Recovery of photosynthesis after long-term storage in the terrestrial cyanobacterium Nostoc commune

The terrestrial cyanobacterium Nostoc commune is an anhydrobiotic organism with extreme longevity. Recovery of photosynthesis by rehydration was examined using our laboratory stocks of dry N. commune thalli after long-term storage in a desiccated state. In the samples stored at room temperature for...

Full description

Saved in:
Bibliographic Details
Published inJournal of general and applied microbiology Vol. 68; no. 4; pp. 169 - 174
Main Authors Yuasa, Koki, Wei, Yang, Nishiyama, Yoshitaka, Sakamoto, Toshio
Format Journal Article
LanguageEnglish
Published Japan Applied Microbiology, Molecular and Cellular Biosciences Research Foundation 01.01.2022
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0022-1260
1349-8037
DOI10.2323/jgam.2022.01.003

Cover

Abstract The terrestrial cyanobacterium Nostoc commune is an anhydrobiotic organism with extreme longevity. Recovery of photosynthesis by rehydration was examined using our laboratory stocks of dry N. commune thalli after long-term storage in a desiccated state. In the samples stored at room temperature for over 8 years, photosynthetic oxygen evolution was barely detectable, whereas oxygen consumption was recovered. There was an exceptional case in which photosynthetic oxygen evolution recovered after 8 years of storage at room temperature. Both photosynthetic oxygen evolution and respiratory oxygen consumption were recovered in dry thalli stored at -20°C for over 15 years. Consistent with the recovery of photosynthetic oxygen evolution, Fv/Fm was detected in the samples stored at -20°C at levels similar to those of freshly collected N. commune colonies. Carotenoids, scytonemin and chlorophyll a appeared to be intact in the dry thalli stored at -20°C, but β-carotene was not detected in the samples stored at room temperature. α-Tocopherol was intact in the samples stored at -20°C but was degraded in the samples stored at room temperature. These results suggest that dry thalli of N. commune are capable of sustaining biological activities for a long time, although they are gradually damaged when stored at room temperature.
AbstractList The terrestrial cyanobacterium Nostoc communeis an anhydrobiotic organism with extreme longevity. Recovery of photosynthesis by rehydration was examined using our laboratory stocks of dry N. commune thalli after long-term storage in a desiccated state. In the samples stored at room temperature for over 8 years, photosynthetic oxygen evolution was barely detectable, whereas oxygen consumption was recovered. There was an exceptional case in which photosynthetic oxygen evolution recovered after 8 years of storage at room temperature. Both photosynthetic oxygen evolution and respiratory oxygen consumption were recovered in dry thalli stored at -20°C for over 15 years. Consistent with the recovery of photosynthetic oxygen evolution, Fv/Fm was detected in the samples stored at -20°C at levels similar to those of freshly collected N. commune colonies. Carotenoids, scytonemin and chlorophyll a appeared to be intact in the dry thalli stored at -20°C, but β-carotene was not detected in the samples stored at room temperature. α-Tocopherol was intact in the samples stored at -20°C but was degraded in the samples stored at room temperature. These results suggest that dry thalli of N. commune are capable of sustaining biological activities for a long time, although they are gradually damaged when stored at room temperature.
The terrestrial cyanobacterium Nostoc commune is an anhydrobiotic organism with extreme longevity. Recovery of photosynthesis by rehydration was examined using our laboratory stocks of dry N. commune thalli after long-term storage in a desiccated state. In the samples stored at room temperature for over 8 years, photosynthetic oxygen evolution was barely detectable, whereas oxygen consumption was recovered. There was an exceptional case in which photosynthetic oxygen evolution recovered after 8 years of storage at room temperature. Both photosynthetic oxygen evolution and respiratory oxygen consumption were recovered in dry thalli stored at -20°C for over 15 years. Consistent with the recovery of photosynthetic oxygen evolution, Fv/Fm was detected in the samples stored at -20°C at levels similar to those of freshly collected N. commune colonies. Carotenoids, scytonemin and chlorophyll a appeared to be intact in the dry thalli stored at -20°C, but β-carotene was not detected in the samples stored at room temperature. α-Tocopherol was intact in the samples stored at -20°C but was degraded in the samples stored at room temperature. These results suggest that dry thalli of N. commune are capable of sustaining biological activities for a long time, although they are gradually damaged when stored at room temperature.
ArticleNumber 2022.01.003
Author Sakamoto, Toshio
Wei, Yang
Yuasa, Koki
Nishiyama, Yoshitaka
Author_xml – sequence: 1
  fullname: Yuasa, Koki
  organization: Present address: Fisheries Technology Institute, Japan Fisheries Research and Education Agency
– sequence: 1
  fullname: Wei, Yang
  organization: Division of Biological Sciences, Graduate School of Natural Science and Technology
– sequence: 1
  fullname: Nishiyama, Yoshitaka
  organization: Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
– sequence: 1
  fullname: Sakamoto, Toshio
  organization: Division of Biological Sciences, Graduate School of Natural Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35598979$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rFDEYh4NU7LZ69yQBz7O--dh8HKVYFUoF0XPIZDK7WWaSNckI-9-bZdsiPfSShDfP874hvyt0EVP0CL0nsKaMsk_7rZ3XFChdA1kDsFdoRRjXnQImL9AK2k1HqIBLdFXKvgGCKv4GXbLNRist9Qq5n96lvz4fcRrxYZdqKsdYd76Egu1YfcZTituuHWZcasp263GIuBG41bIvNQc7YXe0MfXWtVpYZnyfGuuwS_O8RP8WvR7tVPy7h_0a_b798uvmW3f34-v3m893ndsoVjutCUgxDNqBtBykGwfXKyKk0ER48M45ajdWguCgFPdM9WIcpIZB9nIcHbtGH899Dzn9WdrTzD4tObaRhkopGFeMqZcpLoEoTmWjPjxQSz_7wRxymG0-msefa4A4Ay6nUrIfjQvV1pBizTZMhoA5RWROEZlTRAaIaQk0EZ6Jj71fUG7Pyr7UFsCTYHMNbvJnQSjDT8t_4hPgdjYbH9k_GiitsA
CitedBy_id crossref_primary_10_3390_polym15081889
crossref_primary_10_1007_s42770_025_01638_5
crossref_primary_10_3800_pbr_19_108
Cites_doi 10.1111/j.1574-6941.2011.01114.x
10.1016/j.jphotobiol.2011.07.003
10.1111/pre.12333
10.1093/pcp/pcf020
10.2323/jgam.2021.03.003
10.1007/BF01403474
10.2323/jgam.55.135
10.1111/j.1574-6941.2011.01195.x
10.1016/j.jphotobiol.2014.12.008
10.1128/AEM.71.11.7327-7333.2005
10.2323/jgam.58.137
10.1104/pp.105.061135
10.2323/jgam.54.243
10.1093/pcp/pcw153
10.2323/jgam.2017.12.003
10.1093/pcp/pcn018
10.2307/3223790
10.3390/md11093124
10.1146/annurev.arplant.56.032604.144301
10.1007/BF02540229
10.1016/S0021-9258(17)37347-7
10.2307/2481755
10.1007/BF00384277
10.1016/0005-2760(71)90180-9
10.2323/jgam.2017.03.001
10.1111/j.1440-1835.2008.00522.x
10.1007/s00018-007-7190-z
10.3390/antiox4030603
10.1007/s00284-009-9453-4
10.1007/BF02522884
ContentType Journal Article
Copyright 2022 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
Copyright Japan Science and Technology Agency 2022
Copyright_xml – notice: 2022 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
– notice: Copyright Japan Science and Technology Agency 2022
DBID AAYXX
CITATION
NPM
7QL
7T7
7U7
8FD
C1K
FR3
M7N
P64
RC3
DOI 10.2323/jgam.2022.01.003
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Genetics Abstracts
Genetics Abstracts

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1349-8037
EndPage 174
ExternalDocumentID 35598979
10_2323_jgam_2022_01_003
article_jgam_68_4_68_2022_01_003_article_char_en
Genre Journal Article
GroupedDBID ---
-~X
.GJ
123
2WC
53G
ACPRK
ADBBV
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
EBS
EJD
F5P
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
TKC
TR2
VH1
~02
~KM
AAYXX
CITATION
NPM
7QL
7T7
7U7
8FD
C1K
FR3
M7N
P64
RC3
ID FETCH-LOGICAL-c583t-991076dd9c07a407cfdcb81676916e0eccc2a5a70640884e38b6fd790d7b7ffc3
ISSN 0022-1260
IngestDate Mon Jun 30 10:14:35 EDT 2025
Mon Jun 30 09:57:34 EDT 2025
Thu Jan 02 22:53:20 EST 2025
Thu Apr 24 22:50:59 EDT 2025
Tue Jul 01 02:29:57 EDT 2025
Wed Sep 03 06:31:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords antioxidant
tocopherol
carotenoid
desiccation tolerance
anhydrobiosis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c583t-991076dd9c07a407cfdcb81676916e0eccc2a5a70640884e38b6fd790d7b7ffc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/jgam/68/4/68_2022.01.003/_article/-char/en
PMID 35598979
PQID 2747018427
PQPubID 2029108
PageCount 6
ParticipantIDs proquest_journals_2776348338
proquest_journals_2747018427
pubmed_primary_35598979
crossref_citationtrail_10_2323_jgam_2022_01_003
crossref_primary_10_2323_jgam_2022_01_003
jstage_primary_article_jgam_68_4_68_2022_01_003_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of general and applied microbiology
PublicationTitleAlternate J. Gen. Appl. Microbiol.
PublicationYear 2022
Publisher Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
Japan Science and Technology Agency
Publisher_xml – name: Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
– name: Japan Science and Technology Agency
References Inoue-Sakamoto, K., Nazifi, E., Tsuji, C., Asano, T., Nishiuchi, T., Matsugo, S., Ishihara, K., Kanesaki, Y., Yoshikawa, H., and Sakamoto, T. (2018b) Characterization of mycosporine-like amino acids in the cyanobacterium Nostoc verrucosum. J. Gen. Appl. Microbiol., 64, 203-211. doi: 10.2323/jgam.2017.12.003
Yoshida, T., and Sakamoto, T. (2009) Water-stress induced trehalose accumulation and control of trehalase in the cyanobacterium Nostoc punctiforme IAM M-15. J. Gen. Appl. Microbiol., 55, 135-145. doi: 10.2323/jgam.55.135
Maeda, H., Sakuragi, Y., Bryant, D. A., and DellaPenna, D. (2005) Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation. Plant Physiol., 138, 1422-1435. doi: 10.1104/pp.105.061135
Scherer, S., Ernst, A., Chen, T.-W., and Böger, P. (1984) Rewetting of drought-resistant blue-green algae: Time course of water uptake and reappearance of respiration, photosynthesis, and nitrogen fixation. Oecologia, 62, 418-423. doi: 10.1007/BF00384277
Morsy, F. M., Kuzuha, S., Takani, Y., and Sakamoto, T. (2008) Novel thermostable glycosidases in the extracellular matrix of the terrestrial cyanobacterium Nostoc commune. J. Gen. Appl. Microbiol., 54, 243-252. doi: 10.2323/jgam.54.243
Nazifi, E., Wada, N., Yamaba, M., Asano, T., Nishiuchi, T., Matsugo, S., and Sakamoto, T. (2013) Glycosylated porphyra-334 and palythine-threonine from the terrestrial cyanobacterium Nostoc commune. Mar. Drugs, 11, 3124-3154. doi: 10.3390/md11093124
Takaichi, S., Maoka, T., and Mochimaru, M. (2009) Unique carotenoids in the terrestrial cyanobacterium Nostoc commune NIES-24: 2-Hydroxymyxol 2’-fucoside, nostoxanthin and canthaxanthin. Curr. Microbiol., 59, 413-419. doi: 10.1007/s00284-009-9453-4
Hill, D. R., Hladun, S. L., Scherer, S., and Potts, M. (1994a) Water stress proteins of Nostoc commune (Cyanobacteria) are secreted with UV-A/B-absorbing pigments and associate with 1,4-beta-D-xylanxylanohydrolase activity. J. Biol. Chem., 269, 7726-7734. doi: 10.1016/S0021-9258(17)37347-7
Ueno, M., Sae-Tang, P., Kusama, Y., Hihara, Y., Matsuda, M., Hasunuma, T., and Nishiyama, Y. (2016) Moderate heat stress stimulates repair of photosystem II during photoinhibition in Synechocystis sp. PCC 6803. Plant Cell Physiol., 57, 2417-2426. doi: 10.1093/pcp/pcw153
Wei, Y., Nishiuchi, T. and Sakamoto, T. (2021) Characterization of mycosporine-like amino acids in the edible cyanobacterium Nostoc commune (Di Pi Cai) from China. J. Gen. Appl. Microbiol., in press. doi: 10.2323/jgam.2021.03.003
Nazifi, E., Wada, N., Asano, T., Nishiuchi, T., Iwamuro, Y., Chinaka, S., Matsugo, S., and Sakamoto, T. (2015) Characterization of the chemical diversity of glycosylated mycosporine-like amino acids in the terrestrial cyanobacterium Nostoc commune. J. Photochem. Photobiol. B: Biology, 142, 154-168. doi: 10.1016/j.jphotobiol.2014.12.008
Wada, N., Sakamoto, T., and Matsugo, S. (2015) Mycosporine-like amino acids and their derivatives as natural antioxidants. Antioxidants, 4, 603-646. doi: 10.3390/antiox4030603
Cameron, R. E. (1962) Species of Nostoc vaucher occurring in the Sonoran Desert in Arizona. Trans. Amer. Microsc. Soc., 81, 379-384. doi: 10.2307/3223790
Sakamoto, T., Hashimoto, A., Yamaba, M., Wada, N., Yoshida, T., Inoue-Sakamoto, K., Nishiuchi, T., and Matsugo, S. (2019) Four chemotypes of the terrestrial cyanobacterium Nostoc commune characterized by differences in the mycosporine-like amino acids. Phycol. Res., 67, 3-11. doi: 10.1111/pre.12333
Lipman, C. B. (1941) The successful revival of Nostoc commune from a herbarium specimen eighty-seven years old. Bull. Torr. Bot. Club, 68, 664-666. doi: 10.2307/2481755
Arima, H., Horiguchi, N., Takaichi, S., Kofuji, R., Ishida, K., Wada, K., and Sakamoto, T. (2012) Molecular genetic and chemotaxonomic characterization of the terrestrial cyanobacterium Nostoc commune and its neighboring species. FEMS Microbiol. Ecol., 79, 35-45. doi: 10.1111/j.1574-6941.2011.01195.x
Sakamoto, T., Kumihashi, K., Kunita, S., Masaura, T., Inoue-Sakamoto, K., and Yamaguchi, M. (2011) The extracellular-matrix-retaining cyanobacterium Nostoc verrucosum accumulates trehalose, but is sensitive to desiccation. FEMS Microbiol. Ecol., 77, 385-394. doi: 10.1111/j.1574-6941.2011.01114.x
Dasilva, E. J., and Jensen, A. (1971) Content of α-tocopherol in some blue-green algae. Biochim. Biophys. Acta, 239, 345-347. doi: 10.1016/0005-2760(71)90180-9
Takaichi, S. and Mochimaru, M. (2007) Carotenoids and carotenogenesis in cyanobacteria: unique ketocarotenoids and carotenoid glycosides. Cell. Mol. Life Sci., 64, 2607-2619. doi: 10.1007/s00018-007-7190-z
Potts, M. (2000) Nostoc. In The Ecology of Cyanobacteria, ed. by Whitton, B. A. and Potts, M., Kluwer Academic Publishers, Netherlands, pp. 465-504. doi: 10.1007/0-306-46855-7_17
Scherer, S. and Zhong, Z.-P. (1991) Desiccation independence of terrestrial Nostoc commune ecotypes (cyanobacteria). Microbiol. Ecol., 22, 271-283. https://www.jstor.org/stable/4251214
Tamaru, Y., Takani, Y., Yoshida, T., and Sakamoto, T. (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol., 71, 7327-7333. doi: 10.1128/AEM.71.11.7327-7333.2005
Matsui, K., Nazifi, E., Kunita, S., Wada, N., Matsugo, S., and Sakamoto, T. (2011) Novel glycosylated mycosporine-like amino acids with radical scavenging activity from the cyanobacterium Nostoc commune. J. Photochem. Photobiol. B: Biology, 105, 81-89. doi: 10.1016/j.jphotobiol.2011.07.003
T., Yoshida, T., Arima, H., Hatanaka, Y., Takani, Y., and Tamaru, Y. (2009) Accumulation of trehalose in response to desiccation and salt stress in the terrestrial cyanobacterium Nostoc commune. Phycol. Res., 57, 66-73. doi: 10.1111/j.1440-1835.2008.00522.x
Fukuda, S., Yamakawa, R., Hirai, M., Kashino, Y., Koike, H., and Satoh, K. (2008) Mechanisms to avoid photoinhibition in a desiccation-tolerant cyanobacterium, Nostoc commune. Plant Cell Physiol., 49, 488-492. doi: 10.1093/pcp/pcn018
Hill, D. R., A. Peat, and M. Potts (1994b) Biochemistry and structure of the glycan secreted by desiccation-tolerant Nostoc commune (Cyanobacteria). Protoplasma, 182, 126-148. doi: 10.1007/BF01403474
DellaPenna, D. and Pogson, B. J. (2006) Vitamin synthesis in Plants: tocopherols and carotenoids. Annu. Rev. Plant Biol., 57, 711–738. doi: 10.1146/ annurev.arplant.56.032604.144301
Inoue-Sakamoto, K., Tanji, Y., Yamaba, M., Natsume, T., Masaura, T., Asano, T., Nishiuchi, T., and Sakamoto, T. (2018a) Characterization of extracellular matrix components from the desiccation-tolerant cyanobacterium Nostoc commune. J. Gen. Appl. Microbiol., 64, 15-25. doi: 10.2323/jgam.2017.03.001
Satoh, K., Hirai, M., Nishio, J., Yamaji, T., Kashino, Y., and Koike, H. (2002) Recovery of photosynthetic systems during rewetting is quite rapid in a terrestrial cyanobacterium, Nostoc commune. Plant Cell Physiol., 43, 170-176. doi: 10.1093/pcp/pcf020
Kamal-Eldin, A. and Appelqvist, L-Å. (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids, 31, 671-701. doi: 10.1007/BF02522884
Matsui, K., Nazifi, E., Hirai, Y., Wada, N., Matsugo, S., and Sakamoto, T. (2012) The cyanobacterial UV-absorbing pigment scytonemin displays radical-scavenging activity. J. Gen. App. Microbiol., 58, 137-144. doi: 10.2323/jgam.58.137
22
23
24
25
26
27
28
29
30
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: Satoh, K., Hirai, M., Nishio, J., Yamaji, T., Kashino, Y., and Koike, H. (2002) Recovery of photosynthetic systems during rewetting is quite rapid in a terrestrial cyanobacterium, Nostoc commune. Plant Cell Physiol., 43, 170-176. doi: 10.1093/pcp/pcf020
– reference: Matsui, K., Nazifi, E., Hirai, Y., Wada, N., Matsugo, S., and Sakamoto, T. (2012) The cyanobacterial UV-absorbing pigment scytonemin displays radical-scavenging activity. J. Gen. App. Microbiol., 58, 137-144. doi: 10.2323/jgam.58.137
– reference: Nazifi, E., Wada, N., Yamaba, M., Asano, T., Nishiuchi, T., Matsugo, S., and Sakamoto, T. (2013) Glycosylated porphyra-334 and palythine-threonine from the terrestrial cyanobacterium Nostoc commune. Mar. Drugs, 11, 3124-3154. doi: 10.3390/md11093124
– reference: Hill, D. R., A. Peat, and M. Potts (1994b) Biochemistry and structure of the glycan secreted by desiccation-tolerant Nostoc commune (Cyanobacteria). Protoplasma, 182, 126-148. doi: 10.1007/BF01403474
– reference: DellaPenna, D. and Pogson, B. J. (2006) Vitamin synthesis in Plants: tocopherols and carotenoids. Annu. Rev. Plant Biol., 57, 711–738. doi: 10.1146/ annurev.arplant.56.032604.144301
– reference: T., Yoshida, T., Arima, H., Hatanaka, Y., Takani, Y., and Tamaru, Y. (2009) Accumulation of trehalose in response to desiccation and salt stress in the terrestrial cyanobacterium Nostoc commune. Phycol. Res., 57, 66-73. doi: 10.1111/j.1440-1835.2008.00522.x
– reference: Fukuda, S., Yamakawa, R., Hirai, M., Kashino, Y., Koike, H., and Satoh, K. (2008) Mechanisms to avoid photoinhibition in a desiccation-tolerant cyanobacterium, Nostoc commune. Plant Cell Physiol., 49, 488-492. doi: 10.1093/pcp/pcn018
– reference: Tamaru, Y., Takani, Y., Yoshida, T., and Sakamoto, T. (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol., 71, 7327-7333. doi: 10.1128/AEM.71.11.7327-7333.2005
– reference: Matsui, K., Nazifi, E., Kunita, S., Wada, N., Matsugo, S., and Sakamoto, T. (2011) Novel glycosylated mycosporine-like amino acids with radical scavenging activity from the cyanobacterium Nostoc commune. J. Photochem. Photobiol. B: Biology, 105, 81-89. doi: 10.1016/j.jphotobiol.2011.07.003
– reference: Takaichi, S., Maoka, T., and Mochimaru, M. (2009) Unique carotenoids in the terrestrial cyanobacterium Nostoc commune NIES-24: 2-Hydroxymyxol 2’-fucoside, nostoxanthin and canthaxanthin. Curr. Microbiol., 59, 413-419. doi: 10.1007/s00284-009-9453-4
– reference: Scherer, S. and Zhong, Z.-P. (1991) Desiccation independence of terrestrial Nostoc commune ecotypes (cyanobacteria). Microbiol. Ecol., 22, 271-283. https://www.jstor.org/stable/4251214
– reference: Arima, H., Horiguchi, N., Takaichi, S., Kofuji, R., Ishida, K., Wada, K., and Sakamoto, T. (2012) Molecular genetic and chemotaxonomic characterization of the terrestrial cyanobacterium Nostoc commune and its neighboring species. FEMS Microbiol. Ecol., 79, 35-45. doi: 10.1111/j.1574-6941.2011.01195.x
– reference: Nazifi, E., Wada, N., Asano, T., Nishiuchi, T., Iwamuro, Y., Chinaka, S., Matsugo, S., and Sakamoto, T. (2015) Characterization of the chemical diversity of glycosylated mycosporine-like amino acids in the terrestrial cyanobacterium Nostoc commune. J. Photochem. Photobiol. B: Biology, 142, 154-168. doi: 10.1016/j.jphotobiol.2014.12.008
– reference: Scherer, S., Ernst, A., Chen, T.-W., and Böger, P. (1984) Rewetting of drought-resistant blue-green algae: Time course of water uptake and reappearance of respiration, photosynthesis, and nitrogen fixation. Oecologia, 62, 418-423. doi: 10.1007/BF00384277
– reference: Ueno, M., Sae-Tang, P., Kusama, Y., Hihara, Y., Matsuda, M., Hasunuma, T., and Nishiyama, Y. (2016) Moderate heat stress stimulates repair of photosystem II during photoinhibition in Synechocystis sp. PCC 6803. Plant Cell Physiol., 57, 2417-2426. doi: 10.1093/pcp/pcw153
– reference: Hill, D. R., Hladun, S. L., Scherer, S., and Potts, M. (1994a) Water stress proteins of Nostoc commune (Cyanobacteria) are secreted with UV-A/B-absorbing pigments and associate with 1,4-beta-D-xylanxylanohydrolase activity. J. Biol. Chem., 269, 7726-7734. doi: 10.1016/S0021-9258(17)37347-7
– reference: Morsy, F. M., Kuzuha, S., Takani, Y., and Sakamoto, T. (2008) Novel thermostable glycosidases in the extracellular matrix of the terrestrial cyanobacterium Nostoc commune. J. Gen. Appl. Microbiol., 54, 243-252. doi: 10.2323/jgam.54.243
– reference: Cameron, R. E. (1962) Species of Nostoc vaucher occurring in the Sonoran Desert in Arizona. Trans. Amer. Microsc. Soc., 81, 379-384. doi: 10.2307/3223790
– reference: Inoue-Sakamoto, K., Tanji, Y., Yamaba, M., Natsume, T., Masaura, T., Asano, T., Nishiuchi, T., and Sakamoto, T. (2018a) Characterization of extracellular matrix components from the desiccation-tolerant cyanobacterium Nostoc commune. J. Gen. Appl. Microbiol., 64, 15-25. doi: 10.2323/jgam.2017.03.001
– reference: Dasilva, E. J., and Jensen, A. (1971) Content of α-tocopherol in some blue-green algae. Biochim. Biophys. Acta, 239, 345-347. doi: 10.1016/0005-2760(71)90180-9
– reference: Sakamoto, T., Hashimoto, A., Yamaba, M., Wada, N., Yoshida, T., Inoue-Sakamoto, K., Nishiuchi, T., and Matsugo, S. (2019) Four chemotypes of the terrestrial cyanobacterium Nostoc commune characterized by differences in the mycosporine-like amino acids. Phycol. Res., 67, 3-11. doi: 10.1111/pre.12333
– reference: Yoshida, T., and Sakamoto, T. (2009) Water-stress induced trehalose accumulation and control of trehalase in the cyanobacterium Nostoc punctiforme IAM M-15. J. Gen. Appl. Microbiol., 55, 135-145. doi: 10.2323/jgam.55.135
– reference: Sakamoto, T., Kumihashi, K., Kunita, S., Masaura, T., Inoue-Sakamoto, K., and Yamaguchi, M. (2011) The extracellular-matrix-retaining cyanobacterium Nostoc verrucosum accumulates trehalose, but is sensitive to desiccation. FEMS Microbiol. Ecol., 77, 385-394. doi: 10.1111/j.1574-6941.2011.01114.x
– reference: Maeda, H., Sakuragi, Y., Bryant, D. A., and DellaPenna, D. (2005) Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation. Plant Physiol., 138, 1422-1435. doi: 10.1104/pp.105.061135
– reference: Inoue-Sakamoto, K., Nazifi, E., Tsuji, C., Asano, T., Nishiuchi, T., Matsugo, S., Ishihara, K., Kanesaki, Y., Yoshikawa, H., and Sakamoto, T. (2018b) Characterization of mycosporine-like amino acids in the cyanobacterium Nostoc verrucosum. J. Gen. Appl. Microbiol., 64, 203-211. doi: 10.2323/jgam.2017.12.003
– reference: Wada, N., Sakamoto, T., and Matsugo, S. (2015) Mycosporine-like amino acids and their derivatives as natural antioxidants. Antioxidants, 4, 603-646. doi: 10.3390/antiox4030603
– reference: Wei, Y., Nishiuchi, T. and Sakamoto, T. (2021) Characterization of mycosporine-like amino acids in the edible cyanobacterium Nostoc commune (Di Pi Cai) from China. J. Gen. Appl. Microbiol., in press. doi: 10.2323/jgam.2021.03.003
– reference: Kamal-Eldin, A. and Appelqvist, L-Å. (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids, 31, 671-701. doi: 10.1007/BF02522884
– reference: Lipman, C. B. (1941) The successful revival of Nostoc commune from a herbarium specimen eighty-seven years old. Bull. Torr. Bot. Club, 68, 664-666. doi: 10.2307/2481755
– reference: Takaichi, S. and Mochimaru, M. (2007) Carotenoids and carotenogenesis in cyanobacteria: unique ketocarotenoids and carotenoid glycosides. Cell. Mol. Life Sci., 64, 2607-2619. doi: 10.1007/s00018-007-7190-z
– reference: Potts, M. (2000) Nostoc. In The Ecology of Cyanobacteria, ed. by Whitton, B. A. and Potts, M., Kluwer Academic Publishers, Netherlands, pp. 465-504. doi: 10.1007/0-306-46855-7_17
– ident: 19
  doi: 10.1111/j.1574-6941.2011.01114.x
– ident: 13
  doi: 10.1016/j.jphotobiol.2011.07.003
– ident: 20
  doi: 10.1111/pre.12333
– ident: 21
  doi: 10.1093/pcp/pcf020
– ident: 29
  doi: 10.2323/jgam.2021.03.003
– ident: 7
  doi: 10.1007/BF01403474
– ident: 30
  doi: 10.2323/jgam.55.135
– ident: 1
  doi: 10.1111/j.1574-6941.2011.01195.x
– ident: 17
  doi: 10.1016/j.jphotobiol.2014.12.008
– ident: 26
  doi: 10.1128/AEM.71.11.7327-7333.2005
– ident: 14
  doi: 10.2323/jgam.58.137
– ident: 12
  doi: 10.1104/pp.105.061135
– ident: 15
  doi: 10.2323/jgam.54.243
– ident: 27
  doi: 10.1093/pcp/pcw153
– ident: 9
  doi: 10.2323/jgam.2017.12.003
– ident: 5
  doi: 10.1093/pcp/pcn018
– ident: 2
  doi: 10.2307/3223790
– ident: 16
  doi: 10.3390/md11093124
– ident: 4
  doi: 10.1146/annurev.arplant.56.032604.144301
– ident: 23
  doi: 10.1007/BF02540229
– ident: 6
  doi: 10.1016/S0021-9258(17)37347-7
– ident: 11
  doi: 10.2307/2481755
– ident: 22
  doi: 10.1007/BF00384277
– ident: 3
  doi: 10.1016/0005-2760(71)90180-9
– ident: 8
  doi: 10.2323/jgam.2017.03.001
– ident: 18
  doi: 10.1111/j.1440-1835.2008.00522.x
– ident: 24
  doi: 10.1007/s00018-007-7190-z
– ident: 28
  doi: 10.3390/antiox4030603
– ident: 25
  doi: 10.1007/s00284-009-9453-4
– ident: 10
  doi: 10.1007/BF02522884
SSID ssj0036284
Score 2.2925425
Snippet The terrestrial cyanobacterium Nostoc commune is an anhydrobiotic organism with extreme longevity. Recovery of photosynthesis by rehydration was examined using...
The terrestrial cyanobacterium Nostoc communeis an anhydrobiotic organism with extreme longevity. Recovery of photosynthesis by rehydration was examined using...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 169
SubjectTerms anhydrobiosis
antioxidant
Carotene
carotenoid
Carotenoids
Chlorophyll
Cyanobacteria
Desiccants
desiccation tolerance
Evolution
Nostoc
Nostoc commune
Oxygen
Oxygen consumption
Photosynthesis
Recovery
Rehydration
Room temperature
Thalli
Tocopherol
Vitamin E
β-Carotene
Title Recovery of photosynthesis after long-term storage in the terrestrial cyanobacterium Nostoc commune
URI https://www.jstage.jst.go.jp/article/jgam/68/4/68_2022.01.003/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/35598979
https://www.proquest.com/docview/2747018427
https://www.proquest.com/docview/2776348338
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX The Journal of General and Applied Microbiology, 2022, Vol.68(4), pp.169-174
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbWARIviN8UBvIDL2jKlsRu7DwhmEATqBWITtqeIsdxum5tMtH0ofz13NlJmlYbYvBipYnTXnNfzmff-TtC3kqs927g_c5YkHo8zzXYwTz2ciZ9bWTGBgw3Jw9H0fEJ_3I6ON3p9TpZS8sqPdC_rt1X8i9ahXOgV9wlewvNtl8KJ-AY9AstaBjav9Ixzh1BaBskvzovq3KxKsChQ44RV_t7VhYTD43vPiZBYnpOndYI57Aohy3ZoVeqgLfasjYv5_sjpNrQmGs-XxYbiULrbWTWga0Zq234oXFmh9M1sVNrUJZq4TaelZfTdSTIphGcqXrkdKGR8-lKzW3fsxI-VOqyHTV-wDHAyq7sjvFi2V2wCMOtBYvrBLKLv005YCv2kZnN7IeP05rU0yzaZMROyamubQ-xTIurTnBgnDlnPAbsOVqZxt5HsoNr3jHegSsaU_sBgasetD3EgAeKVBcXE4U8BmFoSV99th5O2yTHGhYJdk0imXBs8JbED5CSNWk64P46gHOP3AmFsLkGX7-3oTBwMCRvKO_x77lYO4pxuC3Ehm919wKmFxNz88zJelDjh-RBjRz6wcnziOyY4jG554qhrp4Q3aCZljndRDO1aKYtmmmNZjotKPSgHTTTTTRTh2Zao_kpOfn8aXx07NUlQDw9kKzyYPbiiyjLYu0LxX2h80ynMsC87CAyPtgfHaqBEhiPlpIbJtMoz0TsZyIVYHjYM7JblIV5QajS2SALlVaaxVwoGRsB7r9vuM51kDPVJ4fNw0t0zY-PZVpmCcyT8XE7RXYU2Cfv2juuHDfMH_q-d_poe94WHn2y1ygyqW3QIsE1JT-QPBQ3XAb3gUvGZJ88d7pvf59haYZYxC__W7JX5P76Pd8ju9XPpXkNrnqVvrFQhnb0bfgb0dH1EA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recovery+of+photosynthesis+after+long-term+storage+in+the+terrestrial+cyanobacterium+Nostoc+commune&rft.jtitle=The+Journal+of+General+and+Applied+Microbiology&rft.au=Yuasa%2C+Koki&rft.au=Wei%2C+Yang&rft.au=Nishiyama%2C+Yoshitaka&rft.au=Sakamoto%2C+Toshio&rft.date=2022-01-01&rft.pub=Applied+Microbiology%2C+Molecular+and+Cellular+Biosciences+Research+Foundation&rft.issn=0022-1260&rft.eissn=1349-8037&rft.volume=68&rft.issue=4&rft.spage=169&rft.epage=174&rft_id=info:doi/10.2323%2Fjgam.2022.01.003&rft.externalDocID=article_jgam_68_4_68_2022_01_003_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1260&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1260&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1260&client=summon