Microbial biofilms for electricity generation from water evaporation and power to wearables
Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with renewable feedstocks. Here, we demonstrate that it is possible to engineer microbial biofilms as a cohesive, flexible material for long-term cont...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 4369 - 8 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
28.07.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-022-32105-6 |
Cover
Loading…
Abstract | Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with renewable feedstocks. Here, we demonstrate that it is possible to engineer microbial biofilms as a cohesive, flexible material for long-term continuous electricity production from evaporating water. Single biofilm sheet (~40 µm thick) serving as the functional component in an electronic device continuously produces power density (~1 μW/cm
2
) higher than that achieved with thicker engineered materials. The energy output is comparable to that achieved with similar sized biofilms catalyzing current production in microbial fuel cells, without the need for an organic feedstock or maintaining cell viability. The biofilm can be sandwiched between a pair of mesh electrodes for scalable device integration and current production. The devices maintain the energy production in ionic solutions and can be used as skin-patch devices to harvest electricity from sweat and moisture on skin to continuously power wearable devices. Biofilms made from different microbial species show generic current production from water evaporation. These results suggest that we can harness the ubiquity of biofilms in nature as additional sources of biomaterial for evaporation-based electricity generation in diverse aqueous environments.
Though water evaporation-driven electricity generation is an attractive sustainable energy production strategy, existing electronic devices suffer from poor performance or is costly. Here, the authors report sustainable biofilms for efficient, low-cost evaporation-based electricity production |
---|---|
AbstractList | Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with renewable feedstocks. Here, we demonstrate that it is possible to engineer microbial biofilms as a cohesive, flexible material for long-term continuous electricity production from evaporating water. Single biofilm sheet (~40 µm thick) serving as the functional component in an electronic device continuously produces power density (~1 μW/cm2) higher than that achieved with thicker engineered materials. The energy output is comparable to that achieved with similar sized biofilms catalyzing current production in microbial fuel cells, without the need for an organic feedstock or maintaining cell viability. The biofilm can be sandwiched between a pair of mesh electrodes for scalable device integration and current production. The devices maintain the energy production in ionic solutions and can be used as skin-patch devices to harvest electricity from sweat and moisture on skin to continuously power wearable devices. Biofilms made from different microbial species show generic current production from water evaporation. These results suggest that we can harness the ubiquity of biofilms in nature as additional sources of biomaterial for evaporation-based electricity generation in diverse aqueous environments.Though water evaporation-driven electricity generation is an attractive sustainable energy production strategy, existing electronic devices suffer from poor performance or is costly. Here, the authors report sustainable biofilms for efficient, low-cost evaporation-based electricity production Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with renewable feedstocks. Here, we demonstrate that it is possible to engineer microbial biofilms as a cohesive, flexible material for long-term continuous electricity production from evaporating water. Single biofilm sheet (~40 µm thick) serving as the functional component in an electronic device continuously produces power density (~1 μW/cm 2 ) higher than that achieved with thicker engineered materials. The energy output is comparable to that achieved with similar sized biofilms catalyzing current production in microbial fuel cells, without the need for an organic feedstock or maintaining cell viability. The biofilm can be sandwiched between a pair of mesh electrodes for scalable device integration and current production. The devices maintain the energy production in ionic solutions and can be used as skin-patch devices to harvest electricity from sweat and moisture on skin to continuously power wearable devices. Biofilms made from different microbial species show generic current production from water evaporation. These results suggest that we can harness the ubiquity of biofilms in nature as additional sources of biomaterial for evaporation-based electricity generation in diverse aqueous environments. Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with renewable feedstocks. Here, we demonstrate that it is possible to engineer microbial biofilms as a cohesive, flexible material for long-term continuous electricity production from evaporating water. Single biofilm sheet (~40 µm thick) serving as the functional component in an electronic device continuously produces power density (~1 μW/cm 2 ) higher than that achieved with thicker engineered materials. The energy output is comparable to that achieved with similar sized biofilms catalyzing current production in microbial fuel cells, without the need for an organic feedstock or maintaining cell viability. The biofilm can be sandwiched between a pair of mesh electrodes for scalable device integration and current production. The devices maintain the energy production in ionic solutions and can be used as skin-patch devices to harvest electricity from sweat and moisture on skin to continuously power wearable devices. Biofilms made from different microbial species show generic current production from water evaporation. These results suggest that we can harness the ubiquity of biofilms in nature as additional sources of biomaterial for evaporation-based electricity generation in diverse aqueous environments. Though water evaporation-driven electricity generation is an attractive sustainable energy production strategy, existing electronic devices suffer from poor performance or is costly. Here, the authors report sustainable biofilms for efficient, low-cost evaporation-based electricity production Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with renewable feedstocks. Here, we demonstrate that it is possible to engineer microbial biofilms as a cohesive, flexible material for long-term continuous electricity production from evaporating water. Single biofilm sheet (~40 µm thick) serving as the functional component in an electronic device continuously produces power density (~1 μW/cm2) higher than that achieved with thicker engineered materials. The energy output is comparable to that achieved with similar sized biofilms catalyzing current production in microbial fuel cells, without the need for an organic feedstock or maintaining cell viability. The biofilm can be sandwiched between a pair of mesh electrodes for scalable device integration and current production. The devices maintain the energy production in ionic solutions and can be used as skin-patch devices to harvest electricity from sweat and moisture on skin to continuously power wearable devices. Biofilms made from different microbial species show generic current production from water evaporation. These results suggest that we can harness the ubiquity of biofilms in nature as additional sources of biomaterial for evaporation-based electricity generation in diverse aqueous environments.Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with renewable feedstocks. Here, we demonstrate that it is possible to engineer microbial biofilms as a cohesive, flexible material for long-term continuous electricity production from evaporating water. Single biofilm sheet (~40 µm thick) serving as the functional component in an electronic device continuously produces power density (~1 μW/cm2) higher than that achieved with thicker engineered materials. The energy output is comparable to that achieved with similar sized biofilms catalyzing current production in microbial fuel cells, without the need for an organic feedstock or maintaining cell viability. The biofilm can be sandwiched between a pair of mesh electrodes for scalable device integration and current production. The devices maintain the energy production in ionic solutions and can be used as skin-patch devices to harvest electricity from sweat and moisture on skin to continuously power wearable devices. Biofilms made from different microbial species show generic current production from water evaporation. These results suggest that we can harness the ubiquity of biofilms in nature as additional sources of biomaterial for evaporation-based electricity generation in diverse aqueous environments. Though water evaporation-driven electricity generation is an attractive sustainable energy production strategy, existing electronic devices suffer from poor performance or is costly. Here, the authors report sustainable biofilms for efficient, low-cost evaporation-based electricity production |
ArticleNumber | 4369 |
Author | Fu, Tianda Yao, Jun Ueki, Toshiyuki Nevin, Kelly P. Sun, Lu Woodard, Trevor L. Fu, Shuai Lovley, Derek R. Gao, Hongyan Liu, Xiaomeng |
Author_xml | – sequence: 1 givenname: Xiaomeng orcidid: 0000-0003-1463-9916 surname: Liu fullname: Liu, Xiaomeng organization: Department of Electrical Computer and Engineering, University of Massachusetts – sequence: 2 givenname: Toshiyuki surname: Ueki fullname: Ueki, Toshiyuki organization: Department of Microbiology, University of Massachusetts – sequence: 3 givenname: Hongyan surname: Gao fullname: Gao, Hongyan organization: Department of Electrical Computer and Engineering, University of Massachusetts – sequence: 4 givenname: Trevor L. surname: Woodard fullname: Woodard, Trevor L. organization: Department of Microbiology, University of Massachusetts – sequence: 5 givenname: Kelly P. surname: Nevin fullname: Nevin, Kelly P. organization: Department of Microbiology, University of Massachusetts – sequence: 6 givenname: Tianda orcidid: 0000-0002-7425-3305 surname: Fu fullname: Fu, Tianda organization: Department of Electrical Computer and Engineering, University of Massachusetts – sequence: 7 givenname: Shuai surname: Fu fullname: Fu, Shuai organization: Department of Electrical Computer and Engineering, University of Massachusetts – sequence: 8 givenname: Lu orcidid: 0000-0002-2031-1629 surname: Sun fullname: Sun, Lu organization: Department of Electrical Computer and Engineering, University of Massachusetts – sequence: 9 givenname: Derek R. orcidid: 0000-0001-7158-3555 surname: Lovley fullname: Lovley, Derek R. email: dlovley@umass.edu organization: Department of Microbiology, University of Massachusetts, Institute for Applied Life Sciences (IALS), University of Massachusetts – sequence: 10 givenname: Jun orcidid: 0000-0002-5269-3190 surname: Yao fullname: Yao, Jun email: juny@umass.edu organization: Department of Electrical Computer and Engineering, University of Massachusetts, Institute for Applied Life Sciences (IALS), University of Massachusetts, Department of Biomedical Engineering, University of Massachusetts |
BookMark | eNp9Uj1vFDEQtVAQCSF_gGolGpoFf60_GiQUBYgURAMVhTXrtQ-ffPZh7-WUf49zewiSIm7sGb_3PJ55L9FJyskh9JrgdwQz9b5ywoXsMaU9owQPvXiGzijmpCeSspP_zqfootY1botpojh_gU7ZoDEdlDxDP78GW_IYIHZjyD7ETe18Lp2Lzs4l2DDfdSuXXIE55NT5kjfdHmbXELewzcc0pKnb5n3LzrnbOygwRldfoeceYnUXx_0c_fh09f3yS3_z7fP15ceb3g6Kzb3SWHKN_cAs165VqEBN3ls_cEGUJNgTxhiFFrNROMEpME_xOGLwmDbaObpedKcMa7MtYQPlzmQI5pDIZWWgzMFGZ5iWQKWU1o6E06nJay_AOjVqxVt7mtaHRWu7Gzdusi7NBeID0Yc3Kfwyq3xrNGNcYNYE3h4FSv69c3U2m1CtixGSy7tqqNBCCT4MskHfPIKu866k1qp71KAw1lI1lFpQbU61FudNG8qh7e39EA3B5t4QZjGEaYYwB0MY0aj0EfXvP54ksYVUGzitXPlX1ROsPw4fyMU |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2024_109683 crossref_primary_10_1002_adfm_202425225 crossref_primary_10_1016_j_jece_2024_112977 crossref_primary_10_1109_JSEN_2024_3503718 crossref_primary_10_1021_acsaem_3c02409 crossref_primary_10_1002_bit_28702 crossref_primary_10_1016_j_cej_2024_155872 crossref_primary_10_1016_j_jpowsour_2023_233007 crossref_primary_10_1002_aenm_202400529 crossref_primary_10_1039_D4EE02797C crossref_primary_10_1016_j_nanoen_2024_109409 crossref_primary_10_1021_acsnano_2c12606 crossref_primary_10_26599_NRE_2024_9120110 crossref_primary_10_1002_advs_202305530 crossref_primary_10_1021_acsami_3c08618 crossref_primary_10_1002_smll_202311661 crossref_primary_10_1007_s00449_024_03107_z crossref_primary_10_1126_sciadv_adk4620 crossref_primary_10_1002_adfm_202407669 crossref_primary_10_1016_j_jechem_2024_04_014 crossref_primary_10_1016_j_chembiol_2024_12_013 crossref_primary_10_1016_j_jenvman_2024_122696 crossref_primary_10_1021_acssynbio_2c00636 crossref_primary_10_1002_adfm_202425757 crossref_primary_10_1002_ente_202301458 crossref_primary_10_1039_D2EE03621E crossref_primary_10_1038_s44222_024_00204_2 crossref_primary_10_1360_SSPMA_2023_0308 crossref_primary_10_3390_app14209589 crossref_primary_10_1002_smll_202407614 crossref_primary_10_1002_adma_202304099 crossref_primary_10_1002_adma_202407856 crossref_primary_10_1002_aenm_202204091 crossref_primary_10_1016_j_nanoen_2024_110619 crossref_primary_10_1039_D3EE01131C crossref_primary_10_1016_j_jmst_2024_02_009 crossref_primary_10_1021_acs_jpclett_3c02268 crossref_primary_10_1038_s41467_024_54216_y crossref_primary_10_1088_1361_648X_acabf3 crossref_primary_10_1002_aenm_202303815 crossref_primary_10_1016_j_nanoen_2023_109182 crossref_primary_10_1016_j_nantod_2025_102661 crossref_primary_10_1002_adma_202400110 crossref_primary_10_1016_j_isci_2024_109848 crossref_primary_10_1002_adma_202300748 crossref_primary_10_1002_ange_202408096 crossref_primary_10_1007_s42242_024_00300_7 crossref_primary_10_1016_j_engreg_2022_09_002 crossref_primary_10_1021_acsnano_4c07900 crossref_primary_10_1038_s41467_024_49429_0 crossref_primary_10_1021_acsnano_3c02043 crossref_primary_10_1002_adfm_202418823 crossref_primary_10_1021_acsnano_4c00990 crossref_primary_10_1016_j_cej_2024_152587 crossref_primary_10_1002_adfm_202311465 crossref_primary_10_1021_acs_chemrev_2c00823 crossref_primary_10_1038_s41929_024_01151_2 crossref_primary_10_1002_anie_202408096 crossref_primary_10_1016_j_tibtech_2023_04_007 crossref_primary_10_1016_j_bios_2023_115147 crossref_primary_10_1016_j_cej_2023_143336 crossref_primary_10_1016_j_cej_2023_144868 crossref_primary_10_1016_j_pmatsci_2023_101172 crossref_primary_10_1016_j_apsusc_2025_162963 crossref_primary_10_1021_acsomega_3c07085 crossref_primary_10_1002_adma_202310260 crossref_primary_10_1039_D4SC06481J crossref_primary_10_1002_adma_202401171 crossref_primary_10_1021_acsnano_4c01179 crossref_primary_10_1021_acsami_3c12400 crossref_primary_10_1002_admt_202300370 crossref_primary_10_1039_D4EE03356F crossref_primary_10_1002_advs_202413779 crossref_primary_10_1016_j_tibtech_2023_03_012 crossref_primary_10_1038_s41467_023_41371_x crossref_primary_10_1016_j_joule_2023_04_007 crossref_primary_10_1016_j_nanoen_2023_108348 crossref_primary_10_1016_j_biotechadv_2023_108175 crossref_primary_10_1021_acsami_4c01026 crossref_primary_10_1039_D2TA05281D crossref_primary_10_1016_j_device_2024_100561 crossref_primary_10_1021_acsami_2c12777 crossref_primary_10_1039_D3TA05986C |
Cites_doi | 10.1038/s41587-019-0321-x 10.1021/acssynbio.9b00506 10.1038/s41579-019-0173-x 10.1016/j.nanoen.2021.106361 10.1002/aelm.202000721 10.1039/C5CP03432A 10.1039/C5RA28092C 10.1038/ncomms6714 10.1021/accountsmr.1c00075 10.1016/j.bios.2015.02.021 10.1016/j.conb.2017.11.007 10.1038/s41565-018-0228-6 10.1039/c3ee40441b 10.1073/pnas.0603395103 10.1038/s41586-020-2010-9 10.1038/s41467-021-23744-2 10.1002/anie.202002762 10.1021/nl070194h 10.1016/0005-2736(85)90381-5 10.1128/AEM.67.7.3180-3187.2001 10.1002/adfm.201700551 10.1016/j.esr.2019.01.006 10.1038/s41467-017-00581-w 10.1073/pnas.95.12.6578 10.1038/s41578-020-0182-4 10.1038/nnano.2016.300 10.1002/adma.202003722 10.1021/acsami.9b23380 10.1021/acsami.8b14340 10.1021/acsami.9b09582 10.1016/j.tibtech.2020.12.005 10.1021/acs.nanolett.5b00133 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-32105-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_397a2777ccb142d1879f6ace8b984391 PMC9334603 10_1038_s41467_022_32105_6 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c583t-8907490f53c49e1848a8dffcf54618710f13332af543b6e642a3f20bb0af02f53 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:19:57 EDT 2025 Thu Aug 21 18:01:51 EDT 2025 Thu Jul 10 21:51:19 EDT 2025 Wed Aug 13 05:30:35 EDT 2025 Tue Jul 01 00:58:20 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 Fri Feb 21 02:38:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-8907490f53c49e1848a8dffcf54618710f13332af543b6e642a3f20bb0af02f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7158-3555 0000-0002-7425-3305 0000-0002-2031-1629 0000-0003-1463-9916 0000-0002-5269-3190 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-32105-6 |
PMID | 35902587 |
PQID | 2695800978 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_397a2777ccb142d1879f6ace8b984391 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9334603 proquest_miscellaneous_2696864557 proquest_journals_2695800978 crossref_citationtrail_10_1038_s41467_022_32105_6 crossref_primary_10_1038_s41467_022_32105_6 springer_journals_10_1038_s41467_022_32105_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-28 |
PublicationDateYYYYMMDD | 2022-07-28 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Whitman, Coleman, Wiebe (CR13) 1998; 95 Leang, Malvankar, Franks, Nevin, Lovely (CR16) 2013; 6 Ueki (CR32) 2020; 9 Gielen (CR2) 2019; 24 Lovley, Yao (CR6) 2021; 39 Zhao, Guo, Zhou, Shi, Yu (CR4) 2020; 5 CR34 Shao (CR29) 2019; 11 Shen (CR9) 2020; 32 van der Heyden, Bonthuis, Stein, Meyer, Dekker (CR20) 2007; 7 Cavusoglu, Chen, Gentine, Sahin (CR7) 2017; 8 Adhikari, Malvankar, Tuominen, Lovley (CR31) 2016; 6 Zhang (CR8) 2018; 13 Gao (CR23) 2015; 15 Logan, Rossi, Ragab, Saikaly (CR3) 2019; 17 Qin (CR11) 2020; 59 Lewis, Nocera (CR1) 2006; 103 Stöckl, Teubner, Holtmann, Mangold, Sand (CR17) 2019; 11 Nguyen, Fraiwan, Choi (CR15) 2014; 49 Ren (CR30) 2021; 89 Ding (CR18) 2017; 27 Lin (CR27) 2014; 5 Choi (CR14) 2015; 69 Fu (CR26) 2021; 12 Liu (CR25) 2020; 6 Coppi, Leang, Sandler, Lovley (CR33) 2001; 67 Liu (CR24) 2020; 578 Li, Chen, Zhu, Ragauskas, Hu (CR5) 2021; 2 Zhou (CR12) 2020; 12 Hong, Yang, Zhou, Lieber (CR19) 2018; 50 Arnold, Herrmann, Pratsch, Gawrisch (CR22) 1985; 815 Xue (CR10) 2017; 12 Feliciano, Steidl, Reguera (CR21) 2015; 17 Yang (CR28) 2020; 38 X Liu (32105_CR24) 2020; 578 N Gao (32105_CR23) 2015; 15 WB Whitman (32105_CR13) 1998; 95 C Shao (32105_CR29) 2019; 11 D Shen (32105_CR9) 2020; 32 M Stöckl (32105_CR17) 2019; 11 X Zhou (32105_CR12) 2020; 12 MV Coppi (32105_CR33) 2001; 67 X Liu (32105_CR25) 2020; 6 G Hong (32105_CR19) 2018; 50 32105_CR34 J Li (32105_CR5) 2021; 2 C Leang (32105_CR16) 2013; 6 Y Yang (32105_CR28) 2020; 38 DR Lovley (32105_CR6) 2021; 39 G Xue (32105_CR10) 2017; 12 FHJ van der Heyden (32105_CR20) 2007; 7 GT Feliciano (32105_CR21) 2015; 17 J Lin (32105_CR27) 2014; 5 BE Logan (32105_CR3) 2019; 17 RY Adhikari (32105_CR31) 2016; 6 S Choi (32105_CR14) 2015; 69 F Zhao (32105_CR4) 2020; 5 G Ren (32105_CR30) 2021; 89 NS Lewis (32105_CR1) 2006; 103 Z Zhang (32105_CR8) 2018; 13 K Arnold (32105_CR22) 1985; 815 T Ueki (32105_CR32) 2020; 9 TH Nguyen (32105_CR15) 2014; 49 A-H Cavusoglu (32105_CR7) 2017; 8 T Ding (32105_CR18) 2017; 27 Y Qin (32105_CR11) 2020; 59 T Fu (32105_CR26) 2021; 12 D Gielen (32105_CR2) 2019; 24 |
References_xml | – volume: 49 start-page: 410 year: 2014 end-page: 414 ident: CR15 article-title: Paper-based batteries: a review publication-title: Biosens. Bioelectron. – volume: 38 start-page: 217 year: 2020 end-page: 224 ident: CR28 article-title: A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0321-x – volume: 9 start-page: 647 year: 2020 end-page: 654 ident: CR32 article-title: An Escherichia coli chassis for production of electrically conductive protein nanowires publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.9b00506 – volume: 17 start-page: 307 year: 2019 end-page: 319 ident: CR3 article-title: Electroactive microorganisms in bioelectrochemical systems publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-019-0173-x – volume: 89 start-page: 106361 year: 2021 ident: CR30 article-title: A facile and sustainable hygroelectric generator using whole-cell Geobacter sulfurreducens publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106361 – volume: 6 start-page: 2000721 year: 2020 ident: CR25 article-title: Multifunctional protein nanowire humidity sensors for green wearable electronics publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202000721 – volume: 17 start-page: 22217 year: 2015 end-page: 22226 ident: CR21 article-title: Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP03432A – volume: 6 start-page: 8354 year: 2016 end-page: 8357 ident: CR31 article-title: Conductivity of individual Geobacter pili publication-title: RSC Adv. doi: 10.1039/C5RA28092C – volume: 5 year: 2014 ident: CR27 article-title: Laser-induced porous graphene films from commercial polymers publication-title: Nat. Commun. doi: 10.1038/ncomms6714 – volume: 2 start-page: 606 year: 2021 end-page: 620 ident: CR5 article-title: In situ wood delignification toward sustainable applications publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.1c00075 – volume: 69 start-page: 8 year: 2015 end-page: 25 ident: CR14 article-title: Microscale microbial fuel cells: advances and challenges publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.02.021 – volume: 50 start-page: 33 year: 2018 end-page: 41 ident: CR19 article-title: Mesh electronics: a new paradigm for tissue-like brain probes publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2017.11.007 – volume: 13 start-page: 1109 year: 2018 end-page: 1119 ident: CR8 article-title: Emerging hydrovoltaic technology publication-title: Nat. Nanotech. doi: 10.1038/s41565-018-0228-6 – volume: 6 start-page: 1901 year: 2013 end-page: 1908 ident: CR16 article-title: Engineering to produce a highly cohesive conductive matrix with enhanced capacity for current production publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40441b – volume: 103 start-page: 15729 year: 2006 end-page: 15735 ident: CR1 article-title: Powering the planet: chemical challenges in solar energy utilization publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0603395103 – volume: 578 start-page: 550 year: 2020 end-page: 554 ident: CR24 article-title: Power generation from ambient humidity using protein nanowires publication-title: Nature doi: 10.1038/s41586-020-2010-9 – volume: 12 year: 2021 ident: CR26 article-title: Self-sustained green neuromorphic interfaces publication-title: Nat. Commun. doi: 10.1038/s41467-021-23744-2 – volume: 59 start-page: 10619 year: 2020 end-page: 10625 ident: CR11 article-title: Constant electricity generation in nanostructured silicon by evaporation-driven water flow publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202002762 – volume: 7 start-page: 1022 year: 2007 end-page: 1025 ident: CR20 article-title: Power generation by pressure driven transport of ions in nanofluidic channels publication-title: Nano Lett. doi: 10.1021/nl070194h – volume: 815 start-page: 515 year: 1985 end-page: 518 ident: CR22 article-title: The dielectric properties of aqueous solutions of poly(ethylene glycol) and their influence on membrane structure publication-title: Biophys. Acta doi: 10.1016/0005-2736(85)90381-5 – volume: 67 start-page: 3180 year: 2001 end-page: 3187 ident: CR33 article-title: Development of a genetic system for Geobacter sulfurreducens publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.67.7.3180-3187.2001 – volume: 27 start-page: 1700551 year: 2017 ident: CR18 article-title: All-printed porous carbon film for electricity generation from evaporation-driven water flow publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700551 – volume: 24 start-page: 38 year: 2019 end-page: 50 ident: CR2 article-title: The role of renewable energy in the global energy transformation publication-title: Energy Strategy Rev. doi: 10.1016/j.esr.2019.01.006 – volume: 8 year: 2017 ident: CR7 article-title: Potential for natural evaporation as a reliable renewable energy resource publication-title: Nat. Commun. doi: 10.1038/s41467-017-00581-w – ident: CR34 – volume: 95 start-page: 6578 year: 1998 end-page: 6583 ident: CR13 article-title: Prokaryotes: the unseen majority publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.12.6578 – volume: 5 start-page: 388 year: 2020 end-page: 401 ident: CR4 article-title: Materials for solar-powered water evaporation publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0182-4 – volume: 12 start-page: 317 year: 2017 end-page: 321 ident: CR10 article-title: Water-evaporation-induced electricity with nanostructured carbon materials publication-title: Nat. Nanotech. doi: 10.1038/nnano.2016.300 – volume: 32 start-page: 2003722 year: 2020 ident: CR9 article-title: Moisture-enabled electricity generation: from physics and materials to self-powered applications publication-title: Adv. Mater. doi: 10.1002/adma.202003722 – volume: 12 start-page: 11232 year: 2020 end-page: 11239 ident: CR12 article-title: Harvesting electricity from water evaporation through microchannels of natural wood publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b23380 – volume: 11 start-page: 8961 year: 2019 end-page: 8968 ident: CR17 article-title: Extracellular polymeric substances from Geobacter sulfurreducens biofilms in microbial fuel cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b14340 – volume: 11 start-page: 30927 year: 2019 end-page: 30935 ident: CR29 article-title: Large-scale production of flexible, high-voltage hydroelectric films based on solid oxides publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b09582 – volume: 39 start-page: 940 year: 2021 end-page: 952 ident: CR6 article-title: Intrinsically conductive microbial nanowires for green electronics with novel functions publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2020.12.005 – volume: 15 start-page: 2143 year: 2015 end-page: 2148 ident: CR23 article-title: General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00133 – volume: 12 start-page: 317 year: 2017 ident: 32105_CR10 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2016.300 – volume: 27 start-page: 1700551 year: 2017 ident: 32105_CR18 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700551 – volume: 95 start-page: 6578 year: 1998 ident: 32105_CR13 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.12.6578 – volume: 89 start-page: 106361 year: 2021 ident: 32105_CR30 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106361 – volume: 6 start-page: 1901 year: 2013 ident: 32105_CR16 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40441b – volume: 11 start-page: 30927 year: 2019 ident: 32105_CR29 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b09582 – volume: 17 start-page: 22217 year: 2015 ident: 32105_CR21 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP03432A – volume: 13 start-page: 1109 year: 2018 ident: 32105_CR8 publication-title: Nat. Nanotech. doi: 10.1038/s41565-018-0228-6 – volume: 578 start-page: 550 year: 2020 ident: 32105_CR24 publication-title: Nature doi: 10.1038/s41586-020-2010-9 – ident: 32105_CR34 – volume: 50 start-page: 33 year: 2018 ident: 32105_CR19 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2017.11.007 – volume: 59 start-page: 10619 year: 2020 ident: 32105_CR11 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202002762 – volume: 7 start-page: 1022 year: 2007 ident: 32105_CR20 publication-title: Nano Lett. doi: 10.1021/nl070194h – volume: 49 start-page: 410 year: 2014 ident: 32105_CR15 publication-title: Biosens. Bioelectron. – volume: 12 start-page: 11232 year: 2020 ident: 32105_CR12 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b23380 – volume: 103 start-page: 15729 year: 2006 ident: 32105_CR1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0603395103 – volume: 11 start-page: 8961 year: 2019 ident: 32105_CR17 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b14340 – volume: 815 start-page: 515 year: 1985 ident: 32105_CR22 publication-title: Biophys. Acta doi: 10.1016/0005-2736(85)90381-5 – volume: 2 start-page: 606 year: 2021 ident: 32105_CR5 publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.1c00075 – volume: 32 start-page: 2003722 year: 2020 ident: 32105_CR9 publication-title: Adv. Mater. doi: 10.1002/adma.202003722 – volume: 8 year: 2017 ident: 32105_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00581-w – volume: 17 start-page: 307 year: 2019 ident: 32105_CR3 publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-019-0173-x – volume: 38 start-page: 217 year: 2020 ident: 32105_CR28 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0321-x – volume: 15 start-page: 2143 year: 2015 ident: 32105_CR23 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00133 – volume: 9 start-page: 647 year: 2020 ident: 32105_CR32 publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.9b00506 – volume: 12 year: 2021 ident: 32105_CR26 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23744-2 – volume: 67 start-page: 3180 year: 2001 ident: 32105_CR33 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.67.7.3180-3187.2001 – volume: 6 start-page: 8354 year: 2016 ident: 32105_CR31 publication-title: RSC Adv. doi: 10.1039/C5RA28092C – volume: 69 start-page: 8 year: 2015 ident: 32105_CR14 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.02.021 – volume: 5 start-page: 388 year: 2020 ident: 32105_CR4 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0182-4 – volume: 39 start-page: 940 year: 2021 ident: 32105_CR6 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2020.12.005 – volume: 5 year: 2014 ident: 32105_CR27 publication-title: Nat. Commun. doi: 10.1038/ncomms6714 – volume: 24 start-page: 38 year: 2019 ident: 32105_CR2 publication-title: Energy Strategy Rev. doi: 10.1016/j.esr.2019.01.006 – volume: 6 start-page: 2000721 year: 2020 ident: 32105_CR25 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202000721 |
SSID | ssj0000391844 |
Score | 2.6450474 |
Snippet | Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with... Though water evaporation-driven electricity generation is an attractive sustainable energy production strategy, existing electronic devices suffer from poor... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4369 |
SubjectTerms | 639/166/987 639/301/1005/1007 639/4077/4072/4062 Aqueous environments Biochemical fuel cells Biofilms Biomaterials Biomedical materials Cell viability Clean energy Electric power generation Electricity Electricity generation Electronic devices Electronic equipment Energy harvesting Energy output Evaporation Humanities and Social Sciences Microorganisms Moisture effects multidisciplinary Raw materials Renewable energy Renewable resources Science Science (multidisciplinary) Sustainable energy Wearable technology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB-kUPClqK24WiWCb3VpLt_7aEtLEdonCwUfQpLb1APdO7yrxf_emezetVuwvvi4yYTdTGYyM5vM_AA-OCdjtqhpRk95rdCjr0MOvLYi8mDRojTlEs35hTm7VJ-v9NU9qC-6E9aXB-4Zd4j2MghrbUr0u2JK4NjZhNS62DjKGqXdF23evWCq7MHY45QasmS4dIdLVfaEcnkdwxxdm5ElKgX7R17mwzuSDw5Ki_05fQY7g-PIPvUf_ByetN0L2O6hJH_vwtfzWSmphCRxRjDcP5YM_VHWw9zMEjrb7LqUmKaVYJRVwm7Rz0SKX2ExyAEL3ZQtCDeNrebsFpWAEquWe3B5evLl-KwegBPqpJ1c1Y4i3oZnLZNqWmSEC26ac8paGWTghGeMTKUI-CyjaTEECTILHnF5Mhc47CVsdfOufQVMZpnaMAkCGU7Y1BF3z0mURvIksYFXMFkz0aehqjiBW3z35XRbOt8z3iPjfWG8NxUcbMYs-poaj1If0dpsKKkedmlAKfGDlPh_SUkF--uV9YOSLr0wjXYlkaWC95tuVC86MwldO78pNMYZpbWtwI4kYvRB455u9q0U6m6kVIbLCj6uZefu5X-f8Ov_MeE38FSQrHNbC7cPW6ufN-1bdJ9W8V3RlD9jXRRW priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA86EXwR5wdWp0TwTcvSfPdJNvE6hPnkYOBDSNNmXpjtdb1z-N97Tpp7RwfbY9MTmp6P5Jwk5_wIeW-taKIBS9OqZaUEj7700bPS8IZ5AytKnS7RHH_XRyfy26k6zRtuY75WuZkT00TdDgH3yPe5rpVNWQefVn9KRI3C09UMoXGfPKhgpUENt4uv2z0WrH5upcy5MkzY_VGmmSFdYYdgR5V6th6lsv0zX_PmTckbx6VpFVo8IY-z-0gPJnnvkntd_5Q8nAAl_z0jP4-XqbASkDRLBOP-PVLwSukEdrMM4HLTs1RoGuVBMbeEXoG3CRR__SprA_V9S1eInkbXA70CU8D0qvE5OVl8-fH5qMzwCWVQVqxLi3FvzaISQdYdMMJ628YYopK6gjiJRYhPBffwLBrdQSDiReSsASFFxqHbC7LTD333klARReh85XlnG0SobmAOrRqhBQsCGlhBqg0TXci1xRHi4tylM25h3cR4B4x3ifFOF-TDts9qqqxxJ_UhymZLiVWxU8NwceaykTnwrTw3xoSAW1stAqlH7QMMuraYYVyQvY1kXTbV0V0rVkHebV-DkeHJie-74TLRaKulUqYgZqYRswHN3_TLX6lcdy2E1EwU5ONGd64_fvsPv7p7rK_JI45azEzJ7R7ZWV9cdm_APVo3b5MN_AdDIwxo priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qRfBF_MS1VSL4pou5fO9jPSxFqE8WCj6EJLepB7p39K4t_vfOZHdPtqjg42YnbHYyk8wkM78BeOOcjNmiphm94LVCi74OOfDaisiDxR2lKUE0p5_NyZn6dK7P90CMuTAlaL9AWpZleowOe79RRaVL7Dl6Kbo2d-AuQbdTGN_czHfnKoR47pQa8mO4dH_oOtmDClT_xL68HR1564q07DzHD-HBYDKyo36Qj2Cv7R7Dvb6I5M8n8PV0WcCUkCQuqQD3jw1DS5T1BW6WCc1sdlHApWkOGOWTsBu0MJHiOqwHCWChW7A1VUxj2xW7QfGnlKrNUzg7_vhlflIPJRPqpJ3c1o583YZnLZNqWmSEC26Rc8pamRn6RjyjTypFwGcZTYvOR5BZ8IgTk7nAbs9gv1t17XNgMsvUhlkQrYtUlTriujmL0kieJDbwCmYjE30a8MSprMV3X-61pfM94z0y3hfGe1PB212fdY-m8U_qDzQ3O0pCwi4Nq8sLP0iGR3sqCGttSnSctaDi6dmEhINuHGUVV3A4zqwf1HPjhWm0KyksFbzevUbFotuS0LWrq0JjnFFa2wrsRCImA5q-6ZbfCkR3I6UyXFbwbpSd3x__-w-_-D_yA7gvSKq5rYU7hP3t5VX7Ek2kbXxVdOIXc5EKCg priority: 102 providerName: Springer Nature |
Title | Microbial biofilms for electricity generation from water evaporation and power to wearables |
URI | https://link.springer.com/article/10.1038/s41467-022-32105-6 https://www.proquest.com/docview/2695800978 https://www.proquest.com/docview/2696864557 https://pubmed.ncbi.nlm.nih.gov/PMC9334603 https://doaj.org/article/397a2777ccb142d1879f6ace8b984391 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8ID5F2KiMxBsEHDuxnQeEumplqtQJAZUq8WA5brxVGmlpu43995ydpCjTQLwkinNJnPNd7i723Q_gtVK8cBI1TWQzGqfo0cfGGRpLVlAj0aLkYRHN-FScTNLRNJvuQAt31DBwfWdo5_GkJquLd79-3nxEhf9Qp4yr9-s0qHtYl44RTBaLXdhHyyQ9lMO4cffDl5nnGND4iWZG0yRG282bPJq7b9OxVaGkf8cPvb2K8tZUarBQw4fwoHEtSb-WhUewU1aP4V4NNnnzBL6P56HoEpIUcw_U_WNN0GMlNRDO3KI7Ts5CEWo_VsTnnZBr9ESR4sosG0khppqRpUdWI5sFuUY18alX66cwGR5_G5zEDbRCbDPFN7HyMXFOXcZtmpfIFGXUzDnrslQkGENRh7ErZwaPeSFKDFIMd4wWOICOMrzsGexVi6p8DoQ7bkuTGFaqwqNXF_h9TQouOLUcG2gESctEbZu64x7-4kKH-W-udM14jYzXgfFaRPBme82yrrrxT-ojPzZbSl8xOzQsVme6UUCNfpdhUkpr_W-vmQdZd8JY7HSufPZxBIftyOpWCjUTeaZCqksEr7anUQH9rIqpysVloBFKpFkmI5Adieh0qHummp-HUt4556mgPIK3rez8efjfX_jFf3TmAO4zL8pUxkwdwt5mdVm-RP9pU_RgV04lbtXwUw_2-_3R1xHuj45PP3_B1oEY9MKfiV5Qnt_XDhol |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLemIQQviE9RNiBI8ATVckmbpA8I8TXd2G5Pm3QSDyFNm3ES6x27G6f9U_yN2Gl7001ib3ts66qpYzt2YvsH8NoYWQaNmqbyiqcZevSpC46nWpTcaVxRiphEMzpUw-Ps2zgfb8DfvhaG0ip7mxgNdTX1tEe-I1SRm1h18GH2OyXUKDpd7SE0WrHYry-WGLLN3-99wfl9I8Tu16PPw7RDFUh9buQiNRQOFjzk0mdFjQGOcaYKwYc8UwMMH3jAsE0Kh9eyVDX6504GwUsce-AiEEoEmvxbuPBySiHUY73a06Fu6ybLutocLs3OPIuWKKbMY3CVp2pt_YswAWu-7dXMzCvHs3HV270P9zp3lX1s5esBbNTNQ7jdAlhePILvo0ls5IQk5YTAv0_nDL1g1oLrTDy6-OwkNram-WdUy8KW6N0ixR8366SPuaZiM0JrY4spWyKPqZxr_hiOb4SxT2CzmTb1U2AySF-7gRO1KQkRu0SbPSilktxLvMETGPRMtL7rZU6QGr9sPFOXxraMt8h4GxlvVQJvV-_M2k4e11J_orlZUVIX7nhjenZiO6W26Ms5obX2nrbSKgJuD8p5HHRhqKI5ge1-Zm1nGub2UpATeLV6jEpNJzWuqafnkUYZleW5TkCvScTagNafNJOfsT14IWWmuEzgXS87lx___w8_u36sL-HO8Gh0YA_2Dve34K4gieY6FWYbNhdn5_VzdM0W5YuoDwx-3LQC_gMMLUfr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDLemIRAviL-ibECQ4AmqyyVtkj4gBIzTxtjEA5NO4iGkaTNOYr1jd-O0r8anw07bm24Se9tjW1dNHduxE9s_gJfGyDJo1DSVVzzN0KNPXXA81aLkTuOKUsQkmoNDtXuUfR7n4w3429fCUFplbxOjoa6mnvbIB0IVuYlVB4PQpUV83Rm9m_1OCUGKTlp7OI1WRPbr8yWGb_O3ezs416-EGH369nE37RAGUp8buUgNhYYFD7n0WVFjsGOcqULwIc_UEEMJHjCEk8LhtSxVjb66k0HwEv8jcBEIMQLN_w0tcdlEXdJjvdrfoc7rJsu6Oh0uzWCeRasU0-cx0MpTtbYWRsiANT_3cpbmpaPauAKO7sKdznVl71tZuwcbdXMfbrZglucP4PvBJDZ1QpJyQkDgJ3OGHjFrgXYmHt19dhybXJMsMKprYUv0dJHij5t1kshcU7EZIbexxZQtkcdU2jV_CEfXwthHsNlMm_oxMBmkr93QidqUhI5dov0ellJJ7iXe4AkMeyZa3_U1J3iNXzaer0tjW8ZbZLyNjLcqgderd2ZtV48rqT_Q3KwoqSN3vDE9Pbadglv065zQWntP22oVgbgH5TwOujBU3ZzAdj-ztjMTc3sh1Am8WD1GBadTG9fU07NIo4zK8lwnoNckYm1A60-ayc_YKryQMlNcJvCml52Lj___h59cPdbncAtVz37ZO9zfgtuCBJrrVJht2FycntVP0UtblM-iOjD4cd369w9uoUwh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+biofilms+for+electricity+generation+from+water+evaporation+and+power+to+wearables&rft.jtitle=Nature+communications&rft.au=Liu%2C+Xiaomeng&rft.au=Ueki%2C+Toshiyuki&rft.au=Gao%2C+Hongyan&rft.au=Woodard%2C+Trevor+L&rft.date=2022-07-28&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=4369&rft_id=info:doi/10.1038%2Fs41467-022-32105-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |