N-type organic thermoelectrics: demonstration of ZT > 0.3
The ‘phonon-glass electron-crystal’ concept has triggered most of the progress that has been achieved in inorganic thermoelectrics in the past two decades. Organic thermoelectric materials, unlike their inorganic counterparts, exhibit molecular diversity, flexible mechanical properties and easy fabr...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 5694 - 9 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
10.11.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-020-19537-8 |
Cover
Loading…
Abstract | The ‘phonon-glass electron-crystal’ concept has triggered most of the progress that has been achieved in inorganic thermoelectrics in the past two decades. Organic thermoelectric materials, unlike their inorganic counterparts, exhibit molecular diversity, flexible mechanical properties and easy fabrication, and are mostly ‘phonon glasses’. However, the thermoelectric performances of these organic materials are largely limited by low molecular order and they are therefore far from being ‘electron crystals’. Here, we report a molecularly n-doped fullerene derivative with meticulous design of the side chain that approaches an organic ‘PGEC’ thermoelectric material. This thermoelectric material exhibits an excellent electrical conductivity of >10 S cm
−1
and an ultralow thermal conductivity of <0.1 Wm
−1
K
−1
, leading to the best figure of merit
ZT
= 0.34 (at 120 °C) among all reported single-host n-type organic thermoelectric materials. The key factor to achieving the record performance is to use ‘arm-shaped’ double-triethylene-glycol-type side chains, which not only offer excellent doping efficiency (~60%) but also induce a disorder-to-order transition upon thermal annealing. This study illustrates the vast potential of organic semiconductors as thermoelectric materials.
Achieved high thermoelectric figure of merit (ZT) in organic thermoelectric materials remains a challenge due to their low packing order and poor host/dopant miscibility. Here, the authors report side chain-engineered n-doped fullerene derivatives with record ZT >0.3 for organic thermoelectrics. |
---|---|
AbstractList | The ‘phonon-glass electron-crystal’ concept has triggered most of the progress that has been achieved in inorganic thermoelectrics in the past two decades. Organic thermoelectric materials, unlike their inorganic counterparts, exhibit molecular diversity, flexible mechanical properties and easy fabrication, and are mostly ‘phonon glasses’. However, the thermoelectric performances of these organic materials are largely limited by low molecular order and they are therefore far from being ‘electron crystals’. Here, we report a molecularly n-doped fullerene derivative with meticulous design of the side chain that approaches an organic ‘PGEC’ thermoelectric material. This thermoelectric material exhibits an excellent electrical conductivity of >10 S cm
−1
and an ultralow thermal conductivity of <0.1 Wm
−1
K
−1
, leading to the best figure of merit
ZT
= 0.34 (at 120 °C) among all reported single-host n-type organic thermoelectric materials. The key factor to achieving the record performance is to use ‘arm-shaped’ double-triethylene-glycol-type side chains, which not only offer excellent doping efficiency (~60%) but also induce a disorder-to-order transition upon thermal annealing. This study illustrates the vast potential of organic semiconductors as thermoelectric materials.
Achieved high thermoelectric figure of merit (ZT) in organic thermoelectric materials remains a challenge due to their low packing order and poor host/dopant miscibility. Here, the authors report side chain-engineered n-doped fullerene derivatives with record ZT >0.3 for organic thermoelectrics. The 'phonon-glass electron-crystal' concept has triggered most of the progress that has been achieved in inorganic thermoelectrics in the past two decades. Organic thermoelectric materials, unlike their inorganic counterparts, exhibit molecular diversity, flexible mechanical properties and easy fabrication, and are mostly 'phonon glasses'. However, the thermoelectric performances of these organic materials are largely limited by low molecular order and they are therefore far from being 'electron crystals'. Here, we report a molecularly n-doped fullerene derivative with meticulous design of the side chain that approaches an organic 'PGEC' thermoelectric material. This thermoelectric material exhibits an excellent electrical conductivity of >10 S cm-1 and an ultralow thermal conductivity of <0.1 Wm-1K-1, leading to the best figure of merit ZT = 0.34 (at 120 °C) among all reported single-host n-type organic thermoelectric materials. The key factor to achieving the record performance is to use 'arm-shaped' double-triethylene-glycol-type side chains, which not only offer excellent doping efficiency (~60%) but also induce a disorder-to-order transition upon thermal annealing. This study illustrates the vast potential of organic semiconductors as thermoelectric materials.The 'phonon-glass electron-crystal' concept has triggered most of the progress that has been achieved in inorganic thermoelectrics in the past two decades. Organic thermoelectric materials, unlike their inorganic counterparts, exhibit molecular diversity, flexible mechanical properties and easy fabrication, and are mostly 'phonon glasses'. However, the thermoelectric performances of these organic materials are largely limited by low molecular order and they are therefore far from being 'electron crystals'. Here, we report a molecularly n-doped fullerene derivative with meticulous design of the side chain that approaches an organic 'PGEC' thermoelectric material. This thermoelectric material exhibits an excellent electrical conductivity of >10 S cm-1 and an ultralow thermal conductivity of <0.1 Wm-1K-1, leading to the best figure of merit ZT = 0.34 (at 120 °C) among all reported single-host n-type organic thermoelectric materials. The key factor to achieving the record performance is to use 'arm-shaped' double-triethylene-glycol-type side chains, which not only offer excellent doping efficiency (~60%) but also induce a disorder-to-order transition upon thermal annealing. This study illustrates the vast potential of organic semiconductors as thermoelectric materials. The ‘phonon-glass electron-crystal’ concept has triggered most of the progress that has been achieved in inorganic thermoelectrics in the past two decades. Organic thermoelectric materials, unlike their inorganic counterparts, exhibit molecular diversity, flexible mechanical properties and easy fabrication, and are mostly ‘phonon glasses’. However, the thermoelectric performances of these organic materials are largely limited by low molecular order and they are therefore far from being ‘electron crystals’. Here, we report a molecularly n-doped fullerene derivative with meticulous design of the side chain that approaches an organic ‘PGEC’ thermoelectric material. This thermoelectric material exhibits an excellent electrical conductivity of >10 S cm−1 and an ultralow thermal conductivity of <0.1 Wm−1K−1, leading to the best figure of merit ZT = 0.34 (at 120 °C) among all reported single-host n-type organic thermoelectric materials. The key factor to achieving the record performance is to use ‘arm-shaped’ double-triethylene-glycol-type side chains, which not only offer excellent doping efficiency (~60%) but also induce a disorder-to-order transition upon thermal annealing. This study illustrates the vast potential of organic semiconductors as thermoelectric materials.Achieved high thermoelectric figure of merit (ZT) in organic thermoelectric materials remains a challenge due to their low packing order and poor host/dopant miscibility. Here, the authors report side chain-engineered n-doped fullerene derivatives with record ZT >0.3 for organic thermoelectrics. Achieved high thermoelectric figure of merit (ZT) in organic thermoelectric materials remains a challenge due to their low packing order and poor host/dopant miscibility. Here, the authors report side chain-engineered n-doped fullerene derivatives with record ZT >0.3 for organic thermoelectrics. The ‘phonon-glass electron-crystal’ concept has triggered most of the progress that has been achieved in inorganic thermoelectrics in the past two decades. Organic thermoelectric materials, unlike their inorganic counterparts, exhibit molecular diversity, flexible mechanical properties and easy fabrication, and are mostly ‘phonon glasses’. However, the thermoelectric performances of these organic materials are largely limited by low molecular order and they are therefore far from being ‘electron crystals’. Here, we report a molecularly n-doped fullerene derivative with meticulous design of the side chain that approaches an organic ‘PGEC’ thermoelectric material. This thermoelectric material exhibits an excellent electrical conductivity of >10 S cm −1 and an ultralow thermal conductivity of <0.1 Wm −1 K −1 , leading to the best figure of merit ZT = 0.34 (at 120 °C) among all reported single-host n-type organic thermoelectric materials. The key factor to achieving the record performance is to use ‘arm-shaped’ double-triethylene-glycol-type side chains, which not only offer excellent doping efficiency (~60%) but also induce a disorder-to-order transition upon thermal annealing. This study illustrates the vast potential of organic semiconductors as thermoelectric materials. |
ArticleNumber | 5694 |
Author | Hummelen, Jan C. Qiu, Li Qiu, Xinkai Sami, Selim Anthopoulos, Thomas D. Rousseva, Sylvia Alessandri, Riccardo Marrink, Siewert J. Nugraha, Mohamad I. van der Zee, Bas Havenith, Remco W. A. Klasen, Nathalie Caironi, Mario Baran, Derya Liu, Jian Portale, Giuseppe Dong, Jingjin Barker, Alex J. Chiechi, Ryan C. Koster, L. Jan Anton |
Author_xml | – sequence: 1 givenname: Jian orcidid: 0000-0002-6704-3895 surname: Liu fullname: Liu, Jian email: Jian.liu@rug.nl organization: Zernike Institute for Advanced Materials, University of Groningen – sequence: 2 givenname: Bas surname: van der Zee fullname: van der Zee, Bas organization: Zernike Institute for Advanced Materials, University of Groningen – sequence: 3 givenname: Riccardo orcidid: 0000-0003-1948-5311 surname: Alessandri fullname: Alessandri, Riccardo organization: Zernike Institute for Advanced Materials, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen – sequence: 4 givenname: Selim orcidid: 0000-0002-4484-0322 surname: Sami fullname: Sami, Selim organization: Zernike Institute for Advanced Materials, University of Groningen, Stratingh Institute for Chemistry, University of Groningen – sequence: 5 givenname: Jingjin surname: Dong fullname: Dong, Jingjin organization: Zernike Institute for Advanced Materials, University of Groningen – sequence: 6 givenname: Mohamad I. surname: Nugraha fullname: Nugraha, Mohamad I. organization: King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – sequence: 7 givenname: Alex J. surname: Barker fullname: Barker, Alex J. organization: Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia – sequence: 8 givenname: Sylvia orcidid: 0000-0001-9774-3641 surname: Rousseva fullname: Rousseva, Sylvia organization: Zernike Institute for Advanced Materials, University of Groningen, Stratingh Institute for Chemistry, University of Groningen – sequence: 9 givenname: Li orcidid: 0000-0001-5838-0593 surname: Qiu fullname: Qiu, Li organization: Zernike Institute for Advanced Materials, University of Groningen, Stratingh Institute for Chemistry, University of Groningen, Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University – sequence: 10 givenname: Xinkai orcidid: 0000-0001-5857-6414 surname: Qiu fullname: Qiu, Xinkai organization: Zernike Institute for Advanced Materials, University of Groningen, Stratingh Institute for Chemistry, University of Groningen – sequence: 11 givenname: Nathalie surname: Klasen fullname: Klasen, Nathalie organization: Zernike Institute for Advanced Materials, University of Groningen, Stratingh Institute for Chemistry, University of Groningen – sequence: 12 givenname: Ryan C. orcidid: 0000-0002-0895-2095 surname: Chiechi fullname: Chiechi, Ryan C. organization: Zernike Institute for Advanced Materials, University of Groningen, Stratingh Institute for Chemistry, University of Groningen – sequence: 13 givenname: Derya orcidid: 0000-0003-2196-8187 surname: Baran fullname: Baran, Derya organization: King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – sequence: 14 givenname: Mario orcidid: 0000-0002-0442-4439 surname: Caironi fullname: Caironi, Mario organization: Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia – sequence: 15 givenname: Thomas D. orcidid: 0000-0002-0978-8813 surname: Anthopoulos fullname: Anthopoulos, Thomas D. organization: King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division (PSE), KAUST Solar Center (KSC) – sequence: 16 givenname: Giuseppe orcidid: 0000-0002-4903-3159 surname: Portale fullname: Portale, Giuseppe organization: Zernike Institute for Advanced Materials, University of Groningen – sequence: 17 givenname: Remco W. A. orcidid: 0000-0003-0038-6030 surname: Havenith fullname: Havenith, Remco W. A. organization: Zernike Institute for Advanced Materials, University of Groningen, Stratingh Institute for Chemistry, University of Groningen, Ghent Quantum Chemistry Group, Department of Inorganic and Physical Chemistry, Ghent University – sequence: 18 givenname: Siewert J. orcidid: 0000-0001-8423-5277 surname: Marrink fullname: Marrink, Siewert J. organization: Zernike Institute for Advanced Materials, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen – sequence: 19 givenname: Jan C. orcidid: 0000-0001-8152-6255 surname: Hummelen fullname: Hummelen, Jan C. organization: Zernike Institute for Advanced Materials, University of Groningen, Stratingh Institute for Chemistry, University of Groningen – sequence: 20 givenname: L. Jan Anton orcidid: 0000-0002-6558-5295 surname: Koster fullname: Koster, L. Jan Anton email: l.j.a.koster@rug.nl organization: Zernike Institute for Advanced Materials, University of Groningen |
BookMark | eNp9kUtrFTEYhoNUbD32D7gacONmau4XwUIpXgpFN3XjJiSZb05zmJkckzlCd279m_4S0zMVbRcN5ELyvk--5H2ODqY0AUIvCT4hmOk3hRMuVYspbokRTLX6CTqimJOWKMoO_lsfouNSNrg2Zojm_Bk6ZIwohgU-Qu8-t_PNFpqU126KoZmvIY8JBghzjqG8bToY01Tm7OaYpib1zber3z9_ndaOT9gL9LR3Q4Hju3mFvn54f3X-qb388vHi_OyyDUKzuTXY904BVYFg6XsMLDCq-85z0xNJmCDS0zooCFJzyg01wTvvDSfAoQO2QhcLt0tuY7c5ji7f2OSi3W_U4q3LcwwDWCWV9lRyIhnnFHsNwknWARgvJSG3rNOFtd35EboAU33ccA96_2SK13adflSyEJrQCnh9B8jp-w7KbMdYAgyDmyDtiqVcGEmVEqJKXz2QbtIuT_WrqkoRIbipQayQXlQhp1Iy9DbEef_f9f44WILtbeR2idzWyO0-cqurlT6w_n3Hoya2mEoVT2vI_6p6xPUHhHu-aA |
CitedBy_id | crossref_primary_10_1016_j_enconman_2025_119621 crossref_primary_10_1016_j_coco_2022_101179 crossref_primary_10_1088_2515_7639_acc550 crossref_primary_10_1038_s41586_024_07724_2 crossref_primary_10_1039_D2TA07409E crossref_primary_10_1088_2515_7655_acb5e6 crossref_primary_10_1016_j_mattod_2021_02_016 crossref_primary_10_1063_5_0047637 crossref_primary_10_1021_jacsau_4c00638 crossref_primary_10_1021_acsami_2c20489 crossref_primary_10_5059_yukigoseikyokaishi_82_1001 crossref_primary_10_1021_acsami_1c03411 crossref_primary_10_1002_anie_202219313 crossref_primary_10_1016_j_joule_2024_01_008 crossref_primary_10_1021_acsnano_4c10801 crossref_primary_10_1021_acsaem_3c02172 crossref_primary_10_20517_ss_2024_14 crossref_primary_10_1002_admt_202302128 crossref_primary_10_1016_j_nanoen_2023_109130 crossref_primary_10_1002_pol_20210604 crossref_primary_10_1515_chem_2022_0202 crossref_primary_10_1002_adma_202407692 crossref_primary_10_1002_admt_202300189 crossref_primary_10_1021_acsmaterialslett_4c00068 crossref_primary_10_1002_adfm_202202954 crossref_primary_10_1021_acsami_4c13105 crossref_primary_10_1016_j_mtener_2022_101032 crossref_primary_10_1002_aelm_202100407 crossref_primary_10_1021_acsami_0c15490 crossref_primary_10_1021_acs_macromol_4c00837 crossref_primary_10_1002_pssr_202200502 crossref_primary_10_1021_acsaelm_3c00936 crossref_primary_10_1002_adfm_202400982 crossref_primary_10_1002_admt_202401131 crossref_primary_10_1002_adma_202404397 crossref_primary_10_1002_marc_202100397 crossref_primary_10_1002_adfm_202108289 crossref_primary_10_1007_s10853_022_07584_z crossref_primary_10_1002_admt_202400968 crossref_primary_10_3762_bjoc_20_60 crossref_primary_10_1002_apxr_202300027 crossref_primary_10_1039_D1TC04038C crossref_primary_10_1002_adma_202311047 crossref_primary_10_1002_aelm_202400413 crossref_primary_10_1063_5_0065135 crossref_primary_10_1002_sstr_202200278 crossref_primary_10_1039_D3CE00305A crossref_primary_10_1002_aenm_202100883 crossref_primary_10_1039_D1MH01357B crossref_primary_10_1007_s11696_024_03618_9 crossref_primary_10_1016_j_ijbiomac_2024_132908 crossref_primary_10_1002_cssc_202102420 crossref_primary_10_1039_D3CC00840A crossref_primary_10_1039_D2SC00078D crossref_primary_10_1016_j_mtsust_2023_100476 crossref_primary_10_1021_acs_nanolett_4c02783 crossref_primary_10_1016_j_rser_2024_114579 crossref_primary_10_1557_s43578_024_01321_9 crossref_primary_10_1016_j_carbon_2021_05_061 crossref_primary_10_1039_D4CS01045K crossref_primary_10_35848_1347_4065_acbb10 crossref_primary_10_1002_ange_202219313 crossref_primary_10_1002_smll_202412745 crossref_primary_10_1016_j_jpowsour_2021_230323 crossref_primary_10_1016_j_mtener_2022_100964 crossref_primary_10_1063_5_0219293 crossref_primary_10_1063_5_0052474 crossref_primary_10_1021_acs_jctc_2c00651 crossref_primary_10_1002_aenm_202404656 crossref_primary_10_1246_bcsj_20220124 crossref_primary_10_1021_acs_chemmater_2c03775 crossref_primary_10_1007_s11426_024_2141_9 crossref_primary_10_1021_acsapm_3c01935 crossref_primary_10_1002_aelm_202200629 crossref_primary_10_1063_5_0080820 crossref_primary_10_1002_adfm_202111351 crossref_primary_10_1088_1674_1056_ac3a64 crossref_primary_10_1039_D3TA07188J crossref_primary_10_1063_5_0141075 crossref_primary_10_1515_ntrev_2021_0013 crossref_primary_10_1002_smm2_1034 crossref_primary_10_1016_j_joule_2023_10_008 crossref_primary_10_1063_5_0129861 crossref_primary_10_34133_adi_0067 crossref_primary_10_1021_acsami_1c08514 crossref_primary_10_1021_acsami_4c12729 crossref_primary_10_1007_s11664_021_09338_0 crossref_primary_10_1002_cey2_161 crossref_primary_10_1016_j_matt_2022_05_037 crossref_primary_10_1039_D2MH01226J crossref_primary_10_1055_a_1729_5728 crossref_primary_10_1002_batt_202400607 crossref_primary_10_1039_D2CS01027E crossref_primary_10_1002_smtd_202400084 crossref_primary_10_1016_j_cogsc_2023_100801 crossref_primary_10_1021_acs_jpcc_2c05682 crossref_primary_10_1021_acs_chemrev_1c00581 crossref_primary_10_1016_j_cej_2021_129718 crossref_primary_10_1002_smll_202200679 crossref_primary_10_1039_D3TC03417H crossref_primary_10_1002_adma_202201062 crossref_primary_10_1063_5_0071208 crossref_primary_10_1007_s11595_024_2880_z crossref_primary_10_3390_app11031066 crossref_primary_10_1002_adfm_202412647 crossref_primary_10_1002_adma_202102990 crossref_primary_10_1002_advs_202104915 crossref_primary_10_1021_acs_jctc_1c00195 crossref_primary_10_1021_acs_chemrev_1c00218 crossref_primary_10_1002_aesr_202100084 crossref_primary_10_3389_femat_2021_677845 crossref_primary_10_1038_s41586_024_07400_5 crossref_primary_10_1039_D3TA02943C crossref_primary_10_1002_advs_202203111 crossref_primary_10_1002_asia_202100285 crossref_primary_10_1088_2515_7655_ac55a3 crossref_primary_10_1021_acsami_1c00414 crossref_primary_10_1021_acsami_3c11235 crossref_primary_10_1021_acs_chemmater_1c01867 crossref_primary_10_1039_D2CC04205C crossref_primary_10_1021_acsaelm_3c01671 crossref_primary_10_1002_adma_202006694 crossref_primary_10_1103_PhysRevB_110_035201 crossref_primary_10_1002_smll_202104922 |
Cites_doi | 10.1002/aenm.201301437 10.1038/350320a0 10.1021/acsami.0c01417 10.1103/PhysRevB.96.241202 10.1063/1.2387892 10.1126/science.1158899 10.1002/adma.201804290 10.1002/adma.201704630 10.1063/1.5005807 10.1038/srep12763 10.1002/aelm.201800959 10.1039/C4EE03297G 10.1021/nl102931z 10.1103/PhysRevLett.110.015902 10.1021/ja103173m 10.1002/adfm.201600179 10.1039/C7TA00304H 10.1002/aelm.201800825 10.1016/j.nanoen.2018.07.056 10.1002/qua.24658 10.1126/science.259.5098.1145 10.1016/j.orgel.2016.02.029 10.1038/nmat4634 10.1021/acsenergylett.9b00977 10.1021/ma051359g 10.1038/nmat4461 10.1021/acsami.7b04533 10.1103/PhysRevLett.69.3797 10.1021/jacs.7b05344 10.1039/C7TA02509B 10.1103/PhysRevB.46.6131 10.1016/0009-2614(93)85452-T 10.1103/PhysRevB.59.8105 10.1002/adma.201000839 10.1039/c2ee22777k 10.1002/adma.201701641 10.1016/j.joule.2018.10.012 10.1039/b201353n 10.1021/acsenergylett.7b01146 10.1021/cm902195j 10.1016/j.softx.2015.06.001 10.1002/adfm.201303060 10.1002/adma.201300580 10.1038/natrevmats.2016.50 10.1002/adma.201603731 10.1002/adma.201700930 10.1103/PhysRevB.88.075310 10.1002/adma.201304866 10.1021/acs.chemmater.9b01422 10.3390/polym11010107 10.1021/ja403906d 10.1201/9781420049718.ch34 10.1002/aelm.201800915 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-020-19537-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_7678b2641634420b8e5a63dee9b6611e PMC7655812 10_1038_s41467_020_19537_8 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c583t-90bfa7e27c106bf0e3c328fdb49f1613516b25167ec68424929cbabb941e4ede3 |
IEDL.DBID | BENPR |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 00:54:29 EDT 2025 Thu Aug 21 18:33:59 EDT 2025 Fri Sep 05 12:18:19 EDT 2025 Wed Aug 13 04:04:21 EDT 2025 Tue Jul 01 04:09:07 EDT 2025 Thu Apr 24 23:07:17 EDT 2025 Fri Feb 21 02:40:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-90bfa7e27c106bf0e3c328fdb49f1613516b25167ec68424929cbabb941e4ede3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1948-5311 0000-0002-6704-3895 0000-0002-4903-3159 0000-0002-0442-4439 0000-0001-8423-5277 0000-0001-8152-6255 0000-0002-0895-2095 0000-0001-9774-3641 0000-0002-6558-5295 0000-0001-5838-0593 0000-0001-5857-6414 0000-0002-0978-8813 0000-0002-4484-0322 0000-0003-0038-6030 0000-0003-2196-8187 |
OpenAccessLink | https://www.proquest.com/docview/2471554917?pq-origsite=%requestingapplication% |
PMID | 33173050 |
PQID | 2471554917 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7678b2641634420b8e5a63dee9b6611e pubmedcentral_primary_oai_pubmedcentral_nih_gov_7655812 proquest_miscellaneous_2459627755 proquest_journals_2471554917 crossref_citationtrail_10_1038_s41467_020_19537_8 crossref_primary_10_1038_s41467_020_19537_8 springer_journals_10_1038_s41467_020_19537_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-10 |
PublicationDateYYYYMMDD | 2020-11-10 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Yao, Zhang, Zhang (CR24) 2019; 11 Capinski (CR51) 1999; 59 Lu, Wang, Pei (CR17) 2019; 31 Chuard, Deschenaux (CR35) 2002; 12 Kiefer (CR33) 2018; 3 Inabe (CR45) 1992; 69 Anthopoulos (CR47) 2006; 89 Chen, Zhao, Liang (CR16) 2015; 8 Wei, Oh, Dong, Bao (CR31) 2010; 132 Kanatzidis (CR7) 2010; 22 Bubnova, Crispin (CR3) 2012; 5 Cahill, Watson, Pohl (CR8) 1992; 46 Stéphane (CR36) 2005; 38 Tang (CR10) 2010; 10 Vineis, Shakouri, Majumdar, Kanatzidis (CR6) 2010; 22 Lindqvist (CR42) 2014; 4 Abraham (CR52) 2015; 1–2 CR4 Liu (CR48) 2019; 4 Liu (CR20) 2017; 29 Kang (CR39) 2016; 15 Schlitz (CR12) 2014; 26 Haddon (CR44) 1991; 350 Liu (CR19) 2018; 30 Dovesi (CR53) 2014; 114 Huang (CR22) 2017; 139 Li (CR41) 2016; 33 Chen, Wang, Kumar (CR30) 2015; 5 Frankevich, Maruyama, Ogata (CR46) 1993; 214 Beekman, Morelli, Nolas (CR5) 2015; 14 Campoy-Quiles, Alonso, Bradley, Richter (CR38) 2014; 24 Olson, Topp, Pohl (CR27) 1993; 259 Liu (CR14) 2018; 52 Wang, Yu (CR9) 2019; 3 Naab (CR37) 2013; 135 Liu (CR34) 2019; 5 CR13 CR54 Liu (CR18) 2018; 30 Kroon (CR40) 2017; 29 Wang, Liman, Treat, Chabinyc, Cahill (CR29) 2013; 88 Duda, Hopkins, Shen, Gupta (CR28) 2013; 110 Beretta (CR50) 2017; 9 Sami, Alessandri, Broer, Havenith (CR43) 2020; 12 Wang (CR21) 2016; 28 Li (CR32) 2013; 25 Kim, Gibbs, Tang, Wang, Snyder (CR49) 2015; 3 Abdalla, Zuo, Kemerink (CR15) 2017; 96 Sun, Di, Xu, Zhu (CR23) 2019; 5 Ito, Koizumi, Kojima, Saito, Nakamura (CR11) 2017; 5 Nonoguchi (CR26) 2016; 26 Russ, Glaudell, Urban, Chabinyc, Segalman (CR1) 2016; 1 Bell (CR2) 2008; 321 Linseis, Völklein, Reith, Nielsch, Woias (CR55) 2018; 89 An, Kang, Song, Jeong, Cho (CR25) 2017; 5 J Tang (19537_CR10) 2010; 10 J Liu (19537_CR34) 2019; 5 MJ Abraham (19537_CR52) 2015; 1–2 B Russ (19537_CR1) 2016; 1 O Bubnova (19537_CR3) 2012; 5 Y Sun (19537_CR23) 2019; 5 S Sami (19537_CR43) 2020; 12 D Huang (19537_CR22) 2017; 139 RA Schlitz (19537_CR12) 2014; 26 BD Naab (19537_CR37) 2013; 135 H Abdalla (19537_CR15) 2017; 96 Y Nonoguchi (19537_CR26) 2016; 26 JC Duda (19537_CR28) 2013; 110 J Liu (19537_CR20) 2017; 29 Y Lu (19537_CR17) 2019; 31 R Kroon (19537_CR40) 2017; 29 LE Bell (19537_CR2) 2008; 321 CJ An (19537_CR25) 2017; 5 V Linseis (19537_CR55) 2018; 89 Campidelli† Stéphane (19537_CR36) 2005; 38 J Liu (19537_CR19) 2018; 30 M Beekman (19537_CR5) 2015; 14 C-J Yao (19537_CR24) 2019; 11 D Beretta (19537_CR50) 2017; 9 HS Kim (19537_CR49) 2015; 3 M Campoy-Quiles (19537_CR38) 2014; 24 JR Olson (19537_CR27) 1993; 259 DG Cahill (19537_CR8) 1992; 46 19537_CR4 J Liu (19537_CR14) 2018; 52 D Kiefer (19537_CR33) 2018; 3 R Dovesi (19537_CR53) 2014; 114 T Chuard (19537_CR35) 2002; 12 J Liu (19537_CR18) 2018; 30 X Wang (19537_CR29) 2013; 88 C-Z Li (19537_CR32) 2013; 25 E Frankevich (19537_CR46) 1993; 214 L Chen (19537_CR30) 2015; 5 J Li (19537_CR41) 2016; 33 Y Chen (19537_CR16) 2015; 8 J Liu (19537_CR48) 2019; 4 M Ito (19537_CR11) 2017; 5 TD Anthopoulos (19537_CR47) 2006; 89 MG Kanatzidis (19537_CR7) 2010; 22 CJ Vineis (19537_CR6) 2010; 22 19537_CR54 19537_CR13 WS Capinski (19537_CR51) 1999; 59 S Wang (19537_CR21) 2016; 28 P Wei (19537_CR31) 2010; 132 RC Haddon (19537_CR44) 1991; 350 K Kang (19537_CR39) 2016; 15 C Lindqvist (19537_CR42) 2014; 4 T Inabe (19537_CR45) 1992; 69 H Wang (19537_CR9) 2019; 3 |
References_xml | – volume: 4 start-page: 1301437 year: 2014 ident: CR42 article-title: Fullerene nucleating agents: a route towards thermally stable photovoltaic blends publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301437 – volume: 350 start-page: 320 year: 1991 end-page: 322 ident: CR44 article-title: Conducting films of C60 and C70 by alkali-metal doping publication-title: Nature doi: 10.1038/350320a0 – volume: 12 start-page: 17783 year: 2020 end-page: 17789 ident: CR43 article-title: How ethylene glycol chains enhance the dielectric constant of organic semiconductors: molecular origin and frequency dependence publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c01417 – ident: CR4 – volume: 96 start-page: 241202 year: 2017 ident: CR15 article-title: Range and energetics of charge hopping in organic semiconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.241202 – volume: 89 start-page: 1 year: 2006 end-page: 4 ident: CR47 article-title: High performance n -channel organic field-effect transistors and ring oscillators based on C60 fullerene films publication-title: Appl. Phys. Lett. doi: 10.1063/1.2387892 – volume: 321 start-page: 1457 year: 2008 end-page: 1461 ident: CR2 article-title: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems publication-title: Science doi: 10.1126/science.1158899 – volume: 30 start-page: 1804290 year: 2018 ident: CR19 article-title: N-type organic thermoelectrics of donor-acceptor copolymers: improved power factor by molecular tailoring of the density of states publication-title: Adv. Mater. doi: 10.1002/adma.201804290 – volume: 30 start-page: 1704630 year: 2018 ident: CR18 article-title: Enhancing molecular n- publication-title: Adv. Mater. doi: 10.1002/adma.201704630 – ident: CR54 – volume: 89 start-page: 015110 year: 2018 ident: CR55 article-title: Advanced platform for the in-plane ZT measurement of thin films publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5005807 – volume: 5 year: 2015 ident: CR30 article-title: Thermal transport in fullerene derivatives using molecular dynamics simulations publication-title: Sci. Rep. doi: 10.1038/srep12763 – volume: 5 start-page: 1800959 year: 2019 ident: CR34 article-title: The effect of electrostatic interaction on N‐type doping efficiency of fullerene derivatives publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800959 – volume: 8 start-page: 401 year: 2015 end-page: 422 ident: CR16 article-title: Solution processed organic thermoelectrics: towards flexible thermoelectric modules publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03297G – volume: 10 start-page: 4279 year: 2010 end-page: 4283 ident: CR10 article-title: Holey silicon as an efficient thermoelectric material publication-title: Nano Lett. doi: 10.1021/nl102931z – volume: 110 start-page: 015902 year: 2013 ident: CR28 article-title: Exceptionally low thermal conductivities of films of the fullerene derivative PCBM publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.015902 – volume: 132 start-page: 8852 year: 2010 end-page: 8853 ident: CR31 article-title: Use of a 1 H -benzoimidazole derivative as an n -type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103173m – volume: 26 start-page: 3021 year: 2016 end-page: 3028 ident: CR26 article-title: Simple salt-coordinated n-type nanocarbon materials stable in air publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600179 – volume: 5 start-page: 12068 year: 2017 end-page: 12072 ident: CR11 article-title: From materials to device design of a thermoelectric fabric for wearable energy harvesters publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00304H – volume: 5 start-page: 1800825 year: 2019 ident: CR23 article-title: Advances in n‐type organic thermoelectric materials and devices publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800825 – volume: 52 start-page: 183 year: 2018 end-page: 191 ident: CR14 article-title: Side-chain effects on N-type organic thermoelectrics: a case study of fullerene derivatives publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.056 – volume: 114 start-page: 1287 year: 2014 end-page: 1317 ident: CR53 article-title: C RYSTAL14: a program for the ab initio investigation of crystalline solids publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.24658 – volume: 259 start-page: 1145 year: 1993 end-page: 1148 ident: CR27 article-title: C60 rotation in the solid state: dynamics of a faceted spherical top publication-title: Science doi: 10.1126/science.259.5098.1145 – volume: 33 start-page: 23 year: 2016 end-page: 31 ident: CR41 article-title: The effect of thermal annealing on dopant site choice in conjugated polymers publication-title: Org. Electron. doi: 10.1016/j.orgel.2016.02.029 – volume: 15 start-page: 896 year: 2016 end-page: 902 ident: CR39 article-title: 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion publication-title: Nat. Mater. doi: 10.1038/nmat4634 – volume: 4 start-page: 1556 year: 2019 end-page: 1564 ident: CR48 article-title: Overcoming Coulomb interaction improves free-charge generation and thermoelectric properties for n-doped conjugated polymers publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00977 – volume: 38 start-page: 7915 year: 2005 end-page: 7925 ident: CR36 article-title: Supramolecular fullerene materials: dendritic liquid-crystalline fulleropyrrolidines publication-title: Macromolecules doi: 10.1021/ma051359g – volume: 14 start-page: 1182 year: 2015 end-page: 1185 ident: CR5 article-title: Better thermoelectrics through glass-like crystals publication-title: Nat. Mater. doi: 10.1038/nmat4461 – volume: 9 start-page: 18151 year: 2017 end-page: 18160 ident: CR50 article-title: Thermoelectric properties of highly conductive poly(3,4-ethylenedioxythiophene) polystyrene sulfonate printed thin films publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04533 – volume: 69 start-page: 3797 year: 1992 end-page: 3799 ident: CR45 article-title: Electronic structure of alkali metal doped C60 derived from thermoelectric power measurements publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.3797 – volume: 139 start-page: 13013 year: 2017 end-page: 13023 ident: CR22 article-title: Conjugated-backbone effect of organic small molecules for n-type thermoelectric materials with ZT over 0.2 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05344 – volume: 5 start-page: 15631 year: 2017 end-page: 15639 ident: CR25 article-title: High-performance flexible thermoelectric generator by control of electronic structure of directly spun carbon nanotube webs with various molecular dopants publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02509B – volume: 46 start-page: 6131 year: 1992 end-page: 6140 ident: CR8 article-title: Lower limit to the thermal conductivity of disordered crystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.6131 – volume: 214 start-page: 39 year: 1993 end-page: 44 ident: CR46 article-title: Mobility of charge carriers in vapor-phase grown C60 single crystal publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)85452-T – volume: 59 start-page: 8105 year: 1999 end-page: 8113 ident: CR51 article-title: Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.8105 – volume: 22 start-page: 3970 year: 2010 end-page: 3980 ident: CR6 article-title: Nanostructured thermoelectrics: big efficiency gains from small features publication-title: Adv. Mater. doi: 10.1002/adma.201000839 – volume: 5 start-page: 9345 year: 2012 ident: CR3 article-title: Towards polymer-based organic thermoelectric generators publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22777k – volume: 29 start-page: 1701641 year: 2017 ident: CR20 article-title: N-type organic thermoelectrics: improved power factor by tailoring host-dopant miscibility publication-title: Adv. Mater. doi: 10.1002/adma.201701641 – volume: 3 start-page: 53 year: 2019 end-page: 80 ident: CR9 article-title: Organic thermoelectrics: materials preparation, performance optimization, and device integration publication-title: Joule doi: 10.1016/j.joule.2018.10.012 – volume: 12 start-page: 1944 year: 2002 end-page: 1951 ident: CR35 article-title: Design, mesomorphic properties, and supramolecular organization of [60]fullerene-containing thermotropic liquid crystals publication-title: J. Mater. Chem. doi: 10.1039/b201353n – volume: 3 start-page: 278 year: 2018 end-page: 285 ident: CR33 article-title: Enhanced n-doping efficiency of a naphthalenediimide-based copolymer through polar side chains for organic thermoelectrics publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01146 – volume: 22 start-page: 648 year: 2010 end-page: 659 ident: CR7 article-title: Nanostructured thermoelectrics: the new paradigm? publication-title: Chem. Mater. doi: 10.1021/cm902195j – volume: 1–2 start-page: 19 year: 2015 end-page: 25 ident: CR52 article-title: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: SoftwareX doi: 10.1016/j.softx.2015.06.001 – volume: 24 start-page: 2116 year: 2014 end-page: 2134 ident: CR38 article-title: Advanced ellipsometric characterization of conjugated polymer films publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303060 – volume: 25 start-page: 4425 year: 2013 end-page: 4430 ident: CR32 article-title: Doping of fullerenes via anion-induced electron transfer and its implication for surfactant facilitated high performance polymer solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201300580 – volume: 3 start-page: 1 year: 2015 end-page: 6 ident: CR49 article-title: Characterization of Lorenz number with Seebeck coefficient measurement publication-title: APL Mater. – volume: 1 start-page: 16050 year: 2016 ident: CR1 article-title: Organic thermoelectric materials for energy harvesting and temperature control publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.50 – ident: CR13 – volume: 28 start-page: 10764 year: 2016 end-page: 10771 ident: CR21 article-title: Thermoelectric properties of solution-processed n-doped ladder-type conducting polymers publication-title: Adv. Mater. doi: 10.1002/adma.201603731 – volume: 29 start-page: 1700930 year: 2017 ident: CR40 article-title: Polar side chains enhance processability, electrical conductivity, and thermal stability of a molecularly p-doped polythiophene publication-title: Adv. Mater. doi: 10.1002/adma.201700930 – volume: 88 start-page: 075310 year: 2013 ident: CR29 article-title: Ultralow thermal conductivity of fullerene derivatives publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.075310 – volume: 26 start-page: 2825 year: 2014 end-page: 2830 ident: CR12 article-title: Solubility-limited extrinsic n-type doping of a high electron mobility polymer for thermoelectric applications publication-title: Adv. Mater. doi: 10.1002/adma.201304866 – volume: 31 start-page: 6412 year: 2019 end-page: 6423 ident: CR17 article-title: Strategies to enhance the conductivity of n-type polymer thermoelectric materials publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01422 – volume: 11 start-page: 107 year: 2019 ident: CR24 article-title: Recent progress in thermoelectric materials based on conjugated polymers publication-title: Polymers doi: 10.3390/polym11010107 – volume: 135 start-page: 15018 year: 2013 end-page: 15025 ident: CR37 article-title: Mechanistic study on the solution-phase n-doping of 1,3-dimethyl-2-aryl-2,3-dihydro-1 H -benzoimidazole derivatives publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403906d – volume: 3 start-page: 278 year: 2018 ident: 19537_CR33 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01146 – volume: 12 start-page: 17783 year: 2020 ident: 19537_CR43 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c01417 – volume: 132 start-page: 8852 year: 2010 ident: 19537_CR31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103173m – volume: 1–2 start-page: 19 year: 2015 ident: 19537_CR52 publication-title: SoftwareX doi: 10.1016/j.softx.2015.06.001 – volume: 31 start-page: 6412 year: 2019 ident: 19537_CR17 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01422 – volume: 26 start-page: 2825 year: 2014 ident: 19537_CR12 publication-title: Adv. Mater. doi: 10.1002/adma.201304866 – volume: 89 start-page: 1 year: 2006 ident: 19537_CR47 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2387892 – volume: 5 start-page: 12068 year: 2017 ident: 19537_CR11 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00304H – volume: 1 start-page: 16050 year: 2016 ident: 19537_CR1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.50 – volume: 139 start-page: 13013 year: 2017 ident: 19537_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05344 – volume: 26 start-page: 3021 year: 2016 ident: 19537_CR26 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600179 – volume: 28 start-page: 10764 year: 2016 ident: 19537_CR21 publication-title: Adv. Mater. doi: 10.1002/adma.201603731 – volume: 24 start-page: 2116 year: 2014 ident: 19537_CR38 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303060 – ident: 19537_CR4 doi: 10.1201/9781420049718.ch34 – volume: 5 start-page: 15631 year: 2017 ident: 19537_CR25 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02509B – volume: 5 year: 2015 ident: 19537_CR30 publication-title: Sci. Rep. doi: 10.1038/srep12763 – volume: 22 start-page: 648 year: 2010 ident: 19537_CR7 publication-title: Chem. Mater. doi: 10.1021/cm902195j – volume: 4 start-page: 1301437 year: 2014 ident: 19537_CR42 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301437 – volume: 12 start-page: 1944 year: 2002 ident: 19537_CR35 publication-title: J. Mater. Chem. doi: 10.1039/b201353n – volume: 46 start-page: 6131 year: 1992 ident: 19537_CR8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.6131 – volume: 14 start-page: 1182 year: 2015 ident: 19537_CR5 publication-title: Nat. Mater. doi: 10.1038/nmat4461 – volume: 110 start-page: 015902 year: 2013 ident: 19537_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.015902 – volume: 88 start-page: 075310 year: 2013 ident: 19537_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.075310 – volume: 114 start-page: 1287 year: 2014 ident: 19537_CR53 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.24658 – ident: 19537_CR13 doi: 10.1002/aelm.201800915 – volume: 5 start-page: 9345 year: 2012 ident: 19537_CR3 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22777k – volume: 52 start-page: 183 year: 2018 ident: 19537_CR14 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.07.056 – volume: 214 start-page: 39 year: 1993 ident: 19537_CR46 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)85452-T – volume: 33 start-page: 23 year: 2016 ident: 19537_CR41 publication-title: Org. Electron. doi: 10.1016/j.orgel.2016.02.029 – volume: 350 start-page: 320 year: 1991 ident: 19537_CR44 publication-title: Nature doi: 10.1038/350320a0 – volume: 259 start-page: 1145 year: 1993 ident: 19537_CR27 publication-title: Science doi: 10.1126/science.259.5098.1145 – ident: 19537_CR54 – volume: 15 start-page: 896 year: 2016 ident: 19537_CR39 publication-title: Nat. Mater. doi: 10.1038/nmat4634 – volume: 4 start-page: 1556 year: 2019 ident: 19537_CR48 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00977 – volume: 10 start-page: 4279 year: 2010 ident: 19537_CR10 publication-title: Nano Lett. doi: 10.1021/nl102931z – volume: 89 start-page: 015110 year: 2018 ident: 19537_CR55 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5005807 – volume: 135 start-page: 15018 year: 2013 ident: 19537_CR37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403906d – volume: 22 start-page: 3970 year: 2010 ident: 19537_CR6 publication-title: Adv. Mater. doi: 10.1002/adma.201000839 – volume: 38 start-page: 7915 year: 2005 ident: 19537_CR36 publication-title: Macromolecules doi: 10.1021/ma051359g – volume: 29 start-page: 1701641 year: 2017 ident: 19537_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.201701641 – volume: 25 start-page: 4425 year: 2013 ident: 19537_CR32 publication-title: Adv. Mater. doi: 10.1002/adma.201300580 – volume: 30 start-page: 1704630 year: 2018 ident: 19537_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.201704630 – volume: 96 start-page: 241202 year: 2017 ident: 19537_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.241202 – volume: 8 start-page: 401 year: 2015 ident: 19537_CR16 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03297G – volume: 59 start-page: 8105 year: 1999 ident: 19537_CR51 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.8105 – volume: 30 start-page: 1804290 year: 2018 ident: 19537_CR19 publication-title: Adv. Mater. doi: 10.1002/adma.201804290 – volume: 3 start-page: 1 year: 2015 ident: 19537_CR49 publication-title: APL Mater. – volume: 29 start-page: 1700930 year: 2017 ident: 19537_CR40 publication-title: Adv. Mater. doi: 10.1002/adma.201700930 – volume: 69 start-page: 3797 year: 1992 ident: 19537_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.3797 – volume: 3 start-page: 53 year: 2019 ident: 19537_CR9 publication-title: Joule doi: 10.1016/j.joule.2018.10.012 – volume: 5 start-page: 1800825 year: 2019 ident: 19537_CR23 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800825 – volume: 5 start-page: 1800959 year: 2019 ident: 19537_CR34 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800959 – volume: 321 start-page: 1457 year: 2008 ident: 19537_CR2 publication-title: Science doi: 10.1126/science.1158899 – volume: 11 start-page: 107 year: 2019 ident: 19537_CR24 publication-title: Polymers doi: 10.3390/polym11010107 – volume: 9 start-page: 18151 year: 2017 ident: 19537_CR50 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04533 |
SSID | ssj0000391844 |
Score | 2.6412761 |
Snippet | The ‘phonon-glass electron-crystal’ concept has triggered most of the progress that has been achieved in inorganic thermoelectrics in the past two decades.... The 'phonon-glass electron-crystal' concept has triggered most of the progress that has been achieved in inorganic thermoelectrics in the past two decades.... Achieved high thermoelectric figure of merit (ZT) in organic thermoelectric materials remains a challenge due to their low packing order and poor host/dopant... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5694 |
SubjectTerms | 119/118 639/301/1005/1007 639/301/299/2736 639/4077/4107 Annealing Chains Crystals Electrical conductivity Electrical resistivity Fabrication Figure of merit Fullerenes Heat conductivity Humanities and Social Sciences Mechanical properties Miscibility multidisciplinary Organic materials Organic semiconductors Phonons Science Science (multidisciplinary) Semiconductors Temperature Thermal conductivity Thermoelectric materials |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-UwEB8WQfCy-LVsXZUK3txi23y0ERR0WRFBTwqyl9AkUxS0T_Y9D968-m_6lzhJ-p5W2N3LHnppEppM5uM3nWQGYFu4SgmUIhNW5hlXTmS1y5usxNYxhaWqG385-excnlzy0ytx9a7Ulz8TFtMDR8LtVqRNDVltwg2cl7mpUTSSOURlyLQU6LUv2bx3zlTQwUyR68L7WzI5q3fHPOgE7y35yBGp5oElCgn7Byjz4xnJD4HSYH-OF-FzDxzTwzjhJfiE3TLMx1KSjyuwf575v6lprNJkU4_r7kaxyM2NHe-lDu88FIwbno7a9NfFy9PzAT3kUa_C5fHPix8nWV8aIbOiZpNM5aZtKiwrSy6daXNklpV16wxXLWE4JgppCLnICq0PtHECQdY0xiheIEeH7AvMdaMOv0IqC5sTCCNBVJZGk_kXBiVy3ggmuJMJFFMyadvnDfflK251iF-zWkfSaiKtDqTVdQI7szH3MWvGX3sfeerPevqM1-EFkUz3fKD_xQcJrE_3TvdiONYlmV7CS-SSJrA1ayYB8lGRpsPRg-8TChBVQiRQDfZ8MKFhS3dzHVJxV1IIgkgJfJ9yx9vH_7zgtf-x4G-wUAZu9kcS12Fu8vsBNwggTcxmkIVX_8UJ3A priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB22KYVeQtM2xGkaXOitdWNbH7YCaUhLl1BITlkIvQhLGpNA1tvubqC59dq_2V-SkWxvcUhy8MWSsD2a0bzxSPMA3gtXKIFSJMLKNOHKiaR0aZXkWDumMFdl5Q8nn5zK4wn_fi7OR9DTHXUCXNwb2nk-qcn86tPvXzeHZPAH7ZHxcm_Bg7n7QMgnhWjVfQJPyTNJr-UnHdwPKzNTFNDw7uzM_UMH_imU8R9gz7s7J--kT4NXGr-A9Q5Oxkft_G_ACJuX8KwlmLx5BQenif_HGrfcTTb2aG86a6lvLu1iP3Y49QCxVYN4Vsc_zv79-fuZLoqzX8Nk_O3s63HSESYkVpRsmajU1FWBeWEp0DN1isyyvKyd4aomZMdEJg3hGVmg9ek3TtDImsoYxTPk6JBtwloza3ALYpnZlKAZmaeyNJpAgTAokfNKMMGdjCDrxaRtV03ck1pc6ZDVZqVuRatJtDqIVpcRfFiN-dnW0ni09xcv_VVPXwc73CCR6c6sdEG-1hCmI1TJeZ6aEkUlmUNUhoBHhhHs9HOne93SOTlkQlEUqEbwbtVMZuVzJVWDs2vfJ9ASFUJEUAzmfPBCw5bm8iIU6C6kEAScIvjYa8f_hz_8wduPv-sbeJ4HPfVbEHdgbTm_xrcEiJZmN2j5LbWtBZQ priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PSx0xEB6sIvQiVi3dassWvOni7ubHJgUL7aMigp4UxEvYJLNU0H3S9zx467X_pn9JJ9ndJyu20MNeNgmbnWQyXzKTbwB2ha-0QCky4WSece1FpnxeZyU2nmkstarD5eTTM3l8wU8uxeUSlMNdmBi0Hykt4zI9RIcdzHhU6bDZCY4fWllfwUqgbg98-RM5WZyrBMZzxXl_PyZn6oWmIxsUqfpH-PJ5dOQzF2m0PEfrsNZDxvRr18k3sITtBqx2SSQfNuHwLAvnqGmXn8mlAdHdTrv0Ntdu9jn1eBtAYDfU6bRJr84ff_3-Qg_tpbfg4uj7-eQ465MiZE4oNs90bpu6wrJytJmzTY7MsVI13nLdEHpjopCWMIus0AUXGyf442xtreYFcvTI3sJyO23xHaSycDnBL1JB7ag1GX5hUSLntWCCe5lAMYjJuJ4xPCSuuDHRc82U6URrSLQmitaoBPYWbe46vox_1v4WpL-oGbiu4wsSmenH3lRkTy3hNkKOnJe5VShqyTyitgQuCkxgZxg70yvgzJRkdAkp0WY0gU-LYlKd4A-pW5zehzox9VAlRALVaMxHHRqXtNc_Igl3JYUgcJTA_jA7nj7-9x9-_3_Vt-F1GedtCDvcgeX5z3v8QCBobj_GWf8HJRsAKw priority: 102 providerName: Springer Nature |
Title | N-type organic thermoelectrics: demonstration of ZT > 0.3 |
URI | https://link.springer.com/article/10.1038/s41467-020-19537-8 https://www.proquest.com/docview/2471554917 https://www.proquest.com/docview/2459627755 https://pubmed.ncbi.nlm.nih.gov/PMC7655812 https://doaj.org/article/7678b2641634420b8e5a63dee9b6611e |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6aXQq9hD6p23RxobfWxGs9XWjLZsk2LGQpbQJLL8J6mAQaO-luDr312r_ZX9KRrN3gQHOwDpaE5dHM6NOMNAPwhllRMsdZxgzPM1palkmbV1nhaktKV5Sy8peTjxf86JTOl2wZDW6reKxyoxODorat8Tby_QK1KC59uLv4dHmV-axR3rsaU2jswBBVsGQDGB4cLr583VpZfPxzSWm8LZMTub-iQTf4XZP3IKGK7q1IIXB_D23ePit5y2Ea1qHZQ9iNADKddDP-CO655jHc71JK_noCHxaZt6qmXbYmk3p8d9F2yW7Ozep9at2Fh4TdxKdtnX4_-fv7z0d8cGf9FE5nhyfToyymSMgMk2SdlbmuK-EKYXBrp-vcEUMKWVtNyxqxHGFjrhHBcOGMd7hRBENGV1qXdOyos448g0HTNu45pHxscgRjKJClwd4IA5h23FFaMcKo5QmMN2RSJsYP92ksfqjgxyZSdaRVSFoVSKtkAm-3fS676Bl3tj7w1N-29JGvwwskmYqCpASurhpRHOJISotcS8cqTqxzpUaoMXYJ7G3mTkVxXKkb5kng9bYaBcl7R6rGtde-TUhEJBhLQPTmvDegfk1zfhZCcgvOGEKlBN5tuOPm4___4Rd3j_UlPCgCn_pDh3swWP-8dq8QAq31CHbEUmApZ59HMJxM5t_mo8j7-HbKp6NgXMDymMp_4cMJxg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFOkFAgSnCBqEj9iIxXEa9nSdk9bqeJiYmciKrWbwm6FeuPKn-FH8UsYO8lWqURvPeSSOK_xjOcbjz0fwDNRFVqgFIlwMk24rkSiqrRMcqwrpjHXqvSbk3cncrzHP--L_RX40--F8csq-zExDNRV4_wc-UZOoyi5Poou3hx_TzxrlM-u9hQarVps4-lPCtnmm1sfqH-f5_no4_T9OOlYBRInFFskOrV1WWBeOIqGbJ0icyxXdWW5rgn-MJFJS05fFuh8jooTfnC2tFbzDDlWyOi5V-AqZ0z7Wv1q9Gk5p-OrrSvOu705KVMbcx5GIh-j-XwVOYSB_ws0AQNse35l5rn0bPB6o1tws4Or8dtWv27DCs7uwLWWwPL0LmxOEj-HG7fcUC72aPKoaal1Dtz8VVzhkQegrZrFTR1_mf799fs1HRTH34O9SxHdfVidNTN8ALHMXErQj8xfO7qbQIewKJHzUjDBKxlB1ovJuK5auSfNODQha86UaUVrSLQmiNaoCF4s7zlua3Vc2Pqdl_6ypa-zHU6QyExntqYgX24JMxJq5TxPrUJRSlYhakvAJsMI1vu-M53xz82ZqkbwdHmZzNbnYsoZNie-TaA9KoSIoBj0-eCDhldmB99CAfBCCkHALIKXvXacvfz_P7x28bc-gevj6e6O2dmabD-EG3nQWb_ccR1WFz9O8BGBr4V9HDQ-hq-XbWL_AJqIP2c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE8RKBAkOEG0SfyIg1QQfaxaCqsKtVLFxcTORFSiSWG3Qr1x5S_xc_gljJ1kq1Rqbz3kkjiv8XjmG489H8ALUWa5QCkiYWUc8bwUkSrjIkqxKlmOaa4Ktzn501Ru7fMPB-JgCf72e2HcssreJnpDXTbWzZGPU7Ki5PoouhhX3bKI3Y3Ju-MfkWOQcpnWnk6jVZEdPP1F4dtsdXuD-vplmk4299a3oo5hILJCsXmUx6YqMkwzS5GRqWJklqWqKg3PK4JCTCTSEACQGVqXr-KEJawpjMl5ghxLZPTca7CckVdUI1he25zufl7M8Lja64rzbqdOzNR4xr1dchGby16Rexh4Q08aMEC659dpnkvWeh84uQ23OvAavm-17Q4sYX0Xrrd0lqf3YHUauRndsGWKsqHDlkdNS7RzaGdvwhKPHBxtlS5sqvDL3r_ff97SQVH9fdi_EuE9gFHd1PgQQpnYmIAgGYPc0t0EQYRBiZwXggleygCSXkzadrXLHYXGd-1z6EzpVrSaRKu9aLUK4NXinuO2cselrdec9BctXdVtf4JEprtBrDPy7IYQJGFYztPYKBSFZCVibgjmJBjASt93ujMFM32muAE8X1ymQewyM0WNzYlr40mQMiECyAZ9Pvig4ZX68JsvB55JIQimBfC6146zl1_8w48u_9ZncIOGl_64Pd15DDdTr7Ju7eMKjOY_T_AJIbG5edqpfAhfr3qU_QcDS0UC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N-type+organic+thermoelectrics%3A+demonstration+of+ZT%E2%80%89%3E%E2%80%890.3&rft.jtitle=Nature+communications&rft.au=Liu%2C+Jian&rft.au=van+der+Zee+Bas&rft.au=Alessandri+Riccardo&rft.au=Selim%2C+Sami&rft.date=2020-11-10&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-19537-8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |