Diagnostic performance of artificial intelligence approved for adults for the interpretation of pediatric chest radiographs

Artificial intelligence (AI) applied to pediatric chest radiographs are yet scarce. This study evaluated whether AI-based software developed for adult chest radiographs can be used for pediatric chest radiographs. Pediatric patients (≤ 18 years old) who underwent chest radiographs from March to May...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 10215 - 8
Main Authors Shin, Hyun Joo, Son, Nak-Hoon, Kim, Min Jung, Kim, Eun-Kyung
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.06.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial intelligence (AI) applied to pediatric chest radiographs are yet scarce. This study evaluated whether AI-based software developed for adult chest radiographs can be used for pediatric chest radiographs. Pediatric patients (≤ 18 years old) who underwent chest radiographs from March to May 2021 were included retrospectively. An AI-based lesion detection software assessed the presence of nodules, consolidation, fibrosis, atelectasis, cardiomegaly, pleural effusion, pneumothorax, and pneumoperitoneum. Using the pediatric radiologist’s results as standard reference, we assessed the diagnostic performance of the software. For the total 2273 chest radiographs, the AI-based software showed a sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of 67.2%, 91.1%, 57.7%, 93.9%, and 87.5%, respectively. Age was a significant factor for incorrect results (odds radio 0.821, 95% confidence interval 0.791–0.851). When we excluded cardiomegaly and children 2 years old or younger, sensitivity, specificity, PPV, NPV and accuracy significantly increased (86.4%, 97.9%, 79.7%, 98.7% and 96.9%, respectively, all p < 0.001). In conclusion, AI-based software developed with adult chest radiographs showed diagnostic accuracies up to 96.9% for pediatric chest radiographs when we excluded cardiomegaly and children 2 years old or younger. AI-based lesion detection software needs to be validated in younger children.
AbstractList Artificial intelligence (AI) applied to pediatric chest radiographs are yet scarce. This study evaluated whether AI-based software developed for adult chest radiographs can be used for pediatric chest radiographs. Pediatric patients (≤ 18 years old) who underwent chest radiographs from March to May 2021 were included retrospectively. An AI-based lesion detection software assessed the presence of nodules, consolidation, fibrosis, atelectasis, cardiomegaly, pleural effusion, pneumothorax, and pneumoperitoneum. Using the pediatric radiologist's results as standard reference, we assessed the diagnostic performance of the software. For the total 2273 chest radiographs, the AI-based software showed a sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of 67.2%, 91.1%, 57.7%, 93.9%, and 87.5%, respectively. Age was a significant factor for incorrect results (odds radio 0.821, 95% confidence interval 0.791-0.851). When we excluded cardiomegaly and children 2 years old or younger, sensitivity, specificity, PPV, NPV and accuracy significantly increased (86.4%, 97.9%, 79.7%, 98.7% and 96.9%, respectively, all p < 0.001). In conclusion, AI-based software developed with adult chest radiographs showed diagnostic accuracies up to 96.9% for pediatric chest radiographs when we excluded cardiomegaly and children 2 years old or younger. AI-based lesion detection software needs to be validated in younger children.Artificial intelligence (AI) applied to pediatric chest radiographs are yet scarce. This study evaluated whether AI-based software developed for adult chest radiographs can be used for pediatric chest radiographs. Pediatric patients (≤ 18 years old) who underwent chest radiographs from March to May 2021 were included retrospectively. An AI-based lesion detection software assessed the presence of nodules, consolidation, fibrosis, atelectasis, cardiomegaly, pleural effusion, pneumothorax, and pneumoperitoneum. Using the pediatric radiologist's results as standard reference, we assessed the diagnostic performance of the software. For the total 2273 chest radiographs, the AI-based software showed a sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of 67.2%, 91.1%, 57.7%, 93.9%, and 87.5%, respectively. Age was a significant factor for incorrect results (odds radio 0.821, 95% confidence interval 0.791-0.851). When we excluded cardiomegaly and children 2 years old or younger, sensitivity, specificity, PPV, NPV and accuracy significantly increased (86.4%, 97.9%, 79.7%, 98.7% and 96.9%, respectively, all p < 0.001). In conclusion, AI-based software developed with adult chest radiographs showed diagnostic accuracies up to 96.9% for pediatric chest radiographs when we excluded cardiomegaly and children 2 years old or younger. AI-based lesion detection software needs to be validated in younger children.
Artificial intelligence (AI) applied to pediatric chest radiographs are yet scarce. This study evaluated whether AI-based software developed for adult chest radiographs can be used for pediatric chest radiographs. Pediatric patients (≤ 18 years old) who underwent chest radiographs from March to May 2021 were included retrospectively. An AI-based lesion detection software assessed the presence of nodules, consolidation, fibrosis, atelectasis, cardiomegaly, pleural effusion, pneumothorax, and pneumoperitoneum. Using the pediatric radiologist’s results as standard reference, we assessed the diagnostic performance of the software. For the total 2273 chest radiographs, the AI-based software showed a sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of 67.2%, 91.1%, 57.7%, 93.9%, and 87.5%, respectively. Age was a significant factor for incorrect results (odds radio 0.821, 95% confidence interval 0.791–0.851). When we excluded cardiomegaly and children 2 years old or younger, sensitivity, specificity, PPV, NPV and accuracy significantly increased (86.4%, 97.9%, 79.7%, 98.7% and 96.9%, respectively, all p < 0.001). In conclusion, AI-based software developed with adult chest radiographs showed diagnostic accuracies up to 96.9% for pediatric chest radiographs when we excluded cardiomegaly and children 2 years old or younger. AI-based lesion detection software needs to be validated in younger children.
Artificial intelligence (AI) applied to pediatric chest radiographs are yet scarce. This study evaluated whether AI-based software developed for adult chest radiographs can be used for pediatric chest radiographs. Pediatric patients (≤ 18 years old) who underwent chest radiographs from March to May 2021 were included retrospectively. An AI-based lesion detection software assessed the presence of nodules, consolidation, fibrosis, atelectasis, cardiomegaly, pleural effusion, pneumothorax, and pneumoperitoneum. Using the pediatric radiologist’s results as standard reference, we assessed the diagnostic performance of the software. For the total 2273 chest radiographs, the AI-based software showed a sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of 67.2%, 91.1%, 57.7%, 93.9%, and 87.5%, respectively. Age was a significant factor for incorrect results (odds radio 0.821, 95% confidence interval 0.791–0.851). When we excluded cardiomegaly and children 2 years old or younger, sensitivity, specificity, PPV, NPV and accuracy significantly increased (86.4%, 97.9%, 79.7%, 98.7% and 96.9%, respectively, all p < 0.001). In conclusion, AI-based software developed with adult chest radiographs showed diagnostic accuracies up to 96.9% for pediatric chest radiographs when we excluded cardiomegaly and children 2 years old or younger. AI-based lesion detection software needs to be validated in younger children.
Abstract Artificial intelligence (AI) applied to pediatric chest radiographs are yet scarce. This study evaluated whether AI-based software developed for adult chest radiographs can be used for pediatric chest radiographs. Pediatric patients (≤ 18 years old) who underwent chest radiographs from March to May 2021 were included retrospectively. An AI-based lesion detection software assessed the presence of nodules, consolidation, fibrosis, atelectasis, cardiomegaly, pleural effusion, pneumothorax, and pneumoperitoneum. Using the pediatric radiologist’s results as standard reference, we assessed the diagnostic performance of the software. For the total 2273 chest radiographs, the AI-based software showed a sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of 67.2%, 91.1%, 57.7%, 93.9%, and 87.5%, respectively. Age was a significant factor for incorrect results (odds radio 0.821, 95% confidence interval 0.791–0.851). When we excluded cardiomegaly and children 2 years old or younger, sensitivity, specificity, PPV, NPV and accuracy significantly increased (86.4%, 97.9%, 79.7%, 98.7% and 96.9%, respectively, all p < 0.001). In conclusion, AI-based software developed with adult chest radiographs showed diagnostic accuracies up to 96.9% for pediatric chest radiographs when we excluded cardiomegaly and children 2 years old or younger. AI-based lesion detection software needs to be validated in younger children.
ArticleNumber 10215
Author Kim, Eun-Kyung
Kim, Min Jung
Son, Nak-Hoon
Shin, Hyun Joo
Author_xml – sequence: 1
  givenname: Hyun Joo
  surname: Shin
  fullname: Shin, Hyun Joo
  organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yongin Severance Hospital, Yonsei University College of Medicine
– sequence: 2
  givenname: Nak-Hoon
  surname: Son
  fullname: Son, Nak-Hoon
  organization: Department of Statistics, Keimyung University
– sequence: 3
  givenname: Min Jung
  surname: Kim
  fullname: Kim, Min Jung
  organization: Department of Pediatrics, Institute of Allergy, Institute for Immunology and Immunological Diseases, Yongin Severance Hospital, Yonsei University College of Medicine
– sequence: 4
  givenname: Eun-Kyung
  surname: Kim
  fullname: Kim, Eun-Kyung
  email: ekkim@yuhs.ac
  organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yongin Severance Hospital, Yonsei University College of Medicine
BookMark eNp9Uk1v1DAQjVARLaV_gFMkLlwC8VdiX5BQ-apUiQucrYk9znqVtYOdbVXx5_FuKqA91BePPO-9Gc-8l9VJiAGr6jVp35GWyfeZE6Fk01LaEC6Iam6fVWe05aKhjNKT_-LT6iLnbVuOoIoT9aI6ZaInoqPsrPr9ycMYYl68qWdMLqYdBIN1dDWkxTtvPEy1DwtOkx_xkIJ5TvEGbV3ANdj9tORjuGzwCExzwgUWH8NBZUbrYUlF3mwwL3UC6-OYYN7kV9VzB1PGi_v7vPr55fOPy2_N9fevV5cfrxsjJFsaIFIYaztGbOscUqc4sz0ySiwx1HWtY1aAIo6xQaKwhA5q6AjvByEYdYSdV1erro2w1XPyO0h3OoLXx4eYRn34q5lQc0YFZxyUcsClosBLMUcA0Q3SgixaH1ateT_s0BoMS4LpgejDTPAbPcYbrco-ul4Ugbf3Ain-2peJ6J3PpkwXAsZ91rTrJaeE9n2BvnkE3cZ9CmVUB1SvhGxFW1B0RZkUc07o_jZDWn2wil6tootV9NEq-raQ5COS8evOStN-eprKVmoudcKI6V9XT7D-AKH312o
CitedBy_id crossref_primary_10_1038_s41598_024_70780_1
crossref_primary_10_3233_JIFS_219397
crossref_primary_10_1007_s10278_024_01273_w
crossref_primary_10_2214_AJR_24_31076
crossref_primary_10_1038_s41598_024_82775_z
crossref_primary_10_3390_jcm12185852
crossref_primary_10_1055_a_2511_8548
crossref_primary_10_1371_journal_pone_0281690
crossref_primary_10_1007_s00247_023_05746_y
crossref_primary_10_1038_s41746_023_00829_4
crossref_primary_10_3390_diagnostics13122090
crossref_primary_10_1371_journal_pone_0282123
crossref_primary_10_20935_AcadMed7509
crossref_primary_10_1038_s41598_023_47194_6
crossref_primary_10_1038_s41746_025_01541_1
crossref_primary_10_1183_16000617_0259_2022
crossref_primary_10_1136_bmj_2023_076703
crossref_primary_10_3390_diagnostics14151634
crossref_primary_10_3390_diagnostics13122020
crossref_primary_10_1038_s41598_024_65488_1
crossref_primary_10_37349_etat_2023_00138
crossref_primary_10_1007_s00247_024_06098_x
crossref_primary_10_3390_children11101232
Cites_doi 10.3348/kjr.2019.0821
10.1016/s2589-7500(21)00056-x
10.1007/s00330-021-07833-w
10.1007/s00330-021-08074-7
10.1097/ccm.0000000000004397
10.1038/s41598-019-55536-6
10.1007/s00247-021-05146-0
10.1001/jamanetworkopen.2019.1095
10.1136/bmjresp-2021-001045
10.1148/radiol.2020201240
10.3348/kjr.2020.0536
10.2214/ajr.136.5.907
10.1007/s00247-021-05086-9
10.1259/bjr.20201263
10.3348/kjr.2021.0544
10.3390/jcm9061981
10.1038/s41746-020-00324-0
10.1007/s00247-019-04593-0
10.1007/s00330-019-06250-4
10.1148/ryai.2020200026
10.1148/radiol.2019182465
10.1016/j.jcf.2019.04.016
10.1007/s00247-021-05072-1
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-14519-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 8
ExternalDocumentID oai_doaj_org_article_4325434a99fa4892a4943f1aeefb8da8
PMC9204675
10_1038_s41598_022_14519_w
GrantInformation_xml – fundername: A faculty research grant of Yonsei University College of Medicine (6-2021-0064)
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
COVID
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c583t-a185cdd631d0ffe2f943d7e321d1c2f60f3d5a91f33b8e5d12b9b6147b5532f13
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:55 EDT 2025
Thu Aug 21 13:57:24 EDT 2025
Fri Jul 11 00:01:43 EDT 2025
Wed Aug 13 08:41:53 EDT 2025
Tue Jul 01 04:16:40 EDT 2025
Thu Apr 24 23:07:00 EDT 2025
Fri Feb 21 02:38:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-a185cdd631d0ffe2f943d7e321d1c2f60f3d5a91f33b8e5d12b9b6147b5532f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-14519-w
PMID 35715623
PQID 2677958050
PQPubID 2041939
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_4325434a99fa4892a4943f1aeefb8da8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9204675
proquest_miscellaneous_2678421277
proquest_journals_2677958050
crossref_primary_10_1038_s41598_022_14519_w
crossref_citationtrail_10_1038_s41598_022_14519_w
springer_journals_10_1038_s41598_022_14519_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-17
PublicationDateYYYYMMDD 2022-06-17
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Rueckel (CR15) 2020; 48
Hwang, Kim, Yoon, Goo, Park (CR7) 2020; 21
Sim (CR13) 2020; 294
Moore, Iyer, Sarwani, Sze (CR18) 2021
Rueckel (CR4) 2021
Sjoding (CR3) 2021; 3
Mahomed (CR16) 2020; 50
Hwang (CR23) 2019; 2
Hwang, Park (CR1) 2020; 21
Edwards, Higgins, Gilpin (CR24) 1981; 136
Lakhani, Flanders, Gorniak (CR5) 2021; 3
Benjamens, Dhunnoo, Meskó (CR10) 2020; 3
Lee (CR11) 2020; 297
Salehi, Mohammadi, Ghaffari, Sadighi, Reiazi (CR14) 2021; 94
Alqahtani, Messina, Offiah (CR19) 2019; 29
Zucker (CR17) 2020; 19
CR20
Yoo (CR6) 2021
Hwang (CR21) 2021; 22
Quah (CR2) 2021
Otjen, Moore, Romberg, Perez, Iyer (CR8) 2021
Kim (CR12) 2020
Kim (CR9) 2019; 9
Schalekamp, Klein, van Leeuwen (CR22) 2021
JP Otjen (14519_CR8) 2021
J Rueckel (14519_CR15) 2020; 48
N Mahomed (14519_CR16) 2020; 50
Y Sim (14519_CR13) 2020; 294
MM Moore (14519_CR18) 2021
EJ Hwang (14519_CR7) 2020; 21
EJ Hwang (14519_CR21) 2021; 22
J Quah (14519_CR2) 2021
J Rueckel (14519_CR4) 2021
H Yoo (14519_CR6) 2021
S Kim (14519_CR9) 2019; 9
S Benjamens (14519_CR10) 2020; 3
EJ Hwang (14519_CR23) 2019; 2
JH Lee (14519_CR11) 2020; 297
P Lakhani (14519_CR5) 2021; 3
M Salehi (14519_CR14) 2021; 94
FF Alqahtani (14519_CR19) 2019; 29
EJ Zucker (14519_CR17) 2020; 19
14519_CR20
MW Sjoding (14519_CR3) 2021; 3
JH Kim (14519_CR12) 2020
S Schalekamp (14519_CR22) 2021
EJ Hwang (14519_CR1) 2020; 21
DK Edwards (14519_CR24) 1981; 136
References_xml – volume: 21
  start-page: 511
  year: 2020
  end-page: 525
  ident: CR1
  article-title: Clinical implementation of deep learning in thoracic radiology: Potential applications and challenges
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2019.0821
– volume: 3
  start-page: e340
  year: 2021
  end-page: e348
  ident: CR3
  article-title: Deep learning to detect acute respiratory distress syndrome on chest radiographs: A retrospective study with external validation
  publication-title: Lancet Digit Health
  doi: 10.1016/s2589-7500(21)00056-x
– year: 2021
  ident: CR4
  article-title: Pneumothorax detection in chest radiographs: Optimizing artificial intelligence system for accuracy and confounding bias reduction using in-image annotations in algorithm training
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-021-07833-w
– year: 2021
  ident: CR6
  article-title: AI-based improvement in lung cancer detection on chest radiographs: Results of a multi-reader study in NLST dataset
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-021-08074-7
– volume: 48
  start-page: e574
  year: 2020
  end-page: e583
  ident: CR15
  article-title: Artificial intelligence algorithm detecting lung infection in supine chest radiographs of critically ill patients with a diagnostic accuracy similar to board-certified radiologists
  publication-title: Crit. Care Med.
  doi: 10.1097/ccm.0000000000004397
– volume: 9
  start-page: 19420
  year: 2019
  ident: CR9
  article-title: Performance of deep learning-based algorithm for detection of ileocolic intussusception on abdominal radiographs of young children
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-55536-6
– year: 2021
  ident: CR22
  article-title: Current and emerging artificial intelligence applications in chest imaging: A pediatric perspective
  publication-title: Pediatr. Radiol.
  doi: 10.1007/s00247-021-05146-0
– volume: 2
  year: 2019
  ident: CR23
  article-title: Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2019.1095
– year: 2021
  ident: CR2
  article-title: Chest radiograph-based artificial intelligence predictive model for mortality in community-acquired pneumonia
  publication-title: BMJ Open Respir. Res.
  doi: 10.1136/bmjresp-2021-001045
– volume: 297
  start-page: 687
  year: 2020
  end-page: 696
  ident: CR11
  article-title: Performance of a deep learning algorithm compared with radiologic interpretation for lung cancer detection on chest radiographs in a health screening population
  publication-title: Radiology
  doi: 10.1148/radiol.2020201240
– volume: 21
  start-page: 1150
  year: 2020
  end-page: 1160
  ident: CR7
  article-title: Implementation of a deep learning-based computer-aided detection system for the interpretation of chest radiographs in patients suspected for COVID-19
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2020.0536
– volume: 136
  start-page: 907
  year: 1981
  end-page: 913
  ident: CR24
  article-title: The cardiothoracic ratio in newborn infants
  publication-title: AJR Am. J. Roentgenol.
  doi: 10.2214/ajr.136.5.907
– year: 2021
  ident: CR8
  article-title: The current and future roles of artificial intelligence in pediatric radiology
  publication-title: Pediatr. Radiol.
  doi: 10.1007/s00247-021-05086-9
– volume: 94
  start-page: 20201263
  year: 2021
  ident: CR14
  article-title: Automated detection of pneumonia cases using deep transfer learning with paediatric chest X-ray images
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20201263
– volume: 22
  start-page: 1743
  year: 2021
  end-page: 1748
  ident: CR21
  article-title: Use of artificial intelligence-based software as medical devices for chest radiography: A position paper from the Korean society of thoracic radiology
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2021.0544
– year: 2020
  ident: CR12
  article-title: Clinical validation of a deep learning algorithm for detection of pneumonia on chest radiographs in emergency department patients with acute febrile respiratory illness
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm9061981
– volume: 3
  start-page: 118
  year: 2020
  ident: CR10
  article-title: The state of artificial intelligence-based FDA-approved medical devices and algorithms: An online database
  publication-title: NPJ Digit Med.
  doi: 10.1038/s41746-020-00324-0
– volume: 50
  start-page: 482
  year: 2020
  end-page: 491
  ident: CR16
  article-title: Computer-aided diagnosis for World Health Organization-defined chest radiograph primary-endpoint pneumonia in children
  publication-title: Pediatr. Radiol.
  doi: 10.1007/s00247-019-04593-0
– volume: 29
  start-page: 6780
  year: 2019
  end-page: 6789
  ident: CR19
  article-title: Are semi-automated software program designed for adults accurate for the identification of vertebral fractures in children?
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-019-06250-4
– volume: 3
  year: 2021
  ident: CR5
  article-title: Endotracheal tube position assessment on chest radiographs using deep learning
  publication-title: Radiol. Artif. Intell.
  doi: 10.1148/ryai.2020200026
– volume: 294
  start-page: 199
  year: 2020
  end-page: 209
  ident: CR13
  article-title: Deep convolutional neural network-based software improves radiologist detection of malignant lung nodules on chest radiographs
  publication-title: Radiology
  doi: 10.1148/radiol.2019182465
– volume: 19
  start-page: 131
  year: 2020
  end-page: 138
  ident: CR17
  article-title: Deep learning to automate Brasfield chest radiographic scoring for cystic fibrosis
  publication-title: J. Cyst. Fibros.
  doi: 10.1016/j.jcf.2019.04.016
– year: 2021
  ident: CR18
  article-title: Artificial intelligence development in pediatric body magnetic resonance imaging: Best ideas to adapt from adults
  publication-title: Pediatr. Radiol.
  doi: 10.1007/s00247-021-05072-1
– ident: CR20
– volume: 3
  start-page: e340
  year: 2021
  ident: 14519_CR3
  publication-title: Lancet Digit Health
  doi: 10.1016/s2589-7500(21)00056-x
– volume: 9
  start-page: 19420
  year: 2019
  ident: 14519_CR9
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-55536-6
– volume: 136
  start-page: 907
  year: 1981
  ident: 14519_CR24
  publication-title: AJR Am. J. Roentgenol.
  doi: 10.2214/ajr.136.5.907
– year: 2021
  ident: 14519_CR4
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-021-07833-w
– volume: 3
  start-page: 118
  year: 2020
  ident: 14519_CR10
  publication-title: NPJ Digit Med.
  doi: 10.1038/s41746-020-00324-0
– volume: 94
  start-page: 20201263
  year: 2021
  ident: 14519_CR14
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20201263
– volume: 297
  start-page: 687
  year: 2020
  ident: 14519_CR11
  publication-title: Radiology
  doi: 10.1148/radiol.2020201240
– year: 2021
  ident: 14519_CR22
  publication-title: Pediatr. Radiol.
  doi: 10.1007/s00247-021-05146-0
– volume: 21
  start-page: 511
  year: 2020
  ident: 14519_CR1
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2019.0821
– volume: 22
  start-page: 1743
  year: 2021
  ident: 14519_CR21
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2021.0544
– volume: 48
  start-page: e574
  year: 2020
  ident: 14519_CR15
  publication-title: Crit. Care Med.
  doi: 10.1097/ccm.0000000000004397
– volume: 29
  start-page: 6780
  year: 2019
  ident: 14519_CR19
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-019-06250-4
– volume: 21
  start-page: 1150
  year: 2020
  ident: 14519_CR7
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2020.0536
– year: 2021
  ident: 14519_CR8
  publication-title: Pediatr. Radiol.
  doi: 10.1007/s00247-021-05086-9
– volume: 50
  start-page: 482
  year: 2020
  ident: 14519_CR16
  publication-title: Pediatr. Radiol.
  doi: 10.1007/s00247-019-04593-0
– volume: 3
  year: 2021
  ident: 14519_CR5
  publication-title: Radiol. Artif. Intell.
  doi: 10.1148/ryai.2020200026
– volume: 2
  year: 2019
  ident: 14519_CR23
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2019.1095
– year: 2021
  ident: 14519_CR2
  publication-title: BMJ Open Respir. Res.
  doi: 10.1136/bmjresp-2021-001045
– ident: 14519_CR20
– year: 2021
  ident: 14519_CR6
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-021-08074-7
– volume: 294
  start-page: 199
  year: 2020
  ident: 14519_CR13
  publication-title: Radiology
  doi: 10.1148/radiol.2019182465
– year: 2020
  ident: 14519_CR12
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm9061981
– year: 2021
  ident: 14519_CR18
  publication-title: Pediatr. Radiol.
  doi: 10.1007/s00247-021-05072-1
– volume: 19
  start-page: 131
  year: 2020
  ident: 14519_CR17
  publication-title: J. Cyst. Fibros.
  doi: 10.1016/j.jcf.2019.04.016
SSID ssj0000529419
Score 2.4850852
Snippet Artificial intelligence (AI) applied to pediatric chest radiographs are yet scarce. This study evaluated whether AI-based software developed for adult chest...
Abstract Artificial intelligence (AI) applied to pediatric chest radiographs are yet scarce. This study evaluated whether AI-based software developed for adult...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10215
SubjectTerms 692/308/3187
692/699/1785
Artificial intelligence
Atelectasis
Chest
Children
Fibrosis
Humanities and Social Sciences
Lesions
multidisciplinary
Pediatrics
Pleural effusion
Pneumothorax
Radiography
Science
Science (multidisciplinary)
Software
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOgl9BXqNi0q9NaY6GlJxz4SQg89NZCbkCwNWQjeJbtJKP3z1cP7cKDNJTcjjW1JM8OMmJlvEPoEmvRKkL6NkrpWBEdabaJupe86L3wXORS0z5_d2bn4cSEvdlp95ZywCg9cD-5Y8FyuLZwx4IQ2zAkjOFAXI3gdXCnzTTZv5zJVUb2ZEdSMVTKE6-NlslS5mizdvXJzWtPeTSxRAeyfeJn3cyTvBUqL_Tl9jvZHxxF_qQt-gZ7E4SV6WltJ_n6F_nyvOXNpFi-2xQB4DjjvseJE4NkOACcucOK3MeBEjAsOx7I8JpewEG5zEfNXFuueHri02MLXLswq3PXyNTo_Pfn17awdGyu0vdR81bpkpPsQOk4DAYgM0pEGFTmjgfYMOgI8SGcocO51lIEyb3yy48pLyRlQfoD2hvkQ3yCsnAPdARgW000zciMdyGiICST4NNIguj5k24-o47n5xZUt0W-ubWWMTYyxhTH2rkGfN-8sKubGf6m_Zt5tKDNedhlIUmRHKbIPSVGDDtect6MSLy3rlDJSE0ka9HEzndQvx1TcEOc3hUbnoLpSDVITiZksaDozzC4LkLdhJNkp2aCjtWxtf_7vDb99jA2_Q89Y1oXchUkdor3V9U18n9yrlf9QNOkvPWslLw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nj9QgFCe6xsSL8TNWV4OJNyXLZ4GT8Wuz8eDJTeZGoIBOYtpxOuvG-M8LlM7YTdxbA68t9D36Hjz4_QB4FRXuJMcdCoJYxL3FSOmgkHBt67hrA4sF7fNLe3bOP6_Eqi64jXVb5fxPLD9qP3R5jfyEtlJqobDAbzc_UWaNytnVSqFxE9zK0GXZquVK7tdYchaLE13PymCmTsbkr_KZsjQDyxS1Gl0u_FGB7V_Emld3Sl5JlxYvdHoP3K3hI3w36fs-uBH6B-D2RCj5-yH483HaOZdq4eZwJAAOEWYTmdAi4PofGE5YQMV_BQ-TMCxoHGO5TIFhETzsSMxP2czMHrAQbcGt9esJ9Hp8BM5PP339cIYqvQLqhGI7ZJOr7rxvGfE4xkCj5szLwCjxpKOxxZF5YTWJjDkVhCfUaZe8uXRCMBoJewyO-qEPTwCU1kbVxqhpSPPNwLSwUQSNtcfepZIGkPkjm65ij2cKjB-m5MCZMpNiTFKMKYoxlw14vb9nMyFvXCv9PutuL5lRs0vBsP1m6iA0nOWj_9xqHS1XmlqeuhyJDSE65a1qwPGseVOH8mgOhteAl_vqNAhzZsX2YbgoMiqn1qVsgFxYzKJBy5p-_b3AeWuKk7cSDXgz29bh5f_v8NPr2_oM3KHZyjPLkjwGR7vtRXiewqede1HGyF84bRyR
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEE8RKMhI3CDCz9g-Lo-q2gMXqNSbZcc2rISyq91tq6p_HttJdkkFSNwie5zYmXFmnJn5BuBNVLiVHLd1EMTW3FtcKx1ULVzTOO6awGJB-_zSnJ7x-bk4PwA65sKUoP0CaVk-02N02PtNUjQ5GSwdnXJtWV1f3YGjDNWeZPtoNpt_ne_-rGTfFSd6yJDBTP1h8EQLFbD-iYV5Oz7ylpO06J6TB3B_MBrRrJ_mQzgI3SO425eRvH4MN5_6eLnUi1b7RAC0jCivrMeIQIvfwDdRgRK_DB4lYlQwODblMpmDhXAfh5jvshrreaBSXgutrV_0UNebJ3B28vnbx9N6KKpQt0KxbW2Tgm69bxjxOMZAo-bMy8Ao8aSlscGReWE1iYw5FYQn1GmXdLh0QjAaCXsKh92yC88ASWujamLUNKRTZmBa2CiCxtpj71JLBWR8yaYdEMdz4Yufpni-mTI9Y0xijCmMMVcVvN2NWfV4G_-k_pB5t6PMWNmlYbn-bgbZMZzlhH9utY6WK00tT0uOxIYQnfJWVXA8ct4MG3hjaCOlFgoLXMHrXXfaetmfYruwvCg0KjvUpaxATiRmMqFpT7f4UUC8NcVJR4kK3o2ytX_43xf8_P_IX8A9mqU-11qSx3C4XV-El8mI2rpXw675BUNgHDI
  priority: 102
  providerName: Springer Nature
Title Diagnostic performance of artificial intelligence approved for adults for the interpretation of pediatric chest radiographs
URI https://link.springer.com/article/10.1038/s41598-022-14519-w
https://www.proquest.com/docview/2677958050
https://www.proquest.com/docview/2678421277
https://pubmed.ncbi.nlm.nih.gov/PMC9204675
https://doaj.org/article/4325434a99fa4892a4943f1aeefb8da8
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_tQ0i8ID5F2KiMxBsEHDuO7QeEurJpqsSEgEp9i-zYhkpT2rUdY-Kfx3aSlkyDJ54S2eck9vl055z9-wG8dAJXPMdValmm0twonAppRcp0UehcF5a6iPZ5VpxO8vGUTXegoztqB3B169Iu8ElNludvfl5cv_cG_645Mi7errwTCgfF_LIq8M7K9GoX9r1n4oHR4GMb7jdY30TmmWzPztzetOefIox_L_a8uXPyRvo0eqWT-3CvDSfRsNH_A9ix9UO40xBMXj-CXx-anXS-Fi22RwTQ3KEwZRr0CDT7A5YTRZDxH9YgL4wiOscq3vpAMQpudyiGpyw6pg8UibfQUplZA4K9egyTk-Ovo9O0pVtIKyboOlXedVfGFDQz2DlLnMyp4ZaSzGQVcQV21DAlM0epFpaZjGipvXfnmjFKXEafwF49r-1TQFwpJwrnJLF-_WmpZMoxK7E02GhfkkDWDXJZtVjkgRLjvIw5cSrKRjGlV0wZFVNeJfBq02bRIHH8U_oo6G4jGVC0Y8F8-a1sjbLMaYACyJWUTuVCEpX7LrtMWeu0MEokcNhpvuxmZkkKziUTmOEEXmyqvVGGTIuq7fwyyoiQauc8Ad6bMb0P6tfUs-8R3lsS7L0XS-B1N7e2L_97h5_9jw4fwF0SbCFwM_FD2FsvL-1zH3St9QB2-ZQPYH84HH8Z--vR8dmnz750VIwG8UfGINrab8ofMuw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9UgFD6ZM0ZfjD9jdSom-qTNKJQCD8aoc7lzc09bct-QFtCbmPZ6e-fN4v_k3yjQ9l67xL3trYHTFjgHDnDg-wBeOoErnuMqtSzTaW40ToW0ImVlUZR5WVjqItrncTE5zT9P2XQL_gx3YcKxymFMjAO1aaqwR75LCs4lE5jhd_OfaWCNCtHVgUKjM4tDe77yS7b27cGe1-8rQvY_nXycpD2rQFoxQZep9h6qMqagmcHOWeJkTg23lGQmq4grsKOGaZk5SkthmclIKUvvxHjJGCUuo_671-C6d7w4LPb4lK_3dELULM9kfzcHU7Hbev8Y7rD5FV-gxJXpauT_Ik3AaG578WTmhfBs9Hr7d-B2P11F7zv7ugtbtr4HNzoCy_P78HuvO6nnc9F8cwUBNQ4Fk-zQKdDsH9hPFEHMf1mDvDCK6B9tfPQT0Si4OQEZvjIfmERQJPZCC21mHch2-wBOr6ThH8J23dT2ESCutROFc5JYv761VDLtmJVYGmxKn5JANjSyqnqs80C58UPFmDsVqlOM8opRUTFqlcDr9TvzDunjUukPQXdryYDSHROaxTfVd3qV0wA1kGspnc6FJDr3VXaZttaVwmiRwM6gedUPHa3aGHoCL9bZvtOHSI6ubXMWZUQI5XOeAB9ZzKhA45x69j3Ch0uCvXdkCbwZbGvz8_9X-PHlZX0ONycnX47U0cHx4RO4RYLFB4YnvgPby8WZfeqnbsvyWewvCL5edQf9C01TWX4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTiBeED-1jAFGgieI6thxbD8gxOiqjaFqQkzam3FiGyqhtGs7qon_jL8O20laOom97S2KL4mTO9_ZufP3AbxyAlc8x1VqWabT3GicCmlFysqiKPOysNRFtM9RcXiafzpjZ1vwp9sLE8oqO58YHbWZVOEfeZ8UnEsmMMN915ZFnAyG76fnaWCQCpnWjk6jMZFje7n0y7f5u6OB1_VrQoYHXz8epi3DQFoxQRep9tGqMqagmcHOWeJkTg23lGQmq4grsKOGaZk5SkthmclIKUsf0HjJGCUuo_6-t2Cbh1VRD7b3D0YnX1Z_eEIOLc9ku1MHU9Gf-2gZdrT59V8gyJXpciMaRtKAjZnu1TrNK8naGAOH9-FeO3lFHxprewBbtn4Itxs6y8tH8HvQ1O35VjRdb0hAE4eCgTZYFWj8DwgoipDmv6xBXhhFLJB5PPTT0ii4rocMd5l2vCIo0nyhmTbjBnJ7_hhOb-TTP4FePantDiCutROFc5JYv9q1VDLtmJVYGmxKfyaBrPvIqmqRzwMBx08VM_BUqEYxyitGRcWoZQJvVtdMG9yPa6X3g-5WkgGzO56YzL6r1gWonAbggVxL6XQuJNG5f2WXaWtdKYwWCex1mletI5mrtdkn8HLV7F1AyOvo2k4uoowIiX3OE-AbFrPRoc2WevwjgolLgn2sZAm87Wxr_fD_v_Du9X19AXf84FSfj0bHT-EuCQYf6J74HvQWswv7zM_jFuXzdsAg-HbTY_QvG4JfGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+performance+of+artificial+intelligence+approved+for+adults+for+the+interpretation+of+pediatric+chest+radiographs&rft.jtitle=Scientific+reports&rft.au=Hyun+Joo+Shin&rft.au=Nak-Hoon+Son&rft.au=Min+Jung+Kim&rft.au=Eun-Kyung+Kim&rft.date=2022-06-17&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41598-022-14519-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4325434a99fa4892a4943f1aeefb8da8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon