Spontaneously separated intermetallic Co3Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting
Developing robust nonprecious electrocatalysts towards hydrogen/oxygen evolution reactions is crucial for widespread use of electrochemical water splitting in hydrogen production. Here, we report that intermetallic Co 3 Mo spontaneously separated from hierarchical nanoporous copper skeleton shows ge...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 2940 - 10 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
10.06.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing robust nonprecious electrocatalysts towards hydrogen/oxygen evolution reactions is crucial for widespread use of electrochemical water splitting in hydrogen production. Here, we report that intermetallic Co
3
Mo spontaneously separated from hierarchical nanoporous copper skeleton shows genuine potential as highly efficient electrocatalysts for alkaline hydrogen/oxygen evolution reactions in virtue of in-situ hydroxylation and electro-oxidation, respectively. The hydroxylated intermetallic Co
3
Mo has an optimal hydrogen-binding energy to facilitate adsorption/desorption of hydrogen intermediates for hydrogen molecules. Associated with high electron/ion transport of bicontinuous nanoporous skeleton, nanoporous copper supported Co
3
Mo electrodes exhibit impressive hydrogen evolution reaction catalysis, with negligible onset overpotential and low Tafel slope (~40 mV dec
−1
) in 1 M KOH, realizing current density of −400 mA cm
−2
at overpotential of as low as 96 mV. When coupled to its electro-oxidized derivative that mediates efficiently oxygen evolution reaction, their alkaline electrolyzer operates with a superior overall water-splitting output, outperforming the one assembled with noble-metal-based catalysts.
Electrochemical water splitting is an attractive energy conversion technology, but it usually suffers from low efficiency. Here, the authors report intermetallic Co
3
Mo integrated on porous Cu as highly efficient electrocatalysts for alkaline HER/OER due to in-situ hydroxylation and electro-oxidation. |
---|---|
AbstractList | Developing robust nonprecious electrocatalysts towards hydrogen/oxygen evolution reactions is crucial for widespread use of electrochemical water splitting in hydrogen production. Here, we report that intermetallic Co
3
Mo spontaneously separated from hierarchical nanoporous copper skeleton shows genuine potential as highly efficient electrocatalysts for alkaline hydrogen/oxygen evolution reactions in virtue of in-situ hydroxylation and electro-oxidation, respectively. The hydroxylated intermetallic Co
3
Mo has an optimal hydrogen-binding energy to facilitate adsorption/desorption of hydrogen intermediates for hydrogen molecules. Associated with high electron/ion transport of bicontinuous nanoporous skeleton, nanoporous copper supported Co
3
Mo electrodes exhibit impressive hydrogen evolution reaction catalysis, with negligible onset overpotential and low Tafel slope (~40 mV dec
−1
) in 1 M KOH, realizing current density of −400 mA cm
−2
at overpotential of as low as 96 mV. When coupled to its electro-oxidized derivative that mediates efficiently oxygen evolution reaction, their alkaline electrolyzer operates with a superior overall water-splitting output, outperforming the one assembled with noble-metal-based catalysts. Developing robust nonprecious electrocatalysts towards hydrogen/oxygen evolution reactions is crucial for widespread use of electrochemical water splitting in hydrogen production. Here, we report that intermetallic Co3Mo spontaneously separated from hierarchical nanoporous copper skeleton shows genuine potential as highly efficient electrocatalysts for alkaline hydrogen/oxygen evolution reactions in virtue of in-situ hydroxylation and electro-oxidation, respectively. The hydroxylated intermetallic Co3Mo has an optimal hydrogen-binding energy to facilitate adsorption/desorption of hydrogen intermediates for hydrogen molecules. Associated with high electron/ion transport of bicontinuous nanoporous skeleton, nanoporous copper supported Co3Mo electrodes exhibit impressive hydrogen evolution reaction catalysis, with negligible onset overpotential and low Tafel slope (~40 mV dec-1) in 1 M KOH, realizing current density of -400 mA cm-2 at overpotential of as low as 96 mV. When coupled to its electro-oxidized derivative that mediates efficiently oxygen evolution reaction, their alkaline electrolyzer operates with a superior overall water-splitting output, outperforming the one assembled with noble-metal-based catalysts.Developing robust nonprecious electrocatalysts towards hydrogen/oxygen evolution reactions is crucial for widespread use of electrochemical water splitting in hydrogen production. Here, we report that intermetallic Co3Mo spontaneously separated from hierarchical nanoporous copper skeleton shows genuine potential as highly efficient electrocatalysts for alkaline hydrogen/oxygen evolution reactions in virtue of in-situ hydroxylation and electro-oxidation, respectively. The hydroxylated intermetallic Co3Mo has an optimal hydrogen-binding energy to facilitate adsorption/desorption of hydrogen intermediates for hydrogen molecules. Associated with high electron/ion transport of bicontinuous nanoporous skeleton, nanoporous copper supported Co3Mo electrodes exhibit impressive hydrogen evolution reaction catalysis, with negligible onset overpotential and low Tafel slope (~40 mV dec-1) in 1 M KOH, realizing current density of -400 mA cm-2 at overpotential of as low as 96 mV. When coupled to its electro-oxidized derivative that mediates efficiently oxygen evolution reaction, their alkaline electrolyzer operates with a superior overall water-splitting output, outperforming the one assembled with noble-metal-based catalysts. Developing robust nonprecious electrocatalysts towards hydrogen/oxygen evolution reactions is crucial for widespread use of electrochemical water splitting in hydrogen production. Here, we report that intermetallic Co 3 Mo spontaneously separated from hierarchical nanoporous copper skeleton shows genuine potential as highly efficient electrocatalysts for alkaline hydrogen/oxygen evolution reactions in virtue of in-situ hydroxylation and electro-oxidation, respectively. The hydroxylated intermetallic Co 3 Mo has an optimal hydrogen-binding energy to facilitate adsorption/desorption of hydrogen intermediates for hydrogen molecules. Associated with high electron/ion transport of bicontinuous nanoporous skeleton, nanoporous copper supported Co 3 Mo electrodes exhibit impressive hydrogen evolution reaction catalysis, with negligible onset overpotential and low Tafel slope (~40 mV dec −1 ) in 1 M KOH, realizing current density of −400 mA cm −2 at overpotential of as low as 96 mV. When coupled to its electro-oxidized derivative that mediates efficiently oxygen evolution reaction, their alkaline electrolyzer operates with a superior overall water-splitting output, outperforming the one assembled with noble-metal-based catalysts. Electrochemical water splitting is an attractive energy conversion technology, but it usually suffers from low efficiency. Here, the authors report intermetallic Co 3 Mo integrated on porous Cu as highly efficient electrocatalysts for alkaline HER/OER due to in-situ hydroxylation and electro-oxidation. Electrochemical water splitting is an attractive energy conversion technology, but it usually suffers from low efficiency. Here, the authors report intermetallic Co3Mo integrated on porous Cu as highly efficient electrocatalysts for alkaline HER/OER due to in-situ hydroxylation and electro-oxidation. Developing robust nonprecious electrocatalysts towards hydrogen/oxygen evolution reactions is crucial for widespread use of electrochemical water splitting in hydrogen production. Here, we report that intermetallic Co3Mo spontaneously separated from hierarchical nanoporous copper skeleton shows genuine potential as highly efficient electrocatalysts for alkaline hydrogen/oxygen evolution reactions in virtue of in-situ hydroxylation and electro-oxidation, respectively. The hydroxylated intermetallic Co3Mo has an optimal hydrogen-binding energy to facilitate adsorption/desorption of hydrogen intermediates for hydrogen molecules. Associated with high electron/ion transport of bicontinuous nanoporous skeleton, nanoporous copper supported Co3Mo electrodes exhibit impressive hydrogen evolution reaction catalysis, with negligible onset overpotential and low Tafel slope (~40 mV dec−1) in 1 M KOH, realizing current density of −400 mA cm−2 at overpotential of as low as 96 mV. When coupled to its electro-oxidized derivative that mediates efficiently oxygen evolution reaction, their alkaline electrolyzer operates with a superior overall water-splitting output, outperforming the one assembled with noble-metal-based catalysts.Electrochemical water splitting is an attractive energy conversion technology, but it usually suffers from low efficiency. Here, the authors report intermetallic Co3Mo integrated on porous Cu as highly efficient electrocatalysts for alkaline HER/OER due to in-situ hydroxylation and electro-oxidation. |
ArticleNumber | 2940 |
Author | Yao, Rui-Qi Lang, Xing-You Ge, Xin Zheng, Wei-Tao Zhang, Wei Shi, Hang Wen, Zi Jiang, Qing Wan, Wu-Bin Zhou, Yi-Tong |
Author_xml | – sequence: 1 givenname: Hang orcidid: 0000-0002-7327-3582 surname: Shi fullname: Shi, Hang organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University – sequence: 2 givenname: Yi-Tong orcidid: 0000-0002-1094-7826 surname: Zhou fullname: Zhou, Yi-Tong organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University – sequence: 3 givenname: Rui-Qi orcidid: 0000-0002-9910-1463 surname: Yao fullname: Yao, Rui-Qi organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University – sequence: 4 givenname: Wu-Bin orcidid: 0000-0002-1995-7887 surname: Wan fullname: Wan, Wu-Bin organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University – sequence: 5 givenname: Xin surname: Ge fullname: Ge, Xin organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University – sequence: 6 givenname: Wei orcidid: 0000-0002-6414-7015 surname: Zhang fullname: Zhang, Wei organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University – sequence: 7 givenname: Zi orcidid: 0000-0002-6515-441X surname: Wen fullname: Wen, Zi organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University – sequence: 8 givenname: Xing-You orcidid: 0000-0002-8227-9695 surname: Lang fullname: Lang, Xing-You email: xylang@jlu.edu.cn organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University – sequence: 9 givenname: Wei-Tao surname: Zheng fullname: Zheng, Wei-Tao organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University – sequence: 10 givenname: Qing orcidid: 0000-0003-0660-596X surname: Jiang fullname: Jiang, Qing email: jiangq@jlu.edu.cn organization: Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University |
BookMark | eNp9Ustu1DAUjVARLaU_wMoSGzYBv5I4GyQ04lGpiAWwthznOuORYwfbUzQfwH_jmVRAu6g3tuxzzr3H9zyvznzwUFUvCX5DMBNvEye87WpMcU3aru3r9kl1QTEnNekoO_vvfF5dpbTDZbGeCM6fVeeMNpT2QlxUv78twWflIeyTO6AEi4oqw4iszxBnyMo5q9EmsC8BmRhm5JUPS4gFj3RYFohIJXQLMalsHSBwoHMMWhXmIeWETIhoa6dtUQdjrLbgM_pVakSUFmdztn56UT01yiW4utsvqx8fP3zffK5vvn663ry_qXUjWK67tuUY62EchBgbgo3mymjoe0PEgBUF3XAM_UjHgfcjx0Qp0J3BnVZHxwO7rK5X3TGonVyinVU8yKCsPF2EOEkVs9UOJDQYG64JoVhxwXHPcNtA144j4QL3bdF6t2ot-2GGURdbUbl7ovdfvN3KKdzKjooOC1YEXt8JxPBzDynL2SYNzq3TkJQTSglpGSnQVw-gu7CPvnzVCUV4T2lTUHRF6RhSimD-NkOwPIZGrqGRJTTyFBp5tCEekLTNZZTh2LR1j1PZSk2ljp8g_uvqEdYf0qzaaA |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2024_11_422 crossref_primary_10_1039_D1TA09245F crossref_primary_10_1039_D4MH01733A crossref_primary_10_1016_j_electacta_2024_144855 crossref_primary_10_1038_s41467_021_26256_1 crossref_primary_10_1007_s12274_022_4861_x crossref_primary_10_1002_adfm_202307109 crossref_primary_10_1016_j_cej_2022_134898 crossref_primary_10_1002_smll_202311509 crossref_primary_10_1039_D4SE00685B crossref_primary_10_1002_adma_202007894 crossref_primary_10_1039_D3NR01112G crossref_primary_10_1007_s40843_023_2582_6 crossref_primary_10_3390_met13071198 crossref_primary_10_1016_j_jcis_2024_04_009 crossref_primary_10_1016_j_diamond_2022_109061 crossref_primary_10_1016_j_scriptamat_2024_116344 crossref_primary_10_1002_aenm_202200928 crossref_primary_10_1007_s10311_023_01616_z crossref_primary_10_1021_acsanm_3c01301 crossref_primary_10_1007_s40843_020_1583_4 crossref_primary_10_1016_j_apsusc_2020_148518 crossref_primary_10_1039_D2TA02374A crossref_primary_10_1021_acsnano_2c11844 crossref_primary_10_1007_s12209_025_00426_4 crossref_primary_10_1039_D0CY01311K crossref_primary_10_1002_smll_202206781 crossref_primary_10_1016_j_apcatb_2024_124395 crossref_primary_10_1016_j_cej_2022_135517 crossref_primary_10_1002_aenm_202405285 crossref_primary_10_1007_s40820_022_00867_9 crossref_primary_10_1016_j_ijhydene_2024_10_084 crossref_primary_10_1021_acsami_3c03934 crossref_primary_10_1002_adma_202108133 crossref_primary_10_3390_catal11020217 crossref_primary_10_1016_j_matlet_2024_135999 crossref_primary_10_1016_j_electacta_2023_142179 crossref_primary_10_1016_j_mtphys_2020_100300 crossref_primary_10_1016_j_enchem_2022_100069 crossref_primary_10_1016_j_susmat_2024_e00991 crossref_primary_10_1002_smll_202207661 crossref_primary_10_1016_j_nanoen_2021_106870 crossref_primary_10_1016_j_apcatb_2023_123331 crossref_primary_10_1002_adfm_202211557 crossref_primary_10_1016_j_cej_2023_146443 crossref_primary_10_1002_anie_202215594 crossref_primary_10_1038_s41467_023_37597_4 crossref_primary_10_1007_s10562_024_04657_3 crossref_primary_10_1002_cssc_202301535 crossref_primary_10_1016_j_pnsc_2024_12_003 crossref_primary_10_1002_adfm_202208718 crossref_primary_10_1016_j_jcis_2024_07_127 crossref_primary_10_1016_j_jechem_2024_02_033 crossref_primary_10_1002_adma_202305685 crossref_primary_10_1039_D4RA05023A crossref_primary_10_1016_j_apcatb_2022_121666 crossref_primary_10_1016_j_jmst_2022_07_044 crossref_primary_10_1002_smll_202006773 crossref_primary_10_1016_j_jallcom_2022_164084 crossref_primary_10_1002_adfm_202103732 crossref_primary_10_1016_j_ijhydene_2023_01_184 crossref_primary_10_1002_adma_202104638 crossref_primary_10_1016_j_ceramint_2024_12_341 crossref_primary_10_1021_acs_inorgchem_4c04651 crossref_primary_10_1002_smll_202105305 crossref_primary_10_1039_D2TA09052J crossref_primary_10_1016_j_ijhydene_2021_06_041 crossref_primary_10_1016_j_ijhydene_2024_05_108 crossref_primary_10_1021_acs_accounts_2c00143 crossref_primary_10_1016_j_checat_2024_100919 crossref_primary_10_1021_acs_inorgchem_4c02339 crossref_primary_10_1016_j_cej_2023_144487 crossref_primary_10_1002_aesr_202200178 crossref_primary_10_1016_j_apsusc_2024_160621 crossref_primary_10_1016_j_decarb_2024_100062 crossref_primary_10_1002_advs_202301961 crossref_primary_10_1016_j_intermet_2020_106976 crossref_primary_10_1002_aenm_202303730 crossref_primary_10_1039_D1TA01845K crossref_primary_10_1002_adfm_202413826 crossref_primary_10_1021_acsanm_4c02156 crossref_primary_10_1088_2399_1984_ac1db9 crossref_primary_10_1002_adfm_202402286 crossref_primary_10_1002_advs_202406008 crossref_primary_10_1007_s40820_021_00639_x crossref_primary_10_1021_acsami_2c09507 crossref_primary_10_1016_j_cej_2024_156863 crossref_primary_10_1039_D1SC01901E crossref_primary_10_1002_sstr_202300042 crossref_primary_10_1021_acsaem_1c00812 crossref_primary_10_1016_j_ijhydene_2024_07_414 crossref_primary_10_1016_j_cej_2025_161014 crossref_primary_10_1002_aenm_202101937 crossref_primary_10_1016_j_cej_2023_146893 crossref_primary_10_1016_j_jallcom_2021_159675 crossref_primary_10_1002_adfm_202101586 crossref_primary_10_1002_adma_202403151 crossref_primary_10_1021_acssuschemeng_2c06888 crossref_primary_10_1016_j_electacta_2022_139922 crossref_primary_10_1002_advs_202303682 crossref_primary_10_3390_catal13050881 crossref_primary_10_1016_j_jallcom_2020_156896 crossref_primary_10_1039_D4EE04619F crossref_primary_10_1016_j_ijhydene_2023_05_152 crossref_primary_10_1002_adfm_202102285 crossref_primary_10_3390_catal14080532 crossref_primary_10_1002_smll_202100683 crossref_primary_10_1021_acsnano_3c01720 crossref_primary_10_1016_j_ces_2023_119026 crossref_primary_10_1016_j_ijhydene_2023_04_113 crossref_primary_10_1039_D4EN00181H crossref_primary_10_1016_j_apsusc_2024_162200 crossref_primary_10_1039_D0NJ03751F crossref_primary_10_1002_adma_202007377 crossref_primary_10_1016_j_ijhydene_2024_04_196 crossref_primary_10_3390_molecules28196986 crossref_primary_10_1002_adma_202403803 crossref_primary_10_1002_aenm_202200409 crossref_primary_10_1002_adfm_202402699 crossref_primary_10_1039_D1CC04281E crossref_primary_10_1007_s12598_024_02882_8 crossref_primary_10_1002_chem_202402907 crossref_primary_10_1021_acs_nanolett_4c03218 crossref_primary_10_1039_D3QI00216K crossref_primary_10_1002_adma_202200088 crossref_primary_10_2174_1573413716666210106095259 crossref_primary_10_1007_s11581_021_04434_x crossref_primary_10_1016_j_cej_2024_155069 crossref_primary_10_1039_D2TA05356J crossref_primary_10_1038_s41467_020_19214_w crossref_primary_10_1002_anie_202405839 crossref_primary_10_1021_acsaem_1c02825 crossref_primary_10_1016_j_cej_2023_147154 crossref_primary_10_1016_j_ijhydene_2023_08_107 crossref_primary_10_1021_acsaenm_3c00288 crossref_primary_10_1002_adfm_202214412 crossref_primary_10_1016_j_coco_2020_100624 crossref_primary_10_1016_j_cej_2021_132012 crossref_primary_10_1002_aenm_202200067 crossref_primary_10_1002_smtd_202400729 crossref_primary_10_1021_acscatal_1c01607 crossref_primary_10_1007_s12274_023_5389_4 crossref_primary_10_1039_D1NR06556D crossref_primary_10_3390_catal15030278 crossref_primary_10_1016_j_ijhydene_2024_08_513 crossref_primary_10_1016_j_ijhydene_2024_02_310 crossref_primary_10_1002_adma_202208337 crossref_primary_10_1016_j_ijhydene_2024_09_436 crossref_primary_10_1016_j_ijhydene_2023_04_006 crossref_primary_10_1016_j_apcatb_2021_120152 crossref_primary_10_1002_ange_202215594 crossref_primary_10_1088_1361_6528_ac1c25 crossref_primary_10_1016_j_envres_2022_112909 crossref_primary_10_1016_j_apcatb_2023_123187 crossref_primary_10_1039_D1NR00605C crossref_primary_10_3390_cryst11040340 crossref_primary_10_1016_j_jallcom_2020_158086 crossref_primary_10_1002_adma_202208284 crossref_primary_10_1016_j_nanoen_2023_109161 crossref_primary_10_1016_j_jcis_2023_08_051 crossref_primary_10_1016_j_cej_2021_133240 crossref_primary_10_1021_acsaem_2c00402 crossref_primary_10_1002_cey2_156 crossref_primary_10_1039_D2CC02423C crossref_primary_10_1002_cey2_79 crossref_primary_10_1039_D1TA09010K crossref_primary_10_1002_adma_202406711 crossref_primary_10_1002_aenm_202303321 crossref_primary_10_1039_D2TA01701F crossref_primary_10_1002_ange_202405839 crossref_primary_10_1016_j_cej_2021_131747 crossref_primary_10_1039_D3CY00742A crossref_primary_10_1039_D4TA05449K crossref_primary_10_1002_smll_202404598 crossref_primary_10_1016_j_cej_2022_134860 crossref_primary_10_1002_smm2_1204 crossref_primary_10_1002_adfm_202209465 crossref_primary_10_1039_D1TA10163C crossref_primary_10_1016_j_apcatb_2022_121901 crossref_primary_10_1002_adma_202301836 crossref_primary_10_1016_j_colsurfa_2021_126425 crossref_primary_10_1016_j_cej_2023_145604 crossref_primary_10_1007_s12274_022_4253_2 crossref_primary_10_1021_acsenergylett_1c01827 crossref_primary_10_1039_D2TA07677B crossref_primary_10_1002_smll_202311929 crossref_primary_10_1002_smll_202104513 crossref_primary_10_1016_j_cej_2022_135847 crossref_primary_10_1002_advs_202203199 crossref_primary_10_1016_j_cej_2021_131084 crossref_primary_10_1002_smtd_202200515 crossref_primary_10_1016_j_cej_2022_138206 crossref_primary_10_1016_j_cej_2023_143097 |
Cites_doi | 10.1038/s41560-019-0407-1 10.1038/s41467-019-08419-3 10.1038/s41560-018-0296-8 10.1038/nchem.1634 10.1038/s41929-018-0037-1 10.1002/anie.201701533 10.1073/pnas.1701562114 10.1021/acsami.8b19148 10.1002/anie.201710556 10.1002/adma.201602441 10.1039/c3ee00045a 10.1103/PhysRevB.54.11169 10.1002/advs.201700464 10.1038/ncomms3169 10.1038/nnano.2016.304 10.1039/C6EE03768B 10.1021/cr1002326 10.1007/s11669-019-00723-1 10.1021/jacs.9b01834 10.1002/adma.201901439 10.1126/sciadv.1501602 10.1038/ncomms7567 10.1103/PhysRevB.59.1758 10.1002/adma.201907214 10.1002/aenm.201901454 10.1038/nmat4738 10.1038/s41570-016-0003 10.1038/nmat4481 10.1007/s12274-014-0591-z 10.1021/acsenergylett.9b00091 10.1063/1.4865107 10.1039/C4CS00448E 10.1021/acsanm.8b00945 10.1038/nchem.2535 10.1038/35068529 10.1021/acsenergylett.9b00845 10.1002/adma.201604080 10.1103/PhysRevLett.115.036402 10.1126/science.1127180 10.1103/PhysRevB.50.17953 10.1073/pnas.1900556116 10.1361/105497199770335893 10.1126/science.1211934 10.1002/adma.201505875 10.1016/j.joule.2017.07.011 10.1039/C4CS00470A 10.1146/annurev-matsci-070115-031739 10.1021/acs.jpclett.5b00306 10.1021/acscatal.8b04566 10.1038/nature14241 10.1021/cs300691m 10.1002/adma.201803144 10.1002/adma.201703311 10.1126/science.1103197 10.1016/0022-5088(63)90068-7 10.1038/ncomms13638 10.1016/0013-4686(84)85008-2 10.1126/science.aad4998 10.1039/c2ee22146b 10.1038/nature11475 10.1021/acs.chemrev.9b00248 10.1021/jacs.6b09351 10.1021/acs.accounts.7b00616 10.1002/9783527616763.ch1 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-020-16769-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_e500f4c1120a484093065e76dd148096 PMC7287083 10_1038_s41467_020_16769_6 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c583t-766400cbdb88d510fc4afce99f18b0a2ec540e9d2db49d401aaec7f07ca3252b3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:14:07 EDT 2025 Thu Aug 21 14:09:32 EDT 2025 Fri Jul 11 03:58:29 EDT 2025 Wed Aug 13 05:11:26 EDT 2025 Tue Jul 01 04:08:58 EDT 2025 Thu Apr 24 22:58:05 EDT 2025 Fri Feb 21 02:40:02 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-766400cbdb88d510fc4afce99f18b0a2ec540e9d2db49d401aaec7f07ca3252b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6515-441X 0000-0002-7327-3582 0000-0002-6414-7015 0000-0003-0660-596X 0000-0002-9910-1463 0000-0002-8227-9695 0000-0002-1094-7826 0000-0002-1995-7887 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-16769-6 |
PMID | 32522988 |
PQID | 2412149225 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e500f4c1120a484093065e76dd148096 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7287083 proquest_miscellaneous_2412211631 proquest_journals_2412149225 crossref_primary_10_1038_s41467_020_16769_6 crossref_citationtrail_10_1038_s41467_020_16769_6 springer_journals_10_1038_s41467_020_16769_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-10 |
PublicationDateYYYYMMDD | 2020-06-10 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Martin-Sabi (CR32) 2018; 1 Lu (CR40) 2015; 6 Hu (CR30) 2017; 1 Mahmood (CR10) 2018; 5 Erlebacher, Aziz, Karma, Dimitrov, Sieradzki (CR39) 2001; 410 Kresse, Furthmüller (CR61) 1996; 54 Sun (CR64) 2016; 8 An (CR53) 2019; 9 Lang (CR54) 2013; 4 Davydov, Kattner (CR36) 1999; 20 Wu, Xia, Yu, Yu, Lou (CR26) 2015; 6 Mahmood (CR8) 2017; 12 Chu, Majumdar (CR1) 2012; 488 Zhou (CR45) 2017; 29 Chen (CR46) 2017; 29 Panda, Menezes, Zheng, Orthmann, Driess (CR47) 2019; 4 Liu, Yin, Hu, OuYang (CR37) 2019; 40 Ma (CR28) 2017; 10 Shi (CR41) 2020; 2020 Jiao, Zheng, Jaroniec, Qiao (CR15) 2015; 44 Gong, Dai (CR57) 2015; 8 CR7 Zhu, Hu, Zhao, Lee, Wong (CR25) 2020; 120 Staszak-Jirkovský (CR31) 2016; 15 Vesborg, Seger, Chorkendorff (CR19) 2015; 6 Tao (CR49) 2019; 141 Zheng, Jiao, Vasileff, Qiao (CR12) 2018; 57 Zou, Zhang (CR13) 2015; 44 Zheng, Sheng, Zhuang, Xu, Yan (CR22) 2016; 2 Pi (CR44) 2017; 56 Roger, Shipman, Symes (CR6) 2017; 1 Tan (CR29) 2016; 28 Kibsgaard, Chorkendorff (CR9) 2019; 4 Yin (CR27) 2016; 138 Mathew, Sundararaman, Letchworth-Weaver, Arias, Hennig (CR66) 2014; 140 Yao (CR34) 2020; 32 Brown, Mahmood, Man, Turner (CR50) 1984; 29 Sheng, Myint, Chen, Yan (CR11) 2013; 6 Kresse, Joubert (CR62) 1999; 59 Röẞner, Armbrüster (CR16) 2019; 9 McKone, Sadtler, Werlang, Lewis, Gray (CR52) 2013; 3 Quinn, Hume-Rothery (CR42) 1963; 5 Mallouk (CR3) 2013; 5 McCue, Benn, Caskey, Erlebacher (CR38) 2016; 46 Blöchl (CR65) 1994; 50 Tang (CR56) 2017; 29 Sun, Ruzsinszky, Perdew (CR63) 2015; 115 Subbaraman (CR23) 2011; 334 Chen (CR43) 2019; 11 Norskv., Christensen (CR14) 2006; 312 Zhou (CR20) 2017; 114 Tang, Wang, Zhang (CR59) 2018; 51 Cheng (CR21) 2016; 7 Liu (CR33) 2018; 30 Gao (CR55) 2018; 1 Huang (CR35) 2019; 31 Turner (CR2) 2004; 305 Lu (CR24) 2019; 10 Zhu, Du, Eychmüller, Lin (CR60) 2015; 115 Dinh (CR48) 2019; 4 Walter (CR4) 2010; 110 Kuang (CR58) 2019; 116 Stamenkovic, Strmcnik, Lopes, Markovic (CR5) 2017; 16 Seh (CR18) 2017; 355 Yao (CR17) 2019; 4 Xiao (CR51) 2012; 5 C Panda (16769_CR47) 2019; 4 HB Tao (16769_CR49) 2019; 141 YY Ma (16769_CR28) 2017; 10 BZ Lu (16769_CR24) 2019; 10 YW Tan (16769_CR29) 2016; 28 TE Mallouk (16769_CR3) 2013; 5 RQ Yao (16769_CR17) 2019; 4 YY Chen (16769_CR46) 2017; 29 J Yin (16769_CR27) 2016; 138 XY Lang (16769_CR54) 2013; 4 G Kresse (16769_CR62) 1999; 59 Y Kuang (16769_CR58) 2019; 116 YC Pi (16769_CR44) 2017; 56 A Davydov (16769_CR36) 1999; 20 TJ Quinn (16769_CR42) 1963; 5 JR McKone (16769_CR52) 2013; 3 LL Huang (16769_CR35) 2019; 31 PE Blöchl (16769_CR65) 1994; 50 G Kresse (16769_CR61) 1996; 54 SJ Liu (16769_CR37) 2019; 40 J Erlebacher (16769_CR39) 2001; 410 C Zhu (16769_CR60) 2015; 115 HB Wu (16769_CR26) 2015; 6 Q Lu (16769_CR40) 2015; 6 J Zheng (16769_CR22) 2016; 2 XX Zou (16769_CR13) 2015; 44 ZW Seh (16769_CR18) 2017; 355 I Roger (16769_CR6) 2017; 1 YM An (16769_CR53) 2019; 9 L Zhou (16769_CR45) 2017; 29 C Tang (16769_CR56) 2017; 29 J Staszak-Jirkovský (16769_CR31) 2016; 15 L Röẞner (16769_CR16) 2019; 9 N Mahmood (16769_CR10) 2018; 5 Y Jiao (16769_CR15) 2015; 44 J Sun (16769_CR63) 2015; 115 J Hu (16769_CR30) 2017; 1 M Gong (16769_CR57) 2015; 8 M Martin-Sabi (16769_CR32) 2018; 1 B Liu (16769_CR33) 2018; 30 JA Turner (16769_CR2) 2004; 305 CT Dinh (16769_CR48) 2019; 4 S Chu (16769_CR1) 2012; 488 PCK Vesborg (16769_CR19) 2015; 6 HQ Zhou (16769_CR20) 2017; 114 RQ Yao (16769_CR34) 2020; 32 I McCue (16769_CR38) 2016; 46 NC Cheng (16769_CR21) 2016; 7 16769_CR7 JK Norskv. (16769_CR14) 2006; 312 VR Stamenkovic (16769_CR5) 2017; 16 Y Zheng (16769_CR12) 2018; 57 MG Walter (16769_CR4) 2010; 110 R Subbaraman (16769_CR23) 2011; 334 J Kibsgaard (16769_CR9) 2019; 4 J Zhu (16769_CR25) 2020; 120 J Mahmood (16769_CR8) 2017; 12 C Tang (16769_CR59) 2018; 51 H Shi (16769_CR41) 2020; 2020 J Sun (16769_CR64) 2016; 8 J Chen (16769_CR43) 2019; 11 WC Sheng (16769_CR11) 2013; 6 DE Brown (16769_CR50) 1984; 29 M Gao (16769_CR55) 2018; 1 L Xiao (16769_CR51) 2012; 5 K Mathew (16769_CR66) 2014; 140 |
References_xml | – volume: 4 start-page: 430 year: 2019 end-page: 433 ident: CR9 article-title: Considerations for the scaling-up of water splitting catalysts publication-title: Nat. Energy doi: 10.1038/s41560-019-0407-1 – volume: 10 year: 2019 ident: CR24 article-title: Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media publication-title: Nat. Commun. doi: 10.1038/s41467-019-08419-3 – volume: 4 start-page: 107 year: 2019 end-page: 114 ident: CR48 article-title: Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules publication-title: Nat. Energy doi: 10.1038/s41560-018-0296-8 – volume: 5 start-page: 362 year: 2013 end-page: 363 ident: CR3 article-title: Water electrolysis: divide and conquer publication-title: Nat. Chem. doi: 10.1038/nchem.1634 – volume: 1 start-page: 208 year: 2018 end-page: 213 ident: CR32 article-title: Redox tuning the Weakley-type polyoxometalate archetype for the oxygen evolution reaction publication-title: Nat. Catal. doi: 10.1038/s41929-018-0037-1 – volume: 56 start-page: 4502 year: 2017 end-page: 4506 ident: CR44 article-title: Trimetallic oxyhydroxide coralloids for efficient oxygen evolution electrocatalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201701533 – volume: 114 start-page: 5607 year: 2017 end-page: 5611 ident: CR20 article-title: Highly active catalyst derived from a 3D foam of Fe(PO ) /Ni P for extremely efficient water oxidation publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1701562114 – volume: 11 start-page: 9002 year: 2019 end-page: 9010 ident: CR43 article-title: Nesting Co Mo binary alloy nanoparticles onto molybdenum oxide nanosheet arrays for superior hydrogen evolution reaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b19148 – volume: 57 start-page: 7568 year: 2018 end-page: 7579 ident: CR12 article-title: The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710556 – volume: 29 start-page: 1602441 year: 2017 ident: CR56 article-title: Fe-doped CoP nanoarray: a monolithic multifunctional catalyst for highly efficient hydrogen generation publication-title: Adv. Mater. doi: 10.1002/adma.201602441 – volume: 6 start-page: 1509 year: 2013 end-page: 1512 ident: CR11 article-title: Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces publication-title: Energy Environ. Sci. doi: 10.1039/c3ee00045a – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR61 article-title: Efficient iterative schemes for ab inito total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 5 start-page: 1700464 year: 2018 ident: CR10 article-title: Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenge, and prospective solutions publication-title: Adv. Sci. doi: 10.1002/advs.201700464 – volume: 4 year: 2013 ident: CR54 article-title: Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors publication-title: Nat. Commun. doi: 10.1038/ncomms3169 – volume: 12 start-page: 441 year: 2017 end-page: 446 ident: CR8 article-title: An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.304 – volume: 10 start-page: 788 year: 2017 end-page: 798 ident: CR28 article-title: Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03768B – volume: 110 start-page: 6446 year: 2010 end-page: 6473 ident: CR4 article-title: Solar water splitting cells publication-title: Chem. Rev. doi: 10.1021/cr1002326 – volume: 115 start-page: 8896 year: 2015 end-page: 8943 ident: CR60 article-title: Engineering ordered and nonordered porous noble metal nanostructures: synthesis, assembly, and their applications in electrochemistry publication-title: Chem. Res. – volume: 40 start-page: 275 year: 2019 end-page: 284 ident: CR37 article-title: Phase equilibria of the Co-Cu-Mo system at 900 and 1100 °C publication-title: J. Phase Equilib. Diffus. doi: 10.1007/s11669-019-00723-1 – volume: 141 start-page: 13803 year: 2019 end-page: 13811 ident: CR49 article-title: Revealing energetics of surface oxygen redox from kinetic fingerprint in oxygen electrocatalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b01834 – volume: 31 start-page: 1901439 year: 2019 ident: CR35 article-title: Zirconium-regulation-induced bifunctionality in 3D cobalt-iron oxide nanosheets for overall water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201901439 – volume: 2 start-page: e1501602 year: 2016 ident: CR22 article-title: Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy publication-title: Sci. Adv. doi: 10.1126/sciadv.1501602 – volume: 6 year: 2015 ident: CR40 article-title: Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution publication-title: Nat. Commun. doi: 10.1038/ncomms7567 – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR62 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 32 start-page: 1907214 year: 2020 ident: CR34 article-title: Flexible Co-Mo-N/Au electrodes with a hierarchical nanoporous architecture as highly efficient electrocatalysts for oxygen evolution reaction publication-title: Adv. Mater. doi: 10.1002/adma.201907214 – volume: 9 start-page: 1901454 year: 2019 ident: CR53 article-title: One-step controllable synthesis of catalytic Ni Mo/MoO /Cu nanointerfaces for highly efficient water reduction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901454 – volume: 16 start-page: 57 year: 2017 end-page: 69 ident: CR5 article-title: Energy and fuels from electrochemical interfaces publication-title: Nat. Mater. doi: 10.1038/nmat4738 – volume: 1 start-page: 0003 year: 2017 ident: CR6 article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-016-0003 – volume: 15 start-page: 197 year: 2016 end-page: 203 ident: CR31 article-title: Design of active and stable Co-Mo-S chalcogels as pH-universal catalysts for the hydrogen evolution reaction publication-title: Nat. Mater. doi: 10.1038/nmat4481 – volume: 8 start-page: 23 year: 2015 end-page: 39 ident: CR57 article-title: A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts publication-title: Nano Res. doi: 10.1007/s12274-014-0591-z – volume: 4 start-page: 747 year: 2019 end-page: 754 ident: CR47 article-title: In situ formation of nanostructured core-shell Cu N-CuO to promote alkaline water electrolysis publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00091 – volume: 140 start-page: 084106 year: 2014 ident: CR66 article-title: Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways publication-title: J. Chem. Phys. doi: 10.1063/1.4865107 – volume: 44 start-page: 5148 year: 2015 end-page: 5180 ident: CR13 article-title: Noble metal-free hydrogen evolution catalysts for water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00448E – volume: 1 start-page: 4703 year: 2018 end-page: 4715 ident: CR55 article-title: Enhanced peroxidase-like activity of Mo -doped Co O nanotubes for ultrasensitive and colorimetric -cysteine detection publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b00945 – volume: 8 start-page: 831 year: 2016 end-page: 836 ident: CR64 article-title: Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional publication-title: Nat. Chem. doi: 10.1038/nchem.2535 – volume: 410 start-page: 450 year: 2001 end-page: 453 ident: CR39 article-title: Evolution of nanoporosity in dealloying publication-title: Nature doi: 10.1038/35068529 – volume: 4 start-page: 1379 year: 2019 end-page: 1386 ident: CR17 article-title: Nanoporous palladium-silver surface alloys as efficient and pH-universal catalysts for the hydrogen evolution reaction publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00845 – volume: 29 start-page: 1604080 year: 2017 ident: CR45 article-title: Hierarchical CoNi-sulfide nanosheet arrays derived from layered double hydroxides toward efficient hydrazine electrooxidation publication-title: Adv. Mater. doi: 10.1002/adma.201604080 – volume: 115 start-page: 036402 year: 2015 ident: CR63 article-title: Strongly constrained and appropriately normed semilocal density functional publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.036402 – volume: 312 start-page: 1322 year: 2006 end-page: 1323 ident: CR14 article-title: Toward efficient hydrogen production at surfaces publication-title: Science doi: 10.1126/science.1127180 – volume: 50 start-page: 17953 year: 1994 ident: CR65 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 116 start-page: 6624 year: 2019 end-page: 6629 ident: CR58 article-title: Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1900556116 – volume: 20 start-page: 5 year: 1999 end-page: 16 ident: CR36 article-title: Thermodynamic assessment of the Co-Mo system publication-title: J. Phase Equilib. Diffus. doi: 10.1361/105497199770335893 – volume: 334 start-page: 1256 year: 2011 end-page: 1260 ident: CR23 article-title: Enhancing hydrogen evolution activity in water splitting by tailoring Li -Ni(OH) -Pt interfaces publication-title: Science doi: 10.1126/science.1211934 – volume: 28 start-page: 2951 year: 2016 end-page: 2955 ident: CR29 article-title: 3D nanoporous metal phosphides toward high-efficiency electrochemical hydrogen production publication-title: Adv. Mater. doi: 10.1002/adma.201505875 – volume: 1 start-page: 383 year: 2017 end-page: 393 ident: CR30 article-title: Nanohybridization of MoS with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media publication-title: Joule doi: 10.1016/j.joule.2017.07.011 – volume: 44 start-page: 2060 year: 2015 end-page: 2086 ident: CR15 article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00470A – volume: 46 start-page: 1 year: 2016 end-page: 24 ident: CR38 article-title: Dealloying and dealloyed materials publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070115-031739 – volume: 6 start-page: 951 year: 2015 end-page: 957 ident: CR19 article-title: Recent development in hydrogen evolution reaction catalysts and their practical implementation publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00306 – volume: 9 start-page: 2018 year: 2019 end-page: 2062 ident: CR16 article-title: Electrochemical energy conversion on intermetallic compounds: a review publication-title: ACS Catal. doi: 10.1021/acscatal.8b04566 – volume: 6 year: 2015 ident: CR26 article-title: Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production publication-title: Nat. Commun. doi: 10.1038/nature14241 – volume: 3 start-page: 166 year: 2013 end-page: 169 ident: CR52 article-title: Ni-Mo nanopowders for efficient electrochemical hydrogen evolution publication-title: ACS Catal. doi: 10.1021/cs300691m – volume: 30 start-page: 1803144 year: 2018 ident: CR33 article-title: Iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201803144 – volume: 29 start-page: 1703311 year: 2017 ident: CR46 article-title: Self-templated fabrication of MoNi /MoO nanorod arrays with dual active components for highly efficient hydrogen evolution publication-title: Adv. Mater. doi: 10.1002/adma.201703311 – volume: 2020 start-page: 2987234 year: 2020 ident: CR41 article-title: Intermetallic Cu Zr clusters anchored on hierarchical nanoporous copper as efficient catalysts for hydrogen evolution reaction publication-title: Research – volume: 305 start-page: 972 year: 2004 end-page: 974 ident: CR2 article-title: Sustainable hydrogen production publication-title: Science doi: 10.1126/science.1103197 – volume: 5 start-page: 314 year: 1963 end-page: 324 ident: CR42 article-title: The equilibrium diagram of the system molybdenum-cobalt publication-title: J. Less Common Met. doi: 10.1016/0022-5088(63)90068-7 – volume: 7 year: 2016 ident: CR21 article-title: Platinum single-atom and cluster catalysis of the hydrogen evolution reaction publication-title: Nat. Commun. doi: 10.1038/ncomms13638 – volume: 29 start-page: 1551 year: 1984 end-page: 1556 ident: CR50 article-title: Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solution publication-title: Electrochim. Acta doi: 10.1016/0013-4686(84)85008-2 – volume: 355 start-page: eaad4998 year: 2017 ident: CR18 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science doi: 10.1126/science.aad4998 – ident: CR7 – volume: 5 start-page: 7869 year: 2012 end-page: 7871 ident: CR51 article-title: First implementation of alkaline polymer electrolyte water electrolysis working only with pure water publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22146b – volume: 488 start-page: 294 year: 2012 end-page: 303 ident: CR1 article-title: Opportunities and challenges for a sustainable energy future publication-title: Nature doi: 10.1038/nature11475 – volume: 120 start-page: 851 year: 2020 end-page: 918 ident: CR25 article-title: Recent advances in electrocatalytic hydrogen evolution using nanoparticles publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00248 – volume: 138 start-page: 14546 year: 2016 end-page: 14549 ident: CR27 article-title: Ni-C-N nanosheets as catalyst for hydrogen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09351 – volume: 51 start-page: 881 year: 2018 end-page: 889 ident: CR59 article-title: Multiscale principles to boost reactivity in gas-involving energy electrocatalysis publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00616 – volume: 3 start-page: 166 year: 2013 ident: 16769_CR52 publication-title: ACS Catal. doi: 10.1021/cs300691m – volume: 15 start-page: 197 year: 2016 ident: 16769_CR31 publication-title: Nat. Mater. doi: 10.1038/nmat4481 – volume: 10 year: 2019 ident: 16769_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08419-3 – volume: 4 start-page: 107 year: 2019 ident: 16769_CR48 publication-title: Nat. Energy doi: 10.1038/s41560-018-0296-8 – volume: 10 start-page: 788 year: 2017 ident: 16769_CR28 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03768B – volume: 115 start-page: 036402 year: 2015 ident: 16769_CR63 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.036402 – volume: 6 year: 2015 ident: 16769_CR26 publication-title: Nat. Commun. doi: 10.1038/nature14241 – volume: 1 start-page: 383 year: 2017 ident: 16769_CR30 publication-title: Joule doi: 10.1016/j.joule.2017.07.011 – volume: 9 start-page: 1901454 year: 2019 ident: 16769_CR53 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901454 – volume: 50 start-page: 17953 year: 1994 ident: 16769_CR65 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 8 start-page: 831 year: 2016 ident: 16769_CR64 publication-title: Nat. Chem. doi: 10.1038/nchem.2535 – volume: 32 start-page: 1907214 year: 2020 ident: 16769_CR34 publication-title: Adv. Mater. doi: 10.1002/adma.201907214 – volume: 31 start-page: 1901439 year: 2019 ident: 16769_CR35 publication-title: Adv. Mater. doi: 10.1002/adma.201901439 – volume: 4 year: 2013 ident: 16769_CR54 publication-title: Nat. Commun. doi: 10.1038/ncomms3169 – volume: 40 start-page: 275 year: 2019 ident: 16769_CR37 publication-title: J. Phase Equilib. Diffus. doi: 10.1007/s11669-019-00723-1 – volume: 1 start-page: 4703 year: 2018 ident: 16769_CR55 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b00945 – volume: 29 start-page: 1604080 year: 2017 ident: 16769_CR45 publication-title: Adv. Mater. doi: 10.1002/adma.201604080 – volume: 4 start-page: 747 year: 2019 ident: 16769_CR47 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00091 – volume: 16 start-page: 57 year: 2017 ident: 16769_CR5 publication-title: Nat. Mater. doi: 10.1038/nmat4738 – volume: 120 start-page: 851 year: 2020 ident: 16769_CR25 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00248 – volume: 28 start-page: 2951 year: 2016 ident: 16769_CR29 publication-title: Adv. Mater. doi: 10.1002/adma.201505875 – volume: 51 start-page: 881 year: 2018 ident: 16769_CR59 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00616 – volume: 355 start-page: eaad4998 year: 2017 ident: 16769_CR18 publication-title: Science doi: 10.1126/science.aad4998 – volume: 9 start-page: 2018 year: 2019 ident: 16769_CR16 publication-title: ACS Catal. doi: 10.1021/acscatal.8b04566 – volume: 8 start-page: 23 year: 2015 ident: 16769_CR57 publication-title: Nano Res. doi: 10.1007/s12274-014-0591-z – volume: 57 start-page: 7568 year: 2018 ident: 16769_CR12 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710556 – volume: 2 start-page: e1501602 year: 2016 ident: 16769_CR22 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501602 – volume: 5 start-page: 7869 year: 2012 ident: 16769_CR51 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22146b – volume: 29 start-page: 1703311 year: 2017 ident: 16769_CR46 publication-title: Adv. Mater. doi: 10.1002/adma.201703311 – ident: 16769_CR7 doi: 10.1002/9783527616763.ch1 – volume: 5 start-page: 1700464 year: 2018 ident: 16769_CR10 publication-title: Adv. Sci. doi: 10.1002/advs.201700464 – volume: 110 start-page: 6446 year: 2010 ident: 16769_CR4 publication-title: Chem. Rev. doi: 10.1021/cr1002326 – volume: 6 start-page: 1509 year: 2013 ident: 16769_CR11 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee00045a – volume: 4 start-page: 1379 year: 2019 ident: 16769_CR17 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00845 – volume: 6 start-page: 951 year: 2015 ident: 16769_CR19 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00306 – volume: 6 year: 2015 ident: 16769_CR40 publication-title: Nat. Commun. doi: 10.1038/ncomms7567 – volume: 115 start-page: 8896 year: 2015 ident: 16769_CR60 publication-title: Chem. Res. – volume: 334 start-page: 1256 year: 2011 ident: 16769_CR23 publication-title: Science doi: 10.1126/science.1211934 – volume: 11 start-page: 9002 year: 2019 ident: 16769_CR43 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b19148 – volume: 29 start-page: 1602441 year: 2017 ident: 16769_CR56 publication-title: Adv. Mater. doi: 10.1002/adma.201602441 – volume: 488 start-page: 294 year: 2012 ident: 16769_CR1 publication-title: Nature doi: 10.1038/nature11475 – volume: 56 start-page: 4502 year: 2017 ident: 16769_CR44 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201701533 – volume: 140 start-page: 084106 year: 2014 ident: 16769_CR66 publication-title: J. Chem. Phys. doi: 10.1063/1.4865107 – volume: 4 start-page: 430 year: 2019 ident: 16769_CR9 publication-title: Nat. Energy doi: 10.1038/s41560-019-0407-1 – volume: 54 start-page: 11169 year: 1996 ident: 16769_CR61 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 59 start-page: 1758 year: 1999 ident: 16769_CR62 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 12 start-page: 441 year: 2017 ident: 16769_CR8 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.304 – volume: 44 start-page: 5148 year: 2015 ident: 16769_CR13 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00448E – volume: 312 start-page: 1322 year: 2006 ident: 16769_CR14 publication-title: Science doi: 10.1126/science.1127180 – volume: 305 start-page: 972 year: 2004 ident: 16769_CR2 publication-title: Science doi: 10.1126/science.1103197 – volume: 30 start-page: 1803144 year: 2018 ident: 16769_CR33 publication-title: Adv. Mater. doi: 10.1002/adma.201803144 – volume: 2020 start-page: 2987234 year: 2020 ident: 16769_CR41 publication-title: Research – volume: 1 start-page: 0003 year: 2017 ident: 16769_CR6 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-016-0003 – volume: 116 start-page: 6624 year: 2019 ident: 16769_CR58 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1900556116 – volume: 138 start-page: 14546 year: 2016 ident: 16769_CR27 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09351 – volume: 1 start-page: 208 year: 2018 ident: 16769_CR32 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0037-1 – volume: 141 start-page: 13803 year: 2019 ident: 16769_CR49 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b01834 – volume: 44 start-page: 2060 year: 2015 ident: 16769_CR15 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00470A – volume: 5 start-page: 314 year: 1963 ident: 16769_CR42 publication-title: J. Less Common Met. doi: 10.1016/0022-5088(63)90068-7 – volume: 46 start-page: 1 year: 2016 ident: 16769_CR38 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070115-031739 – volume: 410 start-page: 450 year: 2001 ident: 16769_CR39 publication-title: Nature doi: 10.1038/35068529 – volume: 5 start-page: 362 year: 2013 ident: 16769_CR3 publication-title: Nat. Chem. doi: 10.1038/nchem.1634 – volume: 114 start-page: 5607 year: 2017 ident: 16769_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1701562114 – volume: 7 year: 2016 ident: 16769_CR21 publication-title: Nat. Commun. doi: 10.1038/ncomms13638 – volume: 20 start-page: 5 year: 1999 ident: 16769_CR36 publication-title: J. Phase Equilib. Diffus. doi: 10.1361/105497199770335893 – volume: 29 start-page: 1551 year: 1984 ident: 16769_CR50 publication-title: Electrochim. Acta doi: 10.1016/0013-4686(84)85008-2 |
SSID | ssj0000391844 |
Score | 2.6612954 |
Snippet | Developing robust nonprecious electrocatalysts towards hydrogen/oxygen evolution reactions is crucial for widespread use of electrochemical water splitting in... Electrochemical water splitting is an attractive energy conversion technology, but it usually suffers from low efficiency. Here, the authors report... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2940 |
SubjectTerms | 140/133 140/146 147/135 147/137 147/143 639/301/299/886 639/4077/909 639/638/77/884 Catalysis Catalysts Copper Electrocatalysts Electrochemistry Energy conversion Energy conversion efficiency Evolution Humanities and Social Sciences Hydrogen Hydrogen evolution reactions Hydrogen production Hydrogen-based energy Hydroxylation Intermediates Ion transport multidisciplinary Noble metals Oxidation Oxygen Oxygen evolution reactions Science Science (multidisciplinary) Splitting Water splitting |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA8yEHwR5xSrc2Tgm5alTZqkj3M4hjBfdLC3kI8THFzby-0dcv8A_29P0t67daC--NqkTdrzkd9pTn6HkHe-qaSuHSuj06EUICSaVHSl4K71HgGACuk08uUXeXElPl831_dKfaWcsJEeePxwJ9AwFoVHWMCsSNFIKnUOSoaAQB7xd_K-uObdC6ayD-Ythi5iOiXDuD4ZRPYJKVqqUlpnKWcrUSbsn6HMhzmSDzZK8_pz_ow8nYAjPR0nvE8eQfecPB5LSW4OyK-vy75DoAcYyS82dIDM6Q2BJj6I1Q9AjL248fSs55c9TWdKaGe7HsE39qe-Xy5hRe1AU5IGymoBdKqPk3_vbIb1QBHd0kRujE-HzDuBU6Y_cYwVHRDJ5vzpF-Tq_NO3s4tyKrFQ-kbzdamkRCP2LjitA5pn9MJGD20bK-2YrcEjooM21MGJNmAsZi14FZnyltdN7fhLstf1HbwilHsJLlZRMd8KEWrXNspJdCEuyKidLUi1_dzGT_zjqQzGwuR9cK7NKCKDIjJZREYW5P3unuXIvvHX3h-TFHc9E3N2voD6ZCZ9Mv_Sp4IcbnXATOY8GIQ5NYaS6PsKcrxrRkNMuyujaHMfjKYlrwqiZrozm9C8pbv5nim9Vdpv1rwgH7Zadjf4n1_49f944TfkSZ2sItVjYodkb726hbcItNbuKNvUb-yPJiY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4ikCBRmJG0RNYsdxTggqlgqpXKBSb5afUGmbhGQR2h_A_2bG8W6VSvQaO4mTmbG_8Yy_IeSNrUshK1PkwUiXc88FmFQwOWemtRYAQOPwNPLpV3Fyxr-c1-dpw21KaZW7OTFO1K63uEd-BCtNBWge1O_98CvHqlEYXU0lNG6TOyWsNJjSJVef93ssyH4uOU9nZQomjyYeZwb0mUpM7szFYj2KtP0LrHk9U_JauDSuQqsH5H6Cj_TDLO-H5JbvHpG7c0HJ7WPy99vQdwD3PPjz6y2dfGT29o4iK8R46QFpry8sPe7ZaU_xZAntdNcDBIf-1PbD4EeqJ4qpGiCxtaepSk7c5NlOm4kCxqVIcQxP95F9AoZM_8A7RjoBno1Z1E_I2erT9-OTPBVayG0t2SZvhABTtsYZKR0YabBcB-vbNpTSFLryFnCdb13lDG8deGRae9uEorGaVXVl2FNy0PWdf0Yos8KbUIamsC3nrjJt3RgBE4lxIkijM1LufreyiYUci2GsVYyGM6lmESkQkYoiUiIjb_f3DDMHx429P6IU9z2RPzte6McfKpmj8nVRBG4BbBaao48LnlPtG-EcuIfg1WXkcKcDKhn1pK5UMCOv981gjhhjmUUb-4BPLViZkWahO4sBLVu6i5-R2LvBqLNkGXm307Krl___g5_fPNYX5F6F-o71lopDcrAZf_uXAKQ25lW0ln_zuh9s priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3ShEIvIekHdZIWFXprTW1LluTjNjSEhfSSBnIT1lcb2NqLvaXsD-j_7ki2tzi0hVztsa3dmZHfs0ZvAN6aMuey0FnqtbQpc4xjSnmdMqorYxAACBt2I1995pc3bHlb3u5BMe2FiUX7UdIyTtNTddiHnsWUDmQnD1WZKX8EB0GqHWP7YLFYXi93X1aC5rlkbNwhk1H5l4tnb6Eo1j9DmPfrI-8tksZ3z8URHI6gkSyGYR7DnmuewuOhjeT2Gfy6XrcNgjyHLH61Jb2Let7OkqAF0X13iK9Xd4act_SqJWE_CWnqpkXgjfbEtOu160jdk1CggX5aOTL2xomfdrb9pieIbEkQNsa7u6g5gUMmP_EZHekRxcba6edwc_Hpy_llOrZXSE0p6SYVnGMCG221lBZT0xtWe-OqyudSZ3XhDKI5V9nCalZZ5GF17YzwmTA1LcpC0xew37SNewmEGu60z73ITMWYLXRVCs1x-tCWe6nrBPLp71Zm1B4PLTBWKq6BU6kGFyl0kYouUjyBd7tr1oPyxn-tPwYv7iyDanY80HZf1RhFypVZ5plBiJnVLDBb5EulE9xaJIXI5RI4m2JAjancK4Q4BdJInPcSeLM7jUkYVlYG10YbZNKc5gmIWezMBjQ_09x9i3LeIqw1S5rA-ynK_jz83z_45GHmp_CkCPEfui5lZ7C_6X64VwinNvr1mD-_AWnSHrU priority: 102 providerName: Springer Nature |
Title | Spontaneously separated intermetallic Co3Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting |
URI | https://link.springer.com/article/10.1038/s41467-020-16769-6 https://www.proquest.com/docview/2412149225 https://www.proquest.com/docview/2412211631 https://pubmed.ncbi.nlm.nih.gov/PMC7287083 https://doaj.org/article/e500f4c1120a484093065e76dd148096 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_uA8EX8ROjZ1nBN40m2c3u5kGkV64ehR7iWehbyH5ED2JSk4r2D_D_dnaTVnqc4ksKySTZ7szs_n6Z3RmAFzqNuUxUFJZKmpBZxtGlShUyqjKtEQAI43Yjzy_4-YLNlunyALbljoYO7G6kdq6e1KKtXv_8tnmHDv-23zIu33TMu7sjQrFbsRnyQzjGmUm4igbzAe77kZlmSGhcoDmJWByiAB320dz8mL25yqf038Oh11dRXgul-hlqehfuDNCSjHtbuAcHtr4Pt_pik5sH8Oty1dQIBS1y_WpDOuuzfltDXMaI9qvFDqiuNJk0dN4Qt-uE1EXdYM-gPNHNamVbUnTELeNAbVaWDBV0_AegTbfuCOJf4tIf49Otz0yBTSY_8B0t6RDr-hXWD2ExPfs0OQ-HIgyhTiVdh4JzdHOtjJLSoAOXmhWltllWxlJFRWI1Yj6bmcQolhlka0VhtSgjoQuapImij-Cobmr7GAjV3KoyLkWkM8ZMorJUKI6DjDK8lKoIIN52d66HDOWuUEaV-0g5lXmvohxVlHsV5TyAl7t7Vn1-jn9Knzot7iRdbm1_omk_54Or5jaNopJpBKJRwRz_RVaVWsGNQeqIjC-Ak60N5Ft7zdHcEiSbODoG8Hx3GV3VxV961XoZ5NucxgGIPdvZa9D-lfrqi0_6LVxEWtIAXm2t7M_L__6Hn_xHY57C7cQZvSvIFJ3A0br9bp8h0lqrERyKpcCjnL4fwfF4PLuc4e_p2cWHj3h2wicj_w1j5N3sN0rJLUI |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMNFDASnCBqEjuOc0AICsuWdnuhlXoz8SNQaUlCslW1P4C_w29k7CRbbSV66zVxEu_ON-Nv7HkAvNJpzEWiorBUwoTMMo4qVaqQUZVrjQQgMy4beXbIp8fs60l6sgF_x1wYF1Y52kRvqE2t3R75Dq40CbJ5hN_75nfouka509WxhUYPi327PEeXrXu39wnl-zpJJp-Pdqfh0FUg1KmgizDjHHGrlVFCGERkqVlRapvnZSxUVCRWI4mxuUmMYrlB96MorM7KKNMFTdJEUXzvDbjJKK7kLjN98mW1p-OqrQvGhtyciIqdjnlL5Hy02AWThnxt_fNtAta47eXIzEvHs37Vm9yDuwNdJR96fN2HDVs9gFt9A8vlQ_jzrakrpJe2PuvmS9JZX0ncGuKqULS_LDL7-akmuzWd1cRlspCqqGqk_Die6LppbEuKjrjQEETI3JKhK4_fVFp2i44gpyaupDK-3fpqFzhlco7faEmH_NlHbT-C42sRwWPYrOrKbgGhmltVxmUW6Zwxk6g8zRRHw6UML4UqAojHv1vqoeq5a74xl_70nQrZi0iiiKQXkeQBvFk90_Q1P64c_dFJcTXS1ev2F-r2hxzUX9o0ikqmkdxGBXM-NXpqqc24MeiOohcZwPaIATkYkU5eQD6Al6vbqP7uTKcXrR-DPjyncQDZGnbWJrR-pzr96QuJZ-6UW9AA3o4ou_j4_3_wk6vn-gJuT49mB_Jg73D_KdxJHPZdr6doGzYX7Zl9hiRuoZ57zSHw_bpV9R9aH13U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE-RUsBIcIJo83Ac54AQfaxaSlcVUKk3N35BpW2ybLaq9gfwp_h1jJ1kq61Eb70mTuLdefj7POMZgLcqixlPZBRayXVIDWVoUlaGNJWFUggAcu1OIx-O2d4x_XKSnazB3_4sjEur7H2id9S6Vm6PfIgrTYJoHtVvaLu0iKOd0afp79B1kHKR1r6dRqsiB2ZxifSt-bi_g7J-lySj3R_be2HXYSBUGU_nYc4Y6rCSWnKuUTutoqVVpihszGVUJkYhoDGFTrSkhUYqUpZG5TbKVZkmWSJTfO8dWM8dKxrA-tbu-OjbcofH1V7nlHYndaKUDxvq_ZJjbLFLLQ3ZymromwasIN3reZrXgrV-DRw9hAcdeCWfW217BGumegx323aWiyfw5_u0rhBsmvqimSxIY3xdcaOJq0kxOzeI8ydnimzX6WFN3LkWUpVVjQQAxxNVT6dmRsqGuEQR1JeJIV2PHr_FtGjmDUGETVyBZXy78bUvcMrkEr8xIw2iaZ_D_RSOb0UIz2BQ1ZV5DiRVzEgb2zxSBaU6kUWWS4ZuTGpmuSwDiPu_W6iuBrprxTERPhafctGKSKCIhBeRYAG8Xz4zbSuA3Dh6y0lxOdJV7_YX6tlP0TkDYbIoslQh1I1K6hg28rbM5ExrJKfIKQPY7HVAdC6lEVcGEMCb5W10Bi7C04rWj0FGz9I4gHxFd1YmtHqnOvvly4rnLubN0wA-9Fp29fH__-CNm-f6Gu6hmYqv--ODF3A_carvGj9FmzCYzy7MS0R0c_mqMx0Cp7dtrf8APNRjZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spontaneously+separated+intermetallic+Co3Mo+from+nanoporous+copper+as+versatile+electrocatalysts+for+highly+efficient+water+splitting&rft.jtitle=Nature+communications&rft.au=Shi%2C+Hang&rft.au=Zhou%2C+Yi-Tong&rft.au=Yao%2C+Rui-Qi&rft.au=Wan%2C+Wu-Bin&rft.date=2020-06-10&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft.spage=2940&rft_id=info:doi/10.1038%2Fs41467-020-16769-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |