Spontaneously separated intermetallic Co3Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting

Developing robust nonprecious electrocatalysts towards hydrogen/oxygen evolution reactions is crucial for widespread use of electrochemical water splitting in hydrogen production. Here, we report that intermetallic Co 3 Mo spontaneously separated from hierarchical nanoporous copper skeleton shows ge...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 2940 - 10
Main Authors Shi, Hang, Zhou, Yi-Tong, Yao, Rui-Qi, Wan, Wu-Bin, Ge, Xin, Zhang, Wei, Wen, Zi, Lang, Xing-You, Zheng, Wei-Tao, Jiang, Qing
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.06.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing robust nonprecious electrocatalysts towards hydrogen/oxygen evolution reactions is crucial for widespread use of electrochemical water splitting in hydrogen production. Here, we report that intermetallic Co 3 Mo spontaneously separated from hierarchical nanoporous copper skeleton shows genuine potential as highly efficient electrocatalysts for alkaline hydrogen/oxygen evolution reactions in virtue of in-situ hydroxylation and electro-oxidation, respectively. The hydroxylated intermetallic Co 3 Mo has an optimal hydrogen-binding energy to facilitate adsorption/desorption of hydrogen intermediates for hydrogen molecules. Associated with high electron/ion transport of bicontinuous nanoporous skeleton, nanoporous copper supported Co 3 Mo electrodes exhibit impressive hydrogen evolution reaction catalysis, with negligible onset overpotential and low Tafel slope (~40 mV dec −1 ) in 1 M KOH, realizing current density of −400 mA cm −2 at overpotential of as low as 96 mV. When coupled to its electro-oxidized derivative that mediates efficiently oxygen evolution reaction, their alkaline electrolyzer operates with a superior overall water-splitting output, outperforming the one assembled with noble-metal-based catalysts. Electrochemical water splitting is an attractive energy conversion technology, but it usually suffers from low efficiency. Here, the authors report intermetallic Co 3 Mo integrated on porous Cu as highly efficient electrocatalysts for alkaline HER/OER due to in-situ hydroxylation and electro-oxidation.
AbstractList Developing robust nonprecious electrocatalysts towards hydrogen/oxygen evolution reactions is crucial for widespread use of electrochemical water splitting in hydrogen production. Here, we report that intermetallic Co 3 Mo spontaneously separated from hierarchical nanoporous copper skeleton shows genuine potential as highly efficient electrocatalysts for alkaline hydrogen/oxygen evolution reactions in virtue of in-situ hydroxylation and electro-oxidation, respectively. The hydroxylated intermetallic Co 3 Mo has an optimal hydrogen-binding energy to facilitate adsorption/desorption of hydrogen intermediates for hydrogen molecules. Associated with high electron/ion transport of bicontinuous nanoporous skeleton, nanoporous copper supported Co 3 Mo electrodes exhibit impressive hydrogen evolution reaction catalysis, with negligible onset overpotential and low Tafel slope (~40 mV dec −1 ) in 1 M KOH, realizing current density of −400 mA cm −2 at overpotential of as low as 96 mV. When coupled to its electro-oxidized derivative that mediates efficiently oxygen evolution reaction, their alkaline electrolyzer operates with a superior overall water-splitting output, outperforming the one assembled with noble-metal-based catalysts.
Developing robust nonprecious electrocatalysts towards hydrogen/oxygen evolution reactions is crucial for widespread use of electrochemical water splitting in hydrogen production. Here, we report that intermetallic Co3Mo spontaneously separated from hierarchical nanoporous copper skeleton shows genuine potential as highly efficient electrocatalysts for alkaline hydrogen/oxygen evolution reactions in virtue of in-situ hydroxylation and electro-oxidation, respectively. The hydroxylated intermetallic Co3Mo has an optimal hydrogen-binding energy to facilitate adsorption/desorption of hydrogen intermediates for hydrogen molecules. Associated with high electron/ion transport of bicontinuous nanoporous skeleton, nanoporous copper supported Co3Mo electrodes exhibit impressive hydrogen evolution reaction catalysis, with negligible onset overpotential and low Tafel slope (~40 mV dec-1) in 1 M KOH, realizing current density of -400 mA cm-2 at overpotential of as low as 96 mV. When coupled to its electro-oxidized derivative that mediates efficiently oxygen evolution reaction, their alkaline electrolyzer operates with a superior overall water-splitting output, outperforming the one assembled with noble-metal-based catalysts.Developing robust nonprecious electrocatalysts towards hydrogen/oxygen evolution reactions is crucial for widespread use of electrochemical water splitting in hydrogen production. Here, we report that intermetallic Co3Mo spontaneously separated from hierarchical nanoporous copper skeleton shows genuine potential as highly efficient electrocatalysts for alkaline hydrogen/oxygen evolution reactions in virtue of in-situ hydroxylation and electro-oxidation, respectively. The hydroxylated intermetallic Co3Mo has an optimal hydrogen-binding energy to facilitate adsorption/desorption of hydrogen intermediates for hydrogen molecules. Associated with high electron/ion transport of bicontinuous nanoporous skeleton, nanoporous copper supported Co3Mo electrodes exhibit impressive hydrogen evolution reaction catalysis, with negligible onset overpotential and low Tafel slope (~40 mV dec-1) in 1 M KOH, realizing current density of -400 mA cm-2 at overpotential of as low as 96 mV. When coupled to its electro-oxidized derivative that mediates efficiently oxygen evolution reaction, their alkaline electrolyzer operates with a superior overall water-splitting output, outperforming the one assembled with noble-metal-based catalysts.
Developing robust nonprecious electrocatalysts towards hydrogen/oxygen evolution reactions is crucial for widespread use of electrochemical water splitting in hydrogen production. Here, we report that intermetallic Co 3 Mo spontaneously separated from hierarchical nanoporous copper skeleton shows genuine potential as highly efficient electrocatalysts for alkaline hydrogen/oxygen evolution reactions in virtue of in-situ hydroxylation and electro-oxidation, respectively. The hydroxylated intermetallic Co 3 Mo has an optimal hydrogen-binding energy to facilitate adsorption/desorption of hydrogen intermediates for hydrogen molecules. Associated with high electron/ion transport of bicontinuous nanoporous skeleton, nanoporous copper supported Co 3 Mo electrodes exhibit impressive hydrogen evolution reaction catalysis, with negligible onset overpotential and low Tafel slope (~40 mV dec −1 ) in 1 M KOH, realizing current density of −400 mA cm −2 at overpotential of as low as 96 mV. When coupled to its electro-oxidized derivative that mediates efficiently oxygen evolution reaction, their alkaline electrolyzer operates with a superior overall water-splitting output, outperforming the one assembled with noble-metal-based catalysts. Electrochemical water splitting is an attractive energy conversion technology, but it usually suffers from low efficiency. Here, the authors report intermetallic Co 3 Mo integrated on porous Cu as highly efficient electrocatalysts for alkaline HER/OER due to in-situ hydroxylation and electro-oxidation.
Electrochemical water splitting is an attractive energy conversion technology, but it usually suffers from low efficiency. Here, the authors report intermetallic Co3Mo integrated on porous Cu as highly efficient electrocatalysts for alkaline HER/OER due to in-situ hydroxylation and electro-oxidation.
Developing robust nonprecious electrocatalysts towards hydrogen/oxygen evolution reactions is crucial for widespread use of electrochemical water splitting in hydrogen production. Here, we report that intermetallic Co3Mo spontaneously separated from hierarchical nanoporous copper skeleton shows genuine potential as highly efficient electrocatalysts for alkaline hydrogen/oxygen evolution reactions in virtue of in-situ hydroxylation and electro-oxidation, respectively. The hydroxylated intermetallic Co3Mo has an optimal hydrogen-binding energy to facilitate adsorption/desorption of hydrogen intermediates for hydrogen molecules. Associated with high electron/ion transport of bicontinuous nanoporous skeleton, nanoporous copper supported Co3Mo electrodes exhibit impressive hydrogen evolution reaction catalysis, with negligible onset overpotential and low Tafel slope (~40 mV dec−1) in 1 M KOH, realizing current density of −400 mA cm−2 at overpotential of as low as 96 mV. When coupled to its electro-oxidized derivative that mediates efficiently oxygen evolution reaction, their alkaline electrolyzer operates with a superior overall water-splitting output, outperforming the one assembled with noble-metal-based catalysts.Electrochemical water splitting is an attractive energy conversion technology, but it usually suffers from low efficiency. Here, the authors report intermetallic Co3Mo integrated on porous Cu as highly efficient electrocatalysts for alkaline HER/OER due to in-situ hydroxylation and electro-oxidation.
ArticleNumber 2940
Author Yao, Rui-Qi
Lang, Xing-You
Ge, Xin
Zheng, Wei-Tao
Zhang, Wei
Shi, Hang
Wen, Zi
Jiang, Qing
Wan, Wu-Bin
Zhou, Yi-Tong
Author_xml – sequence: 1
  givenname: Hang
  orcidid: 0000-0002-7327-3582
  surname: Shi
  fullname: Shi, Hang
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University
– sequence: 2
  givenname: Yi-Tong
  orcidid: 0000-0002-1094-7826
  surname: Zhou
  fullname: Zhou, Yi-Tong
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University
– sequence: 3
  givenname: Rui-Qi
  orcidid: 0000-0002-9910-1463
  surname: Yao
  fullname: Yao, Rui-Qi
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University
– sequence: 4
  givenname: Wu-Bin
  orcidid: 0000-0002-1995-7887
  surname: Wan
  fullname: Wan, Wu-Bin
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University
– sequence: 5
  givenname: Xin
  surname: Ge
  fullname: Ge, Xin
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University
– sequence: 6
  givenname: Wei
  orcidid: 0000-0002-6414-7015
  surname: Zhang
  fullname: Zhang, Wei
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University
– sequence: 7
  givenname: Zi
  orcidid: 0000-0002-6515-441X
  surname: Wen
  fullname: Wen, Zi
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University
– sequence: 8
  givenname: Xing-You
  orcidid: 0000-0002-8227-9695
  surname: Lang
  fullname: Lang, Xing-You
  email: xylang@jlu.edu.cn
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University
– sequence: 9
  givenname: Wei-Tao
  surname: Zheng
  fullname: Zheng, Wei-Tao
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University
– sequence: 10
  givenname: Qing
  orcidid: 0000-0003-0660-596X
  surname: Jiang
  fullname: Jiang, Qing
  email: jiangq@jlu.edu.cn
  organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University
BookMark eNp9Ustu1DAUjVARLaU_wMoSGzYBv5I4GyQ04lGpiAWwthznOuORYwfbUzQfwH_jmVRAu6g3tuxzzr3H9zyvznzwUFUvCX5DMBNvEye87WpMcU3aru3r9kl1QTEnNekoO_vvfF5dpbTDZbGeCM6fVeeMNpT2QlxUv78twWflIeyTO6AEi4oqw4iszxBnyMo5q9EmsC8BmRhm5JUPS4gFj3RYFohIJXQLMalsHSBwoHMMWhXmIeWETIhoa6dtUQdjrLbgM_pVakSUFmdztn56UT01yiW4utsvqx8fP3zffK5vvn663ry_qXUjWK67tuUY62EchBgbgo3mymjoe0PEgBUF3XAM_UjHgfcjx0Qp0J3BnVZHxwO7rK5X3TGonVyinVU8yKCsPF2EOEkVs9UOJDQYG64JoVhxwXHPcNtA144j4QL3bdF6t2ot-2GGURdbUbl7ovdfvN3KKdzKjooOC1YEXt8JxPBzDynL2SYNzq3TkJQTSglpGSnQVw-gu7CPvnzVCUV4T2lTUHRF6RhSimD-NkOwPIZGrqGRJTTyFBp5tCEekLTNZZTh2LR1j1PZSk2ljp8g_uvqEdYf0qzaaA
CitedBy_id crossref_primary_10_1016_j_ijhydene_2024_11_422
crossref_primary_10_1039_D1TA09245F
crossref_primary_10_1039_D4MH01733A
crossref_primary_10_1016_j_electacta_2024_144855
crossref_primary_10_1038_s41467_021_26256_1
crossref_primary_10_1007_s12274_022_4861_x
crossref_primary_10_1002_adfm_202307109
crossref_primary_10_1016_j_cej_2022_134898
crossref_primary_10_1002_smll_202311509
crossref_primary_10_1039_D4SE00685B
crossref_primary_10_1002_adma_202007894
crossref_primary_10_1039_D3NR01112G
crossref_primary_10_1007_s40843_023_2582_6
crossref_primary_10_3390_met13071198
crossref_primary_10_1016_j_jcis_2024_04_009
crossref_primary_10_1016_j_diamond_2022_109061
crossref_primary_10_1016_j_scriptamat_2024_116344
crossref_primary_10_1002_aenm_202200928
crossref_primary_10_1007_s10311_023_01616_z
crossref_primary_10_1021_acsanm_3c01301
crossref_primary_10_1007_s40843_020_1583_4
crossref_primary_10_1016_j_apsusc_2020_148518
crossref_primary_10_1039_D2TA02374A
crossref_primary_10_1021_acsnano_2c11844
crossref_primary_10_1007_s12209_025_00426_4
crossref_primary_10_1039_D0CY01311K
crossref_primary_10_1002_smll_202206781
crossref_primary_10_1016_j_apcatb_2024_124395
crossref_primary_10_1016_j_cej_2022_135517
crossref_primary_10_1002_aenm_202405285
crossref_primary_10_1007_s40820_022_00867_9
crossref_primary_10_1016_j_ijhydene_2024_10_084
crossref_primary_10_1021_acsami_3c03934
crossref_primary_10_1002_adma_202108133
crossref_primary_10_3390_catal11020217
crossref_primary_10_1016_j_matlet_2024_135999
crossref_primary_10_1016_j_electacta_2023_142179
crossref_primary_10_1016_j_mtphys_2020_100300
crossref_primary_10_1016_j_enchem_2022_100069
crossref_primary_10_1016_j_susmat_2024_e00991
crossref_primary_10_1002_smll_202207661
crossref_primary_10_1016_j_nanoen_2021_106870
crossref_primary_10_1016_j_apcatb_2023_123331
crossref_primary_10_1002_adfm_202211557
crossref_primary_10_1016_j_cej_2023_146443
crossref_primary_10_1002_anie_202215594
crossref_primary_10_1038_s41467_023_37597_4
crossref_primary_10_1007_s10562_024_04657_3
crossref_primary_10_1002_cssc_202301535
crossref_primary_10_1016_j_pnsc_2024_12_003
crossref_primary_10_1002_adfm_202208718
crossref_primary_10_1016_j_jcis_2024_07_127
crossref_primary_10_1016_j_jechem_2024_02_033
crossref_primary_10_1002_adma_202305685
crossref_primary_10_1039_D4RA05023A
crossref_primary_10_1016_j_apcatb_2022_121666
crossref_primary_10_1016_j_jmst_2022_07_044
crossref_primary_10_1002_smll_202006773
crossref_primary_10_1016_j_jallcom_2022_164084
crossref_primary_10_1002_adfm_202103732
crossref_primary_10_1016_j_ijhydene_2023_01_184
crossref_primary_10_1002_adma_202104638
crossref_primary_10_1016_j_ceramint_2024_12_341
crossref_primary_10_1021_acs_inorgchem_4c04651
crossref_primary_10_1002_smll_202105305
crossref_primary_10_1039_D2TA09052J
crossref_primary_10_1016_j_ijhydene_2021_06_041
crossref_primary_10_1016_j_ijhydene_2024_05_108
crossref_primary_10_1021_acs_accounts_2c00143
crossref_primary_10_1016_j_checat_2024_100919
crossref_primary_10_1021_acs_inorgchem_4c02339
crossref_primary_10_1016_j_cej_2023_144487
crossref_primary_10_1002_aesr_202200178
crossref_primary_10_1016_j_apsusc_2024_160621
crossref_primary_10_1016_j_decarb_2024_100062
crossref_primary_10_1002_advs_202301961
crossref_primary_10_1016_j_intermet_2020_106976
crossref_primary_10_1002_aenm_202303730
crossref_primary_10_1039_D1TA01845K
crossref_primary_10_1002_adfm_202413826
crossref_primary_10_1021_acsanm_4c02156
crossref_primary_10_1088_2399_1984_ac1db9
crossref_primary_10_1002_adfm_202402286
crossref_primary_10_1002_advs_202406008
crossref_primary_10_1007_s40820_021_00639_x
crossref_primary_10_1021_acsami_2c09507
crossref_primary_10_1016_j_cej_2024_156863
crossref_primary_10_1039_D1SC01901E
crossref_primary_10_1002_sstr_202300042
crossref_primary_10_1021_acsaem_1c00812
crossref_primary_10_1016_j_ijhydene_2024_07_414
crossref_primary_10_1016_j_cej_2025_161014
crossref_primary_10_1002_aenm_202101937
crossref_primary_10_1016_j_cej_2023_146893
crossref_primary_10_1016_j_jallcom_2021_159675
crossref_primary_10_1002_adfm_202101586
crossref_primary_10_1002_adma_202403151
crossref_primary_10_1021_acssuschemeng_2c06888
crossref_primary_10_1016_j_electacta_2022_139922
crossref_primary_10_1002_advs_202303682
crossref_primary_10_3390_catal13050881
crossref_primary_10_1016_j_jallcom_2020_156896
crossref_primary_10_1039_D4EE04619F
crossref_primary_10_1016_j_ijhydene_2023_05_152
crossref_primary_10_1002_adfm_202102285
crossref_primary_10_3390_catal14080532
crossref_primary_10_1002_smll_202100683
crossref_primary_10_1021_acsnano_3c01720
crossref_primary_10_1016_j_ces_2023_119026
crossref_primary_10_1016_j_ijhydene_2023_04_113
crossref_primary_10_1039_D4EN00181H
crossref_primary_10_1016_j_apsusc_2024_162200
crossref_primary_10_1039_D0NJ03751F
crossref_primary_10_1002_adma_202007377
crossref_primary_10_1016_j_ijhydene_2024_04_196
crossref_primary_10_3390_molecules28196986
crossref_primary_10_1002_adma_202403803
crossref_primary_10_1002_aenm_202200409
crossref_primary_10_1002_adfm_202402699
crossref_primary_10_1039_D1CC04281E
crossref_primary_10_1007_s12598_024_02882_8
crossref_primary_10_1002_chem_202402907
crossref_primary_10_1021_acs_nanolett_4c03218
crossref_primary_10_1039_D3QI00216K
crossref_primary_10_1002_adma_202200088
crossref_primary_10_2174_1573413716666210106095259
crossref_primary_10_1007_s11581_021_04434_x
crossref_primary_10_1016_j_cej_2024_155069
crossref_primary_10_1039_D2TA05356J
crossref_primary_10_1038_s41467_020_19214_w
crossref_primary_10_1002_anie_202405839
crossref_primary_10_1021_acsaem_1c02825
crossref_primary_10_1016_j_cej_2023_147154
crossref_primary_10_1016_j_ijhydene_2023_08_107
crossref_primary_10_1021_acsaenm_3c00288
crossref_primary_10_1002_adfm_202214412
crossref_primary_10_1016_j_coco_2020_100624
crossref_primary_10_1016_j_cej_2021_132012
crossref_primary_10_1002_aenm_202200067
crossref_primary_10_1002_smtd_202400729
crossref_primary_10_1021_acscatal_1c01607
crossref_primary_10_1007_s12274_023_5389_4
crossref_primary_10_1039_D1NR06556D
crossref_primary_10_3390_catal15030278
crossref_primary_10_1016_j_ijhydene_2024_08_513
crossref_primary_10_1016_j_ijhydene_2024_02_310
crossref_primary_10_1002_adma_202208337
crossref_primary_10_1016_j_ijhydene_2024_09_436
crossref_primary_10_1016_j_ijhydene_2023_04_006
crossref_primary_10_1016_j_apcatb_2021_120152
crossref_primary_10_1002_ange_202215594
crossref_primary_10_1088_1361_6528_ac1c25
crossref_primary_10_1016_j_envres_2022_112909
crossref_primary_10_1016_j_apcatb_2023_123187
crossref_primary_10_1039_D1NR00605C
crossref_primary_10_3390_cryst11040340
crossref_primary_10_1016_j_jallcom_2020_158086
crossref_primary_10_1002_adma_202208284
crossref_primary_10_1016_j_nanoen_2023_109161
crossref_primary_10_1016_j_jcis_2023_08_051
crossref_primary_10_1016_j_cej_2021_133240
crossref_primary_10_1021_acsaem_2c00402
crossref_primary_10_1002_cey2_156
crossref_primary_10_1039_D2CC02423C
crossref_primary_10_1002_cey2_79
crossref_primary_10_1039_D1TA09010K
crossref_primary_10_1002_adma_202406711
crossref_primary_10_1002_aenm_202303321
crossref_primary_10_1039_D2TA01701F
crossref_primary_10_1002_ange_202405839
crossref_primary_10_1016_j_cej_2021_131747
crossref_primary_10_1039_D3CY00742A
crossref_primary_10_1039_D4TA05449K
crossref_primary_10_1002_smll_202404598
crossref_primary_10_1016_j_cej_2022_134860
crossref_primary_10_1002_smm2_1204
crossref_primary_10_1002_adfm_202209465
crossref_primary_10_1039_D1TA10163C
crossref_primary_10_1016_j_apcatb_2022_121901
crossref_primary_10_1002_adma_202301836
crossref_primary_10_1016_j_colsurfa_2021_126425
crossref_primary_10_1016_j_cej_2023_145604
crossref_primary_10_1007_s12274_022_4253_2
crossref_primary_10_1021_acsenergylett_1c01827
crossref_primary_10_1039_D2TA07677B
crossref_primary_10_1002_smll_202311929
crossref_primary_10_1002_smll_202104513
crossref_primary_10_1016_j_cej_2022_135847
crossref_primary_10_1002_advs_202203199
crossref_primary_10_1016_j_cej_2021_131084
crossref_primary_10_1002_smtd_202200515
crossref_primary_10_1016_j_cej_2022_138206
crossref_primary_10_1016_j_cej_2023_143097
Cites_doi 10.1038/s41560-019-0407-1
10.1038/s41467-019-08419-3
10.1038/s41560-018-0296-8
10.1038/nchem.1634
10.1038/s41929-018-0037-1
10.1002/anie.201701533
10.1073/pnas.1701562114
10.1021/acsami.8b19148
10.1002/anie.201710556
10.1002/adma.201602441
10.1039/c3ee00045a
10.1103/PhysRevB.54.11169
10.1002/advs.201700464
10.1038/ncomms3169
10.1038/nnano.2016.304
10.1039/C6EE03768B
10.1021/cr1002326
10.1007/s11669-019-00723-1
10.1021/jacs.9b01834
10.1002/adma.201901439
10.1126/sciadv.1501602
10.1038/ncomms7567
10.1103/PhysRevB.59.1758
10.1002/adma.201907214
10.1002/aenm.201901454
10.1038/nmat4738
10.1038/s41570-016-0003
10.1038/nmat4481
10.1007/s12274-014-0591-z
10.1021/acsenergylett.9b00091
10.1063/1.4865107
10.1039/C4CS00448E
10.1021/acsanm.8b00945
10.1038/nchem.2535
10.1038/35068529
10.1021/acsenergylett.9b00845
10.1002/adma.201604080
10.1103/PhysRevLett.115.036402
10.1126/science.1127180
10.1103/PhysRevB.50.17953
10.1073/pnas.1900556116
10.1361/105497199770335893
10.1126/science.1211934
10.1002/adma.201505875
10.1016/j.joule.2017.07.011
10.1039/C4CS00470A
10.1146/annurev-matsci-070115-031739
10.1021/acs.jpclett.5b00306
10.1021/acscatal.8b04566
10.1038/nature14241
10.1021/cs300691m
10.1002/adma.201803144
10.1002/adma.201703311
10.1126/science.1103197
10.1016/0022-5088(63)90068-7
10.1038/ncomms13638
10.1016/0013-4686(84)85008-2
10.1126/science.aad4998
10.1039/c2ee22146b
10.1038/nature11475
10.1021/acs.chemrev.9b00248
10.1021/jacs.6b09351
10.1021/acs.accounts.7b00616
10.1002/9783527616763.ch1
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-020-16769-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_e500f4c1120a484093065e76dd148096
PMC7287083
10_1038_s41467_020_16769_6
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c583t-766400cbdb88d510fc4afce99f18b0a2ec540e9d2db49d401aaec7f07ca3252b3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:14:07 EDT 2025
Thu Aug 21 14:09:32 EDT 2025
Fri Jul 11 03:58:29 EDT 2025
Wed Aug 13 05:11:26 EDT 2025
Tue Jul 01 04:08:58 EDT 2025
Thu Apr 24 22:58:05 EDT 2025
Fri Feb 21 02:40:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-766400cbdb88d510fc4afce99f18b0a2ec540e9d2db49d401aaec7f07ca3252b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6515-441X
0000-0002-7327-3582
0000-0002-6414-7015
0000-0003-0660-596X
0000-0002-9910-1463
0000-0002-8227-9695
0000-0002-1094-7826
0000-0002-1995-7887
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-16769-6
PMID 32522988
PQID 2412149225
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_e500f4c1120a484093065e76dd148096
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7287083
proquest_miscellaneous_2412211631
proquest_journals_2412149225
crossref_primary_10_1038_s41467_020_16769_6
crossref_citationtrail_10_1038_s41467_020_16769_6
springer_journals_10_1038_s41467_020_16769_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-10
PublicationDateYYYYMMDD 2020-06-10
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Martin-Sabi (CR32) 2018; 1
Lu (CR40) 2015; 6
Hu (CR30) 2017; 1
Mahmood (CR10) 2018; 5
Erlebacher, Aziz, Karma, Dimitrov, Sieradzki (CR39) 2001; 410
Kresse, Furthmüller (CR61) 1996; 54
Sun (CR64) 2016; 8
An (CR53) 2019; 9
Lang (CR54) 2013; 4
Davydov, Kattner (CR36) 1999; 20
Wu, Xia, Yu, Yu, Lou (CR26) 2015; 6
Mahmood (CR8) 2017; 12
Chu, Majumdar (CR1) 2012; 488
Zhou (CR45) 2017; 29
Chen (CR46) 2017; 29
Panda, Menezes, Zheng, Orthmann, Driess (CR47) 2019; 4
Liu, Yin, Hu, OuYang (CR37) 2019; 40
Ma (CR28) 2017; 10
Shi (CR41) 2020; 2020
Jiao, Zheng, Jaroniec, Qiao (CR15) 2015; 44
Gong, Dai (CR57) 2015; 8
CR7
Zhu, Hu, Zhao, Lee, Wong (CR25) 2020; 120
Staszak-Jirkovský (CR31) 2016; 15
Vesborg, Seger, Chorkendorff (CR19) 2015; 6
Tao (CR49) 2019; 141
Zheng, Jiao, Vasileff, Qiao (CR12) 2018; 57
Zou, Zhang (CR13) 2015; 44
Zheng, Sheng, Zhuang, Xu, Yan (CR22) 2016; 2
Pi (CR44) 2017; 56
Roger, Shipman, Symes (CR6) 2017; 1
Tan (CR29) 2016; 28
Kibsgaard, Chorkendorff (CR9) 2019; 4
Yin (CR27) 2016; 138
Mathew, Sundararaman, Letchworth-Weaver, Arias, Hennig (CR66) 2014; 140
Yao (CR34) 2020; 32
Brown, Mahmood, Man, Turner (CR50) 1984; 29
Sheng, Myint, Chen, Yan (CR11) 2013; 6
Kresse, Joubert (CR62) 1999; 59
Röẞner, Armbrüster (CR16) 2019; 9
McKone, Sadtler, Werlang, Lewis, Gray (CR52) 2013; 3
Quinn, Hume-Rothery (CR42) 1963; 5
Mallouk (CR3) 2013; 5
McCue, Benn, Caskey, Erlebacher (CR38) 2016; 46
Blöchl (CR65) 1994; 50
Tang (CR56) 2017; 29
Sun, Ruzsinszky, Perdew (CR63) 2015; 115
Subbaraman (CR23) 2011; 334
Chen (CR43) 2019; 11
Norskv., Christensen (CR14) 2006; 312
Zhou (CR20) 2017; 114
Tang, Wang, Zhang (CR59) 2018; 51
Cheng (CR21) 2016; 7
Liu (CR33) 2018; 30
Gao (CR55) 2018; 1
Huang (CR35) 2019; 31
Turner (CR2) 2004; 305
Lu (CR24) 2019; 10
Zhu, Du, Eychmüller, Lin (CR60) 2015; 115
Dinh (CR48) 2019; 4
Walter (CR4) 2010; 110
Kuang (CR58) 2019; 116
Stamenkovic, Strmcnik, Lopes, Markovic (CR5) 2017; 16
Seh (CR18) 2017; 355
Yao (CR17) 2019; 4
Xiao (CR51) 2012; 5
C Panda (16769_CR47) 2019; 4
HB Tao (16769_CR49) 2019; 141
YY Ma (16769_CR28) 2017; 10
BZ Lu (16769_CR24) 2019; 10
YW Tan (16769_CR29) 2016; 28
TE Mallouk (16769_CR3) 2013; 5
RQ Yao (16769_CR17) 2019; 4
YY Chen (16769_CR46) 2017; 29
J Yin (16769_CR27) 2016; 138
XY Lang (16769_CR54) 2013; 4
G Kresse (16769_CR62) 1999; 59
Y Kuang (16769_CR58) 2019; 116
YC Pi (16769_CR44) 2017; 56
A Davydov (16769_CR36) 1999; 20
TJ Quinn (16769_CR42) 1963; 5
JR McKone (16769_CR52) 2013; 3
LL Huang (16769_CR35) 2019; 31
PE Blöchl (16769_CR65) 1994; 50
G Kresse (16769_CR61) 1996; 54
SJ Liu (16769_CR37) 2019; 40
J Erlebacher (16769_CR39) 2001; 410
C Zhu (16769_CR60) 2015; 115
HB Wu (16769_CR26) 2015; 6
Q Lu (16769_CR40) 2015; 6
J Zheng (16769_CR22) 2016; 2
XX Zou (16769_CR13) 2015; 44
ZW Seh (16769_CR18) 2017; 355
I Roger (16769_CR6) 2017; 1
YM An (16769_CR53) 2019; 9
L Zhou (16769_CR45) 2017; 29
C Tang (16769_CR56) 2017; 29
J Staszak-Jirkovský (16769_CR31) 2016; 15
L Röẞner (16769_CR16) 2019; 9
N Mahmood (16769_CR10) 2018; 5
Y Jiao (16769_CR15) 2015; 44
J Sun (16769_CR63) 2015; 115
J Hu (16769_CR30) 2017; 1
M Gong (16769_CR57) 2015; 8
M Martin-Sabi (16769_CR32) 2018; 1
B Liu (16769_CR33) 2018; 30
JA Turner (16769_CR2) 2004; 305
CT Dinh (16769_CR48) 2019; 4
S Chu (16769_CR1) 2012; 488
PCK Vesborg (16769_CR19) 2015; 6
HQ Zhou (16769_CR20) 2017; 114
RQ Yao (16769_CR34) 2020; 32
I McCue (16769_CR38) 2016; 46
NC Cheng (16769_CR21) 2016; 7
16769_CR7
JK Norskv. (16769_CR14) 2006; 312
VR Stamenkovic (16769_CR5) 2017; 16
Y Zheng (16769_CR12) 2018; 57
MG Walter (16769_CR4) 2010; 110
R Subbaraman (16769_CR23) 2011; 334
J Kibsgaard (16769_CR9) 2019; 4
J Zhu (16769_CR25) 2020; 120
J Mahmood (16769_CR8) 2017; 12
C Tang (16769_CR59) 2018; 51
H Shi (16769_CR41) 2020; 2020
J Sun (16769_CR64) 2016; 8
J Chen (16769_CR43) 2019; 11
WC Sheng (16769_CR11) 2013; 6
DE Brown (16769_CR50) 1984; 29
M Gao (16769_CR55) 2018; 1
L Xiao (16769_CR51) 2012; 5
K Mathew (16769_CR66) 2014; 140
References_xml – volume: 4
  start-page: 430
  year: 2019
  end-page: 433
  ident: CR9
  article-title: Considerations for the scaling-up of water splitting catalysts
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0407-1
– volume: 10
  year: 2019
  ident: CR24
  article-title: Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08419-3
– volume: 4
  start-page: 107
  year: 2019
  end-page: 114
  ident: CR48
  article-title: Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0296-8
– volume: 5
  start-page: 362
  year: 2013
  end-page: 363
  ident: CR3
  article-title: Water electrolysis: divide and conquer
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1634
– volume: 1
  start-page: 208
  year: 2018
  end-page: 213
  ident: CR32
  article-title: Redox tuning the Weakley-type polyoxometalate archetype for the oxygen evolution reaction
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0037-1
– volume: 56
  start-page: 4502
  year: 2017
  end-page: 4506
  ident: CR44
  article-title: Trimetallic oxyhydroxide coralloids for efficient oxygen evolution electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201701533
– volume: 114
  start-page: 5607
  year: 2017
  end-page: 5611
  ident: CR20
  article-title: Highly active catalyst derived from a 3D foam of Fe(PO ) /Ni P for extremely efficient water oxidation
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1701562114
– volume: 11
  start-page: 9002
  year: 2019
  end-page: 9010
  ident: CR43
  article-title: Nesting Co Mo binary alloy nanoparticles onto molybdenum oxide nanosheet arrays for superior hydrogen evolution reaction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b19148
– volume: 57
  start-page: 7568
  year: 2018
  end-page: 7579
  ident: CR12
  article-title: The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201710556
– volume: 29
  start-page: 1602441
  year: 2017
  ident: CR56
  article-title: Fe-doped CoP nanoarray: a monolithic multifunctional catalyst for highly efficient hydrogen generation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602441
– volume: 6
  start-page: 1509
  year: 2013
  end-page: 1512
  ident: CR11
  article-title: Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee00045a
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR61
  article-title: Efficient iterative schemes for ab inito total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 5
  start-page: 1700464
  year: 2018
  ident: CR10
  article-title: Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenge, and prospective solutions
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700464
– volume: 4
  year: 2013
  ident: CR54
  article-title: Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3169
– volume: 12
  start-page: 441
  year: 2017
  end-page: 446
  ident: CR8
  article-title: An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.304
– volume: 10
  start-page: 788
  year: 2017
  end-page: 798
  ident: CR28
  article-title: Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03768B
– volume: 110
  start-page: 6446
  year: 2010
  end-page: 6473
  ident: CR4
  article-title: Solar water splitting cells
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002326
– volume: 115
  start-page: 8896
  year: 2015
  end-page: 8943
  ident: CR60
  article-title: Engineering ordered and nonordered porous noble metal nanostructures: synthesis, assembly, and their applications in electrochemistry
  publication-title: Chem. Res.
– volume: 40
  start-page: 275
  year: 2019
  end-page: 284
  ident: CR37
  article-title: Phase equilibria of the Co-Cu-Mo system at 900 and 1100 °C
  publication-title: J. Phase Equilib. Diffus.
  doi: 10.1007/s11669-019-00723-1
– volume: 141
  start-page: 13803
  year: 2019
  end-page: 13811
  ident: CR49
  article-title: Revealing energetics of surface oxygen redox from kinetic fingerprint in oxygen electrocatalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b01834
– volume: 31
  start-page: 1901439
  year: 2019
  ident: CR35
  article-title: Zirconium-regulation-induced bifunctionality in 3D cobalt-iron oxide nanosheets for overall water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901439
– volume: 2
  start-page: e1501602
  year: 2016
  ident: CR22
  article-title: Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501602
– volume: 6
  year: 2015
  ident: CR40
  article-title: Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7567
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: CR62
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 32
  start-page: 1907214
  year: 2020
  ident: CR34
  article-title: Flexible Co-Mo-N/Au electrodes with a hierarchical nanoporous architecture as highly efficient electrocatalysts for oxygen evolution reaction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907214
– volume: 9
  start-page: 1901454
  year: 2019
  ident: CR53
  article-title: One-step controllable synthesis of catalytic Ni Mo/MoO /Cu nanointerfaces for highly efficient water reduction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901454
– volume: 16
  start-page: 57
  year: 2017
  end-page: 69
  ident: CR5
  article-title: Energy and fuels from electrochemical interfaces
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4738
– volume: 1
  start-page: 0003
  year: 2017
  ident: CR6
  article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-016-0003
– volume: 15
  start-page: 197
  year: 2016
  end-page: 203
  ident: CR31
  article-title: Design of active and stable Co-Mo-S chalcogels as pH-universal catalysts for the hydrogen evolution reaction
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4481
– volume: 8
  start-page: 23
  year: 2015
  end-page: 39
  ident: CR57
  article-title: A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0591-z
– volume: 4
  start-page: 747
  year: 2019
  end-page: 754
  ident: CR47
  article-title: In situ formation of nanostructured core-shell Cu N-CuO to promote alkaline water electrolysis
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00091
– volume: 140
  start-page: 084106
  year: 2014
  ident: CR66
  article-title: Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865107
– volume: 44
  start-page: 5148
  year: 2015
  end-page: 5180
  ident: CR13
  article-title: Noble metal-free hydrogen evolution catalysts for water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00448E
– volume: 1
  start-page: 4703
  year: 2018
  end-page: 4715
  ident: CR55
  article-title: Enhanced peroxidase-like activity of Mo -doped Co O nanotubes for ultrasensitive and colorimetric -cysteine detection
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b00945
– volume: 8
  start-page: 831
  year: 2016
  end-page: 836
  ident: CR64
  article-title: Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2535
– volume: 410
  start-page: 450
  year: 2001
  end-page: 453
  ident: CR39
  article-title: Evolution of nanoporosity in dealloying
  publication-title: Nature
  doi: 10.1038/35068529
– volume: 4
  start-page: 1379
  year: 2019
  end-page: 1386
  ident: CR17
  article-title: Nanoporous palladium-silver surface alloys as efficient and pH-universal catalysts for the hydrogen evolution reaction
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00845
– volume: 29
  start-page: 1604080
  year: 2017
  ident: CR45
  article-title: Hierarchical CoNi-sulfide nanosheet arrays derived from layered double hydroxides toward efficient hydrazine electrooxidation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604080
– volume: 115
  start-page: 036402
  year: 2015
  ident: CR63
  article-title: Strongly constrained and appropriately normed semilocal density functional
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.036402
– volume: 312
  start-page: 1322
  year: 2006
  end-page: 1323
  ident: CR14
  article-title: Toward efficient hydrogen production at surfaces
  publication-title: Science
  doi: 10.1126/science.1127180
– volume: 50
  start-page: 17953
  year: 1994
  ident: CR65
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 116
  start-page: 6624
  year: 2019
  end-page: 6629
  ident: CR58
  article-title: Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1900556116
– volume: 20
  start-page: 5
  year: 1999
  end-page: 16
  ident: CR36
  article-title: Thermodynamic assessment of the Co-Mo system
  publication-title: J. Phase Equilib. Diffus.
  doi: 10.1361/105497199770335893
– volume: 334
  start-page: 1256
  year: 2011
  end-page: 1260
  ident: CR23
  article-title: Enhancing hydrogen evolution activity in water splitting by tailoring Li -Ni(OH) -Pt interfaces
  publication-title: Science
  doi: 10.1126/science.1211934
– volume: 28
  start-page: 2951
  year: 2016
  end-page: 2955
  ident: CR29
  article-title: 3D nanoporous metal phosphides toward high-efficiency electrochemical hydrogen production
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505875
– volume: 1
  start-page: 383
  year: 2017
  end-page: 393
  ident: CR30
  article-title: Nanohybridization of MoS with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media
  publication-title: Joule
  doi: 10.1016/j.joule.2017.07.011
– volume: 44
  start-page: 2060
  year: 2015
  end-page: 2086
  ident: CR15
  article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00470A
– volume: 46
  start-page: 1
  year: 2016
  end-page: 24
  ident: CR38
  article-title: Dealloying and dealloyed materials
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070115-031739
– volume: 6
  start-page: 951
  year: 2015
  end-page: 957
  ident: CR19
  article-title: Recent development in hydrogen evolution reaction catalysts and their practical implementation
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00306
– volume: 9
  start-page: 2018
  year: 2019
  end-page: 2062
  ident: CR16
  article-title: Electrochemical energy conversion on intermetallic compounds: a review
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04566
– volume: 6
  year: 2015
  ident: CR26
  article-title: Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production
  publication-title: Nat. Commun.
  doi: 10.1038/nature14241
– volume: 3
  start-page: 166
  year: 2013
  end-page: 169
  ident: CR52
  article-title: Ni-Mo nanopowders for efficient electrochemical hydrogen evolution
  publication-title: ACS Catal.
  doi: 10.1021/cs300691m
– volume: 30
  start-page: 1803144
  year: 2018
  ident: CR33
  article-title: Iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803144
– volume: 29
  start-page: 1703311
  year: 2017
  ident: CR46
  article-title: Self-templated fabrication of MoNi /MoO nanorod arrays with dual active components for highly efficient hydrogen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703311
– volume: 2020
  start-page: 2987234
  year: 2020
  ident: CR41
  article-title: Intermetallic Cu Zr clusters anchored on hierarchical nanoporous copper as efficient catalysts for hydrogen evolution reaction
  publication-title: Research
– volume: 305
  start-page: 972
  year: 2004
  end-page: 974
  ident: CR2
  article-title: Sustainable hydrogen production
  publication-title: Science
  doi: 10.1126/science.1103197
– volume: 5
  start-page: 314
  year: 1963
  end-page: 324
  ident: CR42
  article-title: The equilibrium diagram of the system molybdenum-cobalt
  publication-title: J. Less Common Met.
  doi: 10.1016/0022-5088(63)90068-7
– volume: 7
  year: 2016
  ident: CR21
  article-title: Platinum single-atom and cluster catalysis of the hydrogen evolution reaction
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13638
– volume: 29
  start-page: 1551
  year: 1984
  end-page: 1556
  ident: CR50
  article-title: Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solution
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(84)85008-2
– volume: 355
  start-page: eaad4998
  year: 2017
  ident: CR18
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
  doi: 10.1126/science.aad4998
– ident: CR7
– volume: 5
  start-page: 7869
  year: 2012
  end-page: 7871
  ident: CR51
  article-title: First implementation of alkaline polymer electrolyte water electrolysis working only with pure water
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22146b
– volume: 488
  start-page: 294
  year: 2012
  end-page: 303
  ident: CR1
  article-title: Opportunities and challenges for a sustainable energy future
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 120
  start-page: 851
  year: 2020
  end-page: 918
  ident: CR25
  article-title: Recent advances in electrocatalytic hydrogen evolution using nanoparticles
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00248
– volume: 138
  start-page: 14546
  year: 2016
  end-page: 14549
  ident: CR27
  article-title: Ni-C-N nanosheets as catalyst for hydrogen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09351
– volume: 51
  start-page: 881
  year: 2018
  end-page: 889
  ident: CR59
  article-title: Multiscale principles to boost reactivity in gas-involving energy electrocatalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00616
– volume: 3
  start-page: 166
  year: 2013
  ident: 16769_CR52
  publication-title: ACS Catal.
  doi: 10.1021/cs300691m
– volume: 15
  start-page: 197
  year: 2016
  ident: 16769_CR31
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4481
– volume: 10
  year: 2019
  ident: 16769_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08419-3
– volume: 4
  start-page: 107
  year: 2019
  ident: 16769_CR48
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0296-8
– volume: 10
  start-page: 788
  year: 2017
  ident: 16769_CR28
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03768B
– volume: 115
  start-page: 036402
  year: 2015
  ident: 16769_CR63
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.036402
– volume: 6
  year: 2015
  ident: 16769_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/nature14241
– volume: 1
  start-page: 383
  year: 2017
  ident: 16769_CR30
  publication-title: Joule
  doi: 10.1016/j.joule.2017.07.011
– volume: 9
  start-page: 1901454
  year: 2019
  ident: 16769_CR53
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901454
– volume: 50
  start-page: 17953
  year: 1994
  ident: 16769_CR65
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 8
  start-page: 831
  year: 2016
  ident: 16769_CR64
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2535
– volume: 32
  start-page: 1907214
  year: 2020
  ident: 16769_CR34
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907214
– volume: 31
  start-page: 1901439
  year: 2019
  ident: 16769_CR35
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901439
– volume: 4
  year: 2013
  ident: 16769_CR54
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3169
– volume: 40
  start-page: 275
  year: 2019
  ident: 16769_CR37
  publication-title: J. Phase Equilib. Diffus.
  doi: 10.1007/s11669-019-00723-1
– volume: 1
  start-page: 4703
  year: 2018
  ident: 16769_CR55
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b00945
– volume: 29
  start-page: 1604080
  year: 2017
  ident: 16769_CR45
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604080
– volume: 4
  start-page: 747
  year: 2019
  ident: 16769_CR47
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00091
– volume: 16
  start-page: 57
  year: 2017
  ident: 16769_CR5
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4738
– volume: 120
  start-page: 851
  year: 2020
  ident: 16769_CR25
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00248
– volume: 28
  start-page: 2951
  year: 2016
  ident: 16769_CR29
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505875
– volume: 51
  start-page: 881
  year: 2018
  ident: 16769_CR59
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00616
– volume: 355
  start-page: eaad4998
  year: 2017
  ident: 16769_CR18
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 9
  start-page: 2018
  year: 2019
  ident: 16769_CR16
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04566
– volume: 8
  start-page: 23
  year: 2015
  ident: 16769_CR57
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0591-z
– volume: 57
  start-page: 7568
  year: 2018
  ident: 16769_CR12
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201710556
– volume: 2
  start-page: e1501602
  year: 2016
  ident: 16769_CR22
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501602
– volume: 5
  start-page: 7869
  year: 2012
  ident: 16769_CR51
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22146b
– volume: 29
  start-page: 1703311
  year: 2017
  ident: 16769_CR46
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703311
– ident: 16769_CR7
  doi: 10.1002/9783527616763.ch1
– volume: 5
  start-page: 1700464
  year: 2018
  ident: 16769_CR10
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700464
– volume: 110
  start-page: 6446
  year: 2010
  ident: 16769_CR4
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002326
– volume: 6
  start-page: 1509
  year: 2013
  ident: 16769_CR11
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee00045a
– volume: 4
  start-page: 1379
  year: 2019
  ident: 16769_CR17
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00845
– volume: 6
  start-page: 951
  year: 2015
  ident: 16769_CR19
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00306
– volume: 6
  year: 2015
  ident: 16769_CR40
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7567
– volume: 115
  start-page: 8896
  year: 2015
  ident: 16769_CR60
  publication-title: Chem. Res.
– volume: 334
  start-page: 1256
  year: 2011
  ident: 16769_CR23
  publication-title: Science
  doi: 10.1126/science.1211934
– volume: 11
  start-page: 9002
  year: 2019
  ident: 16769_CR43
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b19148
– volume: 29
  start-page: 1602441
  year: 2017
  ident: 16769_CR56
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602441
– volume: 488
  start-page: 294
  year: 2012
  ident: 16769_CR1
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 56
  start-page: 4502
  year: 2017
  ident: 16769_CR44
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201701533
– volume: 140
  start-page: 084106
  year: 2014
  ident: 16769_CR66
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865107
– volume: 4
  start-page: 430
  year: 2019
  ident: 16769_CR9
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0407-1
– volume: 54
  start-page: 11169
  year: 1996
  ident: 16769_CR61
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 59
  start-page: 1758
  year: 1999
  ident: 16769_CR62
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 12
  start-page: 441
  year: 2017
  ident: 16769_CR8
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.304
– volume: 44
  start-page: 5148
  year: 2015
  ident: 16769_CR13
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00448E
– volume: 312
  start-page: 1322
  year: 2006
  ident: 16769_CR14
  publication-title: Science
  doi: 10.1126/science.1127180
– volume: 305
  start-page: 972
  year: 2004
  ident: 16769_CR2
  publication-title: Science
  doi: 10.1126/science.1103197
– volume: 30
  start-page: 1803144
  year: 2018
  ident: 16769_CR33
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803144
– volume: 2020
  start-page: 2987234
  year: 2020
  ident: 16769_CR41
  publication-title: Research
– volume: 1
  start-page: 0003
  year: 2017
  ident: 16769_CR6
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-016-0003
– volume: 116
  start-page: 6624
  year: 2019
  ident: 16769_CR58
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1900556116
– volume: 138
  start-page: 14546
  year: 2016
  ident: 16769_CR27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09351
– volume: 1
  start-page: 208
  year: 2018
  ident: 16769_CR32
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0037-1
– volume: 141
  start-page: 13803
  year: 2019
  ident: 16769_CR49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b01834
– volume: 44
  start-page: 2060
  year: 2015
  ident: 16769_CR15
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00470A
– volume: 5
  start-page: 314
  year: 1963
  ident: 16769_CR42
  publication-title: J. Less Common Met.
  doi: 10.1016/0022-5088(63)90068-7
– volume: 46
  start-page: 1
  year: 2016
  ident: 16769_CR38
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070115-031739
– volume: 410
  start-page: 450
  year: 2001
  ident: 16769_CR39
  publication-title: Nature
  doi: 10.1038/35068529
– volume: 5
  start-page: 362
  year: 2013
  ident: 16769_CR3
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1634
– volume: 114
  start-page: 5607
  year: 2017
  ident: 16769_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1701562114
– volume: 7
  year: 2016
  ident: 16769_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13638
– volume: 20
  start-page: 5
  year: 1999
  ident: 16769_CR36
  publication-title: J. Phase Equilib. Diffus.
  doi: 10.1361/105497199770335893
– volume: 29
  start-page: 1551
  year: 1984
  ident: 16769_CR50
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(84)85008-2
SSID ssj0000391844
Score 2.6612954
Snippet Developing robust nonprecious electrocatalysts towards hydrogen/oxygen evolution reactions is crucial for widespread use of electrochemical water splitting in...
Electrochemical water splitting is an attractive energy conversion technology, but it usually suffers from low efficiency. Here, the authors report...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2940
SubjectTerms 140/133
140/146
147/135
147/137
147/143
639/301/299/886
639/4077/909
639/638/77/884
Catalysis
Catalysts
Copper
Electrocatalysts
Electrochemistry
Energy conversion
Energy conversion efficiency
Evolution
Humanities and Social Sciences
Hydrogen
Hydrogen evolution reactions
Hydrogen production
Hydrogen-based energy
Hydroxylation
Intermediates
Ion transport
multidisciplinary
Noble metals
Oxidation
Oxygen
Oxygen evolution reactions
Science
Science (multidisciplinary)
Splitting
Water splitting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA8yEHwR5xSrc2Tgm5alTZqkj3M4hjBfdLC3kI8THFzby-0dcv8A_29P0t67daC--NqkTdrzkd9pTn6HkHe-qaSuHSuj06EUICSaVHSl4K71HgGACuk08uUXeXElPl831_dKfaWcsJEeePxwJ9AwFoVHWMCsSNFIKnUOSoaAQB7xd_K-uObdC6ayD-Ythi5iOiXDuD4ZRPYJKVqqUlpnKWcrUSbsn6HMhzmSDzZK8_pz_ow8nYAjPR0nvE8eQfecPB5LSW4OyK-vy75DoAcYyS82dIDM6Q2BJj6I1Q9AjL248fSs55c9TWdKaGe7HsE39qe-Xy5hRe1AU5IGymoBdKqPk3_vbIb1QBHd0kRujE-HzDuBU6Y_cYwVHRDJ5vzpF-Tq_NO3s4tyKrFQ-kbzdamkRCP2LjitA5pn9MJGD20bK-2YrcEjooM21MGJNmAsZi14FZnyltdN7fhLstf1HbwilHsJLlZRMd8KEWrXNspJdCEuyKidLUi1_dzGT_zjqQzGwuR9cK7NKCKDIjJZREYW5P3unuXIvvHX3h-TFHc9E3N2voD6ZCZ9Mv_Sp4IcbnXATOY8GIQ5NYaS6PsKcrxrRkNMuyujaHMfjKYlrwqiZrozm9C8pbv5nim9Vdpv1rwgH7Zadjf4n1_49f944TfkSZ2sItVjYodkb726hbcItNbuKNvUb-yPJiY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ikCBRmJG0RNYsdxTggqlgqpXKBSb5afUGmbhGQR2h_A_2bG8W6VSvQaO4mTmbG_8Yy_IeSNrUshK1PkwUiXc88FmFQwOWemtRYAQOPwNPLpV3Fyxr-c1-dpw21KaZW7OTFO1K63uEd-BCtNBWge1O_98CvHqlEYXU0lNG6TOyWsNJjSJVef93ssyH4uOU9nZQomjyYeZwb0mUpM7szFYj2KtP0LrHk9U_JauDSuQqsH5H6Cj_TDLO-H5JbvHpG7c0HJ7WPy99vQdwD3PPjz6y2dfGT29o4iK8R46QFpry8sPe7ZaU_xZAntdNcDBIf-1PbD4EeqJ4qpGiCxtaepSk7c5NlOm4kCxqVIcQxP95F9AoZM_8A7RjoBno1Z1E_I2erT9-OTPBVayG0t2SZvhABTtsYZKR0YabBcB-vbNpTSFLryFnCdb13lDG8deGRae9uEorGaVXVl2FNy0PWdf0Yos8KbUIamsC3nrjJt3RgBE4lxIkijM1LufreyiYUci2GsVYyGM6lmESkQkYoiUiIjb_f3DDMHx429P6IU9z2RPzte6McfKpmj8nVRBG4BbBaao48LnlPtG-EcuIfg1WXkcKcDKhn1pK5UMCOv981gjhhjmUUb-4BPLViZkWahO4sBLVu6i5-R2LvBqLNkGXm307Krl___g5_fPNYX5F6F-o71lopDcrAZf_uXAKQ25lW0ln_zuh9s
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3ShEIvIekHdZIWFXprTW1LluTjNjSEhfSSBnIT1lcb2NqLvaXsD-j_7ki2tzi0hVztsa3dmZHfs0ZvAN6aMuey0FnqtbQpc4xjSnmdMqorYxAACBt2I1995pc3bHlb3u5BMe2FiUX7UdIyTtNTddiHnsWUDmQnD1WZKX8EB0GqHWP7YLFYXi93X1aC5rlkbNwhk1H5l4tnb6Eo1j9DmPfrI-8tksZ3z8URHI6gkSyGYR7DnmuewuOhjeT2Gfy6XrcNgjyHLH61Jb2Let7OkqAF0X13iK9Xd4act_SqJWE_CWnqpkXgjfbEtOu160jdk1CggX5aOTL2xomfdrb9pieIbEkQNsa7u6g5gUMmP_EZHekRxcba6edwc_Hpy_llOrZXSE0p6SYVnGMCG221lBZT0xtWe-OqyudSZ3XhDKI5V9nCalZZ5GF17YzwmTA1LcpC0xew37SNewmEGu60z73ITMWYLXRVCs1x-tCWe6nrBPLp71Zm1B4PLTBWKq6BU6kGFyl0kYouUjyBd7tr1oPyxn-tPwYv7iyDanY80HZf1RhFypVZ5plBiJnVLDBb5EulE9xaJIXI5RI4m2JAjancK4Q4BdJInPcSeLM7jUkYVlYG10YbZNKc5gmIWezMBjQ_09x9i3LeIqw1S5rA-ynK_jz83z_45GHmp_CkCPEfui5lZ7C_6X64VwinNvr1mD-_AWnSHrU
  priority: 102
  providerName: Springer Nature
Title Spontaneously separated intermetallic Co3Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting
URI https://link.springer.com/article/10.1038/s41467-020-16769-6
https://www.proquest.com/docview/2412149225
https://www.proquest.com/docview/2412211631
https://pubmed.ncbi.nlm.nih.gov/PMC7287083
https://doaj.org/article/e500f4c1120a484093065e76dd148096
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_uA8EX8ROjZ1nBN40m2c3u5kGkV64ehR7iWehbyH5ED2JSk4r2D_D_dnaTVnqc4ksKySTZ7szs_n6Z3RmAFzqNuUxUFJZKmpBZxtGlShUyqjKtEQAI43Yjzy_4-YLNlunyALbljoYO7G6kdq6e1KKtXv_8tnmHDv-23zIu33TMu7sjQrFbsRnyQzjGmUm4igbzAe77kZlmSGhcoDmJWByiAB320dz8mL25yqf038Oh11dRXgul-hlqehfuDNCSjHtbuAcHtr4Pt_pik5sH8Oty1dQIBS1y_WpDOuuzfltDXMaI9qvFDqiuNJk0dN4Qt-uE1EXdYM-gPNHNamVbUnTELeNAbVaWDBV0_AegTbfuCOJf4tIf49Otz0yBTSY_8B0t6RDr-hXWD2ExPfs0OQ-HIgyhTiVdh4JzdHOtjJLSoAOXmhWltllWxlJFRWI1Yj6bmcQolhlka0VhtSgjoQuapImij-Cobmr7GAjV3KoyLkWkM8ZMorJUKI6DjDK8lKoIIN52d66HDOWuUEaV-0g5lXmvohxVlHsV5TyAl7t7Vn1-jn9Knzot7iRdbm1_omk_54Or5jaNopJpBKJRwRz_RVaVWsGNQeqIjC-Ak60N5Ft7zdHcEiSbODoG8Hx3GV3VxV961XoZ5NucxgGIPdvZa9D-lfrqi0_6LVxEWtIAXm2t7M_L__6Hn_xHY57C7cQZvSvIFJ3A0br9bp8h0lqrERyKpcCjnL4fwfF4PLuc4e_p2cWHj3h2wicj_w1j5N3sN0rJLUI
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMNFDASnCBqEjuOc0AICsuWdnuhlXoz8SNQaUlCslW1P4C_w29k7CRbbSV66zVxEu_ON-Nv7HkAvNJpzEWiorBUwoTMMo4qVaqQUZVrjQQgMy4beXbIp8fs60l6sgF_x1wYF1Y52kRvqE2t3R75Dq40CbJ5hN_75nfouka509WxhUYPi327PEeXrXu39wnl-zpJJp-Pdqfh0FUg1KmgizDjHHGrlVFCGERkqVlRapvnZSxUVCRWI4mxuUmMYrlB96MorM7KKNMFTdJEUXzvDbjJKK7kLjN98mW1p-OqrQvGhtyciIqdjnlL5Hy02AWThnxt_fNtAta47eXIzEvHs37Vm9yDuwNdJR96fN2HDVs9gFt9A8vlQ_jzrakrpJe2PuvmS9JZX0ncGuKqULS_LDL7-akmuzWd1cRlspCqqGqk_Die6LppbEuKjrjQEETI3JKhK4_fVFp2i44gpyaupDK-3fpqFzhlco7faEmH_NlHbT-C42sRwWPYrOrKbgGhmltVxmUW6Zwxk6g8zRRHw6UML4UqAojHv1vqoeq5a74xl_70nQrZi0iiiKQXkeQBvFk90_Q1P64c_dFJcTXS1ev2F-r2hxzUX9o0ikqmkdxGBXM-NXpqqc24MeiOohcZwPaIATkYkU5eQD6Al6vbqP7uTKcXrR-DPjyncQDZGnbWJrR-pzr96QuJZ-6UW9AA3o4ou_j4_3_wk6vn-gJuT49mB_Jg73D_KdxJHPZdr6doGzYX7Zl9hiRuoZ57zSHw_bpV9R9aH13U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE-RUsBIcIJo83Ac54AQfaxaSlcVUKk3N35BpW2ybLaq9gfwp_h1jJ1kq61Eb70mTuLdefj7POMZgLcqixlPZBRayXVIDWVoUlaGNJWFUggAcu1OIx-O2d4x_XKSnazB3_4sjEur7H2id9S6Vm6PfIgrTYJoHtVvaLu0iKOd0afp79B1kHKR1r6dRqsiB2ZxifSt-bi_g7J-lySj3R_be2HXYSBUGU_nYc4Y6rCSWnKuUTutoqVVpihszGVUJkYhoDGFTrSkhUYqUpZG5TbKVZkmWSJTfO8dWM8dKxrA-tbu-OjbcofH1V7nlHYndaKUDxvq_ZJjbLFLLQ3ZymromwasIN3reZrXgrV-DRw9hAcdeCWfW217BGumegx323aWiyfw5_u0rhBsmvqimSxIY3xdcaOJq0kxOzeI8ydnimzX6WFN3LkWUpVVjQQAxxNVT6dmRsqGuEQR1JeJIV2PHr_FtGjmDUGETVyBZXy78bUvcMrkEr8xIw2iaZ_D_RSOb0UIz2BQ1ZV5DiRVzEgb2zxSBaU6kUWWS4ZuTGpmuSwDiPu_W6iuBrprxTERPhafctGKSKCIhBeRYAG8Xz4zbSuA3Dh6y0lxOdJV7_YX6tlP0TkDYbIoslQh1I1K6hg28rbM5ExrJKfIKQPY7HVAdC6lEVcGEMCb5W10Bi7C04rWj0FGz9I4gHxFd1YmtHqnOvvly4rnLubN0wA-9Fp29fH__-CNm-f6Gu6hmYqv--ODF3A_carvGj9FmzCYzy7MS0R0c_mqMx0Cp7dtrf8APNRjZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spontaneously+separated+intermetallic+Co3Mo+from+nanoporous+copper+as+versatile+electrocatalysts+for+highly+efficient+water+splitting&rft.jtitle=Nature+communications&rft.au=Shi%2C+Hang&rft.au=Zhou%2C+Yi-Tong&rft.au=Yao%2C+Rui-Qi&rft.au=Wan%2C+Wu-Bin&rft.date=2020-06-10&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft.spage=2940&rft_id=info:doi/10.1038%2Fs41467-020-16769-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon