Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells

Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to Purkinje cells. The functional capability of the cerebellum hinges on whether individual granule cells receive mossy fiber inputs from multip...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 2; p. e00400
Main Authors Huang, Cheng-Chiu, Sugino, Ken, Shima, Yasuyuki, Guo, Caiying, Bai, Suxia, Mensh, Brett D, Nelson, Sacha B, Hantman, Adam W
Format Journal Article
LanguageEnglish
Published England eLife Sciences Publications Ltd 26.02.2013
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to Purkinje cells. The functional capability of the cerebellum hinges on whether individual granule cells receive mossy fiber inputs from multiple precerebellar nuclei or are instead unimodal; this distinction is unresolved. Using cell-type-specific projection mapping with synaptic resolution, we observed the convergence of separate sensory (upper body proprioceptive) and basilar pontine pathways onto individual granule cells and mapped this convergence across cerebellar cortex. These findings inform the long-standing debate about the multimodality of mammalian granule cells and substantiate their associative capacity predicted in the Marr-Albus theory of cerebellar function. We also provide evidence that the convergent basilar pontine pathways carry corollary discharges from upper body motor cortical areas. Such merging of related corollary and sensory streams is a critical component of circuit models of predictive motor control. DOI:http://dx.doi.org/10.7554/eLife.00400.001.
AbstractList Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to Purkinje cells. The functional capability of the cerebellum hinges on whether individual granule cells receive mossy fiber inputs from multiple precerebellar nuclei or are instead unimodal; this distinction is unresolved. Using cell-type-specific projection mapping with synaptic resolution, we observed the convergence of separate sensory (upper body proprioceptive) and basilar pontine pathways onto individual granule cells and mapped this convergence across cerebellar cortex. These findings inform the long-standing debate about the multimodality of mammalian granule cells and substantiate their associative capacity predicted in the Marr-Albus theory of cerebellar function. We also provide evidence that the convergent basilar pontine pathways carry corollary discharges from upper body motor cortical areas. Such merging of related corollary and sensory streams is a critical component of circuit models of predictive motor control. DOI: http://dx.doi.org/10.7554/eLife.00400.001 Learning a new motor skill, from riding a bicycle to eating with chopsticks, involves the cerebellum—a structure located at the base of the brain underneath the cerebral hemispheres. Although its name translates as ‘little brain' in Latin, the cerebellum contains more neurons than all other regions of the mammalian brain combined. Most cerebellar neurons are granule cells which, although numerous, are simple neurons with an average of only four excitatory inputs, from axons called mossy fibers. These inputs are diverse in nature, originating from virtually every sensory system and from command centers at multiple levels of the motor hierarchy. However, it is unclear whether individual granule cells receive inputs from only a single sensory source or can instead mix modalities. This distinction has important implications for the functional capabilities of the cerebellum. Now, Huang et al. have addressed this question by mapping, at extremely high resolution, the projections of two pathways onto individual granule cells—one carrying sensory feedback from the upper body (the proprioceptive stream), and another carrying motor-related information (the pontine stream). Using a combination of genetic and viral techniques to label the pathways, Huang and co-workers identified regions where the two types of fiber terminated in close proximity. They then showed that around 40% of proprioceptive granule cells formed junctions, or synapses, with two (or more) fibers carrying different types of input. These cells were not uniformly distributed throughout the cerebellum but tended to occur in ‘hotspots’. Lastly, Huang et al. examined the type of information conveyed by the sensory and motor-related input streams whenever they contacted a single granule cell. They confirmed that when the sensory input consisted of feedback from the upper body, the motor input consisted of copies of motor commands related to the same body region. Because it is thought that the cerebellum converts sensory information into representations of the body's movements, directing motor commands to these same circuits may allow the cerebellum to predict the consequences of a planned movement prior to, or without, the actual movement occurring. The work of Huang et al. provides evidence to support the previously controversial idea that granule cells in the mammalian cerebellum receive both sensory and motor-related inputs. The labeling technique that they used could also be deployed to study the inputs to the cerebellum in greater detail, which should yield new insights into the functioning of this part of the brain. DOI: http://dx.doi.org/10.7554/eLife.00400.002
Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to Purkinje cells. The functional capability of the cerebellum hinges on whether individual granule cells receive mossy fiber inputs from multiple precerebellar nuclei or are instead unimodal; this distinction is unresolved. Using cell-type-specific projection mapping with synaptic resolution, we observed the convergence of separate sensory (upper body proprioceptive) and basilar pontine pathways onto individual granule cells and mapped this convergence across cerebellar cortex. These findings inform the long-standing debate about the multimodality of mammalian granule cells and substantiate their associative capacity predicted in the Marr-Albus theory of cerebellar function. We also provide evidence that the convergent basilar pontine pathways carry corollary discharges from upper body motor cortical areas. Such merging of related corollary and sensory streams is a critical component of circuit models of predictive motor control.DOI: http://dx.doi.org/10.7554/eLife.00400.001
Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to Purkinje cells. The functional capability of the cerebellum hinges on whether individual granule cells receive mossy fiber inputs from multiple precerebellar nuclei or are instead unimodal; this distinction is unresolved. Using cell-type-specific projection mapping with synaptic resolution, we observed the convergence of separate sensory (upper body proprioceptive) and basilar pontine pathways onto individual granule cells and mapped this convergence across cerebellar cortex. These findings inform the long-standing debate about the multimodality of mammalian granule cells and substantiate their associative capacity predicted in the Marr-Albus theory of cerebellar function. We also provide evidence that the convergent basilar pontine pathways carry corollary discharges from upper body motor cortical areas. Such merging of related corollary and sensory streams is a critical component of circuit models of predictive motor control. DOI:http://dx.doi.org/10.7554/eLife.00400.001.
Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to Purkinje cells. The functional capability of the cerebellum hinges on whether individual granule cells receive mossy fiber inputs from multiple precerebellar nuclei or are instead unimodal; this distinction is unresolved. Using cell-type-specific projection mapping with synaptic resolution, we observed the convergence of separate sensory (upper body proprioceptive) and basilar pontine pathways onto individual granule cells and mapped this convergence across cerebellar cortex. These findings inform the long-standing debate about the multimodality of mammalian granule cells and substantiate their associative capacity predicted in the Marr-Albus theory of cerebellar function. We also provide evidence that the convergent basilar pontine pathways carry corollary discharges from upper body motor cortical areas. Such merging of related corollary and sensory streams is a critical component of circuit models of predictive motor control.
Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to Purkinje cells. The functional capability of the cerebellum hinges on whether individual granule cells receive mossy fiber inputs from multiple precerebellar nuclei or are instead unimodal; this distinction is unresolved. Using cell-type-specific projection mapping with synaptic resolution, we observed the convergence of separate sensory (upper body proprioceptive) and basilar pontine pathways onto individual granule cells and mapped this convergence across cerebellar cortex. These findings inform the long-standing debate about the multimodality of mammalian granule cells and substantiate their associative capacity predicted in the Marr-Albus theory of cerebellar function. We also provide evidence that the convergent basilar pontine pathways carry corollary discharges from upper body motor cortical areas. Such merging of related corollary and sensory streams is a critical component of circuit models of predictive motor control. Learning a new motor skill, from riding a bicycle to eating with chopsticks, involves the cerebellum—a structure located at the base of the brain underneath the cerebral hemispheres. Although its name translates as ‘little brain' in Latin, the cerebellum contains more neurons than all other regions of the mammalian brain combined. Most cerebellar neurons are granule cells which, although numerous, are simple neurons with an average of only four excitatory inputs, from axons called mossy fibers. These inputs are diverse in nature, originating from virtually every sensory system and from command centers at multiple levels of the motor hierarchy. However, it is unclear whether individual granule cells receive inputs from only a single sensory source or can instead mix modalities. This distinction has important implications for the functional capabilities of the cerebellum. Now, Huang et al. have addressed this question by mapping, at extremely high resolution, the projections of two pathways onto individual granule cells—one carrying sensory feedback from the upper body (the proprioceptive stream), and another carrying motor-related information (the pontine stream). Using a combination of genetic and viral techniques to label the pathways, Huang and co-workers identified regions where the two types of fiber terminated in close proximity. They then showed that around 40% of proprioceptive granule cells formed junctions, or synapses, with two (or more) fibers carrying different types of input. These cells were not uniformly distributed throughout the cerebellum but tended to occur in ‘hotspots’. Lastly, Huang et al. examined the type of information conveyed by the sensory and motor-related input streams whenever they contacted a single granule cell. They confirmed that when the sensory input consisted of feedback from the upper body, the motor input consisted of copies of motor commands related to the same body region. Because it is thought that the cerebellum converts sensory information into representations of the body's movements, directing motor commands to these same circuits may allow the cerebellum to predict the consequences of a planned movement prior to, or without, the actual movement occurring. The work of Huang et al. provides evidence to support the previously controversial idea that granule cells in the mammalian cerebellum receive both sensory and motor-related inputs. The labeling technique that they used could also be deployed to study the inputs to the cerebellum in greater detail, which should yield new insights into the functioning of this part of the brain.
Author Nelson, Sacha B
Sugino, Ken
Huang, Cheng-Chiu
Mensh, Brett D
Guo, Caiying
Bai, Suxia
Hantman, Adam W
Shima, Yasuyuki
Author_xml – sequence: 1
  givenname: Cheng-Chiu
  surname: Huang
  fullname: Huang, Cheng-Chiu
  organization: Janelia Farm Research Campus, Howard Hughes Medical Institute , Ashburn , United States
– sequence: 2
  givenname: Ken
  surname: Sugino
  fullname: Sugino, Ken
– sequence: 3
  givenname: Yasuyuki
  surname: Shima
  fullname: Shima, Yasuyuki
– sequence: 4
  givenname: Caiying
  surname: Guo
  fullname: Guo, Caiying
– sequence: 5
  givenname: Suxia
  surname: Bai
  fullname: Bai, Suxia
– sequence: 6
  givenname: Brett D
  surname: Mensh
  fullname: Mensh, Brett D
– sequence: 7
  givenname: Sacha B
  surname: Nelson
  fullname: Nelson, Sacha B
– sequence: 8
  givenname: Adam W
  surname: Hantman
  fullname: Hantman, Adam W
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23467508$$D View this record in MEDLINE/PubMed
BookMark eNpdkstr3DAQh0VJaNI0p96LoZdC2UQPS5YuhbL0EVjIJYXSi9BjvPUiS65kL_S_rzabhqS6SIx-fHzMzCt0ElMEhN4QfNVx3l5DGHq4wrjF-AU6p5jjFZbtj5Mn7zN0WcoO19O1UhL1Ep1R1oqOY3mOfq5T3EPeQnTQpL6ZUpyHCI2JvplymvKQHEzzsIemzBnMWJqaSM24hHkYkzehcZDBQggmN9ts4hKglkIor9Fpb0KBy4f7An3_8vlu_W21uf16s_60WTku2bzylMqeCMEEpqIXhhDSMWV64gn1kjKHO4dbI5TlHDCVnvRUSaBgmbWEU3aBbo5cn8xOV-PR5D86mUHfF1LeapPnwQXQzHJMjHLgvWypoJZaIZXkXjFLWsYr6-ORNS12BO8gztmEZ9DnP3H4pbdprxmX1UpWwPsHQE6_FyizHodyaIeJkJaiCSNcUNmRg_e7_6K7tORYW6WJEkIoodTB6MMx5XIqJUP_KEOwPqyAhk1dAX2_AjX99qn_Y_bfwNlfYFuu7g
CitedBy_id crossref_primary_10_1101_pdb_prot072389
crossref_primary_10_3389_fnsys_2014_00205
crossref_primary_10_1016_j_conb_2017_12_016
crossref_primary_10_1016_j_neuron_2019_05_022
crossref_primary_10_1016_j_neubiorev_2021_08_009
crossref_primary_10_1016_j_neuron_2014_07_020
crossref_primary_10_3389_fncir_2014_00131
crossref_primary_10_1038_s41593_021_00873_x
crossref_primary_10_1146_annurev_neuro_080317_061948
crossref_primary_10_1002_dneu_22177
crossref_primary_10_7554_eLife_00641
crossref_primary_10_1016_j_neuroscience_2020_06_046
crossref_primary_10_1016_j_tins_2022_08_008
crossref_primary_10_1113_JP272769
crossref_primary_10_1016_j_tins_2023_08_009
crossref_primary_10_1007_s12311_022_01499_w
crossref_primary_10_7554_eLife_38213
crossref_primary_10_1016_j_tins_2015_05_005
crossref_primary_10_1016_j_isci_2022_104641
crossref_primary_10_1007_s12311_018_0952_3
crossref_primary_10_1016_j_neuron_2021_03_027
crossref_primary_10_1113_JP278745
crossref_primary_10_1007_s00330_020_06674_3
crossref_primary_10_1523_JNEUROSCI_2751_14_2014
crossref_primary_10_1038_s41593_023_01565_4
crossref_primary_10_3389_fnhum_2015_00578
crossref_primary_10_1016_j_tins_2015_01_003
crossref_primary_10_1016_j_isci_2023_106200
crossref_primary_10_1098_rspb_2021_0276
crossref_primary_10_7554_eLife_59148
crossref_primary_10_7554_eLife_49987
crossref_primary_10_1038_nn_4567
crossref_primary_10_1007_s12311_020_01188_6
crossref_primary_10_1016_j_celrep_2020_108338
crossref_primary_10_1038_nature21726
crossref_primary_10_1038_s41467_018_03541_0
crossref_primary_10_1007_s12311_017_0895_0
crossref_primary_10_1016_j_neures_2015_12_003
crossref_primary_10_1038_s41598_017_15938_w
crossref_primary_10_1016_j_neuroimage_2020_117175
crossref_primary_10_1038_srep46147
crossref_primary_10_3389_fcell_2021_727079
crossref_primary_10_1073_pnas_2101826118
crossref_primary_10_1007_s12311_023_01516_6
crossref_primary_10_1016_j_cub_2021_12_020
crossref_primary_10_7554_eLife_26179
crossref_primary_10_1016_j_cub_2017_04_009
crossref_primary_10_1016_j_neuron_2021_05_016
crossref_primary_10_1523_JNEUROSCI_1093_17_2017
crossref_primary_10_2139_ssrn_3284449
crossref_primary_10_1016_j_neuroscience_2020_06_019
crossref_primary_10_1038_s41467_019_09958_5
crossref_primary_10_1155_2013_853654
crossref_primary_10_7554_eLife_82914
crossref_primary_10_1152_jn_01108_2015
crossref_primary_10_3389_fnsys_2023_1158492
crossref_primary_10_1021_acs_nanolett_4c01727
crossref_primary_10_3390_brainsci6040062
crossref_primary_10_7554_eLife_68802
crossref_primary_10_1111_nyas_13094
crossref_primary_10_1016_j_cortex_2021_05_012
crossref_primary_10_1016_j_neuron_2024_05_019
crossref_primary_10_7554_eLife_44032
crossref_primary_10_7554_eLife_18749
crossref_primary_10_7554_eLife_12916
crossref_primary_10_1016_j_neuron_2014_07_016
crossref_primary_10_12688_f1000research_15021_1
crossref_primary_10_7554_eLife_54073
crossref_primary_10_1371_journal_pcbi_1005754
crossref_primary_10_7554_eLife_09862
crossref_primary_10_1038_s41467_017_00312_1
crossref_primary_10_1002_jnr_24206
crossref_primary_10_1016_j_neuron_2017_01_030
crossref_primary_10_3389_fncel_2016_00176
crossref_primary_10_3389_fnsys_2021_657884
crossref_primary_10_1016_j_neuron_2018_05_028
crossref_primary_10_1038_s41586_022_05471_w
crossref_primary_10_1523_JNEUROSCI_2157_20_2021
crossref_primary_10_7554_eLife_44964
crossref_primary_10_1038_nn_3773
crossref_primary_10_1126_science_abh1123
crossref_primary_10_1016_j_neuroimage_2018_02_047
crossref_primary_10_1007_s12311_019_01041_5
crossref_primary_10_1523_JNEUROSCI_0588_17_2017
crossref_primary_10_1016_j_tins_2019_11_002
crossref_primary_10_1016_j_jchemneu_2019_101661
crossref_primary_10_1007_s12311_014_0623_y
crossref_primary_10_1016_j_neurobiolaging_2018_01_016
crossref_primary_10_1016_j_neuron_2015_02_009
crossref_primary_10_1016_j_neuron_2019_01_044
crossref_primary_10_1002_cne_24479
crossref_primary_10_1016_j_cub_2017_03_029
crossref_primary_10_1002_cne_23787
crossref_primary_10_1152_jn_00312_2022
crossref_primary_10_1038_nn_4531
crossref_primary_10_1002_syn_21898
crossref_primary_10_1016_j_conb_2015_03_017
crossref_primary_10_1038_s41467_022_27984_8
crossref_primary_10_1038_s41598_018_35829_y
crossref_primary_10_1016_j_cell_2019_12_018
crossref_primary_10_1152_jn_00710_2019
crossref_primary_10_3389_fncel_2022_1073731
crossref_primary_10_1016_j_cell_2019_02_019
crossref_primary_10_1038_nrn3648
crossref_primary_10_1523_JNEUROSCI_1448_18_2018
crossref_primary_10_3389_fnins_2024_1220908
crossref_primary_10_7554_eLife_72981
crossref_primary_10_1002_cne_24526
crossref_primary_10_1142_S0129065723500594
crossref_primary_10_7554_eLife_65906
crossref_primary_10_1038_nn_4006
crossref_primary_10_1016_j_celrep_2020_108537
crossref_primary_10_1038_s41467_023_43139_9
crossref_primary_10_1146_annurev_neuro_070918_050201
crossref_primary_10_3390_ijms22094777
crossref_primary_10_1016_j_conb_2016_07_012
crossref_primary_10_1016_j_cophys_2019_11_002
crossref_primary_10_7554_eLife_13503
crossref_primary_10_7554_eLife_36401
crossref_primary_10_1152_jn_00598_2015
crossref_primary_10_1016_j_bpsc_2024_01_010
crossref_primary_10_1007_s12311_022_01382_8
crossref_primary_10_3389_fnhum_2014_00212
crossref_primary_10_1016_j_isci_2023_108113
crossref_primary_10_1016_j_isci_2023_107301
crossref_primary_10_1152_jn_00284_2015
crossref_primary_10_1177_10738584231189435
crossref_primary_10_1038_s42003_023_04825_y
crossref_primary_10_1523_JNEUROSCI_2148_19_2020
crossref_primary_10_3389_fncir_2014_00110
crossref_primary_10_1016_j_neuroscience_2020_08_026
crossref_primary_10_1371_journal_pone_0091435
crossref_primary_10_1007_s00441_020_03386_4
crossref_primary_10_1038_s42003_020_1110_2
crossref_primary_10_1007_s12311_022_01495_0
crossref_primary_10_1016_j_neuron_2023_05_019
crossref_primary_10_1242_jeb_240143
crossref_primary_10_1016_j_celrep_2024_114348
crossref_primary_10_1146_annurev_neuro_091421_125115
crossref_primary_10_1523_ENEURO_0289_21_2022
crossref_primary_10_1523_ENEURO_0387_17_2018
crossref_primary_10_7554_eLife_81511
crossref_primary_10_7554_eLife_83654
crossref_primary_10_1016_j_cell_2013_11_002
crossref_primary_10_3389_fnsys_2014_00113
crossref_primary_10_1016_j_tins_2015_10_002
crossref_primary_10_1016_j_neulet_2023_137280
crossref_primary_10_1523_JNEUROSCI_2051_16_2016
crossref_primary_10_1016_j_bpsc_2019_04_010
crossref_primary_10_1016_j_neuron_2020_06_006
crossref_primary_10_1038_nn_3974
crossref_primary_10_7554_eLife_62576
crossref_primary_10_3389_fpsyg_2020_618436
crossref_primary_10_1016_j_bpsc_2019_06_001
crossref_primary_10_7554_eLife_10015
Cites_doi 10.1007/s00429-002-0272-7
10.1016/S0169-328X(02)00442-4
10.1038/nrn1646
10.1007/BF00233258
10.1007/s12311-008-0078-0
10.1016/j.neuron.2012.02.028
10.1007/BF00233260
10.1038/nmeth999
10.1007/s12311-008-0074-4
10.1016/j.neuron.2010.04.018
10.1016/0006-8993(74)90801-4
10.1371/journal.pbio.0050316
10.1016/S0893-6080(96)00035-4
10.1016/S0896-6273(00)80809-0
10.1016/j.ymeth.2009.10.001
10.1016/j.cub.2012.07.006
10.1523/JNEUROSCI.5317-05.2006
10.1037/h0055479
10.1073/pnas.1011756107
10.1002/(SICI)1096-9861(20000626)422:2<246::AID-CNE7>3.0.CO;2-R
10.1016/0364-0213(92)90036-T
10.1007/978-3-642-65581-4
10.1016/j.brainresrev.2010.05.004
10.1093/cercor/bhq159
10.1523/JNEUROSCI.2939-06.2006
10.1038/nn.2281
10.1002/cne.902820411
10.1038/nprot.2009.248
10.1073/pnas.0808428106
10.1038/nn1783
10.1038/nrn939
10.1007/s12311-010-0209-2
10.1016/0006-8993(94)90362-X
10.1146/annurev.neuro.31.060407.125627
10.1097/00001756-200008030-00002
10.1016/j.pneurobio.2006.02.006
10.1007/BF00305102
10.1038/nmeth.1303
10.1016/j.conb.2006.08.016
10.1002/cne.902020212
10.1152/physrev.2001.81.2.539
10.1002/cne.22555
10.1002/cne.901030107
10.1038/2271224a0
10.1016/S0079-6123(01)30019-5
10.1016/j.conb.2009.07.003
10.1016/S1364-6613(98)01221-2
10.1016/0891-0618(94)90009-4
10.1016/0168-0102(92)90092-Q
10.1146/annurev-neuro-060909-153135
10.1038/nature05995
10.1146/annurev.neuro.27.070203.144238
10.1007/s12311-008-0059-3
10.1007/s12311-008-0064-6
10.1007/978-3-662-13147-3
10.1038/nn.2637
10.1523/JNEUROSCI.4526-04.2005
10.1038/nrn2332
10.1113/jphysiol.1969.sp008820
10.1080/00222895.1993.9942050
10.1016/S0166-2236(99)01446-0
10.1007/BF00622503
10.1126/science.1158391
10.1093/cercor/bhr109
10.1523/JNEUROSCI.18-21-08648.1998
10.1016/0025-5564(71)90051-4
10.1001/archneurpsyc.1955.02330180071008
10.1002/9780470515563.ch15
10.1038/nrn3312
10.1002/1096-9861(20010219)430:4<471::AID-CNE1044>3.0.CO;2-G
10.1371/journal.pone.0038593
10.1016/j.tins.2006.11.005
ContentType Journal Article
Copyright Copyright © 2013, Huang et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2013, Huang et al 2013 Huang et al
Copyright_xml – notice: Copyright © 2013, Huang et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2013, Huang et al 2013 Huang et al
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/elife.00400
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Science Journals
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DAOJ: Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2050-084X
EndPage e00400
ExternalDocumentID oai_doaj_org_article_3b501a9cedd84262b2b68985d93b1435
10_7554_eLife_00400
23467508
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS075007
– fundername: NCRR NIH HHS
  grantid: S10 RR031531
– fundername: NINDS NIH HHS
  grantid: NS075007
– fundername: Howard Hughes Medical Institute
– fundername: National Institute of Neurological Disorders and Stroke
  grantid: NS075007
GroupedDBID 3V.
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CGR
CUY
CVF
DIK
DWQXO
ECM
EIF
FRP
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NPM
NQS
OK1
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RHF
RHI
RNS
RPM
UKHRP
AAYXX
CITATION
7XB
8FK
K9.
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c583t-d228f16636026f6a111739af1d12d823c07c04a69b55e028d1f298e2eb3bb1523
IEDL.DBID RPM
ISSN 2050-084X
IngestDate Thu Sep 05 15:39:11 EDT 2024
Tue Sep 17 21:13:09 EDT 2024
Fri Aug 16 08:59:24 EDT 2024
Mon Oct 07 13:27:31 EDT 2024
Fri Aug 23 03:41:16 EDT 2024
Sat Sep 28 07:51:21 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Mouse
corollary discharge
proprioception
cerebellum
Language English
License This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-d228f16636026f6a111739af1d12d823c07c04a69b55e028d1f298e2eb3bb1523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582988/
PMID 23467508
PQID 1966696995
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_3b501a9cedd84262b2b68985d93b1435
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3582988
proquest_miscellaneous_1315628712
proquest_journals_1966696995
crossref_primary_10_7554_eLife_00400
pubmed_primary_23467508
PublicationCentury 2000
PublicationDate 2013-02-26
PublicationDateYYYYMMDD 2013-02-26
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-26
  day: 26
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2013
Publisher eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References 18703744 - Science. 2008 Aug 15;321(5891):977-80
13268132 - AMA Arch Neurol Psychiatry. 1955 Dec;74(6):653-80
19651506 - Curr Opin Neurobiol. 2009 Aug;19(4):445-51
19818854 - Methods. 2010 Feb;50(2):55-62
16759785 - Prog Neurobiol. 2006 Feb-Apr;78(3-5):272-303
11274339 - Physiol Rev. 2001 Apr;81(2):539-68
9786972 - J Neurosci. 1998 Nov 1;18(21):8648-59
18850258 - Cerebellum. 2008;7(4):583-8
7802972 - J Chem Neuroanat. 1994 Jul;7(1-2):75-86
18558858 - Annu Rev Neurosci. 2008;31:317-38
12581990 - J Mot Behav. 1993 Sep;25(3):203-16
19164536 - Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2389-94
15803161 - Nat Rev Neurosci. 2005 Apr;6(4):297-311
18319727 - Nat Rev Neurosci. 2008 Apr;9(4):304-13
12360322 - Nat Rev Neurosci. 2002 Oct;3(10):781-90
10481191 - Trends Neurosci. 1999 Oct;22(10):443-51
17028585 - Nat Neurosci. 2006 Nov;9(11):1404-11
17071073 - Curr Opin Neurobiol. 2006 Dec;16(6):645-9
10433268 - Neuron. 1999 Jul;23(3):569-82
18972180 - Cerebellum. 2008;7(4):517-22
20621648 - Brain Res Rev. 2011 Jan 7;66(1-2):16-34
14794830 - J Comp Physiol Psychol. 1950 Dec;43(6):482-9
17179932 - Nat Methods. 2007 Jan;4(1):47-9
10842230 - J Comp Neurol. 2000 Jun 26;422(2):246-66
5784296 - J Physiol. 1969 Jun;202(2):437-70
12662535 - Neural Netw. 1996 Nov;9(8):1265-1279
6031544 - Exp Brain Res. 1967;3(2):135-49
11480281 - Prog Brain Res. 2001;130:279-96
18044990 - PLoS Biol. 2007 Nov;5(11):e316
16597717 - J Neurosci. 2006 Apr 5;26(14):3642-5
20203674 - Nat Protoc. 2010 Mar;5(3):595-606
13263445 - J Comp Neurol. 1955 Aug;103(1):105-29
15217344 - Annu Rev Neurosci. 2004;27:581-609
20835249 - Nat Neurosci. 2010 Oct;13(10):1233-9
2723155 - J Comp Neurol. 1989 Apr 22;282(4):617-43
21115815 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21848-53
21280042 - J Comp Neurol. 2011 Apr 1;519(5):874-99
11169481 - J Comp Neurol. 2001 Feb 19;430(4):471-84
19219033 - Nat Methods. 2009 Mar;6(3):219-24
6271853 - J Comp Neurol. 1981 Oct 20;202(2):287-307
22542191 - Neuron. 2012 Apr 26;74(2):397-409
4277655 - Brain Res. 1974 Aug 30;77(1):1-23
17093099 - J Neurosci. 2006 Nov 8;26(45):11786-97
19002543 - Cerebellum. 2008;7(4):589-94
18097412 - Nature. 2007 Dec 20;450(7173):1245-8
17137642 - Trends Neurosci. 2007 Jan;30(1):14-21
19219037 - Nat Neurosci. 2009 Mar;12(3):356-62
10943682 - Neuroreport. 2000 Aug 3;11(11):R11-6
13708042 - J Anat. 1961 Jul;95:345-56
6031545 - Exp Brain Res. 1967;3(2):163-77
12592566 - Anat Embryol (Berl). 2003 Feb;206(3):149-62
20367317 - Annu Rev Neurosci. 2010;33:89-108
22685588 - PLoS One. 2012;7(6):e38593
1374872 - Neurosci Res. 1992 Mar;13(2):83-118
19009328 - Cerebellum. 2008;7(4):539-41
21670098 - Cereb Cortex. 2012 Feb;22(2):345-62
23539117 - Elife. 2013;2:e00641
7518337 - Brain Res. 1994 Apr 25;644(1):175-80
21227230 - Trends Cogn Sci. 1998 Sep 1;2(9):338-47
3213958 - Anat Embryol (Berl). 1988;179(1):81-8
12414120 - Brain Res Mol Brain Res. 2002 Oct 30;107(1):23-31
20739477 - Cereb Cortex. 2011 Apr;21(4):865-76
22895474 - Nat Rev Neurosci. 2012 Sep;13(9):619-35
5452810 - Nature. 1970 Sep 19;227(5264):1224-8
7751612 - J Hirnforsch. 1995;36(1):7-19
20510861 - Neuron. 2010 May 27;66(4):573-84
20838949 - Cerebellum. 2011 Sep;10(3):484-94
23017990 - Curr Biol. 2012 Sep 25;22(18):R794-5
15758160 - J Neurosci. 2005 Mar 9;25(10):2518-21
9949826 - Novartis Found Symp. 1998;218:272-84; discussion 284-90
Hantman (bib28) 2010; 13
Sotelo (bib67) 2011; 66
De Schutter (bib20) 2001; 130
Leergaard (bib40) 2003; 206
Bengtsson (bib9) 2009; 106
Robinson (bib59) 1975
Albus (bib2) 1971; 10
Tziridis (bib70) 2012; 22
Watson (bib73) 2012
Eccles (bib23) 1967
Hisano (bib31) 2002; 107
Kelsch (bib39) 2012; 7
Bastian (bib7) 2006; 16
Herculano-Houzel (bib30) 2005; 25
Bellocchio (bib8) 1998; 18
Wolpert (bib76) 1996; 9
Minsky (bib49) 1969
Mihailoff (bib48) 1989; 282
Schwarz (bib61) 1999; 22
Jorntell (bib38) 2006; 26
Wall (bib72) 2010; 107
Akintunde (bib1) 1994; 7
Poulet (bib56) 2007; 30
Campbell (bib16) 1974; 77
Ito (bib35) 2008; 9
Ng (bib52) 2010; 50
Gao (bib25) 2012; 13
Arenz (bib5) 2008; 321
Wolpert (bib77) 1998; 2
Miall (bib45) 1998; 218
Shadmehr (bib64) 2010; 33
Blomfield (bib11) 1970; 227
Hongo (bib33) 1967; 3
Ng (bib51) 2009; 12
Ayling (bib6) 2009; 6
Blakemore (bib10) 2000; 11
Sotelo (bib66) 2008; 7
Wickersham (bib74) 2007; 4
Ebner (bib22) 2008; 7
Ekerot (bib24) 2008; 7
Brodal (bib14) 1992; 13
Sommer (bib65) 2008; 31
Boyden (bib13) 2004; 27
Jordan (bib37) 1992; 16
Panto (bib54) 1995; 36
Burne (bib15) 1981; 202
Sperry (bib68) 1950; 43
Jakab (bib36) 1988; 179
Chambers (bib19) 1955b; 74
Palay (bib53) 1974
Wickersham (bib75) 2010; 5
Glickstein (bib26) 2008; 7
Naisbitt (bib50) 1999; 23
Mazzoni (bib44) 2006; 26
Hongo (bib32) 1967; 3
Ito (bib34) 2006; 78
Marr (bib43) 1969; 202
Serapide (bib62) 1994; 644
Rancz (bib58) 2007; 450
Apps (bib3) 2005; 6
Gray (bib27) 1961; 95
Tennant (bib69) 2011; 21
Arenz (bib4) 2009; 19
Dietz (bib21) 2002; 3
Cerminara (bib17) 2011; 10
Leergaard (bib41) 2000; 422
Lesage (bib42) 2012; 22
Harrison (bib29) 2012; 74
Sawtell (bib60) 2010; 66
Bosco (bib12) 2001; 81
Pasalar (bib55) 2006; 9
Quy (bib57) 2011; 519
Serapide (bib63) 2001; 430
Miall (bib46) 2007; 5
Chambers (bib18) 1955a; 103
Miall (bib47) 1993; 25
von Holst (bib71) 1950; 37
References_xml – volume: 206
  start-page: 149
  year: 2003
  ident: bib40
  article-title: Clustered and laminar topographic patterns in rat cerebro-pontine pathways
  publication-title: Anat Embryol (Berl)
  doi: 10.1007/s00429-002-0272-7
  contributor:
    fullname: Leergaard
– volume: 107
  start-page: 23
  year: 2002
  ident: bib31
  article-title: Expression of inorganic phosphate/vesicular glutamate transporters (BNPI/VGLUT1 and DNPI/VGLUT2) in the cerebellum and precerebellar nuclei of the rat
  publication-title: Brain Res Mol Brain Res
  doi: 10.1016/S0169-328X(02)00442-4
  contributor:
    fullname: Hisano
– volume: 6
  start-page: 297
  year: 2005
  ident: bib3
  article-title: Anatomical and physiological foundations of cerebellar information processing
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn1646
  contributor:
    fullname: Apps
– volume: 3
  start-page: 135
  year: 1967
  ident: bib33
  article-title: Corticofugal influences on transmission to the dorsal spinocerebellar tract from hindlimb primary afferents
  publication-title: Exp Brain Res
  doi: 10.1007/BF00233258
  contributor:
    fullname: Hongo
– volume: 7
  start-page: 517
  year: 2008
  ident: bib66
  article-title: Viewing the cerebellum through the eyes of Ramon Y Cajal
  publication-title: Cerebellum
  doi: 10.1007/s12311-008-0078-0
  contributor:
    fullname: Sotelo
– volume: 74
  start-page: 397
  year: 2012
  ident: bib29
  article-title: Distinct cortical circuit mechanisms for complex forelimb movement and motor map topography
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.02.028
  contributor:
    fullname: Harrison
– volume: 3
  start-page: 163
  year: 1967
  ident: bib32
  article-title: Cortically evoked pre- and postsynaptic inhibition of impulse transmission to the dorsal spinocerebellar tract
  publication-title: Exp Brain Res
  doi: 10.1007/BF00233260
  contributor:
    fullname: Hongo
– volume: 4
  start-page: 47
  year: 2007
  ident: bib74
  article-title: Retrograde neuronal tracing with a deletion-mutant rabies virus
  publication-title: Nat Methods
  doi: 10.1038/nmeth999
  contributor:
    fullname: Wickersham
– volume: 7
  start-page: 589
  year: 2008
  ident: bib26
  article-title: Cerebellum: connections and functions
  publication-title: Cerebellum
  doi: 10.1007/s12311-008-0074-4
  contributor:
    fullname: Glickstein
– volume: 66
  start-page: 573
  year: 2010
  ident: bib60
  article-title: Multimodal integration in granule cells as a basis for associative plasticity and sensory prediction in a cerebellum-like circuit
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.04.018
  contributor:
    fullname: Sawtell
– volume: 77
  start-page: 1
  year: 1974
  ident: bib16
  article-title: Somatotopic organization of the external cuneate nucleus in albino rats
  publication-title: Brain Res
  doi: 10.1016/0006-8993(74)90801-4
  contributor:
    fullname: Campbell
– volume: 5
  start-page: e316
  year: 2007
  ident: bib46
  article-title: Disruption of state estimation in the human lateral cerebellum
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0050316
  contributor:
    fullname: Miall
– volume: 9
  start-page: 1265
  year: 1996
  ident: bib76
  article-title: Forward models for physiological motor control
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(96)00035-4
  contributor:
    fullname: Wolpert
– volume: 23
  start-page: 569
  year: 1999
  ident: bib50
  article-title: Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80809-0
  contributor:
    fullname: Naisbitt
– volume-title: Perceptrons
  year: 1969
  ident: bib49
  contributor:
    fullname: Minsky
– volume: 50
  start-page: 55
  year: 2010
  ident: bib52
  article-title: Surface-based mapping of gene expression and probabilistic expression maps in the mouse cortex
  publication-title: Methods
  doi: 10.1016/j.ymeth.2009.10.001
  contributor:
    fullname: Ng
– volume: 22
  start-page: R794
  year: 2012
  ident: bib42
  article-title: Cerebellar rTMS disrupts predictive language processing
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2012.07.006
  contributor:
    fullname: Lesage
– volume: 26
  start-page: 3642
  year: 2006
  ident: bib44
  article-title: An implicit plan overrides an explicit strategy during visuomotor adaptation
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5317-05.2006
  contributor:
    fullname: Mazzoni
– volume: 43
  start-page: 482
  year: 1950
  ident: bib68
  article-title: Neural basis of the spontaneous optokinetic response produced by visual inversion
  publication-title: J Comp Physiol Psychol
  doi: 10.1037/h0055479
  contributor:
    fullname: Sperry
– volume: 107
  start-page: 21848
  year: 2010
  ident: bib72
  article-title: Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1011756107
  contributor:
    fullname: Wall
– volume: 422
  start-page: 246
  issue: 2
  year: 2000
  ident: bib41
  article-title: Rat somatosensory cerebropontocerebellar pathways: spatial relationships of the somatotopic map of the primary somatosensory cortex are preserved in a three-dimensional clustered pontine map
  publication-title: J Comp Neurol
  doi: 10.1002/(SICI)1096-9861(20000626)422:2<246::AID-CNE7>3.0.CO;2-R
  contributor:
    fullname: Leergaard
– volume: 16
  start-page: 307
  year: 1992
  ident: bib37
  article-title: Forward models: supervised learning with a distal teacher
  publication-title: Cognitive Science
  doi: 10.1016/0364-0213(92)90036-T
  contributor:
    fullname: Jordan
– volume-title: Cerebellar cortex: cytology and organization
  year: 1974
  ident: bib53
  doi: 10.1007/978-3-642-65581-4
  contributor:
    fullname: Palay
– volume: 36
  start-page: 7
  year: 1995
  ident: bib54
  article-title: The projection from the primary motor and somatic sensory cortex to the basilar pontine nuclei. A detailed electrophysiological and anatomical study in the rat
  publication-title: J Hirnforsch
  contributor:
    fullname: Panto
– volume: 66
  start-page: 16
  year: 2011
  ident: bib67
  article-title: Camillo Golgi and Santiago Ramon y Cajal: the anatomical organization of the cortex of the cerebellum. Can the neuron doctrine still support our actual knowledge on the cerebellar structural arrangement?
  publication-title: Brain Res Rev
  doi: 10.1016/j.brainresrev.2010.05.004
  contributor:
    fullname: Sotelo
– volume: 21
  start-page: 865
  year: 2011
  ident: bib69
  article-title: The organization of the forelimb representation of the C57BL/6 mouse motor cortex as defined by intracortical microstimulation and cytoarchitecture
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhq159
  contributor:
    fullname: Tennant
– volume: 26
  start-page: 11786
  year: 2006
  ident: bib38
  article-title: Properties of somatosensory synaptic integration in cerebellar granule cells in vivo
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2939-06.2006
  contributor:
    fullname: Jorntell
– volume: 12
  start-page: 356
  year: 2009
  ident: bib51
  article-title: An anatomic gene expression atlas of the adult mouse brain
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2281
  contributor:
    fullname: Ng
– volume: 282
  start-page: 617
  year: 1989
  ident: bib48
  article-title: Survey of noncortical afferent projections to the basilar pontine nuclei: a retrograde tracing study in the rat
  publication-title: J Comp Neurol
  doi: 10.1002/cne.902820411
  contributor:
    fullname: Mihailoff
– volume: 5
  start-page: 595
  year: 2010
  ident: bib75
  article-title: Production of glycoprotein-deleted rabies viruses for monosynaptic tracing and high-level gene expression in neurons
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2009.248
  contributor:
    fullname: Wickersham
– volume: 106
  start-page: 2389
  year: 2009
  ident: bib9
  article-title: Sensory transmission in cerebellar granule cells relies on similarly coded mossy fiber inputs
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0808428106
  contributor:
    fullname: Bengtsson
– volume: 9
  start-page: 1404
  year: 2006
  ident: bib55
  article-title: Force field effects on cerebellar Purkinje cell discharge with implications for internal models
  publication-title: Nat Neurosci
  doi: 10.1038/nn1783
  contributor:
    fullname: Pasalar
– volume: 3
  start-page: 781
  year: 2002
  ident: bib21
  article-title: Proprioception and locomotor disorders
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn939
  contributor:
    fullname: Dietz
– volume: 10
  start-page: 484
  year: 2011
  ident: bib17
  article-title: Behavioural significance of cerebellar modules
  publication-title: Cerebellum
  doi: 10.1007/s12311-010-0209-2
  contributor:
    fullname: Cerminara
– volume: 644
  start-page: 175
  year: 1994
  ident: bib62
  article-title: The pontocerebellar projection: longitudinal zonal distribution of fibers from discrete regions of the pontine nuclei to vermal and parafloccular cortices in the rat
  publication-title: Brain Res
  doi: 10.1016/0006-8993(94)90362-X
  contributor:
    fullname: Serapide
– volume: 31
  start-page: 317
  year: 2008
  ident: bib65
  article-title: Brain circuits for the internal monitoring of movements
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.31.060407.125627
  contributor:
    fullname: Sommer
– volume: 11
  start-page: R11
  year: 2000
  ident: bib10
  article-title: Why can't you tickle yourself?
  publication-title: Neuroreport
  doi: 10.1097/00001756-200008030-00002
  contributor:
    fullname: Blakemore
– volume: 78
  start-page: 272
  year: 2006
  ident: bib34
  article-title: Cerebellar circuitry as a neuronal machine
  publication-title: Prog Neurobiol
  doi: 10.1016/j.pneurobio.2006.02.006
  contributor:
    fullname: Ito
– volume: 179
  start-page: 81
  year: 1988
  ident: bib36
  article-title: Quantitative morphology and synaptology of cerebellar glomeruli in the rat
  publication-title: Anat Embryol (Berl)
  doi: 10.1007/BF00305102
  contributor:
    fullname: Jakab
– volume: 6
  start-page: 219
  year: 2009
  ident: bib6
  article-title: Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1303
  contributor:
    fullname: Ayling
– volume: 16
  start-page: 645
  year: 2006
  ident: bib7
  article-title: Learning to predict the future: the cerebellum adapts feedforward movement control
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/j.conb.2006.08.016
  contributor:
    fullname: Bastian
– volume: 202
  start-page: 287
  year: 1981
  ident: bib15
  article-title: The tectopontine projection the rat with comments on visual pathways to the basilar pons
  publication-title: J Comp Neurol
  doi: 10.1002/cne.902020212
  contributor:
    fullname: Burne
– volume: 81
  start-page: 539
  year: 2001
  ident: bib12
  article-title: Proprioception from a spinocerebellar perspective
  publication-title: Physiol Rev
  doi: 10.1152/physrev.2001.81.2.539
  contributor:
    fullname: Bosco
– volume: 519
  start-page: 874
  year: 2011
  ident: bib57
  article-title: Projection patterns of single mossy fiber axons originating from the dorsal column nuclei mapped on the aldolase C compartments in the rat cerebellar cortex
  publication-title: J Comp Neurol
  doi: 10.1002/cne.22555
  contributor:
    fullname: Quy
– volume: 103
  start-page: 105
  year: 1955a
  ident: bib18
  article-title: Functional localization in the cerebellum. I. Organization in longitudinal cortico-nuclear zones and their contribution to the control of posture, both extrapyramidal and pyramidal
  publication-title: J Comp Neurol
  doi: 10.1002/cne.901030107
  contributor:
    fullname: Chambers
– volume: 227
  start-page: 1224
  year: 1970
  ident: bib11
  article-title: How the cerebellum may be used
  publication-title: Nature
  doi: 10.1038/2271224a0
  contributor:
    fullname: Blomfield
– volume: 130
  start-page: 279
  year: 2001
  ident: bib20
  article-title: Coding in the granular layer of the cerebellum
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(01)30019-5
  contributor:
    fullname: De Schutter
– volume-title: The mouse nervous system
  year: 2012
  ident: bib73
  contributor:
    fullname: Watson
– volume: 19
  start-page: 445
  year: 2009
  ident: bib4
  article-title: Sensory representations in cerebellar granule cells
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/j.conb.2009.07.003
  contributor:
    fullname: Arenz
– volume: 2
  start-page: 338
  year: 1998
  ident: bib77
  article-title: Internal models in the cerebellum
  publication-title: Trends Cogn Sci
  doi: 10.1016/S1364-6613(98)01221-2
  contributor:
    fullname: Wolpert
– volume: 7
  start-page: 75
  year: 1994
  ident: bib1
  article-title: External cuneocerebellar projection and Purkinje cell zebrin II bands: a direct comparison of parasagittal banding in the mouse cerebellum
  publication-title: J Chem Neuroanat
  doi: 10.1016/0891-0618(94)90009-4
  contributor:
    fullname: Akintunde
– volume: 13
  start-page: 83
  year: 1992
  ident: bib14
  article-title: Organization of the pontine nuclei
  publication-title: Neurosci Res
  doi: 10.1016/0168-0102(92)90092-Q
  contributor:
    fullname: Brodal
– volume: 33
  start-page: 89
  year: 2010
  ident: bib64
  article-title: Error correction, sensory prediction, and adaptation in motor control
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev-neuro-060909-153135
  contributor:
    fullname: Shadmehr
– volume: 450
  start-page: 1245
  year: 2007
  ident: bib58
  article-title: High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons
  publication-title: Nature
  doi: 10.1038/nature05995
  contributor:
    fullname: Rancz
– volume: 27
  start-page: 581
  year: 2004
  ident: bib13
  article-title: Cerebellum-dependent learning: the role of multiple plasticity mechanisms
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.27.070203.144238
  contributor:
    fullname: Boyden
– volume: 7
  start-page: 583
  year: 2008
  ident: bib22
  article-title: Cerebellum predicts the future motor state
  publication-title: Cerebellum
  doi: 10.1007/s12311-008-0059-3
  contributor:
    fullname: Ebner
– volume: 7
  start-page: 539
  year: 2008
  ident: bib24
  article-title: Synaptic integration in cerebellar granule cells
  publication-title: Cerebellum
  doi: 10.1007/s12311-008-0064-6
  contributor:
    fullname: Ekerot
– volume-title: The cerebellum as a neuronal machine
  year: 1967
  ident: bib23
  doi: 10.1007/978-3-662-13147-3
  contributor:
    fullname: Eccles
– volume: 13
  start-page: 1233
  year: 2010
  ident: bib28
  article-title: Clarke's column neurons as the focus of a corticospinal corollary circuit
  publication-title: Nat Neurosci
  doi: 10.1038/nn.2637
  contributor:
    fullname: Hantman
– volume: 25
  start-page: 2518
  year: 2005
  ident: bib30
  article-title: Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4526-04.2005
  contributor:
    fullname: Herculano-Houzel
– volume: 9
  start-page: 304
  year: 2008
  ident: bib35
  article-title: Control of mental activities by internal models in the cerebellum
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2332
  contributor:
    fullname: Ito
– volume: 202
  start-page: 437
  year: 1969
  ident: bib43
  article-title: A theory of cerebellar cortex
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1969.sp008820
  contributor:
    fullname: Marr
– volume: 25
  start-page: 203
  year: 1993
  ident: bib47
  article-title: Is the cerebellum a smith predictor?
  publication-title: J Mot Behav
  doi: 10.1080/00222895.1993.9942050
  contributor:
    fullname: Miall
– volume: 22
  start-page: 443
  year: 1999
  ident: bib61
  article-title: Binding of signals relevant for action: towards a hypothesis of the functional role of the pontine nuclei
  publication-title: Trends Neurosci
  doi: 10.1016/S0166-2236(99)01446-0
  contributor:
    fullname: Schwarz
– volume: 37
  start-page: 464
  year: 1950
  ident: bib71
  article-title: Das Reafferenzprinzip
  publication-title: Naturwissenschaften
  doi: 10.1007/BF00622503
  contributor:
    fullname: von Holst
– volume: 321
  start-page: 977
  year: 2008
  ident: bib5
  article-title: The contribution of single synapses to sensory representation in vivo
  publication-title: Science
  doi: 10.1126/science.1158391
  contributor:
    fullname: Arenz
– volume-title: Oculomotor control signals
  year: 1975
  ident: bib59
  contributor:
    fullname: Robinson
– volume: 22
  start-page: 345
  year: 2012
  ident: bib70
  article-title: Pontine reference frames for the sensory guidance of movement
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhr109
  contributor:
    fullname: Tziridis
– volume: 18
  start-page: 8648
  year: 1998
  ident: bib8
  article-title: The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.18-21-08648.1998
  contributor:
    fullname: Bellocchio
– volume: 10
  start-page: 25
  year: 1971
  ident: bib2
  article-title: A theory of cerebellar function
  publication-title: Math Biosci
  doi: 10.1016/0025-5564(71)90051-4
  contributor:
    fullname: Albus
– volume: 74
  start-page: 653
  year: 1955b
  ident: bib19
  article-title: Functional localization in the cerebellum. II. Somatotopic organization in cortex and nuclei
  publication-title: AMA Arch Neurol Psychiatry
  doi: 10.1001/archneurpsyc.1955.02330180071008
  contributor:
    fullname: Chambers
– volume: 218
  start-page: 272
  year: 1998
  ident: bib45
  article-title: The cerebellum, predictive control and motor coordination
  publication-title: Novartis Found Symp
  doi: 10.1002/9780470515563.ch15
  contributor:
    fullname: Miall
– volume: 95
  start-page: 345
  year: 1961
  ident: bib27
  article-title: The granule cells, mossy synapses and Purkinje spine synapses of the cerebellum: light and electron microscope observations
  publication-title: J Anat
  contributor:
    fullname: Gray
– volume: 13
  start-page: 619
  year: 2012
  ident: bib25
  article-title: Distributed synergistic plasticity and cerebellar learning
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3312
  contributor:
    fullname: Gao
– volume: 430
  start-page: 471
  year: 2001
  ident: bib63
  article-title: Multiple zonal projections of the basilar pontine nuclei to the cerebellar cortex of the rat
  publication-title: J Comp Neurol
  doi: 10.1002/1096-9861(20010219)430:4<471::AID-CNE1044>3.0.CO;2-G
  contributor:
    fullname: Serapide
– volume: 7
  start-page: e38593
  year: 2012
  ident: bib39
  article-title: Genetic labeling of neuronal subsets through enhancer trapping in mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0038593
  contributor:
    fullname: Kelsch
– volume: 30
  start-page: 14
  year: 2007
  ident: bib56
  article-title: New insights into corollary discharges mediated by identified neural pathways
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2006.11.005
  contributor:
    fullname: Poulet
SSID ssj0000748819
Score 2.4752955
Snippet Cerebellar granule cells constitute the majority of neurons in the brain and are the primary conveyors of sensory and motor-related mossy fiber information to...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e00400
SubjectTerms Animals
Cerebellum
Cerebellum - cytology
Cerebellum - metabolism
Cerebellum - physiology
Convergence
corollary discharge
Cortex (somatosensory)
Feedback, Sensory
Gene expression
Granule cells
Lasers
Mammals
Mice, Inbred C57BL
Mice, Transgenic
Motor Activity
Motor task performance
Nerve Fibers - metabolism
Nerve Fibers - physiology
Neural Pathways - physiology
Neuroanatomical Tract-Tracing Techniques
Neurons - metabolism
Neurons - physiology
Neuroscience
Pons - cytology
Pons - metabolism
Pons - physiology
Proprioception
Purkinje cells
Rodents
Synaptic Transmission
SummonAdditionalLinks – databaseName: DAOJ: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15KQ_pwkgYV9urGkqzXsQkJobQ9NRB6MXqM2oXEXvaR35-RvLvslkAvuVrClr-R5mHPfEPIREfmYtvaWkun6lYxVjtt2rpJoYHEIsRSJPbjp7q5bb_dybudVl85J2ykBx6BOxdeNszZADGazJ7uuVfGGhmt8NnWF-3L5E4wVXSwxo3J7FiQp9FknsP3aYIvZc_umaDC1P-ce_lvluSO2bl-S96s_UX6dVznIXkF_RH5fZlzxUvZJNAh0dmQ-z0AdX2k-ITZfDqUbJVHoLkWxD0saKYpoCV78GGIeMMAc8j_HNyc_kFztboHmr_hL96R2-urX5c39bpJQh2kEcs6cm4SU5n2i6ukHOouLaxDmBmPhovQ6NC0TlkvJaAzEVni1gDHINp7NN7iPTnohx4-EiqdTY0CzRMGGW0URoUUhBPAfQqqlRWZbHDrZiMXRocxRIa3K_B2Bd6KXGRMt1MygXW5gGLt1mLt_ifWipxuJNKtT9WiQ22hlFXW4vDn7TCehwyQ62FY4RyBEWkOA3lFPowC3K6ECzQL6JFWRO-Jdm-p-yP99G_h3M4FxdaY45d4txPympemGrzm6pQcLOcr-ISuzdKflV38BOKl-PY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest_Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELaW5cIFgXgFFmSkvZomdvw6IVixqhBwYqWKS-TnUolNumnL72fGTQtFiGtsOdbM2N_MeB6EnOvYuNi2lmnpFGtV0zCnTcvqHOqUm5hiSRL7_EXNr9qPC7k4IfN9LgyGVe7vxHJRxyGgj3wGkqKUVdbKmfPoBQib2dvVLcP-UfjOOjXTuEPuNhzUCpBsvdAHbwsApQHs2yXoaYDQWfq0zOlNkeEjSCqV-_-lbv4dNfkHDF0-IPcn_ZG-2zH8ITlJ_SPy7QJjx0saZaJDpqsB-z8k6vpI4Q-rcTmU6JWfiWJuiLtZUyxbQEs04c0QYcGQxoRvEG6k1wBf2x-Jok9__ZhcXX74ejFnU9MEFqQRGxY5N7lRWAaMq6wc3GVaWAdkb3g0XIRah7p1ynopEygXscncmsTBqPYewFw8Iaf90KdnhEpnc62S5hmMjjYKo0IOwonEfQ6qlRU539OtW-1qY3RgUyB5u0LerpC3Iu-RpocpWNC6fBjG6246H53wsm6cDSlGg0XyPffKWCOjFR5Vuoqc7TnSTads3f2WiYq8PgzD-UACuT4NW5gjwEJFs5BX5OmOgYedcAEwARpqRfQRa4-2ejzSL7-XGtyYYGyNef7_bb0g93hpn8EZV2fkdDNu00tQYjb-VZHPX6mv9QI
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKuXBBRbxCCzJSr1niRxz7VJWKqkKUEytVXCI_xmWlNlmyu1X594y92RVb9cg1dl7fjD3fJPMg5LgJzAYpTdnUVpVSMVbaRsuyir6CyAKEnCR2-V1dTOXXq_pqj2yacY4ALh517VI_qelwM7n__ecEFzzy10mD1vATfJtFmGR1fEKecilkUvXLkefnLblBPWVmnZ_38Jwdi5QL9z_GNh8GTf5jhc4PyPORPtLTtbxfkD3oXpKfZyl0PGdRAu0jnfep_QNQ2wWKd5gPsz4Hr9wBTakh9nZBU9UCmoMJb_uAF_QwQPoFYQd6jdZrdQM0fdJfvCLT8y8_zi7KsWdC6WstlmXgXEemUhUwrqKyuJU1wlhEnfGgufBV4ytplXF1DcgtAovcaODoUzuHtly8Jvtd38FbQmtrYqWg4RF9DhmEVj56YQVwF72SdUGON7i183VpjBZdigRvm-FtM7wF-Zww3U5J9azzgX64bsfl0QpXV8waDyHoVCPfcae00XUwwiVGV5CjjUTajY60uHkoZZQxOPxxO4zLIwFkO-hXOEegg5q8Ql6QN2sBbp-Eo6IgYdIFaXZEu_OouyPd7FcuwZ3yi43W7_7Hux2SZzz32OAlV0dkfzms4D0ynaX7kLX4LyQ7AEg
  priority: 102
  providerName: Scholars Portal
Title Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells
URI https://www.ncbi.nlm.nih.gov/pubmed/23467508
https://www.proquest.com/docview/1966696995/abstract/
https://search.proquest.com/docview/1315628712
https://pubmed.ncbi.nlm.nih.gov/PMC3582988
https://doaj.org/article/3b501a9cedd84262b2b68985d93b1435
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF6S9NJLaelLbWq2kKtsaZ_aY2ISQqlDKA2YXsQ-U0MsGdnu78_sWjJ26akXHbQraZmZncdq5huELqQrtWNM5ZJrkTNRlrmWFcuLYAsfSuddKhKb3YnbB_ZtzucniA-1MClp35rFuHlajpvF75RbuVrayZAnNrmfTWN1p4LI7RSdSkoPQvSkfiXIZKl2tXgSrOXEf18EP07iGrF_KegGHttJHhiihNf_Lyfz71zJA-Nz8xq96r1GfLlb3Rt04pu36Nc0Zoyn4kmP24BXbez64LFuHIYvrLpFm3JW_ngcK0L0co0jWAFOOYTL1sELre98_POgO_wIRmv75HE8yV-_Qw831z-nt3nfKiG3vKKb3BFShVJE8C8igtCgwSRVGohdElcRagtpC6aFMpx7cClcGYCCnkAobQyYcPoenTVt4z8izLUKhfCSBAg1mKOVsMFSTT0xwQrGM3Qx0K1e7RAxaogkIqXrROk6UTpDV5Gm-ykRxjrdaLvHumdmTQ0vSq2sd66K0PiGGFGpijtFTXTkMnQ-cKTu99a6Bp0hhBJKwfDX_TDsikgg3fh2C3MoxKUxGCQZ-rBj4H4lgwBkSB6x9mipxyMgiAl5uxe8T__95Gf0kqR-GiQn4hydbbqt_wJezcaMQJbncoReXF3f3f8YpbMBuM5YNUry_Qz48_56
link.rule.ids 230,315,733,786,790,870,891,2115,12083,21416,24346,27957,27958,31754,31755,33779,33780,43345,43840,53827,53829,74102,74659
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELege4AXBOIrbICR9hqW-Cv2E2LTpgJdhdAmTbxEjn3eKrGkpO3-fs5uWihCvMaWY92d_bs73wchh5UvrRfC5JW0KheqLHNbaZEXwRUQSg8-JYmdT9X4Uny-kleDw20xhFVu7sR0UfvORR_5EUqKUkYZIz_Mf-axa1R8XR1aaNwne4KjqTIie8en06_ftl4WBEiNmLdOzKsQOo9gMgvwPsnuDhSliv3_UjP_jpb8A37OHpNHg95IP64Z_YTcg_Yp-X4SY8ZT-iTQLtB5F_s-ALWtp_iHeT_rUtTKHdCYE2JvFzSWK6ApivC287iggx7i24Pt6TXC1uoH0OjLXzwjl2enFyfjfGiWkDup-TL3jOlQqlj-i6mgLN5hFTcWyV0yrxl3ReUKYZVppARUKnwZmNHA0JhuGgRx_pyM2q6Fl4RKa0KhoGIBjQ3huVYuOG45sCY4JWRGDjd0q-frmhg12hKRvHUib53Im5HjSNPtlFjIOn3o-ut6OBc1b2RRWuPAex2L4zesUdpo6Q1voiqXkYMNR-rhdC3q37KQkXfbYTwXkUC2hW6FczhaptEcZBl5sWbgdieMIzygZpqRaoe1O1vdHWlnN6n2dkwsNlq_-v-23pIH44vzST35NP2yTx6y1EKD5UwdkNGyX8FrVGSWzZtBWn8By0P1mw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgSIgXBOIrbICR9hqa2PHXE4JBNWBMPDCp4sVy7POoxJIubfn7ObtpoQjxGkeJdXf2787-3R0hxyrULjSNKZVwsmxkXZdO6aasoq8g1gFCThL7fC5PL5qPMzEb-U_LkVa53RPzRh16n87IJ2gpUhppjJjEkRbx5d309eK6TB2k0k3r2E7jJrmFKFmlbgZqpnbnLQiVGtFvk6KnEEQncDaP8Cpb8R4o5dr9_3I4_-ZN_gFE03vk7uhB0jcbld8nN6B7QL6dJPZ4TqQE2ke66FMHCKCuCxT_sBjmfeav_ASaskPc1ZKmwgU08wmv-oAf9DBAuoVwA71EAFv_AJpO9ZcPycX0_deT03Jsm1B6ofmqDIzpWMtUCIzJKB3uZoobh4KvWdCM-0r5qnHStEIAuhehjsxoYBhWty3COX9EDrq-gyeECmdiJUGxiGFHE7iWPnruOLA2etmIghxv5WYXm-oYFqOKJF6bxWuzeAvyNsl090oqaZ0f9MOlHVeI5a2oamc8hKBTmfyWtVIbLYLhbXLqCnK01Ygd19nS_raKgrzcDeMKSQJyHfRrfIdjjJoCQ1aQxxsF7mbCOAIF-qgFUXuq3Zvq_kg3_56rcKcUY6P10_9P6wW5jWZqzz6cfzokd1jupcFKJo_IwWpYwzP0aFbt82yqvwDUkfhh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+of+pontine+and+proprioceptive+streams+onto+multimodal+cerebellar+granule+cells&rft.jtitle=eLife&rft.au=Cheng-Chiu+Huang&rft.au=Ken+Sugino&rft.au=Yasuyuki+Shima&rft.au=Caiying+Guo&rft.date=2013-02-26&rft.pub=eLife+Sciences+Publications+Ltd&rft.eissn=2050-084X&rft.volume=2&rft_id=info:doi/10.7554%2FeLife.00400&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3b501a9cedd84262b2b68985d93b1435
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon