Combined spatial and frequency encoding for electrotactile feedback of myoelectric signals
Electrotactile stimulation has been commonly used in human–machine interfaces to provide feedback to the user, thereby closing the control loop and improving performance. The encoding approach, which defines the mapping of the feedback information into stimulation profiles, is a critical component o...
Saved in:
Published in | Experimental brain research Vol. 240; no. 9; pp. 2285 - 2298 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0014-4819 1432-1106 1432-1106 |
DOI | 10.1007/s00221-022-06409-4 |
Cover
Loading…
Abstract | Electrotactile stimulation has been commonly used in human–machine interfaces to provide feedback to the user, thereby closing the control loop and improving performance. The encoding approach, which defines the mapping of the feedback information into stimulation profiles, is a critical component of an electrotactile interface. Ideally, the encoding will provide a high-fidelity representation of the feedback variable while being easy to perceive and interpret by the subject. In the present study, we performed a closed-loop experiment wherein discrete and continuous coding schemes are combined to exploit the benefits of both techniques. Subjects performed a muscle activation-matching task relying solely on electrotactile feedback representing the generated myoelectric signal (EMG). In particular, we investigated the performance of two different coding schemes (spatial and spatial combined with frequency) at two feedback resolutions (low: 3 and high: 5 intervals). In both schemes, the stimulation electrodes were placed circumferentially around the upper arm. The magnitude of the normalized EMG was divided into intervals, and each electrode was associated with one interval. When the generated EMG entered one of the intervals, the associated electrode started stimulating. In the combined encoding, the additional frequency modulation of the active electrode also indicated the momentary magnitude of the signal within the interval. The results showed that combined coding decreased the undershooting rate, variability and absolute deviation when the resolution was low but not when the resolution was high, where it actually worsened the performance. This demonstrates that combined coding can improve the effectiveness of EMG feedback, but that this effect is limited by the intrinsic variability of myoelectric control. Our findings, therefore, provide important insights as well as elucidate limitations of the information encoding methods when using electrotactile stimulation to convey a feedback signal characterized by high variability (EMG biofeedback). |
---|---|
AbstractList | Electrotactile stimulation has been commonly used in human–machine interfaces to provide feedback to the user, thereby closing the control loop and improving performance. The encoding approach, which defines the mapping of the feedback information into stimulation profiles, is a critical component of an electrotactile interface. Ideally, the encoding will provide a high-fidelity representation of the feedback variable while being easy to perceive and interpret by the subject. In the present study, we performed a closed-loop experiment wherein discrete and continuous coding schemes are combined to exploit the benefits of both techniques. Subjects performed a muscle activation-matching task relying solely on electrotactile feedback representing the generated myoelectric signal (EMG). In particular, we investigated the performance of two different coding schemes (spatial and spatial combined with frequency) at two feedback resolutions (low: 3 and high: 5 intervals). In both schemes, the stimulation electrodes were placed circumferentially around the upper arm. The magnitude of the normalized EMG was divided into intervals, and each electrode was associated with one interval. When the generated EMG entered one of the intervals, the associated electrode started stimulating. In the combined encoding, the additional frequency modulation of the active electrode also indicated the momentary magnitude of the signal within the interval. The results showed that combined coding decreased the undershooting rate, variability and absolute deviation when the resolution was low but not when the resolution was high, where it actually worsened the performance. This demonstrates that combined coding can improve the effectiveness of EMG feedback, but that this effect is limited by the intrinsic variability of myoelectric control. Our findings, therefore, provide important insights as well as elucidate limitations of the information encoding methods when using electrotactile stimulation to convey a feedback signal characterized by high variability (EMG biofeedback). Electrotactile stimulation has been commonly used in human-machine interfaces to provide feedback to the user, thereby closing the control loop and improving performance. The encoding approach, which defines the mapping of the feedback information into stimulation profiles, is a critical component of an electrotactile interface. Ideally, the encoding will provide a high-fidelity representation of the feedback variable while being easy to perceive and interpret by the subject. In the present study, we performed a closed-loop experiment wherein discrete and continuous coding schemes are combined to exploit the benefits of both techniques. Subjects performed a muscle activation-matching task relying solely on electrotactile feedback representing the generated myoelectric signal (EMG). In particular, we investigated the performance of two different coding schemes (spatial and spatial combined with frequency) at two feedback resolutions (low: 3 and high: 5 intervals). In both schemes, the stimulation electrodes were placed circumferentially around the upper arm. The magnitude of the normalized EMG was divided into intervals, and each electrode was associated with one interval. When the generated EMG entered one of the intervals, the associated electrode started stimulating. In the combined encoding, the additional frequency modulation of the active electrode also indicated the momentary magnitude of the signal within the interval. The results showed that combined coding decreased the undershooting rate, variability and absolute deviation when the resolution was low but not when the resolution was high, where it actually worsened the performance. This demonstrates that combined coding can improve the effectiveness of EMG feedback, but that this effect is limited by the intrinsic variability of myoelectric control. Our findings, therefore, provide important insights as well as elucidate limitations of the information encoding methods when using electrotactile stimulation to convey a feedback signal characterized by high variability (EMG biofeedback).Electrotactile stimulation has been commonly used in human-machine interfaces to provide feedback to the user, thereby closing the control loop and improving performance. The encoding approach, which defines the mapping of the feedback information into stimulation profiles, is a critical component of an electrotactile interface. Ideally, the encoding will provide a high-fidelity representation of the feedback variable while being easy to perceive and interpret by the subject. In the present study, we performed a closed-loop experiment wherein discrete and continuous coding schemes are combined to exploit the benefits of both techniques. Subjects performed a muscle activation-matching task relying solely on electrotactile feedback representing the generated myoelectric signal (EMG). In particular, we investigated the performance of two different coding schemes (spatial and spatial combined with frequency) at two feedback resolutions (low: 3 and high: 5 intervals). In both schemes, the stimulation electrodes were placed circumferentially around the upper arm. The magnitude of the normalized EMG was divided into intervals, and each electrode was associated with one interval. When the generated EMG entered one of the intervals, the associated electrode started stimulating. In the combined encoding, the additional frequency modulation of the active electrode also indicated the momentary magnitude of the signal within the interval. The results showed that combined coding decreased the undershooting rate, variability and absolute deviation when the resolution was low but not when the resolution was high, where it actually worsened the performance. This demonstrates that combined coding can improve the effectiveness of EMG feedback, but that this effect is limited by the intrinsic variability of myoelectric control. Our findings, therefore, provide important insights as well as elucidate limitations of the information encoding methods when using electrotactile stimulation to convey a feedback signal characterized by high variability (EMG biofeedback). |
Audience | Academic |
Author | Leo, Fabrizio Dosen, Strahinja Nataletti, Sara Dideriksen, Jakob Brayda, Luca |
Author_xml | – sequence: 1 givenname: Sara surname: Nataletti fullname: Nataletti, Sara email: sara.nataletti@iit.it organization: Cognitive Architecture for Collaborative Technologies Unit, Istituto Italiano di Tecnologia (IIT), Department of Informatics, Bioengineering Robotics, and System Engineering, University of Genoa – sequence: 2 givenname: Fabrizio orcidid: 0000-0002-4095-7785 surname: Leo fullname: Leo, Fabrizio organization: Cognitive Architecture for Collaborative Technologies Unit, Istituto Italiano di Tecnologia (IIT) – sequence: 3 givenname: Jakob orcidid: 0000-0001-6587-0865 surname: Dideriksen fullname: Dideriksen, Jakob organization: Department of Health Science and Technology, Aalborg University – sequence: 4 givenname: Luca orcidid: 0000-0002-6673-2971 surname: Brayda fullname: Brayda, Luca organization: Acoesis S.R.L., Robotics, Brain and Cognitive Science Unit, Istituto Italiano di Tecnologia (IIT) – sequence: 5 givenname: Strahinja orcidid: 0000-0003-3035-147X surname: Dosen fullname: Dosen, Strahinja email: sdosen@hst.aau.dk organization: Department of Health Science and Technology, Aalborg University |
BookMark | eNp9kl1rFDEUhoNU7Lb6B7waEKReTM33TG6EsqgtFAQ_brwJ2czJbOpMsk4y4v57s25p3SIlcJKQ530P5-ScoKMQAyD0kuBzgnHzNmFMKalLqLHkWNX8CVoQzmhNCJZHaIEx4TVviTpGJynd7K6swc_QMRNto5hQC_R9GceVD9BVaWOyN0NlQle5CX7OEOy2KiF2PvSVi1MFA9g8xWxs9gNUDqBbGfujiq4at3H_6m2VfB_MkJ6jp65s8OJ2P0XfPrz_urysrz99vFpeXNdWtCzXDXWdocwpIcyKCsWlYEI0lkDHRcMa5TjrBFWAheCdhZYrApaLjpZDK1bsFL3b-27m1QiFCHkyg95MfjTTVkfj9eFL8Gvdx19acdGWRhSDs1uDKZayU9ajTxaGwQSIc9JUKq4kZVgV9NUD9CbO065aTRtCJFVYtvdUbwbQPrhY8tqdqb5oiJRSCSoLdf4fqqwORm_LV7vS5EPBmwNBYTL8zr2ZU9JXXz4fsq__YddghrxOcZizjyEdgnQP2immNIG7axzBejdmej9mugT9d8w0L6L2gcj6bHbepQQ_PC5le2kqeUIP030HH1H9AY3O5JU |
CitedBy_id | crossref_primary_10_1038_s41598_024_80828_x crossref_primary_10_3389_frvir_2024_1406923 crossref_primary_10_1109_TMRB_2024_3385983 crossref_primary_10_3389_fnins_2023_1135687 |
Cites_doi | 10.1007/BF02457988 10.1109/TBME.2012.2200678 10.1088/1741-2552/ac07be 10.1038/s41598-018-34910-w 10.1371/journal.pone.0134095 10.1186/s12984-018-0371-1 10.1109/TNSRE.2016.2550864 10.1155/2014/120357 10.1186/1743-0003-10-55 10.1109/ICORR.2017.8009414 10.1126/scirobotics.aap9770 10.1586/erd.12.68 10.1016/S0959-4388(00)00234-8 10.1126/scitranslmed.3006820 10.3389/fbioe.2020.00555 10.1037/0096-1523.25.4.1159 10.1371/journal.pone.0098301 10.1080/17434440.2016.1237287 10.3109/17483107.2012.713435 10.1007/BF02447053 10.3390/s20061613 10.1155/2007/48937 10.1038/29528 10.1007/s00221-015-4346-1 10.1523/JNEUROSCI.0424-12.2012 10.1007/BF02367316 10.1088/1741-2560/13/5/056010 10.1109/TNSRE.2007.903942 10.1007/978-3-030-34230-2_3 10.1109/ACCESS.2018.2791583 10.1007/s00221-017-4991-7 10.1016/j.jelekin.2006.08.006 10.1186/s12984-019-0622-9 10.1097/01.JPO.0000311041.61628.be 10.1007/s00221-003-1690-3 10.1177/0309364614522260 10.1186/s12984-015-0047-z 10.1093/ptj/63.9.1448 10.1109/TBME.1982.324948 10.1088/1741-2552/aa620a 10.1177/0956797613511467 10.1097/NPT.0000000000000023 10.1109/toh.2019.2961652 10.3389/fnins.2020.00345 10.1109/toh.2020.2985962 10.1186/s12984-018-0417-4 10.1109/TNSRE.2015.2500586 10.1109/TNSRE.2014.2371238 10.1088/1741-2560/13/4/046014 10.1088/1741-2552/ac1fce 10.1186/1743-0003-8-60 10.1177/1545968309341646 10.1038/s41598-018-26810-w 10.1038/nn963 10.1152/jn.00940.2009 10.1007/s00347-016-0276-y 10.1186/1743-0003-3-11 10.1109/TRO.2007.910708 10.1093/ptj/74.6.534 10.1371/journal.pcbi.1000345 10.1109/TNSRE.2014.2337952 10.3389/fnins.2020.00120 10.1186/s12984-019-0597-6 10.1109/MeMeA.2012.6226669 10.21307/ijssis-2018-005 10.1111/j.2517-6161.1995.tb02031.x 10.1109/ICRA.2015.7140109 10.1121/1.415561 10.36227/techrxiv.14588250.v3 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 COPYRIGHT 2022 Springer The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: COPYRIGHT 2022 Springer – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION ISR 0-V 3V. 7QP 7QR 7RV 7TK 7TM 7X7 7XB 88E 88G 88J 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA ALSLI AZQEC BENPR CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ K9. KB0 M0S M1P M2M M2R NAPCQ P64 PHGZM PHGZT PJZUB PKEHL POGQB PPXIY PQEST PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1007/s00221-022-06409-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) Social Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Psychology Database Social Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts Sociology & Social Sciences Collection ProQuest Central China Health Research Premium Collection Health & Medical Research Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Social Science Premium Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Sociology & Social Sciences Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Social Science Journals (Alumni Edition) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Social Sciences ProQuest Central Basic ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest Medical Library ProQuest Psychology Journals ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Psychology |
EISSN | 1432-1106 |
EndPage | 2298 |
ExternalDocumentID | PMC9458587 A716669526 10_1007_s00221_022_06409_4 |
GeographicLocations | Denmark |
GeographicLocations_xml | – name: Denmark |
GrantInformation_xml | – fundername: Compagnia di San Paolo grantid: 2017.0559 funderid: http://dx.doi.org/10.13039/100007388 – fundername: Istituto Italiano di Tecnologia – fundername: Independent Research Fund Denmark grantid: 8022-00243A; 8022-00226B – fundername: ; – fundername: ; grantid: 2017.0559 – fundername: ; grantid: 8022-00243A; 8022-00226B |
GroupedDBID | --- -4W -56 -5G -BR -DZ -EM -XW -Y2 -~C -~X .55 .86 .GJ .VR 0-V 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3O- 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6NX 78A 7RV 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYJJ AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BKEYQ BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 FA8 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IHR IHW IJ- IKXTQ INH INR IPY ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L7B LAS LLZTM M1P M2M M2R M4Y MA- N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT OVD P19 P2P PF- PKN PQQKQ PROAC PSQYO PSYQQ PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7W Z7X Z82 Z83 Z87 Z88 Z8M Z8O Z8Q Z8R Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ZXP ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7QP 7QR 7TK 7TM 7XB 8FD 8FK ABRTQ FR3 K9. P64 PJZUB PKEHL POGQB PPXIY PQEST PQUKI PRINS PRQQA PUEGO Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c583t-72fda23f955ab2594653557c1ed457379f43d529e0554dce8491ec45d249185b3 |
IEDL.DBID | BENPR |
ISSN | 0014-4819 1432-1106 |
IngestDate | Thu Aug 21 14:01:20 EDT 2025 Thu Sep 04 23:49:50 EDT 2025 Sat Aug 23 14:01:59 EDT 2025 Tue Jun 17 22:09:39 EDT 2025 Tue Jun 10 21:04:24 EDT 2025 Fri Jun 27 05:26:56 EDT 2025 Thu May 22 21:24:07 EDT 2025 Thu Apr 24 23:02:39 EDT 2025 Tue Jul 01 02:44:46 EDT 2025 Fri Feb 21 02:45:05 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Myoelectric control Sensory feedback Electrotactile stimulation EMG feedback Closed-loop control |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-72fda23f955ab2594653557c1ed457379f43d529e0554dce8491ec45d249185b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Communicated by Francesco Lacquaniti. |
ORCID | 0000-0003-3035-147X 0000-0001-6587-0865 0000-0002-4095-7785 0000-0002-6673-2971 |
OpenAccessLink | https://link.springer.com/10.1007/s00221-022-06409-4 |
PMID | 35879359 |
PQID | 2711629068 |
PQPubID | 47176 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9458587 proquest_miscellaneous_2694962309 proquest_journals_2711629068 gale_infotracmisc_A716669526 gale_infotracacademiconefile_A716669526 gale_incontextgauss_ISR_A716669526 gale_healthsolutions_A716669526 crossref_primary_10_1007_s00221_022_06409_4 crossref_citationtrail_10_1007_s00221_022_06409_4 springer_journals_10_1007_s00221_022_06409_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Experimental brain research |
PublicationTitleAbbrev | Exp Brain Res |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
References | Harris, Wolpert (CR28) 1998; 394 Anani, Körner (CR2) 1979; 17 Schofield, Shell, Beckler (CR54) 2020; 14 CR39 CR38 Novich, Eagleman (CR46) 2015; 233 CR36 Mendez, Hansen, Grabow (CR42) 2017 Raspopovic, Capogrosso, Petrini (CR50) 2014 CR34 Johnson (CR32) 2001; 11 O’Sullivan, Burdet, Diedrichsen (CR47) 2009 Valle, Petrini, Strauss (CR70) 2018; 8 CR71 Dosen, Markovic, Strbac (CR23) 2017; 25 Jorgovanovic, Dosen, Djozic (CR33) 2014 Markovic, Schweisfurth, Engels (CR41) 2018; 15 Erwin, Sup (CR24) 2015; 10 Saunders, Vijayakumar (CR53) 2011; 8 CR8 Leo, Cocchi, Ferrari, Brayda (CR37) 2019 Haith, Reppert, Shadmehr (CR27) 2012; 32 Wilke, Niethammer, Meyer (CR73) 2019; 16 Cipriani, Zaccone, Micera, Carrozza (CR13) 2008; 24 Benjamini, Hochberg (CR6) 1995; 57 Dideriksen, Mercader, Dosen (CR20) 2020; 1412 CR44 De Nunzio, Dosen, Lemling (CR19) 2017; 235 Sensinger, Dosen (CR56) 2020; 14 Szeto, Riso, Smith, Leslie (CR63) 1990 Antfolk, Cipriani, Carrozza (CR4) 2013; 8 Shehata, Engels, Controzzi (CR57) 2018; 15 Witteveen, Rietman, Veltink (CR75) 2015; 39 Wolf (CR76) 1983; 63 Clancy, Morin, Merletti (CR14) 2002 Bouwsema, Van Der Sluis, Bongers (CR7) 2014 Parker, Englehart, Hudgins (CR48) 2006; 16 Yau, Celnik, Hsiao, Desmond (CR77) 2014; 25 D’Alonzo, Clemente, Cipriani (CR18) 2015; 23 Wilke, Hartmann, Schimpf (CR72) 2019 Hinterberger, Neumann, Pham (CR30) 2004; 154 Markovic, Karnal, Graimann (CR40) 2017 Antfolk, D’alonzo, Rosén (CR5) 2013; 10 Ross (CR52) 1999; 25 Szeto, Saunders (CR64) 1982; 29 Huang, Wolf, He (CR31) 2006; 3 Štrbac, Belić, Isaković (CR60) 2016; 13 CR16 Nataletti, Leo, Seminara (CR45) 2020; 8 Witteveen, Droog, Rietman, Veltink (CR74) 2012; 59 Clemente, D’Alonzo, Controzzi (CR15) 2016; 24 Stronks, Mitchell, Nau, Barnes (CR61) 2016; 13 Buma, Buitenweg, Veltink (CR9) 2007; 15 Cordo, Wolf, Lou (CR17) 2013; 37 CR51 Stephens-Fripp, Alici, Mutlu (CR59) 2018; 6 Moreland, Thomson, Wolf (CR43) 1994; 74 Cincotti, Kauhanen, Aloise (CR12) 2007 Szeto, Lyman (CR62) 1977; 5 Tchimino, Markovic, Lund Dideriksen, Strahinja (CR66) 2021 Dosen, Markovic, Hartmann, Farina (CR21) 2015; 23 Anani, Ikeda, Körner (CR3) 1977; 15 Todorov, Jordan (CR68) 2002; 5 Chatterjee, Chaubey, Martin, Thakor (CR11) 2008; 20 Schweisfurth, Markovic, Dosen (CR55) 2016; 13 Hegner, Lee, Grodd, Braun (CR29) 2010; 103 Shehata, Scheme, Sensinger (CR58) 2018; 8 CR69 Dosen, Markovic, Somer (CR22) 2015; 12 Quaney, Jianghua, Timberlake (CR49) 2010; 24 CR67 CR65 Akhtar, Sombeck, Boyce, Bretl (CR1) 2018; 3 Gholinezhad, Dosen, Jakob (CR25) 2021 Guemann, Bouvier, Halgand (CR26) 2019; 16 Kita, Otaka, Takeda (CR35) 2013; 10 Campbell, Phinyomark, Scheme (CR10) 2020; 20 MA Wilke (6409_CR73) 2019; 16 B Stephens-Fripp (6409_CR59) 2018; 6 E Todorov (6409_CR68) 2002; 5 S Nataletti (6409_CR45) 2020; 8 H Huang (6409_CR31) 2006; 3 JS Schofield (6409_CR54) 2020; 14 6409_CR65 DG Buma (6409_CR9) 2007; 15 HE Ross (6409_CR52) 1999; 25 JL Dideriksen (6409_CR20) 2020; 1412 J Moreland (6409_CR43) 1994; 74 HC Stronks (6409_CR61) 2016; 13 M Wilke (6409_CR72) 2019 M Markovic (6409_CR41) 2018; 15 P Parker (6409_CR48) 2006; 16 S Raspopovic (6409_CR50) 2014 6409_CR69 6409_CR67 AW Shehata (6409_CR58) 2018; 8 A Akhtar (6409_CR1) 2018; 3 N Jorgovanovic (6409_CR33) 2014 AYJ Szeto (6409_CR64) 1982; 29 AM De Nunzio (6409_CR19) 2017; 235 AYJ Szeto (6409_CR62) 1977; 5 M Guemann (6409_CR26) 2019; 16 I Saunders (6409_CR53) 2011; 8 SD Novich (6409_CR46) 2015; 233 AB Anani (6409_CR3) 1977; 15 J Tchimino (6409_CR66) 2021 KO Johnson (6409_CR32) 2001; 11 6409_CR51 M D’Alonzo (6409_CR18) 2015; 23 AB Anani (6409_CR2) 1979; 17 F Cincotti (6409_CR12) 2007 M Štrbac (6409_CR60) 2016; 13 6409_CR16 A Erwin (6409_CR24) 2015; 10 BM Quaney (6409_CR49) 2010; 24 AY Szeto (6409_CR63) 1990 T Hinterberger (6409_CR30) 2004; 154 M Markovic (6409_CR40) 2017 S Dosen (6409_CR21) 2015; 23 C Antfolk (6409_CR5) 2013; 10 6409_CR8 P Cordo (6409_CR17) 2013; 37 6409_CR44 EA Clancy (6409_CR14) 2002 C Cipriani (6409_CR13) 2008; 24 Y Benjamini (6409_CR6) 1995; 57 H Bouwsema (6409_CR7) 2014 S Dosen (6409_CR23) 2017; 25 AW Shehata (6409_CR57) 2018; 15 SL Wolf (6409_CR76) 1983; 63 YL Hegner (6409_CR29) 2010; 103 S Gholinezhad (6409_CR25) 2021 AM Haith (6409_CR27) 2012; 32 I Mendez (6409_CR42) 2017 HJB Witteveen (6409_CR75) 2015; 39 G Valle (6409_CR70) 2018; 8 JM Yau (6409_CR77) 2014; 25 CM Harris (6409_CR28) 1998; 394 K Kita (6409_CR35) 2013; 10 F Clemente (6409_CR15) 2016; 24 E Campbell (6409_CR10) 2020; 20 JW Sensinger (6409_CR56) 2020; 14 F Leo (6409_CR37) 2019 I O’Sullivan (6409_CR47) 2009 A Chatterjee (6409_CR11) 2008; 20 6409_CR71 6409_CR38 6409_CR39 C Antfolk (6409_CR4) 2013; 8 6409_CR36 MA Schweisfurth (6409_CR55) 2016; 13 S Dosen (6409_CR22) 2015; 12 6409_CR34 HJB Witteveen (6409_CR74) 2012; 59 |
References_xml | – volume: 15 start-page: 363 year: 1977 end-page: 373 ident: CR3 article-title: Human ability to discriminate various parameters in afferent electrical nerve stimulation with particular reference to prostheses sensory feedback publication-title: Med Biol Eng Comput doi: 10.1007/BF02457988 – volume: 59 start-page: 2219 year: 2012 end-page: 2226 ident: CR74 article-title: Vibro- and electrotactile user feedback on hand opening for myoelectric forearm prostheses publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2012.2200678 – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: CR6 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: R Stat Soc – year: 2021 ident: CR66 article-title: The effect of calibration parameters on the control of a myoelectric hand prosthesis using EMG feedback publication-title: J Neural Eng doi: 10.1088/1741-2552/ac07be – ident: CR39 – ident: CR16 – ident: CR51 – volume: 8 start-page: 1 year: 2018 end-page: 13 ident: CR70 article-title: Comparison of linear frequency and amplitude modulation for intraneural sensory feedback in bidirectional hand prostheses publication-title: Sci Rep doi: 10.1038/s41598-018-34910-w – volume: 10 start-page: 1 year: 2015 end-page: 17 ident: CR24 article-title: A haptic feedback scheme to accurately position a virtual wrist prosthesis using a three-node tactor array publication-title: PLoS ONE doi: 10.1371/journal.pone.0134095 – volume: 15 start-page: 1 year: 2018 end-page: 15 ident: CR41 article-title: The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-018-0371-1 – volume: 25 start-page: 183 year: 2017 end-page: 195 ident: CR23 article-title: Multichannel electrotactile feedback with spatial and mixed coding for closed-loop control of grasping force in hand prostheses publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2016.2550864 – year: 2014 ident: CR33 article-title: Virtual grasping: closed-loop force control using electrotactile feedback publication-title: Comput Math Methods Med doi: 10.1155/2014/120357 – volume: 10 start-page: 1 year: 2013 ident: CR35 article-title: A pilot study of sensory feedback by transcutaneous electrical nerve stimulation to improve manipulation deficit caused by severe sensory loss after stroke publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-10-55 – year: 2017 ident: CR42 article-title: Evaluation of the Myo armband for the classification of hand motions publication-title: IEEE Int Conf Rehabil Robot doi: 10.1109/ICORR.2017.8009414 – ident: CR8 – volume: 3 start-page: eaap9770 year: 2018 ident: CR1 article-title: Controlling sensation intensity for electrotactile stimulation in human-machine interfaces publication-title: Sci Robot doi: 10.1126/scirobotics.aap9770 – volume: 10 start-page: 45 year: 2013 end-page: 54 ident: CR5 article-title: Sensory feedback in upper limb prosthetics publication-title: Expert Rev Med Devices doi: 10.1586/erd.12.68 – volume: 11 start-page: 455 year: 2001 end-page: 461 ident: CR32 article-title: The roles and functions of cutaneous mechanoreceptors publication-title: Curr Opin Neurobiol doi: 10.1016/S0959-4388(00)00234-8 – year: 2014 ident: CR50 article-title: Restoring natural sensory feedback in real-time bidirectional hand prostheses publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3006820 – ident: CR71 – volume: 8 start-page: 1 year: 2020 end-page: 13 ident: CR45 article-title: Temporal asynchrony but not total energy nor duration improves the judgment of numerosity in electrotactile stimulation publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2020.00555 – volume: 25 start-page: 1159 year: 1999 end-page: 1161 ident: CR52 article-title: Tactile sensory anisotropy: Weber’s contribution publication-title: J Exp Psychol Hum Percept Perform doi: 10.1037/0096-1523.25.4.1159 – year: 2014 ident: CR7 article-title: Effect of feedback during virtual training of grip force control with a myoelectric prosthesis publication-title: PLoS ONE doi: 10.1371/journal.pone.0098301 – volume: 13 start-page: 919 year: 2016 end-page: 931 ident: CR61 article-title: Visual task performance in the blind with the BrainPort V100 Vision Aid publication-title: Expert Rev Med Devices doi: 10.1080/17434440.2016.1237287 – ident: CR67 – volume: 8 start-page: 249 year: 2013 end-page: 254 ident: CR4 article-title: Transfer of tactile input from an artificial hand to the forearm: experiments in amputees and able-bodied volunteers publication-title: Disabil Rehabil Assist Technol doi: 10.3109/17483107.2012.713435 – volume: 17 start-page: 425 year: 1979 end-page: 434 ident: CR2 article-title: Afferent electrical nerve stimulation: Human tracking performance relevant to prosthesis sensory feedback publication-title: Med Biol Eng Comput doi: 10.1007/BF02447053 – volume: 20 start-page: 1 year: 2020 end-page: 44 ident: CR10 article-title: Current trends and confounding factors in myoelectric control: limb position and contraction intensity publication-title: Sens (switzerl) doi: 10.3390/s20061613 – year: 2007 ident: CR12 article-title: Vibrotactile feedback for brain-computer interface operation publication-title: Comput Intell Neurosci doi: 10.1155/2007/48937 – volume: 394 start-page: 780 year: 1998 end-page: 784 ident: CR28 article-title: Signal-dependent noise determines motor planning publication-title: Nature doi: 10.1038/29528 – volume: 233 start-page: 2777 year: 2015 end-page: 2788 ident: CR46 article-title: Using space and time to encode vibrotactile information: toward an estimate of the skin’s achievable throughput publication-title: Exp Brain Res doi: 10.1007/s00221-015-4346-1 – volume: 32 start-page: 11727 year: 2012 end-page: 11736 ident: CR27 article-title: Evidence for hyperbolic temporal discounting of reward in control of movements publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0424-12.2012 – volume: 5 start-page: 367 year: 1977 end-page: 383 ident: CR62 article-title: Comparison of codes for sensory feedback using electrocutaneous tracking publication-title: Ann Biomed Eng doi: 10.1007/BF02367316 – ident: CR36 – volume: 13 start-page: 1 year: 2016 end-page: 15 ident: CR55 article-title: Electrotactile EMG feedback improves the control of prosthesis grasping force publication-title: J Neural Eng doi: 10.1088/1741-2560/13/5/056010 – volume: 15 start-page: 435 year: 2007 end-page: 441 ident: CR9 article-title: Intermittent stimulation delays adaptation to electrocutaneous sensory feedback publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2007.903942 – year: 2019 ident: CR37 article-title: Maps as ability amplifiers: using graphical tactile displays to enhance spatial skills in people who are visually impaired publication-title: Haptic Interfaces Access Heal Enhanc Qual Life doi: 10.1007/978-3-030-34230-2_3 – volume: 6 start-page: 6878 year: 2018 end-page: 6899 ident: CR59 article-title: A review of non-invasive sensory feedback methods for transradial prosthetic hands publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2791583 – volume: 235 start-page: 2547 year: 2017 end-page: 2559 ident: CR19 article-title: Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels publication-title: Exp Brain Res doi: 10.1007/s00221-017-4991-7 – volume: 16 start-page: 541 year: 2006 end-page: 548 ident: CR48 article-title: Myoelectric signal processing for control of powered limb prostheses publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2006.08.006 – volume: 16 start-page: 1 year: 2019 end-page: 13 ident: CR73 article-title: Psychometric characterization of incidental feedback sources during grasping with a hand prosthesis publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-019-0622-9 – volume: 20 start-page: 27 year: 2008 end-page: 34 ident: CR11 article-title: Testing a prosthetic haptic feedback simulator with an interactive force matching task publication-title: J Prosthet Orthot doi: 10.1097/01.JPO.0000311041.61628.be – volume: 154 start-page: 521 year: 2004 end-page: 526 ident: CR30 article-title: A multimodal brain-based feedback and communication system publication-title: Exp Brain Res doi: 10.1007/s00221-003-1690-3 – volume: 39 start-page: 204 year: 2015 end-page: 212 ident: CR75 article-title: Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users publication-title: Prosthet Orthot Int doi: 10.1177/0309364614522260 – volume: 12 start-page: 1 year: 2015 end-page: 13 ident: CR22 article-title: EMG biofeedback for online predictive control of grasping force in a myoelectric prosthesis publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-015-0047-z – volume: 63 start-page: 1448 year: 1983 end-page: 1459 ident: CR76 article-title: Electromyographic biofeedback applications to stroke patients. A critical review publication-title: Phys Ther doi: 10.1093/ptj/63.9.1448 – volume: 29 start-page: 300 year: 1982 end-page: 308 ident: CR64 article-title: Electrocutaneous stimulation for sensory communication in rehabilitation engineering publication-title: IEEE Trans Biomed Eng BME doi: 10.1109/TBME.1982.324948 – year: 2017 ident: CR40 article-title: GLIMPSE: google glass interface for sensory feedback in myoelectric hand prostheses publication-title: J Neural Eng doi: 10.1088/1741-2552/aa620a – volume: 25 start-page: 555 year: 2014 end-page: 565 ident: CR77 article-title: Feeling better: separate pathways for targeted enhancement of spatial and temporal touch publication-title: Psychol Sci doi: 10.1177/0956797613511467 – volume: 37 start-page: 194 year: 2013 end-page: 203 ident: CR17 article-title: Treatment of severe hand impairment following stroke by combining assisted movement, muscle vibration, and biofeedback publication-title: J Neurol Phys Ther doi: 10.1097/NPT.0000000000000023 – year: 2019 ident: CR72 article-title: The interaction between feedback type and learning in routine grasping with myoelectric prostheses publication-title: IEEE Trans Haptics doi: 10.1109/toh.2019.2961652 – ident: CR69 – ident: CR44 – volume: 14 start-page: 1 year: 2020 end-page: 24 ident: CR56 article-title: A review of sensory feedback in upper-limb prostheses from the perspective of human motor control publication-title: Front Neurosci doi: 10.3389/fnins.2020.00345 – ident: CR65 – volume: 1412 start-page: 1 year: 2020 end-page: 1 ident: CR20 article-title: Closed-loop control using electrotactile feedback encoded in frequency and pulse width publication-title: IEEE Trans Haptics doi: 10.1109/toh.2020.2985962 – ident: CR38 – volume: 15 start-page: 1 year: 2018 end-page: 12 ident: CR57 article-title: Improving internal model strength and performance of prosthetic hands using augmented feedback publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-018-0417-4 – volume: 24 start-page: 1314 year: 2016 end-page: 1322 ident: CR15 article-title: Non-invasive, temporally discrete feedback of object contact and release improves grasp control of closed-loop myoelectric transradial prostheses publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2015.2500586 – volume: 23 start-page: 267 year: 2015 end-page: 276 ident: CR21 article-title: Sensory feedback in prosthetics: a standardized test bench for closed-loop control publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2014.2371238 – volume: 13 year: 2016 ident: CR60 article-title: Integrated and flexible multichannel interface for electrotactile stimulation publication-title: J Neural Eng doi: 10.1088/1741-2560/13/4/046014 – year: 2021 ident: CR25 article-title: Electrotactile feedback outweighs natural feedback in sensory integration during control of grasp force publication-title: J Neural Eng doi: 10.1088/1741-2552/ac1fce – volume: 8 start-page: 60 year: 2011 ident: CR53 article-title: The role of feed-forward and feedback processes for closed-loop prosthesis control publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-8-60 – volume: 24 start-page: 52 year: 2010 end-page: 61 ident: CR49 article-title: Visuomotor training improves stroke-related ipsilesional upper extremity impairments publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968309341646 – volume: 8 start-page: 1 year: 2018 end-page: 10 ident: CR58 article-title: Audible feedback improves internal model strength and performance of myoelectric prosthesis control publication-title: Sci Rep doi: 10.1038/s41598-018-26810-w – volume: 5 start-page: 1226 year: 2002 end-page: 1235 ident: CR68 article-title: Optimal feedback control as a theory of motor coordination publication-title: Nat Neurosci doi: 10.1038/nn963 – volume: 103 start-page: 3115 year: 2010 end-page: 3122 ident: CR29 article-title: Comparing tactile pattern and vibrotactile frequency discrimination: a human fMRI study publication-title: J Neurophysiol doi: 10.1152/jn.00940.2009 – ident: CR34 – year: 2002 ident: CR14 article-title: Sampling, noise-reduction and amplitude estimation issues in surface electromyography publication-title: J Electromyogr Kinesiol doi: 10.1007/s00347-016-0276-y – volume: 3 start-page: 11 year: 2006 ident: CR31 article-title: Recent developments in biofeedback for neuromotor rehabilitation publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-3-11 – volume: 24 start-page: 170 year: 2008 end-page: 184 ident: CR13 article-title: On the shared control of an EMG-controlled prosthetic hand: analysis of user-prosthesis interaction publication-title: IEEE Trans Robot doi: 10.1109/TRO.2007.910708 – volume: 74 start-page: 534 year: 1994 end-page: 547 ident: CR43 article-title: Efficacy of electromyographic biofeedback compared with conventional physical therapy for upper-extremity function in patients following stroke: a research overview and meta-analysis publication-title: Phys Ther doi: 10.1093/ptj/74.6.534 – year: 2009 ident: CR47 article-title: Dissociating variability and effort as determinants of coordination publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000345 – start-page: 29 year: 1990 end-page: 78 ident: CR63 article-title: Sensory feedback using electrical stimulation of the tactile sense publication-title: Rehabilitation engineering – volume: 23 start-page: 450 year: 2015 end-page: 457 ident: CR18 article-title: Vibrotactile stimulation promotes embodiment of an Alien hand in amputees with phantom sensations publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2014.2337952 – volume: 14 start-page: 1 year: 2020 end-page: 20 ident: CR54 article-title: Long-term home-use of sensory-motor-integrated bidirectional bionic prosthetic arms promotes functional, perceptual, and cognitive changes publication-title: Front Neurosci doi: 10.3389/fnins.2020.00120 – volume: 16 start-page: 1 year: 2019 end-page: 16 ident: CR26 article-title: Effect of vibration characteristics and vibror arrangement on the tactile perception of the upper arm in healthy subjects and upper limb amputees publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-019-0597-6 – year: 2014 ident: 6409_CR7 publication-title: PLoS ONE doi: 10.1371/journal.pone.0098301 – volume: 15 start-page: 1 year: 2018 ident: 6409_CR57 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-018-0417-4 – ident: 6409_CR38 doi: 10.1109/MeMeA.2012.6226669 – volume: 13 year: 2016 ident: 6409_CR60 publication-title: J Neural Eng doi: 10.1088/1741-2560/13/4/046014 – volume: 5 start-page: 1226 year: 2002 ident: 6409_CR68 publication-title: Nat Neurosci doi: 10.1038/nn963 – ident: 6409_CR71 doi: 10.21307/ijssis-2018-005 – volume: 103 start-page: 3115 year: 2010 ident: 6409_CR29 publication-title: J Neurophysiol doi: 10.1152/jn.00940.2009 – volume: 6 start-page: 6878 year: 2018 ident: 6409_CR59 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2791583 – volume: 16 start-page: 1 year: 2019 ident: 6409_CR73 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-019-0622-9 – year: 2017 ident: 6409_CR42 publication-title: IEEE Int Conf Rehabil Robot doi: 10.1109/ICORR.2017.8009414 – volume: 29 start-page: 300 year: 1982 ident: 6409_CR64 publication-title: IEEE Trans Biomed Eng BME doi: 10.1109/TBME.1982.324948 – year: 2021 ident: 6409_CR66 publication-title: J Neural Eng doi: 10.1088/1741-2552/ac07be – ident: 6409_CR8 – volume: 25 start-page: 555 year: 2014 ident: 6409_CR77 publication-title: Psychol Sci doi: 10.1177/0956797613511467 – volume: 235 start-page: 2547 year: 2017 ident: 6409_CR19 publication-title: Exp Brain Res doi: 10.1007/s00221-017-4991-7 – volume: 74 start-page: 534 year: 1994 ident: 6409_CR43 publication-title: Phys Ther doi: 10.1093/ptj/74.6.534 – year: 2007 ident: 6409_CR12 publication-title: Comput Intell Neurosci doi: 10.1155/2007/48937 – year: 2021 ident: 6409_CR25 publication-title: J Neural Eng doi: 10.1088/1741-2552/ac1fce – volume: 24 start-page: 52 year: 2010 ident: 6409_CR49 publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968309341646 – volume: 13 start-page: 1 year: 2016 ident: 6409_CR55 publication-title: J Neural Eng doi: 10.1088/1741-2560/13/5/056010 – year: 2002 ident: 6409_CR14 publication-title: J Electromyogr Kinesiol doi: 10.1007/s00347-016-0276-y – volume: 24 start-page: 1314 year: 2016 ident: 6409_CR15 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2015.2500586 – start-page: 29 volume-title: Rehabilitation engineering year: 1990 ident: 6409_CR63 – volume: 15 start-page: 363 year: 1977 ident: 6409_CR3 publication-title: Med Biol Eng Comput doi: 10.1007/BF02457988 – year: 2014 ident: 6409_CR50 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3006820 – volume: 12 start-page: 1 year: 2015 ident: 6409_CR22 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-015-0047-z – volume: 10 start-page: 1 year: 2013 ident: 6409_CR35 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-10-55 – volume: 154 start-page: 521 year: 2004 ident: 6409_CR30 publication-title: Exp Brain Res doi: 10.1007/s00221-003-1690-3 – volume: 57 start-page: 289 year: 1995 ident: 6409_CR6 publication-title: R Stat Soc doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 5 start-page: 367 year: 1977 ident: 6409_CR62 publication-title: Ann Biomed Eng doi: 10.1007/BF02367316 – volume: 233 start-page: 2777 year: 2015 ident: 6409_CR46 publication-title: Exp Brain Res doi: 10.1007/s00221-015-4346-1 – volume: 63 start-page: 1448 year: 1983 ident: 6409_CR76 publication-title: Phys Ther doi: 10.1093/ptj/63.9.1448 – volume: 8 start-page: 1 year: 2020 ident: 6409_CR45 publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2020.00555 – volume: 11 start-page: 455 year: 2001 ident: 6409_CR32 publication-title: Curr Opin Neurobiol doi: 10.1016/S0959-4388(00)00234-8 – volume: 3 start-page: eaap9770 year: 2018 ident: 6409_CR1 publication-title: Sci Robot doi: 10.1126/scirobotics.aap9770 – volume: 24 start-page: 170 year: 2008 ident: 6409_CR13 publication-title: IEEE Trans Robot doi: 10.1109/TRO.2007.910708 – volume: 17 start-page: 425 year: 1979 ident: 6409_CR2 publication-title: Med Biol Eng Comput doi: 10.1007/BF02447053 – volume: 8 start-page: 249 year: 2013 ident: 6409_CR4 publication-title: Disabil Rehabil Assist Technol doi: 10.3109/17483107.2012.713435 – volume: 8 start-page: 60 year: 2011 ident: 6409_CR53 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-8-60 – volume: 39 start-page: 204 year: 2015 ident: 6409_CR75 publication-title: Prosthet Orthot Int doi: 10.1177/0309364614522260 – volume: 20 start-page: 27 year: 2008 ident: 6409_CR11 publication-title: J Prosthet Orthot doi: 10.1097/01.JPO.0000311041.61628.be – volume: 16 start-page: 541 year: 2006 ident: 6409_CR48 publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2006.08.006 – volume: 59 start-page: 2219 year: 2012 ident: 6409_CR74 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2012.2200678 – year: 2009 ident: 6409_CR47 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000345 – volume: 394 start-page: 780 year: 1998 ident: 6409_CR28 publication-title: Nature doi: 10.1038/29528 – ident: 6409_CR67 – ident: 6409_CR44 – volume: 3 start-page: 11 year: 2006 ident: 6409_CR31 publication-title: J Neuroeng Rehabil doi: 10.1186/1743-0003-3-11 – volume: 32 start-page: 11727 year: 2012 ident: 6409_CR27 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0424-12.2012 – ident: 6409_CR69 doi: 10.1109/ICRA.2015.7140109 – year: 2014 ident: 6409_CR33 publication-title: Comput Math Methods Med doi: 10.1155/2014/120357 – year: 2019 ident: 6409_CR37 publication-title: Haptic Interfaces Access Heal Enhanc Qual Life doi: 10.1007/978-3-030-34230-2_3 – year: 2019 ident: 6409_CR72 publication-title: IEEE Trans Haptics doi: 10.1109/toh.2019.2961652 – ident: 6409_CR65 doi: 10.1121/1.415561 – ident: 6409_CR39 – volume: 8 start-page: 1 year: 2018 ident: 6409_CR70 publication-title: Sci Rep doi: 10.1038/s41598-018-34910-w – volume: 20 start-page: 1 year: 2020 ident: 6409_CR10 publication-title: Sens (switzerl) doi: 10.3390/s20061613 – volume: 8 start-page: 1 year: 2018 ident: 6409_CR58 publication-title: Sci Rep doi: 10.1038/s41598-018-26810-w – volume: 1412 start-page: 1 year: 2020 ident: 6409_CR20 publication-title: IEEE Trans Haptics doi: 10.1109/toh.2020.2985962 – ident: 6409_CR16 – volume: 37 start-page: 194 year: 2013 ident: 6409_CR17 publication-title: J Neurol Phys Ther doi: 10.1097/NPT.0000000000000023 – volume: 10 start-page: 45 year: 2013 ident: 6409_CR5 publication-title: Expert Rev Med Devices doi: 10.1586/erd.12.68 – volume: 23 start-page: 267 year: 2015 ident: 6409_CR21 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2014.2371238 – volume: 16 start-page: 1 year: 2019 ident: 6409_CR26 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-019-0597-6 – volume: 14 start-page: 1 year: 2020 ident: 6409_CR54 publication-title: Front Neurosci doi: 10.3389/fnins.2020.00120 – volume: 10 start-page: 1 year: 2015 ident: 6409_CR24 publication-title: PLoS ONE doi: 10.1371/journal.pone.0134095 – ident: 6409_CR36 doi: 10.36227/techrxiv.14588250.v3 – year: 2017 ident: 6409_CR40 publication-title: J Neural Eng doi: 10.1088/1741-2552/aa620a – ident: 6409_CR51 – volume: 14 start-page: 1 year: 2020 ident: 6409_CR56 publication-title: Front Neurosci doi: 10.3389/fnins.2020.00345 – volume: 15 start-page: 1 year: 2018 ident: 6409_CR41 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-018-0371-1 – volume: 15 start-page: 435 year: 2007 ident: 6409_CR9 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2007.903942 – volume: 23 start-page: 450 year: 2015 ident: 6409_CR18 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2014.2337952 – volume: 25 start-page: 1159 year: 1999 ident: 6409_CR52 publication-title: J Exp Psychol Hum Percept Perform doi: 10.1037/0096-1523.25.4.1159 – ident: 6409_CR34 – volume: 25 start-page: 183 year: 2017 ident: 6409_CR23 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2016.2550864 – volume: 13 start-page: 919 year: 2016 ident: 6409_CR61 publication-title: Expert Rev Med Devices doi: 10.1080/17434440.2016.1237287 |
SSID | ssj0014370 |
Score | 2.409618 |
Snippet | Electrotactile stimulation has been commonly used in human–machine interfaces to provide feedback to the user, thereby closing the control loop and improving... Electrotactile stimulation has been commonly used in human-machine interfaces to provide feedback to the user, thereby closing the control loop and improving... |
SourceID | pubmedcentral proquest gale crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2285 |
SubjectTerms | Biofeedback training Biomedical and Life Sciences Biomedicine Electric stimulation Electrodes Electromyography Feedback Frequency dependence Frequency modulation Interfaces Methods Muscle contraction Neurological research Neurology Neurosciences Research Article Tactile stimuli |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BufSCoAURKGAQggNE2jh2HB9XVauCBAdgpYqL5SQ2VLQJanYP---ZcZygFFqJSy6ePPwYz0zmm88ArzJ0i7ktHIaphU8Fb6q0kk6mVcGVRQ9DyJwKnD9-Kk5W4sOpPI1FYf2Idh9TkmGnnordyNxg6IvBE2WfdCpuwx2JsTsB-VZ8OeUORK6GwpNMpAINXiyV-fczZubo6qb8N1DySrY0GKHje3A3eo9sOUz3fbjl2j3YX7YYOV9s2WsW8JzhR_ke7E5723YfvqHeYwzsGtYThBqfYduG-csBSL1lRGdJVoyhD8vi0Thrqnk4d8yjgats_ZN1nl1su6H1rGYE_cDF-wBWx0dfD0_SeKxCWssyX6eK-8by3GspbYXRDzGsSanqzDVCqlxpL_JGcu0W6Gpg10uhM1cL2WCkhta9yh_CTtu17hGw0qPAQojccSdq521V2syikpNfVS5sAtk4uqaOnON09MW5mdiSw4wYvJgwI0Yk8Ha659fAuHGj9HOaNDNUjU7qapaK8qFa8iKBl0GCyC5aQtN8t5u-N--_fJ4JvYlCvsMPrG0sTsBuEj_WTPJgJonaWM-bx9Vj4m7QG66yrCBe_TKBF1Mz3UkIt9Z1G5QptEC1yRc6ATVbddMoEBP4vKU9-xEYwbXAqK9UCbwb1-efl18_do__T_wJ7PKgOQSwO4Cd9eXGPUWPbF09Cwr4G0KMKxE priority: 102 providerName: Springer Nature |
Title | Combined spatial and frequency encoding for electrotactile feedback of myoelectric signals |
URI | https://link.springer.com/article/10.1007/s00221-022-06409-4 https://www.proquest.com/docview/2711629068 https://www.proquest.com/docview/2694962309 https://pubmed.ncbi.nlm.nih.gov/PMC9458587 |
Volume | 240 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1Nb9Mw9Im1l10QbCAyRjEIwQEiGseOkxNKq5YBokKDSoVL5CQOTGzJWNpD_z3vJW6mDLFLcngvbWK_T78vgBcemsVcBwbd1KBwBc9TN5VGumnAlUYLQ0ifCpw_L4KTpfi4kit74FbbtMqdTGwEdV5ldEb-livPC6g3efju8o9LU6MoumpHaOzBEEVwKAcwnMwWX067OILwVVuE4glXoPKzZTNN8RypL3Sl0RmjaFbkip5quimg_02avBE5bRTS_B7ctZYki9utvw93THkAh3GJXvTFlr1kTW5nc2h-APudnNsewg-UAegPm5zVlE6Nv6HLnBVXbVL1llFrS9JoDO1ZZsfkrKn-4dywApVdqrPfrCrYxbZqoWcZozQQJOQHsJzPvk1PXDtiwc1k6K9dxYtcc7-IpNQpekLUbU1KlXkmF1L5KiqEn0semTGaHfjpoYg8kwmZo9eGmj71H8KgrErzCFhYIMJYCN9wIzJT6DTUnkaGJxsrHGsHvN3qJpntP05jMM6TrnNysyMJXpJmRxLhwOvumcu2-8at2E9p05K2grRj3SRWFBuNJA8ceN5gUOOLkjJrfupNXScfvp72kF5ZpKLCF8y0LVTAz6ReWT3M4x4mcmbWB--oJ7GSoU6u6diBZx2YnqRst9JUG8QJIoEs5I8jB1SP6rpVoK7gfUh59qvpDh4J9ABD5cCbHX1e__n_1-7o9nd9DPu84RRKrjuGwfpqY56gNbZOR7CnVmoEw3g-mSzo_v77p9nIMiJCp8EUr0se_wVnfTVj |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9kAvCFoQgUIN4nGAiI1j53FAaIFWu7RdodJKFRfjOA5UtElpdoXyp_iNzORVpYjeetmLJ9nEnmdm5huAZx66xVwHFsPUIHMFTxM3kVa6ScBDjR6GkD41OO_Ngsmh-HQkj5bgT9cLQ2WVnU6sFXVaGPpG_oaHnhcQNnn07uyXS1OjKLvajdBo2GLHVr8xZCvfTj_i-T7nfHvr4MPEbacKuEZG_twNeZZq7mexlDpB558AxqQMjWdTIUM_jDPhp5LHdoSWNjU2ErFnjZApBipo3BIf73sDVtDNiFGKVt5vzT7v93kL4YdN04snXIHGtm3TqZv1yFxi6I7BH2XPYlcMTOFlg_BvkealTG1tALdvw63Wc2XjhtXuwJLN12B9nGPUflqxF6yuJa0_0q_Baq9Xq3X4ijoH42-bspLKt_EeOk9Zdt4UcVeMoDTJgjL0n1k7lmdO_RYnlmVoXBNtfrIiY6dV0aweG0ZlJyg4d-HwWjb_HiznRW7vA4syJBgJ4VtuhbGZTiLtaVQw5NNFI-2A1-2uMi3eOY3dOFE9UnN9Igp_VH0iSjjwqr_mrEH7uJJ6kw5NNR2rvapQ45BysbHkgQNPawoC2sipkue7XpSlmn7ZHxC9bImyAh_Q6LYxAl-TsLkGlBsDStQEZrjccY9qNVGpLuTGgSf9Ml1J1XW5LRZIE8QCRdYfxQ6EA67rd4FQyIcr-fGPGo08FhhxRqEDrzv-vPjz_-_dg6ufdRNuTg72dtXudLbzEFZ5LTVU2LcBy_PzhX2EnuA8edyKH4Nv1y3xfwEVn2q9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gkRhejILGKspq_HjQhut2t9s-GHMKF06UEJSE-LJut1slQovcXcz9a_51zvSLFCNvvNzLTnvt7nx2Zn4D8CxAt5ibyGGYGuW-4Fnqp9JJP424MuhhCBlSg_OnvWjnUHw4kkdL8KfthaGyylYnVoo6Ky19I9_kKggiwiaPN_OmLGJ_a_z27JdPE6Qo09qO06hZZNctfmP4Nn0z2cKzfs75ePvL-x2_mTDgWxmHM1_xPDM8zBMpTYqBAIGNSals4DIhVaiSXISZ5IkbotXNrItFEjgrZIZBCxq6NMT73oBlhVYxHsDyu-29_YMuhyFCVTfABMIXaHiblp2qcY9MJ4bxGAhSJi3xRc8sXjYO_xZsXsraVsZwfBtuNV4sG9VsdweWXLEKa6MCI_jTBXvBqrrS6oP9Kqx0OnaxBl9R_2As7jI2pVJuvIcpMpaf1wXdC0awmmRNGfrSrBnRM6PeixPHcjS0qbE_WZmz00VZrx5bRiUoKER34fBaNv8eDIqycPeBxTkSDIUIHXfCutyksQkMKhvy7-Kh8SBod1fbBvucRnCc6A61uToRjT-6OhEtPHjVXXNWI39cSb1Bh6br7tVObeiRorxsInnkwdOKgkA3CmLf72Y-nerJ54Me0cuGKC_xAa1pmiTwNQmnq0e53qNErWD7yy336EYrTfWFDHnwpFumK6nSrnDlHGmiRKD4hsPEA9Xjum4XCJG8v1Ic_6iQyROB0WesPHjd8ufFn_9_7x5c_awbcBMlXX-c7O0-hBVeCQ3V-K3DYHY-d4_QKZyljxvpY_DtugX-LzUrbuk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+spatial+and+frequency+encoding+for+electrotactile+feedback+of+myoelectric+signals&rft.jtitle=Experimental+brain+research&rft.au=Nataletti%2C+Sara&rft.au=Leo%2C+Fabrizio&rft.au=Dideriksen%2C+Jakob&rft.au=Brayda%2C+Luca&rft.date=2022-09-01&rft.issn=0014-4819&rft.eissn=1432-1106&rft.volume=240&rft.issue=9&rft.spage=2285&rft.epage=2298&rft_id=info:doi/10.1007%2Fs00221-022-06409-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00221_022_06409_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4819&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4819&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4819&client=summon |