL9eVKX90K9UU-YSM98NhxJ6DwkY1pIXoFTeW6znsEBqJJLtUiQyNc824ZU3kOlh2aLmq6JSOkOVmpPCeQtUQ2hy7lbCXKhP0zlHnXR_LOQWlef86fsMcTcOQfxwo_ZQ_i8Iw9HENJbp-z_qwH4jyIy0CeFnRhivtFj__kcB3iYhsiz1s1xEDCEalyWG1vbiielufVcVOiXfxjQ3tqgZOPEcmLwxA4RVHu_YIjuMxXIFYv2OX55--nF-UURqHEjpbrMiRDwb67GFzSutahNVqBS96gBZnAU_zz2oEOKQZIoDVirBAcYj3nhYsgX7KDYTnEV4zXxlcSBBgvJCIZAyGqJlVYgAmqMq5g1a5LrZ84xinUxbXNZ93S2FEMFsVgsxisLNiH_Tc_R4aNe3N_IkntcxI7dn6BOmMnnbH_0pmCHe7kbKchu7I1LtO6RgDdFOzdPhkHG52gwBCXG8qDHVkRgU_B2pl-zCo0Txn6RabtbgnraVGw450m_Sn87w1-_T8a_IY9qrPmi7KWh-xg_WsT3yKYWrujPG5-A24LHHs priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ikCBRmJG7WaxHbsnBCvqkKCE5X2Zo1fbFCbtM3uYf89Hm92q1SiOSZO4nhs55vx-PsI-aBU24KGhrXgFBOxjayNoUpeSqmiKMHJnJvz81dzeiZ-LORiCriNU1rlbk7ME7UfHMbIj-s0i8o64Zvm0-UVQ9UoXF2dJDTukwdIXYYpXWqh9jEWZD_XQkx7ZUquj0eRZwb0mdDzkIzP_keZtn-GNW9nSt5aLs1_oZMn5PEEH-nnrb2fknuhf0YebgUlN89J960DZD4Ig8d8C9w2Rd2yS8-kcO7DcuMDzQEb5CGhCa9SGDcXF6iq5Wh11LDkHf9dY2TNU8w0QqtR6D1FLeXOLWmCmHkjxPiCnJ18__31lE1iCiw1N18xHzVKfrfB2yhlLb3SUoCNTic_MoJDFfTagvQxeIggZUJa3tuE-KwrbQD-khz0Qx9eEVprV3EoQbuSJzyjwQfRxCq9QHtRaVuQatekxk1M4yh4cW7yijfXZmsGk8xgshkML8jH_T2XW56NO0t_QUvtSyJHdj4xXP8x05AzINLBG60gOAFNZdvWuQQpyybaWJdQkMOdnc00cEdz080K8n5_OQ05XEeBPgxrLJMaskIan4KoWf-YVWh-pe-WmbxbIeKTZUGOdj3p5uX__-DXd9f1DXlU5z5dspofkoPV9Tq8TWBpZd_lEfEPZCkT7A priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals (WRLC) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXVF4iUJCRuNEIJ7YT51gWqgoJTlTqzRq_2KA2W3V3D_vvmfFmF6UCJHJM7NjxzMTf2ONvGHvXtl0HBpqyA9-WKnWp7FKs0EsRbVICvM6xOV-_NecX6sulvjxg9e4sTA7az5SW-Te9iw77sFTZpMnZIZdBl_Ieu0_U7aTVs2a2X1chxnOj1Hg-Rkjzh6qTOShT9U_w5d3oyDtbpHnmOTtij0bIyE-3nXzMDuLwhD3YJpHcPGX9px6I7SAuAsVY0FEp7uc9vpPDVYjzTYg8L9IQ9whHjMphubm-pkxanlcnTYke8c81raYFTtFFJCkOQ-CUP7n3c46wMh9-WD5jF2efv8_OyzGBQolDLFdlSIbSfHcxuKR1rUNrtAKXvEHfMYGnzOe1Ax1SDJBAa0RXIThEec4LF0E-Z4fDYogvGK-NryQIMF5IxDAGQlRNqrABE1RlXMGq3ZBaP7KLU5KLK5t3uaWxWzFYFIPNYrCyYO_3dW623Br_LP2RJLUvSbzY-cbi9ocd9cSCwks2poXoFTSV6zrvEUaKJrlUCyjY8U7OdjTWpa1xgtY1QuemYG_3j9HMaO8EhrhYUxkcyIqoewrWTvRj0qHpk6GfZ8LullCeFgU72WnS78b__sEv_6_4K_awzjouyloes8PV7Tq-RsC0cm-yhfwC9FoRug priority: 102 providerName: Springer Nature |
Title | Diastereodivergent chiral aldehyde catalysis for asymmetric 1,6-conjugated addition and Mannich reactions |
URI | https://link.springer.com/article/10.1038/s41467-020-19245-3 https://www.proquest.com/docview/2471520806 https://www.proquest.com/docview/2454116263 https://pubmed.ncbi.nlm.nih.gov/PMC7584650 https://doaj.org/article/a44443687aec4a61b99cc00906fbf20a |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwEB7tIdC-IE4RWCoj8cYGctix84BQt-yyqrQrBFTqWzTxQYu6KfSQ6L9n7KZFXS08kIdEsp048czE3_iYD-CVlGWJCou4RC1j7koXl86m5KUk0vEEtQhrcy6viosB7w_FcA82dEdtA85vde08n9RgNnnz6-fqPRn8u_WWcfV2zoO5e0fIuxMizvfhkHom6Q31soX74c-cl-TQ8HbvzO23HsFdcvEJFWV8p6sKEf13YOjNRZQ3ZlJDB3V-H-61yJJ116rwAPZs8xDurLkmV49g_GGMPiiCnRq_FMPvqGJ6NKZnMpwYO1oZy8JYjg9RwgjKMpyvrq894ZZm6UkRk-P8fekH3Qzzi5C8QBk2hnma5bEeMUKfYY_E_DEMzs--9i7ilmchJknki9g45dnAS2tqJ0QmjFSCY-20IhfTofYE6VmNwjhr0KEQBMKMqQkM1jqpLeZP4KCZNvYpsEzpNMcElU5ygjoKjeWFS6kCZXiq6gjSTZNWug1C7rkwJlWYDM9VtZZIRRKpgkSqPILX23t-rENw_LP0qZfUtqQPnx0SprNvVWuNFXI68kJJtJpjkdZlqTWhzaRwtcsSjOB4I-dqo5JVRv24yAhhFxG83GaTNfopFmzsdOnLUEOmPsJPBHJHP3ZeaDenGY9CXG_pwaBIIjjZaNKfyv_-wc_-u6LncJQFzU_iLD-Gg8VsaV8QxFrUHdiXQ0lndf6xA4fdbv9Ln66nZ1efPlNqr-h1wuBFJ9jXb4UwKz0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4qkGChgJTjSqk9iJc0AIKNWWPk6t1JuZ-MEuarOluyu0f4rfyIw32Wor0VtzTLxx1vPwN_Z4PsbeVVVdg4YyrcFWqQx1SOvgM4xSRBWkAKtibs7hUTk4kd9P1eka-9ufhaG0yt4nRkftxpbWyLdz9KIqR3xTfrr4nRJrFO2u9hQaC7XY9_M_GLJNPu7toHzf5_nut-Ovg7RjFUix32KauqCJ-7r2rglK5cpVWklogtUYUAWwRAeeN6Bc8A4CKIWQw7kGoU9jReOhwPfeYXdx4hVkUdVptVzToWrrWsrubI4o9PZERk9EMRpFOiotVua_SBOwgm2vZ2Ze256Ns97uI_awg6v880K_HrM13z5h9xYElvOnbLQzAqq04MeO8jvomBa3wxG-k8OZ88O58zwuEFHdE474mMNkfn5OLF6WZ1tlitH4rxmt5DlOmU2kJRxax4m7eWSHHCFtPHgxecZObmWYn7P1dtz6DcZzbbMCBGgrCsRPGpyXZciwA-1kppuEZf2QGttVNieCjTMTd9gLbRZiMCgGE8VgioR9WP7mYlHX48bWX0hSy5ZUkzveGF_-NJ2JG5B4FaWuwFsJZdbUtbUIYUUZmpALSNhmL2fTOYqJuVLrhL1dPkYTp30baP14Rm1wIDMqG5SwakU_Vj5o9Uk7GsZi4RUhTCUSttVr0lXn___DL27-1jfs_uD48MAc7B3tv2QP8qjfIs2LTbY-vZz5VwjUps3raB2c_bhtc_wHxZlTRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4qkGChgJTjTaJLZj54AQsKxaChUHKu3NOH6wi9psaXaF9q_x65jxJlttJXprjomTOJ5HvrHH8xHySsqqMsqUaWWsTHmoQloFn0OUksnAM2NFzM35elTuH_PPYzHeIn_7vTCYVtn7xOio3cziHPmgAC8qCsA35SB0aRHfhqN3Z79TZJDCldaeTmOlIod--QfCt_btwRBk_booRp--f9xPO4aBFPrA5qkLCnmwK-_qIEQhnFSCmzpYBcFVMBapwYvaCBe8M8EIAfDDuRpgUG2z2hsGz71BbkomcrQxOZbr-R2svK447_bpZEwNWh69EsZrGPWIlG38CyNlwAbOvZyleWmpNv4BR_fI3Q660vcrXbtPtnzzgNxakVkuH5LpcGqw6oKfOcz1wC1b1E6m8ExqTpyfLJ2ncbIIa6BQwMrUtMvTU2T0sjTfK1OIzH8tcFbPUcxyQo2hpnEUeZyndkIB3sZNGO0jcnwtw_yYbDezxu8QWiibM5MZZTMGWEoZ53kZcniBcjxXdULyfki17aqcI9nGiY6r7UzplRg0iEFHMWiWkDfre85WNT6ubP0BJbVuifW544nZ-U_dmbs2HA5WKmm85abM66qyFuBsVoY6FJlJyG4vZ905jVZfqHhCXq4vg7njGo5p_GyBbWAgcywhlBC5oR8bHdq80kwnsXC4RLQpsoTs9Zp08fL_f_CTq_v6gtwGQ9RfDo4On5I7RVTvLC3YLtmeny_8M8Bs8_p5NA5Kfly3Nf4DZZlXfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diastereodivergent+chiral+aldehyde+catalysis+for+asymmetric+1%2C6-conjugated+addition+and+Mannich+reactions&rft.jtitle=Nature+communications&rft.au=Wen%2C+Wei&rft.au=Luo%2C+Ming-Jing&rft.au=Yuan%2C+Yi&rft.au=Liu%2C+Jian-Hua&rft.date=2020-10-23&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=11&rft_id=info:doi/10.1038%2Fs41467-020-19245-3&rft_id=info%3Apmid%2F33097724&rft.externalDocID=PMC7584650 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |