Opening and Closing of the Bacterial RNA Polymerase Clamp
Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 337; no. 6094; pp. 591 - 595 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Association for the Advancement of Science
03.08.2012
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes. |
---|---|
AbstractList | Crystal structures of RNA polymerase show that a “clamp” region which surrounds the DNA binding site can adopt conformations ranging from a closed to an open state.
Chakraborty
et al.
(p.
591
) used single-molecule fluorescence energy transfer experiments to detect the clamp's conformational changes in solution during the transcription cycle. The results support a model in which a clamp opening allows DNA to be loaded into the active-center cleft and unwound. Direct interactions with DNA likely trigger clamp closure upon formation of a catalytically competent transcription initiation complex.
Single-molecule fluorescence measurements define the clamp conformation during transcription initiation and elongation.
Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes. Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes. Crystal structures of RNA polymerase show that a "clamp" region which surrounds the DNA binding site can adopt conformations ranging from a closed to an open state. Chakraborty et al. (p. 591) used single-molecule fluorescence energy transfer experiments to detect the clamp's conformational changes in solution during the transcription cycle. The results support a model in which a clamp opening allows DNA to be loaded into the active-center cleft and unwound. Direct interactions with DNA likely trigger clamp closure upon formation of a catalytically competent transcription initiation complex. [PUBLICATION ABSTRACT] Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes. [PUBLICATION ABSTRACT] Clamping DownCrystal structures of RNA polymerase show that a "clamp" region which surrounds the DNA binding site can adopt conformations ranging from a closed to an open state. Chakraborty et al. (p. 591) used single-molecule fluorescence energy transfer experiments to detect the clamp's conformational changes in solution during the transcription cycle. The results support a model in which a clamp opening allows DNA to be loaded into the active-center cleft and unwound. Direct interactions with DNA likely trigger clamp closure upon formation of a catalytically competent transcription initiation complex. Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes.Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes. Clamping Down Crystal structures of RNA polymerase show that a “clamp” region which surrounds the DNA binding site can adopt conformations ranging from a closed to an open state. Chakraborty et al. (p. 591) used single-molecule fluorescence energy transfer experiments to detect the clamp's conformational changes in solution during the transcription cycle. The results support a model in which a clamp opening allows DNA to be loaded into the active-center cleft and unwound. Direct interactions with DNA likely trigger clamp closure upon formation of a catalytically competent transcription initiation complex. |
Author | Jansen, Rolf Chowdhury, Saikat Nixon, B. Tracy Irschik, Herbert Weiss, Shimon Ebright, Richard H. Knight, Jennifer Kortkhonjia, Ekaterine Korlann, You Kim, Taiho Chakraborty, Anirban Wang, Dongye Ebright, Yon W. Wigneshweraraj, Sivaramesh |
Author_xml | – sequence: 1 givenname: Anirban surname: Chakraborty fullname: Chakraborty, Anirban – sequence: 2 givenname: Dongye surname: Wang fullname: Wang, Dongye – sequence: 3 givenname: Yon W. surname: Ebright fullname: Ebright, Yon W. – sequence: 4 givenname: You surname: Korlann fullname: Korlann, You – sequence: 5 givenname: Ekaterine surname: Kortkhonjia fullname: Kortkhonjia, Ekaterine – sequence: 6 givenname: Taiho surname: Kim fullname: Kim, Taiho – sequence: 7 givenname: Saikat surname: Chowdhury fullname: Chowdhury, Saikat – sequence: 8 givenname: Sivaramesh surname: Wigneshweraraj fullname: Wigneshweraraj, Sivaramesh – sequence: 9 givenname: Herbert surname: Irschik fullname: Irschik, Herbert – sequence: 10 givenname: Rolf surname: Jansen fullname: Jansen, Rolf – sequence: 11 givenname: B. Tracy surname: Nixon fullname: Nixon, B. Tracy – sequence: 12 givenname: Jennifer surname: Knight fullname: Knight, Jennifer – sequence: 13 givenname: Shimon surname: Weiss fullname: Weiss, Shimon – sequence: 14 givenname: Richard H. surname: Ebright fullname: Ebright, Richard H. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26219724$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22859489$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0kFrHCEUB3ApCc0m7bmnloFS6GUS33N09JgsTRoISSnteXCdN-0sM7rV2UO-fV122kAOWTwo-PuLPt8pO_LBE2PvgJ8DoLpIrifv6BwQdA3qFVsAN7I0yMURW3AuVKl5LU_YaUprzvOeEa_ZCaKWptJmwczDhnzvfxXWt8VyCGm3Dl0x_abiyrqJYm-H4vv9ZfEtDI8jRZsoOztu3rDjzg6J3s7zGft5_eXH8mt593Bzu7y8K53UYiqNVLXW1vCWatVVQgolV87wyirqCHlnWqME1hIdCkMVVSspVYsVAYcsxBn7vD93E8OfLaWpGfvkaBisp7BNDeZnCYHK8IMUNM9Dg5GHqZSgUFegD1MuIFtUKtOPz-g6bKPP5dkpbtBohKw-zGq7GqltNrEfbXxs_v1KBp9mYJOzQxetd316cgrB1Fhld7F3LoaUInX_CfBm1x_N3B_N3B85IZ8lXD_ZqQ9-irYfXsi93-fWaQrx6Sa57rVSIP4CCA3EcA |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1038_s41594_024_01349_9 crossref_primary_10_1074_jbc_M112_430900 crossref_primary_10_7498_aps_72_20231089 crossref_primary_10_1007_s00709_013_0596_6 crossref_primary_10_1021_acsabm_9b00840 crossref_primary_10_7554_eLife_52125 crossref_primary_10_1038_ncomms7161 crossref_primary_10_1093_nar_gkx719 crossref_primary_10_1002_pro_3160 crossref_primary_10_1038_s41467_019_09096_y crossref_primary_10_1016_j_jmb_2024_168713 crossref_primary_10_1093_femsre_fuae004 crossref_primary_10_1073_pnas_1320604110 crossref_primary_10_1002_ange_202216115 crossref_primary_10_1038_s41467_023_36113_y crossref_primary_10_1038_s41594_024_01447_8 crossref_primary_10_1021_acs_biochem_0c00098 crossref_primary_10_1021_acs_chemrev_9b00361 crossref_primary_10_1038_nature16143 crossref_primary_10_1016_j_jbc_2021_101086 crossref_primary_10_1146_annurev_biochem_060815_014844 crossref_primary_10_1128_ecosalplus_esp_0004_2018 crossref_primary_10_1093_nar_gkad1258 crossref_primary_10_1016_j_jbc_2021_101404 crossref_primary_10_1021_cr400355w crossref_primary_10_1016_j_molcel_2020_02_017 crossref_primary_10_1002_ange_201404848 crossref_primary_10_1002_mbo3_1058 crossref_primary_10_1016_j_mib_2024_102540 crossref_primary_10_1073_pnas_1311761110 crossref_primary_10_1016_j_cell_2018_05_017 crossref_primary_10_1126_science_1227786 crossref_primary_10_1038_s41467_024_49229_6 crossref_primary_10_1093_nar_gkac558 crossref_primary_10_1128_JB_00583_18 crossref_primary_10_1038_nature17990 crossref_primary_10_1016_j_ymeth_2015_04_017 crossref_primary_10_1126_sciadv_aao5498 crossref_primary_10_1021_acs_jmedchem_5b00050 crossref_primary_10_1038_s42003_021_01934_4 crossref_primary_10_7554_eLife_60416 crossref_primary_10_1016_j_bpj_2017_11_017 