Opening and Closing of the Bacterial RNA Polymerase Clamp

Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 337; no. 6094; pp. 591 - 595
Main Authors Chakraborty, Anirban, Wang, Dongye, Ebright, Yon W., Korlann, You, Kortkhonjia, Ekaterine, Kim, Taiho, Chowdhury, Saikat, Wigneshweraraj, Sivaramesh, Irschik, Herbert, Jansen, Rolf, Nixon, B. Tracy, Knight, Jennifer, Weiss, Shimon, Ebright, Richard H.
Format Journal Article
LanguageEnglish
Published Washington, DC American Association for the Advancement of Science 03.08.2012
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes.
AbstractList Crystal structures of RNA polymerase show that a “clamp” region which surrounds the DNA binding site can adopt conformations ranging from a closed to an open state. Chakraborty et al. (p. 591 ) used single-molecule fluorescence energy transfer experiments to detect the clamp's conformational changes in solution during the transcription cycle. The results support a model in which a clamp opening allows DNA to be loaded into the active-center cleft and unwound. Direct interactions with DNA likely trigger clamp closure upon formation of a catalytically competent transcription initiation complex. Single-molecule fluorescence measurements define the clamp conformation during transcription initiation and elongation. Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes.
Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes.
Crystal structures of RNA polymerase show that a "clamp" region which surrounds the DNA binding site can adopt conformations ranging from a closed to an open state. Chakraborty et al. (p. 591) used single-molecule fluorescence energy transfer experiments to detect the clamp's conformational changes in solution during the transcription cycle. The results support a model in which a clamp opening allows DNA to be loaded into the active-center cleft and unwound. Direct interactions with DNA likely trigger clamp closure upon formation of a catalytically competent transcription initiation complex. [PUBLICATION ABSTRACT] Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes. [PUBLICATION ABSTRACT]
Clamping DownCrystal structures of RNA polymerase show that a "clamp" region which surrounds the DNA binding site can adopt conformations ranging from a closed to an open state. Chakraborty et al. (p. 591) used single-molecule fluorescence energy transfer experiments to detect the clamp's conformational changes in solution during the transcription cycle. The results support a model in which a clamp opening allows DNA to be loaded into the active-center cleft and unwound. Direct interactions with DNA likely trigger clamp closure upon formation of a catalytically competent transcription initiation complex.
Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes.Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes.
Clamping Down Crystal structures of RNA polymerase show that a “clamp” region which surrounds the DNA binding site can adopt conformations ranging from a closed to an open state. Chakraborty et al. (p. 591) used single-molecule fluorescence energy transfer experiments to detect the clamp's conformational changes in solution during the transcription cycle. The results support a model in which a clamp opening allows DNA to be loaded into the active-center cleft and unwound. Direct interactions with DNA likely trigger clamp closure upon formation of a catalytically competent transcription initiation complex.
Author Jansen, Rolf
Chowdhury, Saikat
Nixon, B. Tracy
Irschik, Herbert
Weiss, Shimon
Ebright, Richard H.
Knight, Jennifer
Kortkhonjia, Ekaterine
Korlann, You
Kim, Taiho
Chakraborty, Anirban
Wang, Dongye
Ebright, Yon W.
Wigneshweraraj, Sivaramesh
Author_xml – sequence: 1
  givenname: Anirban
  surname: Chakraborty
  fullname: Chakraborty, Anirban
– sequence: 2
  givenname: Dongye
  surname: Wang
  fullname: Wang, Dongye
– sequence: 3
  givenname: Yon W.
  surname: Ebright
  fullname: Ebright, Yon W.
– sequence: 4
  givenname: You
  surname: Korlann
  fullname: Korlann, You
– sequence: 5
  givenname: Ekaterine
  surname: Kortkhonjia
  fullname: Kortkhonjia, Ekaterine
– sequence: 6
  givenname: Taiho
  surname: Kim
  fullname: Kim, Taiho
– sequence: 7
  givenname: Saikat
  surname: Chowdhury
  fullname: Chowdhury, Saikat
– sequence: 8
  givenname: Sivaramesh
  surname: Wigneshweraraj
  fullname: Wigneshweraraj, Sivaramesh
– sequence: 9
  givenname: Herbert
  surname: Irschik
  fullname: Irschik, Herbert
– sequence: 10
  givenname: Rolf
  surname: Jansen
  fullname: Jansen, Rolf
– sequence: 11
  givenname: B. Tracy
  surname: Nixon
  fullname: Nixon, B. Tracy
– sequence: 12
  givenname: Jennifer
  surname: Knight
  fullname: Knight, Jennifer
– sequence: 13
  givenname: Shimon
  surname: Weiss
  fullname: Weiss, Shimon
– sequence: 14
  givenname: Richard H.
  surname: Ebright
  fullname: Ebright, Richard H.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26219724$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22859489$$D View this record in MEDLINE/PubMed
BookMark eNqF0kFrHCEUB3ApCc0m7bmnloFS6GUS33N09JgsTRoISSnteXCdN-0sM7rV2UO-fV122kAOWTwo-PuLPt8pO_LBE2PvgJ8DoLpIrifv6BwQdA3qFVsAN7I0yMURW3AuVKl5LU_YaUprzvOeEa_ZCaKWptJmwczDhnzvfxXWt8VyCGm3Dl0x_abiyrqJYm-H4vv9ZfEtDI8jRZsoOztu3rDjzg6J3s7zGft5_eXH8mt593Bzu7y8K53UYiqNVLXW1vCWatVVQgolV87wyirqCHlnWqME1hIdCkMVVSspVYsVAYcsxBn7vD93E8OfLaWpGfvkaBisp7BNDeZnCYHK8IMUNM9Dg5GHqZSgUFegD1MuIFtUKtOPz-g6bKPP5dkpbtBohKw-zGq7GqltNrEfbXxs_v1KBp9mYJOzQxetd316cgrB1Fhld7F3LoaUInX_CfBm1x_N3B_N3B85IZ8lXD_ZqQ9-irYfXsi93-fWaQrx6Sa57rVSIP4CCA3EcA
CODEN SCIEAS
CitedBy_id crossref_primary_10_1038_s41594_024_01349_9
crossref_primary_10_1074_jbc_M112_430900
crossref_primary_10_7498_aps_72_20231089
crossref_primary_10_1007_s00709_013_0596_6
crossref_primary_10_1021_acsabm_9b00840
crossref_primary_10_7554_eLife_52125
crossref_primary_10_1038_ncomms7161
crossref_primary_10_1093_nar_gkx719
crossref_primary_10_1002_pro_3160
crossref_primary_10_1038_s41467_019_09096_y
crossref_primary_10_1016_j_jmb_2024_168713
crossref_primary_10_1093_femsre_fuae004
crossref_primary_10_1073_pnas_1320604110
crossref_primary_10_1002_ange_202216115
crossref_primary_10_1038_s41467_023_36113_y
crossref_primary_10_1038_s41594_024_01447_8
crossref_primary_10_1021_acs_biochem_0c00098
crossref_primary_10_1021_acs_chemrev_9b00361
crossref_primary_10_1038_nature16143
crossref_primary_10_1016_j_jbc_2021_101086
crossref_primary_10_1146_annurev_biochem_060815_014844
crossref_primary_10_1128_ecosalplus_esp_0004_2018
crossref_primary_10_1093_nar_gkad1258
crossref_primary_10_1016_j_jbc_2021_101404
crossref_primary_10_1021_cr400355w
crossref_primary_10_1016_j_molcel_2020_02_017
crossref_primary_10_1002_ange_201404848
crossref_primary_10_1002_mbo3_1058
crossref_primary_10_1016_j_mib_2024_102540
crossref_primary_10_1073_pnas_1311761110
crossref_primary_10_1016_j_cell_2018_05_017
crossref_primary_10_1126_science_1227786
crossref_primary_10_1038_s41467_024_49229_6
crossref_primary_10_1093_nar_gkac558
crossref_primary_10_1128_JB_00583_18
crossref_primary_10_1038_nature17990
crossref_primary_10_1016_j_ymeth_2015_04_017
crossref_primary_10_1126_sciadv_aao5498
crossref_primary_10_1021_acs_jmedchem_5b00050
crossref_primary_10_1038_s42003_021_01934_4
crossref_primary_10_7554_eLife_60416
crossref_primary_10_1016_j_bpj_2017_11_017
crossref_primary_10_1038_s41467_020_19998_x
crossref_primary_10_1093_nar_gkx1146
crossref_primary_10_1126_science_aab1478
crossref_primary_10_1099_mic_0_062547_0
crossref_primary_10_1038_s41589_020_00653_x
crossref_primary_10_1016_j_cell_2017_03_003
crossref_primary_10_1073_pnas_1613673114
crossref_primary_10_1093_nar_gkab074
crossref_primary_10_13070_mm_fr_2_134
crossref_primary_10_1016_j_jmb_2019_04_046
crossref_primary_10_7554_eLife_34823
crossref_primary_10_1021_cb400828a
crossref_primary_10_1016_j_molcel_2018_10_014
crossref_primary_10_1016_j_cell_2016_11_032
crossref_primary_10_1038_nature25441
crossref_primary_10_1038_s41467_017_01041_1
crossref_primary_10_1038_s41467_022_31871_7
crossref_primary_10_3390_microorganisms10091824
crossref_primary_10_1016_j_jmb_2015_09_005
crossref_primary_10_1093_nar_gku146
crossref_primary_10_4161_rna_24283
crossref_primary_10_7554_eLife_70090
crossref_primary_10_1080_21541264_2015_1059922
crossref_primary_10_1093_nar_gkaa904
crossref_primary_10_1073_pnas_1200254109
crossref_primary_10_1016_j_molcel_2014_12_014
crossref_primary_10_1016_j_jmb_2018_04_033
crossref_primary_10_1080_21541264_2020_1825906
crossref_primary_10_1007_s00792_017_0951_1
crossref_primary_10_1038_nature11991
crossref_primary_10_1073_pnas_2218516120
crossref_primary_10_1007_s00044_014_0960_x
crossref_primary_10_1146_annurev_cellbio_042020_021954
crossref_primary_10_1101_gad_285692_116
crossref_primary_10_13070_mm_cn_2_134
crossref_primary_10_1038_s41467_019_10955_x
crossref_primary_10_1128_microbiolspec_MGM2_0036_2013
crossref_primary_10_1073_pnas_1515817113
crossref_primary_10_1140_epje_i2020_11944_1
crossref_primary_10_1142_S0219633613410058
crossref_primary_10_1111_mmi_14191
crossref_primary_10_1016_j_sbi_2017_03_013
crossref_primary_10_1093_nar_gkae282
crossref_primary_10_1039_C6MB00566G
crossref_primary_10_1074_jbc_M113_521393
crossref_primary_10_1042_BST20180499
crossref_primary_10_1002_bies_201600193
crossref_primary_10_1186_s12862_016_0865_z
crossref_primary_10_1038_s41586_022_05604_1
crossref_primary_10_1038_s43586_024_00298_3
crossref_primary_10_7554_eLife_01775
crossref_primary_10_1038_srep16883
crossref_primary_10_1021_acsnano_1c11433
crossref_primary_10_1038_ncomms4408
crossref_primary_10_1101_gad_204693_112
crossref_primary_10_1093_nar_gkt271
crossref_primary_10_1016_j_jmb_2016_04_016
crossref_primary_10_1038_s41579_020_00450_2
crossref_primary_10_1021_cr400064k
crossref_primary_10_13070_mm_en_2_134
crossref_primary_10_1128_JB_00255_16
crossref_primary_10_1128_JB_00512_20
crossref_primary_10_1021_cr4002325
crossref_primary_10_1038_nrmicro2994
crossref_primary_10_1073_pnas_1314576110
crossref_primary_10_1002_bip_23119
crossref_primary_10_1186_1754_1611_8_4
crossref_primary_10_1016_j_jmb_2019_05_042
crossref_primary_10_1515_bmc_2016_0028
crossref_primary_10_1016_j_molcel_2018_02_026
crossref_primary_10_13070_mm_cn_2_116
crossref_primary_10_13070_mm_en_2_116
crossref_primary_10_1128_MMBR_00055_15
crossref_primary_10_1016_j_molcel_2021_05_017
crossref_primary_10_1016_j_tibs_2013_09_002
crossref_primary_10_1038_s41467_022_31214_6
crossref_primary_10_1021_acs_jpcb_2c08771
crossref_primary_10_1111_febs_13732
crossref_primary_10_1016_j_jbiotec_2014_11_024
crossref_primary_10_1093_nar_gkw1150
crossref_primary_10_1021_cr400730x
crossref_primary_10_1038_s41467_020_17647_x
crossref_primary_10_1042_BST20180557
crossref_primary_10_1073_pnas_1706247114
crossref_primary_10_1371_journal_pbio_3000706
crossref_primary_10_1042_BCJ20160741C
crossref_primary_10_1080_21541264_2019_1707612
crossref_primary_10_1063_1_5000742
crossref_primary_10_1126_science_aam7858
crossref_primary_10_1002_pro_3183
crossref_primary_10_1002_anie_201404848
crossref_primary_10_1038_s41586_018_0840_5
crossref_primary_10_1021_acs_biochem_4c00751
crossref_primary_10_1038_ncomms6132
crossref_primary_10_1073_pnas_2024324118
crossref_primary_10_1016_j_ymeth_2019_02_006
crossref_primary_10_1093_nar_gku588
crossref_primary_10_1128_AAC_01449_12
crossref_primary_10_1016_j_molcel_2018_05_021
crossref_primary_10_3390_biom5021035
crossref_primary_10_1093_nar_gkac453
crossref_primary_10_1093_nar_gkz470
crossref_primary_10_1016_j_jmb_2015_12_017
crossref_primary_10_1016_j_molcel_2013_05_015
crossref_primary_10_1073_pnas_1920427117
crossref_primary_10_1016_j_jmb_2014_10_005
crossref_primary_10_1016_j_jmb_2019_06_009
crossref_primary_10_1039_C3CS60233H
crossref_primary_10_1073_pnas_2115746119
crossref_primary_10_1016_j_cell_2024_01_036
crossref_primary_10_1093_nar_gks973
crossref_primary_10_1016_j_jmb_2019_01_003
crossref_primary_10_3390_bioengineering4030061
crossref_primary_10_1038_s41467_020_20159_3
crossref_primary_10_1111_nyas_12197
crossref_primary_10_1111_mmi_13983
crossref_primary_10_1146_annurev_micro_092412_155756
crossref_primary_10_1021_cr400207r
crossref_primary_10_1126_science_1238724
crossref_primary_10_1021_bi301260u
crossref_primary_10_1073_pnas_2106564118
crossref_primary_10_1146_annurev_biophys_070816_033751
crossref_primary_10_13070_mm_fr_2_116
crossref_primary_10_1021_acs_chemrev_7b00519
crossref_primary_10_1002_anie_202216115
crossref_primary_10_1016_j_molcel_2013_03_021
crossref_primary_10_3390_biom10091289
crossref_primary_10_1016_j_ejmech_2021_113633
crossref_primary_10_1016_j_jmb_2019_04_022
crossref_primary_10_1016_j_molcel_2017_05_010
crossref_primary_10_1016_j_cell_2014_05_038
crossref_primary_10_1016_j_cell_2012_12_020
Cites_doi 10.1016/S0092-8674(01)00464-0
10.1016/S0076-6879(03)71010-6
10.1126/science.287.5460.2007
10.1126/science.1069594
10.1073/pnas.0908782106
10.1073/pnas.0907908107
10.1016/j.cell.2008.09.033
10.1038/nature07510
10.1016/j.molcel.2011.07.002
10.1016/j.jmb.2011.09.029
10.1002/jcc.21963
10.1002/jcc.21367
10.1038/nature04268
10.1016/j.molcel.2004.06.010
10.1093/nar/30.4.886
10.1021/ja027007w
10.1016/S0076-6879(10)72018-8
10.1002/jcc.21287
10.1111/j.1574-6976.2010.00239.x
10.1038/nature05932
10.1038/nature752
10.1073/pnas.1001188107
10.1016/S0092-8674(01)00381-6
10.1016/j.mib.2011.07.030
10.1074/jbc.272.39.24137
10.1073/pnas.0401690101
10.1016/0003-2697(89)90602-7
10.1016/j.molcel.2005.10.012
10.1073/pnas.0408164102
10.1126/science.1059495
10.1038/nsmb757
10.1073/pnas.92.11.4902
10.2174/092986709787315559
10.1016/j.str.2010.08.018
10.1038/nature09573
10.1073/pnas.052054099
10.1016/0076-6879(92)11020-J
10.1126/science.1105932
10.1021/bi00149a027
10.1529/biophysj.104.054114
10.1016/j.jmb.2011.01.018
10.1529/biophysj.104.050187
10.1016/S0092-8674(02)00667-0
10.1016/S0076-6879(03)70053-6
10.1371/journal.pbio.1000483
10.1016/S0092-8674(00)81515-9
10.1126/science.1131398
10.1016/S0092-8674(00)81806-1
10.1529/biophysj.106.093211
10.1016/j.jmgm.2003.12.005
10.1126/science.1059493
10.1126/science.1131399
10.1016/0092-8674(95)90387-9
ContentType Journal Article
Copyright Copyright © 2012 American Association for the Advancement of Science
2014 INIST-CNRS
Copyright © 2012, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2012 American Association for the Advancement of Science
– notice: 2014 INIST-CNRS
– notice: Copyright © 2012, American Association for the Advancement of Science
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1126/science.1218716
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
MEDLINE
Materials Research Database
Technology Research Database
MEDLINE - Academic

AGRICOLA
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 595
ExternalDocumentID 2727560061
22859489
26219724
10_1126_science_1218716
23267661
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: AI072766
– fundername: Howard Hughes Medical Institute
– fundername: NIGMS NIH HHS
  grantid: GM41376
– fundername: NIGMS NIH HHS
  grantid: GM069937
– fundername: NIGMS NIH HHS
  grantid: R37 GM041376
– fundername: NIGMS NIH HHS
  grantid: R01 GM069709
– fundername: NIGMS NIH HHS
  grantid: R01 GM041376
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/E023703/1
– fundername: NIAID NIH HHS
  grantid: R01 AI072766
– fundername: NIGMS NIH HHS
  grantid: GM069709
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
4.4
4R4
53G
5RE
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQAM
ACQOY
ACTDY
ACUHS
ADDRP
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFCHL
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C2-
C45
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~H1
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
.GJ
.GO
0-V
186
3EH
41~
42X
66.
692
79B
7X7
7XC
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8WZ
97F
A6W
AADHG
AAFWJ
AAKAS
ABDPE
ABJCF
ABUWG
ADBBV
ADMHC
ADZCM
AEUYN
AFKRA
AFQQW
AJUXI
ARALO
ARAPS
ATCPS
AZQEC
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKNYI
BKSAR
BPHCQ
BVXVI
C51
CCPQU
CJNVE
D0S
D1I
D1J
D1K
DWQXO
D~A
EAU
EGS
EWM
EX3
FYUFA
GICCO
GNUQQ
GUQSH
HCIFZ
HGD
HMCUK
HQ3
HTVGU
HVGLF
IAG
IBG
IEP
IER
IPC
IQODW
ISN
ITC
J5H
K6-
K9-
KB.
KQ8
L6V
LK5
LK8
LPU
M0K
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
N4W
OK1
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PPXIY
PQEDU
PQGLB
PROAC
PSQYO
PTHSS
PV9
PYCSY
QS-
R05
RNS
RZL
SJFOW
SKT
UBY
UHU
UKHRP
VOH
WOQ
WOW
X7L
XIH
XKJ
XOL
YJ6
YXB
ZCG
ZGI
ZVL
ZVM
ZXP
ZY4
~G0
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c583t-956788a90de76f435365bc904a6efe20f9d9632752c239e4e4b556d24e101efe3
ISSN 0036-8075
1095-9203
IngestDate Thu Jul 10 20:15:48 EDT 2025
Fri Jul 11 08:20:13 EDT 2025
Fri Jul 11 03:02:31 EDT 2025
Fri Jul 11 07:11:26 EDT 2025
Fri Jul 25 10:58:10 EDT 2025
Mon Jul 21 05:50:39 EDT 2025
Mon Jul 21 09:17:25 EDT 2025
Thu Apr 24 22:59:04 EDT 2025
Tue Jul 01 00:47:00 EDT 2025
Thu Jul 03 21:21:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6094
Keywords Nucleotidyltransferases
Transcription
Enzyme
Transferases
Bacteria
DNA-directed RNA polymerase
Transcription initiation
Elongation
Conformation
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c583t-956788a90de76f435365bc904a6efe20f9d9632752c239e4e4b556d24e101efe3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3626110
PMID 22859489
PQID 1030929821
PQPubID 1256
PageCount 5
ParticipantIDs proquest_miscellaneous_2000332690
proquest_miscellaneous_1808088195
proquest_miscellaneous_1551628418
proquest_miscellaneous_1031162266
proquest_journals_1030929821
pubmed_primary_22859489
pascalfrancis_primary_26219724
crossref_primary_10_1126_science_1218716
crossref_citationtrail_10_1126_science_1218716
jstor_primary_23267661
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-08-03
PublicationDateYYYYMMDD 2012-08-03
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-03
  day: 03
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2012
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
Ghosh T. (e_1_3_2_24_2) 2010; 34
e_1_3_2_54_2
Naryshkin N. (e_1_3_2_38_2) 2001; 148
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
Vanommeslaeghe K. (e_1_3_2_55_2) 2010; 31
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_46_2
  doi: 10.1016/S0092-8674(01)00464-0
– ident: e_1_3_2_36_2
  doi: 10.1016/S0076-6879(03)71010-6
– ident: e_1_3_2_18_2
  doi: 10.1126/science.287.5460.2007
– ident: e_1_3_2_34_2
– ident: e_1_3_2_5_2
  doi: 10.1126/science.1069594
– ident: e_1_3_2_51_2
  doi: 10.1073/pnas.0908782106
– ident: e_1_3_2_28_2
  doi: 10.1073/pnas.0907908107
– ident: e_1_3_2_25_2
  doi: 10.1016/j.cell.2008.09.033
– ident: e_1_3_2_26_2
  doi: 10.1038/nature07510
– ident: e_1_3_2_31_2
  doi: 10.1016/j.molcel.2011.07.002
– ident: e_1_3_2_29_2
  doi: 10.1016/j.jmb.2011.09.029
– ident: e_1_3_2_56_2
  doi: 10.1002/jcc.21963
– volume: 31
  start-page: 671
  year: 2010
  ident: e_1_3_2_55_2
  article-title: CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21367
– ident: e_1_3_2_23_2
  doi: 10.1038/nature04268
– ident: e_1_3_2_39_2
– ident: e_1_3_2_43_2
  doi: 10.1016/j.molcel.2004.06.010
