Heat-fueled enzymatic cascade for selective oxyfunctionalization of hydrocarbons

Heat is a fundamental feedstock, where more than 80% of global energy comes from fossil-based heating process. However, it is mostly wasted due to a lack of proper techniques of utilizing the low-quality waste heat (<100 °C). Here we report thermoelectrobiocatalytic chemical conversion systems fo...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 3741 - 10
Main Authors Yoon, Jaeho, Jang, Hanhwi, Oh, Min-Wook, Hilberath, Thomas, Hollmann, Frank, Jung, Yeon Sik, Park, Chan Beum
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.06.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-022-31363-8

Cover

Abstract Heat is a fundamental feedstock, where more than 80% of global energy comes from fossil-based heating process. However, it is mostly wasted due to a lack of proper techniques of utilizing the low-quality waste heat (<100 °C). Here we report thermoelectrobiocatalytic chemical conversion systems for heat-fueled, enzyme-catalyzed oxyfunctionalization reactions. Thermoelectric bismuth telluride (Bi 2 Te 3 ) directly converts low-temperature waste heat into chemical energy in the form of H 2 O 2 near room temperature. The streamlined reaction scheme (e.g., water, heat, enzyme, and thermoelectric material) promotes enantio- and chemo-selective hydroxylation and epoxidation of representative substrates (e.g., ethylbenzene, propylbenzene, tetralin, cyclohexane, cis -β-methylstyrene), achieving a maximum total turnover number of r Aae UPO (TTN r Aae UPO ) over 32000. Direct conversion of vehicle exhaust heat into the enantiopure enzymatic product with a rate of 231.4 μM h −1 during urban driving envisions the practical feasibility of thermoelectrobiocatalysis. Thermoelectric materials enable us to convert heat into electricity, but their application has been limited to high-temperature heat sources. Here, the authors show the direct conversion of low-grade waste heat into chemical energy via combining thermoelectric materials with biocatalysts below 100 °C.
AbstractList Heat is a fundamental feedstock, where more than 80% of global energy comes from fossil-based heating process. However, it is mostly wasted due to a lack of proper techniques of utilizing the low-quality waste heat (<100 °C). Here we report thermoelectrobiocatalytic chemical conversion systems for heat-fueled, enzyme-catalyzed oxyfunctionalization reactions. Thermoelectric bismuth telluride (Bi 2 Te 3 ) directly converts low-temperature waste heat into chemical energy in the form of H 2 O 2 near room temperature. The streamlined reaction scheme (e.g., water, heat, enzyme, and thermoelectric material) promotes enantio- and chemo-selective hydroxylation and epoxidation of representative substrates (e.g., ethylbenzene, propylbenzene, tetralin, cyclohexane, cis -β-methylstyrene), achieving a maximum total turnover number of r Aae UPO (TTN r Aae UPO ) over 32000. Direct conversion of vehicle exhaust heat into the enantiopure enzymatic product with a rate of 231.4 μM h −1 during urban driving envisions the practical feasibility of thermoelectrobiocatalysis. Thermoelectric materials enable us to convert heat into electricity, but their application has been limited to high-temperature heat sources. Here, the authors show the direct conversion of low-grade waste heat into chemical energy via combining thermoelectric materials with biocatalysts below 100 °C.
Heat is a fundamental feedstock, where more than 80% of global energy comes from fossil-based heating process. However, it is mostly wasted due to a lack of proper techniques of utilizing the low-quality waste heat (<100 °C). Here we report thermoelectrobiocatalytic chemical conversion systems for heat-fueled, enzyme-catalyzed oxyfunctionalization reactions. Thermoelectric bismuth telluride (Bi2Te3) directly converts low-temperature waste heat into chemical energy in the form of H2O2 near room temperature. The streamlined reaction scheme (e.g., water, heat, enzyme, and thermoelectric material) promotes enantio- and chemo-selective hydroxylation and epoxidation of representative substrates (e.g., ethylbenzene, propylbenzene, tetralin, cyclohexane, cis-β-methylstyrene), achieving a maximum total turnover number of rAaeUPO (TTNrAaeUPO) over 32000. Direct conversion of vehicle exhaust heat into the enantiopure enzymatic product with a rate of 231.4 μM h−1 during urban driving envisions the practical feasibility of thermoelectrobiocatalysis.Thermoelectric materials enable us to convert heat into electricity, but their application has been limited to high-temperature heat sources. Here, the authors show the direct conversion of low-grade waste heat into chemical energy via combining thermoelectric materials with biocatalysts below 100 °C.
Thermoelectric materials enable us to convert heat into electricity, but their application has been limited to high-temperature heat sources. Here, the authors show the direct conversion of low-grade waste heat into chemical energy via combining thermoelectric materials with biocatalysts below 100 °C.
Heat is a fundamental feedstock, where more than 80% of global energy comes from fossil-based heating process. However, it is mostly wasted due to a lack of proper techniques of utilizing the low-quality waste heat (<100 °C). Here we report thermoelectrobiocatalytic chemical conversion systems for heat-fueled, enzyme-catalyzed oxyfunctionalization reactions. Thermoelectric bismuth telluride (Bi2Te3) directly converts low-temperature waste heat into chemical energy in the form of H2O2 near room temperature. The streamlined reaction scheme (e.g., water, heat, enzyme, and thermoelectric material) promotes enantio- and chemo-selective hydroxylation and epoxidation of representative substrates (e.g., ethylbenzene, propylbenzene, tetralin, cyclohexane, cis-β-methylstyrene), achieving a maximum total turnover number of rAaeUPO (TTNrAaeUPO) over 32000. Direct conversion of vehicle exhaust heat into the enantiopure enzymatic product with a rate of 231.4 μM h-1 during urban driving envisions the practical feasibility of thermoelectrobiocatalysis.Heat is a fundamental feedstock, where more than 80% of global energy comes from fossil-based heating process. However, it is mostly wasted due to a lack of proper techniques of utilizing the low-quality waste heat (<100 °C). Here we report thermoelectrobiocatalytic chemical conversion systems for heat-fueled, enzyme-catalyzed oxyfunctionalization reactions. Thermoelectric bismuth telluride (Bi2Te3) directly converts low-temperature waste heat into chemical energy in the form of H2O2 near room temperature. The streamlined reaction scheme (e.g., water, heat, enzyme, and thermoelectric material) promotes enantio- and chemo-selective hydroxylation and epoxidation of representative substrates (e.g., ethylbenzene, propylbenzene, tetralin, cyclohexane, cis-β-methylstyrene), achieving a maximum total turnover number of rAaeUPO (TTNrAaeUPO) over 32000. Direct conversion of vehicle exhaust heat into the enantiopure enzymatic product with a rate of 231.4 μM h-1 during urban driving envisions the practical feasibility of thermoelectrobiocatalysis.
Heat is a fundamental feedstock, where more than 80% of global energy comes from fossil-based heating process. However, it is mostly wasted due to a lack of proper techniques of utilizing the low-quality waste heat (<100 °C). Here we report thermoelectrobiocatalytic chemical conversion systems for heat-fueled, enzyme-catalyzed oxyfunctionalization reactions. Thermoelectric bismuth telluride (Bi 2 Te 3 ) directly converts low-temperature waste heat into chemical energy in the form of H 2 O 2 near room temperature. The streamlined reaction scheme (e.g., water, heat, enzyme, and thermoelectric material) promotes enantio- and chemo-selective hydroxylation and epoxidation of representative substrates (e.g., ethylbenzene, propylbenzene, tetralin, cyclohexane, cis -β-methylstyrene), achieving a maximum total turnover number of r Aae UPO (TTN r Aae UPO ) over 32000. Direct conversion of vehicle exhaust heat into the enantiopure enzymatic product with a rate of 231.4 μM h −1 during urban driving envisions the practical feasibility of thermoelectrobiocatalysis.
ArticleNumber 3741
Author Hollmann, Frank
Jang, Hanhwi
Hilberath, Thomas
Jung, Yeon Sik
Oh, Min-Wook
Yoon, Jaeho
Park, Chan Beum
Author_xml – sequence: 1
  givenname: Jaeho
  surname: Yoon
  fullname: Yoon, Jaeho
  organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 2
  givenname: Hanhwi
  orcidid: 0000-0003-1628-4522
  surname: Jang
  fullname: Jang, Hanhwi
  organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 3
  givenname: Min-Wook
  orcidid: 0000-0002-0915-3172
  surname: Oh
  fullname: Oh, Min-Wook
  organization: Department of Materials Science and Engineering, Hanbat National University (HBNU)
– sequence: 4
  givenname: Thomas
  orcidid: 0000-0002-9778-2509
  surname: Hilberath
  fullname: Hilberath, Thomas
  organization: Department of Biotechnology, Delft University of Technology
– sequence: 5
  givenname: Frank
  orcidid: 0000-0003-4821-756X
  surname: Hollmann
  fullname: Hollmann, Frank
  organization: Department of Biotechnology, Delft University of Technology
– sequence: 6
  givenname: Yeon Sik
  orcidid: 0000-0002-7709-8347
  surname: Jung
  fullname: Jung, Yeon Sik
  email: ysjung@kaist.ac.kr
  organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 7
  givenname: Chan Beum
  orcidid: 0000-0002-0767-8629
  surname: Park
  fullname: Park, Chan Beum
  email: parkcb@kaist.ac.kr
  organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)
BookMark eNp9UstOHDEQtCKiQDb8AKeRcsllEr_Hc4kUoSQgISUHOFt-tJdZzdpgzyCWr4_ZIUrggC9uuauq3aV6jw5iioDQCcGfCWbqS-GEy67FlLaMMMla9QYdUcxJSzrKDv6rD9FxKRtcD-uJ4vwdOmSik4rT7gj9PgMztWGGEXwD8WG3NdPgGmeKMx6akHJTas9Nwx006X4X5ljrFM04PJjHokmhud75nJzJNsXyAb0NZixw_HSv0NWP75enZ-3Fr5_np98uWicUm1pLBQMwwWJuLVhnehGUI0Jy46XvLVO9IA6Ut5xjDJR2TvQ9g9AToJwDW6HzRdcns9E3ediavNPJDHr_kPJam1xXGUGDdEFZ7hwwqNNUL1mQII3rLPOeuar1ddG6me0WvIM4ZTM-E33eicO1Xqc73VPOcLV_hT49CeR0O0OZ9HYoDsbRREhz0VQq2ikpuKzQjy-gmzTn6ueCwkQoQStKLSiXUykZgnbDtPe7zh9GTbB-TIFeUqBrCvQ-BVpVKn1B_bvHqyS2kEoFxzXkf796hfUH8-fH1A
CitedBy_id crossref_primary_10_1016_j_heliyon_2023_e21117
crossref_primary_10_1016_j_nanoen_2024_110235
crossref_primary_10_1021_acsaem_3c02268
crossref_primary_10_51582_interconf_19_20_05_2023_028
crossref_primary_10_1002_anie_202215088
crossref_primary_10_1016_j_apcatb_2023_122925
crossref_primary_10_1002_smll_202405019
crossref_primary_10_1016_j_checat_2024_101077
crossref_primary_10_1016_j_cogsc_2023_100786
crossref_primary_10_1021_acssuschemeng_4c02882
crossref_primary_10_1093_nsr_nwae036
crossref_primary_10_1002_ange_202215088
crossref_primary_10_1002_cctc_202201623
crossref_primary_10_1021_acsami_2c17971
crossref_primary_10_3390_molecules29225242
crossref_primary_10_1016_j_gresc_2023_11_006
crossref_primary_10_1142_S1088424623500906
crossref_primary_10_1002_ente_202400973
crossref_primary_10_1016_j_cogsc_2022_100745
crossref_primary_10_1016_j_trechm_2022_11_005
crossref_primary_10_1021_acsenergylett_3c00587
crossref_primary_10_1016_j_heliyon_2023_e19799
Cites_doi 10.1038/s41563-021-01064-6
10.1016/j.cej.2020.124295
10.1021/la015685a
10.1039/D0EE02072A
10.1039/D0MA00162G
10.1039/C8EE03374A
10.1016/j.enzmictec.2015.03.004
10.1002/aenm.201701430
10.1038/s41467-021-24048-1
10.1002/aelm.201800904
10.1002/anie.201807647
10.1038/s41467-020-20445-0
10.1038/s41929-017-0001-5
10.1016/j.joule.2021.04.012
10.1002/adfm.201701823
10.1021/acscatal.1c03065
10.1038/nature11475
10.34133/2020/4361703
10.1038/nmat2090
10.1038/s41929-020-00507-8
10.1128/AEM.00490-14
10.1002/aenm.202003500
10.1016/j.apcatb.2017.05.058
10.1002/smll.202104067
10.1039/C9GC00633H
10.1038/s41929-021-00605-1
10.1038/s41467-018-07877-5
10.1038/s41929-020-0432-2
10.1038/s41467-019-08784-z
10.1055/s-2008-1066990
10.1016/j.rser.2015.12.192
10.1038/s41467-019-12144-2
10.1038/s41467-021-21391-1
10.1128/AEM.70.8.4575-4581.2004
10.1016/j.molcatb.2016.12.008
10.1063/1.1728990
10.1021/acsami.1c19357
10.1002/anie.201708668
10.1038/s41558-021-01001-0
10.1088/2515-7655/abc52c
10.1016/j.apenergy.2017.11.004
10.1021/acscatal.8b02409
10.1039/C9NR09183A
10.1002/adfm.201802813
10.1016/j.joule.2019.10.010
10.1038/s41558-018-0337-0
10.1021/acsnano.6b01156
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-31363-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (subscription)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_e6cf8b4cce3e4bb8963f6e6ac7b3dd3c
PMC9243031
10_1038_s41467_022_31363_8
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF)
  grantid: NRF-2015R1A3A2066191; NRF-2015R1A3A2066191
  funderid: https://doi.org/10.13039/501100003725
– fundername: ;
  grantid: NRF-2015R1A3A2066191; NRF-2015R1A3A2066191
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c583t-b253eeafb04bbebca95f8c1564ad6d9b38951ce8db4400e227c5993ef91e244e3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:15:06 EDT 2025
Thu Aug 21 14:11:45 EDT 2025
Thu Sep 04 21:19:45 EDT 2025
Wed Aug 13 08:42:41 EDT 2025
Tue Jul 01 00:58:17 EDT 2025
Thu Apr 24 23:08:46 EDT 2025
Fri Feb 21 02:38:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-b253eeafb04bbebca95f8c1564ad6d9b38951ce8db4400e227c5993ef91e244e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7709-8347
0000-0002-0767-8629
0000-0003-1628-4522
0000-0002-9778-2509
0000-0003-4821-756X
0000-0002-0915-3172
OpenAccessLink https://www.proquest.com/docview/2682015852?pq-origsite=%requestingapplication%
PMID 35768427
PQID 2682015852
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_e6cf8b4cce3e4bb8963f6e6ac7b3dd3c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9243031
proquest_miscellaneous_2682786546
proquest_journals_2682015852
crossref_citationtrail_10_1038_s41467_022_31363_8
crossref_primary_10_1038_s41467_022_31363_8
springer_journals_10_1038_s41467_022_31363_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-29
PublicationDateYYYYMMDD 2022-06-29
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Witting, Ricci, Chasapis, Hautier, Snyder (CR45) 2020; 2020
Ponce de León (CR36) 2020; 3
Erickson, Lazarus, Piggot (CR1) 2018; 8
Bao (CR18) 2020; 388
Zhang (CR27) 2017; 56
Ullrich, Nüske, Scheibner, Spantzel, Hofrichter (CR14) 2004; 70
Tsikritzis (CR22) 2020; 1
Byeon (CR44) 2019; 10
Molina-Espeja (CR15) 2014; 80
Hirakawa, Nosaka (CR24) 2002; 18
Sigmund, Poelarends (CR13) 2020; 3
Schultz, McHugh, Tiller (CR38) 1962; 33
Zhao (CR47) 2021; 12
Horst (CR26) 2016; 133
Toe (CR41) 2018; 57
Shimizu (CR43) 2019; 10
Imasato, Kang, Snyder (CR5) 2019; 12
Burek, Bormann, Hollmann, Bloh, Holtmann (CR12) 2019; 21
Zhou (CR34) 2021; 20
Gamba Sanchez (CR11) 2008; 2008
Molina-Espeja, Ma, Mate, Ludwig, Alcalde (CR16) 2015; 73-74
Yao, Zheng, Yang (CR21) 2017; 27
Rotilio (CR29) 2021; 11
Tao (CR39) 2021; 13
Aguirre, Zhou, Eugene, Guzman, Grela (CR40) 2017; 217
Witting (CR9) 2019; 5
CR2
Xu, Tian, Meng, Cao, Li (CR37) 2021; 11
Lin (CR10) 2021; 12
Le Quéré (CR3) 2021; 11
Wang (CR7) 2019; 10
Zhou, Zhao, Wang, Xia, Pan (CR25) 2020; 3
Ning, Lu (CR42) 2020; 12
Luo (CR17) 2020; 4
Zhang (CR35) 2018; 1
Snyder, Toberer (CR6) 2008; 7
Ying (CR8) 2021; 12
Teng (CR23) 2021; 4
Chu, Majumdar (CR30) 2012; 488
Lan, Yang, Chen, Stobart (CR31) 2018; 210
Forman, Muritala, Pardemann, Meyer (CR4) 2016; 57
Tang (CR46) 2021; 5
Achour, Liu, Peng, Shaw, Huang (CR19) 2018; 8
Zhang (CR28) 2021; 17
Kim, Lee, Choi, Park (CR48) 2018; 28
Zhang (CR33) 2020; 13
Achour, Chen, Reece, Huang (CR20) 2018; 8
Hong (CR32) 2016; 10
GJ Snyder (31363_CR6) 2008; 7
CY Toe (31363_CR41) 2018; 57
P Erickson (31363_CR1) 2018; 8
D Byeon (31363_CR44) 2019; 10
G Zhou (31363_CR25) 2020; 3
W Zhang (31363_CR27) 2017; 56
31363_CR2
W Zhang (31363_CR35) 2018; 1
A Achour (31363_CR20) 2018; 8
R Ullrich (31363_CR14) 2004; 70
L Rotilio (31363_CR29) 2021; 11
C Ponce de León (31363_CR36) 2020; 3
C Forman (31363_CR4) 2016; 57
M Hong (31363_CR32) 2016; 10
ME Aguirre (31363_CR40) 2017; 217
P Ying (31363_CR8) 2021; 12
C Zhang (31363_CR28) 2021; 17
P Molina-Espeja (31363_CR16) 2015; 73-74
D Bao (31363_CR18) 2020; 388
Q Tao (31363_CR39) 2021; 13
X Ning (31363_CR42) 2020; 12
J Tang (31363_CR46) 2021; 5
Y Luo (31363_CR17) 2020; 4
AEW Horst (31363_CR26) 2016; 133
IT Witting (31363_CR45) 2020; 2020
DA Gamba Sanchez (31363_CR11) 2008; 2008
BO Burek (31363_CR12) 2019; 21
Z Zhang (31363_CR33) 2020; 13
S Lan (31363_CR31) 2018; 210
S Chu (31363_CR30) 2012; 488
A Achour (31363_CR19) 2018; 8
C Zhou (31363_CR34) 2021; 20
K Imasato (31363_CR5) 2019; 12
D Tsikritzis (31363_CR22) 2020; 1
Z Teng (31363_CR23) 2021; 4
T Hirakawa (31363_CR24) 2002; 18
P Molina-Espeja (31363_CR15) 2014; 80
J Yao (31363_CR21) 2017; 27
IT Witting (31363_CR9) 2019; 5
M-C Sigmund (31363_CR13) 2020; 3
W Xu (31363_CR37) 2021; 11
C Le Quéré (31363_CR3) 2021; 11
S Shimizu (31363_CR43) 2019; 10
Y-J Lin (31363_CR10) 2021; 12
K Kim (31363_CR48) 2018; 28
JM Schultz (31363_CR38) 1962; 33
Y Zhao (31363_CR47) 2021; 12
X Wang (31363_CR7) 2019; 10
References_xml – volume: 20
  start-page: 1378
  year: 2021
  end-page: 1384
  ident: CR34
  article-title: Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01064-6
– volume: 388
  start-page: 124295
  year: 2020
  ident: CR18
  article-title: Texture-dependent thermoelectric properties of nano-structured Bi Te
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124295
– volume: 18
  start-page: 3247
  year: 2002
  end-page: 3254
  ident: CR24
  article-title: Properties of O and OH formed in TiO aqueous suspensions by photocatalytic reaction and the influence of H O and some ions
  publication-title: Langmuir
  doi: 10.1021/la015685a
– volume: 13
  start-page: 3307
  year: 2020
  end-page: 3329
  ident: CR33
  article-title: Cu Se-Based liquid-like thermoelectric materials: looking back and stepping forward
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02072A
– volume: 1
  start-page: 450
  year: 2020
  end-page: 462
  ident: CR22
  article-title: A two-fold engineering approach based on Bi Te flakes towards efficient and stable inverted perovskite solar cells
  publication-title: Mater. Adv.
  doi: 10.1039/D0MA00162G
– volume: 12
  start-page: 965
  year: 2019
  end-page: 971
  ident: CR5
  article-title: Exceptional thermoelectric performance in Mg Sb Bi for low-grade waste heat recovery
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE03374A
– volume: 73-74
  start-page: 29
  year: 2015
  end-page: 33
  ident: CR16
  article-title: Tandem-yeast expression system for engineering and producing unspecific peroxygenase
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2015.03.004
– volume: 8
  start-page: 1701430
  year: 2018
  ident: CR20
  article-title: Tuning of catalytic activity by thermoelectric materials for carbon dioxide hydrogenation
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701430
– ident: CR2
– volume: 12
  year: 2021
  ident: CR47
  article-title: Mechanistic analysis of multiple processes controlling solar-driven H O synthesis using engineered polymeric carbon nitride
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24048-1
– volume: 5
  start-page: 1800904
  year: 2019
  ident: CR9
  article-title: The thermoelectric properties of bismuth telluride
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800904
– volume: 57
  start-page: 13613
  year: 2018
  end-page: 13617
  ident: CR41
  article-title: Photocorrosion of cuprous oxide in hydrogen production: rationalising self-oxidation or self-reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201807647
– volume: 12
  year: 2021
  ident: CR10
  article-title: Thermocatalytic hydrogen peroxide generation and environmental disinfection by Bi Te nanoplates
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20445-0
– volume: 1
  start-page: 55
  year: 2018
  end-page: 62
  ident: CR35
  article-title: Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0001-5
– volume: 5
  start-page: 1432
  year: 2021
  end-page: 1461
  ident: CR46
  article-title: Selective hydrogen peroxide conversion tailored by surface, interface, and device engineering
  publication-title: Joule
  doi: 10.1016/j.joule.2021.04.012
– volume: 27
  start-page: 1701823
  year: 2017
  ident: CR21
  article-title: All-layered 2D optoelectronics: a high-performance UV–vis–NIR broadband SnSe photodetector with Bi Te topological insulator electrodes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201701823
– volume: 11
  start-page: 11511
  year: 2021
  end-page: 11525
  ident: CR29
  article-title: Structural and biochemical studies enlighten the unspecific peroxygenase from sp. EC38 as an efficient oxidative biocatalyst
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c03065
– volume: 488
  start-page: 294
  year: 2012
  end-page: 303
  ident: CR30
  article-title: Opportunities and challenges for a sustainable energy future
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 2020
  start-page: 4361703
  year: 2020
  ident: CR45
  article-title: The thermoelectric properties of n-type bismuth telluride: bismuth selenide alloys Bi Te Se
  publication-title: Research
  doi: 10.34133/2020/4361703
– volume: 7
  start-page: 105
  year: 2008
  end-page: 114
  ident: CR6
  article-title: Complex thermoelectric materials
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2090
– volume: 3
  start-page: 690
  year: 2020
  end-page: 702
  ident: CR13
  article-title: Current state and future perspectives of engineered and artificial peroxygenases for the oxyfunctionalization of organic molecules
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00507-8
– volume: 80
  start-page: 3496
  year: 2014
  end-page: 3507
  ident: CR15
  article-title: Directed evolution of unspecific peroxygenase from
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00490-14
– volume: 11
  start-page: 2003500
  year: 2021
  ident: CR37
  article-title: Interfacial chemical bond-modulated Z-scheme charge transfer for efficient photoelectrochemical water splitting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003500
– volume: 217
  start-page: 485
  year: 2017
  end-page: 493
  ident: CR40
  article-title: Cu O/TiO heterostructures for CO reduction through a direct Z-scheme: protecting Cu O from photocorrosion
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.05.058
– volume: 17
  start-page: 2104067
  year: 2021
  ident: CR28
  article-title: Boron-mediated grain boundary engineering enables simultaneous improvement of thermoelectric and mechanical properties in N-Type Bi Te
  publication-title: Small
  doi: 10.1002/smll.202104067
– volume: 21
  start-page: 3232
  year: 2019
  end-page: 3249
  ident: CR12
  article-title: Hydrogen peroxide driven biocatalysis
  publication-title: Green. Chem.
  doi: 10.1039/C9GC00633H
– volume: 4
  start-page: 374
  year: 2021
  end-page: 384
  ident: CR23
  article-title: Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00605-1
– volume: 10
  year: 2019
  ident: CR44
  article-title: Discovery of colossal Seebeck effect in metallic Cu Se
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07877-5
– volume: 3
  start-page: 96
  year: 2020
  end-page: 97
  ident: CR36
  article-title: In situ anodic generation of hydrogen peroxide
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-0432-2
– volume: 10
  year: 2019
  ident: CR43
  article-title: Giant thermoelectric power factor in ultrathin FeSe superconductor
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08784-z
– volume: 2008
  start-page: 1101
  year: 2008
  end-page: 1102
  ident: CR11
  article-title: Hydrogen peroxide: a versatile reagent in organic synthesis
  publication-title: Synlett
  doi: 10.1055/s-2008-1066990
– volume: 57
  start-page: 1568
  year: 2016
  end-page: 1579
  ident: CR4
  article-title: Estimating the global waste heat potential
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2015.12.192
– volume: 10
  year: 2019
  ident: CR7
  article-title: Direct thermal charging cell for converting low-grade heat to electricity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12144-2
– volume: 12
  year: 2021
  ident: CR8
  article-title: Towards tellurium-free thermoelectric modules for power generation from low-grade heat
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21391-1
– volume: 70
  start-page: 4575
  year: 2004
  end-page: 4581
  ident: CR14
  article-title: Novel haloperoxidase from the agaric basidiomycete oxidizes aryl alcohols and aldehydes
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.70.8.4575-4581.2004
– volume: 133
  start-page: S137
  year: 2016
  end-page: S142
  ident: CR26
  article-title: Electro-enzymatic hydroxylation of ethylbenzene by the evolved unspecific peroxygenase of
  publication-title: J. Mol. Catal. B Enzym.
  doi: 10.1016/j.molcatb.2016.12.008
– volume: 33
  start-page: 2443
  year: 1962
  end-page: 2450
  ident: CR38
  article-title: Effects of heavy deformation and annealing on the electrical properties of Bi Te
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1728990
– volume: 13
  start-page: 60216
  year: 2021
  end-page: 60226
  ident: CR39
  article-title: Removing the oxygen-induced donor-like effect for high thermoelectric performance in n-type Bi Te -based compounds
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c19357
– volume: 56
  start-page: 15451
  year: 2017
  end-page: 15455
  ident: CR27
  article-title: Selective activation of C−H bonds in a cascade process combining photochemistry and biocatalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708668
– volume: 11
  start-page: 197
  year: 2021
  end-page: 199
  ident: CR3
  article-title: Fossil CO emissions in the post-COVID-19 era
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-021-01001-0
– volume: 3
  start-page: 014003
  year: 2020
  ident: CR25
  article-title: Bi Se , Bi Te quantum dots-sensitized rutile TiO nanorod arrays for enhanced solar photoelectrocatalysis in azo dye degradation
  publication-title: J. Phys. Energy
  doi: 10.1088/2515-7655/abc52c
– volume: 210
  start-page: 327
  year: 2018
  end-page: 338
  ident: CR31
  article-title: A dynamic model for thermoelectric generator applied to vehicle waste heat recovery
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.11.004
– volume: 8
  start-page: 10164
  year: 2018
  end-page: 10172
  ident: CR19
  article-title: In situ tuning of catalytic activity by thermoelectric effect for ethylene oxidation
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02409
– volume: 12
  start-page: 1213
  year: 2020
  end-page: 1223
  ident: CR42
  article-title: Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting
  publication-title: Nanoscale
  doi: 10.1039/C9NR09183A
– volume: 28
  start-page: 1802813
  year: 2018
  ident: CR48
  article-title: Photoactive bismuth vanadate structure for light-triggered dissociation of Alzheimer’s β-amyloid aggregates
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802813
– volume: 4
  start-page: 159
  year: 2020
  end-page: 175
  ident: CR17
  article-title: High-performance thermoelectrics from cellular nanostructured Sb Si Te
  publication-title: Joule
  doi: 10.1016/j.joule.2019.10.010
– volume: 8
  start-page: 1037
  year: 2018
  end-page: 1043
  ident: CR1
  article-title: Limiting fossil fuel production as the next big step in climate policy
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-018-0337-0
– volume: 10
  start-page: 4719
  year: 2016
  end-page: 4727
  ident: CR32
  article-title: n-Type Bi Te Se nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01156
– volume: 8
  start-page: 1037
  year: 2018
  ident: 31363_CR1
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-018-0337-0
– ident: 31363_CR2
– volume: 488
  start-page: 294
  year: 2012
  ident: 31363_CR30
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 10
  year: 2019
  ident: 31363_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12144-2
– volume: 12
  year: 2021
  ident: 31363_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21391-1
– volume: 13
  start-page: 60216
  year: 2021
  ident: 31363_CR39
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c19357
– volume: 388
  start-page: 124295
  year: 2020
  ident: 31363_CR18
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124295
– volume: 11
  start-page: 197
  year: 2021
  ident: 31363_CR3
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-021-01001-0
– volume: 7
  start-page: 105
  year: 2008
  ident: 31363_CR6
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2090
– volume: 5
  start-page: 1432
  year: 2021
  ident: 31363_CR46
  publication-title: Joule
  doi: 10.1016/j.joule.2021.04.012
– volume: 70
  start-page: 4575
  year: 2004
  ident: 31363_CR14
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.70.8.4575-4581.2004
– volume: 33
  start-page: 2443
  year: 1962
  ident: 31363_CR38
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1728990
– volume: 3
  start-page: 690
  year: 2020
  ident: 31363_CR13
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00507-8
– volume: 5
  start-page: 1800904
  year: 2019
  ident: 31363_CR9
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800904
– volume: 8
  start-page: 1701430
  year: 2018
  ident: 31363_CR20
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701430
– volume: 17
  start-page: 2104067
  year: 2021
  ident: 31363_CR28
  publication-title: Small
  doi: 10.1002/smll.202104067
– volume: 3
  start-page: 014003
  year: 2020
  ident: 31363_CR25
  publication-title: J. Phys. Energy
  doi: 10.1088/2515-7655/abc52c
– volume: 210
  start-page: 327
  year: 2018
  ident: 31363_CR31
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.11.004
– volume: 11
  start-page: 11511
  year: 2021
  ident: 31363_CR29
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c03065
– volume: 80
  start-page: 3496
  year: 2014
  ident: 31363_CR15
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00490-14
– volume: 1
  start-page: 55
  year: 2018
  ident: 31363_CR35
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0001-5
– volume: 56
  start-page: 15451
  year: 2017
  ident: 31363_CR27
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708668
– volume: 8
  start-page: 10164
  year: 2018
  ident: 31363_CR19
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02409
– volume: 133
  start-page: S137
  year: 2016
  ident: 31363_CR26
  publication-title: J. Mol. Catal. B Enzym.
  doi: 10.1016/j.molcatb.2016.12.008
– volume: 10
  year: 2019
  ident: 31363_CR44
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07877-5
– volume: 3
  start-page: 96
  year: 2020
  ident: 31363_CR36
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-0432-2
– volume: 4
  start-page: 159
  year: 2020
  ident: 31363_CR17
  publication-title: Joule
  doi: 10.1016/j.joule.2019.10.010
– volume: 28
  start-page: 1802813
  year: 2018
  ident: 31363_CR48
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802813
– volume: 13
  start-page: 3307
  year: 2020
  ident: 31363_CR33
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02072A
– volume: 2020
  start-page: 4361703
  year: 2020
  ident: 31363_CR45
  publication-title: Research
  doi: 10.34133/2020/4361703
– volume: 57
  start-page: 13613
  year: 2018
  ident: 31363_CR41
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201807647
– volume: 217
  start-page: 485
  year: 2017
  ident: 31363_CR40
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.05.058
– volume: 12
  start-page: 965
  year: 2019
  ident: 31363_CR5
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE03374A
– volume: 12
  year: 2021
  ident: 31363_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20445-0
– volume: 20
  start-page: 1378
  year: 2021
  ident: 31363_CR34
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01064-6
– volume: 73-74
  start-page: 29
  year: 2015
  ident: 31363_CR16
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2015.03.004
– volume: 12
  start-page: 1213
  year: 2020
  ident: 31363_CR42
  publication-title: Nanoscale
  doi: 10.1039/C9NR09183A
– volume: 12
  year: 2021
  ident: 31363_CR47
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24048-1
– volume: 11
  start-page: 2003500
  year: 2021
  ident: 31363_CR37
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003500
– volume: 4
  start-page: 374
  year: 2021
  ident: 31363_CR23
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00605-1
– volume: 57
  start-page: 1568
  year: 2016
  ident: 31363_CR4
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2015.12.192
– volume: 10
  start-page: 4719
  year: 2016
  ident: 31363_CR32
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01156
– volume: 21
  start-page: 3232
  year: 2019
  ident: 31363_CR12
  publication-title: Green. Chem.
  doi: 10.1039/C9GC00633H
– volume: 27
  start-page: 1701823
  year: 2017
  ident: 31363_CR21
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201701823
– volume: 10
  year: 2019
  ident: 31363_CR43
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08784-z
– volume: 1
  start-page: 450
  year: 2020
  ident: 31363_CR22
  publication-title: Mater. Adv.
  doi: 10.1039/D0MA00162G
– volume: 2008
  start-page: 1101
  year: 2008
  ident: 31363_CR11
  publication-title: Synlett
  doi: 10.1055/s-2008-1066990
– volume: 18
  start-page: 3247
  year: 2002
  ident: 31363_CR24
  publication-title: Langmuir
  doi: 10.1021/la015685a
SSID ssj0000391844
Score 2.4936152
Snippet Heat is a fundamental feedstock, where more than 80% of global energy comes from fossil-based heating process. However, it is mostly wasted due to a lack of...
Thermoelectric materials enable us to convert heat into electricity, but their application has been limited to high-temperature heat sources. Here, the authors...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3741
SubjectTerms 147/143
147/28
631/92/603
639/301/299/2736
639/4077/4072/4062
639/4077/4107
82/16
Biocatalysts
Bismuth tellurides
Chemical energy
Chemical reactions
Cyclohexane
Direct conversion
Energy
Enzymes
Epoxidation
Ethylbenzene
Heat
Heat sources
High temperature
Humanities and Social Sciences
Hydrogen peroxide
Hydroxylation
Low temperature
multidisciplinary
Propylbenzene
Room temperature
Science
Science (multidisciplinary)
Substrates
Tetralin
Thermoelectric materials
Vehicle emissions
Waste heat
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5CIJBL6SOhbtOiQm-JiG09LB_bkrAUWnpIIDdhSSNSKN6S3YVsf31HsncTB5JeerVkJI9GM588o28APpZBNiFGw4XUikuFindVI7gTjXJdqGMj033nb9_17FJ-vVJX90p9pZywgR54ENwpah-Nk96jQOmcIYWJGnXnGydCED5Z37It7x2msg0WLR1d5HhLphTmdCGzTcjJ61UKXpqJJ8qE_ROU-TBH8kGgNPuf8-fwbASO7NMw4Rewg_1L2BtKSa5fwY8ZGVUeV-RFAsP-zzpTsTLfLVICPCNoyha55A1ZNza_XSd_NvwGHC9isnlk1-tA_qy7caSKB3B5fnbxZcbHagncKyOW3NVKIHbRlSSmlOLUqmh84oLpgg6tI2SiKo8mOEn7Fuu68YrACca2QvLxKA5ht5_3-BqYJL8ffBTJu0tFwDbGRGccaQThjNYFVBvJWT9SiaeKFr9sDmkLYwdpW5K2zdK2poDj7Tu_ByKNJ3t_Tguy7ZlIsPMDUg07qob9l2oUcLRZTjvuzIWtdcI8dEiqC_iwbaY9lQIlXY_z1dCnMemaVwHNRA0mE5q29D-vMzs3HWgJFlQFnGwU5m7wxz_4zf_44LewXycFLzWv2yPYXd6s8B1hpqV7n7fHX-wJFpI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_0RPDl8PzAnqdU8E3DbZuPZp9Exb1FUHzw4N5C8-UJ0p7bXXD9651Js3v0wHttUtomk_n9mpn8BuD1zIvGx6gZF0oyIYNkbdVwZnkjbevr2Ag67_zlq1qei88X8iJvuA05rXLnE5Oj9r2jPfLTWhFWIbmt3139ZlQ1iqKruYTGXbhXIdKQnevF2X6PhdTPtRD5rMyM69NBJM-QUtgrCmHqCR4l2f4J17yZKXkjXJpQaPEQDjN9LN-P830Ed0L3CO6PBSW3j-HbEl0rixvEEl-G7u82CbKWrh0oDb5EgloOqfAN-riy_7MlVBs3A_NxzLKP5eXWI6q1K4sG-QTOF5--f1yyXDOBOan5mtla8hDaaGfCWkp0msuoHSnCtF75uUV-IisXtLcCV2-o68ZJpCghzquASB_4Uzjo-i48g1Ig-nsXOWG8kEhvYyRR44hP4FYrVUC1GznjsqA41bX4ZVJgm2szjrbB0TZptI0u4M3-nqtRTuPW3h9oQvY9SQo7XehXP0xeWSYoF7UVzgUe8Js1epSogmpdY7n33BVwsptOk9fnYK6tqYBX-2ZcWRQuabvQb8Y-jabDXgU0EzOYvNC0pft5mTS68bcWyUFVwNudwVw__P8ffHz7uz6HBzWZ7kyxen4CB-vVJrxATrS2L5Ph_wN_tQuc
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD7ULYIvolZxtJUIvrXBndwm-7hKy7KgFGqhb2Fys4LMyF7A9dd7kpnZMkUFX2cSJpOck-9Lcs4XgHdTLyofo6ZcKEmFDJLWZcWp5ZW0tWexEinf-dNntbgWyxt5cwBsyIXJQftZ0jJP00N02Pu1yC6dY8_LdPaoH8ChRvhjEzicz5dXy_3OStI810L0GTJTrv9QeYRCWax_xDDvx0feOyTN2HPxBB73pJHMu2Y-hYPQPIOH3TWSuyO4XOCESuMWEcST0PzaZRlW4up1Cn4nSEvJOl93gzMbaX_uEpZ1W4B9EiZpI7ndecSyemXRDJ_D9cX5l48L2t-UQJ3UfEMtkzyEOtqpsDaFN81k1C7pwNRe-ZlFViJLF7S3An02MFY5icQkxFkZEN8DfwGTpm3CSyACMd-7yBOyC4mkNsYkZRzxC9xqpQooh54zrpcRT7dZfDf5OJtr0_W2wd42ubeNLuB0X-dHJ6Lxz9If0oDsSyYB7PygXX01vUGYoFzUVjgXeMB_1jiPRBVU7SrLveeugONhOE3vlWvDVOI7uEBiBbzdv0Z_SockdRPabVem0inFq4BqZAajBo3fNN9uszI3LmaREpQFnA0Gc_fxv__wq_8r_hoesWTKU0XZ7Bgmm9U2nCAz2tg3vSv8Bo71Csc
  priority: 102
  providerName: Springer Nature
Title Heat-fueled enzymatic cascade for selective oxyfunctionalization of hydrocarbons
URI https://link.springer.com/article/10.1038/s41467-022-31363-8
https://www.proquest.com/docview/2682015852
https://www.proquest.com/docview/2682786546
https://pubmed.ncbi.nlm.nih.gov/PMC9243031
https://doaj.org/article/e6cf8b4cce3e4bb8963f6e6ac7b3dd3c
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9RAEB_6QPCL-MTYekTwm0Yv2Uc2H0SuR8_joKWoB_dtyb5aoST2HtDzr3d2k5ykVPFLAtlNNjuZ2flNZmcG4O3Q0Nw4JxJCOUsosywp05wkiuRMlSZzOfXxzmfnfDqnswVb7EFX7qgl4Ope087Xk5ovrz_c3mw_o8B_akLGxccVDeIe9qWn3i8p9uEQNRP3xthZC_fDykwKNGi8ozkb0jRB3U3aOJr7H9PTVSGlfw-H3t1FeceVGjTU5DE8aqFlPGp44Qns2eopPGiKTW6fwcUUl93EbVDPmNhWv7YhWWusy5XfIh8jeI1XoSgOrn9xfbv1Gq_5UdiGasa1i6-2BjVeuVTIrM9hPjn9Pp4mbT2FRDNB1onKGLG2dGpIlfKboArmhPbZYkrDTaEQu7BUW2EURcm2WZZrhvDFuiK1iAIseQEHVV3ZlxBTRAZGO-L1P2UIfZ3zCY8djkCU4DyCtKOc1G2ycV_z4loGpzcRsqG2RGrLQG0pIni3u-dnk2rjn71P_AfZ9fRpssOFenkpW6mTlmsnFNXaEotzFrjaOG55qXNFjCE6guPuc8qO9WTGPSpCMyqL4M2uGaXOu1LKytabpk8ufCBYBHmPDXov1G-pflyF_N1o8iJwSCN43zHMn8H_PuFX__EyR_Aw8_w75ElWHMPBermxrxE0rdUA9vNFjkcx-TKAw9Fo9m2G55PT84uveHXMx4PwO2IQJOY3NoMZgw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMNFAgSnCDqJrYT7wEhXtWWPsShlfZm4hdFQknZ7ArCj-I3MuMkW6USvfUaO3Eynplv4nkBvJhYXljvZcJ4LhIunEjKtGCJZoXQpc18wSnf-fAon53wz3Mx34C_Qy4MhVUOOjEoalsbOiPfyXLCKjRus7dnPxPqGkXe1aGFRscW-679hb9szZu9j7i_L7Ns99Pxh1nSdxVIjJBsmehMMOdKrydcawoFmgovDdVMKW1upxoRXKTGSas58rfLssIIBHHnp6lDLHQMn3sNrnM6GUf5KebF-kyHqq1LzvvcnAmTOw0PmiiEzKfkMpUj_AttAka27cXIzAvu2YB6u3fgdm-uxu86_roLG666Bze6BpbtffgyQ1We-BVil41d9acNBWBjUzYUdh-jQRw3odEO6tS4_t0SinaHj336Z1z7-LS1iKLlQqMAPICTK6HmQ9is6sptQczR2rDGM7IpuEBz2nsqouxxBaZlnkeQDpRTpi9gTn00fqjgSGdSddRWSG0VqK1kBK_W95x15Tsunf2eNmQ9k0pvhwv14pvqJVm53HipuTGOOfxmiRrM5y4vTaGZtcxEsD1sp-r1QaPOuTeC5-thlGRyz5SVq1fdnEJSclkExYgNRi80Hqm-n4aa4PgbjcZIGsHrgWHOF___Bz-6_F2fwc3Z8eGBOtg72n8MtzJi40meZNNt2FwuVu4J2mNL_TQIQQxfr1rq_gEs5EnN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRSAuiFWkFAgSnCCaiZfYc0AIKKMphaoHKs3NxBtFqpIymRGEn8av49lJpppK9NZr7MTJ81u--G0AL8aWCeu9zCgreMa441mZC5ppKrguLfGChXznL4fF7Jh9mvP5FvwdcmFCWOWgE6OitrUJZ-QjUgRbheCWjHwfFnG0N3179jMLHaSCp3Vop9GxyIFrf-HvW_Nmfw_3-iUh049fP8yyvsNAZriky0wTTp0rvR4zrUNY0IR7aUL9lNIWdqLRmvPcOGk1Q153hAjD0aA7P8kd2kVH8bnX4LqgiKpQlsRcrM93QuV1yVifpzOmctSwqJVi-Hwe3KdywxbGlgEbOPdilOYFV220gNM7cLuHrum7jtfuwpar7sGNrpllex-OZqjWM79CO2ZTV_1pYzHY1JRNCMFPERynTWy6g_o1rX-3waJ2B5F9Kmha-_SktWhRy4VGYXgAx1dCzYewXdWVewQpQ-RhjacBXzCO0Nr7UFDZ4wpUy6JIIB8op0xfzDz01DhV0alOpeqorZDaKlJbyQRere8560p5XDr7fdiQ9cxQhjteqBffVS_VyhXGS82McdThN0vUZr5wRWmEptZSk8DusJ2q1w2NOufkBJ6vh1Gqg6umrFy96uYIGRLNEhAbbLDxQpsj1Y-TWB8cf6kRmOQJvB4Y5nzx_3_wzuXv-gxuorypz_uHB4_hFglcPC4yMtmF7eVi5Z4gNFvqp1EGUvh21UL3D4OBTgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat-fueled+enzymatic+cascade+for+selective+oxyfunctionalization+of+hydrocarbons&rft.jtitle=Nature+communications&rft.au=Yoon%2C+Jaeho&rft.au=Jang%2C+Hanhwi&rft.au=Oh%2C+Min-Wook&rft.au=Hilberath%2C+Thomas&rft.date=2022-06-29&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=3741&rft_id=info:doi/10.1038%2Fs41467-022-31363-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon