Microbial biofilms for electricity generation from water evaporation and power to wearables

Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with renewable feedstocks. Here, we demonstrate that it is possible to engineer microbial biofilms as a cohesive, flexible material for long-term cont...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 4369 - 8
Main Authors Liu, Xiaomeng, Ueki, Toshiyuki, Gao, Hongyan, Woodard, Trevor L., Nevin, Kelly P., Fu, Tianda, Fu, Shuai, Sun, Lu, Lovley, Derek R., Yao, Jun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.07.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-022-32105-6

Cover

Loading…
Abstract Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with renewable feedstocks. Here, we demonstrate that it is possible to engineer microbial biofilms as a cohesive, flexible material for long-term continuous electricity production from evaporating water. Single biofilm sheet (~40 µm thick) serving as the functional component in an electronic device continuously produces power density (~1 μW/cm 2 ) higher than that achieved with thicker engineered materials. The energy output is comparable to that achieved with similar sized biofilms catalyzing current production in microbial fuel cells, without the need for an organic feedstock or maintaining cell viability. The biofilm can be sandwiched between a pair of mesh electrodes for scalable device integration and current production. The devices maintain the energy production in ionic solutions and can be used as skin-patch devices to harvest electricity from sweat and moisture on skin to continuously power wearable devices. Biofilms made from different microbial species show generic current production from water evaporation. These results suggest that we can harness the ubiquity of biofilms in nature as additional sources of biomaterial for evaporation-based electricity generation in diverse aqueous environments. Though water evaporation-driven electricity generation is an attractive sustainable energy production strategy, existing electronic devices suffer from poor performance or is costly. Here, the authors report sustainable biofilms for efficient, low-cost evaporation-based electricity production
AbstractList Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with renewable feedstocks. Here, we demonstrate that it is possible to engineer microbial biofilms as a cohesive, flexible material for long-term continuous electricity production from evaporating water. Single biofilm sheet (~40 µm thick) serving as the functional component in an electronic device continuously produces power density (~1 μW/cm2) higher than that achieved with thicker engineered materials. The energy output is comparable to that achieved with similar sized biofilms catalyzing current production in microbial fuel cells, without the need for an organic feedstock or maintaining cell viability. The biofilm can be sandwiched between a pair of mesh electrodes for scalable device integration and current production. The devices maintain the energy production in ionic solutions and can be used as skin-patch devices to harvest electricity from sweat and moisture on skin to continuously power wearable devices. Biofilms made from different microbial species show generic current production from water evaporation. These results suggest that we can harness the ubiquity of biofilms in nature as additional sources of biomaterial for evaporation-based electricity generation in diverse aqueous environments.Though water evaporation-driven electricity generation is an attractive sustainable energy production strategy, existing electronic devices suffer from poor performance or is costly. Here, the authors report sustainable biofilms for efficient, low-cost evaporation-based electricity production
Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with renewable feedstocks. Here, we demonstrate that it is possible to engineer microbial biofilms as a cohesive, flexible material for long-term continuous electricity production from evaporating water. Single biofilm sheet (~40 µm thick) serving as the functional component in an electronic device continuously produces power density (~1 μW/cm 2 ) higher than that achieved with thicker engineered materials. The energy output is comparable to that achieved with similar sized biofilms catalyzing current production in microbial fuel cells, without the need for an organic feedstock or maintaining cell viability. The biofilm can be sandwiched between a pair of mesh electrodes for scalable device integration and current production. The devices maintain the energy production in ionic solutions and can be used as skin-patch devices to harvest electricity from sweat and moisture on skin to continuously power wearable devices. Biofilms made from different microbial species show generic current production from water evaporation. These results suggest that we can harness the ubiquity of biofilms in nature as additional sources of biomaterial for evaporation-based electricity generation in diverse aqueous environments.
Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with renewable feedstocks. Here, we demonstrate that it is possible to engineer microbial biofilms as a cohesive, flexible material for long-term continuous electricity production from evaporating water. Single biofilm sheet (~40 µm thick) serving as the functional component in an electronic device continuously produces power density (~1 μW/cm 2 ) higher than that achieved with thicker engineered materials. The energy output is comparable to that achieved with similar sized biofilms catalyzing current production in microbial fuel cells, without the need for an organic feedstock or maintaining cell viability. The biofilm can be sandwiched between a pair of mesh electrodes for scalable device integration and current production. The devices maintain the energy production in ionic solutions and can be used as skin-patch devices to harvest electricity from sweat and moisture on skin to continuously power wearable devices. Biofilms made from different microbial species show generic current production from water evaporation. These results suggest that we can harness the ubiquity of biofilms in nature as additional sources of biomaterial for evaporation-based electricity generation in diverse aqueous environments. Though water evaporation-driven electricity generation is an attractive sustainable energy production strategy, existing electronic devices suffer from poor performance or is costly. Here, the authors report sustainable biofilms for efficient, low-cost evaporation-based electricity production
Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with renewable feedstocks. Here, we demonstrate that it is possible to engineer microbial biofilms as a cohesive, flexible material for long-term continuous electricity production from evaporating water. Single biofilm sheet (~40 µm thick) serving as the functional component in an electronic device continuously produces power density (~1 μW/cm2) higher than that achieved with thicker engineered materials. The energy output is comparable to that achieved with similar sized biofilms catalyzing current production in microbial fuel cells, without the need for an organic feedstock or maintaining cell viability. The biofilm can be sandwiched between a pair of mesh electrodes for scalable device integration and current production. The devices maintain the energy production in ionic solutions and can be used as skin-patch devices to harvest electricity from sweat and moisture on skin to continuously power wearable devices. Biofilms made from different microbial species show generic current production from water evaporation. These results suggest that we can harness the ubiquity of biofilms in nature as additional sources of biomaterial for evaporation-based electricity generation in diverse aqueous environments.Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with renewable feedstocks. Here, we demonstrate that it is possible to engineer microbial biofilms as a cohesive, flexible material for long-term continuous electricity production from evaporating water. Single biofilm sheet (~40 µm thick) serving as the functional component in an electronic device continuously produces power density (~1 μW/cm2) higher than that achieved with thicker engineered materials. The energy output is comparable to that achieved with similar sized biofilms catalyzing current production in microbial fuel cells, without the need for an organic feedstock or maintaining cell viability. The biofilm can be sandwiched between a pair of mesh electrodes for scalable device integration and current production. The devices maintain the energy production in ionic solutions and can be used as skin-patch devices to harvest electricity from sweat and moisture on skin to continuously power wearable devices. Biofilms made from different microbial species show generic current production from water evaporation. These results suggest that we can harness the ubiquity of biofilms in nature as additional sources of biomaterial for evaporation-based electricity generation in diverse aqueous environments.
Though water evaporation-driven electricity generation is an attractive sustainable energy production strategy, existing electronic devices suffer from poor performance or is costly. Here, the authors report sustainable biofilms for efficient, low-cost evaporation-based electricity production
ArticleNumber 4369
Author Fu, Tianda
Yao, Jun
Ueki, Toshiyuki
Nevin, Kelly P.
Sun, Lu
Woodard, Trevor L.
Fu, Shuai
Lovley, Derek R.
Gao, Hongyan
Liu, Xiaomeng
Author_xml – sequence: 1
  givenname: Xiaomeng
  orcidid: 0000-0003-1463-9916
  surname: Liu
  fullname: Liu, Xiaomeng
  organization: Department of Electrical Computer and Engineering, University of Massachusetts
– sequence: 2
  givenname: Toshiyuki
  surname: Ueki
  fullname: Ueki, Toshiyuki
  organization: Department of Microbiology, University of Massachusetts
– sequence: 3
  givenname: Hongyan
  surname: Gao
  fullname: Gao, Hongyan
  organization: Department of Electrical Computer and Engineering, University of Massachusetts
– sequence: 4
  givenname: Trevor L.
  surname: Woodard
  fullname: Woodard, Trevor L.
  organization: Department of Microbiology, University of Massachusetts
– sequence: 5
  givenname: Kelly P.
  surname: Nevin
  fullname: Nevin, Kelly P.
  organization: Department of Microbiology, University of Massachusetts
– sequence: 6
  givenname: Tianda
  orcidid: 0000-0002-7425-3305
  surname: Fu
  fullname: Fu, Tianda
  organization: Department of Electrical Computer and Engineering, University of Massachusetts
– sequence: 7
  givenname: Shuai
  surname: Fu
  fullname: Fu, Shuai
  organization: Department of Electrical Computer and Engineering, University of Massachusetts
– sequence: 8
  givenname: Lu
  orcidid: 0000-0002-2031-1629
  surname: Sun
  fullname: Sun, Lu
  organization: Department of Electrical Computer and Engineering, University of Massachusetts
– sequence: 9
  givenname: Derek R.
  orcidid: 0000-0001-7158-3555
  surname: Lovley
  fullname: Lovley, Derek R.
  email: dlovley@umass.edu
  organization: Department of Microbiology, University of Massachusetts, Institute for Applied Life Sciences (IALS), University of Massachusetts
– sequence: 10
  givenname: Jun
  orcidid: 0000-0002-5269-3190
  surname: Yao
  fullname: Yao, Jun
  email: juny@umass.edu
  organization: Department of Electrical Computer and Engineering, University of Massachusetts, Institute for Applied Life Sciences (IALS), University of Massachusetts, Department of Biomedical Engineering, University of Massachusetts
BookMark eNp9Uj1vFDEQtVAQCSF_gGolGpoFf60_GiQUBYgURAMVhTXrtQ-ffPZh7-WUf49zewiSIm7sGb_3PJ55L9FJyskh9JrgdwQz9b5ywoXsMaU9owQPvXiGzijmpCeSspP_zqfootY1botpojh_gU7ZoDEdlDxDP78GW_IYIHZjyD7ETe18Lp2Lzs4l2DDfdSuXXIE55NT5kjfdHmbXELewzcc0pKnb5n3LzrnbOygwRldfoeceYnUXx_0c_fh09f3yS3_z7fP15ceb3g6Kzb3SWHKN_cAs165VqEBN3ls_cEGUJNgTxhiFFrNROMEpME_xOGLwmDbaObpedKcMa7MtYQPlzmQI5pDIZWWgzMFGZ5iWQKWU1o6E06nJay_AOjVqxVt7mtaHRWu7Gzdusi7NBeID0Yc3Kfwyq3xrNGNcYNYE3h4FSv69c3U2m1CtixGSy7tqqNBCCT4MskHfPIKu866k1qp71KAw1lI1lFpQbU61FudNG8qh7e39EA3B5t4QZjGEaYYwB0MY0aj0EfXvP54ksYVUGzitXPlX1ROsPw4fyMU
CitedBy_id crossref_primary_10_1016_j_nanoen_2024_109683
crossref_primary_10_1002_adfm_202425225
crossref_primary_10_1016_j_jece_2024_112977
crossref_primary_10_1109_JSEN_2024_3503718
crossref_primary_10_1021_acsaem_3c02409
crossref_primary_10_1002_bit_28702
crossref_primary_10_1016_j_cej_2024_155872
crossref_primary_10_1016_j_jpowsour_2023_233007
crossref_primary_10_1002_aenm_202400529
crossref_primary_10_1039_D4EE02797C
crossref_primary_10_1016_j_nanoen_2024_109409
crossref_primary_10_1021_acsnano_2c12606
crossref_primary_10_26599_NRE_2024_9120110
crossref_primary_10_1002_advs_202305530
crossref_primary_10_1021_acsami_3c08618
crossref_primary_10_1002_smll_202311661
crossref_primary_10_1007_s00449_024_03107_z
crossref_primary_10_1126_sciadv_adk4620
crossref_primary_10_1002_adfm_202407669
crossref_primary_10_1016_j_jechem_2024_04_014
crossref_primary_10_1016_j_chembiol_2024_12_013
crossref_primary_10_1016_j_jenvman_2024_122696
crossref_primary_10_1021_acssynbio_2c00636
crossref_primary_10_1002_adfm_202425757
crossref_primary_10_1002_ente_202301458
crossref_primary_10_1039_D2EE03621E
crossref_primary_10_1038_s44222_024_00204_2
crossref_primary_10_1360_SSPMA_2023_0308
crossref_primary_10_3390_app14209589
crossref_primary_10_1002_smll_202407614
crossref_primary_10_1002_adma_202304099
crossref_primary_10_1002_adma_202407856
crossref_primary_10_1002_aenm_202204091
crossref_primary_10_1016_j_nanoen_2024_110619
crossref_primary_10_1039_D3EE01131C
crossref_primary_10_1016_j_jmst_2024_02_009
crossref_primary_10_1021_acs_jpclett_3c02268
crossref_primary_10_1038_s41467_024_54216_y
crossref_primary_10_1088_1361_648X_acabf3
crossref_primary_10_1002_aenm_202303815
crossref_primary_10_1016_j_nanoen_2023_109182
crossref_primary_10_1016_j_nantod_2025_102661
crossref_primary_10_1002_adma_202400110
crossref_primary_10_1016_j_isci_2024_109848
crossref_primary_10_1002_adma_202300748
crossref_primary_10_1002_ange_202408096
crossref_primary_10_1007_s42242_024_00300_7
crossref_primary_10_1016_j_engreg_2022_09_002
crossref_primary_10_1021_acsnano_4c07900
crossref_primary_10_1038_s41467_024_49429_0
crossref_primary_10_1021_acsnano_3c02043
crossref_primary_10_1002_adfm_202418823
crossref_primary_10_1021_acsnano_4c00990
crossref_primary_10_1016_j_cej_2024_152587
crossref_primary_10_1002_adfm_202311465
crossref_primary_10_1021_acs_chemrev_2c00823
crossref_primary_10_1038_s41929_024_01151_2
crossref_primary_10_1002_anie_202408096
crossref_primary_10_1016_j_tibtech_2023_04_007
crossref_primary_10_1016_j_bios_2023_115147
crossref_primary_10_1016_j_cej_2023_143336
crossref_primary_10_1016_j_cej_2023_144868
crossref_primary_10_1016_j_pmatsci_2023_101172
crossref_primary_10_1016_j_apsusc_2025_162963
crossref_primary_10_1021_acsomega_3c07085
crossref_primary_10_1002_adma_202310260
crossref_primary_10_1039_D4SC06481J
crossref_primary_10_1002_adma_202401171
crossref_primary_10_1021_acsnano_4c01179
crossref_primary_10_1021_acsami_3c12400
crossref_primary_10_1002_admt_202300370
crossref_primary_10_1039_D4EE03356F
crossref_primary_10_1002_advs_202413779
crossref_primary_10_1016_j_tibtech_2023_03_012
crossref_primary_10_1038_s41467_023_41371_x
crossref_primary_10_1016_j_joule_2023_04_007
crossref_primary_10_1016_j_nanoen_2023_108348
crossref_primary_10_1016_j_biotechadv_2023_108175
crossref_primary_10_1021_acsami_4c01026
crossref_primary_10_1039_D2TA05281D
crossref_primary_10_1016_j_device_2024_100561
crossref_primary_10_1021_acsami_2c12777
crossref_primary_10_1039_D3TA05986C
Cites_doi 10.1038/s41587-019-0321-x
10.1021/acssynbio.9b00506
10.1038/s41579-019-0173-x
10.1016/j.nanoen.2021.106361
10.1002/aelm.202000721
10.1039/C5CP03432A
10.1039/C5RA28092C
10.1038/ncomms6714
10.1021/accountsmr.1c00075
10.1016/j.bios.2015.02.021
10.1016/j.conb.2017.11.007
10.1038/s41565-018-0228-6
10.1039/c3ee40441b
10.1073/pnas.0603395103
10.1038/s41586-020-2010-9
10.1038/s41467-021-23744-2
10.1002/anie.202002762
10.1021/nl070194h
10.1016/0005-2736(85)90381-5
10.1128/AEM.67.7.3180-3187.2001
10.1002/adfm.201700551
10.1016/j.esr.2019.01.006
10.1038/s41467-017-00581-w
10.1073/pnas.95.12.6578
10.1038/s41578-020-0182-4
10.1038/nnano.2016.300
10.1002/adma.202003722
10.1021/acsami.9b23380
10.1021/acsami.8b14340
10.1021/acsami.9b09582
10.1016/j.tibtech.2020.12.005
10.1021/acs.nanolett.5b00133
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-32105-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_397a2777ccb142d1879f6ace8b984391
PMC9334603
10_1038_s41467_022_32105_6
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c583t-8907490f53c49e1848a8dffcf54618710f13332af543b6e642a3f20bb0af02f53
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:19:57 EDT 2025
Thu Aug 21 18:01:51 EDT 2025
Thu Jul 10 21:51:19 EDT 2025
Wed Aug 13 05:30:35 EDT 2025
Tue Jul 01 00:58:20 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Fri Feb 21 02:38:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-8907490f53c49e1848a8dffcf54618710f13332af543b6e642a3f20bb0af02f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7158-3555
0000-0002-7425-3305
0000-0002-2031-1629
0000-0003-1463-9916
0000-0002-5269-3190
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-32105-6
PMID 35902587
PQID 2695800978
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_397a2777ccb142d1879f6ace8b984391
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9334603
proquest_miscellaneous_2696864557
proquest_journals_2695800978
crossref_citationtrail_10_1038_s41467_022_32105_6
crossref_primary_10_1038_s41467_022_32105_6
springer_journals_10_1038_s41467_022_32105_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-28
PublicationDateYYYYMMDD 2022-07-28
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Whitman, Coleman, Wiebe (CR13) 1998; 95
Leang, Malvankar, Franks, Nevin, Lovely (CR16) 2013; 6
Ueki (CR32) 2020; 9
Gielen (CR2) 2019; 24
Lovley, Yao (CR6) 2021; 39
Zhao, Guo, Zhou, Shi, Yu (CR4) 2020; 5
CR34
Shao (CR29) 2019; 11
Shen (CR9) 2020; 32
van der Heyden, Bonthuis, Stein, Meyer, Dekker (CR20) 2007; 7
Cavusoglu, Chen, Gentine, Sahin (CR7) 2017; 8
Adhikari, Malvankar, Tuominen, Lovley (CR31) 2016; 6
Zhang (CR8) 2018; 13
Gao (CR23) 2015; 15
Logan, Rossi, Ragab, Saikaly (CR3) 2019; 17
Qin (CR11) 2020; 59
Lewis, Nocera (CR1) 2006; 103
Stöckl, Teubner, Holtmann, Mangold, Sand (CR17) 2019; 11
Nguyen, Fraiwan, Choi (CR15) 2014; 49
Ren (CR30) 2021; 89
Ding (CR18) 2017; 27
Lin (CR27) 2014; 5
Choi (CR14) 2015; 69
Fu (CR26) 2021; 12
Liu (CR25) 2020; 6
Coppi, Leang, Sandler, Lovley (CR33) 2001; 67
Liu (CR24) 2020; 578
Li, Chen, Zhu, Ragauskas, Hu (CR5) 2021; 2
Zhou (CR12) 2020; 12
Hong, Yang, Zhou, Lieber (CR19) 2018; 50
Arnold, Herrmann, Pratsch, Gawrisch (CR22) 1985; 815
Xue (CR10) 2017; 12
Feliciano, Steidl, Reguera (CR21) 2015; 17
Yang (CR28) 2020; 38
X Liu (32105_CR24) 2020; 578
N Gao (32105_CR23) 2015; 15
WB Whitman (32105_CR13) 1998; 95
C Shao (32105_CR29) 2019; 11
D Shen (32105_CR9) 2020; 32
M Stöckl (32105_CR17) 2019; 11
X Zhou (32105_CR12) 2020; 12
MV Coppi (32105_CR33) 2001; 67
X Liu (32105_CR25) 2020; 6
G Hong (32105_CR19) 2018; 50
32105_CR34
J Li (32105_CR5) 2021; 2
C Leang (32105_CR16) 2013; 6
Y Yang (32105_CR28) 2020; 38
DR Lovley (32105_CR6) 2021; 39
G Xue (32105_CR10) 2017; 12
FHJ van der Heyden (32105_CR20) 2007; 7
GT Feliciano (32105_CR21) 2015; 17
J Lin (32105_CR27) 2014; 5
BE Logan (32105_CR3) 2019; 17
RY Adhikari (32105_CR31) 2016; 6
S Choi (32105_CR14) 2015; 69
F Zhao (32105_CR4) 2020; 5
G Ren (32105_CR30) 2021; 89
NS Lewis (32105_CR1) 2006; 103
Z Zhang (32105_CR8) 2018; 13
K Arnold (32105_CR22) 1985; 815
T Ueki (32105_CR32) 2020; 9
TH Nguyen (32105_CR15) 2014; 49
A-H Cavusoglu (32105_CR7) 2017; 8
T Ding (32105_CR18) 2017; 27
Y Qin (32105_CR11) 2020; 59
T Fu (32105_CR26) 2021; 12
D Gielen (32105_CR2) 2019; 24
References_xml – volume: 49
  start-page: 410
  year: 2014
  end-page: 414
  ident: CR15
  article-title: Paper-based batteries: a review
  publication-title: Biosens. Bioelectron.
– volume: 38
  start-page: 217
  year: 2020
  end-page: 224
  ident: CR28
  article-title: A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0321-x
– volume: 9
  start-page: 647
  year: 2020
  end-page: 654
  ident: CR32
  article-title: An Escherichia coli chassis for production of electrically conductive protein nanowires
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.9b00506
– volume: 17
  start-page: 307
  year: 2019
  end-page: 319
  ident: CR3
  article-title: Electroactive microorganisms in bioelectrochemical systems
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-019-0173-x
– volume: 89
  start-page: 106361
  year: 2021
  ident: CR30
  article-title: A facile and sustainable hygroelectric generator using whole-cell Geobacter sulfurreducens
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106361
– volume: 6
  start-page: 2000721
  year: 2020
  ident: CR25
  article-title: Multifunctional protein nanowire humidity sensors for green wearable electronics
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202000721
– volume: 17
  start-page: 22217
  year: 2015
  end-page: 22226
  ident: CR21
  article-title: Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP03432A
– volume: 6
  start-page: 8354
  year: 2016
  end-page: 8357
  ident: CR31
  article-title: Conductivity of individual Geobacter pili
  publication-title: RSC Adv.
  doi: 10.1039/C5RA28092C
– volume: 5
  year: 2014
  ident: CR27
  article-title: Laser-induced porous graphene films from commercial polymers
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6714
– volume: 2
  start-page: 606
  year: 2021
  end-page: 620
  ident: CR5
  article-title: In situ wood delignification toward sustainable applications
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.1c00075
– volume: 69
  start-page: 8
  year: 2015
  end-page: 25
  ident: CR14
  article-title: Microscale microbial fuel cells: advances and challenges
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.02.021
– volume: 50
  start-page: 33
  year: 2018
  end-page: 41
  ident: CR19
  article-title: Mesh electronics: a new paradigm for tissue-like brain probes
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2017.11.007
– volume: 13
  start-page: 1109
  year: 2018
  end-page: 1119
  ident: CR8
  article-title: Emerging hydrovoltaic technology
  publication-title: Nat. Nanotech.
  doi: 10.1038/s41565-018-0228-6
– volume: 6
  start-page: 1901
  year: 2013
  end-page: 1908
  ident: CR16
  article-title: Engineering to produce a highly cohesive conductive matrix with enhanced capacity for current production
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40441b
– volume: 103
  start-page: 15729
  year: 2006
  end-page: 15735
  ident: CR1
  article-title: Powering the planet: chemical challenges in solar energy utilization
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0603395103
– volume: 578
  start-page: 550
  year: 2020
  end-page: 554
  ident: CR24
  article-title: Power generation from ambient humidity using protein nanowires
  publication-title: Nature
  doi: 10.1038/s41586-020-2010-9
– volume: 12
  year: 2021
  ident: CR26
  article-title: Self-sustained green neuromorphic interfaces
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23744-2
– volume: 59
  start-page: 10619
  year: 2020
  end-page: 10625
  ident: CR11
  article-title: Constant electricity generation in nanostructured silicon by evaporation-driven water flow
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202002762
– volume: 7
  start-page: 1022
  year: 2007
  end-page: 1025
  ident: CR20
  article-title: Power generation by pressure driven transport of ions in nanofluidic channels
  publication-title: Nano Lett.
  doi: 10.1021/nl070194h
– volume: 815
  start-page: 515
  year: 1985
  end-page: 518
  ident: CR22
  article-title: The dielectric properties of aqueous solutions of poly(ethylene glycol) and their influence on membrane structure
  publication-title: Biophys. Acta
  doi: 10.1016/0005-2736(85)90381-5
– volume: 67
  start-page: 3180
  year: 2001
  end-page: 3187
  ident: CR33
  article-title: Development of a genetic system for Geobacter sulfurreducens
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.67.7.3180-3187.2001
– volume: 27
  start-page: 1700551
  year: 2017
  ident: CR18
  article-title: All-printed porous carbon film for electricity generation from evaporation-driven water flow
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700551
– volume: 24
  start-page: 38
  year: 2019
  end-page: 50
  ident: CR2
  article-title: The role of renewable energy in the global energy transformation
  publication-title: Energy Strategy Rev.
  doi: 10.1016/j.esr.2019.01.006
– volume: 8
  year: 2017
  ident: CR7
  article-title: Potential for natural evaporation as a reliable renewable energy resource
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00581-w
– ident: CR34
– volume: 95
  start-page: 6578
  year: 1998
  end-page: 6583
  ident: CR13
  article-title: Prokaryotes: the unseen majority
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.95.12.6578
– volume: 5
  start-page: 388
  year: 2020
  end-page: 401
  ident: CR4
  article-title: Materials for solar-powered water evaporation
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0182-4
– volume: 12
  start-page: 317
  year: 2017
  end-page: 321
  ident: CR10
  article-title: Water-evaporation-induced electricity with nanostructured carbon materials
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2016.300
– volume: 32
  start-page: 2003722
  year: 2020
  ident: CR9
  article-title: Moisture-enabled electricity generation: from physics and materials to self-powered applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003722
– volume: 12
  start-page: 11232
  year: 2020
  end-page: 11239
  ident: CR12
  article-title: Harvesting electricity from water evaporation through microchannels of natural wood
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b23380
– volume: 11
  start-page: 8961
  year: 2019
  end-page: 8968
  ident: CR17
  article-title: Extracellular polymeric substances from Geobacter sulfurreducens biofilms in microbial fuel cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b14340
– volume: 11
  start-page: 30927
  year: 2019
  end-page: 30935
  ident: CR29
  article-title: Large-scale production of flexible, high-voltage hydroelectric films based on solid oxides
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b09582
– volume: 39
  start-page: 940
  year: 2021
  end-page: 952
  ident: CR6
  article-title: Intrinsically conductive microbial nanowires for green electronics with novel functions
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2020.12.005
– volume: 15
  start-page: 2143
  year: 2015
  end-page: 2148
  ident: CR23
  article-title: General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00133
– volume: 12
  start-page: 317
  year: 2017
  ident: 32105_CR10
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2016.300
– volume: 27
  start-page: 1700551
  year: 2017
  ident: 32105_CR18
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700551
– volume: 95
  start-page: 6578
  year: 1998
  ident: 32105_CR13
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.95.12.6578
– volume: 89
  start-page: 106361
  year: 2021
  ident: 32105_CR30
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106361
– volume: 6
  start-page: 1901
  year: 2013
  ident: 32105_CR16
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40441b
– volume: 11
  start-page: 30927
  year: 2019
  ident: 32105_CR29
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b09582
– volume: 17
  start-page: 22217
  year: 2015
  ident: 32105_CR21
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP03432A
– volume: 13
  start-page: 1109
  year: 2018
  ident: 32105_CR8
  publication-title: Nat. Nanotech.
  doi: 10.1038/s41565-018-0228-6
– volume: 578
  start-page: 550
  year: 2020
  ident: 32105_CR24
  publication-title: Nature
  doi: 10.1038/s41586-020-2010-9
– ident: 32105_CR34
– volume: 50
  start-page: 33
  year: 2018
  ident: 32105_CR19
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2017.11.007
– volume: 59
  start-page: 10619
  year: 2020
  ident: 32105_CR11
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202002762
– volume: 7
  start-page: 1022
  year: 2007
  ident: 32105_CR20
  publication-title: Nano Lett.
  doi: 10.1021/nl070194h
– volume: 49
  start-page: 410
  year: 2014
  ident: 32105_CR15
  publication-title: Biosens. Bioelectron.
– volume: 12
  start-page: 11232
  year: 2020
  ident: 32105_CR12
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b23380
– volume: 103
  start-page: 15729
  year: 2006
  ident: 32105_CR1
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0603395103
– volume: 11
  start-page: 8961
  year: 2019
  ident: 32105_CR17
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b14340
– volume: 815
  start-page: 515
  year: 1985
  ident: 32105_CR22
  publication-title: Biophys. Acta
  doi: 10.1016/0005-2736(85)90381-5
– volume: 2
  start-page: 606
  year: 2021
  ident: 32105_CR5
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.1c00075
– volume: 32
  start-page: 2003722
  year: 2020
  ident: 32105_CR9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003722
– volume: 8
  year: 2017
  ident: 32105_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00581-w
– volume: 17
  start-page: 307
  year: 2019
  ident: 32105_CR3
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-019-0173-x
– volume: 38
  start-page: 217
  year: 2020
  ident: 32105_CR28
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0321-x
– volume: 15
  start-page: 2143
  year: 2015
  ident: 32105_CR23
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00133
– volume: 9
  start-page: 647
  year: 2020
  ident: 32105_CR32
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.9b00506
– volume: 12
  year: 2021
  ident: 32105_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23744-2
– volume: 67
  start-page: 3180
  year: 2001
  ident: 32105_CR33
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.67.7.3180-3187.2001
– volume: 6
  start-page: 8354
  year: 2016
  ident: 32105_CR31
  publication-title: RSC Adv.
  doi: 10.1039/C5RA28092C
– volume: 69
  start-page: 8
  year: 2015
  ident: 32105_CR14
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.02.021
– volume: 5
  start-page: 388
  year: 2020
  ident: 32105_CR4
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0182-4
– volume: 39
  start-page: 940
  year: 2021
  ident: 32105_CR6
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2020.12.005
– volume: 5
  year: 2014
  ident: 32105_CR27
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6714
– volume: 24
  start-page: 38
  year: 2019
  ident: 32105_CR2
  publication-title: Energy Strategy Rev.
  doi: 10.1016/j.esr.2019.01.006
– volume: 6
  start-page: 2000721
  year: 2020
  ident: 32105_CR25
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202000721
SSID ssj0000391844
Score 2.6450474
Snippet Employing renewable materials for fabricating clean energy harvesting devices can further improve sustainability. Microorganisms can be mass produced with...
Though water evaporation-driven electricity generation is an attractive sustainable energy production strategy, existing electronic devices suffer from poor...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4369
SubjectTerms 639/166/987
639/301/1005/1007
639/4077/4072/4062
Aqueous environments
Biochemical fuel cells
Biofilms
Biomaterials
Biomedical materials
Cell viability
Clean energy
Electric power generation
Electricity
Electricity generation
Electronic devices
Electronic equipment
Energy harvesting
Energy output
Evaporation
Humanities and Social Sciences
Microorganisms
Moisture effects
multidisciplinary
Raw materials
Renewable energy
Renewable resources
Science
Science (multidisciplinary)
Sustainable energy
Wearable technology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB-kUPClqK24WiWCb3VpLt_7aEtLEdonCwUfQpLb1APdO7yrxf_emezetVuwvvi4yYTdTGYyM5vM_AA-OCdjtqhpRk95rdCjr0MOvLYi8mDRojTlEs35hTm7VJ-v9NU9qC-6E9aXB-4Zd4j2MghrbUr0u2JK4NjZhNS62DjKGqXdF23evWCq7MHY45QasmS4dIdLVfaEcnkdwxxdm5ElKgX7R17mwzuSDw5Ki_05fQY7g-PIPvUf_ByetN0L2O6hJH_vwtfzWSmphCRxRjDcP5YM_VHWw9zMEjrb7LqUmKaVYJRVwm7Rz0SKX2ExyAEL3ZQtCDeNrebsFpWAEquWe3B5evLl-KwegBPqpJ1c1Y4i3oZnLZNqWmSEC26ac8paGWTghGeMTKUI-CyjaTEECTILHnF5Mhc47CVsdfOufQVMZpnaMAkCGU7Y1BF3z0mURvIksYFXMFkz0aehqjiBW3z35XRbOt8z3iPjfWG8NxUcbMYs-poaj1If0dpsKKkedmlAKfGDlPh_SUkF--uV9YOSLr0wjXYlkaWC95tuVC86MwldO78pNMYZpbWtwI4kYvRB455u9q0U6m6kVIbLCj6uZefu5X-f8Ov_MeE38FSQrHNbC7cPW6ufN-1bdJ9W8V3RlD9jXRRW
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA86EXwR5wdWp0TwTcvSfPdJNvE6hPnkYOBDSNNmXpjtdb1z-N97Tpp7RwfbY9MTmp6P5Jwk5_wIeW-taKIBS9OqZaUEj7700bPS8IZ5AytKnS7RHH_XRyfy26k6zRtuY75WuZkT00TdDgH3yPe5rpVNWQefVn9KRI3C09UMoXGfPKhgpUENt4uv2z0WrH5upcy5MkzY_VGmmSFdYYdgR5V6th6lsv0zX_PmTckbx6VpFVo8IY-z-0gPJnnvkntd_5Q8nAAl_z0jP4-XqbASkDRLBOP-PVLwSukEdrMM4HLTs1RoGuVBMbeEXoG3CRR__SprA_V9S1eInkbXA70CU8D0qvE5OVl8-fH5qMzwCWVQVqxLi3FvzaISQdYdMMJ628YYopK6gjiJRYhPBffwLBrdQSDiReSsASFFxqHbC7LTD333klARReh85XlnG0SobmAOrRqhBQsCGlhBqg0TXci1xRHi4tylM25h3cR4B4x3ifFOF-TDts9qqqxxJ_UhymZLiVWxU8NwceaykTnwrTw3xoSAW1stAqlH7QMMuraYYVyQvY1kXTbV0V0rVkHebV-DkeHJie-74TLRaKulUqYgZqYRswHN3_TLX6lcdy2E1EwU5ONGd64_fvsPv7p7rK_JI45azEzJ7R7ZWV9cdm_APVo3b5MN_AdDIwxo
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qRfBF_MS1VSL4pou5fO9jPSxFqE8WCj6EJLepB7p39K4t_vfOZHdPtqjg42YnbHYyk8wkM78BeOOcjNmiphm94LVCi74OOfDaisiDxR2lKUE0p5_NyZn6dK7P90CMuTAlaL9AWpZleowOe79RRaVL7Dl6Kbo2d-AuQbdTGN_czHfnKoR47pQa8mO4dH_oOtmDClT_xL68HR1564q07DzHD-HBYDKyo36Qj2Cv7R7Dvb6I5M8n8PV0WcCUkCQuqQD3jw1DS5T1BW6WCc1sdlHApWkOGOWTsBu0MJHiOqwHCWChW7A1VUxj2xW7QfGnlKrNUzg7_vhlflIPJRPqpJ3c1o583YZnLZNqWmSEC26Rc8pamRn6RjyjTypFwGcZTYvOR5BZ8IgTk7nAbs9gv1t17XNgMsvUhlkQrYtUlTriujmL0kieJDbwCmYjE30a8MSprMV3X-61pfM94z0y3hfGe1PB212fdY-m8U_qDzQ3O0pCwi4Nq8sLP0iGR3sqCGttSnSctaDi6dmEhINuHGUVV3A4zqwf1HPjhWm0KyksFbzevUbFotuS0LWrq0JjnFFa2wrsRCImA5q-6ZbfCkR3I6UyXFbwbpSd3x__-w-_-D_yA7gvSKq5rYU7hP3t5VX7Ek2kbXxVdOIXc5EKCg
  priority: 102
  providerName: Springer Nature
Title Microbial biofilms for electricity generation from water evaporation and power to wearables
URI https://link.springer.com/article/10.1038/s41467-022-32105-6
https://www.proquest.com/docview/2695800978
https://www.proquest.com/docview/2696864557
https://pubmed.ncbi.nlm.nih.gov/PMC9334603
https://doaj.org/article/397a2777ccb142d1879f6ace8b984391
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8ID5F2KiMxBsEHDuxnQeEumplqtQJAZUq8WA5brxVGmlpu43995ydpCjTQLwkinNJnPNd7i723Q_gtVK8cBI1TWQzGqfo0cfGGRpLVlAj0aLkYRHN-FScTNLRNJvuQAt31DBwfWdo5_GkJquLd79-3nxEhf9Qp4yr9-s0qHtYl44RTBaLXdhHyyQ9lMO4cffDl5nnGND4iWZG0yRG282bPJq7b9OxVaGkf8cPvb2K8tZUarBQw4fwoHEtSb-WhUewU1aP4V4NNnnzBL6P56HoEpIUcw_U_WNN0GMlNRDO3KI7Ts5CEWo_VsTnnZBr9ESR4sosG0khppqRpUdWI5sFuUY18alX66cwGR5_G5zEDbRCbDPFN7HyMXFOXcZtmpfIFGXUzDnrslQkGENRh7ErZwaPeSFKDFIMd4wWOICOMrzsGexVi6p8DoQ7bkuTGFaqwqNXF_h9TQouOLUcG2gESctEbZu64x7-4kKH-W-udM14jYzXgfFaRPBme82yrrrxT-ojPzZbSl8xOzQsVme6UUCNfpdhUkpr_W-vmQdZd8JY7HSufPZxBIftyOpWCjUTeaZCqksEr7anUQH9rIqpysVloBFKpFkmI5Adieh0qHummp-HUt4556mgPIK3rez8efjfX_jFf3TmAO4zL8pUxkwdwt5mdVm-RP9pU_RgV04lbtXwUw_2-_3R1xHuj45PP3_B1oEY9MKfiV5Qnt_XDhol
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLemIQQviE9RNiBI8ATVckmbpA8I8TXd2G5Pm3QSDyFNm3ES6x27G6f9U_yN2Gl7001ib3ts66qpYzt2YvsH8NoYWQaNmqbyiqcZevSpC46nWpTcaVxRiphEMzpUw-Ps2zgfb8DfvhaG0ip7mxgNdTX1tEe-I1SRm1h18GH2OyXUKDpd7SE0WrHYry-WGLLN3-99wfl9I8Tu16PPw7RDFUh9buQiNRQOFjzk0mdFjQGOcaYKwYc8UwMMH3jAsE0Kh9eyVDX6504GwUsce-AiEEoEmvxbuPBySiHUY73a06Fu6ybLutocLs3OPIuWKKbMY3CVp2pt_YswAWu-7dXMzCvHs3HV270P9zp3lX1s5esBbNTNQ7jdAlhePILvo0ls5IQk5YTAv0_nDL1g1oLrTDy6-OwkNram-WdUy8KW6N0ixR8366SPuaZiM0JrY4spWyKPqZxr_hiOb4SxT2CzmTb1U2AySF-7gRO1KQkRu0SbPSilktxLvMETGPRMtL7rZU6QGr9sPFOXxraMt8h4GxlvVQJvV-_M2k4e11J_orlZUVIX7nhjenZiO6W26Ms5obX2nrbSKgJuD8p5HHRhqKI5ge1-Zm1nGub2UpATeLV6jEpNJzWuqafnkUYZleW5TkCvScTagNafNJOfsT14IWWmuEzgXS87lx___w8_u36sL-HO8Gh0YA_2Dve34K4gieY6FWYbNhdn5_VzdM0W5YuoDwx-3LQC_gMMLUfr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDLemIRAviL-ibECQ4AmqyyVtkj4gBIzTxtjEA5NO4iGkaTNOYr1jd-O0r8anw07bm24Se9tjW1dNHduxE9s_gJfGyDJo1DSVVzzN0KNPXXA81aLkTuOKUsQkmoNDtXuUfR7n4w3429fCUFplbxOjoa6mnvbIB0IVuYlVB4PQpUV83Rm9m_1OCUGKTlp7OI1WRPbr8yWGb_O3ezs416-EGH369nE37RAGUp8buUgNhYYFD7n0WVFjsGOcqULwIc_UEEMJHjCEk8LhtSxVjb66k0HwEv8jcBEIMQLN_w0tcdlEXdJjvdrfoc7rJsu6Oh0uzWCeRasU0-cx0MpTtbYWRsiANT_3cpbmpaPauAKO7sKdznVl71tZuwcbdXMfbrZglucP4PvBJDZ1QpJyQkDgJ3OGHjFrgXYmHt19dhybXJMsMKprYUv0dJHij5t1kshcU7EZIbexxZQtkcdU2jV_CEfXwthHsNlMm_oxMBmkr93QidqUhI5dov0ellJJ7iXe4AkMeyZa3_U1J3iNXzaer0tjW8ZbZLyNjLcqgderd2ZtV48rqT_Q3KwoqSN3vDE9Pbadglv065zQWntP22oVgbgH5TwOujBU3ZzAdj-ztjMTc3sh1Am8WD1GBadTG9fU07NIo4zK8lwnoNckYm1A60-ayc_YKryQMlNcJvCml52Lj___h59cPdbncAtVz37ZO9zfgtuCBJrrVJht2FycntVP0UtblM-iOjD4cd369w9uoUwh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+biofilms+for+electricity+generation+from+water+evaporation+and+power+to+wearables&rft.jtitle=Nature+communications&rft.au=Liu%2C+Xiaomeng&rft.au=Ueki%2C+Toshiyuki&rft.au=Gao%2C+Hongyan&rft.au=Woodard%2C+Trevor+L&rft.date=2022-07-28&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=4369&rft_id=info:doi/10.1038%2Fs41467-022-32105-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon