CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment

Electrochemical CO 2 reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we demonstrate CO 2 electroreduction in strongly acidic electrolyte (pH ≤ 1) on electrochemically reduced porous Cu nanosheets by combining the confin...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 7596 - 11
Main Authors Ma, Zesong, Yang, Zhilong, Lai, Wenchuan, Wang, Qiyou, Qiao, Yan, Tao, Haolan, Lian, Cheng, Liu, Min, Ma, Chao, Pan, Anlian, Huang, Hongwen
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.12.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrochemical CO 2 reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we demonstrate CO 2 electroreduction in strongly acidic electrolyte (pH ≤ 1) on electrochemically reduced porous Cu nanosheets by combining the confinement effect and cation effect to synergistically modulate the local microenvironment. A Faradaic efficiency of 83.7 ± 1.4% and partial current density of 0.56 ± 0.02 A cm −2 , single-pass carbon efficiency of 54.4%, and stable electrolysis of 30 h in a flow cell are demonstrated for multicarbon products in a strongly acidic aqueous electrolyte consisting of sulfuric acid and KCl with pH ≤ 1. Mechanistically, the accumulated species (e.g., K + and OH − ) on the Helmholtz plane account for the selectivity and activity toward multicarbon products by kinetically reducing the proton coverage and thermodynamically favoring the CO 2 conversion. We find that the K + cations facilitate C-C coupling through local interaction between K + and the key intermediate *OCCO. Attaining high selectivity for CO 2 electroreduction in acid is usually difficult due to competing hydrogen evolution. Here, the authors demonstrate efficient CO 2 reduction to multicarbon products in strongly acidic medium (pH ≤ 1) on a porous Cu catalyst by combining confinement and cation effects.
AbstractList Electrochemical CO 2 reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we demonstrate CO 2 electroreduction in strongly acidic electrolyte (pH ≤ 1) on electrochemically reduced porous Cu nanosheets by combining the confinement effect and cation effect to synergistically modulate the local microenvironment. A Faradaic efficiency of 83.7 ± 1.4% and partial current density of 0.56 ± 0.02 A cm −2 , single-pass carbon efficiency of 54.4%, and stable electrolysis of 30 h in a flow cell are demonstrated for multicarbon products in a strongly acidic aqueous electrolyte consisting of sulfuric acid and KCl with pH ≤ 1. Mechanistically, the accumulated species (e.g., K + and OH − ) on the Helmholtz plane account for the selectivity and activity toward multicarbon products by kinetically reducing the proton coverage and thermodynamically favoring the CO 2 conversion. We find that the K + cations facilitate C-C coupling through local interaction between K + and the key intermediate *OCCO.
Electrochemical CO2 reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we demonstrate CO2 electroreduction in strongly acidic electrolyte (pH ≤ 1) on electrochemically reduced porous Cu nanosheets by combining the confinement effect and cation effect to synergistically modulate the local microenvironment. A Faradaic efficiency of 83.7 ± 1.4% and partial current density of 0.56 ± 0.02 A cm-2, single-pass carbon efficiency of 54.4%, and stable electrolysis of 30 h in a flow cell are demonstrated for multicarbon products in a strongly acidic aqueous electrolyte consisting of sulfuric acid and KCl with pH ≤ 1. Mechanistically, the accumulated species (e.g., K+ and OH-) on the Helmholtz plane account for the selectivity and activity toward multicarbon products by kinetically reducing the proton coverage and thermodynamically favoring the CO2 conversion. We find that the K+ cations facilitate C-C coupling through local interaction between K+ and the key intermediate *OCCO.Electrochemical CO2 reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we demonstrate CO2 electroreduction in strongly acidic electrolyte (pH ≤ 1) on electrochemically reduced porous Cu nanosheets by combining the confinement effect and cation effect to synergistically modulate the local microenvironment. A Faradaic efficiency of 83.7 ± 1.4% and partial current density of 0.56 ± 0.02 A cm-2, single-pass carbon efficiency of 54.4%, and stable electrolysis of 30 h in a flow cell are demonstrated for multicarbon products in a strongly acidic aqueous electrolyte consisting of sulfuric acid and KCl with pH ≤ 1. Mechanistically, the accumulated species (e.g., K+ and OH-) on the Helmholtz plane account for the selectivity and activity toward multicarbon products by kinetically reducing the proton coverage and thermodynamically favoring the CO2 conversion. We find that the K+ cations facilitate C-C coupling through local interaction between K+ and the key intermediate *OCCO.
Electrochemical CO 2 reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we demonstrate CO 2 electroreduction in strongly acidic electrolyte (pH ≤ 1) on electrochemically reduced porous Cu nanosheets by combining the confinement effect and cation effect to synergistically modulate the local microenvironment. A Faradaic efficiency of 83.7 ± 1.4% and partial current density of 0.56 ± 0.02 A cm −2 , single-pass carbon efficiency of 54.4%, and stable electrolysis of 30 h in a flow cell are demonstrated for multicarbon products in a strongly acidic aqueous electrolyte consisting of sulfuric acid and KCl with pH ≤ 1. Mechanistically, the accumulated species (e.g., K + and OH − ) on the Helmholtz plane account for the selectivity and activity toward multicarbon products by kinetically reducing the proton coverage and thermodynamically favoring the CO 2 conversion. We find that the K + cations facilitate C-C coupling through local interaction between K + and the key intermediate *OCCO. Attaining high selectivity for CO 2 electroreduction in acid is usually difficult due to competing hydrogen evolution. Here, the authors demonstrate efficient CO 2 reduction to multicarbon products in strongly acidic medium (pH ≤ 1) on a porous Cu catalyst by combining confinement and cation effects.
Electrochemical CO2 reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we demonstrate CO2 electroreduction in strongly acidic electrolyte (pH ≤ 1) on electrochemically reduced porous Cu nanosheets by combining the confinement effect and cation effect to synergistically modulate the local microenvironment. A Faradaic efficiency of 83.7 ± 1.4% and partial current density of 0.56 ± 0.02 A cm−2, single-pass carbon efficiency of 54.4%, and stable electrolysis of 30 h in a flow cell are demonstrated for multicarbon products in a strongly acidic aqueous electrolyte consisting of sulfuric acid and KCl with pH ≤ 1. Mechanistically, the accumulated species (e.g., K+ and OH−) on the Helmholtz plane account for the selectivity and activity toward multicarbon products by kinetically reducing the proton coverage and thermodynamically favoring the CO2 conversion. We find that the K+ cations facilitate C-C coupling through local interaction between K+ and the key intermediate *OCCO.Attaining high selectivity for CO2 electroreduction in acid is usually difficult due to competing hydrogen evolution. Here, the authors demonstrate efficient CO2 reduction to multicarbon products in strongly acidic medium (pH ≤ 1) on a porous Cu catalyst by combining confinement and cation effects.
Attaining high selectivity for CO2 electroreduction in acid is usually difficult due to competing hydrogen evolution. Here, the authors demonstrate efficient CO2 reduction to multicarbon products in strongly acidic medium (pH ≤ 1) on a porous Cu catalyst by combining confinement and cation effects.
ArticleNumber 7596
Author Lai, Wenchuan
Ma, Zesong
Wang, Qiyou
Pan, Anlian
Tao, Haolan
Ma, Chao
Yang, Zhilong
Qiao, Yan
Lian, Cheng
Huang, Hongwen
Liu, Min
Author_xml – sequence: 1
  givenname: Zesong
  surname: Ma
  fullname: Ma, Zesong
  organization: College of Materials Science and Engineering, Hunan University
– sequence: 2
  givenname: Zhilong
  surname: Yang
  fullname: Yang, Zhilong
  organization: College of Materials Science and Engineering, Hunan University
– sequence: 3
  givenname: Wenchuan
  orcidid: 0000-0003-4748-069X
  surname: Lai
  fullname: Lai, Wenchuan
  email: laiwenchuan@hnu.edu.cn
  organization: College of Materials Science and Engineering, Hunan University
– sequence: 4
  givenname: Qiyou
  surname: Wang
  fullname: Wang, Qiyou
  organization: State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University
– sequence: 5
  givenname: Yan
  surname: Qiao
  fullname: Qiao, Yan
  organization: College of Materials Science and Engineering, Hunan University
– sequence: 6
  givenname: Haolan
  surname: Tao
  fullname: Tao, Haolan
  organization: State Key Laboratory of Chemical Engineering and Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology
– sequence: 7
  givenname: Cheng
  orcidid: 0000-0002-9016-832X
  surname: Lian
  fullname: Lian, Cheng
  organization: State Key Laboratory of Chemical Engineering and Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemistry and Molecular Engineering, East China University of Science and Technology
– sequence: 8
  givenname: Min
  orcidid: 0000-0002-9007-4817
  surname: Liu
  fullname: Liu, Min
  organization: State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University
– sequence: 9
  givenname: Chao
  orcidid: 0000-0001-8599-9340
  surname: Ma
  fullname: Ma, Chao
  organization: College of Materials Science and Engineering, Hunan University
– sequence: 10
  givenname: Anlian
  orcidid: 0000-0003-3335-3067
  surname: Pan
  fullname: Pan, Anlian
  organization: College of Materials Science and Engineering, Hunan University
– sequence: 11
  givenname: Hongwen
  orcidid: 0000-0003-3967-6182
  surname: Huang
  fullname: Huang, Hongwen
  email: huanghw@hnu.edu.cn
  organization: College of Materials Science and Engineering, Hunan University, Shenzhen Research Institute of Hunan University
BookMark eNp9Uk1v3CAQtapUaprmD_SE1Esvbvi08aVStepHpEi5tGeE8dhhhWELeJX9AfnfZeO0aXIIF5iZ9x7D8N5WJz54qKr3BH8imMmLxAlv2hpTWjPBiahvX1WnFHNSk5ayk__Ob6rzlLa4LNYRyflpdbe5pggcmBxDhGEx2QaPckDz4rI1OvYl3MVwrCRkPUoF6Cd3QNrYwZq_XHfIgPZWo3TwECebjmRXYHOhOp2tn1C-AeRCSaPZmhjA723RmsHnd9XrUbsE5w_7WfXr29efmx_11fX3y82Xq9oIyXLd6n5kINuRS0Ib3vScakyBcTkMHI8CYwFdWyIi2DC2esQ9lqYZOR-k4QNlZ9XlqjsEvVW7aGcdDypoq-4TIU5Kx9K5A9V1TdM1wnBgmne675kcO9CDoKAbTkXR-rxq7ZZ-hsGUZ0Ttnog-rXh7o6awV13LOKFtEfj4IBDD7wVSVrNNBpzTHsKSFG0Fo52U-Aj98Ay6DUv0ZVQFxWUjePn2gqIrqgw3pQjjv2YIVkenqNUpqjhF3TtF3RaSfEYyNuujC0rT1r1MZSs1lXv8BPGxqxdYfwBnutnR
CitedBy_id crossref_primary_10_1039_D3NR05982K
crossref_primary_10_1002_smtd_202400786
crossref_primary_10_1002_adfm_202424413
crossref_primary_10_1002_anie_202317828
crossref_primary_10_1002_anie_202311968
crossref_primary_10_1002_smll_202412293
crossref_primary_10_1002_anie_202411216
crossref_primary_10_1016_j_joule_2024_03_011
crossref_primary_10_1002_anie_202424248
crossref_primary_10_1021_acs_energyfuels_3c01847
crossref_primary_10_1002_ange_202316640
crossref_primary_10_1002_ange_202408873
crossref_primary_10_1021_acs_jpcc_4c03596
crossref_primary_10_1002_aenm_202402825
crossref_primary_10_1016_j_mtphys_2023_101250
crossref_primary_10_1021_acs_jpcc_4c03469
crossref_primary_10_1038_s41467_024_54107_2
crossref_primary_10_1002_aenm_202402942
crossref_primary_10_1002_aenm_202404606
crossref_primary_10_1021_jacs_2c13384
crossref_primary_10_1002_chem_202404378
crossref_primary_10_1002_eem2_12731
crossref_primary_10_1002_smll_202306686
crossref_primary_10_1016_j_apcatb_2024_124681
crossref_primary_10_1063_5_0200438
crossref_primary_10_1016_j_watres_2024_122612
crossref_primary_10_1021_acscatal_4c00869
crossref_primary_10_1039_D3SE01717F
crossref_primary_10_1021_acs_iecr_4c03007
crossref_primary_10_26599_NRE_2024_9120112
crossref_primary_10_1007_s40843_023_2884_8
crossref_primary_10_1021_acsnano_4c04780
crossref_primary_10_1021_jacsau_4c00246
crossref_primary_10_1021_jacs_4c09512
crossref_primary_10_1002_aenm_202400763
crossref_primary_10_1002_anie_202425195
crossref_primary_10_1002_smll_202408981
crossref_primary_10_1002_anie_202404110
crossref_primary_10_1021_acscatal_4c08113
crossref_primary_10_1021_jacs_4c09230
crossref_primary_10_1002_anie_202422082
crossref_primary_10_1038_s41467_025_57095_z
crossref_primary_10_1038_s41467_024_49308_8
crossref_primary_10_1016_j_scitotenv_2024_170758
crossref_primary_10_1016_j_fmre_2024_02_008
crossref_primary_10_1039_D3TA01712E
crossref_primary_10_1038_s41467_023_43303_1
crossref_primary_10_1016_j_jcis_2023_11_174
crossref_primary_10_1016_j_ccr_2024_215962
crossref_primary_10_1016_j_apcatb_2023_123293
crossref_primary_10_1002_adma_202407940
crossref_primary_10_1016_j_apcatb_2024_124061
crossref_primary_10_1016_j_jechem_2025_01_013
crossref_primary_10_1016_j_xinn_2025_100807
crossref_primary_10_1002_asia_202401345
crossref_primary_10_1016_j_nxener_2023_100030
crossref_primary_10_1021_jacs_3c12321
crossref_primary_10_1038_s41467_024_50521_8
crossref_primary_10_1021_acs_nanolett_4c03863
crossref_primary_10_1021_acsenergylett_4c01938
crossref_primary_10_1021_jacs_5c00164
crossref_primary_10_1002_ange_202425195
crossref_primary_10_26599_NR_2025_94907200
crossref_primary_10_1002_anie_202316640
crossref_primary_10_1002_adma_202312894
crossref_primary_10_1016_j_apcata_2023_119388
crossref_primary_10_1021_acsenergylett_4c01256
crossref_primary_10_1021_acsenergylett_4c01410
crossref_primary_10_1002_ange_202422082
crossref_primary_10_1002_ange_202411216
crossref_primary_10_1073_pnas_2400546121
crossref_primary_10_1039_D3NR05480B
crossref_primary_10_1126_sciadv_adi6119
crossref_primary_10_1002_chem_202302382
crossref_primary_10_1016_j_enconman_2024_118601
crossref_primary_10_1016_j_matre_2023_100194
crossref_primary_10_1021_jacs_4c08445
crossref_primary_10_1038_s41929_023_01003_5
crossref_primary_10_1002_ange_202424248
crossref_primary_10_1002_celc_202400475
crossref_primary_10_1021_acs_nanolett_4c03116
crossref_primary_10_1002_anie_202422054
crossref_primary_10_1002_chem_202301455
crossref_primary_10_1016_j_apsusc_2024_161459
crossref_primary_10_1021_acs_est_4c02066
crossref_primary_10_1016_j_cjsc_2024_100346
crossref_primary_10_1016_j_seppur_2024_131367
crossref_primary_10_1002_metm_28
crossref_primary_10_1016_j_checat_2024_101185
crossref_primary_10_1016_j_apcatb_2025_125203
crossref_primary_10_1039_D4EE05715E
crossref_primary_10_1002_adfm_202300926
crossref_primary_10_1021_acscatal_3c05999
crossref_primary_10_1002_adma_202407124
crossref_primary_10_1039_D3CC01049J
crossref_primary_10_1002_admi_202300731
crossref_primary_10_1002_cssc_202300829
crossref_primary_10_1021_acs_chemmater_3c01326
crossref_primary_10_1002_ange_202309351
crossref_primary_10_1002_ange_202422054
crossref_primary_10_1002_ange_202404110
crossref_primary_10_1021_acs_jpcc_3c05364
crossref_primary_10_1021_jacs_4c16801
crossref_primary_10_1038_s44160_025_00769_9
crossref_primary_10_1016_j_cattod_2023_114284
crossref_primary_10_1038_s41467_024_50499_3
crossref_primary_10_1016_j_cej_2025_161319
crossref_primary_10_1016_j_ijhydene_2024_06_285
crossref_primary_10_1007_s11426_023_1799_y
crossref_primary_10_1021_acsami_4c07258
crossref_primary_10_1038_s41929_024_01179_4
crossref_primary_10_1021_jacs_4c13494
crossref_primary_10_1021_jacs_3c13602
crossref_primary_10_1021_acscatal_4c02042
crossref_primary_10_1039_D3CC04656G
crossref_primary_10_1002_adma_202409797
crossref_primary_10_1021_acscatal_4c01516
crossref_primary_10_1021_acsnano_4c12245
crossref_primary_10_1039_D3CC00248A
crossref_primary_10_1038_s41467_024_51475_7
crossref_primary_10_1002_advs_202410679
crossref_primary_10_1002_anie_202408873
crossref_primary_10_1002_smll_202300926
crossref_primary_10_1021_jacs_5c01464
crossref_primary_10_1021_acs_jpclett_3c02919
crossref_primary_10_1016_j_coelec_2024_101614
crossref_primary_10_1039_D4CP03507K
crossref_primary_10_1016_j_checat_2024_101164
crossref_primary_10_1039_D4SC04283B
crossref_primary_10_1039_D3EY00155E
crossref_primary_10_1038_s41467_023_41396_2
crossref_primary_10_1039_D4CS00229F
crossref_primary_10_1021_acscatal_4c01884
crossref_primary_10_1016_j_jiec_2024_10_071
crossref_primary_10_1002_ece2_67
crossref_primary_10_1039_D3SC06583A
crossref_primary_10_1039_D3SC01040F
crossref_primary_10_1016_j_enconman_2024_119443
crossref_primary_10_1007_s40843_024_2835_3
crossref_primary_10_1007_s41918_024_00210_3
crossref_primary_10_1038_s44160_024_00588_4
crossref_primary_10_1016_j_jcat_2024_115495
crossref_primary_10_1039_D3SC04353C
crossref_primary_10_1039_D3EE02867D
crossref_primary_10_1002_cctc_202401604
crossref_primary_10_1039_D3SC04244H
crossref_primary_10_1039_D4TA08908A
crossref_primary_10_1002_adma_202306288
crossref_primary_10_1002_anie_202309351
crossref_primary_10_1016_j_apcatb_2024_123694
crossref_primary_10_1021_acs_est_3c09291
crossref_primary_10_1016_j_jcat_2024_115815
crossref_primary_10_1021_jacs_3c11709
crossref_primary_10_1016_j_elecom_2024_107784
crossref_primary_10_1021_jacs_3c11706
crossref_primary_10_1021_acsami_3c10817
crossref_primary_10_1021_acscatal_4c05816
crossref_primary_10_1016_j_apcatb_2025_125242
crossref_primary_10_1021_acs_jpclett_3c00672
crossref_primary_10_1073_pnas_2312876120
crossref_primary_10_1021_acsenergylett_4c03091
crossref_primary_10_1039_D2CS00849A
crossref_primary_10_1002_ange_202311968
crossref_primary_10_1002_ange_202317828
crossref_primary_10_1039_D3SM01302B
crossref_primary_10_1007_s12274_024_6870_4
crossref_primary_10_1002_adma_202303902
crossref_primary_10_1002_anie_202404574
crossref_primary_10_1002_aesr_202200192
crossref_primary_10_1002_ange_202404574
crossref_primary_10_1016_j_checat_2023_100670
crossref_primary_10_1002_smll_202302530
crossref_primary_10_1016_j_apcatb_2025_125244
Cites_doi 10.1021/jacs.0c01699
10.1063/1.3382344
10.1002/adma.201807166
10.1016/j.joule.2019.07.021
10.1021/acscatal.1c04268
10.1038/s41929-020-00512-x
10.1016/j.jpowsour.2015.09.124
10.1038/nature19060
10.1021/acscatal.1c05135
10.1038/s41929-019-0235-5
10.1038/s41929-020-00504-x
10.1103/PhysRevB.54.11169
10.1021/j150579a011
10.1038/s41467-021-24936-6
10.1038/s41560-021-00973-9
10.1021/jacs.1c10171
10.1002/anie.202111700
10.1002/adfm.202102151
10.1002/adfm.202111193
10.1021/acs.chemrev.8b00705
10.1038/s41929-022-00788-1
10.1021/acscatal.1c03501
10.1103/PhysRevB.50.17953
10.1039/D1SC05743J
10.1039/D0CS00030B
10.1016/j.checat.2021.10.016
10.1002/anie.202000617
10.1038/s41929-020-0450-0
10.1126/sciadv.aay3111
10.1002/anie.202114238
10.1021/acsenergylett.8b02525
10.1063/1.1329672
10.1103/PhysRevLett.77.3865
10.1002/jcc.21759
10.1021/acsenergylett.0c01606
10.1039/D1CS00535A
10.1038/s41929-022-00761-y
10.1021/jacs.0c10397
10.1038/s41467-021-27909-x
10.1126/science.abg6582
10.1126/science.aas9100
10.1002/aenm.202102447
10.1002/anie.202102803
10.1038/s41929-018-0133-2
10.1021/acscatal.7b01124
10.1007/s12274-021-3335-x
10.1021/acscatal.9b04746
10.1002/anie.202016332
10.1038/s41929-019-0269-8
10.1002/adma.202005484
10.1038/s41929-019-0241-7
10.1016/j.joule.2021.02.008
10.1021/jacs.9b11126
10.1021/acs.jpcc.1c04337
10.1039/D1EE00740H
10.1039/C9TA02288K
10.1038/s41929-021-00655-5
10.1021/acs.nanolett.2c00189
10.1149/2.0501514jes
10.1002/aenm.202102767
10.1002/anie.202113498
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-35415-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_9966965c4e3a49abb38f9ead52ea6425
PMC9734127
10_1038_s41467_022_35415_x
GrantInformation_xml – fundername: National Key Research and Development Program of China (No. 2021YFA1502000), Science and Technology Innovation Program of Hunan Province (No. 2021RC3065 and 2021RC2053), Hunan Provincial Natural Science Foundation of China (No. 2020JJ2001), Shenzhen Science and Technology Program (No. JCYJ20210324120800002), and the Hefei National Laboratory for Physical Sciences at the Microscale (No. KF2020108).
– fundername: National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund (NSFC-Yunnan Joint Fund)
  grantid: U2032149; 22102052
  funderid: https://doi.org/10.13039/501100011002
– fundername: ;
– fundername: ;
  grantid: U2032149; 22102052
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c583t-7abf3e87f4812646b42a02e348dd40f5005e9748d153df7af0b08c6f44d8c4d23
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:15:56 EDT 2025
Thu Aug 21 18:38:57 EDT 2025
Tue Aug 05 10:45:47 EDT 2025
Wed Aug 13 07:38:35 EDT 2025
Thu Apr 24 23:11:31 EDT 2025
Tue Jul 01 00:58:34 EDT 2025
Fri Feb 21 02:38:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-7abf3e87f4812646b42a02e348dd40f5005e9748d153df7af0b08c6f44d8c4d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9016-832X
0000-0001-8599-9340
0000-0003-4748-069X
0000-0003-3967-6182
0000-0002-9007-4817
0000-0003-3335-3067
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-35415-x
PQID 2748654415
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_9966965c4e3a49abb38f9ead52ea6425
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9734127
proquest_miscellaneous_2753298807
proquest_journals_2748654415
crossref_primary_10_1038_s41467_022_35415_x
crossref_citationtrail_10_1038_s41467_022_35415_x
springer_journals_10_1038_s41467_022_35415_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-09
PublicationDateYYYYMMDD 2022-12-09
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Sang (CR34) 2022; 61
Liu (CR37) 2016; 537
Grimme, Antony, Ehrlich, Krieg (CR56) 2010; 132
Choi (CR50) 2020; 3
Zhi, Vasileff, Zheng, Jiao, Qiao (CR8) 2021; 14
Ma (CR17) 2021; 50
Fan (CR14) 2020; 6
Blöchl (CR59) 1994; 50
Henkelman, Uberuaga, Jónsson (CR60) 2000; 113
Bondue, Graf, Goyal, Koper (CR27) 2021; 143
Raciti (CR51) 2017; 7
Wen (CR39) 2022; 61
Chen (CR10) 2021; 14
Liu (CR48) 2022; 61
Jouny, Luc, Jiao (CR31) 2018; 1
Zhu, Li, Cai, Shao (CR46) 2019; 4
Chen, Li, Yang (CR18) 2021; 5
CR4
Gao, Arán-Ais, Jeon, Roldan Cuenya (CR9) 2019; 2
Zhang (CR52) 2020; 5
Monteiro, Dattila, Lopez, Koper (CR22) 2022; 144
Grimme, Ehrlich, Goerigk (CR57) 2011; 32
Lai (CR7) 2022; 32
Liu, Jiang, Hou (CR49) 2021; 60
Sa (CR15) 2020; 49
Dinh (CR11) 2018; 360
Huang Jianan (CR21) 2021; 372
Monteiro, Goyal, Moerland, Koper (CR36) 2021; 11
Goyal, Bondue, Graf, Koper (CR43) 2022; 13
Chou (CR47) 2020; 142
Gu (CR24) 2022; 5
Luc (CR53) 2019; 2
Gabardo (CR54) 2019; 3
Wuttig, Ryu, Surendranath (CR45) 2021; 125
Yu (CR6) 2021; 31
Ma (CR32) 2020; 3
Hao (CR38) 2019; 2
Wakerley (CR1) 2022; 7
Monteiro (CR19) 2021; 4
Huo, Wang, Fan, Hu, Yang (CR33) 2021; 11
Yang (CR42) 2019; 7
Perdew, Burke, Ernzerhof (CR55) 1996; 77
Shin (CR29) 2022; 13
Ma (CR30) 2016; 301
Li, Kornienko (CR26) 2022; 2
Kresse, Furthmüller (CR58) 1996; 54
Kibria (CR12) 2019; 31
Popović (CR16) 2020; 59
Qiao (CR23) 2022; 12
Nitopi (CR3) 2019; 119
Nightingale (CR62) 1959; 63
Zhu (CR2) 2021; 33
Yang (CR41) 2020; 142
CR61
Monteiro, Philips, Schouten, Koper (CR20) 2021; 12
Todorova, Schreiber, Fontecave (CR5) 2019; 10
Xie (CR25) 2022; 5
Ling (CR40) 2022; 22
Wagner, Sahm, Reisner (CR13) 2020; 3
Zheng, Yan, Xu (CR35) 2015; 162
Deng, Huang, Zhao, Mou, Dong (CR28) 2022; 12
Goyal, Koper (CR44) 2021; 60
MCO Monteiro (35415_CR19) 2021; 4
S Grimme (35415_CR56) 2010; 132
C Chen (35415_CR18) 2021; 5
A Wagner (35415_CR13) 2020; 3
J Zheng (35415_CR35) 2015; 162
TK Todorova (35415_CR5) 2019; 10
W Ma (35415_CR17) 2021; 50
Y Yang (35415_CR42) 2019; 7
T-C Chou (35415_CR47) 2020; 142
Y Xie (35415_CR25) 2022; 5
Y Qiao (35415_CR23) 2022; 12
35415_CR4
P-P Yang (35415_CR41) 2020; 142
M Jouny (35415_CR31) 2018; 1
W Lai (35415_CR7) 2022; 32
MCO Monteiro (35415_CR36) 2021; 11
Y Liu (35415_CR49) 2021; 60
G Kresse (35415_CR58) 1996; 54
W Ma (35415_CR32) 2020; 3
S Popović (35415_CR16) 2020; 59
A Wuttig (35415_CR45) 2021; 125
P Ling (35415_CR40) 2022; 22
S Ma (35415_CR30) 2016; 301
E Huang Jianan (35415_CR21) 2021; 372
A Goyal (35415_CR43) 2022; 13
35415_CR61
ER Nightingale Jr (35415_CR62) 1959; 63
D Gao (35415_CR9) 2019; 2
MCO Monteiro (35415_CR20) 2021; 12
C Choi (35415_CR50) 2020; 3
J Li (35415_CR26) 2022; 2
JP Perdew (35415_CR55) 1996; 77
C-T Dinh (35415_CR11) 2018; 360
J Yu (35415_CR6) 2021; 31
S-J Shin (35415_CR29) 2022; 13
S Zhu (35415_CR46) 2019; 4
S Zhu (35415_CR2) 2021; 33
J Sang (35415_CR34) 2022; 61
J Gu (35415_CR24) 2022; 5
S Nitopi (35415_CR3) 2019; 119
PE Blöchl (35415_CR59) 1994; 50
D Raciti (35415_CR51) 2017; 7
Y-C Hao (35415_CR38) 2019; 2
L Fan (35415_CR14) 2020; 6
YJ Sa (35415_CR15) 2020; 49
CF Wen (35415_CR39) 2022; 61
S Grimme (35415_CR57) 2011; 32
J Chen (35415_CR10) 2021; 14
MG Kibria (35415_CR12) 2019; 31
W Luc (35415_CR53) 2019; 2
C Liu (35415_CR48) 2022; 61
CJ Bondue (35415_CR27) 2021; 143
M Liu (35415_CR37) 2016; 537
CM Gabardo (35415_CR54) 2019; 3
B Deng (35415_CR28) 2022; 12
X Zhi (35415_CR8) 2021; 14
A Goyal (35415_CR44) 2021; 60
G Henkelman (35415_CR60) 2000; 113
D Wakerley (35415_CR1) 2022; 7
MCO Monteiro (35415_CR22) 2022; 144
H Huo (35415_CR33) 2021; 11
Z Zhang (35415_CR52) 2020; 5
References_xml – volume: 142
  start-page: 6400
  year: 2020
  end-page: 6408
  ident: CR41
  article-title: Protecting copper oxidation state via intermediate confinement for selective CO electroreduction to C fuels
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01699
– volume: 132
  start-page: 154104
  year: 2010
  ident: CR56
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 31
  start-page: 1807166
  year: 2019
  ident: CR12
  article-title: Electrochemical CO reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807166
– volume: 3
  start-page: 2777
  year: 2019
  end-page: 2791
  ident: CR54
  article-title: Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly
  publication-title: Joule
  doi: 10.1016/j.joule.2019.07.021
– volume: 11
  start-page: 14328
  year: 2021
  end-page: 14335
  ident: CR36
  article-title: Understanding cation trends for hydrogen evolution on platinum and gold electrodes in alkaline media
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c04268
– volume: 3
  start-page: 775
  year: 2020
  end-page: 786
  ident: CR13
  article-title: Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO reduction
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00512-x
– volume: 301
  start-page: 219
  year: 2016
  end-page: 228
  ident: CR30
  article-title: One-step electrosynthesis of ethylene and ethanol from CO in an alkaline electrolyzer
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.09.124
– ident: CR4
– volume: 537
  start-page: 382
  year: 2016
  end-page: 386
  ident: CR37
  article-title: Enhanced electrocatalytic CO reduction via field-induced reagent concentration
  publication-title: Nature
  doi: 10.1038/nature19060
– volume: 12
  start-page: 2357
  year: 2022
  end-page: 2364
  ident: CR23
  article-title: Engineering the local microenvironment over bi nanosheets for highly selective electrocatalytic conversion of CO to HCOOH in strong acid
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c05135
– volume: 2
  start-page: 198
  year: 2019
  end-page: 210
  ident: CR9
  article-title: Rational catalyst and electrolyte design for CO electroreduction towards multicarbon products
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0235-5
– volume: 3
  start-page: 804
  year: 2020
  end-page: 812
  ident: CR50
  article-title: Highly active and stable stepped Cu surface for enhanced electrochemical CO reduction to C H
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00504-x
– volume: 54
  start-page: 11169
  year: 1996
  ident: CR58
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 63
  start-page: 1381
  year: 1959
  end-page: 1387
  ident: CR62
  article-title: Phenomenological theory of ion solvation. Effective radii of hydrated ions
  publication-title: J. Phys. Chem.
  doi: 10.1021/j150579a011
– volume: 12
  year: 2021
  ident: CR20
  article-title: Efficiency and selectivity of CO reduction to CO on gold gas diffusion electrodes in acidic media
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24936-6
– volume: 7
  start-page: 130
  year: 2022
  end-page: 143
  ident: CR1
  article-title: Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO electrolysers
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00973-9
– ident: CR61
– volume: 144
  start-page: 1589
  year: 2022
  end-page: 1602
  ident: CR22
  article-title: The role of cation acidity on the competition between hydrogen evolution and CO reduction on gold electrodes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c10171
– volume: 61
  start-page: e202111700
  year: 2022
  ident: CR39
  article-title: Highly ethylene-selective electrocatalytic CO reduction enabled by isolated Cu−S motifs in metal–organic framework based precatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202111700
– volume: 31
  start-page: 2102151
  year: 2021
  ident: CR6
  article-title: Recent progresses in electrochemical carbon dioxide reduction on copper-based catalysts toward multicarbon products
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102151
– volume: 32
  start-page: 2111193
  year: 2022
  ident: CR7
  article-title: Dynamic evolution of active sites in electrocatalytic CO reduction reaction: fundamental understanding and recent progress
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202111193
– volume: 119
  start-page: 7610
  year: 2019
  end-page: 7672
  ident: CR3
  article-title: Progress and perspectives of electrochemical CO reduction on copper in aqueous electrolyte
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00705
– volume: 5
  start-page: 564
  year: 2022
  end-page: 570
  ident: CR25
  article-title: High carbon utilization in CO reduction to multi-carbon products in acidic media
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00788-1
– volume: 12
  start-page: 331
  year: 2022
  end-page: 362
  ident: CR28
  article-title: Interfacial electrolyte effects on electrocatalytic CO reduction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c03501
– volume: 61
  start-page: e202113498
  year: 2022
  ident: CR48
  article-title: Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C−C coupling
  publication-title: Angew. Chem. Int. Ed.
– volume: 50
  start-page: 17953
  year: 1994
  ident: CR59
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 13
  start-page: 3288
  year: 2022
  end-page: 3298
  ident: CR43
  article-title: Effect of pore diameter and length on electrochemical CO reduction reaction at nanoporous gold catalysts
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC05743J
– volume: 49
  start-page: 6632
  year: 2020
  end-page: 6665
  ident: CR15
  article-title: Catalyst–electrolyte interface chemistry for electrochemical CO reduction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00030B
– volume: 2
  start-page: 29
  year: 2022
  end-page: 38
  ident: CR26
  article-title: Electrocatalytic carbon dioxide reduction in acid
  publication-title: Chem. Catal.
  doi: 10.1016/j.checat.2021.10.016
– volume: 59
  start-page: 14736
  year: 2020
  end-page: 14746
  ident: CR16
  article-title: Stability and degradation mechanisms of copper-based catalysts for electrochemical CO reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202000617
– volume: 3
  start-page: 478
  year: 2020
  end-page: 487
  ident: CR32
  article-title: Electrocatalytic reduction of CO to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-0450-0
– volume: 6
  start-page: eaay3111
  year: 2020
  ident: CR14
  article-title: Strategies in catalysts and electrolyzer design for electrochemical CO reduction toward C products
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay3111
– volume: 61
  start-page: e202114238
  year: 2022
  ident: CR34
  article-title: A reconstructed Cu P O catalyst for selective CO electroreduction to multicarbon products
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202114238
– volume: 4
  start-page: 682
  year: 2019
  end-page: 689
  ident: CR46
  article-title: CO Electrochemical reduction as probed through infrared spectroscopy
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b02525
– volume: 113
  start-page: 9901
  year: 2000
  end-page: 9904
  ident: CR60
  article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 77
  start-page: 3865
  year: 1996
  ident: CR55
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 32
  start-page: 1456
  year: 2011
  end-page: 1465
  ident: CR57
  article-title: Effect of the damping function in dispersion corrected density functional theory
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 5
  start-page: 3101
  year: 2020
  end-page: 3107
  ident: CR52
  article-title: pH Matters when reducing CO in an electrochemical flow cell
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01606
– volume: 50
  start-page: 12897
  year: 2021
  end-page: 12914
  ident: CR17
  article-title: Electrocatalytic reduction of CO and CO to multi-carbon compounds over Cu-based catalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00535A
– volume: 5
  start-page: 268
  year: 2022
  end-page: 276
  ident: CR24
  article-title: Modulating electric field distribution by alkali cations for CO electroreduction in strongly acidic medium
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00761-y
– volume: 143
  start-page: 279
  year: 2021
  end-page: 285
  ident: CR27
  article-title: Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c10397
– volume: 13
  year: 2022
  ident: CR29
  article-title: On the importance of the electric double layer structure in aqueous electrocatalysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27909-x
– volume: 372
  start-page: 1074
  year: 2021
  end-page: 1078
  ident: CR21
  article-title: CO2 electrolysis to multicarbon products in strong acid
  publication-title: Science
  doi: 10.1126/science.abg6582
– volume: 360
  start-page: 783
  year: 2018
  end-page: 787
  ident: CR11
  article-title: CO electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface
  publication-title: Science
  doi: 10.1126/science.aas9100
– volume: 11
  start-page: 2102447
  year: 2021
  ident: CR33
  article-title: Cu-MOFs derived porous Cu nanoribbons with strengthened electric field for selective CO electroreduction to C fuels
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102447
– volume: 60
  start-page: 13452
  year: 2021
  end-page: 13462
  ident: CR44
  article-title: The interrelated effect of cations and electrolyte pH on the hydrogen evolution reaction on gold electrodes in alkaline media
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202102803
– volume: 1
  start-page: 748
  year: 2018
  end-page: 755
  ident: CR31
  article-title: High-rate electroreduction of carbon monoxide to multi-carbon products
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0133-2
– volume: 7
  start-page: 4467
  year: 2017
  end-page: 4472
  ident: CR51
  article-title: Low-overpotential electroreduction of carbon monoxide using copper nanowires
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01124
– volume: 14
  start-page: 3188
  year: 2021
  end-page: 3207
  ident: CR10
  article-title: Recent progress and perspective of electrochemical CO reduction towards C -C products over non-precious metal heterogeneous electrocatalysts
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3335-x
– volume: 10
  start-page: 1754
  year: 2019
  end-page: 1768
  ident: CR5
  article-title: Mechanistic understanding of CO reduction reaction (CO RR) toward multicarbon products by heterogeneous copper-based catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04746
– volume: 60
  start-page: 11133
  year: 2021
  end-page: 11137
  ident: CR49
  article-title: Hidden mechanism behind the roughness-enhanced selectivity of carbon monoxide electrocatalytic reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202016332
– volume: 2
  start-page: 423
  year: 2019
  end-page: 430
  ident: CR53
  article-title: Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0269-8
– volume: 33
  start-page: 2005484
  year: 2021
  ident: CR2
  article-title: Recent advances in catalyst structure and composition engineering strategies for regulating CO electrochemical reduction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005484
– volume: 2
  start-page: 448
  year: 2019
  end-page: 456
  ident: CR38
  article-title: Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0241-7
– volume: 5
  start-page: 737
  year: 2021
  end-page: 742
  ident: CR18
  article-title: Address the “alkalinity problem” in CO electrolysis with catalyst design and translation
  publication-title: Joule
  doi: 10.1016/j.joule.2021.02.008
– volume: 142
  start-page: 2857
  year: 2020
  end-page: 2867
  ident: CR47
  article-title: Controlling the oxidation state of the Cu electrode and reaction intermediates for electrochemical CO reduction to ethylene
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11126
– volume: 125
  start-page: 17042
  year: 2021
  end-page: 17050
  ident: CR45
  article-title: Electrolyte competition controls surface binding of CO intermediates to CO reduction catalysts
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.1c04337
– volume: 14
  start-page: 3912
  year: 2021
  end-page: 3930
  ident: CR8
  article-title: Role of oxygen-bound reaction intermediates in selective electrochemical CO reduction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00740H
– volume: 7
  start-page: 11836
  year: 2019
  end-page: 11846
  ident: CR42
  article-title: “Hot edges” in an inverse opal structure enable efficient CO electrochemical reduction and sensitive in situ Raman characterization
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02288K
– volume: 4
  start-page: 654
  year: 2021
  end-page: 662
  ident: CR19
  article-title: Absence of CO electroreduction on copper, gold and silver electrodes without metal cations in solution
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00655-5
– volume: 22
  start-page: 2988
  year: 2022
  end-page: 2994
  ident: CR40
  article-title: Surface engineering on commercial Cu foil for steering C H /CH ratio in CO electroreduction
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c00189
– volume: 162
  start-page: F1470
  year: 2015
  end-page: F1481
  ident: CR35
  article-title: Correcting the hydrogen diffusion limitation in rotating disk electrode measurements of hydrogen evolution reaction kinetics
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0501514jes
– ident: 35415_CR61
– volume: 13
  start-page: 3288
  year: 2022
  ident: 35415_CR43
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC05743J
– volume: 372
  start-page: 1074
  year: 2021
  ident: 35415_CR21
  publication-title: Science
  doi: 10.1126/science.abg6582
– volume: 14
  start-page: 3188
  year: 2021
  ident: 35415_CR10
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3335-x
– volume: 61
  start-page: e202114238
  year: 2022
  ident: 35415_CR34
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202114238
– volume: 31
  start-page: 1807166
  year: 2019
  ident: 35415_CR12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807166
– volume: 61
  start-page: e202111700
  year: 2022
  ident: 35415_CR39
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202111700
– volume: 63
  start-page: 1381
  year: 1959
  ident: 35415_CR62
  publication-title: J. Phys. Chem.
  doi: 10.1021/j150579a011
– volume: 2
  start-page: 29
  year: 2022
  ident: 35415_CR26
  publication-title: Chem. Catal.
  doi: 10.1016/j.checat.2021.10.016
– volume: 1
  start-page: 748
  year: 2018
  ident: 35415_CR31
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0133-2
– volume: 7
  start-page: 11836
  year: 2019
  ident: 35415_CR42
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02288K
– volume: 50
  start-page: 12897
  year: 2021
  ident: 35415_CR17
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00535A
– volume: 4
  start-page: 682
  year: 2019
  ident: 35415_CR46
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b02525
– volume: 3
  start-page: 2777
  year: 2019
  ident: 35415_CR54
  publication-title: Joule
  doi: 10.1016/j.joule.2019.07.021
– volume: 31
  start-page: 2102151
  year: 2021
  ident: 35415_CR6
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102151
– volume: 5
  start-page: 268
  year: 2022
  ident: 35415_CR24
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00761-y
– volume: 162
  start-page: F1470
  year: 2015
  ident: 35415_CR35
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0501514jes
– volume: 3
  start-page: 804
  year: 2020
  ident: 35415_CR50
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00504-x
– volume: 12
  year: 2021
  ident: 35415_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24936-6
– volume: 4
  start-page: 654
  year: 2021
  ident: 35415_CR19
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00655-5
– volume: 2
  start-page: 198
  year: 2019
  ident: 35415_CR9
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0235-5
– volume: 12
  start-page: 2357
  year: 2022
  ident: 35415_CR23
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c05135
– volume: 49
  start-page: 6632
  year: 2020
  ident: 35415_CR15
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00030B
– volume: 77
  start-page: 3865
  year: 1996
  ident: 35415_CR55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 6
  start-page: eaay3111
  year: 2020
  ident: 35415_CR14
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay3111
– volume: 142
  start-page: 6400
  year: 2020
  ident: 35415_CR41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01699
– ident: 35415_CR4
  doi: 10.1002/aenm.202102767
– volume: 33
  start-page: 2005484
  year: 2021
  ident: 35415_CR2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005484
– volume: 125
  start-page: 17042
  year: 2021
  ident: 35415_CR45
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.1c04337
– volume: 14
  start-page: 3912
  year: 2021
  ident: 35415_CR8
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00740H
– volume: 50
  start-page: 17953
  year: 1994
  ident: 35415_CR59
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 10
  start-page: 1754
  year: 2019
  ident: 35415_CR5
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04746
– volume: 142
  start-page: 2857
  year: 2020
  ident: 35415_CR47
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11126
– volume: 7
  start-page: 130
  year: 2022
  ident: 35415_CR1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00973-9
– volume: 32
  start-page: 1456
  year: 2011
  ident: 35415_CR57
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 5
  start-page: 737
  year: 2021
  ident: 35415_CR18
  publication-title: Joule
  doi: 10.1016/j.joule.2021.02.008
– volume: 60
  start-page: 13452
  year: 2021
  ident: 35415_CR44
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202102803
– volume: 54
  start-page: 11169
  year: 1996
  ident: 35415_CR58
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 113
  start-page: 9901
  year: 2000
  ident: 35415_CR60
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 61
  start-page: e202113498
  year: 2022
  ident: 35415_CR48
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202113498
– volume: 11
  start-page: 2102447
  year: 2021
  ident: 35415_CR33
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102447
– volume: 3
  start-page: 478
  year: 2020
  ident: 35415_CR32
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-0450-0
– volume: 132
  start-page: 154104
  year: 2010
  ident: 35415_CR56
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 360
  start-page: 783
  year: 2018
  ident: 35415_CR11
  publication-title: Science
  doi: 10.1126/science.aas9100
– volume: 2
  start-page: 448
  year: 2019
  ident: 35415_CR38
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0241-7
– volume: 2
  start-page: 423
  year: 2019
  ident: 35415_CR53
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0269-8
– volume: 537
  start-page: 382
  year: 2016
  ident: 35415_CR37
  publication-title: Nature
  doi: 10.1038/nature19060
– volume: 12
  start-page: 331
  year: 2022
  ident: 35415_CR28
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c03501
– volume: 32
  start-page: 2111193
  year: 2022
  ident: 35415_CR7
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202111193
– volume: 143
  start-page: 279
  year: 2021
  ident: 35415_CR27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c10397
– volume: 3
  start-page: 775
  year: 2020
  ident: 35415_CR13
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00512-x
– volume: 11
  start-page: 14328
  year: 2021
  ident: 35415_CR36
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c04268
– volume: 119
  start-page: 7610
  year: 2019
  ident: 35415_CR3
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00705
– volume: 13
  year: 2022
  ident: 35415_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27909-x
– volume: 144
  start-page: 1589
  year: 2022
  ident: 35415_CR22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c10171
– volume: 60
  start-page: 11133
  year: 2021
  ident: 35415_CR49
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202016332
– volume: 301
  start-page: 219
  year: 2016
  ident: 35415_CR30
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.09.124
– volume: 22
  start-page: 2988
  year: 2022
  ident: 35415_CR40
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c00189
– volume: 5
  start-page: 3101
  year: 2020
  ident: 35415_CR52
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01606
– volume: 7
  start-page: 4467
  year: 2017
  ident: 35415_CR51
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01124
– volume: 5
  start-page: 564
  year: 2022
  ident: 35415_CR25
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00788-1
– volume: 59
  start-page: 14736
  year: 2020
  ident: 35415_CR16
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202000617
SSID ssj0000391844
Score 2.6922522
Snippet Electrochemical CO 2 reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we...
Electrochemical CO2 reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we...
Attaining high selectivity for CO2 electroreduction in acid is usually difficult due to competing hydrogen evolution. Here, the authors demonstrate efficient...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7596
SubjectTerms 119/118
140/131
140/133
147/143
639/301/299/886
639/638/161/886
639/638/675
Aqueous electrolytes
Carbon dioxide
Catalysts
Cations
Confinement
Electrochemistry
Electrolysis
Electrolytes
Electrowinning
Humanities and Social Sciences
Hydrogen evolution
Microenvironments
multidisciplinary
pH effects
Potassium chloride
Science
Science (multidisciplinary)
Selectivity
Sulfuric acid
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9Em3TYoKvbUmjiVZ0jEJCaHQ9tJAbkLP1LDxhrVTsj-g_zszsne7DqS99GhLwpLmbY2-IeRjsCEFyWxhD1xdcCFjoR0QxAcrNEtgkRLed_76rT47518uxMVWqS_MCRvggYeN20d_XNfC88gs19Y5ppKG5YsqWvCdM3op2LytYCrrYKYhdOHjLZmSqf2OZ50wJK-D1SpuJ5YoA_ZPvMz7OZL3Dkqz_Tl9Rp6OjiM9HCb8nDyK7QvyeCgluXpJfh9_r-hY02aJcKy44bRf0Jwx6O3SweP1AO_a0aalHf4Dv5yvqPVNaPx67HzVR_qrsbRb4a3ADONs59DtCoZi3lx7ScFnpNkG0itM59u6K_eKnJ-e_Dg-K8YSC4UXivWFtC6xqGTiYOhrXjte2bKKjKsQeJkEyGiEiEMFUIwhSZtKVypfJ86D8jxU7DXZaRdtfEMo6I7Ade2kEwHoknTWFb4srcXjSj8jB-vtNn7EH8cyGHOTz8GZMgOJDJDIZBKZ2xn5tBlzPaBv_LX3EVJx0xORs_ML4Ccz8pP5Fz_NyO6aB8wozp2B0F3VWK0Nmj9smkEQ8XTFtnFxg30EqzSoQzkjcsI7kwlNW9rmZ4b01hK8iQpGfl5z2Z-PP7zgt_9jwe_IkwqlAlN09C7Z6Zc3cQ8crd69zzJ1B6ycKPM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ikCBRmJG0TNxnbinBBULBUScKFSb5afS6RtsmxS1P0B_G9mnGRLKtFjEjtxPE97xt8Q8sZpF1zJdKoXpki5KH1aGSCIdVpULIBFCnje-eu34uSUfzkTZ-OGWzemVU46MSpq11rcIz-C1ZMssGCWeL_5lWLVKIyujiU0bpM7C7A0mNIll5_3eyyIfi45H8_KZEwedTxqhiGFHd6VXs7sUYTtn_ma1zMlr4VLoxVaPiD3R_eRfhjo_ZDc8s0jcncoKLl7TP4cf8_pWNlmi6CsOO20b2nMG7R6a-ByM4C8drRuaIc74av1jmpbu9pOfde73tPftabdDs8GRjBnvYZm59AVs-eaFQXPkUZLSM8xqe-fE3NPyOny04_jk3QstJBaIVmfltoE5mUZOJj7gheG5zrLPePSOZ4FAZLqYd0hHahHF0odMpNJWwTOnbTc5ewpOWjaxj8jFDSI41VhSiMcqINQRY1hs0xrDFrahCym6VZ2RCHHYhhrFaPhTKqBRApIpCKJ1GVC3u77bAYMjhtbf0Qq7lsifna80W5XahRHhau8qhCWe6Z5pY1hMlQgVCL3GlZkIiGHEw-oUag7dcWCCXm9fwziiDEW3fj2AtsIllegFMuElDPemQ1o_qSpf0Zg76oEnyKHnu8mLrv6-P9_-PnNY31B7uXI75iCUx2Sg3574V-CI9WbV1Fa_gIIoyA7
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF9Ki-CL-IlXq6zgmwbT7G6y-3gWSzlQH7TQt2U_z8A1Vy6peH9A_-_ObJLTFBV8zO0MyWU-NzvzG0LeeOOjr5jJzLEtMy6qkCkLAnHeCMUiRKSI_c6fPpdn53xxIS72SDH2wqSi_QRpmdz0WB32vuXJpPvacwg6GeSNBwjVDrp9MJ8vvi52X1YQ81xyPnTI5Ez-gXkShRJY_yTDvFsfeeeQNMWe04fkwZA00nn_mI_IXmgek3v9GMntE3Jz8qWgwzybDUKx4sum3ZqmakFnNhYur3po15bWDW3x-_dytaXG1b52I-9q2wX6oza03WJHYIJwNisguwRWrJlrlhTyRZriH73EUr7f-uSekvPTj99OzrJhvELmhGRdVhkbWZBV5BDkS15aXpi8CIxL73keBdhngN2G9OAUfaxMzG0uXRk599JxX7BnZL9ZN-E5oeA3PFelrazw4ASiSn7C5bkxeFTpZuR4fN3aDdjjOAJjpdMZOJO6F5EGEekkIv1zRt7ueK565I1_Un9AKe4oETU7_bDeLPWgRRr3dqoUjgdmuDLWMhkVmJIogoF9mJiRo1EH9GDKrYZtuyxxUhssv94tgxHiyYppwvoaaQQrFLjCakaqie5MHmi60tTfE5y3qiCTKIDz3ahlv27-9z98-H_kL8j9AvUfC3HUEdnvNtfhJaRTnX012M8tGOMf2g
  priority: 102
  providerName: Springer Nature
Title CO2 electroreduction to multicarbon products in strongly acidic electrolyte via synergistically modulating the local microenvironment
URI https://link.springer.com/article/10.1038/s41467-022-35415-x
https://www.proquest.com/docview/2748654415
https://www.proquest.com/docview/2753298807
https://pubmed.ncbi.nlm.nih.gov/PMC9734127
https://doaj.org/article/9966965c4e3a49abb38f9ead52ea6425
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3bbtMw1BqbkHhBXEVhVEbiDQJp7MT2A0JdtTJV2kBApb5FvpZIXTqSDK0fwH9z7CSFTgPx0qjxcZvk3HNuCL000jjDiIzkSGURTZmNhAKEaCNTQRxoJOfrnU_PspM5nS3SxR7qxx11D7C-0bXz86Tm1erN1ffNe2D4d23JOH9b08DubV46KKQIbMoD0EzMTzQ47cz9IJmJAIfGB5qTmI4iACBdHc3NP7Ojq0JL_x079HoW5bVQatBQ03vobmda4nFLC_fRni0foNvtsMnNQ_Rz8jHB3dSbyjds9SjBzRqHnEItKwVfL9oGsDUuSlz7t-TL1QZLXZhC93tXm8biH4XE9cbXDYZGz3IFYOew1WfWlUsMViUOWhKf-4S_P6rpHqH59Pjr5CTqhjBEOuWkiZhUjljOHAVTIKOZoomME0soN4bGLgUutuCTcAOi0zgmXaxirjNHqeGamoQ8RvvlurRPEAbpYqjIFFOpAVHhRJAmOo6l9AFNPUCj_nHnuutQ7gdlrPIQKSc8b1GUA4rygKL8aoBebfdctP05_gl95LG4hfS9tcOJdbXMO1bNvQcoslRTSyQVUinCnQCGSxMrwVtLB-iwp4G8p9ccnHue-XlusPxiuwys6uMvsrTrSw-TkkSAwGQDxHZoZ-eCdlfK4lto-i0Y2BsJ7HzdU9nvP__7DT_9j4t5hu4knuh9jo44RPtNdWmfg6XVqCG6xRYMPvn0wxAdjMezLzM4Hh2fffoMZyfZZBjeYQwDm_0CK-ouSg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFMsFDASnCBqGtuJc0AICsuWPri0Um_Gz-1K2-yy2UL3B_B3-I3MOMmWrURvPSaxFScz883Y8yLkldMuuILpRG-ZPOGi8ElpgCDWaVGyABopYL7z_kE-OOJfj8XxGvnT5cJgWGWHiRGo3cTiGfkm7J5kjg2zxPvpjwS7RqF3tWuh0bDFrl_8gi1b_W7nE9D3dZb1Px9uD5K2q0BihWTzpNAmMC-LwEG35Tw3PNNp5hmXzvE0CGBLD0a2dIAFLhQ6pCaVNg-cO2m5w0IHAPk3OANNjpnp_S_LMx2sti45b3NzUiY3ax6RqAmZh7Un5yv6L7YJWLFtL0dmXnLPRq3Xv0vutOYq_dDw1z2y5qv75GbTwHLxgPze_pbRtpPODIvAIpnpfEJjnKLVMwOX06aobE1HFa3x5H04XlBtR25ku7njxdzTnyNN6wXmIsbi0XoMw05hKkbrVUMKliqNmpeeYhDhPxl6D8nRtZDgEVmvJpV_TCggluNlbgojHMBPKCNC2TTVGp2ktke2ut-tbFv1HJtvjFX0vjOpGhIpIJGKJFLnPfJmOWfa1Py4cvRHpOJyJNbrjjcms6FqxV_hrrLMheWeaV5qY5gMJQixyLyGHaDokY2OB1QLIrW6YPkeebl8DOKPPh1d-ckZjhEsKwGEix4pVnhnZUGrT6rRSSwkXhZgw2Qw823HZRcv__8HP7l6rS_IrcHh_p7a2znYfUpuZ8j7GP5TbpD1-ezMPwMjbm6eR8mh5Pt1i-pf-A5ckw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqUBcUHmJQIFFghNYce1de31AiD6ilkKoEJV6W_YZIqVOGqfQ_AD-FL-OmbWdkkr01qPjXdnOzHwzs_Mi5JVV1ts8VZHa0lnEeO6iQgNBjFW8SD1oJI_1zp8H2f4x-3jCT9bIn7YWBtMqW0wMQG0nBs_Ie-A9iQwHZvGeb9Iijnb776dnEU6QwkhrO06jZpFDt_gF7lv17mAXaP06Sfp733b2o2bCQGS4SOdRrrRPncg9Az2XsUyzRMWJS5mwlsWeA4s6MLiFBVywPlc-1rEwmWfMCsMsNj0A-F_P0SvqkPXtvcHR1-UJD_ZeF4w1lTpxKnoVC7hUJ9DDl0QXK9owDA1YsXSv5mleCdYGHdjfIHcb45V-qLntHllz5X1yqx5nuXhAfu98SWgzV2eGLWGR6HQ-oSFr0aiZhstp3WK2oqOSVngOPxwvqDIjOzLt3vFi7ujPkaLVAisTQytpNYZlp7AVc_fKIQW7lQY9TE8xpfCfer2H5PhGiPCIdMpJ6R4TCvhlWZHpXHMLYOSLgFcmjpXCkKnpkq3275am6YGOozjGMsTiUyFrEkkgkQwkkhdd8ma5Z1p3ALl29TZScbkSu3eHHyazoWzAQKKPWWTcMJcqViitU-ELEGmeOAX-IO-SzZYHZAMplbwUgC55ubwNYIARHlW6yTmu4WlSACTnXZKv8M7KC63eKUc_QlvxIgeLJoGdb1suu3z4_z_4yfXv-oLcBjGVnw4Gh0_JnQRZH3OBik3Smc_O3TOw6Ob6eSM6lHy_aWn9C-FdYiU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CO2+electroreduction+to+multicarbon+products+in+strongly+acidic+electrolyte+via+synergistically+modulating+the+local+microenvironment&rft.jtitle=Nature+communications&rft.au=Ma%2C+Zesong&rft.au=Yang%2C+Zhilong&rft.au=Lai%2C+Wenchuan&rft.au=Wang%2C+Qiyou&rft.date=2022-12-09&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=7596&rft_id=info:doi/10.1038%2Fs41467-022-35415-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon