Combined spatial and frequency encoding for electrotactile feedback of myoelectric signals

Electrotactile stimulation has been commonly used in human–machine interfaces to provide feedback to the user, thereby closing the control loop and improving performance. The encoding approach, which defines the mapping of the feedback information into stimulation profiles, is a critical component o...

Full description

Saved in:
Bibliographic Details
Published inExperimental brain research Vol. 240; no. 9; pp. 2285 - 2298
Main Authors Nataletti, Sara, Leo, Fabrizio, Dideriksen, Jakob, Brayda, Luca, Dosen, Strahinja
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0014-4819
1432-1106
1432-1106
DOI10.1007/s00221-022-06409-4

Cover

Loading…
Abstract Electrotactile stimulation has been commonly used in human–machine interfaces to provide feedback to the user, thereby closing the control loop and improving performance. The encoding approach, which defines the mapping of the feedback information into stimulation profiles, is a critical component of an electrotactile interface. Ideally, the encoding will provide a high-fidelity representation of the feedback variable while being easy to perceive and interpret by the subject. In the present study, we performed a closed-loop experiment wherein discrete and continuous coding schemes are combined to exploit the benefits of both techniques. Subjects performed a muscle activation-matching task relying solely on electrotactile feedback representing the generated myoelectric signal (EMG). In particular, we investigated the performance of two different coding schemes (spatial and spatial combined with frequency) at two feedback resolutions (low: 3 and high: 5 intervals). In both schemes, the stimulation electrodes were placed circumferentially around the upper arm. The magnitude of the normalized EMG was divided into intervals, and each electrode was associated with one interval. When the generated EMG entered one of the intervals, the associated electrode started stimulating. In the combined encoding, the additional frequency modulation of the active electrode also indicated the momentary magnitude of the signal within the interval. The results showed that combined coding decreased the undershooting rate, variability and absolute deviation when the resolution was low but not when the resolution was high, where it actually worsened the performance. This demonstrates that combined coding can improve the effectiveness of EMG feedback, but that this effect is limited by the intrinsic variability of myoelectric control. Our findings, therefore, provide important insights as well as elucidate limitations of the information encoding methods when using electrotactile stimulation to convey a feedback signal characterized by high variability (EMG biofeedback).
AbstractList Electrotactile stimulation has been commonly used in human–machine interfaces to provide feedback to the user, thereby closing the control loop and improving performance. The encoding approach, which defines the mapping of the feedback information into stimulation profiles, is a critical component of an electrotactile interface. Ideally, the encoding will provide a high-fidelity representation of the feedback variable while being easy to perceive and interpret by the subject. In the present study, we performed a closed-loop experiment wherein discrete and continuous coding schemes are combined to exploit the benefits of both techniques. Subjects performed a muscle activation-matching task relying solely on electrotactile feedback representing the generated myoelectric signal (EMG). In particular, we investigated the performance of two different coding schemes (spatial and spatial combined with frequency) at two feedback resolutions (low: 3 and high: 5 intervals). In both schemes, the stimulation electrodes were placed circumferentially around the upper arm. The magnitude of the normalized EMG was divided into intervals, and each electrode was associated with one interval. When the generated EMG entered one of the intervals, the associated electrode started stimulating. In the combined encoding, the additional frequency modulation of the active electrode also indicated the momentary magnitude of the signal within the interval. The results showed that combined coding decreased the undershooting rate, variability and absolute deviation when the resolution was low but not when the resolution was high, where it actually worsened the performance. This demonstrates that combined coding can improve the effectiveness of EMG feedback, but that this effect is limited by the intrinsic variability of myoelectric control. Our findings, therefore, provide important insights as well as elucidate limitations of the information encoding methods when using electrotactile stimulation to convey a feedback signal characterized by high variability (EMG biofeedback).
Electrotactile stimulation has been commonly used in human-machine interfaces to provide feedback to the user, thereby closing the control loop and improving performance. The encoding approach, which defines the mapping of the feedback information into stimulation profiles, is a critical component of an electrotactile interface. Ideally, the encoding will provide a high-fidelity representation of the feedback variable while being easy to perceive and interpret by the subject. In the present study, we performed a closed-loop experiment wherein discrete and continuous coding schemes are combined to exploit the benefits of both techniques. Subjects performed a muscle activation-matching task relying solely on electrotactile feedback representing the generated myoelectric signal (EMG). In particular, we investigated the performance of two different coding schemes (spatial and spatial combined with frequency) at two feedback resolutions (low: 3 and high: 5 intervals). In both schemes, the stimulation electrodes were placed circumferentially around the upper arm. The magnitude of the normalized EMG was divided into intervals, and each electrode was associated with one interval. When the generated EMG entered one of the intervals, the associated electrode started stimulating. In the combined encoding, the additional frequency modulation of the active electrode also indicated the momentary magnitude of the signal within the interval. The results showed that combined coding decreased the undershooting rate, variability and absolute deviation when the resolution was low but not when the resolution was high, where it actually worsened the performance. This demonstrates that combined coding can improve the effectiveness of EMG feedback, but that this effect is limited by the intrinsic variability of myoelectric control. Our findings, therefore, provide important insights as well as elucidate limitations of the information encoding methods when using electrotactile stimulation to convey a feedback signal characterized by high variability (EMG biofeedback).Electrotactile stimulation has been commonly used in human-machine interfaces to provide feedback to the user, thereby closing the control loop and improving performance. The encoding approach, which defines the mapping of the feedback information into stimulation profiles, is a critical component of an electrotactile interface. Ideally, the encoding will provide a high-fidelity representation of the feedback variable while being easy to perceive and interpret by the subject. In the present study, we performed a closed-loop experiment wherein discrete and continuous coding schemes are combined to exploit the benefits of both techniques. Subjects performed a muscle activation-matching task relying solely on electrotactile feedback representing the generated myoelectric signal (EMG). In particular, we investigated the performance of two different coding schemes (spatial and spatial combined with frequency) at two feedback resolutions (low: 3 and high: 5 intervals). In both schemes, the stimulation electrodes were placed circumferentially around the upper arm. The magnitude of the normalized EMG was divided into intervals, and each electrode was associated with one interval. When the generated EMG entered one of the intervals, the associated electrode started stimulating. In the combined encoding, the additional frequency modulation of the active electrode also indicated the momentary magnitude of the signal within the interval. The results showed that combined coding decreased the undershooting rate, variability and absolute deviation when the resolution was low but not when the resolution was high, where it actually worsened the performance. This demonstrates that combined coding can improve the effectiveness of EMG feedback, but that this effect is limited by the intrinsic variability of myoelectric control. Our findings, therefore, provide important insights as well as elucidate limitations of the information encoding methods when using electrotactile stimulation to convey a feedback signal characterized by high variability (EMG biofeedback).
Audience Academic
Author Leo, Fabrizio
Dosen, Strahinja
Nataletti, Sara
Dideriksen, Jakob
Brayda, Luca
Author_xml – sequence: 1
  givenname: Sara
  surname: Nataletti
  fullname: Nataletti, Sara
  email: sara.nataletti@iit.it
  organization: Cognitive Architecture for Collaborative Technologies Unit, Istituto Italiano di Tecnologia (IIT), Department of Informatics, Bioengineering Robotics, and System Engineering, University of Genoa
– sequence: 2
  givenname: Fabrizio
  orcidid: 0000-0002-4095-7785
  surname: Leo
  fullname: Leo, Fabrizio
  organization: Cognitive Architecture for Collaborative Technologies Unit, Istituto Italiano di Tecnologia (IIT)
– sequence: 3
  givenname: Jakob
  orcidid: 0000-0001-6587-0865
  surname: Dideriksen
  fullname: Dideriksen, Jakob
  organization: Department of Health Science and Technology, Aalborg University
– sequence: 4
  givenname: Luca
  orcidid: 0000-0002-6673-2971
  surname: Brayda
  fullname: Brayda, Luca
  organization: Acoesis S.R.L., Robotics, Brain and Cognitive Science Unit, Istituto Italiano di Tecnologia (IIT)
– sequence: 5
  givenname: Strahinja
  orcidid: 0000-0003-3035-147X
  surname: Dosen
  fullname: Dosen, Strahinja
  email: sdosen@hst.aau.dk
  organization: Department of Health Science and Technology, Aalborg University
BookMark eNp9kl1rFDEUhoNU7Lb6B7waEKReTM33TG6EsqgtFAQ_brwJ2czJbOpMsk4y4v57s25p3SIlcJKQ530P5-ScoKMQAyD0kuBzgnHzNmFMKalLqLHkWNX8CVoQzmhNCJZHaIEx4TVviTpGJynd7K6swc_QMRNto5hQC_R9GceVD9BVaWOyN0NlQle5CX7OEOy2KiF2PvSVi1MFA9g8xWxs9gNUDqBbGfujiq4at3H_6m2VfB_MkJ6jp65s8OJ2P0XfPrz_urysrz99vFpeXNdWtCzXDXWdocwpIcyKCsWlYEI0lkDHRcMa5TjrBFWAheCdhZYrApaLjpZDK1bsFL3b-27m1QiFCHkyg95MfjTTVkfj9eFL8Gvdx19acdGWRhSDs1uDKZayU9ajTxaGwQSIc9JUKq4kZVgV9NUD9CbO065aTRtCJFVYtvdUbwbQPrhY8tqdqb5oiJRSCSoLdf4fqqwORm_LV7vS5EPBmwNBYTL8zr2ZU9JXXz4fsq__YddghrxOcZizjyEdgnQP2immNIG7axzBejdmej9mugT9d8w0L6L2gcj6bHbepQQ_PC5le2kqeUIP030HH1H9AY3O5JU
CitedBy_id crossref_primary_10_1038_s41598_024_80828_x
crossref_primary_10_3389_frvir_2024_1406923
crossref_primary_10_1109_TMRB_2024_3385983
crossref_primary_10_3389_fnins_2023_1135687
Cites_doi 10.1007/BF02457988
10.1109/TBME.2012.2200678
10.1088/1741-2552/ac07be
10.1038/s41598-018-34910-w
10.1371/journal.pone.0134095
10.1186/s12984-018-0371-1
10.1109/TNSRE.2016.2550864
10.1155/2014/120357
10.1186/1743-0003-10-55
10.1109/ICORR.2017.8009414
10.1126/scirobotics.aap9770
10.1586/erd.12.68
10.1016/S0959-4388(00)00234-8
10.1126/scitranslmed.3006820
10.3389/fbioe.2020.00555
10.1037/0096-1523.25.4.1159
10.1371/journal.pone.0098301
10.1080/17434440.2016.1237287
10.3109/17483107.2012.713435
10.1007/BF02447053
10.3390/s20061613
10.1155/2007/48937
10.1038/29528
10.1007/s00221-015-4346-1
10.1523/JNEUROSCI.0424-12.2012
10.1007/BF02367316
10.1088/1741-2560/13/5/056010
10.1109/TNSRE.2007.903942
10.1007/978-3-030-34230-2_3
10.1109/ACCESS.2018.2791583
10.1007/s00221-017-4991-7
10.1016/j.jelekin.2006.08.006
10.1186/s12984-019-0622-9
10.1097/01.JPO.0000311041.61628.be
10.1007/s00221-003-1690-3
10.1177/0309364614522260
10.1186/s12984-015-0047-z
10.1093/ptj/63.9.1448
10.1109/TBME.1982.324948
10.1088/1741-2552/aa620a
10.1177/0956797613511467
10.1097/NPT.0000000000000023
10.1109/toh.2019.2961652
10.3389/fnins.2020.00345
10.1109/toh.2020.2985962
10.1186/s12984-018-0417-4
10.1109/TNSRE.2015.2500586
10.1109/TNSRE.2014.2371238
10.1088/1741-2560/13/4/046014
10.1088/1741-2552/ac1fce
10.1186/1743-0003-8-60
10.1177/1545968309341646
10.1038/s41598-018-26810-w
10.1038/nn963
10.1152/jn.00940.2009
10.1007/s00347-016-0276-y
10.1186/1743-0003-3-11
10.1109/TRO.2007.910708
10.1093/ptj/74.6.534
10.1371/journal.pcbi.1000345
10.1109/TNSRE.2014.2337952
10.3389/fnins.2020.00120
10.1186/s12984-019-0597-6
10.1109/MeMeA.2012.6226669
10.21307/ijssis-2018-005
10.1111/j.2517-6161.1995.tb02031.x
10.1109/ICRA.2015.7140109
10.1121/1.415561
10.36227/techrxiv.14588250.v3
ContentType Journal Article
Copyright The Author(s) 2022
COPYRIGHT 2022 Springer
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
ISR
0-V
3V.
7QP
7QR
7RV
7TK
7TM
7X7
7XB
88E
88G
88J
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
K9.
KB0
M0S
M1P
M2M
M2R
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
POGQB
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1007/s00221-022-06409-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Social Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Social Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
ProQuest One Psychology
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
Sociology & Social Sciences Collection
ProQuest Central China
Health Research Premium Collection
Health & Medical Research Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Social Science Premium Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Sociology & Social Sciences Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Social Science Journals (Alumni Edition)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Psychology
MEDLINE - Academic

CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Psychology
EISSN 1432-1106
EndPage 2298
ExternalDocumentID PMC9458587
A716669526
10_1007_s00221_022_06409_4
GeographicLocations Denmark
GeographicLocations_xml – name: Denmark
GrantInformation_xml – fundername: Compagnia di San Paolo
  grantid: 2017.0559
  funderid: http://dx.doi.org/10.13039/100007388
– fundername: Istituto Italiano di Tecnologia
– fundername: Independent Research Fund Denmark
  grantid: 8022-00243A; 8022-00226B
– fundername: ;
– fundername: ;
  grantid: 2017.0559
– fundername: ;
  grantid: 8022-00243A; 8022-00226B
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-XW
-Y2
-~C
-~X
.55
.86
.GJ
.VR
0-V
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3O-
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6NX
78A
7RV
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYJJ
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARALO
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
FA8
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IHR
IHW
IJ-
IKXTQ
INH
INR
IPY
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L7B
LAS
LLZTM
M1P
M2M
M2R
M4Y
MA-
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
OVD
P19
P2P
PF-
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
WOW
X7M
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8Q
Z8R
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
ZXP
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7QP
7QR
7TK
7TM
7XB
8FD
8FK
ABRTQ
FR3
K9.
P64
PJZUB
PKEHL
POGQB
PPXIY
PQEST
PQUKI
PRINS
PRQQA
PUEGO
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c583t-72fda23f955ab2594653557c1ed457379f43d529e0554dce8491ec45d249185b3
IEDL.DBID BENPR
ISSN 0014-4819
1432-1106
IngestDate Thu Aug 21 14:01:20 EDT 2025
Thu Sep 04 23:49:50 EDT 2025
Sat Aug 23 14:01:59 EDT 2025
Tue Jun 17 22:09:39 EDT 2025
Tue Jun 10 21:04:24 EDT 2025
Fri Jun 27 05:26:56 EDT 2025
Thu May 22 21:24:07 EDT 2025
Thu Apr 24 23:02:39 EDT 2025
Tue Jul 01 02:44:46 EDT 2025
Fri Feb 21 02:45:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Myoelectric control
Sensory feedback
Electrotactile stimulation
EMG feedback
Closed-loop control
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-72fda23f955ab2594653557c1ed457379f43d529e0554dce8491ec45d249185b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Communicated by Francesco Lacquaniti.
ORCID 0000-0003-3035-147X
0000-0001-6587-0865
0000-0002-4095-7785
0000-0002-6673-2971
OpenAccessLink https://link.springer.com/10.1007/s00221-022-06409-4
PMID 35879359
PQID 2711629068
PQPubID 47176
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9458587
proquest_miscellaneous_2694962309
proquest_journals_2711629068
gale_infotracmisc_A716669526
gale_infotracacademiconefile_A716669526
gale_incontextgauss_ISR_A716669526
gale_healthsolutions_A716669526
crossref_primary_10_1007_s00221_022_06409_4
crossref_citationtrail_10_1007_s00221_022_06409_4
springer_journals_10_1007_s00221_022_06409_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Experimental brain research
PublicationTitleAbbrev Exp Brain Res
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Harris, Wolpert (CR28) 1998; 394
Anani, Körner (CR2) 1979; 17
Schofield, Shell, Beckler (CR54) 2020; 14
CR39
CR38
Novich, Eagleman (CR46) 2015; 233
CR36
Mendez, Hansen, Grabow (CR42) 2017
Raspopovic, Capogrosso, Petrini (CR50) 2014
CR34
Johnson (CR32) 2001; 11
O’Sullivan, Burdet, Diedrichsen (CR47) 2009
Valle, Petrini, Strauss (CR70) 2018; 8
CR71
Dosen, Markovic, Strbac (CR23) 2017; 25
Jorgovanovic, Dosen, Djozic (CR33) 2014
Markovic, Schweisfurth, Engels (CR41) 2018; 15
Erwin, Sup (CR24) 2015; 10
Saunders, Vijayakumar (CR53) 2011; 8
CR8
Leo, Cocchi, Ferrari, Brayda (CR37) 2019
Haith, Reppert, Shadmehr (CR27) 2012; 32
Wilke, Niethammer, Meyer (CR73) 2019; 16
Cipriani, Zaccone, Micera, Carrozza (CR13) 2008; 24
Benjamini, Hochberg (CR6) 1995; 57
Dideriksen, Mercader, Dosen (CR20) 2020; 1412
CR44
De Nunzio, Dosen, Lemling (CR19) 2017; 235
Sensinger, Dosen (CR56) 2020; 14
Szeto, Riso, Smith, Leslie (CR63) 1990
Antfolk, Cipriani, Carrozza (CR4) 2013; 8
Shehata, Engels, Controzzi (CR57) 2018; 15
Witteveen, Rietman, Veltink (CR75) 2015; 39
Wolf (CR76) 1983; 63
Clancy, Morin, Merletti (CR14) 2002
Bouwsema, Van Der Sluis, Bongers (CR7) 2014
Parker, Englehart, Hudgins (CR48) 2006; 16
Yau, Celnik, Hsiao, Desmond (CR77) 2014; 25
D’Alonzo, Clemente, Cipriani (CR18) 2015; 23
Wilke, Hartmann, Schimpf (CR72) 2019
Hinterberger, Neumann, Pham (CR30) 2004; 154
Markovic, Karnal, Graimann (CR40) 2017
Antfolk, D’alonzo, Rosén (CR5) 2013; 10
Ross (CR52) 1999; 25
Szeto, Saunders (CR64) 1982; 29
Huang, Wolf, He (CR31) 2006; 3
Štrbac, Belić, Isaković (CR60) 2016; 13
CR16
Nataletti, Leo, Seminara (CR45) 2020; 8
Witteveen, Droog, Rietman, Veltink (CR74) 2012; 59
Clemente, D’Alonzo, Controzzi (CR15) 2016; 24
Stronks, Mitchell, Nau, Barnes (CR61) 2016; 13
Buma, Buitenweg, Veltink (CR9) 2007; 15
Cordo, Wolf, Lou (CR17) 2013; 37
CR51
Stephens-Fripp, Alici, Mutlu (CR59) 2018; 6
Moreland, Thomson, Wolf (CR43) 1994; 74
Cincotti, Kauhanen, Aloise (CR12) 2007
Szeto, Lyman (CR62) 1977; 5
Tchimino, Markovic, Lund Dideriksen, Strahinja (CR66) 2021
Dosen, Markovic, Hartmann, Farina (CR21) 2015; 23
Anani, Ikeda, Körner (CR3) 1977; 15
Todorov, Jordan (CR68) 2002; 5
Chatterjee, Chaubey, Martin, Thakor (CR11) 2008; 20
Schweisfurth, Markovic, Dosen (CR55) 2016; 13
Hegner, Lee, Grodd, Braun (CR29) 2010; 103
Shehata, Scheme, Sensinger (CR58) 2018; 8
CR69
Dosen, Markovic, Somer (CR22) 2015; 12
Quaney, Jianghua, Timberlake (CR49) 2010; 24
CR67
CR65
Akhtar, Sombeck, Boyce, Bretl (CR1) 2018; 3
Gholinezhad, Dosen, Jakob (CR25) 2021
Guemann, Bouvier, Halgand (CR26) 2019; 16
Kita, Otaka, Takeda (CR35) 2013; 10
Campbell, Phinyomark, Scheme (CR10) 2020; 20
MA Wilke (6409_CR73) 2019; 16
B Stephens-Fripp (6409_CR59) 2018; 6
E Todorov (6409_CR68) 2002; 5
S Nataletti (6409_CR45) 2020; 8
H Huang (6409_CR31) 2006; 3
JS Schofield (6409_CR54) 2020; 14
6409_CR65
DG Buma (6409_CR9) 2007; 15
HE Ross (6409_CR52) 1999; 25
JL Dideriksen (6409_CR20) 2020; 1412
J Moreland (6409_CR43) 1994; 74
HC Stronks (6409_CR61) 2016; 13
M Wilke (6409_CR72) 2019
M Markovic (6409_CR41) 2018; 15
P Parker (6409_CR48) 2006; 16
S Raspopovic (6409_CR50) 2014
6409_CR69
6409_CR67
AW Shehata (6409_CR58) 2018; 8
A Akhtar (6409_CR1) 2018; 3
N Jorgovanovic (6409_CR33) 2014
AYJ Szeto (6409_CR64) 1982; 29
AM De Nunzio (6409_CR19) 2017; 235
AYJ Szeto (6409_CR62) 1977; 5
M Guemann (6409_CR26) 2019; 16
I Saunders (6409_CR53) 2011; 8
SD Novich (6409_CR46) 2015; 233
AB Anani (6409_CR3) 1977; 15
J Tchimino (6409_CR66) 2021
KO Johnson (6409_CR32) 2001; 11
6409_CR51
M D’Alonzo (6409_CR18) 2015; 23
AB Anani (6409_CR2) 1979; 17
F Cincotti (6409_CR12) 2007
M Štrbac (6409_CR60) 2016; 13
6409_CR16
A Erwin (6409_CR24) 2015; 10
BM Quaney (6409_CR49) 2010; 24
AY Szeto (6409_CR63) 1990
T Hinterberger (6409_CR30) 2004; 154
M Markovic (6409_CR40) 2017
S Dosen (6409_CR21) 2015; 23
C Antfolk (6409_CR5) 2013; 10
6409_CR8
P Cordo (6409_CR17) 2013; 37
6409_CR44
EA Clancy (6409_CR14) 2002
C Cipriani (6409_CR13) 2008; 24
Y Benjamini (6409_CR6) 1995; 57
H Bouwsema (6409_CR7) 2014
S Dosen (6409_CR23) 2017; 25
AW Shehata (6409_CR57) 2018; 15
SL Wolf (6409_CR76) 1983; 63
YL Hegner (6409_CR29) 2010; 103
S Gholinezhad (6409_CR25) 2021
AM Haith (6409_CR27) 2012; 32
I Mendez (6409_CR42) 2017
HJB Witteveen (6409_CR75) 2015; 39
G Valle (6409_CR70) 2018; 8
JM Yau (6409_CR77) 2014; 25
CM Harris (6409_CR28) 1998; 394
K Kita (6409_CR35) 2013; 10
F Clemente (6409_CR15) 2016; 24
E Campbell (6409_CR10) 2020; 20
JW Sensinger (6409_CR56) 2020; 14
F Leo (6409_CR37) 2019
I O’Sullivan (6409_CR47) 2009
A Chatterjee (6409_CR11) 2008; 20
6409_CR71
6409_CR38
6409_CR39
C Antfolk (6409_CR4) 2013; 8
6409_CR36
MA Schweisfurth (6409_CR55) 2016; 13
S Dosen (6409_CR22) 2015; 12
6409_CR34
HJB Witteveen (6409_CR74) 2012; 59
References_xml – volume: 15
  start-page: 363
  year: 1977
  end-page: 373
  ident: CR3
  article-title: Human ability to discriminate various parameters in afferent electrical nerve stimulation with particular reference to prostheses sensory feedback
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02457988
– volume: 59
  start-page: 2219
  year: 2012
  end-page: 2226
  ident: CR74
  article-title: Vibro- and electrotactile user feedback on hand opening for myoelectric forearm prostheses
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2012.2200678
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: CR6
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: R Stat Soc
– year: 2021
  ident: CR66
  article-title: The effect of calibration parameters on the control of a myoelectric hand prosthesis using EMG feedback
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ac07be
– ident: CR39
– ident: CR16
– ident: CR51
– volume: 8
  start-page: 1
  year: 2018
  end-page: 13
  ident: CR70
  article-title: Comparison of linear frequency and amplitude modulation for intraneural sensory feedback in bidirectional hand prostheses
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-34910-w
– volume: 10
  start-page: 1
  year: 2015
  end-page: 17
  ident: CR24
  article-title: A haptic feedback scheme to accurately position a virtual wrist prosthesis using a three-node tactor array
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0134095
– volume: 15
  start-page: 1
  year: 2018
  end-page: 15
  ident: CR41
  article-title: The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-018-0371-1
– volume: 25
  start-page: 183
  year: 2017
  end-page: 195
  ident: CR23
  article-title: Multichannel electrotactile feedback with spatial and mixed coding for closed-loop control of grasping force in hand prostheses
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2016.2550864
– year: 2014
  ident: CR33
  article-title: Virtual grasping: closed-loop force control using electrotactile feedback
  publication-title: Comput Math Methods Med
  doi: 10.1155/2014/120357
– volume: 10
  start-page: 1
  year: 2013
  ident: CR35
  article-title: A pilot study of sensory feedback by transcutaneous electrical nerve stimulation to improve manipulation deficit caused by severe sensory loss after stroke
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-10-55
– year: 2017
  ident: CR42
  article-title: Evaluation of the Myo armband for the classification of hand motions
  publication-title: IEEE Int Conf Rehabil Robot
  doi: 10.1109/ICORR.2017.8009414
– ident: CR8
– volume: 3
  start-page: eaap9770
  year: 2018
  ident: CR1
  article-title: Controlling sensation intensity for electrotactile stimulation in human-machine interfaces
  publication-title: Sci Robot
  doi: 10.1126/scirobotics.aap9770
– volume: 10
  start-page: 45
  year: 2013
  end-page: 54
  ident: CR5
  article-title: Sensory feedback in upper limb prosthetics
  publication-title: Expert Rev Med Devices
  doi: 10.1586/erd.12.68
– volume: 11
  start-page: 455
  year: 2001
  end-page: 461
  ident: CR32
  article-title: The roles and functions of cutaneous mechanoreceptors
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/S0959-4388(00)00234-8
– year: 2014
  ident: CR50
  article-title: Restoring natural sensory feedback in real-time bidirectional hand prostheses
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3006820
– ident: CR71
– volume: 8
  start-page: 1
  year: 2020
  end-page: 13
  ident: CR45
  article-title: Temporal asynchrony but not total energy nor duration improves the judgment of numerosity in electrotactile stimulation
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2020.00555
– volume: 25
  start-page: 1159
  year: 1999
  end-page: 1161
  ident: CR52
  article-title: Tactile sensory anisotropy: Weber’s contribution
  publication-title: J Exp Psychol Hum Percept Perform
  doi: 10.1037/0096-1523.25.4.1159
– year: 2014
  ident: CR7
  article-title: Effect of feedback during virtual training of grip force control with a myoelectric prosthesis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0098301
– volume: 13
  start-page: 919
  year: 2016
  end-page: 931
  ident: CR61
  article-title: Visual task performance in the blind with the BrainPort V100 Vision Aid
  publication-title: Expert Rev Med Devices
  doi: 10.1080/17434440.2016.1237287
– ident: CR67
– volume: 8
  start-page: 249
  year: 2013
  end-page: 254
  ident: CR4
  article-title: Transfer of tactile input from an artificial hand to the forearm: experiments in amputees and able-bodied volunteers
  publication-title: Disabil Rehabil Assist Technol
  doi: 10.3109/17483107.2012.713435
– volume: 17
  start-page: 425
  year: 1979
  end-page: 434
  ident: CR2
  article-title: Afferent electrical nerve stimulation: Human tracking performance relevant to prosthesis sensory feedback
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02447053
– volume: 20
  start-page: 1
  year: 2020
  end-page: 44
  ident: CR10
  article-title: Current trends and confounding factors in myoelectric control: limb position and contraction intensity
  publication-title: Sens (switzerl)
  doi: 10.3390/s20061613
– year: 2007
  ident: CR12
  article-title: Vibrotactile feedback for brain-computer interface operation
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2007/48937
– volume: 394
  start-page: 780
  year: 1998
  end-page: 784
  ident: CR28
  article-title: Signal-dependent noise determines motor planning
  publication-title: Nature
  doi: 10.1038/29528
– volume: 233
  start-page: 2777
  year: 2015
  end-page: 2788
  ident: CR46
  article-title: Using space and time to encode vibrotactile information: toward an estimate of the skin’s achievable throughput
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-015-4346-1
– volume: 32
  start-page: 11727
  year: 2012
  end-page: 11736
  ident: CR27
  article-title: Evidence for hyperbolic temporal discounting of reward in control of movements
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0424-12.2012
– volume: 5
  start-page: 367
  year: 1977
  end-page: 383
  ident: CR62
  article-title: Comparison of codes for sensory feedback using electrocutaneous tracking
  publication-title: Ann Biomed Eng
  doi: 10.1007/BF02367316
– ident: CR36
– volume: 13
  start-page: 1
  year: 2016
  end-page: 15
  ident: CR55
  article-title: Electrotactile EMG feedback improves the control of prosthesis grasping force
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/13/5/056010
– volume: 15
  start-page: 435
  year: 2007
  end-page: 441
  ident: CR9
  article-title: Intermittent stimulation delays adaptation to electrocutaneous sensory feedback
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2007.903942
– year: 2019
  ident: CR37
  article-title: Maps as ability amplifiers: using graphical tactile displays to enhance spatial skills in people who are visually impaired
  publication-title: Haptic Interfaces Access Heal Enhanc Qual Life
  doi: 10.1007/978-3-030-34230-2_3
– volume: 6
  start-page: 6878
  year: 2018
  end-page: 6899
  ident: CR59
  article-title: A review of non-invasive sensory feedback methods for transradial prosthetic hands
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2791583
– volume: 235
  start-page: 2547
  year: 2017
  end-page: 2559
  ident: CR19
  article-title: Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-017-4991-7
– volume: 16
  start-page: 541
  year: 2006
  end-page: 548
  ident: CR48
  article-title: Myoelectric signal processing for control of powered limb prostheses
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2006.08.006
– volume: 16
  start-page: 1
  year: 2019
  end-page: 13
  ident: CR73
  article-title: Psychometric characterization of incidental feedback sources during grasping with a hand prosthesis
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-019-0622-9
– volume: 20
  start-page: 27
  year: 2008
  end-page: 34
  ident: CR11
  article-title: Testing a prosthetic haptic feedback simulator with an interactive force matching task
  publication-title: J Prosthet Orthot
  doi: 10.1097/01.JPO.0000311041.61628.be
– volume: 154
  start-page: 521
  year: 2004
  end-page: 526
  ident: CR30
  article-title: A multimodal brain-based feedback and communication system
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-003-1690-3
– volume: 39
  start-page: 204
  year: 2015
  end-page: 212
  ident: CR75
  article-title: Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users
  publication-title: Prosthet Orthot Int
  doi: 10.1177/0309364614522260
– volume: 12
  start-page: 1
  year: 2015
  end-page: 13
  ident: CR22
  article-title: EMG biofeedback for online predictive control of grasping force in a myoelectric prosthesis
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-015-0047-z
– volume: 63
  start-page: 1448
  year: 1983
  end-page: 1459
  ident: CR76
  article-title: Electromyographic biofeedback applications to stroke patients. A critical review
  publication-title: Phys Ther
  doi: 10.1093/ptj/63.9.1448
– volume: 29
  start-page: 300
  year: 1982
  end-page: 308
  ident: CR64
  article-title: Electrocutaneous stimulation for sensory communication in rehabilitation engineering
  publication-title: IEEE Trans Biomed Eng BME
  doi: 10.1109/TBME.1982.324948
– year: 2017
  ident: CR40
  article-title: GLIMPSE: google glass interface for sensory feedback in myoelectric hand prostheses
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/aa620a
– volume: 25
  start-page: 555
  year: 2014
  end-page: 565
  ident: CR77
  article-title: Feeling better: separate pathways for targeted enhancement of spatial and temporal touch
  publication-title: Psychol Sci
  doi: 10.1177/0956797613511467
– volume: 37
  start-page: 194
  year: 2013
  end-page: 203
  ident: CR17
  article-title: Treatment of severe hand impairment following stroke by combining assisted movement, muscle vibration, and biofeedback
  publication-title: J Neurol Phys Ther
  doi: 10.1097/NPT.0000000000000023
– year: 2019
  ident: CR72
  article-title: The interaction between feedback type and learning in routine grasping with myoelectric prostheses
  publication-title: IEEE Trans Haptics
  doi: 10.1109/toh.2019.2961652
– ident: CR69
– ident: CR44
– volume: 14
  start-page: 1
  year: 2020
  end-page: 24
  ident: CR56
  article-title: A review of sensory feedback in upper-limb prostheses from the perspective of human motor control
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2020.00345
– ident: CR65
– volume: 1412
  start-page: 1
  year: 2020
  end-page: 1
  ident: CR20
  article-title: Closed-loop control using electrotactile feedback encoded in frequency and pulse width
  publication-title: IEEE Trans Haptics
  doi: 10.1109/toh.2020.2985962
– ident: CR38
– volume: 15
  start-page: 1
  year: 2018
  end-page: 12
  ident: CR57
  article-title: Improving internal model strength and performance of prosthetic hands using augmented feedback
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-018-0417-4
– volume: 24
  start-page: 1314
  year: 2016
  end-page: 1322
  ident: CR15
  article-title: Non-invasive, temporally discrete feedback of object contact and release improves grasp control of closed-loop myoelectric transradial prostheses
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2015.2500586
– volume: 23
  start-page: 267
  year: 2015
  end-page: 276
  ident: CR21
  article-title: Sensory feedback in prosthetics: a standardized test bench for closed-loop control
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2014.2371238
– volume: 13
  year: 2016
  ident: CR60
  article-title: Integrated and flexible multichannel interface for electrotactile stimulation
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/13/4/046014
– year: 2021
  ident: CR25
  article-title: Electrotactile feedback outweighs natural feedback in sensory integration during control of grasp force
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ac1fce
– volume: 8
  start-page: 60
  year: 2011
  ident: CR53
  article-title: The role of feed-forward and feedback processes for closed-loop prosthesis control
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-8-60
– volume: 24
  start-page: 52
  year: 2010
  end-page: 61
  ident: CR49
  article-title: Visuomotor training improves stroke-related ipsilesional upper extremity impairments
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968309341646
– volume: 8
  start-page: 1
  year: 2018
  end-page: 10
  ident: CR58
  article-title: Audible feedback improves internal model strength and performance of myoelectric prosthesis control
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-26810-w
– volume: 5
  start-page: 1226
  year: 2002
  end-page: 1235
  ident: CR68
  article-title: Optimal feedback control as a theory of motor coordination
  publication-title: Nat Neurosci
  doi: 10.1038/nn963
– volume: 103
  start-page: 3115
  year: 2010
  end-page: 3122
  ident: CR29
  article-title: Comparing tactile pattern and vibrotactile frequency discrimination: a human fMRI study
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00940.2009
– ident: CR34
– year: 2002
  ident: CR14
  article-title: Sampling, noise-reduction and amplitude estimation issues in surface electromyography
  publication-title: J Electromyogr Kinesiol
  doi: 10.1007/s00347-016-0276-y
– volume: 3
  start-page: 11
  year: 2006
  ident: CR31
  article-title: Recent developments in biofeedback for neuromotor rehabilitation
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-3-11
– volume: 24
  start-page: 170
  year: 2008
  end-page: 184
  ident: CR13
  article-title: On the shared control of an EMG-controlled prosthetic hand: analysis of user-prosthesis interaction
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2007.910708
– volume: 74
  start-page: 534
  year: 1994
  end-page: 547
  ident: CR43
  article-title: Efficacy of electromyographic biofeedback compared with conventional physical therapy for upper-extremity function in patients following stroke: a research overview and meta-analysis
  publication-title: Phys Ther
  doi: 10.1093/ptj/74.6.534
– year: 2009
  ident: CR47
  article-title: Dissociating variability and effort as determinants of coordination
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000345
– start-page: 29
  year: 1990
  end-page: 78
  ident: CR63
  article-title: Sensory feedback using electrical stimulation of the tactile sense
  publication-title: Rehabilitation engineering
– volume: 23
  start-page: 450
  year: 2015
  end-page: 457
  ident: CR18
  article-title: Vibrotactile stimulation promotes embodiment of an Alien hand in amputees with phantom sensations
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2014.2337952
– volume: 14
  start-page: 1
  year: 2020
  end-page: 20
  ident: CR54
  article-title: Long-term home-use of sensory-motor-integrated bidirectional bionic prosthetic arms promotes functional, perceptual, and cognitive changes
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2020.00120
– volume: 16
  start-page: 1
  year: 2019
  end-page: 16
  ident: CR26
  article-title: Effect of vibration characteristics and vibror arrangement on the tactile perception of the upper arm in healthy subjects and upper limb amputees
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-019-0597-6
– year: 2014
  ident: 6409_CR7
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0098301
– volume: 15
  start-page: 1
  year: 2018
  ident: 6409_CR57
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-018-0417-4
– ident: 6409_CR38
  doi: 10.1109/MeMeA.2012.6226669
– volume: 13
  year: 2016
  ident: 6409_CR60
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/13/4/046014
– volume: 5
  start-page: 1226
  year: 2002
  ident: 6409_CR68
  publication-title: Nat Neurosci
  doi: 10.1038/nn963
– ident: 6409_CR71
  doi: 10.21307/ijssis-2018-005
– volume: 103
  start-page: 3115
  year: 2010
  ident: 6409_CR29
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00940.2009
– volume: 6
  start-page: 6878
  year: 2018
  ident: 6409_CR59
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2791583
– volume: 16
  start-page: 1
  year: 2019
  ident: 6409_CR73
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-019-0622-9
– year: 2017
  ident: 6409_CR42
  publication-title: IEEE Int Conf Rehabil Robot
  doi: 10.1109/ICORR.2017.8009414
– volume: 29
  start-page: 300
  year: 1982
  ident: 6409_CR64
  publication-title: IEEE Trans Biomed Eng BME
  doi: 10.1109/TBME.1982.324948
– year: 2021
  ident: 6409_CR66
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ac07be
– ident: 6409_CR8
– volume: 25
  start-page: 555
  year: 2014
  ident: 6409_CR77
  publication-title: Psychol Sci
  doi: 10.1177/0956797613511467
– volume: 235
  start-page: 2547
  year: 2017
  ident: 6409_CR19
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-017-4991-7
– volume: 74
  start-page: 534
  year: 1994
  ident: 6409_CR43
  publication-title: Phys Ther
  doi: 10.1093/ptj/74.6.534
– year: 2007
  ident: 6409_CR12
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2007/48937
– year: 2021
  ident: 6409_CR25
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ac1fce
– volume: 24
  start-page: 52
  year: 2010
  ident: 6409_CR49
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968309341646
– volume: 13
  start-page: 1
  year: 2016
  ident: 6409_CR55
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/13/5/056010
– year: 2002
  ident: 6409_CR14
  publication-title: J Electromyogr Kinesiol
  doi: 10.1007/s00347-016-0276-y
– volume: 24
  start-page: 1314
  year: 2016
  ident: 6409_CR15
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2015.2500586
– start-page: 29
  volume-title: Rehabilitation engineering
  year: 1990
  ident: 6409_CR63
– volume: 15
  start-page: 363
  year: 1977
  ident: 6409_CR3
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02457988
– year: 2014
  ident: 6409_CR50
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3006820
– volume: 12
  start-page: 1
  year: 2015
  ident: 6409_CR22
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-015-0047-z
– volume: 10
  start-page: 1
  year: 2013
  ident: 6409_CR35
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-10-55
– volume: 154
  start-page: 521
  year: 2004
  ident: 6409_CR30
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-003-1690-3
– volume: 57
  start-page: 289
  year: 1995
  ident: 6409_CR6
  publication-title: R Stat Soc
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 5
  start-page: 367
  year: 1977
  ident: 6409_CR62
  publication-title: Ann Biomed Eng
  doi: 10.1007/BF02367316
– volume: 233
  start-page: 2777
  year: 2015
  ident: 6409_CR46
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-015-4346-1
– volume: 63
  start-page: 1448
  year: 1983
  ident: 6409_CR76
  publication-title: Phys Ther
  doi: 10.1093/ptj/63.9.1448
– volume: 8
  start-page: 1
  year: 2020
  ident: 6409_CR45
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2020.00555
– volume: 11
  start-page: 455
  year: 2001
  ident: 6409_CR32
  publication-title: Curr Opin Neurobiol
  doi: 10.1016/S0959-4388(00)00234-8
– volume: 3
  start-page: eaap9770
  year: 2018
  ident: 6409_CR1
  publication-title: Sci Robot
  doi: 10.1126/scirobotics.aap9770
– volume: 24
  start-page: 170
  year: 2008
  ident: 6409_CR13
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2007.910708
– volume: 17
  start-page: 425
  year: 1979
  ident: 6409_CR2
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02447053
– volume: 8
  start-page: 249
  year: 2013
  ident: 6409_CR4
  publication-title: Disabil Rehabil Assist Technol
  doi: 10.3109/17483107.2012.713435
– volume: 8
  start-page: 60
  year: 2011
  ident: 6409_CR53
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-8-60
– volume: 39
  start-page: 204
  year: 2015
  ident: 6409_CR75
  publication-title: Prosthet Orthot Int
  doi: 10.1177/0309364614522260
– volume: 20
  start-page: 27
  year: 2008
  ident: 6409_CR11
  publication-title: J Prosthet Orthot
  doi: 10.1097/01.JPO.0000311041.61628.be
– volume: 16
  start-page: 541
  year: 2006
  ident: 6409_CR48
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2006.08.006
– volume: 59
  start-page: 2219
  year: 2012
  ident: 6409_CR74
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2012.2200678
– year: 2009
  ident: 6409_CR47
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000345
– volume: 394
  start-page: 780
  year: 1998
  ident: 6409_CR28
  publication-title: Nature
  doi: 10.1038/29528
– ident: 6409_CR67
– ident: 6409_CR44
– volume: 3
  start-page: 11
  year: 2006
  ident: 6409_CR31
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/1743-0003-3-11
– volume: 32
  start-page: 11727
  year: 2012
  ident: 6409_CR27
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0424-12.2012
– ident: 6409_CR69
  doi: 10.1109/ICRA.2015.7140109
– year: 2014
  ident: 6409_CR33
  publication-title: Comput Math Methods Med
  doi: 10.1155/2014/120357
– year: 2019
  ident: 6409_CR37
  publication-title: Haptic Interfaces Access Heal Enhanc Qual Life
  doi: 10.1007/978-3-030-34230-2_3
– year: 2019
  ident: 6409_CR72
  publication-title: IEEE Trans Haptics
  doi: 10.1109/toh.2019.2961652
– ident: 6409_CR65
  doi: 10.1121/1.415561
– ident: 6409_CR39
– volume: 8
  start-page: 1
  year: 2018
  ident: 6409_CR70
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-34910-w
– volume: 20
  start-page: 1
  year: 2020
  ident: 6409_CR10
  publication-title: Sens (switzerl)
  doi: 10.3390/s20061613
– volume: 8
  start-page: 1
  year: 2018
  ident: 6409_CR58
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-26810-w
– volume: 1412
  start-page: 1
  year: 2020
  ident: 6409_CR20
  publication-title: IEEE Trans Haptics
  doi: 10.1109/toh.2020.2985962
– ident: 6409_CR16
– volume: 37
  start-page: 194
  year: 2013
  ident: 6409_CR17
  publication-title: J Neurol Phys Ther
  doi: 10.1097/NPT.0000000000000023
– volume: 10
  start-page: 45
  year: 2013
  ident: 6409_CR5
  publication-title: Expert Rev Med Devices
  doi: 10.1586/erd.12.68
– volume: 23
  start-page: 267
  year: 2015
  ident: 6409_CR21
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2014.2371238
– volume: 16
  start-page: 1
  year: 2019
  ident: 6409_CR26
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-019-0597-6
– volume: 14
  start-page: 1
  year: 2020
  ident: 6409_CR54
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2020.00120
– volume: 10
  start-page: 1
  year: 2015
  ident: 6409_CR24
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0134095
– ident: 6409_CR36
  doi: 10.36227/techrxiv.14588250.v3
– year: 2017
  ident: 6409_CR40
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/aa620a
– ident: 6409_CR51
– volume: 14
  start-page: 1
  year: 2020
  ident: 6409_CR56
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2020.00345
– volume: 15
  start-page: 1
  year: 2018
  ident: 6409_CR41
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-018-0371-1
– volume: 15
  start-page: 435
  year: 2007
  ident: 6409_CR9
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2007.903942
– volume: 23
  start-page: 450
  year: 2015
  ident: 6409_CR18
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2014.2337952
– volume: 25
  start-page: 1159
  year: 1999
  ident: 6409_CR52
  publication-title: J Exp Psychol Hum Percept Perform
  doi: 10.1037/0096-1523.25.4.1159
– ident: 6409_CR34
– volume: 25
  start-page: 183
  year: 2017
  ident: 6409_CR23
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2016.2550864
– volume: 13
  start-page: 919
  year: 2016
  ident: 6409_CR61
  publication-title: Expert Rev Med Devices
  doi: 10.1080/17434440.2016.1237287
SSID ssj0014370
Score 2.409618
Snippet Electrotactile stimulation has been commonly used in human–machine interfaces to provide feedback to the user, thereby closing the control loop and improving...
Electrotactile stimulation has been commonly used in human-machine interfaces to provide feedback to the user, thereby closing the control loop and improving...
SourceID pubmedcentral
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2285
SubjectTerms Biofeedback training
Biomedical and Life Sciences
Biomedicine
Electric stimulation
Electrodes
Electromyography
Feedback
Frequency dependence
Frequency modulation
Interfaces
Methods
Muscle contraction
Neurological research
Neurology
Neurosciences
Research Article
Tactile stimuli
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BufSCoAURKGAQggNE2jh2HB9XVauCBAdgpYqL5SQ2VLQJanYP---ZcZygFFqJSy6ePPwYz0zmm88ArzJ0i7ktHIaphU8Fb6q0kk6mVcGVRQ9DyJwKnD9-Kk5W4sOpPI1FYf2Idh9TkmGnnordyNxg6IvBE2WfdCpuwx2JsTsB-VZ8OeUORK6GwpNMpAINXiyV-fczZubo6qb8N1DySrY0GKHje3A3eo9sOUz3fbjl2j3YX7YYOV9s2WsW8JzhR_ke7E5723YfvqHeYwzsGtYThBqfYduG-csBSL1lRGdJVoyhD8vi0Thrqnk4d8yjgats_ZN1nl1su6H1rGYE_cDF-wBWx0dfD0_SeKxCWssyX6eK-8by3GspbYXRDzGsSanqzDVCqlxpL_JGcu0W6Gpg10uhM1cL2WCkhta9yh_CTtu17hGw0qPAQojccSdq521V2syikpNfVS5sAtk4uqaOnON09MW5mdiSw4wYvJgwI0Yk8Ha659fAuHGj9HOaNDNUjU7qapaK8qFa8iKBl0GCyC5aQtN8t5u-N--_fJ4JvYlCvsMPrG0sTsBuEj_WTPJgJonaWM-bx9Vj4m7QG66yrCBe_TKBF1Mz3UkIt9Z1G5QptEC1yRc6ATVbddMoEBP4vKU9-xEYwbXAqK9UCbwb1-efl18_do__T_wJ7PKgOQSwO4Cd9eXGPUWPbF09Cwr4G0KMKxE
  priority: 102
  providerName: Springer Nature
Title Combined spatial and frequency encoding for electrotactile feedback of myoelectric signals
URI https://link.springer.com/article/10.1007/s00221-022-06409-4
https://www.proquest.com/docview/2711629068
https://www.proquest.com/docview/2694962309
https://pubmed.ncbi.nlm.nih.gov/PMC9458587
Volume 240
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1Nb9Mw9Im1l10QbCAyRjEIwQEiGseOkxNKq5YBokKDSoVL5CQOTGzJWNpD_z3vJW6mDLFLcngvbWK_T78vgBcemsVcBwbd1KBwBc9TN5VGumnAlUYLQ0ifCpw_L4KTpfi4kit74FbbtMqdTGwEdV5ldEb-livPC6g3efju8o9LU6MoumpHaOzBEEVwKAcwnMwWX067OILwVVuE4glXoPKzZTNN8RypL3Sl0RmjaFbkip5quimg_02avBE5bRTS_B7ctZYki9utvw93THkAh3GJXvTFlr1kTW5nc2h-APudnNsewg-UAegPm5zVlE6Nv6HLnBVXbVL1llFrS9JoDO1ZZsfkrKn-4dywApVdqrPfrCrYxbZqoWcZozQQJOQHsJzPvk1PXDtiwc1k6K9dxYtcc7-IpNQpekLUbU1KlXkmF1L5KiqEn0semTGaHfjpoYg8kwmZo9eGmj71H8KgrErzCFhYIMJYCN9wIzJT6DTUnkaGJxsrHGsHvN3qJpntP05jMM6TrnNysyMJXpJmRxLhwOvumcu2-8at2E9p05K2grRj3SRWFBuNJA8ceN5gUOOLkjJrfupNXScfvp72kF5ZpKLCF8y0LVTAz6ReWT3M4x4mcmbWB--oJ7GSoU6u6diBZx2YnqRst9JUG8QJIoEs5I8jB1SP6rpVoK7gfUh59qvpDh4J9ABD5cCbHX1e__n_1-7o9nd9DPu84RRKrjuGwfpqY56gNbZOR7CnVmoEw3g-mSzo_v77p9nIMiJCp8EUr0se_wVnfTVj
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9kAvCFoQgUIN4nGAiI1j53FAaIFWu7RdodJKFRfjOA5UtElpdoXyp_iNzORVpYjeetmLJ9nEnmdm5huAZx66xVwHFsPUIHMFTxM3kVa6ScBDjR6GkD41OO_Ngsmh-HQkj5bgT9cLQ2WVnU6sFXVaGPpG_oaHnhcQNnn07uyXS1OjKLvajdBo2GLHVr8xZCvfTj_i-T7nfHvr4MPEbacKuEZG_twNeZZq7mexlDpB558AxqQMjWdTIUM_jDPhp5LHdoSWNjU2ErFnjZApBipo3BIf73sDVtDNiFGKVt5vzT7v93kL4YdN04snXIHGtm3TqZv1yFxi6I7BH2XPYlcMTOFlg_BvkealTG1tALdvw63Wc2XjhtXuwJLN12B9nGPUflqxF6yuJa0_0q_Baq9Xq3X4ijoH42-bspLKt_EeOk9Zdt4UcVeMoDTJgjL0n1k7lmdO_RYnlmVoXBNtfrIiY6dV0aweG0ZlJyg4d-HwWjb_HiznRW7vA4syJBgJ4VtuhbGZTiLtaVQw5NNFI-2A1-2uMi3eOY3dOFE9UnN9Igp_VH0iSjjwqr_mrEH7uJJ6kw5NNR2rvapQ45BysbHkgQNPawoC2sipkue7XpSlmn7ZHxC9bImyAh_Q6LYxAl-TsLkGlBsDStQEZrjccY9qNVGpLuTGgSf9Ml1J1XW5LRZIE8QCRdYfxQ6EA67rd4FQyIcr-fGPGo08FhhxRqEDrzv-vPjz_-_dg6ufdRNuTg72dtXudLbzEFZ5LTVU2LcBy_PzhX2EnuA8edyKH4Nv1y3xfwEVn2q9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gkRhejILGKspq_HjQhut2t9s-GHMKF06UEJSE-LJut1slQovcXcz9a_51zvSLFCNvvNzLTnvt7nx2Zn4D8CxAt5ibyGGYGuW-4Fnqp9JJP424MuhhCBlSg_OnvWjnUHw4kkdL8KfthaGyylYnVoo6Ky19I9_kKggiwiaPN_OmLGJ_a_z27JdPE6Qo09qO06hZZNctfmP4Nn0z2cKzfs75ePvL-x2_mTDgWxmHM1_xPDM8zBMpTYqBAIGNSals4DIhVaiSXISZ5IkbotXNrItFEjgrZIZBCxq6NMT73oBlhVYxHsDyu-29_YMuhyFCVTfABMIXaHiblp2qcY9MJ4bxGAhSJi3xRc8sXjYO_xZsXsraVsZwfBtuNV4sG9VsdweWXLEKa6MCI_jTBXvBqrrS6oP9Kqx0OnaxBl9R_2As7jI2pVJuvIcpMpaf1wXdC0awmmRNGfrSrBnRM6PeixPHcjS0qbE_WZmz00VZrx5bRiUoKER34fBaNv8eDIqycPeBxTkSDIUIHXfCutyksQkMKhvy7-Kh8SBod1fbBvucRnCc6A61uToRjT-6OhEtPHjVXXNWI39cSb1Bh6br7tVObeiRorxsInnkwdOKgkA3CmLf72Y-nerJ54Me0cuGKC_xAa1pmiTwNQmnq0e53qNErWD7yy336EYrTfWFDHnwpFumK6nSrnDlHGmiRKD4hsPEA9Xjum4XCJG8v1Ic_6iQyROB0WesPHjd8ufFn_9_7x5c_awbcBMlXX-c7O0-hBVeCQ3V-K3DYHY-d4_QKZyljxvpY_DtugX-LzUrbuk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+spatial+and+frequency+encoding+for+electrotactile+feedback+of+myoelectric+signals&rft.jtitle=Experimental+brain+research&rft.au=Nataletti%2C+Sara&rft.au=Leo%2C+Fabrizio&rft.au=Dideriksen%2C+Jakob&rft.au=Brayda%2C+Luca&rft.date=2022-09-01&rft.issn=0014-4819&rft.eissn=1432-1106&rft.volume=240&rft.issue=9&rft.spage=2285&rft.epage=2298&rft_id=info:doi/10.1007%2Fs00221-022-06409-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00221_022_06409_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4819&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4819&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4819&client=summon