– ident: e_1_3_2_45_2
  doi: 10.1093/nar/30.4.886
– ident: e_1_3_2_17_2
  doi: 10.1021/ja027007w
– ident: e_1_3_2_19_2
  doi: 10.1016/S0076-6879(10)72018-8
– ident: e_1_3_2_53_2
  doi: 10.1002/jcc.21287
– volume: 34
  start-page: 611
  year: 2010
  ident: e_1_3_2_24_2
  article-title: Mechanisms for activating bacterial RNA polymerase
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2010.00239.x
– ident: e_1_3_2_7_2
  doi: 10.1038/nature05932
– ident: e_1_3_2_6_2
  doi: 10.1038/nature752
– ident: e_1_3_2_44_2
  doi: 10.1073/pnas.1001188107
– ident: e_1_3_2_9_2
  doi: 10.1016/S0092-8674(01)00381-6
– ident: e_1_3_2_27_2
  doi: 10.1016/j.mib.2011.07.030
– ident: e_1_3_2_33_2
  doi: 10.1074/jbc.272.39.24137
– ident: e_1_3_2_12_2
  doi: 10.1073/pnas.0401690101
– ident: e_1_3_2_40_2
  doi: 10.1016/0003-2697(89)90602-7
– ident: e_1_3_2_14_2
  doi: 10.1016/j.molcel.2005.10.012
– ident: e_1_3_2_57_2
  doi: 10.1073/pnas.0408164102
– ident: e_1_3_2_4_2
  doi: 10.1126/science.1059495
– ident: e_1_3_2_58_2
  doi: 10.1038/nsmb757
– ident: e_1_3_2_20_2
  doi: 10.1073/pnas.92.11.4902
– volume: 148
  start-page: 337
  year: 2001
  ident: e_1_3_2_38_2
  article-title: Site-specific protein-DNA photocrosslinking. Analysis of bacterial transcription initiation complexes
  publication-title: Methods Mol. Biol.
– ident: e_1_3_2_30_2
  doi: 10.2174/092986709787315559
– ident: e_1_3_2_42_2
  doi: 10.1016/j.str.2010.08.018
– ident: e_1_3_2_8_2
  doi: 10.1038/nature09573
– ident: e_1_3_2_10_2
  doi: 10.1073/pnas.052054099
– ident: e_1_3_2_47_2
  doi: 10.1016/0076-6879(92)11020-J
– ident: e_1_3_2_41_2
  doi: 10.1126/science.1105932
– ident: e_1_3_2_49_2
  doi: 10.1021/bi00149a027
– ident: e_1_3_2_13_2
  doi: 10.1529/biophysj.104.054114
– ident: e_1_3_2_21_2
  doi: 10.1016/j.jmb.2011.01.018
– ident: e_1_3_2_50_2
  doi: 10.1529/biophysj.104.050187
– ident: e_1_3_2_48_2
  doi: 10.1016/S0092-8674(02)00667-0
– ident: e_1_3_2_37_2
  doi: 10.1016/S0076-6879(03)70053-6
– ident: e_1_3_2_52_2
  doi: 10.1371/journal.pbio.1000483
– ident: e_1_3_2_2_2
  doi: 10.1016/S0092-8674(00)81515-9
– ident: e_1_3_2_22_2
  doi: 10.1126/science.1131398
– ident: e_1_3_2_35_2
  doi: 10.1016/S0092-8674(00)81806-1
– ident: e_1_3_2_16_2
  doi: 10.1529/biophysj.106.093211
– ident: e_1_3_2_54_2
  doi: 10.1016/j.jmgm.2003.12.005
– ident: e_1_3_2_3_2
  doi: 10.1126/science.1059493
– ident: e_1_3_2_15_2
  doi: 10.1126/science.1131399
– ident: e_1_3_2_32_2
  doi: 10.1016/0092-8674(95)90387-9
SSID ssj0009593
Score 2.478925
Snippet Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription...
Crystal structures of RNA polymerase show that a “clamp” region which surrounds the DNA binding site can adopt conformations ranging from a closed to an open...
Crystal structures of RNA polymerase show that a "clamp" region which surrounds the DNA binding site can adopt conformations ranging from a closed to an open...
Clamping DownCrystal structures of RNA polymerase show that a "clamp" region which surrounds the DNA binding site can adopt conformations ranging from a closed...
Clamping Down Crystal structures of RNA polymerase show that a “clamp” region which surrounds the DNA binding site can adopt conformations ranging from a...
SourceID proquest
pubmed
pascalfrancis
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 591
SubjectTerms Bacteria
Binding sites
Biochemistry
Biological and medical sciences
Clamps
Collapsed states
Crystal structure
Deoxyribonucleic acid
DNA
DNA Polymerase III - chemistry
DNA Polymerase III - drug effects
DNA probes
DNA-directed RNA polymerase
Energy transfer
Fluorescence
Fluorescence Resonance Energy Transfer - methods
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Bacterial
Isomerization
Ligation
Microbiology
Molecular biophysics
Molecular probes
Molecules
Polymerase
Protein Conformation
Ribonucleic acids
RNA
RNA polymerase
Structure in molecular biology
Transcription, Genetic
Tridimensional structure
Title Opening and Closing of the Bacterial RNA Polymerase Clamp
URI https://www.jstor.org/stable/23267661
https://www.ncbi.nlm.nih.gov/pubmed/22859489
https://www.proquest.com/docview/1030929821
https://www.proquest.com/docview/1031162266
https://www.proquest.com/docview/1551628418
https://www.proquest.com/docview/1808088195
https://www.proquest.com/docview/2000332690
Volume 337
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegExIviA0GgTEZiYchlKpxYid-7LZWE4zy0oryFOXDQUgjqZb2ofvrdxc7TiboNHiJquTcKL7z-e589ztCPoAFC9tAytzUkwWGbkZuIjLm5ojllRQZaEusRv46ExeL4POSL7uUoKa6ZJ0Os5u_1pX8D1fhHvAVq2T_gbP2T-EG_Ab-whU4DNcH8RizQdoiw7OrqjYZzM2Zv0ZhRuj82Riz3LYYfaoVdsH8veqbpO3qBlPTHt_0mGbzEMc6W6BNHjDDepEEkyEA9vxWp0r-uk472ftuAtPnVflza6VpktrowA94lw34fKkwC7fU9zf90ATmeGC5Xl_dGrTjvrr1NciLkSsB7uWn1ZBLz-WS9zQp1028zKZsnv2p73sdKhUiZaD_121t7XH-7Fs8XVxexvPJcv6Y7DFwKdiA7I1Pz0-nOyGaDRBUr8SqfcEdG0ansWJObVLDsip0P5TdDktjuMyfk2fG46BjLT775JEqD8gT3YN0e0D2DSNremIgyD--INJIFgXJokayaFVQkANqJYuCZNFOsmgjWS_JYjqZn124psmGm_HIX7vgH4dRlMhRrkJRgPHsC55mchQkQhWKjQqZg45mIWcZ86UKVJByLnIWKFDmQOEfkkFZleo1oTyXLBGFCBLpBwk48rzwCxamylNBlEbcIcN22uLMINBjI5SruPFEmYjNPMdmnh1yYgesNPjKbtLDhg-WDjwFEYLx6ZDjO4zpCATDlnuBQ45aTsVmbdcxNt8DxyFiMP69fQyaF4_TklJVm4bG8wS4L-IeGjyHBgvQi-6hQWjXCM-zd9NgQZ0PXyRHDnmlpan7EMSgDCL55gGj35Kn3UI9IoP19Ua9A6t6nR6b5XALwNPJMg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Opening+and+Closing+of+the+Bacterial+RNA+Polymerase+Clamp&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Chakraborty%2C+Anirban&rft.au=Wang%2C+Dongye&rft.au=Ebright%2C+Yon+W&rft.au=Korlann%2C+You&rft.date=2012-08-03&rft.issn=0036-8075&rft.volume=337&rft.issue=6094+p.591-595&rft.spage=591&rft.epage=595&rft_id=info:doi/10.1126%2Fscience.1218716&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon