Heat-fueled enzymatic cascade for selective oxyfunctionalization of hydrocarbons
Heat is a fundamental feedstock, where more than 80% of global energy comes from fossil-based heating process. However, it is mostly wasted due to a lack of proper techniques of utilizing the low-quality waste heat (<100 °C). Here we report thermoelectrobiocatalytic chemical conversion systems fo...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 3741 - 10 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.06.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-022-31363-8 |
Cover
Abstract | Heat is a fundamental feedstock, where more than 80% of global energy comes from fossil-based heating process. However, it is mostly wasted due to a lack of proper techniques of utilizing the low-quality waste heat (<100 °C). Here we report thermoelectrobiocatalytic chemical conversion systems for heat-fueled, enzyme-catalyzed oxyfunctionalization reactions. Thermoelectric bismuth telluride (Bi
2
Te
3
) directly converts low-temperature waste heat into chemical energy in the form of H
2
O
2
near room temperature. The streamlined reaction scheme (e.g., water, heat, enzyme, and thermoelectric material) promotes enantio- and chemo-selective hydroxylation and epoxidation of representative substrates (e.g., ethylbenzene, propylbenzene, tetralin, cyclohexane,
cis
-β-methylstyrene), achieving a maximum total turnover number of r
Aae
UPO (TTN
r
Aae
UPO
) over 32000. Direct conversion of vehicle exhaust heat into the enantiopure enzymatic product with a rate of 231.4 μM h
−1
during urban driving envisions the practical feasibility of thermoelectrobiocatalysis.
Thermoelectric materials enable us to convert heat into electricity, but their application has been limited to high-temperature heat sources. Here, the authors show the direct conversion of low-grade waste heat into chemical energy via combining thermoelectric materials with biocatalysts below 100 °C. |
---|---|
AbstractList | Heat is a fundamental feedstock, where more than 80% of global energy comes from fossil-based heating process. However, it is mostly wasted due to a lack of proper techniques of utilizing the low-quality waste heat (<100 °C). Here we report thermoelectrobiocatalytic chemical conversion systems for heat-fueled, enzyme-catalyzed oxyfunctionalization reactions. Thermoelectric bismuth telluride (Bi
2
Te
3
) directly converts low-temperature waste heat into chemical energy in the form of H
2
O
2
near room temperature. The streamlined reaction scheme (e.g., water, heat, enzyme, and thermoelectric material) promotes enantio- and chemo-selective hydroxylation and epoxidation of representative substrates (e.g., ethylbenzene, propylbenzene, tetralin, cyclohexane,
cis
-β-methylstyrene), achieving a maximum total turnover number of r
Aae
UPO (TTN
r
Aae
UPO
) over 32000. Direct conversion of vehicle exhaust heat into the enantiopure enzymatic product with a rate of 231.4 μM h
−1
during urban driving envisions the practical feasibility of thermoelectrobiocatalysis.
Thermoelectric materials enable us to convert heat into electricity, but their application has been limited to high-temperature heat sources. Here, the authors show the direct conversion of low-grade waste heat into chemical energy via combining thermoelectric materials with biocatalysts below 100 °C. Heat is a fundamental feedstock, where more than 80% of global energy comes from fossil-based heating process. However, it is mostly wasted due to a lack of proper techniques of utilizing the low-quality waste heat (<100 °C). Here we report thermoelectrobiocatalytic chemical conversion systems for heat-fueled, enzyme-catalyzed oxyfunctionalization reactions. Thermoelectric bismuth telluride (Bi2Te3) directly converts low-temperature waste heat into chemical energy in the form of H2O2 near room temperature. The streamlined reaction scheme (e.g., water, heat, enzyme, and thermoelectric material) promotes enantio- and chemo-selective hydroxylation and epoxidation of representative substrates (e.g., ethylbenzene, propylbenzene, tetralin, cyclohexane, cis-β-methylstyrene), achieving a maximum total turnover number of rAaeUPO (TTNrAaeUPO) over 32000. Direct conversion of vehicle exhaust heat into the enantiopure enzymatic product with a rate of 231.4 μM h−1 during urban driving envisions the practical feasibility of thermoelectrobiocatalysis.Thermoelectric materials enable us to convert heat into electricity, but their application has been limited to high-temperature heat sources. Here, the authors show the direct conversion of low-grade waste heat into chemical energy via combining thermoelectric materials with biocatalysts below 100 °C. Thermoelectric materials enable us to convert heat into electricity, but their application has been limited to high-temperature heat sources. Here, the authors show the direct conversion of low-grade waste heat into chemical energy via combining thermoelectric materials with biocatalysts below 100 °C. Heat is a fundamental feedstock, where more than 80% of global energy comes from fossil-based heating process. However, it is mostly wasted due to a lack of proper techniques of utilizing the low-quality waste heat (<100 °C). Here we report thermoelectrobiocatalytic chemical conversion systems for heat-fueled, enzyme-catalyzed oxyfunctionalization reactions. Thermoelectric bismuth telluride (Bi2Te3) directly converts low-temperature waste heat into chemical energy in the form of H2O2 near room temperature. The streamlined reaction scheme (e.g., water, heat, enzyme, and thermoelectric material) promotes enantio- and chemo-selective hydroxylation and epoxidation of representative substrates (e.g., ethylbenzene, propylbenzene, tetralin, cyclohexane, cis-β-methylstyrene), achieving a maximum total turnover number of rAaeUPO (TTNrAaeUPO) over 32000. Direct conversion of vehicle exhaust heat into the enantiopure enzymatic product with a rate of 231.4 μM h-1 during urban driving envisions the practical feasibility of thermoelectrobiocatalysis.Heat is a fundamental feedstock, where more than 80% of global energy comes from fossil-based heating process. However, it is mostly wasted due to a lack of proper techniques of utilizing the low-quality waste heat (<100 °C). Here we report thermoelectrobiocatalytic chemical conversion systems for heat-fueled, enzyme-catalyzed oxyfunctionalization reactions. Thermoelectric bismuth telluride (Bi2Te3) directly converts low-temperature waste heat into chemical energy in the form of H2O2 near room temperature. The streamlined reaction scheme (e.g., water, heat, enzyme, and thermoelectric material) promotes enantio- and chemo-selective hydroxylation and epoxidation of representative substrates (e.g., ethylbenzene, propylbenzene, tetralin, cyclohexane, cis-β-methylstyrene), achieving a maximum total turnover number of rAaeUPO (TTNrAaeUPO) over 32000. Direct conversion of vehicle exhaust heat into the enantiopure enzymatic product with a rate of 231.4 μM h-1 during urban driving envisions the practical feasibility of thermoelectrobiocatalysis. Heat is a fundamental feedstock, where more than 80% of global energy comes from fossil-based heating process. However, it is mostly wasted due to a lack of proper techniques of utilizing the low-quality waste heat (<100 °C). Here we report thermoelectrobiocatalytic chemical conversion systems for heat-fueled, enzyme-catalyzed oxyfunctionalization reactions. Thermoelectric bismuth telluride (Bi 2 Te 3 ) directly converts low-temperature waste heat into chemical energy in the form of H 2 O 2 near room temperature. The streamlined reaction scheme (e.g., water, heat, enzyme, and thermoelectric material) promotes enantio- and chemo-selective hydroxylation and epoxidation of representative substrates (e.g., ethylbenzene, propylbenzene, tetralin, cyclohexane, cis -β-methylstyrene), achieving a maximum total turnover number of r Aae UPO (TTN r Aae UPO ) over 32000. Direct conversion of vehicle exhaust heat into the enantiopure enzymatic product with a rate of 231.4 μM h −1 during urban driving envisions the practical feasibility of thermoelectrobiocatalysis. |
ArticleNumber | 3741 |
Author | Hollmann, Frank Jang, Hanhwi Hilberath, Thomas Jung, Yeon Sik Oh, Min-Wook Yoon, Jaeho Park, Chan Beum |
Author_xml | – sequence: 1 givenname: Jaeho surname: Yoon fullname: Yoon, Jaeho organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 2 givenname: Hanhwi orcidid: 0000-0003-1628-4522 surname: Jang fullname: Jang, Hanhwi organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 3 givenname: Min-Wook orcidid: 0000-0002-0915-3172 surname: Oh fullname: Oh, Min-Wook organization: Department of Materials Science and Engineering, Hanbat National University (HBNU) – sequence: 4 givenname: Thomas orcidid: 0000-0002-9778-2509 surname: Hilberath fullname: Hilberath, Thomas organization: Department of Biotechnology, Delft University of Technology – sequence: 5 givenname: Frank orcidid: 0000-0003-4821-756X surname: Hollmann fullname: Hollmann, Frank organization: Department of Biotechnology, Delft University of Technology – sequence: 6 givenname: Yeon Sik orcidid: 0000-0002-7709-8347 surname: Jung fullname: Jung, Yeon Sik email: ysjung@kaist.ac.kr organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 7 givenname: Chan Beum orcidid: 0000-0002-0767-8629 surname: Park fullname: Park, Chan Beum email: parkcb@kaist.ac.kr organization: Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) |
BookMark | eNp9UstOHDEQtCKiQDb8AKeRcsllEr_Hc4kUoSQgISUHOFt-tJdZzdpgzyCWr4_ZIUrggC9uuauq3aV6jw5iioDQCcGfCWbqS-GEy67FlLaMMMla9QYdUcxJSzrKDv6rD9FxKRtcD-uJ4vwdOmSik4rT7gj9PgMztWGGEXwD8WG3NdPgGmeKMx6akHJTas9Nwx006X4X5ljrFM04PJjHokmhud75nJzJNsXyAb0NZixw_HSv0NWP75enZ-3Fr5_np98uWicUm1pLBQMwwWJuLVhnehGUI0Jy46XvLVO9IA6Ut5xjDJR2TvQ9g9AToJwDW6HzRdcns9E3ediavNPJDHr_kPJam1xXGUGDdEFZ7hwwqNNUL1mQII3rLPOeuar1ddG6me0WvIM4ZTM-E33eicO1Xqc73VPOcLV_hT49CeR0O0OZ9HYoDsbRREhz0VQq2ikpuKzQjy-gmzTn6ueCwkQoQStKLSiXUykZgnbDtPe7zh9GTbB-TIFeUqBrCvQ-BVpVKn1B_bvHqyS2kEoFxzXkf796hfUH8-fH1A |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2023_e21117 crossref_primary_10_1016_j_nanoen_2024_110235 crossref_primary_10_1021_acsaem_3c02268 crossref_primary_10_51582_interconf_19_20_05_2023_028 crossref_primary_10_1002_anie_202215088 crossref_primary_10_1016_j_apcatb_2023_122925 crossref_primary_10_1002_smll_202405019 crossref_primary_10_1016_j_checat_2024_101077 crossref_primary_10_1016_j_cogsc_2023_100786 crossref_primary_10_1021_acssuschemeng_4c02882 crossref_primary_10_1093_nsr_nwae036 crossref_primary_10_1002_ange_202215088 crossref_primary_10_1002_cctc_202201623 crossref_primary_10_1021_acsami_2c17971 crossref_primary_10_3390_molecules29225242 crossref_primary_10_1016_j_gresc_2023_11_006 crossref_primary_10_1142_S1088424623500906 crossref_primary_10_1002_ente_202400973 crossref_primary_10_1016_j_cogsc_2022_100745 crossref_primary_10_1016_j_trechm_2022_11_005 crossref_primary_10_1021_acsenergylett_3c00587 crossref_primary_10_1016_j_heliyon_2023_e19799 |
Cites_doi | 10.1038/s41563-021-01064-6 10.1016/j.cej.2020.124295 10.1021/la015685a 10.1039/D0EE02072A 10.1039/D0MA00162G 10.1039/C8EE03374A 10.1016/j.enzmictec.2015.03.004 10.1002/aenm.201701430 10.1038/s41467-021-24048-1 10.1002/aelm.201800904 10.1002/anie.201807647 10.1038/s41467-020-20445-0 10.1038/s41929-017-0001-5 10.1016/j.joule.2021.04.012 10.1002/adfm.201701823 10.1021/acscatal.1c03065 10.1038/nature11475 10.34133/2020/4361703 10.1038/nmat2090 10.1038/s41929-020-00507-8 10.1128/AEM.00490-14 10.1002/aenm.202003500 10.1016/j.apcatb.2017.05.058 10.1002/smll.202104067 10.1039/C9GC00633H 10.1038/s41929-021-00605-1 10.1038/s41467-018-07877-5 10.1038/s41929-020-0432-2 10.1038/s41467-019-08784-z 10.1055/s-2008-1066990 10.1016/j.rser.2015.12.192 10.1038/s41467-019-12144-2 10.1038/s41467-021-21391-1 10.1128/AEM.70.8.4575-4581.2004 10.1016/j.molcatb.2016.12.008 10.1063/1.1728990 10.1021/acsami.1c19357 10.1002/anie.201708668 10.1038/s41558-021-01001-0 10.1088/2515-7655/abc52c 10.1016/j.apenergy.2017.11.004 10.1021/acscatal.8b02409 10.1039/C9NR09183A 10.1002/adfm.201802813 10.1016/j.joule.2019.10.010 10.1038/s41558-018-0337-0 10.1021/acsnano.6b01156 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-31363-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (subscription) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_e6cf8b4cce3e4bb8963f6e6ac7b3dd3c PMC9243031 10_1038_s41467_022_31363_8 |
GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) grantid: NRF-2015R1A3A2066191; NRF-2015R1A3A2066191 funderid: https://doi.org/10.13039/501100003725 – fundername: ; grantid: NRF-2015R1A3A2066191; NRF-2015R1A3A2066191 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c583t-b253eeafb04bbebca95f8c1564ad6d9b38951ce8db4400e227c5993ef91e244e3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:15:06 EDT 2025 Thu Aug 21 14:11:45 EDT 2025 Thu Sep 04 21:19:45 EDT 2025 Wed Aug 13 08:42:41 EDT 2025 Tue Jul 01 00:58:17 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 Fri Feb 21 02:38:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-b253eeafb04bbebca95f8c1564ad6d9b38951ce8db4400e227c5993ef91e244e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7709-8347 0000-0002-0767-8629 0000-0003-1628-4522 0000-0002-9778-2509 0000-0003-4821-756X 0000-0002-0915-3172 |
OpenAccessLink | https://www.proquest.com/docview/2682015852?pq-origsite=%requestingapplication% |
PMID | 35768427 |
PQID | 2682015852 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e6cf8b4cce3e4bb8963f6e6ac7b3dd3c pubmedcentral_primary_oai_pubmedcentral_nih_gov_9243031 proquest_miscellaneous_2682786546 proquest_journals_2682015852 crossref_citationtrail_10_1038_s41467_022_31363_8 crossref_primary_10_1038_s41467_022_31363_8 springer_journals_10_1038_s41467_022_31363_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-29 |
PublicationDateYYYYMMDD | 2022-06-29 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Witting, Ricci, Chasapis, Hautier, Snyder (CR45) 2020; 2020 Ponce de León (CR36) 2020; 3 Erickson, Lazarus, Piggot (CR1) 2018; 8 Bao (CR18) 2020; 388 Zhang (CR27) 2017; 56 Ullrich, Nüske, Scheibner, Spantzel, Hofrichter (CR14) 2004; 70 Tsikritzis (CR22) 2020; 1 Byeon (CR44) 2019; 10 Molina-Espeja (CR15) 2014; 80 Hirakawa, Nosaka (CR24) 2002; 18 Sigmund, Poelarends (CR13) 2020; 3 Schultz, McHugh, Tiller (CR38) 1962; 33 Zhao (CR47) 2021; 12 Horst (CR26) 2016; 133 Toe (CR41) 2018; 57 Shimizu (CR43) 2019; 10 Imasato, Kang, Snyder (CR5) 2019; 12 Burek, Bormann, Hollmann, Bloh, Holtmann (CR12) 2019; 21 Zhou (CR34) 2021; 20 Gamba Sanchez (CR11) 2008; 2008 Molina-Espeja, Ma, Mate, Ludwig, Alcalde (CR16) 2015; 73-74 Yao, Zheng, Yang (CR21) 2017; 27 Rotilio (CR29) 2021; 11 Tao (CR39) 2021; 13 Aguirre, Zhou, Eugene, Guzman, Grela (CR40) 2017; 217 Witting (CR9) 2019; 5 CR2 Xu, Tian, Meng, Cao, Li (CR37) 2021; 11 Lin (CR10) 2021; 12 Le Quéré (CR3) 2021; 11 Wang (CR7) 2019; 10 Zhou, Zhao, Wang, Xia, Pan (CR25) 2020; 3 Ning, Lu (CR42) 2020; 12 Luo (CR17) 2020; 4 Zhang (CR35) 2018; 1 Snyder, Toberer (CR6) 2008; 7 Ying (CR8) 2021; 12 Teng (CR23) 2021; 4 Chu, Majumdar (CR30) 2012; 488 Lan, Yang, Chen, Stobart (CR31) 2018; 210 Forman, Muritala, Pardemann, Meyer (CR4) 2016; 57 Tang (CR46) 2021; 5 Achour, Liu, Peng, Shaw, Huang (CR19) 2018; 8 Zhang (CR28) 2021; 17 Kim, Lee, Choi, Park (CR48) 2018; 28 Zhang (CR33) 2020; 13 Achour, Chen, Reece, Huang (CR20) 2018; 8 Hong (CR32) 2016; 10 GJ Snyder (31363_CR6) 2008; 7 CY Toe (31363_CR41) 2018; 57 P Erickson (31363_CR1) 2018; 8 D Byeon (31363_CR44) 2019; 10 G Zhou (31363_CR25) 2020; 3 W Zhang (31363_CR27) 2017; 56 31363_CR2 W Zhang (31363_CR35) 2018; 1 A Achour (31363_CR20) 2018; 8 R Ullrich (31363_CR14) 2004; 70 L Rotilio (31363_CR29) 2021; 11 C Ponce de León (31363_CR36) 2020; 3 C Forman (31363_CR4) 2016; 57 M Hong (31363_CR32) 2016; 10 ME Aguirre (31363_CR40) 2017; 217 P Ying (31363_CR8) 2021; 12 C Zhang (31363_CR28) 2021; 17 P Molina-Espeja (31363_CR16) 2015; 73-74 D Bao (31363_CR18) 2020; 388 Q Tao (31363_CR39) 2021; 13 X Ning (31363_CR42) 2020; 12 J Tang (31363_CR46) 2021; 5 Y Luo (31363_CR17) 2020; 4 AEW Horst (31363_CR26) 2016; 133 IT Witting (31363_CR45) 2020; 2020 DA Gamba Sanchez (31363_CR11) 2008; 2008 BO Burek (31363_CR12) 2019; 21 Z Zhang (31363_CR33) 2020; 13 S Lan (31363_CR31) 2018; 210 S Chu (31363_CR30) 2012; 488 A Achour (31363_CR19) 2018; 8 C Zhou (31363_CR34) 2021; 20 K Imasato (31363_CR5) 2019; 12 D Tsikritzis (31363_CR22) 2020; 1 Z Teng (31363_CR23) 2021; 4 T Hirakawa (31363_CR24) 2002; 18 P Molina-Espeja (31363_CR15) 2014; 80 J Yao (31363_CR21) 2017; 27 IT Witting (31363_CR9) 2019; 5 M-C Sigmund (31363_CR13) 2020; 3 W Xu (31363_CR37) 2021; 11 C Le Quéré (31363_CR3) 2021; 11 S Shimizu (31363_CR43) 2019; 10 Y-J Lin (31363_CR10) 2021; 12 K Kim (31363_CR48) 2018; 28 JM Schultz (31363_CR38) 1962; 33 Y Zhao (31363_CR47) 2021; 12 X Wang (31363_CR7) 2019; 10 |
References_xml | – volume: 20 start-page: 1378 year: 2021 end-page: 1384 ident: CR34 article-title: Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal publication-title: Nat. Mater. doi: 10.1038/s41563-021-01064-6 – volume: 388 start-page: 124295 year: 2020 ident: CR18 article-title: Texture-dependent thermoelectric properties of nano-structured Bi Te publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124295 – volume: 18 start-page: 3247 year: 2002 end-page: 3254 ident: CR24 article-title: Properties of O and OH formed in TiO aqueous suspensions by photocatalytic reaction and the influence of H O and some ions publication-title: Langmuir doi: 10.1021/la015685a – volume: 13 start-page: 3307 year: 2020 end-page: 3329 ident: CR33 article-title: Cu Se-Based liquid-like thermoelectric materials: looking back and stepping forward publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02072A – volume: 1 start-page: 450 year: 2020 end-page: 462 ident: CR22 article-title: A two-fold engineering approach based on Bi Te flakes towards efficient and stable inverted perovskite solar cells publication-title: Mater. Adv. doi: 10.1039/D0MA00162G – volume: 12 start-page: 965 year: 2019 end-page: 971 ident: CR5 article-title: Exceptional thermoelectric performance in Mg Sb Bi for low-grade waste heat recovery publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03374A – volume: 73-74 start-page: 29 year: 2015 end-page: 33 ident: CR16 article-title: Tandem-yeast expression system for engineering and producing unspecific peroxygenase publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2015.03.004 – volume: 8 start-page: 1701430 year: 2018 ident: CR20 article-title: Tuning of catalytic activity by thermoelectric materials for carbon dioxide hydrogenation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701430 – ident: CR2 – volume: 12 year: 2021 ident: CR47 article-title: Mechanistic analysis of multiple processes controlling solar-driven H O synthesis using engineered polymeric carbon nitride publication-title: Nat. Commun. doi: 10.1038/s41467-021-24048-1 – volume: 5 start-page: 1800904 year: 2019 ident: CR9 article-title: The thermoelectric properties of bismuth telluride publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800904 – volume: 57 start-page: 13613 year: 2018 end-page: 13617 ident: CR41 article-title: Photocorrosion of cuprous oxide in hydrogen production: rationalising self-oxidation or self-reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201807647 – volume: 12 year: 2021 ident: CR10 article-title: Thermocatalytic hydrogen peroxide generation and environmental disinfection by Bi Te nanoplates publication-title: Nat. Commun. doi: 10.1038/s41467-020-20445-0 – volume: 1 start-page: 55 year: 2018 end-page: 62 ident: CR35 article-title: Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations publication-title: Nat. Catal. doi: 10.1038/s41929-017-0001-5 – volume: 5 start-page: 1432 year: 2021 end-page: 1461 ident: CR46 article-title: Selective hydrogen peroxide conversion tailored by surface, interface, and device engineering publication-title: Joule doi: 10.1016/j.joule.2021.04.012 – volume: 27 start-page: 1701823 year: 2017 ident: CR21 article-title: All-layered 2D optoelectronics: a high-performance UV–vis–NIR broadband SnSe photodetector with Bi Te topological insulator electrodes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201701823 – volume: 11 start-page: 11511 year: 2021 end-page: 11525 ident: CR29 article-title: Structural and biochemical studies enlighten the unspecific peroxygenase from sp. EC38 as an efficient oxidative biocatalyst publication-title: ACS Catal. doi: 10.1021/acscatal.1c03065 – volume: 488 start-page: 294 year: 2012 end-page: 303 ident: CR30 article-title: Opportunities and challenges for a sustainable energy future publication-title: Nature doi: 10.1038/nature11475 – volume: 2020 start-page: 4361703 year: 2020 ident: CR45 article-title: The thermoelectric properties of n-type bismuth telluride: bismuth selenide alloys Bi Te Se publication-title: Research doi: 10.34133/2020/4361703 – volume: 7 start-page: 105 year: 2008 end-page: 114 ident: CR6 article-title: Complex thermoelectric materials publication-title: Nat. Mater. doi: 10.1038/nmat2090 – volume: 3 start-page: 690 year: 2020 end-page: 702 ident: CR13 article-title: Current state and future perspectives of engineered and artificial peroxygenases for the oxyfunctionalization of organic molecules publication-title: Nat. Catal. doi: 10.1038/s41929-020-00507-8 – volume: 80 start-page: 3496 year: 2014 end-page: 3507 ident: CR15 article-title: Directed evolution of unspecific peroxygenase from publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00490-14 – volume: 11 start-page: 2003500 year: 2021 ident: CR37 article-title: Interfacial chemical bond-modulated Z-scheme charge transfer for efficient photoelectrochemical water splitting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003500 – volume: 217 start-page: 485 year: 2017 end-page: 493 ident: CR40 article-title: Cu O/TiO heterostructures for CO reduction through a direct Z-scheme: protecting Cu O from photocorrosion publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.05.058 – volume: 17 start-page: 2104067 year: 2021 ident: CR28 article-title: Boron-mediated grain boundary engineering enables simultaneous improvement of thermoelectric and mechanical properties in N-Type Bi Te publication-title: Small doi: 10.1002/smll.202104067 – volume: 21 start-page: 3232 year: 2019 end-page: 3249 ident: CR12 article-title: Hydrogen peroxide driven biocatalysis publication-title: Green. Chem. doi: 10.1039/C9GC00633H – volume: 4 start-page: 374 year: 2021 end-page: 384 ident: CR23 article-title: Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide publication-title: Nat. Catal. doi: 10.1038/s41929-021-00605-1 – volume: 10 year: 2019 ident: CR44 article-title: Discovery of colossal Seebeck effect in metallic Cu Se publication-title: Nat. Commun. doi: 10.1038/s41467-018-07877-5 – volume: 3 start-page: 96 year: 2020 end-page: 97 ident: CR36 article-title: In situ anodic generation of hydrogen peroxide publication-title: Nat. Catal. doi: 10.1038/s41929-020-0432-2 – volume: 10 year: 2019 ident: CR43 article-title: Giant thermoelectric power factor in ultrathin FeSe superconductor publication-title: Nat. Commun. doi: 10.1038/s41467-019-08784-z – volume: 2008 start-page: 1101 year: 2008 end-page: 1102 ident: CR11 article-title: Hydrogen peroxide: a versatile reagent in organic synthesis publication-title: Synlett doi: 10.1055/s-2008-1066990 – volume: 57 start-page: 1568 year: 2016 end-page: 1579 ident: CR4 article-title: Estimating the global waste heat potential publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2015.12.192 – volume: 10 year: 2019 ident: CR7 article-title: Direct thermal charging cell for converting low-grade heat to electricity publication-title: Nat. Commun. doi: 10.1038/s41467-019-12144-2 – volume: 12 year: 2021 ident: CR8 article-title: Towards tellurium-free thermoelectric modules for power generation from low-grade heat publication-title: Nat. Commun. doi: 10.1038/s41467-021-21391-1 – volume: 70 start-page: 4575 year: 2004 end-page: 4581 ident: CR14 article-title: Novel haloperoxidase from the agaric basidiomycete oxidizes aryl alcohols and aldehydes publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.70.8.4575-4581.2004 – volume: 133 start-page: S137 year: 2016 end-page: S142 ident: CR26 article-title: Electro-enzymatic hydroxylation of ethylbenzene by the evolved unspecific peroxygenase of publication-title: J. Mol. Catal. B Enzym. doi: 10.1016/j.molcatb.2016.12.008 – volume: 33 start-page: 2443 year: 1962 end-page: 2450 ident: CR38 article-title: Effects of heavy deformation and annealing on the electrical properties of Bi Te publication-title: J. Appl. Phys. doi: 10.1063/1.1728990 – volume: 13 start-page: 60216 year: 2021 end-page: 60226 ident: CR39 article-title: Removing the oxygen-induced donor-like effect for high thermoelectric performance in n-type Bi Te -based compounds publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c19357 – volume: 56 start-page: 15451 year: 2017 end-page: 15455 ident: CR27 article-title: Selective activation of C−H bonds in a cascade process combining photochemistry and biocatalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708668 – volume: 11 start-page: 197 year: 2021 end-page: 199 ident: CR3 article-title: Fossil CO emissions in the post-COVID-19 era publication-title: Nat. Clim. Change doi: 10.1038/s41558-021-01001-0 – volume: 3 start-page: 014003 year: 2020 ident: CR25 article-title: Bi Se , Bi Te quantum dots-sensitized rutile TiO nanorod arrays for enhanced solar photoelectrocatalysis in azo dye degradation publication-title: J. Phys. Energy doi: 10.1088/2515-7655/abc52c – volume: 210 start-page: 327 year: 2018 end-page: 338 ident: CR31 article-title: A dynamic model for thermoelectric generator applied to vehicle waste heat recovery publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.11.004 – volume: 8 start-page: 10164 year: 2018 end-page: 10172 ident: CR19 article-title: In situ tuning of catalytic activity by thermoelectric effect for ethylene oxidation publication-title: ACS Catal. doi: 10.1021/acscatal.8b02409 – volume: 12 start-page: 1213 year: 2020 end-page: 1223 ident: CR42 article-title: Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting publication-title: Nanoscale doi: 10.1039/C9NR09183A – volume: 28 start-page: 1802813 year: 2018 ident: CR48 article-title: Photoactive bismuth vanadate structure for light-triggered dissociation of Alzheimer’s β-amyloid aggregates publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802813 – volume: 4 start-page: 159 year: 2020 end-page: 175 ident: CR17 article-title: High-performance thermoelectrics from cellular nanostructured Sb Si Te publication-title: Joule doi: 10.1016/j.joule.2019.10.010 – volume: 8 start-page: 1037 year: 2018 end-page: 1043 ident: CR1 article-title: Limiting fossil fuel production as the next big step in climate policy publication-title: Nat. Clim. Change doi: 10.1038/s41558-018-0337-0 – volume: 10 start-page: 4719 year: 2016 end-page: 4727 ident: CR32 article-title: n-Type Bi Te Se nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings publication-title: ACS Nano doi: 10.1021/acsnano.6b01156 – volume: 8 start-page: 1037 year: 2018 ident: 31363_CR1 publication-title: Nat. Clim. Change doi: 10.1038/s41558-018-0337-0 – ident: 31363_CR2 – volume: 488 start-page: 294 year: 2012 ident: 31363_CR30 publication-title: Nature doi: 10.1038/nature11475 – volume: 10 year: 2019 ident: 31363_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12144-2 – volume: 12 year: 2021 ident: 31363_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21391-1 – volume: 13 start-page: 60216 year: 2021 ident: 31363_CR39 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c19357 – volume: 388 start-page: 124295 year: 2020 ident: 31363_CR18 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124295 – volume: 11 start-page: 197 year: 2021 ident: 31363_CR3 publication-title: Nat. Clim. Change doi: 10.1038/s41558-021-01001-0 – volume: 7 start-page: 105 year: 2008 ident: 31363_CR6 publication-title: Nat. Mater. doi: 10.1038/nmat2090 – volume: 5 start-page: 1432 year: 2021 ident: 31363_CR46 publication-title: Joule doi: 10.1016/j.joule.2021.04.012 – volume: 70 start-page: 4575 year: 2004 ident: 31363_CR14 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.70.8.4575-4581.2004 – volume: 33 start-page: 2443 year: 1962 ident: 31363_CR38 publication-title: J. Appl. Phys. doi: 10.1063/1.1728990 – volume: 3 start-page: 690 year: 2020 ident: 31363_CR13 publication-title: Nat. Catal. doi: 10.1038/s41929-020-00507-8 – volume: 5 start-page: 1800904 year: 2019 ident: 31363_CR9 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800904 – volume: 8 start-page: 1701430 year: 2018 ident: 31363_CR20 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701430 – volume: 17 start-page: 2104067 year: 2021 ident: 31363_CR28 publication-title: Small doi: 10.1002/smll.202104067 – volume: 3 start-page: 014003 year: 2020 ident: 31363_CR25 publication-title: J. Phys. Energy doi: 10.1088/2515-7655/abc52c – volume: 210 start-page: 327 year: 2018 ident: 31363_CR31 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.11.004 – volume: 11 start-page: 11511 year: 2021 ident: 31363_CR29 publication-title: ACS Catal. doi: 10.1021/acscatal.1c03065 – volume: 80 start-page: 3496 year: 2014 ident: 31363_CR15 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00490-14 – volume: 1 start-page: 55 year: 2018 ident: 31363_CR35 publication-title: Nat. Catal. doi: 10.1038/s41929-017-0001-5 – volume: 56 start-page: 15451 year: 2017 ident: 31363_CR27 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708668 – volume: 8 start-page: 10164 year: 2018 ident: 31363_CR19 publication-title: ACS Catal. doi: 10.1021/acscatal.8b02409 – volume: 133 start-page: S137 year: 2016 ident: 31363_CR26 publication-title: J. Mol. Catal. B Enzym. doi: 10.1016/j.molcatb.2016.12.008 – volume: 10 year: 2019 ident: 31363_CR44 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07877-5 – volume: 3 start-page: 96 year: 2020 ident: 31363_CR36 publication-title: Nat. Catal. doi: 10.1038/s41929-020-0432-2 – volume: 4 start-page: 159 year: 2020 ident: 31363_CR17 publication-title: Joule doi: 10.1016/j.joule.2019.10.010 – volume: 28 start-page: 1802813 year: 2018 ident: 31363_CR48 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802813 – volume: 13 start-page: 3307 year: 2020 ident: 31363_CR33 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02072A – volume: 2020 start-page: 4361703 year: 2020 ident: 31363_CR45 publication-title: Research doi: 10.34133/2020/4361703 – volume: 57 start-page: 13613 year: 2018 ident: 31363_CR41 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201807647 – volume: 217 start-page: 485 year: 2017 ident: 31363_CR40 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.05.058 – volume: 12 start-page: 965 year: 2019 ident: 31363_CR5 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03374A – volume: 12 year: 2021 ident: 31363_CR10 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20445-0 – volume: 20 start-page: 1378 year: 2021 ident: 31363_CR34 publication-title: Nat. Mater. doi: 10.1038/s41563-021-01064-6 – volume: 73-74 start-page: 29 year: 2015 ident: 31363_CR16 publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2015.03.004 – volume: 12 start-page: 1213 year: 2020 ident: 31363_CR42 publication-title: Nanoscale doi: 10.1039/C9NR09183A – volume: 12 year: 2021 ident: 31363_CR47 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24048-1 – volume: 11 start-page: 2003500 year: 2021 ident: 31363_CR37 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003500 – volume: 4 start-page: 374 year: 2021 ident: 31363_CR23 publication-title: Nat. Catal. doi: 10.1038/s41929-021-00605-1 – volume: 57 start-page: 1568 year: 2016 ident: 31363_CR4 publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2015.12.192 – volume: 10 start-page: 4719 year: 2016 ident: 31363_CR32 publication-title: ACS Nano doi: 10.1021/acsnano.6b01156 – volume: 21 start-page: 3232 year: 2019 ident: 31363_CR12 publication-title: Green. Chem. doi: 10.1039/C9GC00633H – volume: 27 start-page: 1701823 year: 2017 ident: 31363_CR21 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201701823 – volume: 10 year: 2019 ident: 31363_CR43 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08784-z – volume: 1 start-page: 450 year: 2020 ident: 31363_CR22 publication-title: Mater. Adv. doi: 10.1039/D0MA00162G – volume: 2008 start-page: 1101 year: 2008 ident: 31363_CR11 publication-title: Synlett doi: 10.1055/s-2008-1066990 – volume: 18 start-page: 3247 year: 2002 ident: 31363_CR24 publication-title: Langmuir doi: 10.1021/la015685a |
SSID | ssj0000391844 |
Score | 2.4936152 |
Snippet | Heat is a fundamental feedstock, where more than 80% of global energy comes from fossil-based heating process. However, it is mostly wasted due to a lack of... Thermoelectric materials enable us to convert heat into electricity, but their application has been limited to high-temperature heat sources. Here, the authors... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3741 |
SubjectTerms | 147/143 147/28 631/92/603 639/301/299/2736 639/4077/4072/4062 639/4077/4107 82/16 Biocatalysts Bismuth tellurides Chemical energy Chemical reactions Cyclohexane Direct conversion Energy Enzymes Epoxidation Ethylbenzene Heat Heat sources High temperature Humanities and Social Sciences Hydrogen peroxide Hydroxylation Low temperature multidisciplinary Propylbenzene Room temperature Science Science (multidisciplinary) Substrates Tetralin Thermoelectric materials Vehicle emissions Waste heat |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5CIJBL6SOhbtOiQm-JiG09LB_bkrAUWnpIIDdhSSNSKN6S3YVsf31HsncTB5JeerVkJI9GM588o28APpZBNiFGw4XUikuFindVI7gTjXJdqGMj033nb9_17FJ-vVJX90p9pZywgR54ENwpah-Nk96jQOmcIYWJGnXnGydCED5Z37It7x2msg0WLR1d5HhLphTmdCGzTcjJ61UKXpqJJ8qE_ROU-TBH8kGgNPuf8-fwbASO7NMw4Rewg_1L2BtKSa5fwY8ZGVUeV-RFAsP-zzpTsTLfLVICPCNoyha55A1ZNza_XSd_NvwGHC9isnlk1-tA_qy7caSKB3B5fnbxZcbHagncKyOW3NVKIHbRlSSmlOLUqmh84oLpgg6tI2SiKo8mOEn7Fuu68YrACca2QvLxKA5ht5_3-BqYJL8ffBTJu0tFwDbGRGccaQThjNYFVBvJWT9SiaeKFr9sDmkLYwdpW5K2zdK2poDj7Tu_ByKNJ3t_Tguy7ZlIsPMDUg07qob9l2oUcLRZTjvuzIWtdcI8dEiqC_iwbaY9lQIlXY_z1dCnMemaVwHNRA0mE5q29D-vMzs3HWgJFlQFnGwU5m7wxz_4zf_44LewXycFLzWv2yPYXd6s8B1hpqV7n7fHX-wJFpI priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_0RPDl8PzAnqdU8E3DbZuPZp9Exb1FUHzw4N5C8-UJ0p7bXXD9651Js3v0wHttUtomk_n9mpn8BuD1zIvGx6gZF0oyIYNkbdVwZnkjbevr2Ag67_zlq1qei88X8iJvuA05rXLnE5Oj9r2jPfLTWhFWIbmt3139ZlQ1iqKruYTGXbhXIdKQnevF2X6PhdTPtRD5rMyM69NBJM-QUtgrCmHqCR4l2f4J17yZKXkjXJpQaPEQDjN9LN-P830Ed0L3CO6PBSW3j-HbEl0rixvEEl-G7u82CbKWrh0oDb5EgloOqfAN-riy_7MlVBs3A_NxzLKP5eXWI6q1K4sG-QTOF5--f1yyXDOBOan5mtla8hDaaGfCWkp0msuoHSnCtF75uUV-IisXtLcCV2-o68ZJpCghzquASB_4Uzjo-i48g1Ig-nsXOWG8kEhvYyRR44hP4FYrVUC1GznjsqA41bX4ZVJgm2szjrbB0TZptI0u4M3-nqtRTuPW3h9oQvY9SQo7XehXP0xeWSYoF7UVzgUe8Js1epSogmpdY7n33BVwsptOk9fnYK6tqYBX-2ZcWRQuabvQb8Y-jabDXgU0EzOYvNC0pft5mTS68bcWyUFVwNudwVw__P8ffHz7uz6HBzWZ7kyxen4CB-vVJrxATrS2L5Ph_wN_tQuc priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD7ULYIvolZxtJUIvrXBndwm-7hKy7KgFGqhb2Fys4LMyF7A9dd7kpnZMkUFX2cSJpOck-9Lcs4XgHdTLyofo6ZcKEmFDJLWZcWp5ZW0tWexEinf-dNntbgWyxt5cwBsyIXJQftZ0jJP00N02Pu1yC6dY8_LdPaoH8ChRvhjEzicz5dXy_3OStI810L0GTJTrv9QeYRCWax_xDDvx0feOyTN2HPxBB73pJHMu2Y-hYPQPIOH3TWSuyO4XOCESuMWEcST0PzaZRlW4up1Cn4nSEvJOl93gzMbaX_uEpZ1W4B9EiZpI7ndecSyemXRDJ_D9cX5l48L2t-UQJ3UfEMtkzyEOtqpsDaFN81k1C7pwNRe-ZlFViJLF7S3An02MFY5icQkxFkZEN8DfwGTpm3CSyACMd-7yBOyC4mkNsYkZRzxC9xqpQooh54zrpcRT7dZfDf5OJtr0_W2wd42ubeNLuB0X-dHJ6Lxz9If0oDsSyYB7PygXX01vUGYoFzUVjgXeMB_1jiPRBVU7SrLveeugONhOE3vlWvDVOI7uEBiBbzdv0Z_SockdRPabVem0inFq4BqZAajBo3fNN9uszI3LmaREpQFnA0Gc_fxv__wq_8r_hoesWTKU0XZ7Bgmm9U2nCAz2tg3vSv8Bo71Csc priority: 102 providerName: Springer Nature |
Title | Heat-fueled enzymatic cascade for selective oxyfunctionalization of hydrocarbons |
URI | https://link.springer.com/article/10.1038/s41467-022-31363-8 https://www.proquest.com/docview/2682015852 https://www.proquest.com/docview/2682786546 https://pubmed.ncbi.nlm.nih.gov/PMC9243031 https://doaj.org/article/e6cf8b4cce3e4bb8963f6e6ac7b3dd3c |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9RAEB_6QPCL-MTYekTwm0Yv2Uc2H0SuR8_joKWoB_dtyb5aoST2HtDzr3d2k5ykVPFLAtlNNjuZ2flNZmcG4O3Q0Nw4JxJCOUsosywp05wkiuRMlSZzOfXxzmfnfDqnswVb7EFX7qgl4Ope087Xk5ovrz_c3mw_o8B_akLGxccVDeIe9qWn3i8p9uEQNRP3xthZC_fDykwKNGi8ozkb0jRB3U3aOJr7H9PTVSGlfw-H3t1FeceVGjTU5DE8aqFlPGp44Qns2eopPGiKTW6fwcUUl93EbVDPmNhWv7YhWWusy5XfIh8jeI1XoSgOrn9xfbv1Gq_5UdiGasa1i6-2BjVeuVTIrM9hPjn9Pp4mbT2FRDNB1onKGLG2dGpIlfKboArmhPbZYkrDTaEQu7BUW2EURcm2WZZrhvDFuiK1iAIseQEHVV3ZlxBTRAZGO-L1P2UIfZ3zCY8djkCU4DyCtKOc1G2ycV_z4loGpzcRsqG2RGrLQG0pIni3u-dnk2rjn71P_AfZ9fRpssOFenkpW6mTlmsnFNXaEotzFrjaOG55qXNFjCE6guPuc8qO9WTGPSpCMyqL4M2uGaXOu1LKytabpk8ufCBYBHmPDXov1G-pflyF_N1o8iJwSCN43zHMn8H_PuFX__EyR_Aw8_w75ElWHMPBermxrxE0rdUA9vNFjkcx-TKAw9Fo9m2G55PT84uveHXMx4PwO2IQJOY3NoMZgw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMNFAgSnCDqJrYT7wEhXtWWPsShlfZm4hdFQknZ7ArCj-I3MuMkW6USvfUaO3Eynplv4nkBvJhYXljvZcJ4LhIunEjKtGCJZoXQpc18wSnf-fAon53wz3Mx34C_Qy4MhVUOOjEoalsbOiPfyXLCKjRus7dnPxPqGkXe1aGFRscW-679hb9szZu9j7i_L7Ns99Pxh1nSdxVIjJBsmehMMOdKrydcawoFmgovDdVMKW1upxoRXKTGSas58rfLssIIBHHnp6lDLHQMn3sNrnM6GUf5KebF-kyHqq1LzvvcnAmTOw0PmiiEzKfkMpUj_AttAka27cXIzAvu2YB6u3fgdm-uxu86_roLG666Bze6BpbtffgyQ1We-BVil41d9acNBWBjUzYUdh-jQRw3odEO6tS4_t0SinaHj336Z1z7-LS1iKLlQqMAPICTK6HmQ9is6sptQczR2rDGM7IpuEBz2nsqouxxBaZlnkeQDpRTpi9gTn00fqjgSGdSddRWSG0VqK1kBK_W95x15Tsunf2eNmQ9k0pvhwv14pvqJVm53HipuTGOOfxmiRrM5y4vTaGZtcxEsD1sp-r1QaPOuTeC5-thlGRyz5SVq1fdnEJSclkExYgNRi80Hqm-n4aa4PgbjcZIGsHrgWHOF___Bz-6_F2fwc3Z8eGBOtg72n8MtzJi40meZNNt2FwuVu4J2mNL_TQIQQxfr1rq_gEs5EnN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRSAuiFWkFAgSnCCaiZfYc0AIKKMphaoHKs3NxBtFqpIymRGEn8av49lJpppK9NZr7MTJ81u--G0AL8aWCeu9zCgreMa441mZC5ppKrguLfGChXznL4fF7Jh9mvP5FvwdcmFCWOWgE6OitrUJZ-QjUgRbheCWjHwfFnG0N3179jMLHaSCp3Vop9GxyIFrf-HvW_Nmfw_3-iUh049fP8yyvsNAZriky0wTTp0rvR4zrUNY0IR7aUL9lNIWdqLRmvPcOGk1Q153hAjD0aA7P8kd2kVH8bnX4LqgiKpQlsRcrM93QuV1yVifpzOmctSwqJVi-Hwe3KdywxbGlgEbOPdilOYFV220gNM7cLuHrum7jtfuwpar7sGNrpllex-OZqjWM79CO2ZTV_1pYzHY1JRNCMFPERynTWy6g_o1rX-3waJ2B5F9Kmha-_SktWhRy4VGYXgAx1dCzYewXdWVewQpQ-RhjacBXzCO0Nr7UFDZ4wpUy6JIIB8op0xfzDz01DhV0alOpeqorZDaKlJbyQRere8560p5XDr7fdiQ9cxQhjteqBffVS_VyhXGS82McdThN0vUZr5wRWmEptZSk8DusJ2q1w2NOufkBJ6vh1Gqg6umrFy96uYIGRLNEhAbbLDxQpsj1Y-TWB8cf6kRmOQJvB4Y5nzx_3_wzuXv-gxuorypz_uHB4_hFglcPC4yMtmF7eVi5Z4gNFvqp1EGUvh21UL3D4OBTgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat-fueled+enzymatic+cascade+for+selective+oxyfunctionalization+of+hydrocarbons&rft.jtitle=Nature+communications&rft.au=Yoon%2C+Jaeho&rft.au=Jang%2C+Hanhwi&rft.au=Oh%2C+Min-Wook&rft.au=Hilberath%2C+Thomas&rft.date=2022-06-29&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=3741&rft_id=info:doi/10.1038%2Fs41467-022-31363-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |