Ecological adaptations of amphibians to environmental changes along an altitudinal gradient (Case Study: Bufo gargarizans) from phenotypic and genetic perspectives

Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to diffe...

Full description

Saved in:
Bibliographic Details
Published inBMC biology Vol. 22; no. 1; pp. 231 - 17
Main Authors Niu, Yonggang, Zhang, Xuejing, Zhang, Haiying, Men, Shengkang, Xu, Tisen, Ding, Li, Li, Xiangyong, Wang, Lei, Wang, Huisong, Storey, Kenneth B., Chen, Qiang
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 10.10.2024
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to different altitudinal environments. Comparison of populations from four altitudes (50 m, 1200 m, 2300 m, and 3400 m) showed more effective defenses among high-altitude toads. These included thickened epidermis, more epidermal capillaries and granular glands, greater gland size in skin, and higher antioxidant enzyme activities in plasma. High-altitude toads also showed increased erythrocytes and hematocrit and elevated hemoglobin concentration, potentially improving oxygen delivery. Elevated altitude led to a metabolic shift from aerobic to anaerobic metabolism, and high-altitude populations favored carbohydrates over fatty acids to fuel for energy metabolism. Differentially expressed genes were associated with adaptive phenotypic changes. For instance, expression of genes associated with fatty acid metabolism showed greater suppression at high altitude (3400 m), consistent with decreased flux of β-hydroxybutyric acid and lower free fatty acids levels. Moreover, down-regulation of genes involved in carbon metabolism processes at high altitude (3400 m) were coincident with reduced TCA cycle flux. These results suggest that high-altitude toads adopt a metabolic suppression strategy for survival under harsh environmental conditions. Moreover, the hypoxia-inducible factor signaling cascade was activated at high altitude. Collectively, these results advance our comprehension of adaptation to high-altitude environments by revealing physiological and genetic mechanisms at work in Chinese toads living along altitudinal gradients.
AbstractList Background Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to different altitudinal environments. Results Comparison of populations from four altitudes (50 m, 1200 m, 2300 m, and 3400 m) showed more effective defenses among high-altitude toads. These included thickened epidermis, more epidermal capillaries and granular glands, greater gland size in skin, and higher antioxidant enzyme activities in plasma. High-altitude toads also showed increased erythrocytes and hematocrit and elevated hemoglobin concentration, potentially improving oxygen delivery. Elevated altitude led to a metabolic shift from aerobic to anaerobic metabolism, and high-altitude populations favored carbohydrates over fatty acids to fuel for energy metabolism. Differentially expressed genes were associated with adaptive phenotypic changes. For instance, expression of genes associated with fatty acid metabolism showed greater suppression at high altitude (3400 m), consistent with decreased flux of [beta]-hydroxybutyric acid and lower free fatty acids levels. Moreover, down-regulation of genes involved in carbon metabolism processes at high altitude (3400 m) were coincident with reduced TCA cycle flux. These results suggest that high-altitude toads adopt a metabolic suppression strategy for survival under harsh environmental conditions. Moreover, the hypoxia-inducible factor signaling cascade was activated at high altitude. Conclusions Collectively, these results advance our comprehension of adaptation to high-altitude environments by revealing physiological and genetic mechanisms at work in Chinese toads living along altitudinal gradients. Keywords: Bufogargarizans, Altitudinal gradient, Phenotypic traits, Transcriptome, Adaptation
Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to different altitudinal environments.BACKGROUNDOrganisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to different altitudinal environments.Comparison of populations from four altitudes (50 m, 1200 m, 2300 m, and 3400 m) showed more effective defenses among high-altitude toads. These included thickened epidermis, more epidermal capillaries and granular glands, greater gland size in skin, and higher antioxidant enzyme activities in plasma. High-altitude toads also showed increased erythrocytes and hematocrit and elevated hemoglobin concentration, potentially improving oxygen delivery. Elevated altitude led to a metabolic shift from aerobic to anaerobic metabolism, and high-altitude populations favored carbohydrates over fatty acids to fuel for energy metabolism. Differentially expressed genes were associated with adaptive phenotypic changes. For instance, expression of genes associated with fatty acid metabolism showed greater suppression at high altitude (3400 m), consistent with decreased flux of β-hydroxybutyric acid and lower free fatty acids levels. Moreover, down-regulation of genes involved in carbon metabolism processes at high altitude (3400 m) were coincident with reduced TCA cycle flux. These results suggest that high-altitude toads adopt a metabolic suppression strategy for survival under harsh environmental conditions. Moreover, the hypoxia-inducible factor signaling cascade was activated at high altitude.RESULTSComparison of populations from four altitudes (50 m, 1200 m, 2300 m, and 3400 m) showed more effective defenses among high-altitude toads. These included thickened epidermis, more epidermal capillaries and granular glands, greater gland size in skin, and higher antioxidant enzyme activities in plasma. High-altitude toads also showed increased erythrocytes and hematocrit and elevated hemoglobin concentration, potentially improving oxygen delivery. Elevated altitude led to a metabolic shift from aerobic to anaerobic metabolism, and high-altitude populations favored carbohydrates over fatty acids to fuel for energy metabolism. Differentially expressed genes were associated with adaptive phenotypic changes. For instance, expression of genes associated with fatty acid metabolism showed greater suppression at high altitude (3400 m), consistent with decreased flux of β-hydroxybutyric acid and lower free fatty acids levels. Moreover, down-regulation of genes involved in carbon metabolism processes at high altitude (3400 m) were coincident with reduced TCA cycle flux. These results suggest that high-altitude toads adopt a metabolic suppression strategy for survival under harsh environmental conditions. Moreover, the hypoxia-inducible factor signaling cascade was activated at high altitude.Collectively, these results advance our comprehension of adaptation to high-altitude environments by revealing physiological and genetic mechanisms at work in Chinese toads living along altitudinal gradients.CONCLUSIONSCollectively, these results advance our comprehension of adaptation to high-altitude environments by revealing physiological and genetic mechanisms at work in Chinese toads living along altitudinal gradients.
Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to different altitudinal environments. Comparison of populations from four altitudes (50 m, 1200 m, 2300 m, and 3400 m) showed more effective defenses among high-altitude toads. These included thickened epidermis, more epidermal capillaries and granular glands, greater gland size in skin, and higher antioxidant enzyme activities in plasma. High-altitude toads also showed increased erythrocytes and hematocrit and elevated hemoglobin concentration, potentially improving oxygen delivery. Elevated altitude led to a metabolic shift from aerobic to anaerobic metabolism, and high-altitude populations favored carbohydrates over fatty acids to fuel for energy metabolism. Differentially expressed genes were associated with adaptive phenotypic changes. For instance, expression of genes associated with fatty acid metabolism showed greater suppression at high altitude (3400 m), consistent with decreased flux of [beta]-hydroxybutyric acid and lower free fatty acids levels. Moreover, down-regulation of genes involved in carbon metabolism processes at high altitude (3400 m) were coincident with reduced TCA cycle flux. These results suggest that high-altitude toads adopt a metabolic suppression strategy for survival under harsh environmental conditions. Moreover, the hypoxia-inducible factor signaling cascade was activated at high altitude. Collectively, these results advance our comprehension of adaptation to high-altitude environments by revealing physiological and genetic mechanisms at work in Chinese toads living along altitudinal gradients.
Abstract Background Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to different altitudinal environments. Results Comparison of populations from four altitudes (50 m, 1200 m, 2300 m, and 3400 m) showed more effective defenses among high-altitude toads. These included thickened epidermis, more epidermal capillaries and granular glands, greater gland size in skin, and higher antioxidant enzyme activities in plasma. High-altitude toads also showed increased erythrocytes and hematocrit and elevated hemoglobin concentration, potentially improving oxygen delivery. Elevated altitude led to a metabolic shift from aerobic to anaerobic metabolism, and high-altitude populations favored carbohydrates over fatty acids to fuel for energy metabolism. Differentially expressed genes were associated with adaptive phenotypic changes. For instance, expression of genes associated with fatty acid metabolism showed greater suppression at high altitude (3400 m), consistent with decreased flux of β-hydroxybutyric acid and lower free fatty acids levels. Moreover, down-regulation of genes involved in carbon metabolism processes at high altitude (3400 m) were coincident with reduced TCA cycle flux. These results suggest that high-altitude toads adopt a metabolic suppression strategy for survival under harsh environmental conditions. Moreover, the hypoxia-inducible factor signaling cascade was activated at high altitude. Conclusions Collectively, these results advance our comprehension of adaptation to high-altitude environments by revealing physiological and genetic mechanisms at work in Chinese toads living along altitudinal gradients.
BackgroundOrganisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to different altitudinal environments.ResultsComparison of populations from four altitudes (50 m, 1200 m, 2300 m, and 3400 m) showed more effective defenses among high-altitude toads. These included thickened epidermis, more epidermal capillaries and granular glands, greater gland size in skin, and higher antioxidant enzyme activities in plasma. High-altitude toads also showed increased erythrocytes and hematocrit and elevated hemoglobin concentration, potentially improving oxygen delivery. Elevated altitude led to a metabolic shift from aerobic to anaerobic metabolism, and high-altitude populations favored carbohydrates over fatty acids to fuel for energy metabolism. Differentially expressed genes were associated with adaptive phenotypic changes. For instance, expression of genes associated with fatty acid metabolism showed greater suppression at high altitude (3400 m), consistent with decreased flux of β-hydroxybutyric acid and lower free fatty acids levels. Moreover, down-regulation of genes involved in carbon metabolism processes at high altitude (3400 m) were coincident with reduced TCA cycle flux. These results suggest that high-altitude toads adopt a metabolic suppression strategy for survival under harsh environmental conditions. Moreover, the hypoxia-inducible factor signaling cascade was activated at high altitude.ConclusionsCollectively, these results advance our comprehension of adaptation to high-altitude environments by revealing physiological and genetic mechanisms at work in Chinese toads living along altitudinal gradients.
Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the widely distributed Chinese toad, Bufo gargarizans, as a model and used an integrated phenotype-genotype approach to assess adaptations to different altitudinal environments. Comparison of populations from four altitudes (50 m, 1200 m, 2300 m, and 3400 m) showed more effective defenses among high-altitude toads. These included thickened epidermis, more epidermal capillaries and granular glands, greater gland size in skin, and higher antioxidant enzyme activities in plasma. High-altitude toads also showed increased erythrocytes and hematocrit and elevated hemoglobin concentration, potentially improving oxygen delivery. Elevated altitude led to a metabolic shift from aerobic to anaerobic metabolism, and high-altitude populations favored carbohydrates over fatty acids to fuel for energy metabolism. Differentially expressed genes were associated with adaptive phenotypic changes. For instance, expression of genes associated with fatty acid metabolism showed greater suppression at high altitude (3400 m), consistent with decreased flux of β-hydroxybutyric acid and lower free fatty acids levels. Moreover, down-regulation of genes involved in carbon metabolism processes at high altitude (3400 m) were coincident with reduced TCA cycle flux. These results suggest that high-altitude toads adopt a metabolic suppression strategy for survival under harsh environmental conditions. Moreover, the hypoxia-inducible factor signaling cascade was activated at high altitude. Collectively, these results advance our comprehension of adaptation to high-altitude environments by revealing physiological and genetic mechanisms at work in Chinese toads living along altitudinal gradients.
ArticleNumber 231
Audience Academic
Author Li, Xiangyong
Men, Shengkang
Chen, Qiang
Niu, Yonggang
Xu, Tisen
Zhang, Xuejing
Wang, Lei
Ding, Li
Wang, Huisong
Storey, Kenneth B.
Zhang, Haiying
Author_xml – sequence: 1
  givenname: Yonggang
  orcidid: 0000-0002-6674-1798
  surname: Niu
  fullname: Niu, Yonggang
– sequence: 2
  givenname: Xuejing
  surname: Zhang
  fullname: Zhang, Xuejing
– sequence: 3
  givenname: Haiying
  surname: Zhang
  fullname: Zhang, Haiying
– sequence: 4
  givenname: Shengkang
  surname: Men
  fullname: Men, Shengkang
– sequence: 5
  givenname: Tisen
  surname: Xu
  fullname: Xu, Tisen
– sequence: 6
  givenname: Li
  surname: Ding
  fullname: Ding, Li
– sequence: 7
  givenname: Xiangyong
  surname: Li
  fullname: Li, Xiangyong
– sequence: 8
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
– sequence: 9
  givenname: Huisong
  surname: Wang
  fullname: Wang, Huisong
– sequence: 10
  givenname: Kenneth B.
  surname: Storey
  fullname: Storey, Kenneth B.
– sequence: 11
  givenname: Qiang
  surname: Chen
  fullname: Chen, Qiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39390465$$D View this record in MEDLINE/PubMed
BookMark eNqNk81u1DAQxyNURD_gBTggS1zawxY7juOECypVgUqVKlHganntSdZVYqe2U1Fehxdl2i2lizigJMp4_PPf4_HMbrHlg4eieMnoIWNN_SaxsmViQcsKP8r5on5S7DBZsYWkVG49sreL3ZQuKS2FlPxZsc1b3tKqFjvFzxMThtA7oweirZ6yzi74REJH9Dit3NJpHOVAwF-7GPwIPiNqVtr3kIgegu-J9mhkl2frPE72UVuHHNk_1gnIBfpv3pL3cxdIryO-7geKHpAuhpFMK_Ah30zOoIwlPXjIaE8Q0wQmu2tIz4unnR4SvLj_7xVfP5x8Of60ODv_eHp8dLYwouF5YaTpWqhaY63sKiptZdqONqwEPDeI1kq-ZG3VtlTYsqoppwYMrWzHuTVWLPlecbrWtUFfqim6UccbFbRTd44Qe6UjBjeAElDXdSWpbBtbacF1syzLVpZQdaJtTINa79Za07wcwRpMR9TDhujmjHcr1YdrxRjeS43R7RX79woxXM2QshpdMjAM2kOYk-KMCUFpI2pEX_-FXoY54lWsKUZrDPQP1Ws8gfNdwI3Nrag6arCgGiH5rdbhPyh8LIzOYAF2Dv0bCw42FiCT4Xvu9ZySOr34_P_s-bdN9tXjDD6k7nftIlCuARNDShG6B4RRddsgat0gChtE3TWIqvkv5nkCVw
Cites_doi 10.1016/j.jtherbio.2022.103355
10.1042/BST20170502
10.1016/j.ympev.2005.03.023
10.1016/j.tibs.2008.08.002
10.1016/j.cell.2019.01.050
10.1186/s40851-018-0095-x
10.1007/s00360-021-01368-8
10.1016/0034-5687(76)90022-0
10.1073/pnas.75.4.2040
10.1113/EP085292
10.1007/s12565-016-0328-z
10.3390/ijms140612222
10.2307/2411138
10.1371/journal.pone.0071976
10.1091/mbc.02-02-0017
10.1016/j.jtherbio.2007.01.013
10.1186/s12863-016-0440-z
10.3390/ani12010058
10.1016/B978-0-12-804274-8.00043-6
10.1007/s00239-022-10070-4
10.1152/physiol.00045.2008
10.3109/08820131003681144
10.3389/fgene.2020.00433
10.1163/15707563-20191100
10.3389/fimmu.2018.03128
10.1016/j.ymgme.2012.03.003
10.1186/s12862-015-0371-8
10.3389/fphys.2022.942037
10.1576/toag.13.3.189.27672
10.2307/1443948
10.1038/nrm4069
10.1007/s00360-021-01381-x
10.3390/ijms231710081
10.1146/annurev.physiol.69.031905.162529
10.1111/eva.13555
10.1038/cddis.2014.496
10.3389/fphys.2022.1104476
10.1007/s00360-008-0274-8
10.1016/j.cbpa.2014.02.018
10.7554/eLife.70494
10.1016/j.jtherbio.2021.103132
10.1007/s10709-017-0005-8
10.1016/S1474-4422(09)70014-6
10.1016/0034-5687(82)90108-6
10.1046/j.1365-2656.2003.00696.x
10.1016/0300-9629(95)98515-I
10.3389/fevo.2023.1103406
10.1007/BF02189461
10.1097/CAD.0b013e3283139100
10.1016/S0955-0674(00)00194-0
10.1016/0300-9629(80)90428-4
10.1016/S1546-5098(08)60262-9
10.1038/s41598-019-43773-8
10.4067/S0717-95022017000401590
10.1097/WOX.0b013e3182439613
10.1186/s12983-023-00513-z
10.1016/0300-9629(83)90300-6
10.1086/718764
10.1111/bij.12250
10.1086/694833
10.1046/j.1523-1747.2003.12359.x
10.3389/fphys.2017.00702
10.1371/journal.pone.0125751
10.1146/annurev.ph.57.030195.000315
10.1186/s12863-017-0529-z
10.1038/nm1401
10.1111/1755-0998.13319
10.1002/ece3.7192
10.1016/j.tree.2007.09.006
10.1016/S0940-9602(98)80080-0
10.1001/archderm.138.11.1462
ContentType Journal Article
Copyright 2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
4U-
7QG
7QP
7QR
7SN
7SS
7TK
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
P64
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12915-024-02033-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
University Readers
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
University Readers
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic




Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1741-7007
EndPage 17
ExternalDocumentID oai_doaj_org_article_5e666470798d4a53a8b22972e4f598c8
PMC11465660
A811885736
39390465
10_1186_s12915_024_02033_6
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
8G5
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IOV
ISE
ISR
ITC
KQ8
LK8
M1P
M2O
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PADUT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
4U-
7QG
7QP
7QR
7SN
7SS
7TK
7XB
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c583t-c7cf9e49cdd7f407d4c9f0812e025e59d73b1949905d246030cec04df33dcd5b3
IEDL.DBID M48
ISSN 1741-7007
IngestDate Wed Aug 27 01:30:09 EDT 2025
Thu Aug 21 18:35:26 EDT 2025
Sun Aug 24 03:46:55 EDT 2025
Fri Jul 25 19:26:10 EDT 2025
Tue Jun 17 22:05:08 EDT 2025
Tue Jun 10 21:04:40 EDT 2025
Fri Jun 27 05:26:06 EDT 2025
Fri Jun 27 05:26:11 EDT 2025
Mon Jul 21 05:40:01 EDT 2025
Tue Jul 01 02:58:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Altitudinal gradient
Bufo gargarizans
Transcriptome
Adaptation
Phenotypic traits
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-c7cf9e49cdd7f407d4c9f0812e025e59d73b1949905d246030cec04df33dcd5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6674-1798
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12915-024-02033-6
PMID 39390465
PQID 3115106079
PQPubID 42637
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_5e666470798d4a53a8b22972e4f598c8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11465660
proquest_miscellaneous_3115500856
proquest_journals_3115106079
gale_infotracmisc_A811885736
gale_infotracacademiconefile_A811885736
gale_incontextgauss_ISR_A811885736
gale_incontextgauss_IOV_A811885736
pubmed_primary_39390465
crossref_primary_10_1186_s12915_024_02033_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-10
PublicationDateYYYYMMDD 2024-10-10
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-10
  day: 10
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC biology
PublicationTitleAlternate BMC Biol
PublicationYear 2024
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References J Chen (2033_CR63) 2020; 11
J D’Orazio (2033_CR37) 2013; 14
GL Semenza (2033_CR58) 2001; 13
W Yang (2033_CR23) 2016; 17
E Birben (2033_CR20) 2012; 5
C Morrison (2033_CR32) 2003; 72
J Xin (2033_CR69) 2019; 9
L Zhang (2033_CR28) 2023; 16
S Tan (2033_CR30) 2021; 191
K Ganeshan (2033_CR70) 2019; 177
KG Ashton (2033_CR2) 2003; 57
H Zhang (2033_CR72) 2022; 110
A Carmena-Suero (2033_CR47) 1980; 67
G Ruiz (2033_CR46) 1983; 76
2033_CR51
H Biswas (2033_CR40) 1986; 30
X Zhang (2033_CR19) 2023; 20
C Wang (2033_CR42) 2020; 70
MH Wilson (2033_CR76) 2009; 8
VH Hutchison (2033_CR12) 1976; 27
2033_CR6
GJ Fisher (2033_CR45) 2002; 138
Y Niu (2033_CR73) 2022; 95
PE Bickler (2033_CR17) 2007; 69
KJ Lang (2033_CR66) 2002; 13
J Arredondo (2033_CR5) 2017; 35
2033_CR25
RL Ge (2033_CR54) 2012; 106
Z Yao (2033_CR41) 2021; 11
S Lu (2033_CR13) 2015; 10
DC Moreira (2033_CR50) 2017; 8
K Mishra (2033_CR68) 2010; 39
Z Mi (2033_CR34) 2016; 51
W Yang (2033_CR24) 2017; 18
RP Horgan (2033_CR21) 2011; 13
WW Burggren (2033_CR3) 1982; 47
JF Varga (2033_CR4) 2019; 9
X Tang (2033_CR18) 2013; 8
SN Othman (2033_CR26) 2022; 11
Q Zhang (2033_CR62) 2016; 7
C Yang (2033_CR10) 2019; 10
JB de Velasco (2033_CR36) 2008; 178
2033_CR39
P Pu (2033_CR16) 2021; 191
C Lu (2033_CR43) 2008; 19
RL Ge (2033_CR52) 2015; 100
D Zhang (2033_CR65) 2014; 5
C Yan (2033_CR61) 2022; 23
Y Niu (2033_CR71) 2021; 102
Y Niu (2033_CR15) 2022; 13
JC González-Morales (2033_CR11) 2017; 90
GL Semenza (2033_CR57) 2009; 24
C Körner (2033_CR1) 2007; 22
D Lan (2033_CR67) 2018; 146
GA Brar (2033_CR64) 2015; 16
SC Trullas (2033_CR35) 2007; 32
TA Mousseau (2033_CR31) 1997; 51
G Stephanopoulos (2033_CR74) 1998
Y Chen (2033_CR29) 2022; 90
2033_CR48
S Reguera (2033_CR9) 2014; 112
G Guangming (2033_CR8) 2017; 92
P Zhao (2033_CR60) 2021; 12
M Ma (2033_CR14) 2023; 11
AJ Murray (2033_CR53) 2018; 46
Y Niu (2033_CR75) 2023; 13
I Ferby (2033_CR44) 2006; 12
A Cossins (2033_CR56) 1978; 75
KC Madison (2033_CR33) 2003; 121
Y Yang (2033_CR22) 2015; 15
JR Hazel (2033_CR55) 1995; 57
Rd Toledo (2033_CR38) 1995; 111
S Reguera (2033_CR49) 2014; 172
MY Koh (2033_CR59) 2008; 33
J Fu (2033_CR27) 2005; 37
M Wanninger (2033_CR7) 2018; 4
References_xml – volume: 110
  start-page: 103355
  year: 2022
  ident: 2033_CR72
  publication-title: J Therm Biol
  doi: 10.1016/j.jtherbio.2022.103355
– volume: 46
  start-page: 599
  year: 2018
  ident: 2033_CR53
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST20170502
– volume: 37
  start-page: 202
  year: 2005
  ident: 2033_CR27
  publication-title: Mol Phylogen Evol
  doi: 10.1016/j.ympev.2005.03.023
– volume: 33
  start-page: 526
  year: 2008
  ident: 2033_CR59
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2008.08.002
– volume: 177
  start-page: 399
  year: 2019
  ident: 2033_CR70
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.050
– volume: 4
  start-page: 1
  year: 2018
  ident: 2033_CR7
  publication-title: Zoological Lett
  doi: 10.1186/s40851-018-0095-x
– volume: 191
  start-page: 1019
  year: 2021
  ident: 2033_CR16
  publication-title: J Comp Physiol B
  doi: 10.1007/s00360-021-01368-8
– volume: 27
  start-page: 115
  year: 1976
  ident: 2033_CR12
  publication-title: Respir Physiol
  doi: 10.1016/0034-5687(76)90022-0
– volume: 75
  start-page: 2040
  year: 1978
  ident: 2033_CR56
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.75.4.2040
– volume: 100
  start-page: 1247
  year: 2015
  ident: 2033_CR52
  publication-title: Exp Physiol
  doi: 10.1113/EP085292
– volume: 92
  start-page: 130
  year: 2017
  ident: 2033_CR8
  publication-title: Anat Sci Int
  doi: 10.1007/s12565-016-0328-z
– volume: 14
  start-page: 12222
  year: 2013
  ident: 2033_CR37
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms140612222
– volume: 51
  start-page: 630
  year: 1997
  ident: 2033_CR31
  publication-title: Evolution
  doi: 10.2307/2411138
– volume: 8
  year: 2013
  ident: 2033_CR18
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0071976
– volume: 13
  start-page: 1792
  year: 2002
  ident: 2033_CR66
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.02-02-0017
– volume: 32
  start-page: 235
  year: 2007
  ident: 2033_CR35
  publication-title: J Therm Biol
  doi: 10.1016/j.jtherbio.2007.01.013
– volume: 17
  start-page: 1
  year: 2016
  ident: 2033_CR23
  publication-title: BMC Genet
  doi: 10.1186/s12863-016-0440-z
– volume: 12
  year: 2021
  ident: 2033_CR60
  publication-title: Animals
  doi: 10.3390/ani12010058
– ident: 2033_CR51
  doi: 10.1016/B978-0-12-804274-8.00043-6
– volume: 90
  start-page: 389
  year: 2022
  ident: 2033_CR29
  publication-title: J Mol Evol
  doi: 10.1007/s00239-022-10070-4
– volume: 24
  start-page: 97
  year: 2009
  ident: 2033_CR57
  publication-title: Physiology
  doi: 10.1152/physiol.00045.2008
– volume: 39
  start-page: 219
  year: 2010
  ident: 2033_CR68
  publication-title: Immunol Invest
  doi: 10.3109/08820131003681144
– volume: 11
  year: 2020
  ident: 2033_CR63
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.00433
– volume: 70
  start-page: 159
  year: 2020
  ident: 2033_CR42
  publication-title: Anim Biol
  doi: 10.1163/15707563-20191100
– volume: 9
  year: 2019
  ident: 2033_CR4
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.03128
– volume: 106
  start-page: 244
  year: 2012
  ident: 2033_CR54
  publication-title: Mol Genet Metab
  doi: 10.1016/j.ymgme.2012.03.003
– volume: 15
  start-page: 1
  year: 2015
  ident: 2033_CR22
  publication-title: BMC Evol Biol
  doi: 10.1186/s12862-015-0371-8
– volume: 13
  start-page: 942037
  year: 2022
  ident: 2033_CR15
  publication-title: Front Physiol
  doi: 10.3389/fphys.2022.942037
– volume: 13
  start-page: 189
  year: 2011
  ident: 2033_CR21
  publication-title: Obstet Gynaecol
  doi: 10.1576/toag.13.3.189.27672
– ident: 2033_CR39
  doi: 10.2307/1443948
– volume: 16
  start-page: 651
  year: 2015
  ident: 2033_CR64
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm4069
– volume: 191
  start-page: 765
  year: 2021
  ident: 2033_CR30
  publication-title: J Comp Physiol B
  doi: 10.1007/s00360-021-01381-x
– volume: 23
  start-page: 10081
  year: 2022
  ident: 2033_CR61
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms231710081
– volume: 69
  start-page: 145
  year: 2007
  ident: 2033_CR17
  publication-title: Annu Rev Physiol
  doi: 10.1146/annurev.physiol.69.031905.162529
– volume: 16
  start-page: 1071
  year: 2023
  ident: 2033_CR28
  publication-title: Evol Appl
  doi: 10.1111/eva.13555
– volume: 5
  year: 2014
  ident: 2033_CR65
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2014.496
– volume: 13
  start-page: 1104476
  year: 2023
  ident: 2033_CR75
  publication-title: Front Physiol
  doi: 10.3389/fphys.2022.1104476
– volume: 178
  start-page: 867
  year: 2008
  ident: 2033_CR36
  publication-title: J Comp Physiol B
  doi: 10.1007/s00360-008-0274-8
– volume: 172
  start-page: 52
  year: 2014
  ident: 2033_CR49
  publication-title: Comp Biochem Physiol A Mol Integr Physiol
  doi: 10.1016/j.cbpa.2014.02.018
– volume: 11
  year: 2022
  ident: 2033_CR26
  publication-title: Elife.
  doi: 10.7554/eLife.70494
– volume: 102
  start-page: 103132
  year: 2021
  ident: 2033_CR71
  publication-title: J Therm Biol
  doi: 10.1016/j.jtherbio.2021.103132
– volume: 146
  start-page: 151
  year: 2018
  ident: 2033_CR67
  publication-title: Genetica
  doi: 10.1007/s10709-017-0005-8
– volume: 8
  start-page: 175
  year: 2009
  ident: 2033_CR76
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(09)70014-6
– volume: 47
  start-page: 151
  year: 1982
  ident: 2033_CR3
  publication-title: Respir Physiol
  doi: 10.1016/0034-5687(82)90108-6
– volume: 72
  start-page: 270
  year: 2003
  ident: 2033_CR32
  publication-title: J Anim Ecol
  doi: 10.1046/j.1365-2656.2003.00696.x
– volume: 111
  start-page: 1
  year: 1995
  ident: 2033_CR38
  publication-title: Comp Biochem Physiol A Physiol
  doi: 10.1016/0300-9629(95)98515-I
– volume: 11
  year: 2023
  ident: 2033_CR14
  publication-title: Front Ecol Evol
  doi: 10.3389/fevo.2023.1103406
– volume: 30
  start-page: 189
  year: 1986
  ident: 2033_CR40
  publication-title: Int J Biometeorol
  doi: 10.1007/BF02189461
– volume: 19
  start-page: 931
  year: 2008
  ident: 2033_CR43
  publication-title: Anticancer Drugs
  doi: 10.1097/CAD.0b013e3283139100
– volume: 13
  start-page: 167
  year: 2001
  ident: 2033_CR58
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/S0955-0674(00)00194-0
– volume: 67
  start-page: 187
  year: 1980
  ident: 2033_CR47
  publication-title: Comp Biochem Physiol A Physiol
  doi: 10.1016/0300-9629(80)90428-4
– ident: 2033_CR48
  doi: 10.1016/S1546-5098(08)60262-9
– volume: 9
  start-page: 7558
  year: 2019
  ident: 2033_CR69
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-43773-8
– volume-title: Metabolic engineering: principles and methodologies
  year: 1998
  ident: 2033_CR74
– volume: 35
  start-page: 1590
  year: 2017
  ident: 2033_CR5
  publication-title: Int J Morphol
  doi: 10.4067/S0717-95022017000401590
– volume: 5
  start-page: 9
  year: 2012
  ident: 2033_CR20
  publication-title: World Allergy Organ J
  doi: 10.1097/WOX.0b013e3182439613
– volume: 51
  start-page: 844
  year: 2016
  ident: 2033_CR34
  publication-title: Chin J Zool
– volume: 20
  start-page: 35
  year: 2023
  ident: 2033_CR19
  publication-title: Front Zool
  doi: 10.1186/s12983-023-00513-z
– volume: 76
  start-page: 109
  year: 1983
  ident: 2033_CR46
  publication-title: Comp Biochem Physiol A Physiol
  doi: 10.1016/0300-9629(83)90300-6
– volume: 95
  start-page: 201
  year: 2022
  ident: 2033_CR73
  publication-title: Physiol Biochem Zool
  doi: 10.1086/718764
– volume: 112
  start-page: 132
  year: 2014
  ident: 2033_CR9
  publication-title: Biol J Linn Soc Lond
  doi: 10.1111/bij.12250
– volume: 90
  start-page: 638
  year: 2017
  ident: 2033_CR11
  publication-title: Physiol Biochem Zool
  doi: 10.1086/694833
– volume: 57
  start-page: 1151
  year: 2003
  ident: 2033_CR2
  publication-title: Evolution
– volume: 121
  start-page: 231
  year: 2003
  ident: 2033_CR33
  publication-title: J Invest Dermatol
  doi: 10.1046/j.1523-1747.2003.12359.x
– volume: 8
  start-page: 702
  year: 2017
  ident: 2033_CR50
  publication-title: Front Physiol
  doi: 10.3389/fphys.2017.00702
– volume: 10
  year: 2015
  ident: 2033_CR13
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0125751
– volume: 57
  start-page: 19
  year: 1995
  ident: 2033_CR55
  publication-title: Annu Rev Physiol
  doi: 10.1146/annurev.ph.57.030195.000315
– volume: 18
  start-page: 1
  year: 2017
  ident: 2033_CR24
  publication-title: BMC Genet
  doi: 10.1186/s12863-017-0529-z
– volume: 12
  start-page: 568
  year: 2006
  ident: 2033_CR44
  publication-title: Nat Med
  doi: 10.1038/nm1401
– ident: 2033_CR25
  doi: 10.1111/1755-0998.13319
– volume: 11
  start-page: 3015
  year: 2021
  ident: 2033_CR41
  publication-title: Ecol Evol
  doi: 10.1002/ece3.7192
– volume: 22
  start-page: 569
  year: 2007
  ident: 2033_CR1
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2007.09.006
– volume: 10
  start-page: 79
  year: 2019
  ident: 2033_CR10
  publication-title: Asian Herpetol Res
– ident: 2033_CR6
  doi: 10.1016/S0940-9602(98)80080-0
– volume: 7
  start-page: 12
  year: 2016
  ident: 2033_CR62
  publication-title: Asian Herpetol Res
– volume: 138
  start-page: 1462
  year: 2002
  ident: 2033_CR45
  publication-title: Arch Dermatol
  doi: 10.1001/archderm.138.11.1462
SSID ssj0025773
Score 2.409297
Snippet Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we studied the...
Background Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we...
BackgroundOrganisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient. Herein, we...
Abstract Background Organisms have evolved a range of phenotypic and genetic adaptations to live in different environments along an altitudinal gradient....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 231
SubjectTerms Acclimatization - physiology
Activated carbon
Adaptation
Adaptation (Biology)
Adaptation, Physiological - genetics
Altitude
Altitudinal gradient
Amino acids
Amphibians
Animals
Antioxidants
Blood vessels
Bufo gargarizans
Bufonidae - genetics
Bufonidae - physiology
Capillaries
Carbohydrates
Carbon cycle
Case studies
China
Ecological adaptation
Energy metabolism
Environmental aspects
Environmental changes
Environmental conditions
Enzymatic activity
Enzymes
Epidermis
Erythrocytes
Fatty acids
Frogs
Gene expression
Gene regulation
Genes
Genetic aspects
Genetic research
Genomics
Genotypes
Hematocrit
Hematology
Hemoglobin
High altitude environments
Hypotheses
Hypoxia
Hypoxia-inducible factors
Metabolic flux
Metabolism
Metabolites
Morphology
Phenotype
Phenotypes
Phenotypic traits
Physiological aspects
Physiological effects
Physiology
Pigments
Populations
Reptiles & amphibians
Respiration
Skin
Toads
Transcriptome
Tricarboxylic acid cycle
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9NAEF_kQPBF_LZ6yiqCioRL9zu-3R13nIIK6sm9LZvdTa8gSbmkD_Xf8R91JpvUBhFffGu7000zM7sz08zvt4S8UCGWwjGRlRBNMhEkzxxnOtNSx9IZSJFL_Gvgw0d1di7eX8iLnaO-sCcs0QMnxR3ICAm2QB43E4ST3JmSsUKzKCpZGN_DfCHmjcXUUGpJrfkIkTHqoIWoNkckssjwyRvP1CQM9Wz9f-7JO0Fp2jC5E4FOb5GbQ-pID9NPvk2uxfoOuZ4Ok9zcJT9P_LiRURfcKj1jb2lTUQcmQ2gIvOsauoNtA9GE_G2p-97UC-pqeIHdAwFPy6KLq74jrKOvjiHaUWw63LylR-uqoYv-hNzlD5j0NUWQCsVusabbrJYepgkUPBMBknT1G87Z3iPnpydfj8-y4QiGzEvDu8xrXxVRFD4EXUHtF4QvKsgiWAQdR1kEzcs58tvkMjChYMfw0eciVJwHH2TJ75O9uqnjQ0Kj55WOEC81GBL8pswVY3peuLnw3EQ3I29Gi9hVYtqwfYVilE32s2A_29vPqhk5QqNtJZElu_8AfMcOvmP_5Tsz8hxNbpEHo8ZGm4Vbt6199-mbPTRwYSM1V38T-vJ5IvRyEKoa8BDvBnAD3Drya00k9yeSsJr9dHh0PzvsJq1FRiQo3eE-ZuTZdhi_iR1ydWzWSUZiAg1TPEjeulUOL3iRCyVnxEz8eKK96Ui9vOy5xhG0Dhl__uh_6PsxucFwDWJDUL5P9rqrdXwCOV1XPu2X7y9tDkl4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgCIkXxPcyBjIICRCKlsZ27PCCtmnTQAIkYKhvlmM7odKUhCZ9KP8O_yh3-WgbIXhr66vT-s73Yd_vjpAXifMZNzEPM7AmIXeChYbFMpRC-swocJEzPBr4-Cm5uOQf5mI-HLg1Q1rlqBM7Re0qi2fkR1gVBsKXSKbv6p8hdo3C29WhhcZ1cgNLl2FKl5xvAy4hJRuBMio5asC2zRCPzEO8f2NhMjFGXc3-vzXzjmmapk3u2KHzO-T24EDS457jd8k1X94jN_uWkuv75PeZHdUZNc7U_U17Q6ucGmAcAkTgXVvRHYQbkPb434aaq6osqCnhBeYQOOyZRYtllxfW0lenYPMoph6u39KTVV7RouuTu_gFk76mCFWhmDNWtet6YWEaR0E-ESZJ6y2os3lALs_Pvp1ehEMjhtAKxdrQSpunnqfWOZlDBOi4TXPwJWIPa-xF6iTLZljlJhIu5gnoDettxF3OmLNOZOwh2Sur0u8T6i3LpQerKRXMYk0WJXEsZ6mZccuUNwF5M3JE1329Dd3FKSrRPf808E93_NNJQE6QaRtKrJXdfVAtCz1sPS08hGgcKwHCI41gRmVxnMrY81ykyqqAPEeWa6yGUWK6TWFWTaPff_6ujxU8WAnJkn8Rff0yIXo5EOUVSIg1A8QB_jpW2ZpQHk4oYU_b6fAofnrQKY3e7oCAPNsM4zcxT6701aqnEehGwxSPemndLA5LWRrxRARETeR4snrTkXLxo6s4jtB18Pujg___rsfkVoy7CxN-okOy1y5X_gn4bG32tNuYfwBGDkIT
  priority: 102
  providerName: ProQuest
Title Ecological adaptations of amphibians to environmental changes along an altitudinal gradient (Case Study: Bufo gargarizans) from phenotypic and genetic perspectives
URI https://www.ncbi.nlm.nih.gov/pubmed/39390465
https://www.proquest.com/docview/3115106079
https://www.proquest.com/docview/3115500856
https://pubmed.ncbi.nlm.nih.gov/PMC11465660
https://doaj.org/article/5e666470798d4a53a8b22972e4f598c8
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEF_uA8EX8fuqZ1lF8EGiaXY3u3kQuUqPU7hTqpXiy7LZ3dSDI6lNCvbdP9yZfNQGT_CltNnphszHzkx2frOEPI-dT7mJeJCCNwm4EywwLJKBFNKnRkGInOKrgfOL-GzGP8zFfI90xx21DCyvTe3wPKnZ6urVzx-bt2Dwb2qDV_HrEnzWCHHGPMB9NRbE--QQPJNEQz3n210F0M56xxmC8FEgwTl2IJpr5-g5qrqf_9-r9o7b6pdU7vio09vkVhtc0pNGG-6QPZ_fJTea4yY398ivie2WOmqcWTa78CUtMmpAqAgegV9VQXfQb0DaYINLaq6KfEFNDl-wvsDheVp0saprxiqKOBWKBWNFtVleWqBzFJQTMZJ0-QfRWd4ns9PJl3dnQXsKQ2CFYlVgpc0SzxPrnMwg_XPcJhkEEpEHhnqROMnSEba4CYWLeAyLhvU25C5jzFknUvaAHORF7o8I9ZZl0oPLlApmsSYN4yiSo8SMuGXKmwF52bFcL5tmG7pOUlSsGwFpEJCuBaTjARmjVLaU2Ci7vlCsFrq1Oy085Gcc2wDCLY1gRqVRlMjI80wkyqoBeYYy1dgKI8dam4VZl6V-__GrPlFwYyUki_9F9HnaI3rREmUFqIA1Lb4BHh1bbPUoj3uUYNC2P9zpl-7sQWNTJMje4TkG5Ol2GP-JRXK5L9YNjcAYGqZ42KjjljksYUnIYzEgqqeoPe71R_LL73W7ccStQ9AfPvofVj0mNyM0Iqz5CY_JQbVa-ycQtlXpkOzLuRySw_Hk4tN0WL_8GNb2CZ_T8bffFH5CzQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviG8KAwwCAULR0tiOEySE1tFpY1tB-0B7M47tlEooKU0rVP4d3vkbuctH1wjB297a-nppc1---H53hDwLrUu4DriXQDTxuBXM0yyQnhTSJTqCLXKCjwYOh-HuKf9wJs7WyO8GC4NllY1PLB21zQ0-I9_ErjCQvvgyfjf57uHUKDxdbUZoVGqx7xY_IGUr3u69B_k-D4Kdwcn2rldPFfCMiNjMM9KkseOxsVamkM5YbuIUAmPgIPw7EVvJkh62bPGFDXgIRmCc8blNGbPGioQB30tknTNIZTpkvT8YfjpapnhCStZAc6Jws4Bo2kMENPfwxI95YSv8lVMC_o4FK8GwXai5Evl2rpNr9ZaVblU6doOsuewmuVwNsVzcIr8GpnGgVFs9qc72C5qnVIOqICQF3s1yuoKpA9IKcVxQ_S3PRlRn8AKrFixO6aKjaVmJNqMvtyHKUix2XLyh_Xma01E5mXf8E5i-ogiOoVills8Wk7EBNpaCRSAwk07OYaTFbXJ6IUK6QzpZnrl7hDrDUukgTssIuBid-GEQyF6se9ywyOkued1IRE2qDh-qzIyiUFXyUyA_VcpPhV3SR6EtKbE7d_lBPh2p2tiVcJAUcuw9CJfUgukoCYJYBo6nIo5M1CVPUeQK-29kWOAz0vOiUHsfP6utCC4cCcnCfxEdH7WIXtREaQ4aYnQNqoC_jn29WpQbLUrwIqa93Kifqr1Yoc5trkueLJfxm1iZl7l8XtEI3LgDi7uVti5vDotZ7PNQdEnU0uPW3WuvZOOvZY9zBMtDpuHf___vekyu7J4cHqiDveH-A3I1QEvDciN_g3Rm07l7CDvGWfKoNlNKvly0Z_gDzFuAkg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bjtMwELWWRSBeEHcKCxgEAoSiprEdJ0gI7VVbFha0sKhvxrGdUgklpUmFyu_wF3wdM7m0jRC87VtbT502c4_nzBDyOLQu4TrgXgLexONWME-zQHpSSJfoCELkBB8NvDsOD0_5m5EYbZDfLRYGyypbm1gZapsbfEbex64wkL74Mu6nTVnEh72D19PvHk6QwpPWdpxGLSJHbvED0rfi1XAPeP0kCA72P-0ees2EAc-IiJWekSaNHY-NtTKF1MZyE6fgJAMHoYATsZUsGWD7Fl_YgIegEMYZn9uUMWusSBjse46cl0wMUMfkaJXsCSlZC9KJwn4BfnWAWGju4dkf88KOI6zmBfztFdbcYrdkc80HHlwhl5vglW7X0naVbLjsGrlQj7NcXCe_9k1rSqm2elqf8hc0T6kGoUFwCrwrc7qGrgPSGntcUP0tz8ZUZ_AC6xcszuui41lVk1bSZ7vgbymWPS5e0p15mtNxNaN38hM2fU4RJkOxXi0vF9OJgW0sBd1AiCadrgClxQ1yeiYsukk2szxztwl1hqXSgceWEexidOKHQSAHsR5wwyKne-RFyxE1rXt9qCpHikJV808B_1TFPxX2yA4ybUmJfbqrD_LZWDVqr4SD9JBjF0K4pBZMR0kQxDJwPBVxZKIeeYQsV9iJI0OZHut5Uajh-89qO4ILR0Ky8F9EH086RE8bojQHCTG6gVfAX8cOXx3KrQ4l2BPTXW7FTzX2rFAr7euRh8tl_CbW6GUun9c0AkN42OJWLa3Lm8NiFvs8FD0SdeS4c_e6K9nka9XtHGHzkHP4d_7_ux6Qi2AP1Nvh8dFdcilARcO6I3-LbJazubsHoWOZ3K90lJIvZ20U_gA4JINi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ecological+adaptations+of+amphibians+to+environmental+changes+along+an+altitudinal+gradient+from+phenotypic+and+genetic+perspectives&rft.jtitle=BMC+biology&rft.au=Niu%2C+Yonggang&rft.au=Zhang%2C+Xuejing&rft.au=Zhang%2C+Haiying&rft.au=Men%2C+Shengkang&rft.date=2024-10-10&rft.pub=BioMed+Central+Ltd&rft.issn=1741-7007&rft.eissn=1741-7007&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12915-024-02033-6&rft.externalDBID=IOV&rft.externalDocID=A811885736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7007&client=summon