Diagnostic performance of artificial intelligence approved for adults for the interpretation of pediatric chest radiographs
Artificial intelligence (AI) applied to pediatric chest radiographs are yet scarce. This study evaluated whether AI-based software developed for adult chest radiographs can be used for pediatric chest radiographs. Pediatric patients (≤ 18 years old) who underwent chest radiographs from March to May...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 10215 - 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.06.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Artificial intelligence (AI) applied to pediatric chest radiographs are yet scarce. This study evaluated whether AI-based software developed for adult chest radiographs can be used for pediatric chest radiographs. Pediatric patients (≤ 18 years old) who underwent chest radiographs from March to May 2021 were included retrospectively. An AI-based lesion detection software assessed the presence of nodules, consolidation, fibrosis, atelectasis, cardiomegaly, pleural effusion, pneumothorax, and pneumoperitoneum. Using the pediatric radiologist’s results as standard reference, we assessed the diagnostic performance of the software. For the total 2273 chest radiographs, the AI-based software showed a sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of 67.2%, 91.1%, 57.7%, 93.9%, and 87.5%, respectively. Age was a significant factor for incorrect results (odds radio 0.821, 95% confidence interval 0.791–0.851). When we excluded cardiomegaly and children 2 years old or younger, sensitivity, specificity, PPV, NPV and accuracy significantly increased (86.4%, 97.9%, 79.7%, 98.7% and 96.9%, respectively, all p < 0.001). In conclusion, AI-based software developed with adult chest radiographs showed diagnostic accuracies up to 96.9% for pediatric chest radiographs when we excluded cardiomegaly and children 2 years old or younger. AI-based lesion detection software needs to be validated in younger children. |
---|---|
AbstractList | Artificial intelligence (AI) applied to pediatric chest radiographs are yet scarce. This study evaluated whether AI-based software developed for adult chest radiographs can be used for pediatric chest radiographs. Pediatric patients (≤ 18 years old) who underwent chest radiographs from March to May 2021 were included retrospectively. An AI-based lesion detection software assessed the presence of nodules, consolidation, fibrosis, atelectasis, cardiomegaly, pleural effusion, pneumothorax, and pneumoperitoneum. Using the pediatric radiologist's results as standard reference, we assessed the diagnostic performance of the software. For the total 2273 chest radiographs, the AI-based software showed a sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of 67.2%, 91.1%, 57.7%, 93.9%, and 87.5%, respectively. Age was a significant factor for incorrect results (odds radio 0.821, 95% confidence interval 0.791-0.851). When we excluded cardiomegaly and children 2 years old or younger, sensitivity, specificity, PPV, NPV and accuracy significantly increased (86.4%, 97.9%, 79.7%, 98.7% and 96.9%, respectively, all p < 0.001). In conclusion, AI-based software developed with adult chest radiographs showed diagnostic accuracies up to 96.9% for pediatric chest radiographs when we excluded cardiomegaly and children 2 years old or younger. AI-based lesion detection software needs to be validated in younger children.Artificial intelligence (AI) applied to pediatric chest radiographs are yet scarce. This study evaluated whether AI-based software developed for adult chest radiographs can be used for pediatric chest radiographs. Pediatric patients (≤ 18 years old) who underwent chest radiographs from March to May 2021 were included retrospectively. An AI-based lesion detection software assessed the presence of nodules, consolidation, fibrosis, atelectasis, cardiomegaly, pleural effusion, pneumothorax, and pneumoperitoneum. Using the pediatric radiologist's results as standard reference, we assessed the diagnostic performance of the software. For the total 2273 chest radiographs, the AI-based software showed a sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of 67.2%, 91.1%, 57.7%, 93.9%, and 87.5%, respectively. Age was a significant factor for incorrect results (odds radio 0.821, 95% confidence interval 0.791-0.851). When we excluded cardiomegaly and children 2 years old or younger, sensitivity, specificity, PPV, NPV and accuracy significantly increased (86.4%, 97.9%, 79.7%, 98.7% and 96.9%, respectively, all p < 0.001). In conclusion, AI-based software developed with adult chest radiographs showed diagnostic accuracies up to 96.9% for pediatric chest radiographs when we excluded cardiomegaly and children 2 years old or younger. AI-based lesion detection software needs to be validated in younger children. Artificial intelligence (AI) applied to pediatric chest radiographs are yet scarce. This study evaluated whether AI-based software developed for adult chest radiographs can be used for pediatric chest radiographs. Pediatric patients (≤ 18 years old) who underwent chest radiographs from March to May 2021 were included retrospectively. An AI-based lesion detection software assessed the presence of nodules, consolidation, fibrosis, atelectasis, cardiomegaly, pleural effusion, pneumothorax, and pneumoperitoneum. Using the pediatric radiologist’s results as standard reference, we assessed the diagnostic performance of the software. For the total 2273 chest radiographs, the AI-based software showed a sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of 67.2%, 91.1%, 57.7%, 93.9%, and 87.5%, respectively. Age was a significant factor for incorrect results (odds radio 0.821, 95% confidence interval 0.791–0.851). When we excluded cardiomegaly and children 2 years old or younger, sensitivity, specificity, PPV, NPV and accuracy significantly increased (86.4%, 97.9%, 79.7%, 98.7% and 96.9%, respectively, all p < 0.001). In conclusion, AI-based software developed with adult chest radiographs showed diagnostic accuracies up to 96.9% for pediatric chest radiographs when we excluded cardiomegaly and children 2 years old or younger. AI-based lesion detection software needs to be validated in younger children. Artificial intelligence (AI) applied to pediatric chest radiographs are yet scarce. This study evaluated whether AI-based software developed for adult chest radiographs can be used for pediatric chest radiographs. Pediatric patients (≤ 18 years old) who underwent chest radiographs from March to May 2021 were included retrospectively. An AI-based lesion detection software assessed the presence of nodules, consolidation, fibrosis, atelectasis, cardiomegaly, pleural effusion, pneumothorax, and pneumoperitoneum. Using the pediatric radiologist’s results as standard reference, we assessed the diagnostic performance of the software. For the total 2273 chest radiographs, the AI-based software showed a sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of 67.2%, 91.1%, 57.7%, 93.9%, and 87.5%, respectively. Age was a significant factor for incorrect results (odds radio 0.821, 95% confidence interval 0.791–0.851). When we excluded cardiomegaly and children 2 years old or younger, sensitivity, specificity, PPV, NPV and accuracy significantly increased (86.4%, 97.9%, 79.7%, 98.7% and 96.9%, respectively, all p < 0.001). In conclusion, AI-based software developed with adult chest radiographs showed diagnostic accuracies up to 96.9% for pediatric chest radiographs when we excluded cardiomegaly and children 2 years old or younger. AI-based lesion detection software needs to be validated in younger children. Abstract Artificial intelligence (AI) applied to pediatric chest radiographs are yet scarce. This study evaluated whether AI-based software developed for adult chest radiographs can be used for pediatric chest radiographs. Pediatric patients (≤ 18 years old) who underwent chest radiographs from March to May 2021 were included retrospectively. An AI-based lesion detection software assessed the presence of nodules, consolidation, fibrosis, atelectasis, cardiomegaly, pleural effusion, pneumothorax, and pneumoperitoneum. Using the pediatric radiologist’s results as standard reference, we assessed the diagnostic performance of the software. For the total 2273 chest radiographs, the AI-based software showed a sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of 67.2%, 91.1%, 57.7%, 93.9%, and 87.5%, respectively. Age was a significant factor for incorrect results (odds radio 0.821, 95% confidence interval 0.791–0.851). When we excluded cardiomegaly and children 2 years old or younger, sensitivity, specificity, PPV, NPV and accuracy significantly increased (86.4%, 97.9%, 79.7%, 98.7% and 96.9%, respectively, all p < 0.001). In conclusion, AI-based software developed with adult chest radiographs showed diagnostic accuracies up to 96.9% for pediatric chest radiographs when we excluded cardiomegaly and children 2 years old or younger. AI-based lesion detection software needs to be validated in younger children. |
ArticleNumber | 10215 |
Author | Kim, Eun-Kyung Kim, Min Jung Son, Nak-Hoon Shin, Hyun Joo |
Author_xml | – sequence: 1 givenname: Hyun Joo surname: Shin fullname: Shin, Hyun Joo organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yongin Severance Hospital, Yonsei University College of Medicine – sequence: 2 givenname: Nak-Hoon surname: Son fullname: Son, Nak-Hoon organization: Department of Statistics, Keimyung University – sequence: 3 givenname: Min Jung surname: Kim fullname: Kim, Min Jung organization: Department of Pediatrics, Institute of Allergy, Institute for Immunology and Immunological Diseases, Yongin Severance Hospital, Yonsei University College of Medicine – sequence: 4 givenname: Eun-Kyung surname: Kim fullname: Kim, Eun-Kyung email: ekkim@yuhs.ac organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yongin Severance Hospital, Yonsei University College of Medicine |
BookMark | eNp9Uk1v1DAQjVARLaV_gFMkLlwC8VdiX5BQ-apUiQucrYk9znqVtYOdbVXx5_FuKqA91BePPO-9Gc-8l9VJiAGr6jVp35GWyfeZE6Fk01LaEC6Iam6fVWe05aKhjNKT_-LT6iLnbVuOoIoT9aI6ZaInoqPsrPr9ycMYYl68qWdMLqYdBIN1dDWkxTtvPEy1DwtOkx_xkIJ5TvEGbV3ANdj9tORjuGzwCExzwgUWH8NBZUbrYUlF3mwwL3UC6-OYYN7kV9VzB1PGi_v7vPr55fOPy2_N9fevV5cfrxsjJFsaIFIYaztGbOscUqc4sz0ySiwx1HWtY1aAIo6xQaKwhA5q6AjvByEYdYSdV1erro2w1XPyO0h3OoLXx4eYRn34q5lQc0YFZxyUcsClosBLMUcA0Q3SgixaH1ateT_s0BoMS4LpgejDTPAbPcYbrco-ul4Ugbf3Ain-2peJ6J3PpkwXAsZ91rTrJaeE9n2BvnkE3cZ9CmVUB1SvhGxFW1B0RZkUc07o_jZDWn2wil6tootV9NEq-raQ5COS8evOStN-eprKVmoudcKI6V9XT7D-AKH312o |
CitedBy_id | crossref_primary_10_1038_s41598_024_70780_1 crossref_primary_10_3233_JIFS_219397 crossref_primary_10_1007_s10278_024_01273_w crossref_primary_10_2214_AJR_24_31076 crossref_primary_10_1038_s41598_024_82775_z crossref_primary_10_3390_jcm12185852 crossref_primary_10_1055_a_2511_8548 crossref_primary_10_1371_journal_pone_0281690 crossref_primary_10_1007_s00247_023_05746_y crossref_primary_10_1038_s41746_023_00829_4 crossref_primary_10_3390_diagnostics13122090 crossref_primary_10_1371_journal_pone_0282123 crossref_primary_10_20935_AcadMed7509 crossref_primary_10_1038_s41598_023_47194_6 crossref_primary_10_1038_s41746_025_01541_1 crossref_primary_10_1183_16000617_0259_2022 crossref_primary_10_1136_bmj_2023_076703 crossref_primary_10_3390_diagnostics14151634 crossref_primary_10_3390_diagnostics13122020 crossref_primary_10_1038_s41598_024_65488_1 crossref_primary_10_37349_etat_2023_00138 crossref_primary_10_1007_s00247_024_06098_x crossref_primary_10_3390_children11101232 |
Cites_doi | 10.3348/kjr.2019.0821 10.1016/s2589-7500(21)00056-x 10.1007/s00330-021-07833-w 10.1007/s00330-021-08074-7 10.1097/ccm.0000000000004397 10.1038/s41598-019-55536-6 10.1007/s00247-021-05146-0 10.1001/jamanetworkopen.2019.1095 10.1136/bmjresp-2021-001045 10.1148/radiol.2020201240 10.3348/kjr.2020.0536 10.2214/ajr.136.5.907 10.1007/s00247-021-05086-9 10.1259/bjr.20201263 10.3348/kjr.2021.0544 10.3390/jcm9061981 10.1038/s41746-020-00324-0 10.1007/s00247-019-04593-0 10.1007/s00330-019-06250-4 10.1148/ryai.2020200026 10.1148/radiol.2019182465 10.1016/j.jcf.2019.04.016 10.1007/s00247-021-05072-1 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-022-14519-w |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_4325434a99fa4892a4943f1aeefb8da8 PMC9204675 10_1038_s41598_022_14519_w |
GrantInformation_xml | – fundername: A faculty research grant of Yonsei University College of Medicine (6-2021-0064) – fundername: ; |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK AARCD COVID K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c583t-a185cdd631d0ffe2f943d7e321d1c2f60f3d5a91f33b8e5d12b9b6147b5532f13 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:55 EDT 2025 Thu Aug 21 13:57:24 EDT 2025 Fri Jul 11 00:01:43 EDT 2025 Wed Aug 13 08:41:53 EDT 2025 Tue Jul 01 04:16:40 EDT 2025 Thu Apr 24 23:07:00 EDT 2025 Fri Feb 21 02:38:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-a185cdd631d0ffe2f943d7e321d1c2f60f3d5a91f33b8e5d12b9b6147b5532f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-14519-w |
PMID | 35715623 |
PQID | 2677958050 |
PQPubID | 2041939 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4325434a99fa4892a4943f1aeefb8da8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9204675 proquest_miscellaneous_2678421277 proquest_journals_2677958050 crossref_primary_10_1038_s41598_022_14519_w crossref_citationtrail_10_1038_s41598_022_14519_w springer_journals_10_1038_s41598_022_14519_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-17 |
PublicationDateYYYYMMDD | 2022-06-17 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Rueckel (CR15) 2020; 48 Hwang, Kim, Yoon, Goo, Park (CR7) 2020; 21 Sim (CR13) 2020; 294 Moore, Iyer, Sarwani, Sze (CR18) 2021 Rueckel (CR4) 2021 Sjoding (CR3) 2021; 3 Mahomed (CR16) 2020; 50 Hwang (CR23) 2019; 2 Hwang, Park (CR1) 2020; 21 Edwards, Higgins, Gilpin (CR24) 1981; 136 Lakhani, Flanders, Gorniak (CR5) 2021; 3 Benjamens, Dhunnoo, Meskó (CR10) 2020; 3 Lee (CR11) 2020; 297 Salehi, Mohammadi, Ghaffari, Sadighi, Reiazi (CR14) 2021; 94 Alqahtani, Messina, Offiah (CR19) 2019; 29 Zucker (CR17) 2020; 19 CR20 Yoo (CR6) 2021 Hwang (CR21) 2021; 22 Quah (CR2) 2021 Otjen, Moore, Romberg, Perez, Iyer (CR8) 2021 Kim (CR12) 2020 Kim (CR9) 2019; 9 Schalekamp, Klein, van Leeuwen (CR22) 2021 JP Otjen (14519_CR8) 2021 J Rueckel (14519_CR15) 2020; 48 N Mahomed (14519_CR16) 2020; 50 Y Sim (14519_CR13) 2020; 294 MM Moore (14519_CR18) 2021 EJ Hwang (14519_CR7) 2020; 21 EJ Hwang (14519_CR21) 2021; 22 J Quah (14519_CR2) 2021 J Rueckel (14519_CR4) 2021 H Yoo (14519_CR6) 2021 S Kim (14519_CR9) 2019; 9 S Benjamens (14519_CR10) 2020; 3 EJ Hwang (14519_CR23) 2019; 2 JH Lee (14519_CR11) 2020; 297 P Lakhani (14519_CR5) 2021; 3 M Salehi (14519_CR14) 2021; 94 FF Alqahtani (14519_CR19) 2019; 29 EJ Zucker (14519_CR17) 2020; 19 14519_CR20 MW Sjoding (14519_CR3) 2021; 3 JH Kim (14519_CR12) 2020 S Schalekamp (14519_CR22) 2021 EJ Hwang (14519_CR1) 2020; 21 DK Edwards (14519_CR24) 1981; 136 |
References_xml | – volume: 21 start-page: 511 year: 2020 end-page: 525 ident: CR1 article-title: Clinical implementation of deep learning in thoracic radiology: Potential applications and challenges publication-title: Korean J. Radiol. doi: 10.3348/kjr.2019.0821 – volume: 3 start-page: e340 year: 2021 end-page: e348 ident: CR3 article-title: Deep learning to detect acute respiratory distress syndrome on chest radiographs: A retrospective study with external validation publication-title: Lancet Digit Health doi: 10.1016/s2589-7500(21)00056-x – year: 2021 ident: CR4 article-title: Pneumothorax detection in chest radiographs: Optimizing artificial intelligence system for accuracy and confounding bias reduction using in-image annotations in algorithm training publication-title: Eur. Radiol. doi: 10.1007/s00330-021-07833-w – year: 2021 ident: CR6 article-title: AI-based improvement in lung cancer detection on chest radiographs: Results of a multi-reader study in NLST dataset publication-title: Eur. Radiol. doi: 10.1007/s00330-021-08074-7 – volume: 48 start-page: e574 year: 2020 end-page: e583 ident: CR15 article-title: Artificial intelligence algorithm detecting lung infection in supine chest radiographs of critically ill patients with a diagnostic accuracy similar to board-certified radiologists publication-title: Crit. Care Med. doi: 10.1097/ccm.0000000000004397 – volume: 9 start-page: 19420 year: 2019 ident: CR9 article-title: Performance of deep learning-based algorithm for detection of ileocolic intussusception on abdominal radiographs of young children publication-title: Sci. Rep. doi: 10.1038/s41598-019-55536-6 – year: 2021 ident: CR22 article-title: Current and emerging artificial intelligence applications in chest imaging: A pediatric perspective publication-title: Pediatr. Radiol. doi: 10.1007/s00247-021-05146-0 – volume: 2 year: 2019 ident: CR23 article-title: Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2019.1095 – year: 2021 ident: CR2 article-title: Chest radiograph-based artificial intelligence predictive model for mortality in community-acquired pneumonia publication-title: BMJ Open Respir. Res. doi: 10.1136/bmjresp-2021-001045 – volume: 297 start-page: 687 year: 2020 end-page: 696 ident: CR11 article-title: Performance of a deep learning algorithm compared with radiologic interpretation for lung cancer detection on chest radiographs in a health screening population publication-title: Radiology doi: 10.1148/radiol.2020201240 – volume: 21 start-page: 1150 year: 2020 end-page: 1160 ident: CR7 article-title: Implementation of a deep learning-based computer-aided detection system for the interpretation of chest radiographs in patients suspected for COVID-19 publication-title: Korean J. Radiol. doi: 10.3348/kjr.2020.0536 – volume: 136 start-page: 907 year: 1981 end-page: 913 ident: CR24 article-title: The cardiothoracic ratio in newborn infants publication-title: AJR Am. J. Roentgenol. doi: 10.2214/ajr.136.5.907 – year: 2021 ident: CR8 article-title: The current and future roles of artificial intelligence in pediatric radiology publication-title: Pediatr. Radiol. doi: 10.1007/s00247-021-05086-9 – volume: 94 start-page: 20201263 year: 2021 ident: CR14 article-title: Automated detection of pneumonia cases using deep transfer learning with paediatric chest X-ray images publication-title: Br. J. Radiol. doi: 10.1259/bjr.20201263 – volume: 22 start-page: 1743 year: 2021 end-page: 1748 ident: CR21 article-title: Use of artificial intelligence-based software as medical devices for chest radiography: A position paper from the Korean society of thoracic radiology publication-title: Korean J. Radiol. doi: 10.3348/kjr.2021.0544 – year: 2020 ident: CR12 article-title: Clinical validation of a deep learning algorithm for detection of pneumonia on chest radiographs in emergency department patients with acute febrile respiratory illness publication-title: J. Clin. Med. doi: 10.3390/jcm9061981 – volume: 3 start-page: 118 year: 2020 ident: CR10 article-title: The state of artificial intelligence-based FDA-approved medical devices and algorithms: An online database publication-title: NPJ Digit Med. doi: 10.1038/s41746-020-00324-0 – volume: 50 start-page: 482 year: 2020 end-page: 491 ident: CR16 article-title: Computer-aided diagnosis for World Health Organization-defined chest radiograph primary-endpoint pneumonia in children publication-title: Pediatr. Radiol. doi: 10.1007/s00247-019-04593-0 – volume: 29 start-page: 6780 year: 2019 end-page: 6789 ident: CR19 article-title: Are semi-automated software program designed for adults accurate for the identification of vertebral fractures in children? publication-title: Eur. Radiol. doi: 10.1007/s00330-019-06250-4 – volume: 3 year: 2021 ident: CR5 article-title: Endotracheal tube position assessment on chest radiographs using deep learning publication-title: Radiol. Artif. Intell. doi: 10.1148/ryai.2020200026 – volume: 294 start-page: 199 year: 2020 end-page: 209 ident: CR13 article-title: Deep convolutional neural network-based software improves radiologist detection of malignant lung nodules on chest radiographs publication-title: Radiology doi: 10.1148/radiol.2019182465 – volume: 19 start-page: 131 year: 2020 end-page: 138 ident: CR17 article-title: Deep learning to automate Brasfield chest radiographic scoring for cystic fibrosis publication-title: J. Cyst. Fibros. doi: 10.1016/j.jcf.2019.04.016 – year: 2021 ident: CR18 article-title: Artificial intelligence development in pediatric body magnetic resonance imaging: Best ideas to adapt from adults publication-title: Pediatr. Radiol. doi: 10.1007/s00247-021-05072-1 – ident: CR20 – volume: 3 start-page: e340 year: 2021 ident: 14519_CR3 publication-title: Lancet Digit Health doi: 10.1016/s2589-7500(21)00056-x – volume: 9 start-page: 19420 year: 2019 ident: 14519_CR9 publication-title: Sci. Rep. doi: 10.1038/s41598-019-55536-6 – volume: 136 start-page: 907 year: 1981 ident: 14519_CR24 publication-title: AJR Am. J. Roentgenol. doi: 10.2214/ajr.136.5.907 – year: 2021 ident: 14519_CR4 publication-title: Eur. Radiol. doi: 10.1007/s00330-021-07833-w – volume: 3 start-page: 118 year: 2020 ident: 14519_CR10 publication-title: NPJ Digit Med. doi: 10.1038/s41746-020-00324-0 – volume: 94 start-page: 20201263 year: 2021 ident: 14519_CR14 publication-title: Br. J. Radiol. doi: 10.1259/bjr.20201263 – volume: 297 start-page: 687 year: 2020 ident: 14519_CR11 publication-title: Radiology doi: 10.1148/radiol.2020201240 – year: 2021 ident: 14519_CR22 publication-title: Pediatr. Radiol. doi: 10.1007/s00247-021-05146-0 – volume: 21 start-page: 511 year: 2020 ident: 14519_CR1 publication-title: Korean J. Radiol. doi: 10.3348/kjr.2019.0821 – volume: 22 start-page: 1743 year: 2021 ident: 14519_CR21 publication-title: Korean J. Radiol. doi: 10.3348/kjr.2021.0544 – volume: 48 start-page: e574 year: 2020 ident: 14519_CR15 publication-title: Crit. Care Med. doi: 10.1097/ccm.0000000000004397 – volume: 29 start-page: 6780 year: 2019 ident: 14519_CR19 publication-title: Eur. Radiol. doi: 10.1007/s00330-019-06250-4 – volume: 21 start-page: 1150 year: 2020 ident: 14519_CR7 publication-title: Korean J. Radiol. doi: 10.3348/kjr.2020.0536 – year: 2021 ident: 14519_CR8 publication-title: Pediatr. Radiol. doi: 10.1007/s00247-021-05086-9 – volume: 50 start-page: 482 year: 2020 ident: 14519_CR16 publication-title: Pediatr. Radiol. doi: 10.1007/s00247-019-04593-0 – volume: 3 year: 2021 ident: 14519_CR5 publication-title: Radiol. Artif. Intell. doi: 10.1148/ryai.2020200026 – volume: 2 year: 2019 ident: 14519_CR23 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2019.1095 – year: 2021 ident: 14519_CR2 publication-title: BMJ Open Respir. Res. doi: 10.1136/bmjresp-2021-001045 – ident: 14519_CR20 – year: 2021 ident: 14519_CR6 publication-title: Eur. Radiol. doi: 10.1007/s00330-021-08074-7 – volume: 294 start-page: 199 year: 2020 ident: 14519_CR13 publication-title: Radiology doi: 10.1148/radiol.2019182465 – year: 2020 ident: 14519_CR12 publication-title: J. Clin. Med. doi: 10.3390/jcm9061981 – year: 2021 ident: 14519_CR18 publication-title: Pediatr. Radiol. doi: 10.1007/s00247-021-05072-1 – volume: 19 start-page: 131 year: 2020 ident: 14519_CR17 publication-title: J. Cyst. Fibros. doi: 10.1016/j.jcf.2019.04.016 |
SSID | ssj0000529419 |
Score | 2.4850852 |
Snippet | Artificial intelligence (AI) applied to pediatric chest radiographs are yet scarce. This study evaluated whether AI-based software developed for adult chest... Abstract Artificial intelligence (AI) applied to pediatric chest radiographs are yet scarce. This study evaluated whether AI-based software developed for adult... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10215 |
SubjectTerms | 692/308/3187 692/699/1785 Artificial intelligence Atelectasis Chest Children Fibrosis Humanities and Social Sciences Lesions multidisciplinary Pediatrics Pleural effusion Pneumothorax Radiography Science Science (multidisciplinary) Software |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOgl9BXqNi0q9NaY6GlJxz4SQg89NZCbkCwNWQjeJbtJKP3z1cP7cKDNJTcjjW1JM8OMmJlvEPoEmvRKkL6NkrpWBEdabaJupe86L3wXORS0z5_d2bn4cSEvdlp95ZywCg9cD-5Y8FyuLZwx4IQ2zAkjOFAXI3gdXCnzTTZv5zJVUb2ZEdSMVTKE6-NlslS5mizdvXJzWtPeTSxRAeyfeJn3cyTvBUqL_Tl9jvZHxxF_qQt-gZ7E4SV6WltJ_n6F_nyvOXNpFi-2xQB4DjjvseJE4NkOACcucOK3MeBEjAsOx7I8JpewEG5zEfNXFuueHri02MLXLswq3PXyNTo_Pfn17awdGyu0vdR81bpkpPsQOk4DAYgM0pEGFTmjgfYMOgI8SGcocO51lIEyb3yy48pLyRlQfoD2hvkQ3yCsnAPdARgW000zciMdyGiICST4NNIguj5k24-o47n5xZUt0W-ubWWMTYyxhTH2rkGfN-8sKubGf6m_Zt5tKDNedhlIUmRHKbIPSVGDDtect6MSLy3rlDJSE0ka9HEzndQvx1TcEOc3hUbnoLpSDVITiZksaDozzC4LkLdhJNkp2aCjtWxtf_7vDb99jA2_Q89Y1oXchUkdor3V9U18n9yrlf9QNOkvPWslLw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nj9QgFCe6xsSL8TNWV4OJNyXLZ4GT8Wuz8eDJTeZGoIBOYtpxOuvG-M8LlM7YTdxbA68t9D36Hjz4_QB4FRXuJMcdCoJYxL3FSOmgkHBt67hrA4sF7fNLe3bOP6_Eqi64jXVb5fxPLD9qP3R5jfyEtlJqobDAbzc_UWaNytnVSqFxE9zK0GXZquVK7tdYchaLE13PymCmTsbkr_KZsjQDyxS1Gl0u_FGB7V_Emld3Sl5JlxYvdHoP3K3hI3w36fs-uBH6B-D2RCj5-yH483HaOZdq4eZwJAAOEWYTmdAi4PofGE5YQMV_BQ-TMCxoHGO5TIFhETzsSMxP2czMHrAQbcGt9esJ9Hp8BM5PP339cIYqvQLqhGI7ZJOr7rxvGfE4xkCj5szLwCjxpKOxxZF5YTWJjDkVhCfUaZe8uXRCMBoJewyO-qEPTwCU1kbVxqhpSPPNwLSwUQSNtcfepZIGkPkjm65ij2cKjB-m5MCZMpNiTFKMKYoxlw14vb9nMyFvXCv9PutuL5lRs0vBsP1m6iA0nOWj_9xqHS1XmlqeuhyJDSE65a1qwPGseVOH8mgOhteAl_vqNAhzZsX2YbgoMiqn1qVsgFxYzKJBy5p-_b3AeWuKk7cSDXgz29bh5f_v8NPr2_oM3KHZyjPLkjwGR7vtRXiewqede1HGyF84bRyR priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEE8RKMhI3CDCz9g-Lo-q2gMXqNSbZcc2rISyq91tq6p_HttJdkkFSNwie5zYmXFmnJn5BuBNVLiVHLd1EMTW3FtcKx1ULVzTOO6awGJB-_zSnJ7x-bk4PwA65sKUoP0CaVk-02N02PtNUjQ5GSwdnXJtWV1f3YGjDNWeZPtoNpt_ne_-rGTfFSd6yJDBTP1h8EQLFbD-iYV5Oz7ylpO06J6TB3B_MBrRrJ_mQzgI3SO425eRvH4MN5_6eLnUi1b7RAC0jCivrMeIQIvfwDdRgRK_DB4lYlQwODblMpmDhXAfh5jvshrreaBSXgutrV_0UNebJ3B28vnbx9N6KKpQt0KxbW2Tgm69bxjxOMZAo-bMy8Ao8aSlscGReWE1iYw5FYQn1GmXdLh0QjAaCXsKh92yC88ASWujamLUNKRTZmBa2CiCxtpj71JLBWR8yaYdEMdz4Yufpni-mTI9Y0xijCmMMVcVvN2NWfV4G_-k_pB5t6PMWNmlYbn-bgbZMZzlhH9utY6WK00tT0uOxIYQnfJWVXA8ct4MG3hjaCOlFgoLXMHrXXfaetmfYruwvCg0KjvUpaxATiRmMqFpT7f4UUC8NcVJR4kK3o2ytX_43xf8_P_IX8A9mqU-11qSx3C4XV-El8mI2rpXw675BUNgHDI priority: 102 providerName: Springer Nature |
Title | Diagnostic performance of artificial intelligence approved for adults for the interpretation of pediatric chest radiographs |
URI | https://link.springer.com/article/10.1038/s41598-022-14519-w https://www.proquest.com/docview/2677958050 https://www.proquest.com/docview/2678421277 https://pubmed.ncbi.nlm.nih.gov/PMC9204675 https://doaj.org/article/4325434a99fa4892a4943f1aeefb8da8 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_tQ0i8ID5F2KiMxBsEHDuO7QeEurJpqsSEgEp9i-zYhkpT2rUdY-Kfx3aSlkyDJ54S2eck9vl055z9-wG8dAJXPMdValmm0twonAppRcp0UehcF5a6iPZ5VpxO8vGUTXegoztqB3B169Iu8ElNludvfl5cv_cG_645Mi7errwTCgfF_LIq8M7K9GoX9r1n4oHR4GMb7jdY30TmmWzPztzetOefIox_L_a8uXPyRvo0eqWT-3CvDSfRsNH_A9ix9UO40xBMXj-CXx-anXS-Fi22RwTQ3KEwZRr0CDT7A5YTRZDxH9YgL4wiOscq3vpAMQpudyiGpyw6pg8UibfQUplZA4K9egyTk-Ovo9O0pVtIKyboOlXedVfGFDQz2DlLnMyp4ZaSzGQVcQV21DAlM0epFpaZjGipvXfnmjFKXEafwF49r-1TQFwpJwrnJLF-_WmpZMoxK7E02GhfkkDWDXJZtVjkgRLjvIw5cSrKRjGlV0wZFVNeJfBq02bRIHH8U_oo6G4jGVC0Y8F8-a1sjbLMaYACyJWUTuVCEpX7LrtMWeu0MEokcNhpvuxmZkkKziUTmOEEXmyqvVGGTIuq7fwyyoiQauc8Ad6bMb0P6tfUs-8R3lsS7L0XS-B1N7e2L_97h5_9jw4fwF0SbCFwM_FD2FsvL-1zH3St9QB2-ZQPYH84HH8Z--vR8dmnz750VIwG8UfGINrab8ofMuw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9UgFD6ZM0ZfjD9jdSom-qTNKJQCD8aoc7lzc09bct-QFtCbmPZ6e-fN4v_k3yjQ9l67xL3trYHTFjgHDnDg-wBeOoErnuMqtSzTaW40ToW0ImVlUZR5WVjqItrncTE5zT9P2XQL_gx3YcKxymFMjAO1aaqwR75LCs4lE5jhd_OfaWCNCtHVgUKjM4tDe77yS7b27cGe1-8rQvY_nXycpD2rQFoxQZep9h6qMqagmcHOWeJkTg23lGQmq4grsKOGaZk5SkthmclIKUvvxHjJGCUuo_671-C6d7w4LPb4lK_3dELULM9kfzcHU7Hbev8Y7rD5FV-gxJXpauT_Ik3AaG578WTmhfBs9Hr7d-B2P11F7zv7ugtbtr4HNzoCy_P78HuvO6nnc9F8cwUBNQ4Fk-zQKdDsH9hPFEHMf1mDvDCK6B9tfPQT0Si4OQEZvjIfmERQJPZCC21mHch2-wBOr6ThH8J23dT2ESCutROFc5JYv761VDLtmJVYGmxKn5JANjSyqnqs80C58UPFmDsVqlOM8opRUTFqlcDr9TvzDunjUukPQXdryYDSHROaxTfVd3qV0wA1kGspnc6FJDr3VXaZttaVwmiRwM6gedUPHa3aGHoCL9bZvtOHSI6ubXMWZUQI5XOeAB9ZzKhA45x69j3Ch0uCvXdkCbwZbGvz8_9X-PHlZX0ONycnX47U0cHx4RO4RYLFB4YnvgPby8WZfeqnbsvyWewvCL5edQf9C01TWX4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTiBeED-1jAFGgieI6thxbD8gxOiqjaFqQkzam3FiGyqhtGs7qon_jL8O20laOom97S2KL4mTO9_ZufP3AbxyAlc8x1VqWabT3GicCmlFysqiKPOysNRFtM9RcXiafzpjZ1vwp9sLE8oqO58YHbWZVOEfeZ8UnEsmMMN915ZFnAyG76fnaWCQCpnWjk6jMZFje7n0y7f5u6OB1_VrQoYHXz8epi3DQFoxQRep9tGqMqagmcHOWeJkTg23lGQmq4grsKOGaZk5SkthmclIKUsf0HjJGCUuo_6-t2Cbh1VRD7b3D0YnX1Z_eEIOLc9ku1MHU9Gf-2gZdrT59V8gyJXpciMaRtKAjZnu1TrNK8naGAOH9-FeO3lFHxprewBbtn4Itxs6y8tH8HvQ1O35VjRdb0hAE4eCgTZYFWj8DwgoipDmv6xBXhhFLJB5PPTT0ii4rocMd5l2vCIo0nyhmTbjBnJ7_hhOb-TTP4FePantDiCutROFc5JYv9q1VDLtmJVYGmxKfyaBrPvIqmqRzwMBx08VM_BUqEYxyitGRcWoZQJvVtdMG9yPa6X3g-5WkgGzO56YzL6r1gWonAbggVxL6XQuJNG5f2WXaWtdKYwWCex1mletI5mrtdkn8HLV7F1AyOvo2k4uoowIiX3OE-AbFrPRoc2WevwjgolLgn2sZAm87Wxr_fD_v_Du9X19AXf84FSfj0bHT-EuCQYf6J74HvQWswv7zM_jFuXzdsAg-HbTY_QvG4JfGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+performance+of+artificial+intelligence+approved+for+adults+for+the+interpretation+of+pediatric+chest+radiographs&rft.jtitle=Scientific+reports&rft.au=Hyun+Joo+Shin&rft.au=Nak-Hoon+Son&rft.au=Min+Jung+Kim&rft.au=Eun-Kyung+Kim&rft.date=2022-06-17&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41598-022-14519-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4325434a99fa4892a4943f1aeefb8da8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |