CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment
Electrochemical CO 2 reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we demonstrate CO 2 electroreduction in strongly acidic electrolyte (pH ≤ 1) on electrochemically reduced porous Cu nanosheets by combining the confin...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 7596 - 11 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.12.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrochemical CO
2
reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we demonstrate CO
2
electroreduction in strongly acidic electrolyte (pH ≤ 1) on electrochemically reduced porous Cu nanosheets by combining the confinement effect and cation effect to synergistically modulate the local microenvironment. A Faradaic efficiency of 83.7 ± 1.4% and partial current density of 0.56 ± 0.02 A cm
−2
, single-pass carbon efficiency of 54.4%, and stable electrolysis of 30 h in a flow cell are demonstrated for multicarbon products in a strongly acidic aqueous electrolyte consisting of sulfuric acid and KCl with pH ≤ 1. Mechanistically, the accumulated species (e.g., K
+
and OH
−
) on the Helmholtz plane account for the selectivity and activity toward multicarbon products by kinetically reducing the proton coverage and thermodynamically favoring the CO
2
conversion. We find that the K
+
cations facilitate C-C coupling through local interaction between K
+
and the key intermediate *OCCO.
Attaining high selectivity for CO
2
electroreduction in acid is usually difficult due to competing hydrogen evolution. Here, the authors demonstrate efficient CO
2
reduction to multicarbon products in strongly acidic medium (pH ≤ 1) on a porous Cu catalyst by combining confinement and cation effects. |
---|---|
AbstractList | Electrochemical CO
2
reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we demonstrate CO
2
electroreduction in strongly acidic electrolyte (pH ≤ 1) on electrochemically reduced porous Cu nanosheets by combining the confinement effect and cation effect to synergistically modulate the local microenvironment. A Faradaic efficiency of 83.7 ± 1.4% and partial current density of 0.56 ± 0.02 A cm
−2
, single-pass carbon efficiency of 54.4%, and stable electrolysis of 30 h in a flow cell are demonstrated for multicarbon products in a strongly acidic aqueous electrolyte consisting of sulfuric acid and KCl with pH ≤ 1. Mechanistically, the accumulated species (e.g., K
+
and OH
−
) on the Helmholtz plane account for the selectivity and activity toward multicarbon products by kinetically reducing the proton coverage and thermodynamically favoring the CO
2
conversion. We find that the K
+
cations facilitate C-C coupling through local interaction between K
+
and the key intermediate *OCCO. Electrochemical CO2 reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we demonstrate CO2 electroreduction in strongly acidic electrolyte (pH ≤ 1) on electrochemically reduced porous Cu nanosheets by combining the confinement effect and cation effect to synergistically modulate the local microenvironment. A Faradaic efficiency of 83.7 ± 1.4% and partial current density of 0.56 ± 0.02 A cm-2, single-pass carbon efficiency of 54.4%, and stable electrolysis of 30 h in a flow cell are demonstrated for multicarbon products in a strongly acidic aqueous electrolyte consisting of sulfuric acid and KCl with pH ≤ 1. Mechanistically, the accumulated species (e.g., K+ and OH-) on the Helmholtz plane account for the selectivity and activity toward multicarbon products by kinetically reducing the proton coverage and thermodynamically favoring the CO2 conversion. We find that the K+ cations facilitate C-C coupling through local interaction between K+ and the key intermediate *OCCO.Electrochemical CO2 reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we demonstrate CO2 electroreduction in strongly acidic electrolyte (pH ≤ 1) on electrochemically reduced porous Cu nanosheets by combining the confinement effect and cation effect to synergistically modulate the local microenvironment. A Faradaic efficiency of 83.7 ± 1.4% and partial current density of 0.56 ± 0.02 A cm-2, single-pass carbon efficiency of 54.4%, and stable electrolysis of 30 h in a flow cell are demonstrated for multicarbon products in a strongly acidic aqueous electrolyte consisting of sulfuric acid and KCl with pH ≤ 1. Mechanistically, the accumulated species (e.g., K+ and OH-) on the Helmholtz plane account for the selectivity and activity toward multicarbon products by kinetically reducing the proton coverage and thermodynamically favoring the CO2 conversion. We find that the K+ cations facilitate C-C coupling through local interaction between K+ and the key intermediate *OCCO. Electrochemical CO 2 reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we demonstrate CO 2 electroreduction in strongly acidic electrolyte (pH ≤ 1) on electrochemically reduced porous Cu nanosheets by combining the confinement effect and cation effect to synergistically modulate the local microenvironment. A Faradaic efficiency of 83.7 ± 1.4% and partial current density of 0.56 ± 0.02 A cm −2 , single-pass carbon efficiency of 54.4%, and stable electrolysis of 30 h in a flow cell are demonstrated for multicarbon products in a strongly acidic aqueous electrolyte consisting of sulfuric acid and KCl with pH ≤ 1. Mechanistically, the accumulated species (e.g., K + and OH − ) on the Helmholtz plane account for the selectivity and activity toward multicarbon products by kinetically reducing the proton coverage and thermodynamically favoring the CO 2 conversion. We find that the K + cations facilitate C-C coupling through local interaction between K + and the key intermediate *OCCO. Attaining high selectivity for CO 2 electroreduction in acid is usually difficult due to competing hydrogen evolution. Here, the authors demonstrate efficient CO 2 reduction to multicarbon products in strongly acidic medium (pH ≤ 1) on a porous Cu catalyst by combining confinement and cation effects. Electrochemical CO2 reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we demonstrate CO2 electroreduction in strongly acidic electrolyte (pH ≤ 1) on electrochemically reduced porous Cu nanosheets by combining the confinement effect and cation effect to synergistically modulate the local microenvironment. A Faradaic efficiency of 83.7 ± 1.4% and partial current density of 0.56 ± 0.02 A cm−2, single-pass carbon efficiency of 54.4%, and stable electrolysis of 30 h in a flow cell are demonstrated for multicarbon products in a strongly acidic aqueous electrolyte consisting of sulfuric acid and KCl with pH ≤ 1. Mechanistically, the accumulated species (e.g., K+ and OH−) on the Helmholtz plane account for the selectivity and activity toward multicarbon products by kinetically reducing the proton coverage and thermodynamically favoring the CO2 conversion. We find that the K+ cations facilitate C-C coupling through local interaction between K+ and the key intermediate *OCCO.Attaining high selectivity for CO2 electroreduction in acid is usually difficult due to competing hydrogen evolution. Here, the authors demonstrate efficient CO2 reduction to multicarbon products in strongly acidic medium (pH ≤ 1) on a porous Cu catalyst by combining confinement and cation effects. Attaining high selectivity for CO2 electroreduction in acid is usually difficult due to competing hydrogen evolution. Here, the authors demonstrate efficient CO2 reduction to multicarbon products in strongly acidic medium (pH ≤ 1) on a porous Cu catalyst by combining confinement and cation effects. |
ArticleNumber | 7596 |
Author | Lai, Wenchuan Ma, Zesong Wang, Qiyou Pan, Anlian Tao, Haolan Ma, Chao Yang, Zhilong Qiao, Yan Lian, Cheng Huang, Hongwen Liu, Min |
Author_xml | – sequence: 1 givenname: Zesong surname: Ma fullname: Ma, Zesong organization: College of Materials Science and Engineering, Hunan University – sequence: 2 givenname: Zhilong surname: Yang fullname: Yang, Zhilong organization: College of Materials Science and Engineering, Hunan University – sequence: 3 givenname: Wenchuan orcidid: 0000-0003-4748-069X surname: Lai fullname: Lai, Wenchuan email: laiwenchuan@hnu.edu.cn organization: College of Materials Science and Engineering, Hunan University – sequence: 4 givenname: Qiyou surname: Wang fullname: Wang, Qiyou organization: State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University – sequence: 5 givenname: Yan surname: Qiao fullname: Qiao, Yan organization: College of Materials Science and Engineering, Hunan University – sequence: 6 givenname: Haolan surname: Tao fullname: Tao, Haolan organization: State Key Laboratory of Chemical Engineering and Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology – sequence: 7 givenname: Cheng orcidid: 0000-0002-9016-832X surname: Lian fullname: Lian, Cheng organization: State Key Laboratory of Chemical Engineering and Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology – sequence: 8 givenname: Min orcidid: 0000-0002-9007-4817 surname: Liu fullname: Liu, Min organization: State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University – sequence: 9 givenname: Chao orcidid: 0000-0001-8599-9340 surname: Ma fullname: Ma, Chao organization: College of Materials Science and Engineering, Hunan University – sequence: 10 givenname: Anlian orcidid: 0000-0003-3335-3067 surname: Pan fullname: Pan, Anlian organization: College of Materials Science and Engineering, Hunan University – sequence: 11 givenname: Hongwen orcidid: 0000-0003-3967-6182 surname: Huang fullname: Huang, Hongwen email: huanghw@hnu.edu.cn organization: College of Materials Science and Engineering, Hunan University, Shenzhen Research Institute of Hunan University |
BookMark | eNp9Uk1v3CAQtapUaprmD_SE1Esvbvi08aVStepHpEi5tGeE8dhhhWELeJX9AfnfZeO0aXIIF5iZ9x7D8N5WJz54qKr3BH8imMmLxAlv2hpTWjPBiahvX1WnFHNSk5ayk__Ob6rzlLa4LNYRyflpdbe5pggcmBxDhGEx2QaPckDz4rI1OvYl3MVwrCRkPUoF6Cd3QNrYwZq_XHfIgPZWo3TwECebjmRXYHOhOp2tn1C-AeRCSaPZmhjA723RmsHnd9XrUbsE5w_7WfXr29efmx_11fX3y82Xq9oIyXLd6n5kINuRS0Ib3vScakyBcTkMHI8CYwFdWyIi2DC2esQ9lqYZOR-k4QNlZ9XlqjsEvVW7aGcdDypoq-4TIU5Kx9K5A9V1TdM1wnBgmne675kcO9CDoKAbTkXR-rxq7ZZ-hsGUZ0Ttnog-rXh7o6awV13LOKFtEfj4IBDD7wVSVrNNBpzTHsKSFG0Fo52U-Aj98Ay6DUv0ZVQFxWUjePn2gqIrqgw3pQjjv2YIVkenqNUpqjhF3TtF3RaSfEYyNuujC0rT1r1MZSs1lXv8BPGxqxdYfwBnutnR |
CitedBy_id | crossref_primary_10_1039_D3NR05982K crossref_primary_10_1002_smtd_202400786 crossref_primary_10_1002_adfm_202424413 crossref_primary_10_1002_anie_202317828 crossref_primary_10_1002_anie_202311968 crossref_primary_10_1002_smll_202412293 crossref_primary_10_1002_anie_202411216 crossref_primary_10_1016_j_joule_2024_03_011 crossref_primary_10_1002_anie_202424248 crossref_primary_10_1021_acs_energyfuels_3c01847 crossref_primary_10_1002_ange_202316640 crossref_primary_10_1002_ange_202408873 crossref_primary_10_1021_acs_jpcc_4c03596 crossref_primary_10_1002_aenm_202402825 crossref_primary_10_1016_j_mtphys_2023_101250 crossref_primary_10_1021_acs_jpcc_4c03469 crossref_primary_10_1038_s41467_024_54107_2 crossref_primary_10_1002_aenm_202402942 crossref_primary_10_1002_aenm_202404606 crossref_primary_10_1021_jacs_2c13384 crossref_primary_10_1002_chem_202404378 crossref_primary_10_1002_eem2_12731 crossref_primary_10_1002_smll_202306686 crossref_primary_10_1016_j_apcatb_2024_124681 crossref_primary_10_1063_5_0200438 crossref_primary_10_1016_j_watres_2024_122612 crossref_primary_10_1021_acscatal_4c00869 crossref_primary_10_1039_D3SE01717F crossref_primary_10_1021_acs_iecr_4c03007 crossref_primary_10_26599_NRE_2024_9120112 crossref_primary_10_1007_s40843_023_2884_8 crossref_primary_10_1021_acsnano_4c04780 crossref_primary_10_1021_jacsau_4c00246 crossref_primary_10_1021_jacs_4c09512 crossref_primary_10_1002_aenm_202400763 crossref_primary_10_1002_anie_202425195 crossref_primary_10_1002_smll_202408981 crossref_primary_10_1002_anie_202404110 crossref_primary_10_1021_acscatal_4c08113 crossref_primary_10_1021_jacs_4c09230 crossref_primary_10_1002_anie_202422082 crossref_primary_10_1038_s41467_025_57095_z crossref_primary_10_1038_s41467_024_49308_8 crossref_primary_10_1016_j_scitotenv_2024_170758 crossref_primary_10_1016_j_fmre_2024_02_008 crossref_primary_10_1039_D3TA01712E crossref_primary_10_1038_s41467_023_43303_1 crossref_primary_10_1016_j_jcis_2023_11_174 crossref_primary_10_1016_j_ccr_2024_215962 crossref_primary_10_1016_j_apcatb_2023_123293 crossref_primary_10_1002_adma_202407940 crossref_primary_10_1016_j_apcatb_2024_124061 crossref_primary_10_1016_j_jechem_2025_01_013 crossref_primary_10_1016_j_xinn_2025_100807 crossref_primary_10_1002_asia_202401345 crossref_primary_10_1016_j_nxener_2023_100030 crossref_primary_10_1021_jacs_3c12321 crossref_primary_10_1038_s41467_024_50521_8 crossref_primary_10_1021_acs_nanolett_4c03863 crossref_primary_10_1021_acsenergylett_4c01938 crossref_primary_10_1021_jacs_5c00164 crossref_primary_10_1002_ange_202425195 crossref_primary_10_26599_NR_2025_94907200 crossref_primary_10_1002_anie_202316640 crossref_primary_10_1002_adma_202312894 crossref_primary_10_1016_j_apcata_2023_119388 crossref_primary_10_1021_acsenergylett_4c01256 crossref_primary_10_1021_acsenergylett_4c01410 crossref_primary_10_1002_ange_202422082 crossref_primary_10_1002_ange_202411216 crossref_primary_10_1073_pnas_2400546121 crossref_primary_10_1039_D3NR05480B crossref_primary_10_1126_sciadv_adi6119 crossref_primary_10_1002_chem_202302382 crossref_primary_10_1016_j_enconman_2024_118601 crossref_primary_10_1016_j_matre_2023_100194 crossref_primary_10_1021_jacs_4c08445 crossref_primary_10_1038_s41929_023_01003_5 crossref_primary_10_1002_ange_202424248 crossref_primary_10_1002_celc_202400475 crossref_primary_10_1021_acs_nanolett_4c03116 crossref_primary_10_1002_anie_202422054 crossref_primary_10_1002_chem_202301455 crossref_primary_10_1016_j_apsusc_2024_161459 crossref_primary_10_1021_acs_est_4c02066 crossref_primary_10_1016_j_cjsc_2024_100346 crossref_primary_10_1016_j_seppur_2024_131367 crossref_primary_10_1002_metm_28 crossref_primary_10_1016_j_checat_2024_101185 crossref_primary_10_1016_j_apcatb_2025_125203 crossref_primary_10_1039_D4EE05715E crossref_primary_10_1002_adfm_202300926 crossref_primary_10_1021_acscatal_3c05999 crossref_primary_10_1002_adma_202407124 crossref_primary_10_1039_D3CC01049J crossref_primary_10_1002_admi_202300731 crossref_primary_10_1002_cssc_202300829 crossref_primary_10_1021_acs_chemmater_3c01326 crossref_primary_10_1002_ange_202309351 crossref_primary_10_1002_ange_202422054 crossref_primary_10_1002_ange_202404110 crossref_primary_10_1021_acs_jpcc_3c05364 crossref_primary_10_1021_jacs_4c16801 crossref_primary_10_1038_s44160_025_00769_9 crossref_primary_10_1016_j_cattod_2023_114284 crossref_primary_10_1038_s41467_024_50499_3 crossref_primary_10_1016_j_cej_2025_161319 crossref_primary_10_1016_j_ijhydene_2024_06_285 crossref_primary_10_1007_s11426_023_1799_y crossref_primary_10_1021_acsami_4c07258 crossref_primary_10_1038_s41929_024_01179_4 crossref_primary_10_1021_jacs_4c13494 crossref_primary_10_1021_jacs_3c13602 crossref_primary_10_1021_acscatal_4c02042 crossref_primary_10_1039_D3CC04656G crossref_primary_10_1002_adma_202409797 crossref_primary_10_1021_acscatal_4c01516 crossref_primary_10_1021_acsnano_4c12245 crossref_primary_10_1039_D3CC00248A crossref_primary_10_1038_s41467_024_51475_7 crossref_primary_10_1002_advs_202410679 crossref_primary_10_1002_anie_202408873 crossref_primary_10_1002_smll_202300926 crossref_primary_10_1021_jacs_5c01464 crossref_primary_10_1021_acs_jpclett_3c02919 crossref_primary_10_1016_j_coelec_2024_101614 crossref_primary_10_1039_D4CP03507K crossref_primary_10_1016_j_checat_2024_101164 crossref_primary_10_1039_D4SC04283B crossref_primary_10_1039_D3EY00155E crossref_primary_10_1038_s41467_023_41396_2 crossref_primary_10_1039_D4CS00229F crossref_primary_10_1021_acscatal_4c01884 crossref_primary_10_1016_j_jiec_2024_10_071 crossref_primary_10_1002_ece2_67 crossref_primary_10_1039_D3SC06583A crossref_primary_10_1039_D3SC01040F crossref_primary_10_1016_j_enconman_2024_119443 crossref_primary_10_1007_s40843_024_2835_3 crossref_primary_10_1007_s41918_024_00210_3 crossref_primary_10_1038_s44160_024_00588_4 crossref_primary_10_1016_j_jcat_2024_115495 crossref_primary_10_1039_D3SC04353C crossref_primary_10_1039_D3EE02867D crossref_primary_10_1002_cctc_202401604 crossref_primary_10_1039_D3SC04244H crossref_primary_10_1039_D4TA08908A crossref_primary_10_1002_adma_202306288 crossref_primary_10_1002_anie_202309351 crossref_primary_10_1016_j_apcatb_2024_123694 crossref_primary_10_1021_acs_est_3c09291 crossref_primary_10_1016_j_jcat_2024_115815 crossref_primary_10_1021_jacs_3c11709 crossref_primary_10_1016_j_elecom_2024_107784 crossref_primary_10_1021_jacs_3c11706 crossref_primary_10_1021_acsami_3c10817 crossref_primary_10_1021_acscatal_4c05816 crossref_primary_10_1016_j_apcatb_2025_125242 crossref_primary_10_1021_acs_jpclett_3c00672 crossref_primary_10_1073_pnas_2312876120 crossref_primary_10_1021_acsenergylett_4c03091 crossref_primary_10_1039_D2CS00849A crossref_primary_10_1002_ange_202311968 crossref_primary_10_1002_ange_202317828 crossref_primary_10_1039_D3SM01302B crossref_primary_10_1007_s12274_024_6870_4 crossref_primary_10_1002_adma_202303902 crossref_primary_10_1002_anie_202404574 crossref_primary_10_1002_aesr_202200192 crossref_primary_10_1002_ange_202404574 crossref_primary_10_1016_j_checat_2023_100670 crossref_primary_10_1002_smll_202302530 crossref_primary_10_1016_j_apcatb_2025_125244 |
Cites_doi | 10.1021/jacs.0c01699 10.1063/1.3382344 10.1002/adma.201807166 10.1016/j.joule.2019.07.021 10.1021/acscatal.1c04268 10.1038/s41929-020-00512-x 10.1016/j.jpowsour.2015.09.124 10.1038/nature19060 10.1021/acscatal.1c05135 10.1038/s41929-019-0235-5 10.1038/s41929-020-00504-x 10.1103/PhysRevB.54.11169 10.1021/j150579a011 10.1038/s41467-021-24936-6 10.1038/s41560-021-00973-9 10.1021/jacs.1c10171 10.1002/anie.202111700 10.1002/adfm.202102151 10.1002/adfm.202111193 10.1021/acs.chemrev.8b00705 10.1038/s41929-022-00788-1 10.1021/acscatal.1c03501 10.1103/PhysRevB.50.17953 10.1039/D1SC05743J 10.1039/D0CS00030B 10.1016/j.checat.2021.10.016 10.1002/anie.202000617 10.1038/s41929-020-0450-0 10.1126/sciadv.aay3111 10.1002/anie.202114238 10.1021/acsenergylett.8b02525 10.1063/1.1329672 10.1103/PhysRevLett.77.3865 10.1002/jcc.21759 10.1021/acsenergylett.0c01606 10.1039/D1CS00535A 10.1038/s41929-022-00761-y 10.1021/jacs.0c10397 10.1038/s41467-021-27909-x 10.1126/science.abg6582 10.1126/science.aas9100 10.1002/aenm.202102447 10.1002/anie.202102803 10.1038/s41929-018-0133-2 10.1021/acscatal.7b01124 10.1007/s12274-021-3335-x 10.1021/acscatal.9b04746 10.1002/anie.202016332 10.1038/s41929-019-0269-8 10.1002/adma.202005484 10.1038/s41929-019-0241-7 10.1016/j.joule.2021.02.008 10.1021/jacs.9b11126 10.1021/acs.jpcc.1c04337 10.1039/D1EE00740H 10.1039/C9TA02288K 10.1038/s41929-021-00655-5 10.1021/acs.nanolett.2c00189 10.1149/2.0501514jes 10.1002/aenm.202102767 10.1002/anie.202113498 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-35415-x |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_9966965c4e3a49abb38f9ead52ea6425 PMC9734127 10_1038_s41467_022_35415_x |
GrantInformation_xml | – fundername: National Key Research and Development Program of China (No. 2021YFA1502000), Science and Technology Innovation Program of Hunan Province (No. 2021RC3065 and 2021RC2053), Hunan Provincial Natural Science Foundation of China (No. 2020JJ2001), Shenzhen Science and Technology Program (No. JCYJ20210324120800002), and the Hefei National Laboratory for Physical Sciences at the Microscale (No. KF2020108). – fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund) grantid: U2032149; 22102052 funderid: https://doi.org/10.13039/501100011002 – fundername: ; – fundername: ; grantid: U2032149; 22102052 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c583t-7abf3e87f4812646b42a02e348dd40f5005e9748d153df7af0b08c6f44d8c4d23 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:15:56 EDT 2025 Thu Aug 21 18:38:57 EDT 2025 Tue Aug 05 10:45:47 EDT 2025 Wed Aug 13 07:38:35 EDT 2025 Thu Apr 24 23:11:31 EDT 2025 Tue Jul 01 00:58:34 EDT 2025 Fri Feb 21 02:38:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-7abf3e87f4812646b42a02e348dd40f5005e9748d153df7af0b08c6f44d8c4d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9016-832X 0000-0001-8599-9340 0000-0003-4748-069X 0000-0003-3967-6182 0000-0002-9007-4817 0000-0003-3335-3067 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-35415-x |
PQID | 2748654415 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9966965c4e3a49abb38f9ead52ea6425 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9734127 proquest_miscellaneous_2753298807 proquest_journals_2748654415 crossref_primary_10_1038_s41467_022_35415_x crossref_citationtrail_10_1038_s41467_022_35415_x springer_journals_10_1038_s41467_022_35415_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-09 |
PublicationDateYYYYMMDD | 2022-12-09 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Sang (CR34) 2022; 61 Liu (CR37) 2016; 537 Grimme, Antony, Ehrlich, Krieg (CR56) 2010; 132 Choi (CR50) 2020; 3 Zhi, Vasileff, Zheng, Jiao, Qiao (CR8) 2021; 14 Ma (CR17) 2021; 50 Fan (CR14) 2020; 6 Blöchl (CR59) 1994; 50 Henkelman, Uberuaga, Jónsson (CR60) 2000; 113 Bondue, Graf, Goyal, Koper (CR27) 2021; 143 Raciti (CR51) 2017; 7 Wen (CR39) 2022; 61 Chen (CR10) 2021; 14 Liu (CR48) 2022; 61 Jouny, Luc, Jiao (CR31) 2018; 1 Zhu, Li, Cai, Shao (CR46) 2019; 4 Chen, Li, Yang (CR18) 2021; 5 CR4 Gao, Arán-Ais, Jeon, Roldan Cuenya (CR9) 2019; 2 Zhang (CR52) 2020; 5 Monteiro, Dattila, Lopez, Koper (CR22) 2022; 144 Grimme, Ehrlich, Goerigk (CR57) 2011; 32 Lai (CR7) 2022; 32 Liu, Jiang, Hou (CR49) 2021; 60 Sa (CR15) 2020; 49 Dinh (CR11) 2018; 360 Huang Jianan (CR21) 2021; 372 Monteiro, Goyal, Moerland, Koper (CR36) 2021; 11 Goyal, Bondue, Graf, Koper (CR43) 2022; 13 Chou (CR47) 2020; 142 Gu (CR24) 2022; 5 Luc (CR53) 2019; 2 Gabardo (CR54) 2019; 3 Wuttig, Ryu, Surendranath (CR45) 2021; 125 Yu (CR6) 2021; 31 Ma (CR32) 2020; 3 Hao (CR38) 2019; 2 Wakerley (CR1) 2022; 7 Monteiro (CR19) 2021; 4 Huo, Wang, Fan, Hu, Yang (CR33) 2021; 11 Yang (CR42) 2019; 7 Perdew, Burke, Ernzerhof (CR55) 1996; 77 Shin (CR29) 2022; 13 Ma (CR30) 2016; 301 Li, Kornienko (CR26) 2022; 2 Kresse, Furthmüller (CR58) 1996; 54 Kibria (CR12) 2019; 31 Popović (CR16) 2020; 59 Qiao (CR23) 2022; 12 Nitopi (CR3) 2019; 119 Nightingale (CR62) 1959; 63 Zhu (CR2) 2021; 33 Yang (CR41) 2020; 142 CR61 Monteiro, Philips, Schouten, Koper (CR20) 2021; 12 Todorova, Schreiber, Fontecave (CR5) 2019; 10 Xie (CR25) 2022; 5 Ling (CR40) 2022; 22 Wagner, Sahm, Reisner (CR13) 2020; 3 Zheng, Yan, Xu (CR35) 2015; 162 Deng, Huang, Zhao, Mou, Dong (CR28) 2022; 12 Goyal, Koper (CR44) 2021; 60 MCO Monteiro (35415_CR19) 2021; 4 S Grimme (35415_CR56) 2010; 132 C Chen (35415_CR18) 2021; 5 A Wagner (35415_CR13) 2020; 3 J Zheng (35415_CR35) 2015; 162 TK Todorova (35415_CR5) 2019; 10 W Ma (35415_CR17) 2021; 50 Y Yang (35415_CR42) 2019; 7 T-C Chou (35415_CR47) 2020; 142 Y Xie (35415_CR25) 2022; 5 Y Qiao (35415_CR23) 2022; 12 35415_CR4 P-P Yang (35415_CR41) 2020; 142 M Jouny (35415_CR31) 2018; 1 W Lai (35415_CR7) 2022; 32 MCO Monteiro (35415_CR36) 2021; 11 Y Liu (35415_CR49) 2021; 60 G Kresse (35415_CR58) 1996; 54 W Ma (35415_CR32) 2020; 3 S Popović (35415_CR16) 2020; 59 A Wuttig (35415_CR45) 2021; 125 P Ling (35415_CR40) 2022; 22 S Ma (35415_CR30) 2016; 301 E Huang Jianan (35415_CR21) 2021; 372 A Goyal (35415_CR43) 2022; 13 35415_CR61 ER Nightingale Jr (35415_CR62) 1959; 63 D Gao (35415_CR9) 2019; 2 MCO Monteiro (35415_CR20) 2021; 12 C Choi (35415_CR50) 2020; 3 J Li (35415_CR26) 2022; 2 JP Perdew (35415_CR55) 1996; 77 C-T Dinh (35415_CR11) 2018; 360 J Yu (35415_CR6) 2021; 31 S-J Shin (35415_CR29) 2022; 13 S Zhu (35415_CR46) 2019; 4 S Zhu (35415_CR2) 2021; 33 J Sang (35415_CR34) 2022; 61 J Gu (35415_CR24) 2022; 5 S Nitopi (35415_CR3) 2019; 119 PE Blöchl (35415_CR59) 1994; 50 D Raciti (35415_CR51) 2017; 7 Y-C Hao (35415_CR38) 2019; 2 L Fan (35415_CR14) 2020; 6 YJ Sa (35415_CR15) 2020; 49 CF Wen (35415_CR39) 2022; 61 S Grimme (35415_CR57) 2011; 32 J Chen (35415_CR10) 2021; 14 MG Kibria (35415_CR12) 2019; 31 W Luc (35415_CR53) 2019; 2 C Liu (35415_CR48) 2022; 61 CJ Bondue (35415_CR27) 2021; 143 M Liu (35415_CR37) 2016; 537 CM Gabardo (35415_CR54) 2019; 3 B Deng (35415_CR28) 2022; 12 X Zhi (35415_CR8) 2021; 14 A Goyal (35415_CR44) 2021; 60 G Henkelman (35415_CR60) 2000; 113 D Wakerley (35415_CR1) 2022; 7 MCO Monteiro (35415_CR22) 2022; 144 H Huo (35415_CR33) 2021; 11 Z Zhang (35415_CR52) 2020; 5 |
References_xml | – volume: 142 start-page: 6400 year: 2020 end-page: 6408 ident: CR41 article-title: Protecting copper oxidation state via intermediate confinement for selective CO electroreduction to C fuels publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01699 – volume: 132 start-page: 154104 year: 2010 ident: CR56 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 31 start-page: 1807166 year: 2019 ident: CR12 article-title: Electrochemical CO reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design publication-title: Adv. Mater. doi: 10.1002/adma.201807166 – volume: 3 start-page: 2777 year: 2019 end-page: 2791 ident: CR54 article-title: Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly publication-title: Joule doi: 10.1016/j.joule.2019.07.021 – volume: 11 start-page: 14328 year: 2021 end-page: 14335 ident: CR36 article-title: Understanding cation trends for hydrogen evolution on platinum and gold electrodes in alkaline media publication-title: ACS Catal. doi: 10.1021/acscatal.1c04268 – volume: 3 start-page: 775 year: 2020 end-page: 786 ident: CR13 article-title: Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO reduction publication-title: Nat. Catal. doi: 10.1038/s41929-020-00512-x – volume: 301 start-page: 219 year: 2016 end-page: 228 ident: CR30 article-title: One-step electrosynthesis of ethylene and ethanol from CO in an alkaline electrolyzer publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.09.124 – ident: CR4 – volume: 537 start-page: 382 year: 2016 end-page: 386 ident: CR37 article-title: Enhanced electrocatalytic CO reduction via field-induced reagent concentration publication-title: Nature doi: 10.1038/nature19060 – volume: 12 start-page: 2357 year: 2022 end-page: 2364 ident: CR23 article-title: Engineering the local microenvironment over bi nanosheets for highly selective electrocatalytic conversion of CO to HCOOH in strong acid publication-title: ACS Catal. doi: 10.1021/acscatal.1c05135 – volume: 2 start-page: 198 year: 2019 end-page: 210 ident: CR9 article-title: Rational catalyst and electrolyte design for CO electroreduction towards multicarbon products publication-title: Nat. Catal. doi: 10.1038/s41929-019-0235-5 – volume: 3 start-page: 804 year: 2020 end-page: 812 ident: CR50 article-title: Highly active and stable stepped Cu surface for enhanced electrochemical CO reduction to C H publication-title: Nat. Catal. doi: 10.1038/s41929-020-00504-x – volume: 54 start-page: 11169 year: 1996 ident: CR58 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 63 start-page: 1381 year: 1959 end-page: 1387 ident: CR62 article-title: Phenomenological theory of ion solvation. Effective radii of hydrated ions publication-title: J. Phys. Chem. doi: 10.1021/j150579a011 – volume: 12 year: 2021 ident: CR20 article-title: Efficiency and selectivity of CO reduction to CO on gold gas diffusion electrodes in acidic media publication-title: Nat. Commun. doi: 10.1038/s41467-021-24936-6 – volume: 7 start-page: 130 year: 2022 end-page: 143 ident: CR1 article-title: Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO electrolysers publication-title: Nat. Energy doi: 10.1038/s41560-021-00973-9 – ident: CR61 – volume: 144 start-page: 1589 year: 2022 end-page: 1602 ident: CR22 article-title: The role of cation acidity on the competition between hydrogen evolution and CO reduction on gold electrodes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c10171 – volume: 61 start-page: e202111700 year: 2022 ident: CR39 article-title: Highly ethylene-selective electrocatalytic CO reduction enabled by isolated Cu−S motifs in metal–organic framework based precatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202111700 – volume: 31 start-page: 2102151 year: 2021 ident: CR6 article-title: Recent progresses in electrochemical carbon dioxide reduction on copper-based catalysts toward multicarbon products publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102151 – volume: 32 start-page: 2111193 year: 2022 ident: CR7 article-title: Dynamic evolution of active sites in electrocatalytic CO reduction reaction: fundamental understanding and recent progress publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202111193 – volume: 119 start-page: 7610 year: 2019 end-page: 7672 ident: CR3 article-title: Progress and perspectives of electrochemical CO reduction on copper in aqueous electrolyte publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00705 – volume: 5 start-page: 564 year: 2022 end-page: 570 ident: CR25 article-title: High carbon utilization in CO reduction to multi-carbon products in acidic media publication-title: Nat. Catal. doi: 10.1038/s41929-022-00788-1 – volume: 12 start-page: 331 year: 2022 end-page: 362 ident: CR28 article-title: Interfacial electrolyte effects on electrocatalytic CO reduction publication-title: ACS Catal. doi: 10.1021/acscatal.1c03501 – volume: 61 start-page: e202113498 year: 2022 ident: CR48 article-title: Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C−C coupling publication-title: Angew. Chem. Int. Ed. – volume: 50 start-page: 17953 year: 1994 ident: CR59 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 13 start-page: 3288 year: 2022 end-page: 3298 ident: CR43 article-title: Effect of pore diameter and length on electrochemical CO reduction reaction at nanoporous gold catalysts publication-title: Chem. Sci. doi: 10.1039/D1SC05743J – volume: 49 start-page: 6632 year: 2020 end-page: 6665 ident: CR15 article-title: Catalyst–electrolyte interface chemistry for electrochemical CO reduction publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00030B – volume: 2 start-page: 29 year: 2022 end-page: 38 ident: CR26 article-title: Electrocatalytic carbon dioxide reduction in acid publication-title: Chem. Catal. doi: 10.1016/j.checat.2021.10.016 – volume: 59 start-page: 14736 year: 2020 end-page: 14746 ident: CR16 article-title: Stability and degradation mechanisms of copper-based catalysts for electrochemical CO reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202000617 – volume: 3 start-page: 478 year: 2020 end-page: 487 ident: CR32 article-title: Electrocatalytic reduction of CO to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper publication-title: Nat. Catal. doi: 10.1038/s41929-020-0450-0 – volume: 6 start-page: eaay3111 year: 2020 ident: CR14 article-title: Strategies in catalysts and electrolyzer design for electrochemical CO reduction toward C products publication-title: Sci. Adv. doi: 10.1126/sciadv.aay3111 – volume: 61 start-page: e202114238 year: 2022 ident: CR34 article-title: A reconstructed Cu P O catalyst for selective CO electroreduction to multicarbon products publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202114238 – volume: 4 start-page: 682 year: 2019 end-page: 689 ident: CR46 article-title: CO Electrochemical reduction as probed through infrared spectroscopy publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b02525 – volume: 113 start-page: 9901 year: 2000 end-page: 9904 ident: CR60 article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 77 start-page: 3865 year: 1996 ident: CR55 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 32 start-page: 1456 year: 2011 end-page: 1465 ident: CR57 article-title: Effect of the damping function in dispersion corrected density functional theory publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 5 start-page: 3101 year: 2020 end-page: 3107 ident: CR52 article-title: pH Matters when reducing CO in an electrochemical flow cell publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01606 – volume: 50 start-page: 12897 year: 2021 end-page: 12914 ident: CR17 article-title: Electrocatalytic reduction of CO and CO to multi-carbon compounds over Cu-based catalysts publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00535A – volume: 5 start-page: 268 year: 2022 end-page: 276 ident: CR24 article-title: Modulating electric field distribution by alkali cations for CO electroreduction in strongly acidic medium publication-title: Nat. Catal. doi: 10.1038/s41929-022-00761-y – volume: 143 start-page: 279 year: 2021 end-page: 285 ident: CR27 article-title: Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10397 – volume: 13 year: 2022 ident: CR29 article-title: On the importance of the electric double layer structure in aqueous electrocatalysis publication-title: Nat. Commun. doi: 10.1038/s41467-021-27909-x – volume: 372 start-page: 1074 year: 2021 end-page: 1078 ident: CR21 article-title: CO2 electrolysis to multicarbon products in strong acid publication-title: Science doi: 10.1126/science.abg6582 – volume: 360 start-page: 783 year: 2018 end-page: 787 ident: CR11 article-title: CO electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface publication-title: Science doi: 10.1126/science.aas9100 – volume: 11 start-page: 2102447 year: 2021 ident: CR33 article-title: Cu-MOFs derived porous Cu nanoribbons with strengthened electric field for selective CO electroreduction to C fuels publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102447 – volume: 60 start-page: 13452 year: 2021 end-page: 13462 ident: CR44 article-title: The interrelated effect of cations and electrolyte pH on the hydrogen evolution reaction on gold electrodes in alkaline media publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202102803 – volume: 1 start-page: 748 year: 2018 end-page: 755 ident: CR31 article-title: High-rate electroreduction of carbon monoxide to multi-carbon products publication-title: Nat. Catal. doi: 10.1038/s41929-018-0133-2 – volume: 7 start-page: 4467 year: 2017 end-page: 4472 ident: CR51 article-title: Low-overpotential electroreduction of carbon monoxide using copper nanowires publication-title: ACS Catal. doi: 10.1021/acscatal.7b01124 – volume: 14 start-page: 3188 year: 2021 end-page: 3207 ident: CR10 article-title: Recent progress and perspective of electrochemical CO reduction towards C -C products over non-precious metal heterogeneous electrocatalysts publication-title: Nano Res. doi: 10.1007/s12274-021-3335-x – volume: 10 start-page: 1754 year: 2019 end-page: 1768 ident: CR5 article-title: Mechanistic understanding of CO reduction reaction (CO RR) toward multicarbon products by heterogeneous copper-based catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.9b04746 – volume: 60 start-page: 11133 year: 2021 end-page: 11137 ident: CR49 article-title: Hidden mechanism behind the roughness-enhanced selectivity of carbon monoxide electrocatalytic reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202016332 – volume: 2 start-page: 423 year: 2019 end-page: 430 ident: CR53 article-title: Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate publication-title: Nat. Catal. doi: 10.1038/s41929-019-0269-8 – volume: 33 start-page: 2005484 year: 2021 ident: CR2 article-title: Recent advances in catalyst structure and composition engineering strategies for regulating CO electrochemical reduction publication-title: Adv. Mater. doi: 10.1002/adma.202005484 – volume: 2 start-page: 448 year: 2019 end-page: 456 ident: CR38 article-title: Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water publication-title: Nat. Catal. doi: 10.1038/s41929-019-0241-7 – volume: 5 start-page: 737 year: 2021 end-page: 742 ident: CR18 article-title: Address the “alkalinity problem” in CO electrolysis with catalyst design and translation publication-title: Joule doi: 10.1016/j.joule.2021.02.008 – volume: 142 start-page: 2857 year: 2020 end-page: 2867 ident: CR47 article-title: Controlling the oxidation state of the Cu electrode and reaction intermediates for electrochemical CO reduction to ethylene publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11126 – volume: 125 start-page: 17042 year: 2021 end-page: 17050 ident: CR45 article-title: Electrolyte competition controls surface binding of CO intermediates to CO reduction catalysts publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.1c04337 – volume: 14 start-page: 3912 year: 2021 end-page: 3930 ident: CR8 article-title: Role of oxygen-bound reaction intermediates in selective electrochemical CO reduction publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00740H – volume: 7 start-page: 11836 year: 2019 end-page: 11846 ident: CR42 article-title: “Hot edges” in an inverse opal structure enable efficient CO electrochemical reduction and sensitive in situ Raman characterization publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02288K – volume: 4 start-page: 654 year: 2021 end-page: 662 ident: CR19 article-title: Absence of CO electroreduction on copper, gold and silver electrodes without metal cations in solution publication-title: Nat. Catal. doi: 10.1038/s41929-021-00655-5 – volume: 22 start-page: 2988 year: 2022 end-page: 2994 ident: CR40 article-title: Surface engineering on commercial Cu foil for steering C H /CH ratio in CO electroreduction publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c00189 – volume: 162 start-page: F1470 year: 2015 end-page: F1481 ident: CR35 article-title: Correcting the hydrogen diffusion limitation in rotating disk electrode measurements of hydrogen evolution reaction kinetics publication-title: J. Electrochem. Soc. doi: 10.1149/2.0501514jes – ident: 35415_CR61 – volume: 13 start-page: 3288 year: 2022 ident: 35415_CR43 publication-title: Chem. Sci. doi: 10.1039/D1SC05743J – volume: 372 start-page: 1074 year: 2021 ident: 35415_CR21 publication-title: Science doi: 10.1126/science.abg6582 – volume: 14 start-page: 3188 year: 2021 ident: 35415_CR10 publication-title: Nano Res. doi: 10.1007/s12274-021-3335-x – volume: 61 start-page: e202114238 year: 2022 ident: 35415_CR34 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202114238 – volume: 31 start-page: 1807166 year: 2019 ident: 35415_CR12 publication-title: Adv. Mater. doi: 10.1002/adma.201807166 – volume: 61 start-page: e202111700 year: 2022 ident: 35415_CR39 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202111700 – volume: 63 start-page: 1381 year: 1959 ident: 35415_CR62 publication-title: J. Phys. Chem. doi: 10.1021/j150579a011 – volume: 2 start-page: 29 year: 2022 ident: 35415_CR26 publication-title: Chem. Catal. doi: 10.1016/j.checat.2021.10.016 – volume: 1 start-page: 748 year: 2018 ident: 35415_CR31 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0133-2 – volume: 7 start-page: 11836 year: 2019 ident: 35415_CR42 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02288K – volume: 50 start-page: 12897 year: 2021 ident: 35415_CR17 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00535A – volume: 4 start-page: 682 year: 2019 ident: 35415_CR46 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b02525 – volume: 3 start-page: 2777 year: 2019 ident: 35415_CR54 publication-title: Joule doi: 10.1016/j.joule.2019.07.021 – volume: 31 start-page: 2102151 year: 2021 ident: 35415_CR6 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102151 – volume: 5 start-page: 268 year: 2022 ident: 35415_CR24 publication-title: Nat. Catal. doi: 10.1038/s41929-022-00761-y – volume: 162 start-page: F1470 year: 2015 ident: 35415_CR35 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0501514jes – volume: 3 start-page: 804 year: 2020 ident: 35415_CR50 publication-title: Nat. Catal. doi: 10.1038/s41929-020-00504-x – volume: 12 year: 2021 ident: 35415_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24936-6 – volume: 4 start-page: 654 year: 2021 ident: 35415_CR19 publication-title: Nat. Catal. doi: 10.1038/s41929-021-00655-5 – volume: 2 start-page: 198 year: 2019 ident: 35415_CR9 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0235-5 – volume: 12 start-page: 2357 year: 2022 ident: 35415_CR23 publication-title: ACS Catal. doi: 10.1021/acscatal.1c05135 – volume: 49 start-page: 6632 year: 2020 ident: 35415_CR15 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00030B – volume: 77 start-page: 3865 year: 1996 ident: 35415_CR55 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 6 start-page: eaay3111 year: 2020 ident: 35415_CR14 publication-title: Sci. Adv. doi: 10.1126/sciadv.aay3111 – volume: 142 start-page: 6400 year: 2020 ident: 35415_CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01699 – ident: 35415_CR4 doi: 10.1002/aenm.202102767 – volume: 33 start-page: 2005484 year: 2021 ident: 35415_CR2 publication-title: Adv. Mater. doi: 10.1002/adma.202005484 – volume: 125 start-page: 17042 year: 2021 ident: 35415_CR45 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.1c04337 – volume: 14 start-page: 3912 year: 2021 ident: 35415_CR8 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00740H – volume: 50 start-page: 17953 year: 1994 ident: 35415_CR59 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 10 start-page: 1754 year: 2019 ident: 35415_CR5 publication-title: ACS Catal. doi: 10.1021/acscatal.9b04746 – volume: 142 start-page: 2857 year: 2020 ident: 35415_CR47 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11126 – volume: 7 start-page: 130 year: 2022 ident: 35415_CR1 publication-title: Nat. Energy doi: 10.1038/s41560-021-00973-9 – volume: 32 start-page: 1456 year: 2011 ident: 35415_CR57 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 5 start-page: 737 year: 2021 ident: 35415_CR18 publication-title: Joule doi: 10.1016/j.joule.2021.02.008 – volume: 60 start-page: 13452 year: 2021 ident: 35415_CR44 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202102803 – volume: 54 start-page: 11169 year: 1996 ident: 35415_CR58 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 113 start-page: 9901 year: 2000 ident: 35415_CR60 publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 61 start-page: e202113498 year: 2022 ident: 35415_CR48 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202113498 – volume: 11 start-page: 2102447 year: 2021 ident: 35415_CR33 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102447 – volume: 3 start-page: 478 year: 2020 ident: 35415_CR32 publication-title: Nat. Catal. doi: 10.1038/s41929-020-0450-0 – volume: 132 start-page: 154104 year: 2010 ident: 35415_CR56 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 360 start-page: 783 year: 2018 ident: 35415_CR11 publication-title: Science doi: 10.1126/science.aas9100 – volume: 2 start-page: 448 year: 2019 ident: 35415_CR38 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0241-7 – volume: 2 start-page: 423 year: 2019 ident: 35415_CR53 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0269-8 – volume: 537 start-page: 382 year: 2016 ident: 35415_CR37 publication-title: Nature doi: 10.1038/nature19060 – volume: 12 start-page: 331 year: 2022 ident: 35415_CR28 publication-title: ACS Catal. doi: 10.1021/acscatal.1c03501 – volume: 32 start-page: 2111193 year: 2022 ident: 35415_CR7 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202111193 – volume: 143 start-page: 279 year: 2021 ident: 35415_CR27 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10397 – volume: 3 start-page: 775 year: 2020 ident: 35415_CR13 publication-title: Nat. Catal. doi: 10.1038/s41929-020-00512-x – volume: 11 start-page: 14328 year: 2021 ident: 35415_CR36 publication-title: ACS Catal. doi: 10.1021/acscatal.1c04268 – volume: 119 start-page: 7610 year: 2019 ident: 35415_CR3 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00705 – volume: 13 year: 2022 ident: 35415_CR29 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27909-x – volume: 144 start-page: 1589 year: 2022 ident: 35415_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c10171 – volume: 60 start-page: 11133 year: 2021 ident: 35415_CR49 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202016332 – volume: 301 start-page: 219 year: 2016 ident: 35415_CR30 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.09.124 – volume: 22 start-page: 2988 year: 2022 ident: 35415_CR40 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c00189 – volume: 5 start-page: 3101 year: 2020 ident: 35415_CR52 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01606 – volume: 7 start-page: 4467 year: 2017 ident: 35415_CR51 publication-title: ACS Catal. doi: 10.1021/acscatal.7b01124 – volume: 5 start-page: 564 year: 2022 ident: 35415_CR25 publication-title: Nat. Catal. doi: 10.1038/s41929-022-00788-1 – volume: 59 start-page: 14736 year: 2020 ident: 35415_CR16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202000617 |
SSID | ssj0000391844 |
Score | 2.6922522 |
Snippet | Electrochemical CO
2
reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we... Electrochemical CO2 reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we... Attaining high selectivity for CO2 electroreduction in acid is usually difficult due to competing hydrogen evolution. Here, the authors demonstrate efficient... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7596 |
SubjectTerms | 119/118 140/131 140/133 147/143 639/301/299/886 639/638/161/886 639/638/675 Aqueous electrolytes Carbon dioxide Catalysts Cations Confinement Electrochemistry Electrolysis Electrolytes Electrowinning Humanities and Social Sciences Hydrogen evolution Microenvironments multidisciplinary pH effects Potassium chloride Science Science (multidisciplinary) Selectivity Sulfuric acid |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9Em3TYoKvbUmjiVZ0jEJCaHQ9tJAbkLP1LDxhrVTsj-g_zszsne7DqS99GhLwpLmbY2-IeRjsCEFyWxhD1xdcCFjoR0QxAcrNEtgkRLed_76rT47518uxMVWqS_MCRvggYeN20d_XNfC88gs19Y5ppKG5YsqWvCdM3op2LytYCrrYKYhdOHjLZmSqf2OZ50wJK-D1SpuJ5YoA_ZPvMz7OZL3Dkqz_Tl9Rp6OjiM9HCb8nDyK7QvyeCgluXpJfh9_r-hY02aJcKy44bRf0Jwx6O3SweP1AO_a0aalHf4Dv5yvqPVNaPx67HzVR_qrsbRb4a3ADONs59DtCoZi3lx7ScFnpNkG0itM59u6K_eKnJ-e_Dg-K8YSC4UXivWFtC6xqGTiYOhrXjte2bKKjKsQeJkEyGiEiEMFUIwhSZtKVypfJ86D8jxU7DXZaRdtfEMo6I7Ade2kEwHoknTWFb4srcXjSj8jB-vtNn7EH8cyGHOTz8GZMgOJDJDIZBKZ2xn5tBlzPaBv_LX3EVJx0xORs_ML4Ccz8pP5Fz_NyO6aB8wozp2B0F3VWK0Nmj9smkEQ8XTFtnFxg30EqzSoQzkjcsI7kwlNW9rmZ4b01hK8iQpGfl5z2Z-PP7zgt_9jwe_IkwqlAlN09C7Z6Zc3cQ8crd69zzJ1B6ycKPM priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ikCBRmJG0TNxnbinBBULBUScKFSb5afS6RtsmxS1P0B_G9mnGRLKtFjEjtxPE97xt8Q8sZpF1zJdKoXpki5KH1aGSCIdVpULIBFCnje-eu34uSUfzkTZ-OGWzemVU46MSpq11rcIz-C1ZMssGCWeL_5lWLVKIyujiU0bpM7C7A0mNIll5_3eyyIfi45H8_KZEwedTxqhiGFHd6VXs7sUYTtn_ma1zMlr4VLoxVaPiD3R_eRfhjo_ZDc8s0jcncoKLl7TP4cf8_pWNlmi6CsOO20b2nMG7R6a-ByM4C8drRuaIc74av1jmpbu9pOfde73tPftabdDs8GRjBnvYZm59AVs-eaFQXPkUZLSM8xqe-fE3NPyOny04_jk3QstJBaIVmfltoE5mUZOJj7gheG5zrLPePSOZ4FAZLqYd0hHahHF0odMpNJWwTOnbTc5ewpOWjaxj8jFDSI41VhSiMcqINQRY1hs0xrDFrahCym6VZ2RCHHYhhrFaPhTKqBRApIpCKJ1GVC3u77bAYMjhtbf0Qq7lsifna80W5XahRHhau8qhCWe6Z5pY1hMlQgVCL3GlZkIiGHEw-oUag7dcWCCXm9fwziiDEW3fj2AtsIllegFMuElDPemQ1o_qSpf0Zg76oEnyKHnu8mLrv6-P9_-PnNY31B7uXI75iCUx2Sg3574V-CI9WbV1Fa_gIIoyA7 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF9Ki-CL-IlXq6zgmwbT7G6y-3gWSzlQH7TQt2U_z8A1Vy6peH9A_-_ObJLTFBV8zO0MyWU-NzvzG0LeeOOjr5jJzLEtMy6qkCkLAnHeCMUiRKSI_c6fPpdn53xxIS72SDH2wqSi_QRpmdz0WB32vuXJpPvacwg6GeSNBwjVDrp9MJ8vvi52X1YQ81xyPnTI5Ez-gXkShRJY_yTDvFsfeeeQNMWe04fkwZA00nn_mI_IXmgek3v9GMntE3Jz8qWgwzybDUKx4sum3ZqmakFnNhYur3po15bWDW3x-_dytaXG1b52I-9q2wX6oza03WJHYIJwNisguwRWrJlrlhTyRZriH73EUr7f-uSekvPTj99OzrJhvELmhGRdVhkbWZBV5BDkS15aXpi8CIxL73keBdhngN2G9OAUfaxMzG0uXRk599JxX7BnZL9ZN-E5oeA3PFelrazw4ASiSn7C5bkxeFTpZuR4fN3aDdjjOAJjpdMZOJO6F5EGEekkIv1zRt7ueK565I1_Un9AKe4oETU7_bDeLPWgRRr3dqoUjgdmuDLWMhkVmJIogoF9mJiRo1EH9GDKrYZtuyxxUhssv94tgxHiyYppwvoaaQQrFLjCakaqie5MHmi60tTfE5y3qiCTKIDz3ahlv27-9z98-H_kL8j9AvUfC3HUEdnvNtfhJaRTnX012M8tGOMf2g priority: 102 providerName: Springer Nature |
Title | CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment |
URI | https://link.springer.com/article/10.1038/s41467-022-35415-x https://www.proquest.com/docview/2748654415 https://www.proquest.com/docview/2753298807 https://pubmed.ncbi.nlm.nih.gov/PMC9734127 https://doaj.org/article/9966965c4e3a49abb38f9ead52ea6425 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3bbtMw1BqbkHhBXEVhVEbiDQJp7MT2A0JdtTJV2kBApb5FvpZIXTqSDK0fwH9z7CSFTgPx0qjxcZvk3HNuCL000jjDiIzkSGURTZmNhAKEaCNTQRxoJOfrnU_PspM5nS3SxR7qxx11D7C-0bXz86Tm1erN1ffNe2D4d23JOH9b08DubV46KKQIbMoD0EzMTzQ47cz9IJmJAIfGB5qTmI4iACBdHc3NP7Ojq0JL_x079HoW5bVQatBQ03vobmda4nFLC_fRni0foNvtsMnNQ_Rz8jHB3dSbyjds9SjBzRqHnEItKwVfL9oGsDUuSlz7t-TL1QZLXZhC93tXm8biH4XE9cbXDYZGz3IFYOew1WfWlUsMViUOWhKf-4S_P6rpHqH59Pjr5CTqhjBEOuWkiZhUjljOHAVTIKOZoomME0soN4bGLgUutuCTcAOi0zgmXaxirjNHqeGamoQ8RvvlurRPEAbpYqjIFFOpAVHhRJAmOo6l9AFNPUCj_nHnuutQ7gdlrPIQKSc8b1GUA4rygKL8aoBebfdctP05_gl95LG4hfS9tcOJdbXMO1bNvQcoslRTSyQVUinCnQCGSxMrwVtLB-iwp4G8p9ccnHue-XlusPxiuwys6uMvsrTrSw-TkkSAwGQDxHZoZ-eCdlfK4lto-i0Y2BsJ7HzdU9nvP__7DT_9j4t5hu4knuh9jo44RPtNdWmfg6XVqCG6xRYMPvn0wxAdjMezLzM4Hh2fffoMZyfZZBjeYQwDm_0CK-ouSg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFMsFDASnCBqGtuJc0AICsuWPri0Um_Gz-1K2-yy2UL3B_B3-I3MOMmWrURvPSaxFScz883Y8yLkldMuuILpRG-ZPOGi8ElpgCDWaVGyABopYL7z_kE-OOJfj8XxGvnT5cJgWGWHiRGo3cTiGfkm7J5kjg2zxPvpjwS7RqF3tWuh0bDFrl_8gi1b_W7nE9D3dZb1Px9uD5K2q0BihWTzpNAmMC-LwEG35Tw3PNNp5hmXzvE0CGBLD0a2dIAFLhQ6pCaVNg-cO2m5w0IHAPk3OANNjpnp_S_LMx2sti45b3NzUiY3ax6RqAmZh7Un5yv6L7YJWLFtL0dmXnLPRq3Xv0vutOYq_dDw1z2y5qv75GbTwHLxgPze_pbRtpPODIvAIpnpfEJjnKLVMwOX06aobE1HFa3x5H04XlBtR25ku7njxdzTnyNN6wXmIsbi0XoMw05hKkbrVUMKliqNmpeeYhDhPxl6D8nRtZDgEVmvJpV_TCggluNlbgojHMBPKCNC2TTVGp2ktke2ut-tbFv1HJtvjFX0vjOpGhIpIJGKJFLnPfJmOWfa1Py4cvRHpOJyJNbrjjcms6FqxV_hrrLMheWeaV5qY5gMJQixyLyGHaDokY2OB1QLIrW6YPkeebl8DOKPPh1d-ckZjhEsKwGEix4pVnhnZUGrT6rRSSwkXhZgw2Qw823HZRcv__8HP7l6rS_IrcHh_p7a2znYfUpuZ8j7GP5TbpD1-ezMPwMjbm6eR8mh5Pt1i-pf-A5ckw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqUBcUHmJQIFFghNYce1de31AiD6ilkKoEJV6W_YZIqVOGqfQ_AD-FL-OmbWdkkr01qPjXdnOzHwzs_Mi5JVV1ts8VZHa0lnEeO6iQgNBjFW8SD1oJI_1zp8H2f4x-3jCT9bIn7YWBtMqW0wMQG0nBs_Ie-A9iQwHZvGeb9Iijnb776dnEU6QwkhrO06jZpFDt_gF7lv17mAXaP06Sfp733b2o2bCQGS4SOdRrrRPncg9Az2XsUyzRMWJS5mwlsWeA4s6MLiFBVywPlc-1rEwmWfMCsMsNj0A-F_P0SvqkPXtvcHR1-UJD_ZeF4w1lTpxKnoVC7hUJ9DDl0QXK9owDA1YsXSv5mleCdYGHdjfIHcb45V-qLntHllz5X1yqx5nuXhAfu98SWgzV2eGLWGR6HQ-oSFr0aiZhstp3WK2oqOSVngOPxwvqDIjOzLt3vFi7ujPkaLVAisTQytpNYZlp7AVc_fKIQW7lQY9TE8xpfCfer2H5PhGiPCIdMpJ6R4TCvhlWZHpXHMLYOSLgFcmjpXCkKnpkq3275am6YGOozjGMsTiUyFrEkkgkQwkkhdd8ma5Z1p3ALl29TZScbkSu3eHHyazoWzAQKKPWWTcMJcqViitU-ELEGmeOAX-IO-SzZYHZAMplbwUgC55ubwNYIARHlW6yTmu4WlSACTnXZKv8M7KC63eKUc_QlvxIgeLJoGdb1suu3z4_z_4yfXv-oLcBjGVnw4Gh0_JnQRZH3OBik3Smc_O3TOw6Ob6eSM6lHy_aWn9C-FdYiU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CO2+electroreduction+to+multicarbon+products+in+strongly+acidic+electrolyte+via+synergistically+modulating+the+local+microenvironment&rft.jtitle=Nature+communications&rft.au=Ma%2C+Zesong&rft.au=Yang%2C+Zhilong&rft.au=Lai%2C+Wenchuan&rft.au=Wang%2C+Qiyou&rft.date=2022-12-09&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=7596&rft_id=info:doi/10.1038%2Fs41467-022-35415-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |