Ecological adaptations of amphibians to environmental changes along an altitudinal gradient (Case Study: Bufo gargarizans) from phenotypic and genetic perspectives
Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to diffe...
Saved in:
Published in | BMC biology Vol. 22; no. 1; pp. 231 - 17 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
10.10.2024
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to different altitudinal environments.
Comparison of populations from four altitudes (50 m, 1200 m, 2300 m, and 3400 m) showed more effective defenses among high-altitude toads. These included thickened epidermis, more epidermal capillaries and granular glands, greater gland size in skin, and higher antioxidant enzyme activities in plasma. High-altitude toads also showed increased erythrocytes and hematocrit and elevated hemoglobin concentration, potentially improving oxygen delivery. Elevated altitude led to a metabolic shift from aerobic to anaerobic metabolism, and high-altitude populations favored carbohydrates over fatty acids to fuel for energy metabolism. Differentially expressed genes were associated with adaptive phenotypic changes. For instance, expression of genes associated with fatty acid metabolism showed greater suppression at high altitude (3400 m), consistent with decreased flux of β-hydroxybutyric acid and lower free fatty acids levels. Moreover, down-regulation of genes involved in carbon metabolism processes at high altitude (3400 m) were coincident with reduced TCA cycle flux. These results suggest that high-altitude toads adopt a metabolic suppression strategy for survival under harsh environmental conditions. Moreover, the hypoxia-inducible factor signaling cascade was activated at high altitude.
Collectively, these results advance our comprehension of adaptation to high-altitude environments by revealing physiological and genetic mechanisms at work in Chinese toads living along altitudinal gradients. |
---|---|
AbstractList | Background Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to different altitudinal environments. Results Comparison of populations from four altitudes (50 m, 1200 m, 2300 m, and 3400 m) showed more effective defenses among high-altitude toads. These included thickened epidermis, more epidermal capillaries and granular glands, greater gland size in skin, and higher antioxidant enzyme activities in plasma. High-altitude toads also showed increased erythrocytes and hematocrit and elevated hemoglobin concentration, potentially improving oxygen delivery. Elevated altitude led to a metabolic shift from aerobic to anaerobic metabolism, and high-altitude populations favored carbohydrates over fatty acids to fuel for energy metabolism. Differentially expressed genes were associated with adaptive phenotypic changes. For instance, expression of genes associated with fatty acid metabolism showed greater suppression at high altitude (3400 m), consistent with decreased flux of [beta]-hydroxybutyric acid and lower free fatty acids levels. Moreover, down-regulation of genes involved in carbon metabolism processes at high altitude (3400 m) were coincident with reduced TCA cycle flux. These results suggest that high-altitude toads adopt a metabolic suppression strategy for survival under harsh environmental conditions. Moreover, the hypoxia-inducible factor signaling cascade was activated at high altitude. Conclusions Collectively, these results advance our comprehension of adaptation to high-altitude environments by revealing physiological and genetic mechanisms at work in Chinese toads living along altitudinal gradients. Keywords: Bufogargarizans, Altitudinal gradient, Phenotypic traits, Transcriptome, Adaptation Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to different altitudinal environments.BACKGROUNDOrganisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to different altitudinal environments.Comparison of populations from four altitudes (50 m, 1200 m, 2300 m, and 3400 m) showed more effective defenses among high-altitude toads. These included thickened epidermis, more epidermal capillaries and granular glands, greater gland size in skin, and higher antioxidant enzyme activities in plasma. High-altitude toads also showed increased erythrocytes and hematocrit and elevated hemoglobin concentration, potentially improving oxygen delivery. Elevated altitude led to a metabolic shift from aerobic to anaerobic metabolism, and high-altitude populations favored carbohydrates over fatty acids to fuel for energy metabolism. Differentially expressed genes were associated with adaptive phenotypic changes. For instance, expression of genes associated with fatty acid metabolism showed greater suppression at high altitude (3400 m), consistent with decreased flux of β-hydroxybutyric acid and lower free fatty acids levels. Moreover, down-regulation of genes involved in carbon metabolism processes at high altitude (3400 m) were coincident with reduced TCA cycle flux. These results suggest that high-altitude toads adopt a metabolic suppression strategy for survival under harsh environmental conditions. Moreover, the hypoxia-inducible factor signaling cascade was activated at high altitude.RESULTSComparison of populations from four altitudes (50 m, 1200 m, 2300 m, and 3400 m) showed more effective defenses among high-altitude toads. These included thickened epidermis, more epidermal capillaries and granular glands, greater gland size in skin, and higher antioxidant enzyme activities in plasma. High-altitude toads also showed increased erythrocytes and hematocrit and elevated hemoglobin concentration, potentially improving oxygen delivery. Elevated altitude led to a metabolic shift from aerobic to anaerobic metabolism, and high-altitude populations favored carbohydrates over fatty acids to fuel for energy metabolism. Differentially expressed genes were associated with adaptive phenotypic changes. For instance, expression of genes associated with fatty acid metabolism showed greater suppression at high altitude (3400 m), consistent with decreased flux of β-hydroxybutyric acid and lower free fatty acids levels. Moreover, down-regulation of genes involved in carbon metabolism processes at high altitude (3400 m) were coincident with reduced TCA cycle flux. These results suggest that high-altitude toads adopt a metabolic suppression strategy for survival under harsh environmental conditions. Moreover, the hypoxia-inducible factor signaling cascade was activated at high altitude.Collectively, these results advance our comprehension of adaptation to high-altitude environments by revealing physiological and genetic mechanisms at work in Chinese toads living along altitudinal gradients.CONCLUSIONSCollectively, these results advance our comprehension of adaptation to high-altitude environments by revealing physiological and genetic mechanisms at work in Chinese toads living along altitudinal gradients. Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to different altitudinal environments. Comparison of populations from four altitudes (50 m, 1200 m, 2300 m, and 3400 m) showed more effective defenses among high-altitude toads. These included thickened epidermis, more epidermal capillaries and granular glands, greater gland size in skin, and higher antioxidant enzyme activities in plasma. High-altitude toads also showed increased erythrocytes and hematocrit and elevated hemoglobin concentration, potentially improving oxygen delivery. Elevated altitude led to a metabolic shift from aerobic to anaerobic metabolism, and high-altitude populations favored carbohydrates over fatty acids to fuel for energy metabolism. Differentially expressed genes were associated with adaptive phenotypic changes. For instance, expression of genes associated with fatty acid metabolism showed greater suppression at high altitude (3400 m), consistent with decreased flux of [beta]-hydroxybutyric acid and lower free fatty acids levels. Moreover, down-regulation of genes involved in carbon metabolism processes at high altitude (3400 m) were coincident with reduced TCA cycle flux. These results suggest that high-altitude toads adopt a metabolic suppression strategy for survival under harsh environmental conditions. Moreover, the hypoxia-inducible factor signaling cascade was activated at high altitude. Collectively, these results advance our comprehension of adaptation to high-altitude environments by revealing physiological and genetic mechanisms at work in Chinese toads living along altitudinal gradients. Abstract Background Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to different altitudinal environments. Results Comparison of populations from four altitudes (50 m, 1200 m, 2300 m, and 3400 m) showed more effective defenses among high-altitude toads. These included thickened epidermis, more epidermal capillaries and granular glands, greater gland size in skin, and higher antioxidant enzyme activities in plasma. High-altitude toads also showed increased erythrocytes and hematocrit and elevated hemoglobin concentration, potentially improving oxygen delivery. Elevated altitude led to a metabolic shift from aerobic to anaerobic metabolism, and high-altitude populations favored carbohydrates over fatty acids to fuel for energy metabolism. Differentially expressed genes were associated with adaptive phenotypic changes. For instance, expression of genes associated with fatty acid metabolism showed greater suppression at high altitude (3400 m), consistent with decreased flux of β-hydroxybutyric acid and lower free fatty acids levels. Moreover, down-regulation of genes involved in carbon metabolism processes at high altitude (3400 m) were coincident with reduced TCA cycle flux. These results suggest that high-altitude toads adopt a metabolic suppression strategy for survival under harsh environmental conditions. Moreover, the hypoxia-inducible factor signaling cascade was activated at high altitude. Conclusions Collectively, these results advance our comprehension of adaptation to high-altitude environments by revealing physiological and genetic mechanisms at work in Chinese toads living along altitudinal gradients. BackgroundOrganisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to different altitudinal environments.ResultsComparison of populations from four altitudes (50 m, 1200 m, 2300 m, and 3400 m) showed more effective defenses among high-altitude toads. These included thickened epidermis, more epidermal capillaries and granular glands, greater gland size in skin, and higher antioxidant enzyme activities in plasma. High-altitude toads also showed increased erythrocytes and hematocrit and elevated hemoglobin concentration, potentially improving oxygen delivery. Elevated altitude led to a metabolic shift from aerobic to anaerobic metabolism, and high-altitude populations favored carbohydrates over fatty acids to fuel for energy metabolism. Differentially expressed genes were associated with adaptive phenotypic changes. For instance, expression of genes associated with fatty acid metabolism showed greater suppression at high altitude (3400 m), consistent with decreased flux of β-hydroxybutyric acid and lower free fatty acids levels. Moreover, down-regulation of genes involved in carbon metabolism processes at high altitude (3400 m) were coincident with reduced TCA cycle flux. These results suggest that high-altitude toads adopt a metabolic suppression strategy for survival under harsh environmental conditions. Moreover, the hypoxia-inducible factor signaling cascade was activated at high altitude.ConclusionsCollectively, these results advance our comprehension of adaptation to high-altitude environments by revealing physiological and genetic mechanisms at work in Chinese toads living along altitudinal gradients. Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to different altitudinal environments. Comparison of populations from four altitudes (50 m, 1200 m, 2300 m, and 3400 m) showed more effective defenses among high-altitude toads. These included thickened epidermis, more epidermal capillaries and granular glands, greater gland size in skin, and higher antioxidant enzyme activities in plasma. High-altitude toads also showed increased erythrocytes and hematocrit and elevated hemoglobin concentration, potentially improving oxygen delivery. Elevated altitude led to a metabolic shift from aerobic to anaerobic metabolism, and high-altitude populations favored carbohydrates over fatty acids to fuel for energy metabolism. Differentially expressed genes were associated with adaptive phenotypic changes. For instance, expression of genes associated with fatty acid metabolism showed greater suppression at high altitude (3400 m), consistent with decreased flux of β-hydroxybutyric acid and lower free fatty acids levels. Moreover, down-regulation of genes involved in carbon metabolism processes at high altitude (3400 m) were coincident with reduced TCA cycle flux. These results suggest that high-altitude toads adopt a metabolic suppression strategy for survival under harsh environmental conditions. Moreover, the hypoxia-inducible factor signaling cascade was activated at high altitude. Collectively, these results advance our comprehension of adaptation to high-altitude environments by revealing physiological and genetic mechanisms at work in Chinese toads living along altitudinal gradients. |
ArticleNumber | 231 |
Audience | Academic |
Author | Li, Xiangyong Men, Shengkang Chen, Qiang Niu, Yonggang Xu, Tisen Zhang, Xuejing Wang, Lei Ding, Li Wang, Huisong Storey, Kenneth B. Zhang, Haiying |
Author_xml | – sequence: 1 givenname: Yonggang orcidid: 0000-0002-6674-1798 surname: Niu fullname: Niu, Yonggang – sequence: 2 givenname: Xuejing surname: Zhang fullname: Zhang, Xuejing – sequence: 3 givenname: Haiying surname: Zhang fullname: Zhang, Haiying – sequence: 4 givenname: Shengkang surname: Men fullname: Men, Shengkang – sequence: 5 givenname: Tisen surname: Xu fullname: Xu, Tisen – sequence: 6 givenname: Li surname: Ding fullname: Ding, Li – sequence: 7 givenname: Xiangyong surname: Li fullname: Li, Xiangyong – sequence: 8 givenname: Lei surname: Wang fullname: Wang, Lei – sequence: 9 givenname: Huisong surname: Wang fullname: Wang, Huisong – sequence: 10 givenname: Kenneth B. surname: Storey fullname: Storey, Kenneth B. – sequence: 11 givenname: Qiang surname: Chen fullname: Chen, Qiang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39390465$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk81u1DAQxyNURD_gBTggS1zawxY7juOECypVgUqVKlHganntSdZVYqe2U1Fehxdl2i2lizigJMp4_PPf4_HMbrHlg4eieMnoIWNN_SaxsmViQcsKP8r5on5S7DBZsYWkVG49sreL3ZQuKS2FlPxZsc1b3tKqFjvFzxMThtA7oweirZ6yzi74REJH9Dit3NJpHOVAwF-7GPwIPiNqVtr3kIgegu-J9mhkl2frPE72UVuHHNk_1gnIBfpv3pL3cxdIryO-7geKHpAuhpFMK_Ah30zOoIwlPXjIaE8Q0wQmu2tIz4unnR4SvLj_7xVfP5x8Of60ODv_eHp8dLYwouF5YaTpWqhaY63sKiptZdqONqwEPDeI1kq-ZG3VtlTYsqoppwYMrWzHuTVWLPlecbrWtUFfqim6UccbFbRTd44Qe6UjBjeAElDXdSWpbBtbacF1syzLVpZQdaJtTINa79Za07wcwRpMR9TDhujmjHcr1YdrxRjeS43R7RX79woxXM2QshpdMjAM2kOYk-KMCUFpI2pEX_-FXoY54lWsKUZrDPQP1Ws8gfNdwI3Nrag6arCgGiH5rdbhPyh8LIzOYAF2Dv0bCw42FiCT4Xvu9ZySOr34_P_s-bdN9tXjDD6k7nftIlCuARNDShG6B4RRddsgat0gChtE3TWIqvkv5nkCVw |
Cites_doi | 10.1016/j.jtherbio.2022.103355 10.1042/BST20170502 10.1016/j.ympev.2005.03.023 10.1016/j.tibs.2008.08.002 10.1016/j.cell.2019.01.050 10.1186/s40851-018-0095-x 10.1007/s00360-021-01368-8 10.1016/0034-5687(76)90022-0 10.1073/pnas.75.4.2040 10.1113/EP085292 10.1007/s12565-016-0328-z 10.3390/ijms140612222 10.2307/2411138 10.1371/journal.pone.0071976 10.1091/mbc.02-02-0017 10.1016/j.jtherbio.2007.01.013 10.1186/s12863-016-0440-z 10.3390/ani12010058 10.1016/B978-0-12-804274-8.00043-6 10.1007/s00239-022-10070-4 10.1152/physiol.00045.2008 10.3109/08820131003681144 10.3389/fgene.2020.00433 10.1163/15707563-20191100 10.3389/fimmu.2018.03128 10.1016/j.ymgme.2012.03.003 10.1186/s12862-015-0371-8 10.3389/fphys.2022.942037 10.1576/toag.13.3.189.27672 10.2307/1443948 10.1038/nrm4069 10.1007/s00360-021-01381-x 10.3390/ijms231710081 10.1146/annurev.physiol.69.031905.162529 10.1111/eva.13555 10.1038/cddis.2014.496 10.3389/fphys.2022.1104476 10.1007/s00360-008-0274-8 10.1016/j.cbpa.2014.02.018 10.7554/eLife.70494 10.1016/j.jtherbio.2021.103132 10.1007/s10709-017-0005-8 10.1016/S1474-4422(09)70014-6 10.1016/0034-5687(82)90108-6 10.1046/j.1365-2656.2003.00696.x 10.1016/0300-9629(95)98515-I 10.3389/fevo.2023.1103406 10.1007/BF02189461 10.1097/CAD.0b013e3283139100 10.1016/S0955-0674(00)00194-0 10.1016/0300-9629(80)90428-4 10.1016/S1546-5098(08)60262-9 10.1038/s41598-019-43773-8 10.4067/S0717-95022017000401590 10.1097/WOX.0b013e3182439613 10.1186/s12983-023-00513-z 10.1016/0300-9629(83)90300-6 10.1086/718764 10.1111/bij.12250 10.1086/694833 10.1046/j.1523-1747.2003.12359.x 10.3389/fphys.2017.00702 10.1371/journal.pone.0125751 10.1146/annurev.ph.57.030195.000315 10.1186/s12863-017-0529-z 10.1038/nm1401 10.1111/1755-0998.13319 10.1002/ece3.7192 10.1016/j.tree.2007.09.006 10.1016/S0940-9602(98)80080-0 10.1001/archderm.138.11.1462 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). COPYRIGHT 2024 BioMed Central Ltd. 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: 2024. The Author(s). – notice: COPYRIGHT 2024 BioMed Central Ltd. – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 4U- 7QG 7QP 7QR 7SN 7SS 7TK 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC P64 PADUT PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1186/s12915-024-02033-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) University Readers Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Research Library China ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) University Readers Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1741-7007 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_5e666470798d4a53a8b22972e4f598c8 PMC11465660 A811885736 39390465 10_1186_s12915_024_02033_6 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 0R~ 23N 2WC 53G 5GY 5VS 6J9 7X7 88E 8FE 8FH 8FI 8FJ 8G5 AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR IOV ISE ISR ITC KQ8 LK8 M1P M2O M48 M7P M~E O5R O5S OK1 OVT P2P PADUT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 3V. 4U- 7QG 7QP 7QR 7SN 7SS 7TK 7XB 8FD 8FK C1K FR3 K9. MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c583t-c7cf9e49cdd7f407d4c9f0812e025e59d73b1949905d246030cec04df33dcd5b3 |
IEDL.DBID | M48 |
ISSN | 1741-7007 |
IngestDate | Wed Aug 27 01:30:09 EDT 2025 Thu Aug 21 18:35:26 EDT 2025 Sun Aug 24 03:46:55 EDT 2025 Fri Jul 25 19:26:10 EDT 2025 Tue Jun 17 22:05:08 EDT 2025 Tue Jun 10 21:04:40 EDT 2025 Fri Jun 27 05:26:06 EDT 2025 Fri Jun 27 05:26:11 EDT 2025 Mon Jul 21 05:40:01 EDT 2025 Tue Jul 01 02:58:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Altitudinal gradient Bufo gargarizans Transcriptome Adaptation Phenotypic traits |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-c7cf9e49cdd7f407d4c9f0812e025e59d73b1949905d246030cec04df33dcd5b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6674-1798 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12915-024-02033-6 |
PMID | 39390465 |
PQID | 3115106079 |
PQPubID | 42637 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5e666470798d4a53a8b22972e4f598c8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11465660 proquest_miscellaneous_3115500856 proquest_journals_3115106079 gale_infotracmisc_A811885736 gale_infotracacademiconefile_A811885736 gale_incontextgauss_ISR_A811885736 gale_incontextgauss_IOV_A811885736 pubmed_primary_39390465 crossref_primary_10_1186_s12915_024_02033_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-10 |
PublicationDateYYYYMMDD | 2024-10-10 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC biology |
PublicationTitleAlternate | BMC Biol |
PublicationYear | 2024 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | J Chen (2033_CR63) 2020; 11 J D’Orazio (2033_CR37) 2013; 14 GL Semenza (2033_CR58) 2001; 13 W Yang (2033_CR23) 2016; 17 E Birben (2033_CR20) 2012; 5 C Morrison (2033_CR32) 2003; 72 J Xin (2033_CR69) 2019; 9 L Zhang (2033_CR28) 2023; 16 S Tan (2033_CR30) 2021; 191 K Ganeshan (2033_CR70) 2019; 177 KG Ashton (2033_CR2) 2003; 57 H Zhang (2033_CR72) 2022; 110 A Carmena-Suero (2033_CR47) 1980; 67 G Ruiz (2033_CR46) 1983; 76 2033_CR51 H Biswas (2033_CR40) 1986; 30 X Zhang (2033_CR19) 2023; 20 C Wang (2033_CR42) 2020; 70 MH Wilson (2033_CR76) 2009; 8 VH Hutchison (2033_CR12) 1976; 27 2033_CR6 GJ Fisher (2033_CR45) 2002; 138 Y Niu (2033_CR73) 2022; 95 PE Bickler (2033_CR17) 2007; 69 KJ Lang (2033_CR66) 2002; 13 J Arredondo (2033_CR5) 2017; 35 2033_CR25 RL Ge (2033_CR54) 2012; 106 Z Yao (2033_CR41) 2021; 11 S Lu (2033_CR13) 2015; 10 DC Moreira (2033_CR50) 2017; 8 K Mishra (2033_CR68) 2010; 39 Z Mi (2033_CR34) 2016; 51 W Yang (2033_CR24) 2017; 18 RP Horgan (2033_CR21) 2011; 13 WW Burggren (2033_CR3) 1982; 47 JF Varga (2033_CR4) 2019; 9 X Tang (2033_CR18) 2013; 8 SN Othman (2033_CR26) 2022; 11 Q Zhang (2033_CR62) 2016; 7 C Yang (2033_CR10) 2019; 10 JB de Velasco (2033_CR36) 2008; 178 2033_CR39 P Pu (2033_CR16) 2021; 191 C Lu (2033_CR43) 2008; 19 RL Ge (2033_CR52) 2015; 100 D Zhang (2033_CR65) 2014; 5 C Yan (2033_CR61) 2022; 23 Y Niu (2033_CR71) 2021; 102 Y Niu (2033_CR15) 2022; 13 JC González-Morales (2033_CR11) 2017; 90 GL Semenza (2033_CR57) 2009; 24 C Körner (2033_CR1) 2007; 22 D Lan (2033_CR67) 2018; 146 GA Brar (2033_CR64) 2015; 16 SC Trullas (2033_CR35) 2007; 32 TA Mousseau (2033_CR31) 1997; 51 G Stephanopoulos (2033_CR74) 1998 Y Chen (2033_CR29) 2022; 90 2033_CR48 S Reguera (2033_CR9) 2014; 112 G Guangming (2033_CR8) 2017; 92 P Zhao (2033_CR60) 2021; 12 M Ma (2033_CR14) 2023; 11 AJ Murray (2033_CR53) 2018; 46 Y Niu (2033_CR75) 2023; 13 I Ferby (2033_CR44) 2006; 12 A Cossins (2033_CR56) 1978; 75 KC Madison (2033_CR33) 2003; 121 Y Yang (2033_CR22) 2015; 15 JR Hazel (2033_CR55) 1995; 57 Rd Toledo (2033_CR38) 1995; 111 S Reguera (2033_CR49) 2014; 172 MY Koh (2033_CR59) 2008; 33 J Fu (2033_CR27) 2005; 37 M Wanninger (2033_CR7) 2018; 4 |
References_xml | – volume: 110 start-page: 103355 year: 2022 ident: 2033_CR72 publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2022.103355 – volume: 46 start-page: 599 year: 2018 ident: 2033_CR53 publication-title: Biochem Soc Trans doi: 10.1042/BST20170502 – volume: 37 start-page: 202 year: 2005 ident: 2033_CR27 publication-title: Mol Phylogen Evol doi: 10.1016/j.ympev.2005.03.023 – volume: 33 start-page: 526 year: 2008 ident: 2033_CR59 publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2008.08.002 – volume: 177 start-page: 399 year: 2019 ident: 2033_CR70 publication-title: Cell doi: 10.1016/j.cell.2019.01.050 – volume: 4 start-page: 1 year: 2018 ident: 2033_CR7 publication-title: Zoological Lett doi: 10.1186/s40851-018-0095-x – volume: 191 start-page: 1019 year: 2021 ident: 2033_CR16 publication-title: J Comp Physiol B doi: 10.1007/s00360-021-01368-8 – volume: 27 start-page: 115 year: 1976 ident: 2033_CR12 publication-title: Respir Physiol doi: 10.1016/0034-5687(76)90022-0 – volume: 75 start-page: 2040 year: 1978 ident: 2033_CR56 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.75.4.2040 – volume: 100 start-page: 1247 year: 2015 ident: 2033_CR52 publication-title: Exp Physiol doi: 10.1113/EP085292 – volume: 92 start-page: 130 year: 2017 ident: 2033_CR8 publication-title: Anat Sci Int doi: 10.1007/s12565-016-0328-z – volume: 14 start-page: 12222 year: 2013 ident: 2033_CR37 publication-title: Int J Mol Sci doi: 10.3390/ijms140612222 – volume: 51 start-page: 630 year: 1997 ident: 2033_CR31 publication-title: Evolution doi: 10.2307/2411138 – volume: 8 year: 2013 ident: 2033_CR18 publication-title: PLoS One doi: 10.1371/journal.pone.0071976 – volume: 13 start-page: 1792 year: 2002 ident: 2033_CR66 publication-title: Mol Biol Cell doi: 10.1091/mbc.02-02-0017 – volume: 32 start-page: 235 year: 2007 ident: 2033_CR35 publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2007.01.013 – volume: 17 start-page: 1 year: 2016 ident: 2033_CR23 publication-title: BMC Genet doi: 10.1186/s12863-016-0440-z – volume: 12 year: 2021 ident: 2033_CR60 publication-title: Animals doi: 10.3390/ani12010058 – ident: 2033_CR51 doi: 10.1016/B978-0-12-804274-8.00043-6 – volume: 90 start-page: 389 year: 2022 ident: 2033_CR29 publication-title: J Mol Evol doi: 10.1007/s00239-022-10070-4 – volume: 24 start-page: 97 year: 2009 ident: 2033_CR57 publication-title: Physiology doi: 10.1152/physiol.00045.2008 – volume: 39 start-page: 219 year: 2010 ident: 2033_CR68 publication-title: Immunol Invest doi: 10.3109/08820131003681144 – volume: 11 year: 2020 ident: 2033_CR63 publication-title: Front Genet doi: 10.3389/fgene.2020.00433 – volume: 70 start-page: 159 year: 2020 ident: 2033_CR42 publication-title: Anim Biol doi: 10.1163/15707563-20191100 – volume: 9 year: 2019 ident: 2033_CR4 publication-title: Front Immunol doi: 10.3389/fimmu.2018.03128 – volume: 106 start-page: 244 year: 2012 ident: 2033_CR54 publication-title: Mol Genet Metab doi: 10.1016/j.ymgme.2012.03.003 – volume: 15 start-page: 1 year: 2015 ident: 2033_CR22 publication-title: BMC Evol Biol doi: 10.1186/s12862-015-0371-8 – volume: 13 start-page: 942037 year: 2022 ident: 2033_CR15 publication-title: Front Physiol doi: 10.3389/fphys.2022.942037 – volume: 13 start-page: 189 year: 2011 ident: 2033_CR21 publication-title: Obstet Gynaecol doi: 10.1576/toag.13.3.189.27672 – ident: 2033_CR39 doi: 10.2307/1443948 – volume: 16 start-page: 651 year: 2015 ident: 2033_CR64 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm4069 – volume: 191 start-page: 765 year: 2021 ident: 2033_CR30 publication-title: J Comp Physiol B doi: 10.1007/s00360-021-01381-x – volume: 23 start-page: 10081 year: 2022 ident: 2033_CR61 publication-title: Int J Mol Sci doi: 10.3390/ijms231710081 – volume: 69 start-page: 145 year: 2007 ident: 2033_CR17 publication-title: Annu Rev Physiol doi: 10.1146/annurev.physiol.69.031905.162529 – volume: 16 start-page: 1071 year: 2023 ident: 2033_CR28 publication-title: Evol Appl doi: 10.1111/eva.13555 – volume: 5 year: 2014 ident: 2033_CR65 publication-title: Cell Death Dis doi: 10.1038/cddis.2014.496 – volume: 13 start-page: 1104476 year: 2023 ident: 2033_CR75 publication-title: Front Physiol doi: 10.3389/fphys.2022.1104476 – volume: 178 start-page: 867 year: 2008 ident: 2033_CR36 publication-title: J Comp Physiol B doi: 10.1007/s00360-008-0274-8 – volume: 172 start-page: 52 year: 2014 ident: 2033_CR49 publication-title: Comp Biochem Physiol A Mol Integr Physiol doi: 10.1016/j.cbpa.2014.02.018 – volume: 11 year: 2022 ident: 2033_CR26 publication-title: Elife. doi: 10.7554/eLife.70494 – volume: 102 start-page: 103132 year: 2021 ident: 2033_CR71 publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2021.103132 – volume: 146 start-page: 151 year: 2018 ident: 2033_CR67 publication-title: Genetica doi: 10.1007/s10709-017-0005-8 – volume: 8 start-page: 175 year: 2009 ident: 2033_CR76 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(09)70014-6 – volume: 47 start-page: 151 year: 1982 ident: 2033_CR3 publication-title: Respir Physiol doi: 10.1016/0034-5687(82)90108-6 – volume: 72 start-page: 270 year: 2003 ident: 2033_CR32 publication-title: J Anim Ecol doi: 10.1046/j.1365-2656.2003.00696.x – volume: 111 start-page: 1 year: 1995 ident: 2033_CR38 publication-title: Comp Biochem Physiol A Physiol doi: 10.1016/0300-9629(95)98515-I – volume: 11 year: 2023 ident: 2033_CR14 publication-title: Front Ecol Evol doi: 10.3389/fevo.2023.1103406 – volume: 30 start-page: 189 year: 1986 ident: 2033_CR40 publication-title: Int J Biometeorol doi: 10.1007/BF02189461 – volume: 19 start-page: 931 year: 2008 ident: 2033_CR43 publication-title: Anticancer Drugs doi: 10.1097/CAD.0b013e3283139100 – volume: 13 start-page: 167 year: 2001 ident: 2033_CR58 publication-title: Curr Opin Cell Biol doi: 10.1016/S0955-0674(00)00194-0 – volume: 67 start-page: 187 year: 1980 ident: 2033_CR47 publication-title: Comp Biochem Physiol A Physiol doi: 10.1016/0300-9629(80)90428-4 – ident: 2033_CR48 doi: 10.1016/S1546-5098(08)60262-9 – volume: 9 start-page: 7558 year: 2019 ident: 2033_CR69 publication-title: Sci Rep doi: 10.1038/s41598-019-43773-8 – volume-title: Metabolic engineering: principles and methodologies year: 1998 ident: 2033_CR74 – volume: 35 start-page: 1590 year: 2017 ident: 2033_CR5 publication-title: Int J Morphol doi: 10.4067/S0717-95022017000401590 – volume: 5 start-page: 9 year: 2012 ident: 2033_CR20 publication-title: World Allergy Organ J doi: 10.1097/WOX.0b013e3182439613 – volume: 51 start-page: 844 year: 2016 ident: 2033_CR34 publication-title: Chin J Zool – volume: 20 start-page: 35 year: 2023 ident: 2033_CR19 publication-title: Front Zool doi: 10.1186/s12983-023-00513-z – volume: 76 start-page: 109 year: 1983 ident: 2033_CR46 publication-title: Comp Biochem Physiol A Physiol doi: 10.1016/0300-9629(83)90300-6 – volume: 95 start-page: 201 year: 2022 ident: 2033_CR73 publication-title: Physiol Biochem Zool doi: 10.1086/718764 – volume: 112 start-page: 132 year: 2014 ident: 2033_CR9 publication-title: Biol J Linn Soc Lond doi: 10.1111/bij.12250 – volume: 90 start-page: 638 year: 2017 ident: 2033_CR11 publication-title: Physiol Biochem Zool doi: 10.1086/694833 – volume: 57 start-page: 1151 year: 2003 ident: 2033_CR2 publication-title: Evolution – volume: 121 start-page: 231 year: 2003 ident: 2033_CR33 publication-title: J Invest Dermatol doi: 10.1046/j.1523-1747.2003.12359.x – volume: 8 start-page: 702 year: 2017 ident: 2033_CR50 publication-title: Front Physiol doi: 10.3389/fphys.2017.00702 – volume: 10 year: 2015 ident: 2033_CR13 publication-title: PLoS One doi: 10.1371/journal.pone.0125751 – volume: 57 start-page: 19 year: 1995 ident: 2033_CR55 publication-title: Annu Rev Physiol doi: 10.1146/annurev.ph.57.030195.000315 – volume: 18 start-page: 1 year: 2017 ident: 2033_CR24 publication-title: BMC Genet doi: 10.1186/s12863-017-0529-z – volume: 12 start-page: 568 year: 2006 ident: 2033_CR44 publication-title: Nat Med doi: 10.1038/nm1401 – ident: 2033_CR25 doi: 10.1111/1755-0998.13319 – volume: 11 start-page: 3015 year: 2021 ident: 2033_CR41 publication-title: Ecol Evol doi: 10.1002/ece3.7192 – volume: 22 start-page: 569 year: 2007 ident: 2033_CR1 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2007.09.006 – volume: 10 start-page: 79 year: 2019 ident: 2033_CR10 publication-title: Asian Herpetol Res – ident: 2033_CR6 doi: 10.1016/S0940-9602(98)80080-0 – volume: 7 start-page: 12 year: 2016 ident: 2033_CR62 publication-title: Asian Herpetol Res – volume: 138 start-page: 1462 year: 2002 ident: 2033_CR45 publication-title: Arch Dermatol doi: 10.1001/archderm.138.11.1462 |
SSID | ssj0025773 |
Score | 2.409297 |
Snippet | Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the... Background Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we... BackgroundOrganisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we... Abstract Background Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient.... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 231 |
SubjectTerms | Acclimatization - physiology Activated carbon Adaptation Adaptation (Biology) Adaptation, Physiological - genetics Altitude Altitudinal gradient Amino acids Amphibians Animals Antioxidants Blood vessels Bufo gargarizans Bufonidae - genetics Bufonidae - physiology Capillaries Carbohydrates Carbon cycle Case studies China Ecological adaptation Energy metabolism Environmental aspects Environmental changes Environmental conditions Enzymatic activity Enzymes Epidermis Erythrocytes Fatty acids Frogs Gene expression Gene regulation Genes Genetic aspects Genetic research Genomics Genotypes Hematocrit Hematology Hemoglobin High altitude environments Hypotheses Hypoxia Hypoxia-inducible factors Metabolic flux Metabolism Metabolites Morphology Phenotype Phenotypes Phenotypic traits Physiological aspects Physiological effects Physiology Pigments Populations Reptiles & amphibians Respiration Skin Toads Transcriptome Tricarboxylic acid cycle |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEF_kQPBF_LZ6yiqCioRL9zu-3R13nIIK6sm9LZvdTa8gSbmkD_Xf8R91JpvUBhFffGu7000zM7sz08zvt4S8UCGWwjGRlRBNMhEkzxxnOtNSx9IZSJFL_Gvgw0d1di7eX8iLnaO-sCcs0QMnxR3ICAm2QB43E4ST3JmSsUKzKCpZGN_DfCHmjcXUUGpJrfkIkTHqoIWoNkckssjwyRvP1CQM9Wz9f-7JO0Fp2jC5E4FOb5GbQ-pID9NPvk2uxfoOuZ4Ok9zcJT9P_LiRURfcKj1jb2lTUQcmQ2gIvOsauoNtA9GE_G2p-97UC-pqeIHdAwFPy6KLq74jrKOvjiHaUWw63LylR-uqoYv-hNzlD5j0NUWQCsVusabbrJYepgkUPBMBknT1G87Z3iPnpydfj8-y4QiGzEvDu8xrXxVRFD4EXUHtF4QvKsgiWAQdR1kEzcs58tvkMjChYMfw0eciVJwHH2TJ75O9uqnjQ0Kj55WOEC81GBL8pswVY3peuLnw3EQ3I29Gi9hVYtqwfYVilE32s2A_29vPqhk5QqNtJZElu_8AfMcOvmP_5Tsz8hxNbpEHo8ZGm4Vbt6199-mbPTRwYSM1V38T-vJ5IvRyEKoa8BDvBnAD3Drya00k9yeSsJr9dHh0PzvsJq1FRiQo3eE-ZuTZdhi_iR1ydWzWSUZiAg1TPEjeulUOL3iRCyVnxEz8eKK96Ui9vOy5xhG0Dhl__uh_6PsxucFwDWJDUL5P9rqrdXwCOV1XPu2X7y9tDkl4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgCIkXxPcyBjIICRCKlsZ27PCCtmnTQAIkYKhvlmM7odKUhCZ9KP8O_yh3-WgbIXhr66vT-s73Yd_vjpAXifMZNzEPM7AmIXeChYbFMpRC-swocJEzPBr4-Cm5uOQf5mI-HLg1Q1rlqBM7Re0qi2fkR1gVBsKXSKbv6p8hdo3C29WhhcZ1cgNLl2FKl5xvAy4hJRuBMio5asC2zRCPzEO8f2NhMjFGXc3-vzXzjmmapk3u2KHzO-T24EDS457jd8k1X94jN_uWkuv75PeZHdUZNc7U_U17Q6ucGmAcAkTgXVvRHYQbkPb434aaq6osqCnhBeYQOOyZRYtllxfW0lenYPMoph6u39KTVV7RouuTu_gFk76mCFWhmDNWtet6YWEaR0E-ESZJ6y2os3lALs_Pvp1ehEMjhtAKxdrQSpunnqfWOZlDBOi4TXPwJWIPa-xF6iTLZljlJhIu5gnoDettxF3OmLNOZOwh2Sur0u8T6i3LpQerKRXMYk0WJXEsZ6mZccuUNwF5M3JE1329Dd3FKSrRPf808E93_NNJQE6QaRtKrJXdfVAtCz1sPS08hGgcKwHCI41gRmVxnMrY81ykyqqAPEeWa6yGUWK6TWFWTaPff_6ujxU8WAnJkn8Rff0yIXo5EOUVSIg1A8QB_jpW2ZpQHk4oYU_b6fAofnrQKY3e7oCAPNsM4zcxT6701aqnEehGwxSPemndLA5LWRrxRARETeR4snrTkXLxo6s4jtB18Pujg___rsfkVoy7CxN-okOy1y5X_gn4bG32tNuYfwBGDkIT priority: 102 providerName: ProQuest |
Title | Ecological adaptations of amphibians to environmental changes along an altitudinal gradient (Case Study: Bufo gargarizans) from phenotypic and genetic perspectives |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39390465 https://www.proquest.com/docview/3115106079 https://www.proquest.com/docview/3115500856 https://pubmed.ncbi.nlm.nih.gov/PMC11465660 https://doaj.org/article/5e666470798d4a53a8b22972e4f598c8 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEF_uA8EX8fuqZ1lF8EGiaXY3u3kQuUqPU7hTqpXiy7LZ3dSDI6lNCvbdP9yZfNQGT_CltNnphszHzkx2frOEPI-dT7mJeJCCNwm4EywwLJKBFNKnRkGInOKrgfOL-GzGP8zFfI90xx21DCyvTe3wPKnZ6urVzx-bt2Dwb2qDV_HrEnzWCHHGPMB9NRbE--QQPJNEQz3n210F0M56xxmC8FEgwTl2IJpr5-g5qrqf_9-r9o7b6pdU7vio09vkVhtc0pNGG-6QPZ_fJTea4yY398ivie2WOmqcWTa78CUtMmpAqAgegV9VQXfQb0DaYINLaq6KfEFNDl-wvsDheVp0saprxiqKOBWKBWNFtVleWqBzFJQTMZJ0-QfRWd4ns9PJl3dnQXsKQ2CFYlVgpc0SzxPrnMwg_XPcJhkEEpEHhnqROMnSEba4CYWLeAyLhvU25C5jzFknUvaAHORF7o8I9ZZl0oPLlApmsSYN4yiSo8SMuGXKmwF52bFcL5tmG7pOUlSsGwFpEJCuBaTjARmjVLaU2Ci7vlCsFrq1Oy085Gcc2wDCLY1gRqVRlMjI80wkyqoBeYYy1dgKI8dam4VZl6V-__GrPlFwYyUki_9F9HnaI3rREmUFqIA1Lb4BHh1bbPUoj3uUYNC2P9zpl-7sQWNTJMje4TkG5Ol2GP-JRXK5L9YNjcAYGqZ42KjjljksYUnIYzEgqqeoPe71R_LL73W7ccStQ9AfPvofVj0mNyM0Iqz5CY_JQbVa-ycQtlXpkOzLuRySw_Hk4tN0WL_8GNb2CZ_T8bffFH5CzQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviG8KAwwCAULR0tiOEySE1tFpY1tB-0B7M47tlEooKU0rVP4d3vkbuctH1wjB297a-nppc1---H53hDwLrUu4DriXQDTxuBXM0yyQnhTSJTqCLXKCjwYOh-HuKf9wJs7WyO8GC4NllY1PLB21zQ0-I9_ErjCQvvgyfjf57uHUKDxdbUZoVGqx7xY_IGUr3u69B_k-D4Kdwcn2rldPFfCMiNjMM9KkseOxsVamkM5YbuIUAmPgIPw7EVvJkh62bPGFDXgIRmCc8blNGbPGioQB30tknTNIZTpkvT8YfjpapnhCStZAc6Jws4Bo2kMENPfwxI95YSv8lVMC_o4FK8GwXai5Evl2rpNr9ZaVblU6doOsuewmuVwNsVzcIr8GpnGgVFs9qc72C5qnVIOqICQF3s1yuoKpA9IKcVxQ_S3PRlRn8AKrFixO6aKjaVmJNqMvtyHKUix2XLyh_Xma01E5mXf8E5i-ogiOoVills8Wk7EBNpaCRSAwk07OYaTFbXJ6IUK6QzpZnrl7hDrDUukgTssIuBid-GEQyF6se9ywyOkued1IRE2qDh-qzIyiUFXyUyA_VcpPhV3SR6EtKbE7d_lBPh2p2tiVcJAUcuw9CJfUgukoCYJYBo6nIo5M1CVPUeQK-29kWOAz0vOiUHsfP6utCC4cCcnCfxEdH7WIXtREaQ4aYnQNqoC_jn29WpQbLUrwIqa93Kifqr1Yoc5trkueLJfxm1iZl7l8XtEI3LgDi7uVti5vDotZ7PNQdEnU0uPW3WuvZOOvZY9zBMtDpuHf___vekyu7J4cHqiDveH-A3I1QEvDciN_g3Rm07l7CDvGWfKoNlNKvly0Z_gDzFuAkg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bjtMwELWWRSBeEHcKCxgEAoSiprEdJ0gI7VVbFha0sKhvxrGdUgklpUmFyu_wF3wdM7m0jRC87VtbT502c4_nzBDyOLQu4TrgXgLexONWME-zQHpSSJfoCELkBB8NvDsOD0_5m5EYbZDfLRYGyypbm1gZapsbfEbex64wkL74Mu6nTVnEh72D19PvHk6QwpPWdpxGLSJHbvED0rfi1XAPeP0kCA72P-0ees2EAc-IiJWekSaNHY-NtTKF1MZyE6fgJAMHoYATsZUsGWD7Fl_YgIegEMYZn9uUMWusSBjse46cl0wMUMfkaJXsCSlZC9KJwn4BfnWAWGju4dkf88KOI6zmBfztFdbcYrdkc80HHlwhl5vglW7X0naVbLjsGrlQj7NcXCe_9k1rSqm2elqf8hc0T6kGoUFwCrwrc7qGrgPSGntcUP0tz8ZUZ_AC6xcszuui41lVk1bSZ7vgbymWPS5e0p15mtNxNaN38hM2fU4RJkOxXi0vF9OJgW0sBd1AiCadrgClxQ1yeiYsukk2szxztwl1hqXSgceWEexidOKHQSAHsR5wwyKne-RFyxE1rXt9qCpHikJV808B_1TFPxX2yA4ybUmJfbqrD_LZWDVqr4SD9JBjF0K4pBZMR0kQxDJwPBVxZKIeeYQsV9iJI0OZHut5Uajh-89qO4ILR0Ky8F9EH086RE8bojQHCTG6gVfAX8cOXx3KrQ4l2BPTXW7FTzX2rFAr7euRh8tl_CbW6GUun9c0AkN42OJWLa3Lm8NiFvs8FD0SdeS4c_e6K9nka9XtHGHzkHP4d_7_ux6Qi2AP1Nvh8dFdcilARcO6I3-LbJazubsHoWOZ3K90lJIvZ20U_gA4JINi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ecological+adaptations+of+amphibians+to+environmental+changes+along+an+altitudinal+gradient+from+phenotypic+and+genetic+perspectives&rft.jtitle=BMC+biology&rft.au=Niu%2C+Yonggang&rft.au=Zhang%2C+Xuejing&rft.au=Zhang%2C+Haiying&rft.au=Men%2C+Shengkang&rft.date=2024-10-10&rft.pub=BioMed+Central+Ltd&rft.issn=1741-7007&rft.eissn=1741-7007&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12915-024-02033-6&rft.externalDBID=IOV&rft.externalDocID=A811885736 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7007&client=summon |