crossref_primary_10_1038_s41467_020_19998_x crossref_primary_10_1093_nar_gkx1146 crossref_primary_10_1126_science_aab1478 crossref_primary_10_1099_mic_0_062547_0 crossref_primary_10_1038_s41589_020_00653_x crossref_primary_10_1016_j_cell_2017_03_003 crossref_primary_10_1073_pnas_1613673114 crossref_primary_10_1093_nar_gkab074 crossref_primary_10_13070_mm_fr_2_134 crossref_primary_10_1016_j_jmb_2019_04_046 crossref_primary_10_7554_eLife_34823 crossref_primary_10_1021_cb400828a crossref_primary_10_1016_j_molcel_2018_10_014 crossref_primary_10_1016_j_cell_2016_11_032 crossref_primary_10_1038_nature25441 crossref_primary_10_1038_s41467_017_01041_1 crossref_primary_10_1038_s41467_022_31871_7 crossref_primary_10_3390_microorganisms10091824 crossref_primary_10_1016_j_jmb_2015_09_005 crossref_primary_10_1093_nar_gku146 crossref_primary_10_4161_rna_24283 crossref_primary_10_7554_eLife_70090 crossref_primary_10_1080_21541264_2015_1059922 crossref_primary_10_1093_nar_gkaa904 crossref_primary_10_1073_pnas_1200254109 crossref_primary_10_1016_j_molcel_2014_12_014 crossref_primary_10_1016_j_jmb_2018_04_033 crossref_primary_10_1080_21541264_2020_1825906 crossref_primary_10_1007_s00792_017_0951_1 crossref_primary_10_1038_nature11991 crossref_primary_10_1073_pnas_2218516120 crossref_primary_10_1007_s00044_014_0960_x crossref_primary_10_1146_annurev_cellbio_042020_021954 crossref_primary_10_1101_gad_285692_116 crossref_primary_10_13070_mm_cn_2_134 crossref_primary_10_1038_s41467_019_10955_x crossref_primary_10_1128_microbiolspec_MGM2_0036_2013 crossref_primary_10_1073_pnas_1515817113 crossref_primary_10_1140_epje_i2020_11944_1 crossref_primary_10_1142_S0219633613410058 crossref_primary_10_1111_mmi_14191 crossref_primary_10_1016_j_sbi_2017_03_013 crossref_primary_10_1093_nar_gkae282 crossref_primary_10_1039_C6MB00566G crossref_primary_10_1074_jbc_M113_521393 crossref_primary_10_1042_BST20180499 crossref_primary_10_1002_bies_201600193 crossref_primary_10_1186_s12862_016_0865_z crossref_primary_10_1038_s41586_022_05604_1 crossref_primary_10_1038_s43586_024_00298_3 crossref_primary_10_7554_eLife_01775 crossref_primary_10_1038_srep16883 crossref_primary_10_1021_acsnano_1c11433 crossref_primary_10_1038_ncomms4408 crossref_primary_10_1101_gad_204693_112 crossref_primary_10_1093_nar_gkt271 crossref_primary_10_1016_j_jmb_2016_04_016 crossref_primary_10_1038_s41579_020_00450_2 crossref_primary_10_1021_cr400064k crossref_primary_10_13070_mm_en_2_134 crossref_primary_10_1128_JB_00255_16 crossref_primary_10_1128_JB_00512_20 crossref_primary_10_1021_cr4002325 crossref_primary_10_1038_nrmicro2994 crossref_primary_10_1073_pnas_1314576110 crossref_primary_10_1002_bip_23119 crossref_primary_10_1186_1754_1611_8_4 crossref_primary_10_1016_j_jmb_2019_05_042 crossref_primary_10_1515_bmc_2016_0028 crossref_primary_10_1016_j_molcel_2018_02_026 crossref_primary_10_13070_mm_cn_2_116 crossref_primary_10_13070_mm_en_2_116 crossref_primary_10_1128_MMBR_00055_15 crossref_primary_10_1016_j_molcel_2021_05_017 crossref_primary_10_1016_j_tibs_2013_09_002 crossref_primary_10_1038_s41467_022_31214_6 crossref_primary_10_1021_acs_jpcb_2c08771 crossref_primary_10_1111_febs_13732 crossref_primary_10_1016_j_jbiotec_2014_11_024 crossref_primary_10_1093_nar_gkw1150 crossref_primary_10_1021_cr400730x crossref_primary_10_1038_s41467_020_17647_x crossref_primary_10_1042_BST20180557 crossref_primary_10_1073_pnas_1706247114 crossref_primary_10_1371_journal_pbio_3000706 crossref_primary_10_1042_BCJ20160741C crossref_primary_10_1080_21541264_2019_1707612 crossref_primary_10_1063_1_5000742 crossref_primary_10_1126_science_aam7858 crossref_primary_10_1002_pro_3183 crossref_primary_10_1002_anie_201404848 crossref_primary_10_1038_s41586_018_0840_5 crossref_primary_10_1021_acs_biochem_4c00751 crossref_primary_10_1038_ncomms6132 crossref_primary_10_1073_pnas_2024324118 crossref_primary_10_1016_j_ymeth_2019_02_006 crossref_primary_10_1093_nar_gku588 crossref_primary_10_1128_AAC_01449_12 crossref_primary_10_1016_j_molcel_2018_05_021 crossref_primary_10_3390_biom5021035 crossref_primary_10_1093_nar_gkac453 crossref_primary_10_1093_nar_gkz470 crossref_primary_10_1016_j_jmb_2015_12_017 crossref_primary_10_1016_j_molcel_2013_05_015 crossref_primary_10_1073_pnas_1920427117 crossref_primary_10_1016_j_jmb_2014_10_005 crossref_primary_10_1016_j_jmb_2019_06_009 crossref_primary_10_1039_C3CS60233H crossref_primary_10_1073_pnas_2115746119 crossref_primary_10_1016_j_cell_2024_01_036 crossref_primary_10_1093_nar_gks973 crossref_primary_10_1016_j_jmb_2019_01_003 crossref_primary_10_3390_bioengineering4030061 crossref_primary_10_1038_s41467_020_20159_3 crossref_primary_10_1111_nyas_12197 crossref_primary_10_1111_mmi_13983 crossref_primary_10_1146_annurev_micro_092412_155756 crossref_primary_10_1021_cr400207r crossref_primary_10_1126_science_1238724 crossref_primary_10_1021_bi301260u crossref_primary_10_1073_pnas_2106564118 crossref_primary_10_1146_annurev_biophys_070816_033751 crossref_primary_10_13070_mm_fr_2_116 crossref_primary_10_1021_acs_chemrev_7b00519 crossref_primary_10_1002_anie_202216115 crossref_primary_10_1016_j_molcel_2013_03_021 crossref_primary_10_3390_biom10091289 crossref_primary_10_1016_j_ejmech_2021_113633 crossref_primary_10_1016_j_jmb_2019_04_022 crossref_primary_10_1016_j_molcel_2017_05_010 crossref_primary_10_1016_j_cell_2014_05_038 crossref_primary_10_1016_j_cell_2012_12_020 |
Cites_doi | 10.1016/S0092-8674(01)00464-0 10.1016/S0076-6879(03)71010-6 10.1126/science.287.5460.2007 10.1126/science.1069594 10.1073/pnas.0908782106 10.1073/pnas.0907908107 10.1016/j.cell.2008.09.033 10.1038/nature07510 10.1016/j.molcel.2011.07.002 10.1016/j.jmb.2011.09.029 10.1002/jcc.21963 10.1002/jcc.21367 10.1038/nature04268 10.1016/j.molcel.2004.06.010 10.1093/nar/30.4.886 10.1021/ja027007w 10.1016/S0076-6879(10)72018-8 10.1002/jcc.21287 10.1111/j.1574-6976.2010.00239.x 10.1038/nature05932 10.1038/nature752 10.1073/pnas.1001188107 10.1016/S0092-8674(01)00381-6 10.1016/j.mib.2011.07.030 10.1074/jbc.272.39.24137 10.1073/pnas.0401690101 10.1016/0003-2697(89)90602-7 10.1016/j.molcel.2005.10.012 10.1073/pnas.0408164102 10.1126/science.1059495 10.1038/nsmb757 10.1073/pnas.92.11.4902 10.2174/092986709787315559 10.1016/j.str.2010.08.018 10.1038/nature09573 10.1073/pnas.052054099 10.1016/0076-6879(92)11020-J 10.1126/science.1105932 10.1021/bi00149a027 10.1529/biophysj.104.054114 10.1016/j.jmb.2011.01.018 10.1529/biophysj.104.050187 10.1016/S0092-8674(02)00667-0 10.1016/S0076-6879(03)70053-6 10.1371/journal.pbio.1000483 10.1016/S0092-8674(00)81515-9 10.1126/science.1131398 10.1016/S0092-8674(00)81806-1 10.1529/biophysj.106.093211 10.1016/j.jmgm.2003.12.005 10.1126/science.1059493 10.1126/science.1131399 10.1016/0092-8674(95)90387-9 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Association for the Advancement of Science 2014 INIST-CNRS Copyright © 2012, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2012 American Association for the Advancement of Science – notice: 2014 INIST-CNRS – notice: Copyright © 2012, American Association for the Advancement of Science |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1126/science.1218716 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE Materials Research Database Technology Research Database MEDLINE - Academic AGRICOLA Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 595 |
ExternalDocumentID | 2727560061 22859489 26219724 10_1126_science_1218716 23267661 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: AI072766 – fundername: Howard Hughes Medical Institute – fundername: NIGMS NIH HHS grantid: GM41376 – fundername: NIGMS NIH HHS grantid: GM069937 – fundername: NIGMS NIH HHS grantid: R37 GM041376 – fundername: NIGMS NIH HHS grantid: R01 GM069709 – fundername: NIGMS NIH HHS grantid: R01 GM041376 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/E023703/1 – fundername: NIAID NIH HHS grantid: R01 AI072766 – fundername: NIGMS NIH HHS grantid: GM069709 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC .HR 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 4.4 4R4 53G 5RE 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ ABBHK ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQAM ACQOY ACTDY ACUHS ADDRP ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFCHL AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C2- C45 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QJJ RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~H1 ~KM ~ZZ AAYXX ABCQX CITATION K-O .GJ .GO 0-V 186 3EH 41~ 42X 66. 692 79B 7X7 7XC 88E 88I 8AF 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8GL 8WZ 97F A6W AADHG AAFWJ AAKAS ABDPE ABJCF ABUWG ADBBV ADMHC ADZCM AEUYN AFKRA AFQQW AJUXI ARALO ARAPS ATCPS AZQEC BBNVY BBWZM BCU BEC BENPR BGLVJ BHPHI BKNYI BKSAR BPHCQ BVXVI C51 CCPQU CJNVE D0S D1I D1J D1K DWQXO D~A EAU EGS EWM EX3 FYUFA GICCO GNUQQ GUQSH HCIFZ HGD HMCUK HQ3 HTVGU HVGLF IAG IBG IEP IER IPC IQODW ISN ITC J5H K6- K9- KB. KQ8 L6V LK5 LK8 LPU M0K M0R M1P M2O M2P M2Q M7P M7R M7S N4W OK1 P62 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PPXIY PQEDU PQGLB PROAC PSQYO PTHSS PV9 PYCSY QS- R05 RNS RZL SJFOW SKT UBY UHU UKHRP VOH WOQ WOW X7L XIH XKJ XOL YJ6 YXB ZCG ZGI ZVL ZVM ZXP ZY4 ~G0 CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c583t-956788a90de76f435365bc904a6efe20f9d9632752c239e4e4b556d24e101efe3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Jul 10 20:15:48 EDT 2025 Fri Jul 11 08:20:13 EDT 2025 Fri Jul 11 03:02:31 EDT 2025 Fri Jul 11 07:11:26 EDT 2025 Fri Jul 25 10:58:10 EDT 2025 Mon Jul 21 05:50:39 EDT 2025 Mon Jul 21 09:17:25 EDT 2025 Thu Apr 24 22:59:04 EDT 2025 Tue Jul 01 00:47:00 EDT 2025 Thu Jul 03 21:21:16 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6094 |
Keywords | Nucleotidyltransferases Transcription Enzyme Transferases Bacteria DNA-directed RNA polymerase Transcription initiation Elongation Conformation |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c583t-956788a90de76f435365bc904a6efe20f9d9632752c239e4e4b556d24e101efe3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3626110 |
PMID | 22859489 |
PQID | 1030929821 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2000332690 proquest_miscellaneous_1808088195 proquest_miscellaneous_1551628418 proquest_miscellaneous_1031162266 proquest_journals_1030929821 pubmed_primary_22859489 pascalfrancis_primary_26219724 crossref_primary_10_1126_science_1218716 crossref_citationtrail_10_1126_science_1218716 jstor_primary_23267661 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-08-03 |
PublicationDateYYYYMMDD | 2012-08-03 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2012 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 Ghosh T. (e_1_3_2_24_2) 2010; 34 e_1_3_2_54_2 Naryshkin N. (e_1_3_2_38_2) 2001; 148 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 Vanommeslaeghe K. (e_1_3_2_55_2) 2010; 31 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_46_2 doi: 10.1016/S0092-8674(01)00464-0 – ident: e_1_3_2_36_2 doi: 10.1016/S0076-6879(03)71010-6 – ident: e_1_3_2_18_2 doi: 10.1126/science.287.5460.2007 – ident: e_1_3_2_34_2 – ident: e_1_3_2_5_2 doi: 10.1126/science.1069594 – ident: e_1_3_2_51_2 doi: 10.1073/pnas.0908782106 – ident: e_1_3_2_28_2 doi: 10.1073/pnas.0907908107 – ident: e_1_3_2_25_2 doi: 10.1016/j.cell.2008.09.033 – ident: e_1_3_2_26_2 doi: 10.1038/nature07510 – ident: e_1_3_2_31_2 doi: 10.1016/j.molcel.2011.07.002 – ident: e_1_3_2_29_2 doi: 10.1016/j.jmb.2011.09.029 – ident: e_1_3_2_56_2 doi: 10.1002/jcc.21963 – volume: 31 start-page: 671 year: 2010 ident: e_1_3_2_55_2 article-title: CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields publication-title: J. Comput. Chem. doi: 10.1002/jcc.21367 – ident: e_1_3_2_23_2 doi: 10.1038/nature04268 – ident: e_1_3_2_39_2 – ident: e_1_3_2_43_2 doi: 10.1016/j.molcel.2004.06.010 – ident: e_1_3_2_45_2 doi: 10.1093/nar/30.4.886 – ident: e_1_3_2_17_2 doi: 10.1021/ja027007w – ident: e_1_3_2_19_2 doi: 10.1016/S0076-6879(10)72018-8 – ident: e_1_3_2_53_2 doi: 10.1002/jcc.21287 – volume: 34 start-page: 611 year: 2010 ident: e_1_3_2_24_2 article-title: Mechanisms for activating bacterial RNA polymerase publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2010.00239.x – ident: e_1_3_2_7_2 doi: 10.1038/nature05932 – ident: e_1_3_2_6_2 doi: 10.1038/nature752 – ident: e_1_3_2_44_2 doi: 10.1073/pnas.1001188107 – ident: e_1_3_2_9_2 doi: 10.1016/S0092-8674(01)00381-6 – ident: e_1_3_2_27_2 doi: 10.1016/j.mib.2011.07.030 – ident: e_1_3_2_33_2 doi: 10.1074/jbc.272.39.24137 – ident: e_1_3_2_12_2 doi: 10.1073/pnas.0401690101 – ident: e_1_3_2_40_2 doi: 10.1016/0003-2697(89)90602-7 – ident: e_1_3_2_14_2 doi: 10.1016/j.molcel.2005.10.012 – ident: e_1_3_2_57_2 doi: 10.1073/pnas.0408164102 – ident: e_1_3_2_4_2 doi: 10.1126/science.1059495 – ident: e_1_3_2_58_2 doi: 10.1038/nsmb757 – ident: e_1_3_2_20_2 doi: 10.1073/pnas.92.11.4902 – volume: 148 start-page: 337 year: 2001 ident: e_1_3_2_38_2 article-title: Site-specific protein-DNA photocrosslinking. Analysis of bacterial transcription initiation complexes publication-title: Methods Mol. Biol. – ident: e_1_3_2_30_2 doi: 10.2174/092986709787315559 – ident: e_1_3_2_42_2 doi: 10.1016/j.str.2010.08.018 – ident: e_1_3_2_8_2 doi: 10.1038/nature09573 – ident: e_1_3_2_10_2 doi: 10.1073/pnas.052054099 – ident: e_1_3_2_47_2 doi: 10.1016/0076-6879(92)11020-J – ident: e_1_3_2_41_2 doi: 10.1126/science.1105932 – ident: e_1_3_2_49_2 doi: 10.1021/bi00149a027 – ident: e_1_3_2_13_2 doi: 10.1529/biophysj.104.054114 – ident: e_1_3_2_21_2 doi: 10.1016/j.jmb.2011.01.018 – ident: e_1_3_2_50_2 doi: 10.1529/biophysj.104.050187 – ident: e_1_3_2_48_2 doi: 10.1016/S0092-8674(02)00667-0 – ident: e_1_3_2_37_2 doi: 10.1016/S0076-6879(03)70053-6 – ident: e_1_3_2_52_2 doi: 10.1371/journal.pbio.1000483 – ident: e_1_3_2_2_2 doi: 10.1016/S0092-8674(00)81515-9 – ident: e_1_3_2_22_2 doi: 10.1126/science.1131398 – ident: e_1_3_2_35_2 doi: 10.1016/S0092-8674(00)81806-1 – ident: e_1_3_2_16_2 doi: 10.1529/biophysj.106.093211 – ident: e_1_3_2_54_2 doi: 10.1016/j.jmgm.2003.12.005 – ident: e_1_3_2_3_2 doi: 10.1126/science.1059493 – ident: e_1_3_2_15_2 doi: 10.1126/science.1131399 – ident: e_1_3_2_32_2 doi: 10.1016/0092-8674(95)90387-9 |
SSID | ssj0009593 |
Score | 2.478925 |
Snippet | Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription... Crystal structures of RNA polymerase show that a “clamp” region which surrounds the DNA binding site can adopt conformations ranging from a closed to an open... Crystal structures of RNA polymerase show that a "clamp" region which surrounds the DNA binding site can adopt conformations ranging from a closed to an open... Clamping DownCrystal structures of RNA polymerase show that a "clamp" region which surrounds the DNA binding site can adopt conformations ranging from a closed... Clamping Down Crystal structures of RNA polymerase show that a “clamp” region which surrounds the DNA binding site can adopt conformations ranging from a... |
SourceID | proquest pubmed pascalfrancis crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 591 |
SubjectTerms | Bacteria Binding sites Biochemistry Biological and medical sciences Clamps Collapsed states Crystal structure Deoxyribonucleic acid DNA DNA Polymerase III - chemistry DNA Polymerase III - drug effects DNA probes DNA-directed RNA polymerase Energy transfer Fluorescence Fluorescence Resonance Energy Transfer - methods Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Bacterial Isomerization Ligation Microbiology Molecular biophysics Molecular probes Molecules Polymerase Protein Conformation Ribonucleic acids RNA RNA polymerase Structure in molecular biology Transcription, Genetic Tridimensional structure |
Title | Opening and Closing of the Bacterial RNA Polymerase Clamp |
URI | https://www.jstor.org/stable/23267661 https://www.ncbi.nlm.nih.gov/pubmed/22859489 https://www.proquest.com/docview/1030929821 https://www.proquest.com/docview/1031162266 https://www.proquest.com/docview/1551628418 https://www.proquest.com/docview/1808088195 https://www.proquest.com/docview/2000332690 |
Volume | 337 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegExIviA0GgTEZiYchlKpxYid-7LZWE4zy0oryFOXDQUgjqZb2ofvrdxc7TiboNHiJquTcKL7z-e589ztCPoAFC9tAytzUkwWGbkZuIjLm5ojllRQZaEusRv46ExeL4POSL7uUoKa6ZJ0Os5u_1pX8D1fhHvAVq2T_gbP2T-EG_Ab-whU4DNcH8RizQdoiw7OrqjYZzM2Zv0ZhRuj82Riz3LYYfaoVdsH8veqbpO3qBlPTHt_0mGbzEMc6W6BNHjDDepEEkyEA9vxWp0r-uk472ftuAtPnVflza6VpktrowA94lw34fKkwC7fU9zf90ATmeGC5Xl_dGrTjvrr1NciLkSsB7uWn1ZBLz-WS9zQp1028zKZsnv2p73sdKhUiZaD_121t7XH-7Fs8XVxexvPJcv6Y7DFwKdiA7I1Pz0-nOyGaDRBUr8SqfcEdG0ansWJObVLDsip0P5TdDktjuMyfk2fG46BjLT775JEqD8gT3YN0e0D2DSNremIgyD--INJIFgXJokayaFVQkANqJYuCZNFOsmgjWS_JYjqZn124psmGm_HIX7vgH4dRlMhRrkJRgPHsC55mchQkQhWKjQqZg45mIWcZ86UKVJByLnIWKFDmQOEfkkFZleo1oTyXLBGFCBLpBwk48rzwCxamylNBlEbcIcN22uLMINBjI5SruPFEmYjNPMdmnh1yYgesNPjKbtLDhg-WDjwFEYLx6ZDjO4zpCATDlnuBQ45aTsVmbdcxNt8DxyFiMP69fQyaF4_TklJVm4bG8wS4L-IeGjyHBgvQi-6hQWjXCM-zd9NgQZ0PXyRHDnmlpan7EMSgDCL55gGj35Kn3UI9IoP19Ua9A6t6nR6b5XALwNPJMg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Opening+and+Closing+of+the+Bacterial+RNA+Polymerase+Clamp&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Chakraborty%2C+Anirban&rft.au=Wang%2C+Dongye&rft.au=Ebright%2C+Yon+W&rft.au=Korlann%2C+You&rft.date=2012-08-03&rft.issn=0036-8075&rft.volume=337&rft.issue=6094+p.591-595&rft.spage=591&rft.epage=595&rft_id=info:doi/10.1126%2Fscience.1218716&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |