Metal 3D printing technology for functional integration of catalytic system
Mechanical properties and geometries of printed products have been extensively studied in metal 3D printing. However, chemical properties and catalytic functions, introduced by metal 3D printing itself, are rarely mentioned. Here we show that metal 3D printing products themselves can simultaneously...
Saved in:
Published in | Nature communications Vol. 11; no. 1; p. 4098 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.08.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mechanical properties and geometries of printed products have been extensively studied in metal 3D printing. However, chemical properties and catalytic functions, introduced by metal 3D printing itself, are rarely mentioned. Here we show that metal 3D printing products themselves can simultaneously serve as chemical reactors and catalysts (denoted as self-catalytic reactor or SCR) for direct conversion of C1 molecules (including CO, CO
2
and CH
4
) into high value-added chemicals. The Fe-SCR and Co-SCR successfully catalyze synthesis of liquid fuel from Fischer-Tropsch synthesis and CO
2
hydrogenation; the Ni-SCR efficiently produces syngas (CO/H
2
) by CO
2
reforming of CH
4
. Further, the Co-SCR geometrical studies indicate that metal 3D printing itself can establish multiple control functions to tune the catalytic product distribution. The present work provides a simple and low-cost manufacturing method to realize functional integration of catalyst and reactor, and will facilitate the developments of chemical synthesis and 3D printing technology.
Metal 3D printing is a very promising technology to revolutionize catalytic systems. Here the authors show that metal 3D printing products themselves can simultaneously serve as chemical reactors and catalysts for conversion of C1 molecules into high value-added chemicals. |
---|---|
AbstractList | Mechanical properties and geometries of printed products have been extensively studied in metal 3D printing. However, chemical properties and catalytic functions, introduced by metal 3D printing itself, are rarely mentioned. Here we show that metal 3D printing products themselves can simultaneously serve as chemical reactors and catalysts (denoted as self-catalytic reactor or SCR) for direct conversion of C1 molecules (including CO, CO
2
and CH
4
) into high value-added chemicals. The Fe-SCR and Co-SCR successfully catalyze synthesis of liquid fuel from Fischer-Tropsch synthesis and CO
2
hydrogenation; the Ni-SCR efficiently produces syngas (CO/H
2
) by CO
2
reforming of CH
4
. Further, the Co-SCR geometrical studies indicate that metal 3D printing itself can establish multiple control functions to tune the catalytic product distribution. The present work provides a simple and low-cost manufacturing method to realize functional integration of catalyst and reactor, and will facilitate the developments of chemical synthesis and 3D printing technology. Metal 3D printing is a very promising technology to revolutionize catalytic systems. Here the authors show that metal 3D printing products themselves can simultaneously serve as chemical reactors and catalysts for conversion of C1 molecules into high value-added chemicals. Mechanical properties and geometries of printed products have been extensively studied in metal 3D printing. However, chemical properties and catalytic functions, introduced by metal 3D printing itself, are rarely mentioned. Here we show that metal 3D printing products themselves can simultaneously serve as chemical reactors and catalysts (denoted as self-catalytic reactor or SCR) for direct conversion of C1 molecules (including CO, CO 2 and CH 4 ) into high value-added chemicals. The Fe-SCR and Co-SCR successfully catalyze synthesis of liquid fuel from Fischer-Tropsch synthesis and CO 2 hydrogenation; the Ni-SCR efficiently produces syngas (CO/H 2 ) by CO 2 reforming of CH 4 . Further, the Co-SCR geometrical studies indicate that metal 3D printing itself can establish multiple control functions to tune the catalytic product distribution. The present work provides a simple and low-cost manufacturing method to realize functional integration of catalyst and reactor, and will facilitate the developments of chemical synthesis and 3D printing technology. Metal 3D printing is a very promising technology to revolutionize catalytic systems. Here the authors show that metal 3D printing products themselves can simultaneously serve as chemical reactors and catalysts for conversion of C1 molecules into high value-added chemicals. Mechanical properties and geometries of printed products have been extensively studied in metal 3D printing. However, chemical properties and catalytic functions, introduced by metal 3D printing itself, are rarely mentioned. Here we show that metal 3D printing products themselves can simultaneously serve as chemical reactors and catalysts (denoted as self-catalytic reactor or SCR) for direct conversion of C1 molecules (including CO, CO2 and CH4) into high value-added chemicals. The Fe-SCR and Co-SCR successfully catalyze synthesis of liquid fuel from Fischer-Tropsch synthesis and CO2 hydrogenation; the Ni-SCR efficiently produces syngas (CO/H2) by CO2 reforming of CH4. Further, the Co-SCR geometrical studies indicate that metal 3D printing itself can establish multiple control functions to tune the catalytic product distribution. The present work provides a simple and low-cost manufacturing method to realize functional integration of catalyst and reactor, and will facilitate the developments of chemical synthesis and 3D printing technology.Metal 3D printing is a very promising technology to revolutionize catalytic systems. Here the authors show that metal 3D printing products themselves can simultaneously serve as chemical reactors and catalysts for conversion of C1 molecules into high value-added chemicals. |
ArticleNumber | 4098 |
Author | Wang, Yang Wei, Qinhong Li, Hangjie Tan, Yen Ee He, Yingluo Tsubaki, Noritatsu Yang, Guohui Wang, Ding Peng, Xiaobo Liu, Guoguo |
Author_xml | – sequence: 1 givenname: Qinhong surname: Wei fullname: Wei, Qinhong organization: Department of Applied Chemistry, School of Engineering, University of Toyama, Department of Chemical Engineering, School of Petrochemical Technology and Energy Engineering, Zhejiang Ocean University – sequence: 2 givenname: Hangjie surname: Li fullname: Li, Hangjie organization: Department of Applied Chemistry, School of Engineering, University of Toyama – sequence: 3 givenname: Guoguo surname: Liu fullname: Liu, Guoguo organization: Department of Applied Chemistry, School of Engineering, University of Toyama – sequence: 4 givenname: Yingluo surname: He fullname: He, Yingluo organization: Department of Applied Chemistry, School of Engineering, University of Toyama – sequence: 5 givenname: Yang surname: Wang fullname: Wang, Yang organization: Department of Applied Chemistry, School of Engineering, University of Toyama – sequence: 6 givenname: Yen Ee surname: Tan fullname: Tan, Yen Ee organization: Department of Applied Chemistry, School of Engineering, University of Toyama – sequence: 7 givenname: Ding surname: Wang fullname: Wang, Ding organization: School of Material Science & Engineering, University of Shanghai for Science and Technology – sequence: 8 givenname: Xiaobo orcidid: 0000-0002-4437-1546 surname: Peng fullname: Peng, Xiaobo email: PENG.Xiaobo@nims.go.jp organization: National Institute for Materials Science, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University – sequence: 9 givenname: Guohui orcidid: 0000-0001-9799-0984 surname: Yang fullname: Yang, Guohui email: thomas@eng.u-toyama.ac.jp organization: Department of Applied Chemistry, School of Engineering, University of Toyama, State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences – sequence: 10 givenname: Noritatsu orcidid: 0000-0001-6786-5058 surname: Tsubaki fullname: Tsubaki, Noritatsu email: tsubaki@eng.u-toyama.ac.jp organization: Department of Applied Chemistry, School of Engineering, University of Toyama |
BookMark | eNp9kc1u3SAQhVGVqEnTvEBXlrrpxi0w2MCmUpX-RUnUTbtGGA-Or3whBbvSffviOGqbLsKGAc75NMx5QY5CDEjIK0bfMgrqXRZMtLKmnNZMasFq9YyccloKJjkc_VOfkPOcd7Qs0EwJ8ZycAJe6VS2ckqsbnO1UwcfqLo1hHsNQzehuQ5zicKh8TJVfgpvHGIqqCHBIdj1V0VfOFuthHl2VD3nG_Uty7O2U8fxhPyM_Pn_6fvG1vv725fLiw3XtGgVz3bpO9Jw2iD0TvbbAlHJOyKbTUD4llEIO3OoePAjrOwZeeq0UtwC-tS2ckcuN20e7M6XvvU0HE-1o7i9iGoxNpa0JzQrzvXe62IRVoBvPRCOt0g495V1hvd9Yd0u3x95hmJOdHkEfv4Tx1gzxl5GCK0qbAnjzAEjx54J5NvsxO5wmGzAu2XABQshWSFWkr_-T7uKSymA3VcmzDKCo-KZyKeac0P9phlGzRm-26E2J3txHb1Y0bKa8xjhg-ot-wvUb35exhQ |
CitedBy_id | crossref_primary_10_1002_admt_202400064 crossref_primary_10_1002_admi_202201734 crossref_primary_10_1002_adma_202004862 crossref_primary_10_1002_smtd_202100887 crossref_primary_10_1021_acsami_1c19755 crossref_primary_10_1016_j_cej_2021_132670 crossref_primary_10_1016_j_cep_2021_108406 crossref_primary_10_1016_j_coche_2021_100756 crossref_primary_10_1016_j_mtener_2022_101100 crossref_primary_10_3390_ma17081873 crossref_primary_10_1016_j_apmt_2023_101831 crossref_primary_10_1016_j_grets_2024_100078 crossref_primary_10_1021_acssuschemeng_1c01980 crossref_primary_10_1016_j_eurpolymj_2023_112298 crossref_primary_10_1021_acsami_2c03850 crossref_primary_10_1016_j_corsci_2023_111010 crossref_primary_10_3390_cryst12040447 crossref_primary_10_1021_acs_iecr_1c03098 crossref_primary_10_1089_3dp_2023_0261 crossref_primary_10_3390_catal11020148 crossref_primary_10_1039_D1CS00260K crossref_primary_10_1016_j_cej_2024_150467 crossref_primary_10_1016_j_jcis_2021_03_107 crossref_primary_10_3390_en16196798 crossref_primary_10_1016_j_cej_2021_131145 crossref_primary_10_3390_ma15196632 crossref_primary_10_1002_admt_202202080 crossref_primary_10_1016_j_catcom_2023_106610 crossref_primary_10_1002_adma_202205569 crossref_primary_10_1016_j_ces_2022_118423 crossref_primary_10_1016_j_jcat_2022_12_013 crossref_primary_10_1016_j_cis_2020_102294 crossref_primary_10_1039_D1SE01999F crossref_primary_10_1007_s10853_021_06362_7 crossref_primary_10_1016_j_matdes_2021_110172 crossref_primary_10_1115_1_4055383 crossref_primary_10_1016_j_addma_2021_102261 crossref_primary_10_1016_j_apmt_2023_101940 crossref_primary_10_1016_j_apmt_2023_101984 crossref_primary_10_3390_ma15238454 crossref_primary_10_1016_j_addma_2021_102023 crossref_primary_10_1016_j_enconman_2023_117071 crossref_primary_10_1002_cctc_202101581 crossref_primary_10_1021_acsami_3c02802 crossref_primary_10_1021_acsami_3c10945 crossref_primary_10_1007_s12274_023_5954_x crossref_primary_10_1021_acs_iecr_2c01611 crossref_primary_10_3390_biomimetics7030122 crossref_primary_10_1039_D1CC04246G crossref_primary_10_1002_adfm_202403659 crossref_primary_10_1016_j_mtsust_2024_100746 crossref_primary_10_3390_biomimetics6040071 crossref_primary_10_3390_nano10112198 crossref_primary_10_1016_j_ces_2023_119045 crossref_primary_10_1016_j_mtnano_2022_100241 crossref_primary_10_1016_j_seppur_2024_126463 crossref_primary_10_1016_j_trechm_2022_05_005 crossref_primary_10_1016_j_addma_2024_103962 crossref_primary_10_1016_j_apcatb_2023_123211 crossref_primary_10_1021_acs_iecr_1c03590 crossref_primary_10_1016_j_cej_2021_128636 crossref_primary_10_3390_ma14226786 crossref_primary_10_1016_j_jece_2024_113037 crossref_primary_10_1016_j_cej_2021_131128 crossref_primary_10_1002_ceat_202400087 crossref_primary_10_1016_j_recm_2023_08_004 crossref_primary_10_1021_acs_accounts_3c00311 crossref_primary_10_3389_fceng_2022_834547 crossref_primary_10_1016_j_fuel_2023_128367 crossref_primary_10_1002_cctc_202301380 crossref_primary_10_1007_s12274_020_3230_x crossref_primary_10_1016_j_greenca_2023_10_003 crossref_primary_10_1016_j_matdes_2024_113086 crossref_primary_10_1002_adfm_202303994 crossref_primary_10_1016_j_matdes_2021_109927 crossref_primary_10_1002_cctc_202101359 crossref_primary_10_1016_j_ceramint_2023_12_274 crossref_primary_10_1088_2053_1591_ad1ef8 crossref_primary_10_1016_j_cjmeam_2022_100013 crossref_primary_10_1039_D3TA05845J crossref_primary_10_1016_j_cep_2021_108437 |
Cites_doi | 10.1021/acs.nanolett.5b01688 10.1038/nchem.2794 10.1002/jrs.2762 10.1039/C8CS00502H 10.1016/j.actamat.2016.07.019 10.1039/C5CS00714C 10.1021/ja805152t 10.1039/C3CS60395D 10.1038/nchem.1313 10.1016/j.cattod.2010.02.077 10.1002/cctc.201902143 10.1021/acsomega.9b00711 10.1016/j.jcou.2019.07.013 10.1016/j.jclepro.2018.12.274 10.1016/0021-9517(91)90027-2 10.1016/j.apcatb.2019.01.008 10.1016/j.apcata.2016.11.031 10.1016/S0167-577X(02)00554-2 10.1038/ncomms7451 10.1021/ja305048p 10.1038/352225a0 10.1021/acscatal.7b02592 10.1039/C7CS00631D 10.1016/S0920-5861(01)00453-9 10.1016/j.cattod.2019.06.026 10.1149/2.0341905jes 10.1021/jp0702189 10.1007/s11244-005-2886-5 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B 10.1021/acs.chemrev.5b00303 10.1039/C8SC04965C 10.1146/annurev-matsci-070115-032024 10.1016/j.jcat.2015.11.019 10.1002/anie.201411708 10.1126/sciadv.aas9459 10.1126/science.1215614 10.1038/nprot.2016.041 10.1021/acs.chemrev.7b00074 10.1016/j.jcat.2014.02.004 10.1038/s41929-018-0144-z 10.1039/c1cs15008a 10.1039/C7CY00615B 10.1039/C3CY01021J 10.1021/acsami.9b08119 10.1021/jacs.7b01625 10.1126/science.aah7161 10.1016/j.fuel.2012.12.081 10.1016/S0378-3820(99)00122-8 10.1002/jrs.1056 10.1002/adfm.201701134 10.1038/nbt.2958 10.1039/c001514h 10.1006/jcat.1998.2286 10.1021/ja01301a016 10.1006/jcat.1995.1068 10.1007/BF00764492 10.1038/nature19786 10.1063/1.3194316 10.1021/cr050972v 10.1038/nbt.3413 10.1021/ar300217j 10.1021/ja01159a039 10.1126/science.aao3466 10.1021/acsapm.9b00598 10.1016/0021-9517(79)90274-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-020-17941-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content (ProQuest) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management Health Research Premium Collection Natural Science Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Technology Collection Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 4098 |
ExternalDocumentID | oai_doaj_org_article_488efdfc9a634a8395f1457a89cef02b 10_1038_s41467_020_17941_8 |
GrantInformation_xml | – fundername: MEXT | Japan Science and Technology Agency (JST) grantid: MIRAI-JPMJMI17E2 funderid: https://doi.org/10.13039/501100002241 – fundername: ; grantid: MIRAI-JPMJMI17E2 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADRAZ AENEX AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AAYXX CITATION 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PQEST PQUKI PRINS RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c583t-6cb4d205eed14d9a3188cc475b93414488e232a9d3f34afb13f7f9882a33f6a63 |
IEDL.DBID | RPM |
ISSN | 2041-1723 |
IngestDate | Tue Oct 22 15:10:44 EDT 2024 Tue Sep 17 21:25:03 EDT 2024 Fri Oct 25 06:42:43 EDT 2024 Thu Oct 10 19:44:13 EDT 2024 Thu Nov 21 21:02:15 EST 2024 Fri Oct 11 20:38:15 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-6cb4d205eed14d9a3188cc475b93414488e232a9d3f34afb13f7f9882a33f6a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9799-0984 0000-0002-4437-1546 0000-0001-6786-5058 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7428005/ |
PMID | 32796863 |
PQID | 2434146934 |
PQPubID | 546298 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_488efdfc9a634a8395f1457a89cef02b pubmedcentral_primary_oai_pubmedcentral_nih_gov_7428005 proquest_miscellaneous_2434476478 proquest_journals_2434146934 crossref_primary_10_1038_s41467_020_17941_8 springer_journals_10_1038_s41467_020_17941_8 |
PublicationCentury | 2000 |
PublicationDate | 2020-08-14 |
PublicationDateYYYYMMDD | 2020-08-14 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | ZhouXLiuCThree-dimensional printing for catalytic applications: current status and perspectivesAdv. Funct. Mater.2017271701134 LahtinenEFabrication of porous hydrogenation catalysts by a selective laser sintering 3D printing techniqueACS Omega2019412012120171:CAS:528:DC%2BC1MXhtleqsb%2FJ314603136682100 WangWWangSMaXGongJRecent advances in catalytic hydrogenation of carbon dioxideChem. Soc. Rev.201140370337271:CAS:528:DC%2BC3MXns12nu7Y%3D21505692 Díaz-MartaASThree-dimensional printing in catalysis: combining 3D heterogeneous copper and palladium catalysts for multicatalytic multicomponent reactionsACS Catal.20188392404 PengXImpact of hydrogenolysis on Fischer–Tropsch synthesis selectivity: diesel fuel production over mesoporous zeolite Y-supported cobalt nanoparticlesAngew. Chem. Int. Ed.201554455345561:CAS:528:DC%2BC2MXkvF2nu70%3D PakhareDSpiveyJA review of dry (CO2) reforming of methane over noble metal catalystsChem. Soc. Rev.201443781378371:CAS:528:DC%2BC2cXhslOis7bI24504089 JiaC-JLarge-scale synthesis of single-crystalline iron oxide magnetic nanoringsJ. Am. Chem. Soc.200813016968169771:CAS:528:DC%2BD1cXhtl2jsLnE19053430 HerzogDAdditive manufacturing of metalsActa Mater.20161173713921:CAS:528:DC%2BC28Xht1SgsLbP Díaz-MartaASMulticatalysis combining 3D-printed devices and magnetic nanoparticles in one-pot reactions: steps forward in compartmentation and recyclability of catalystsACS Appl. Mater. Interfaces2019112528325294 GuptaMK3D printed programmable release capsulesNano Lett.201515532153292015NanoL..15.5321G1:CAS:528:DC%2BC2MXpsFOnt7c%3D260424724536147 GaoPDirect conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalystNat. Chem.20179101910241:CAS:528:DC%2BC2sXhtVSjt7bI28937667 LigonSCPolymers for 3D printing and customized additive manufacturingChem. Rev.201711710212102901:CAS:528:DC%2BC2sXht1eku7bP287566585553103 AshcroftATPartial oxidation of methane to synthesis gas using carbon dioxideNature19913522252261991Natur.352..225A1:CAS:528:DyaK3MXkslCrt7s%3D MurphySVAtalaA3D bioprinting of tissues and organsNat. Biotechnol.2014327737851:CAS:528:DC%2BC2cXht1OqtbfK25093879 TomishigeKChenYFujimotoKStudies on carbon deposition in CO2 reforming of CH4 over nickel-magnesia solid solution catalystsJ. Catal.1999181911031:CAS:528:DyaK1MXltlaqtQ%3D%3D KuipersEWVinkenburgIHOosterbeekHChain length dependence of α-olefin readsorption in Fischer–Tropsch synthesisJ. Catal.1995155137146 Chorkendorff, I. & Niemantsverdriet, J. W. Concepts of Modern Catalysis and Kinetics (Wiley, Weinheim, 2017). TubíoCR3D printing of a heterogeneous copper-based catalystJ. Catal.2016334110115 ZhangJSynthesis of light olefins from CO hydrogenation over Fe–Mn catalysts: effect of carburization pretreatmentFuel20131091161231:CAS:528:DC%2BC3sXit1Kkt70%3D FloryPJMolecular size distribution in linear condensation polymersJ. Am. Chem. Soc.193658187718851:CAS:528:DyaA28XmtVSqtQ%3D%3D LyubutinISMössbauer spectroscopy and magnetic properties of hematite/magnetite nanocompositesJ. Appl. Phys.20091060343112009JAP...106c4311L AzuajeJAn efficient and recyclable 3D printed α-Al2O3 catalyst for the multicomponent assembly of bioactive heterocyclesAppl. Catal. A20175302032101:CAS:528:DC%2BC28XitVWmsbjJ ZhuCToward digitally controlled catalyst architectures: hierarchical nanoporous gold via 3D printingSci. Adv.20184eaas94592018SciA....4.9459Z1:CAS:528:DC%2BC1MXhsF2jurbO301820566118649 de FariaDLVenâncio SilvaASde OliveiraMTRaman microspectroscopy of some iron oxides and oxyhydroxidesJ. Raman Spectrosc.1997288738781997JRSp...28..873D Ross, J. R. H. Heterogeneous Catalysis: Fundamentals and Applications (Elsevier, Amsterdam, 2011). DornerRWHeterogeneous catalytic CO2 conversion to value-added hydrocarbonsEnergy Environ. Sci.201038848901:CAS:528:DC%2BC3cXht1yrsb3P ShojiSTopologically immobilized catalysis centre for long-term stable carbon dioxide reforming of methaneChem. Sci.201910370137051:CAS:528:DC%2BC1MXivVOlu70%3D310159136461125 KangHA 3D bioprinting system to produce human-scale tissue constructs with structural integrityNat. Biotechnol.2016343123221:CAS:528:DC%2BC28XisFKhsbg%3D26878319 ButtJBCarbide phases on iron-based Fischer–Tropsch synthesis catalysts part I: characterization studiesCatal. Lett.1990761811:CAS:528:DyaK3MXktFWqs7g%3D AmbrosiAPumeraM3D-printing technologies for electrochemical applicationsChem. Soc. Rev.201645274027551:CAS:528:DC%2BC28XotVWmurY%3D27048921 IglesiaEReyesSCMadonRJTransport-enhanced α-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesisJ. Catal.19911292382561:CAS:528:DyaK3MXhvVyktrs%3D HurtCCombining additive manufacturing and catalysis: a reviewCatal. Sci. Technol.20177342134391:CAS:528:DC%2BC2sXhtVKnsLbN LiXZhangWSequestration of metal cations with zerovalent iron nanoparticles—a study with high resolution X-ray photoelectron spectroscopy (HR-XPS)J. Phys. Chem. C.2007111693969461:CAS:528:DC%2BD2sXksFarsbc%3D KitsonPJDigitization of multistep organic synthesis in reactionware for on-demand pharmaceuticalsScience20183593143192018Sci...359..314K1:CAS:528:DC%2BC1cXhtFKnsbc%3D29348235 SantosVPMetal organic framework-mediated synthesis of highly active and stable Fischer–Tropsch catalystsNat. Commun.201562015NatCo...6.6451S1:CAS:528:DC%2BC2MXhtF2lurfF25740709 BuelensLCSuper-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principleScience20163544494522016Sci...354..449B1:CAS:528:DC%2BC28Xhslamt7vN27738013 KitsonPJ3D printing of versatile reactionware for chemical synthesisNat. Protoc.2016119209361:CAS:528:DC%2BC28Xlsl2htbc%3D27077333 LiJIntegrated tuneable synthesis of liquid fuels via Fischer–Tropsch technologyNat. Catal.201817877931:CAS:528:DC%2BC1MXhtFGisL%2FF Parra-CabreraC3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactorsChem. Soc. Rev.2018472092301:CAS:528:DC%2BC2sXhsl2lu7bP29131228 MiddelkoopVNext frontiers in cleaner synthesis: 3D printed graphene-supported CeZrLa mixed-oxide nanocatalyst for CO2 utilisation and direct propylene carbonate productionJ. Clean. Prod.20192146066141:CAS:528:DC%2BC1MXotVCrtg%3D%3D Díaz-MartaASIntegrating reactors and catalysts through three-dimensional printing: efficiency and reusability of an impregnated palladium on silica monolith in Sonogashira and Suzuki reactionsChemCatChem20201217621771 DryMEThe Fischer–Tropsch process: 1950−2000Catal. Today2002712272411:CAS:528:DC%2BD38XhtFGqsrk%3D FriedelRAAndersonRBComposition of synthetic liquid fuels: I. Product distribution and analysis of C5-C8 paraffin isomers from cobalt catalystJ. Am. Chem. Soc.195072121212151:CAS:528:DyaG3MXhsVyqtg%3D%3D RaiAKinetics and computational fluid dynamics study for Fischer–Tropsch synthesis in microchannel and fixed-bed reactors. ReactChem. Eng.201833193321:CAS:528:DC%2BC1cXltlSgtLs%3D KhollamYBMicrowave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powdersMater. Lett.2002565715771:CAS:528:DC%2BD38XnvVyltLc%3D RauppGBDelgassWNMössbauer investigation of supported Fe and FeNi catalysts: II. carbides formed Fischer–Tropsch synthesisJ. Catal.1979583483601:CAS:528:DyaE1MXlsF2qu7s%3D ShebanovaONLazorPRaman study of magnetite (Fe3O4): laser-induced thermal effects and oxidationJ. Raman Spectrosc.2003348458522003JRSp...34..845S1:CAS:528:DC%2BD3sXptFGhs7c%3D MagzoubF3D-printed ZSM-5 monoliths with metal dopants for methanol conversion in the presence and absence of carbon dioxideAppl. Catal. B20192454864951:CAS:528:DC%2BC1MXotVCktQ%3D%3D WeiJDirectly converting CO2 into a gasoline fuelNat. Commun.201782017NatCo...815174W284629255418575 TsubakiNFujimotoKProduct control in Fischer–Tropsch synthesisFuel Process. Technol.2000621731861:CAS:528:DC%2BD3cXhsFagt7Y%3D MargossianTMolecularly tailored nickel precursor and support yield a stable methane dry reforming catalyst with superior metal utilizationJ. Am. Chem. Soc.2017139691969271:CAS:528:DC%2BC2sXms1Wnurs%3D28445048 Quintanilla, A. et al. Graphene-based nanostructures as catalysts for wet peroxide oxidation treatments: from nanopowders to 3D printed porous monoliths. Catal. Todayhttps://doi.org/10.1016/j.cattod.2019.06.026 (2019). SangiorgiA3D printing of photocatalytic filters using a biopolymer to immobilize TiO2 nanoparticlesJ. Electrochem. Soc.201916632393248 ShiLAn introduction of CO2 conversion by dry reforming with methane and new route of low-temperature methanol synthesisAcc. Chem. Res.201346183818471:CAS:528:DC%2BC3sXjtlOrtLg%3D23459583 LewandowskiJJSeifiMMetal additive manufacturing: a review of mechanical propertiesAnnu. Rev. Mater. Res.2016461511862016AnRMS..46..151L1:CAS:528:DC%2BC28XnsVWqt7c%3D SymesMDIntegrated 3D-printed reactionware for chemical synthesis and analysisNat. Chem.201243493541:CAS:528:DC%2BC38XlsFWjtbo%3D22522253 MiddelkoopV3D printed Ni/Al2O3 based catalysts for CO2 methanation—a comparative and operando XRD-CT studyJ. CO2. Util.2019334784871:CAS:528:DC%2BC1MXhsV2jurbL HamiltonNGThe application of inelastic neutron scattering to investigate CO hydrogenation over an iron Fischer–Tropsch synthesis catalystJ. Catal.20143122212311:CAS:528:DC%2BC2cXlt1Sntbs%3D ManzanoJSWangHSlowingIIHigh throughput screening of 3d printable resins: adjusting the surface and catalytic properties of multifunctional architecturesACS Appl. Polym. Mater.20191289028961:CAS:528:DC%2BC1MXhvVylsL%2FP KhodakovAYChuWFongarlandPAdvances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuelsChem. Rev.2007107169217441:CAS:528:DC%2BD2sXltVSmuro%3D17488058 GalvisHMTSupported iron nanoparticles as catalysts for sustainable production of lower olefinsScience20123358358382012Sci...335..835T SartipiSCatalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: a reviewCatal. Sci. Technol.201448939071:CAS:528:DC%2BC2cXktV2gt7k%3D Winterbottom, J. M. & King, M. B. Reactor Design for Chemical Engineers (Stanley Thornes (Publishers) Ltd., Cheltenham, 1999). ZhouWNew horizon in C1 chemistry: breaking the s A Sangiorgi (17941_CR26) 2019; 166 IS Lyubutin (17941_CR41) 2009; 106 A Ambrosi (17941_CR6) 2016; 45 X Li (17941_CR48) 2007; 111 17941_CR19 P Gao (17941_CR35) 2017; 9 MK Gupta (17941_CR13) 2015; 15 W Zhou (17941_CR34) 2019; 48 J Zhang (17941_CR53) 2013; 109 E Iglesia (17941_CR66) 1991; 129 V Middelkoop (17941_CR22) 2019; 33 AY Khodakov (17941_CR32) 2007; 107 S Shoji (17941_CR59) 2019; 10 PJ Flory (17941_CR63) 1936; 58 BH Davis (17941_CR69) 2005; 32 ME Dry (17941_CR39) 2002; 71 GB Raupp (17941_CR43) 1979; 58 SC Ligon (17941_CR5) 2017; 117 JB Butt (17941_CR49) 1990; 7 L Shi (17941_CR40) 2013; 46 17941_CR3 N Tsubaki (17941_CR58) 2000; 62 17941_CR2 DL de Faria (17941_CR45) 1997; 28 17941_CR1 RW Dorner (17941_CR36) 2010; 3 JS Manzano (17941_CR29) 2019; 1 J Li (17941_CR31) 2018; 1 NG Hamilton (17941_CR54) 2014; 312 ON Shebanova (17941_CR46) 2003; 34 PJ Kitson (17941_CR16) 2016; 11 AS Díaz-Marta (17941_CR27) 2020; 12 JJ Lewandowski (17941_CR9) 2016; 46 T Jungst (17941_CR4) 2016; 116 AS Díaz-Marta (17941_CR23) 2018; 8 C Zhu (17941_CR17) 2018; 4 S Sartipi (17941_CR67) 2014; 4 F Magzoub (17941_CR21) 2019; 245 D Pakhare (17941_CR62) 2014; 43 CR Tubío (17941_CR18) 2016; 334 C-J Jia (17941_CR47) 2008; 130 C Parra-Cabrera (17941_CR7) 2018; 47 SV Murphy (17941_CR11) 2014; 32 PJ Kitson (17941_CR14) 2018; 359 YB Khollam (17941_CR42) 2002; 56 D Herzog (17941_CR10) 2016; 117 A Rai (17941_CR68) 2018; 3 W Wang (17941_CR56) 2011; 40 L Zhong (17941_CR70) 2016; 538 K Tomishige (17941_CR61) 1999; 181 E Lahtinen (17941_CR30) 2019; 4 C Yang (17941_CR50) 2012; 134 V Middelkoop (17941_CR20) 2019; 214 VP Santos (17941_CR51) 2015; 6 NE Tsakoumis (17941_CR57) 2010; 154 RA Friedel (17941_CR64) 1950; 72 X Zhou (17941_CR8) 2017; 27 EW Kuipers (17941_CR65) 1995; 155 H Kang (17941_CR12) 2016; 34 AS Díaz-Marta (17941_CR28) 2019; 11 T Margossian (17941_CR38) 2017; 139 C Hurt (17941_CR25) 2017; 7 J Azuaje (17941_CR24) 2017; 530 MD Symes (17941_CR15) 2012; 4 LC Buelens (17941_CR60) 2016; 354 X Peng (17941_CR33) 2015; 54 AT Ashcroft (17941_CR37) 1991; 352 HMT Galvis (17941_CR52) 2012; 335 YE Mendili (17941_CR44) 2011; 42 J Wei (17941_CR55) 2017; 8 |
References_xml | – ident: 17941_CR3 – volume: 15 start-page: 5321 year: 2015 ident: 17941_CR13 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01688 contributor: fullname: MK Gupta – volume: 9 start-page: 1019 year: 2017 ident: 17941_CR35 publication-title: Nat. Chem. doi: 10.1038/nchem.2794 contributor: fullname: P Gao – volume: 42 start-page: 239 year: 2011 ident: 17941_CR44 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.2762 contributor: fullname: YE Mendili – volume: 48 start-page: 3193 year: 2019 ident: 17941_CR34 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00502H contributor: fullname: W Zhou – volume: 117 start-page: 371 year: 2016 ident: 17941_CR10 publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.07.019 contributor: fullname: D Herzog – volume: 45 start-page: 2740 year: 2016 ident: 17941_CR6 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00714C contributor: fullname: A Ambrosi – volume: 130 start-page: 16968 year: 2008 ident: 17941_CR47 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja805152t contributor: fullname: C-J Jia – volume: 43 start-page: 7813 year: 2014 ident: 17941_CR62 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60395D contributor: fullname: D Pakhare – volume: 4 start-page: 349 year: 2012 ident: 17941_CR15 publication-title: Nat. Chem. doi: 10.1038/nchem.1313 contributor: fullname: MD Symes – volume: 154 start-page: 162 year: 2010 ident: 17941_CR57 publication-title: Catal. Today doi: 10.1016/j.cattod.2010.02.077 contributor: fullname: NE Tsakoumis – volume: 12 start-page: 1762 year: 2020 ident: 17941_CR27 publication-title: ChemCatChem doi: 10.1002/cctc.201902143 contributor: fullname: AS Díaz-Marta – volume: 4 start-page: 12012 year: 2019 ident: 17941_CR30 publication-title: ACS Omega doi: 10.1021/acsomega.9b00711 contributor: fullname: E Lahtinen – volume: 33 start-page: 478 year: 2019 ident: 17941_CR22 publication-title: J. CO2. Util. doi: 10.1016/j.jcou.2019.07.013 contributor: fullname: V Middelkoop – volume: 214 start-page: 606 year: 2019 ident: 17941_CR20 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.12.274 contributor: fullname: V Middelkoop – volume: 129 start-page: 238 year: 1991 ident: 17941_CR66 publication-title: J. Catal. doi: 10.1016/0021-9517(91)90027-2 contributor: fullname: E Iglesia – volume: 245 start-page: 486 year: 2019 ident: 17941_CR21 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.01.008 contributor: fullname: F Magzoub – volume: 530 start-page: 203 year: 2017 ident: 17941_CR24 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2016.11.031 contributor: fullname: J Azuaje – volume: 56 start-page: 571 year: 2002 ident: 17941_CR42 publication-title: Mater. Lett. doi: 10.1016/S0167-577X(02)00554-2 contributor: fullname: YB Khollam – volume: 6 year: 2015 ident: 17941_CR51 publication-title: Nat. Commun. doi: 10.1038/ncomms7451 contributor: fullname: VP Santos – volume: 134 start-page: 15814 year: 2012 ident: 17941_CR50 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305048p contributor: fullname: C Yang – volume: 352 start-page: 225 year: 1991 ident: 17941_CR37 publication-title: Nature doi: 10.1038/352225a0 contributor: fullname: AT Ashcroft – volume: 8 start-page: 392 year: 2018 ident: 17941_CR23 publication-title: ACS Catal. doi: 10.1021/acscatal.7b02592 contributor: fullname: AS Díaz-Marta – volume: 47 start-page: 209 year: 2018 ident: 17941_CR7 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00631D contributor: fullname: C Parra-Cabrera – volume: 71 start-page: 227 year: 2002 ident: 17941_CR39 publication-title: Catal. Today doi: 10.1016/S0920-5861(01)00453-9 contributor: fullname: ME Dry – ident: 17941_CR19 doi: 10.1016/j.cattod.2019.06.026 – volume: 166 start-page: 3239 year: 2019 ident: 17941_CR26 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0341905jes contributor: fullname: A Sangiorgi – volume: 111 start-page: 6939 year: 2007 ident: 17941_CR48 publication-title: J. Phys. Chem. C. doi: 10.1021/jp0702189 contributor: fullname: X Li – volume: 32 start-page: 143 year: 2005 ident: 17941_CR69 publication-title: Top. Catal. doi: 10.1007/s11244-005-2886-5 contributor: fullname: BH Davis – volume: 28 start-page: 873 year: 1997 ident: 17941_CR45 publication-title: J. Raman Spectrosc. doi: 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B contributor: fullname: DL de Faria – ident: 17941_CR1 – volume: 116 start-page: 1496 year: 2016 ident: 17941_CR4 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00303 contributor: fullname: T Jungst – volume: 10 start-page: 3701 year: 2019 ident: 17941_CR59 publication-title: Chem. Sci. doi: 10.1039/C8SC04965C contributor: fullname: S Shoji – volume: 46 start-page: 151 year: 2016 ident: 17941_CR9 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070115-032024 contributor: fullname: JJ Lewandowski – volume: 334 start-page: 110 year: 2016 ident: 17941_CR18 publication-title: J. Catal. doi: 10.1016/j.jcat.2015.11.019 contributor: fullname: CR Tubío – volume: 54 start-page: 4553 year: 2015 ident: 17941_CR33 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411708 contributor: fullname: X Peng – volume: 4 start-page: eaas9459 year: 2018 ident: 17941_CR17 publication-title: Sci. Adv. doi: 10.1126/sciadv.aas9459 contributor: fullname: C Zhu – volume: 335 start-page: 835 year: 2012 ident: 17941_CR52 publication-title: Science doi: 10.1126/science.1215614 contributor: fullname: HMT Galvis – volume: 11 start-page: 920 year: 2016 ident: 17941_CR16 publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.041 contributor: fullname: PJ Kitson – volume: 3 start-page: 319 year: 2018 ident: 17941_CR68 publication-title: Chem. Eng. contributor: fullname: A Rai – volume: 117 start-page: 10212 year: 2017 ident: 17941_CR5 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00074 contributor: fullname: SC Ligon – volume: 312 start-page: 221 year: 2014 ident: 17941_CR54 publication-title: J. Catal. doi: 10.1016/j.jcat.2014.02.004 contributor: fullname: NG Hamilton – volume: 1 start-page: 787 year: 2018 ident: 17941_CR31 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0144-z contributor: fullname: J Li – volume: 40 start-page: 3703 year: 2011 ident: 17941_CR56 publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15008a contributor: fullname: W Wang – volume: 7 start-page: 3421 year: 2017 ident: 17941_CR25 publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY00615B contributor: fullname: C Hurt – volume: 4 start-page: 893 year: 2014 ident: 17941_CR67 publication-title: Catal. Sci. Technol. doi: 10.1039/C3CY01021J contributor: fullname: S Sartipi – volume: 11 start-page: 25283 year: 2019 ident: 17941_CR28 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b08119 contributor: fullname: AS Díaz-Marta – volume: 139 start-page: 6919 year: 2017 ident: 17941_CR38 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01625 contributor: fullname: T Margossian – volume: 354 start-page: 449 year: 2016 ident: 17941_CR60 publication-title: Science doi: 10.1126/science.aah7161 contributor: fullname: LC Buelens – volume: 109 start-page: 116 year: 2013 ident: 17941_CR53 publication-title: Fuel doi: 10.1016/j.fuel.2012.12.081 contributor: fullname: J Zhang – volume: 62 start-page: 173 year: 2000 ident: 17941_CR58 publication-title: Fuel Process. Technol. doi: 10.1016/S0378-3820(99)00122-8 contributor: fullname: N Tsubaki – ident: 17941_CR2 – volume: 34 start-page: 845 year: 2003 ident: 17941_CR46 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.1056 contributor: fullname: ON Shebanova – volume: 27 start-page: 1701134 year: 2017 ident: 17941_CR8 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201701134 contributor: fullname: X Zhou – volume: 32 start-page: 773 year: 2014 ident: 17941_CR11 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2958 contributor: fullname: SV Murphy – volume: 3 start-page: 884 year: 2010 ident: 17941_CR36 publication-title: Energy Environ. Sci. doi: 10.1039/c001514h contributor: fullname: RW Dorner – volume: 181 start-page: 91 year: 1999 ident: 17941_CR61 publication-title: J. Catal. doi: 10.1006/jcat.1998.2286 contributor: fullname: K Tomishige – volume: 58 start-page: 1877 year: 1936 ident: 17941_CR63 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01301a016 contributor: fullname: PJ Flory – volume: 155 start-page: 137 year: 1995 ident: 17941_CR65 publication-title: J. Catal. doi: 10.1006/jcat.1995.1068 contributor: fullname: EW Kuipers – volume: 7 start-page: 61 year: 1990 ident: 17941_CR49 publication-title: Catal. Lett. doi: 10.1007/BF00764492 contributor: fullname: JB Butt – volume: 538 start-page: 84 year: 2016 ident: 17941_CR70 publication-title: Nature doi: 10.1038/nature19786 contributor: fullname: L Zhong – volume: 106 start-page: 034311 year: 2009 ident: 17941_CR41 publication-title: J. Appl. Phys. doi: 10.1063/1.3194316 contributor: fullname: IS Lyubutin – volume: 107 start-page: 1692 year: 2007 ident: 17941_CR32 publication-title: Chem. Rev. doi: 10.1021/cr050972v contributor: fullname: AY Khodakov – volume: 34 start-page: 312 year: 2016 ident: 17941_CR12 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3413 contributor: fullname: H Kang – volume: 46 start-page: 1838 year: 2013 ident: 17941_CR40 publication-title: Acc. Chem. Res. doi: 10.1021/ar300217j contributor: fullname: L Shi – volume: 72 start-page: 1212 year: 1950 ident: 17941_CR64 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01159a039 contributor: fullname: RA Friedel – volume: 8 year: 2017 ident: 17941_CR55 publication-title: Nat. Commun. contributor: fullname: J Wei – volume: 359 start-page: 314 year: 2018 ident: 17941_CR14 publication-title: Science doi: 10.1126/science.aao3466 contributor: fullname: PJ Kitson – volume: 1 start-page: 2890 year: 2019 ident: 17941_CR29 publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.9b00598 contributor: fullname: JS Manzano – volume: 58 start-page: 348 year: 1979 ident: 17941_CR43 publication-title: J. Catal. doi: 10.1016/0021-9517(79)90274-4 contributor: fullname: GB Raupp |
SSID | ssj0000391844 |
Score | 2.6315646 |
Snippet | Mechanical properties and geometries of printed products have been extensively studied in metal 3D printing. However, chemical properties and catalytic... Metal 3D printing is a very promising technology to revolutionize catalytic systems. Here the authors show that metal 3D printing products themselves can... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Publisher |
StartPage | 4098 |
SubjectTerms | 3-D printers 639/301/930/1032 639/638/675 639/638/77/887 639/638/898 Carbon dioxide Catalysts Catalytic converters Chemical properties Chemical reactors Chemicals Direct conversion Fischer-Tropsch process Functional integration Humanities and Social Sciences Integration Liquid fuels Mechanical properties Metals Methane multidisciplinary Nuclear fuels Printing Production methods Reactors Reforming Science Science (multidisciplinary) Selective catalytic reduction Synthesis gas Technology Three dimensional printing |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8UwEB5EELyIK9aNCN602NcsTY6uiKInBW8hSRP00if6PPjvnSR9TyuIF49t0zbzzWSWZDIBODC1V8ZRh54br0vWSFqq2ooSZQPtSyONa1O2xZ24emDXj_zx21FfMScslwfOwB2jgPnQBqeMoMygOedhxHhjpHI-VLVN2reqvwVTSQdThaEL63fJVFQev7GkE2K0FGVwVMqBJUoF-wde5s8cyR8Lpcn-XC7DUu84kpPc4RWY890qLOSjJD_W4ObWoxtN6DmJ78dcZjKZzZoT9ExJtGB54o9Ma0TgFRkHkqZwPvC7JNd1XoeHy4v7s6uyPyihdFzSSSmcZW1dcbR3I9Yqg-NUOscabhUaKRYhRMfJqJYGxDDYEQ1NUOhbG0qDQGA3YL4bd34TiHEi8MrxVljBhLWSGSqtpzZmIFaGFnA4BU2_5HoYOq1jU6kzxBoh1gliLQs4jbjOWsZa1ukGclj3HNZ_cbiAnSlXdD_A3nTNImUC6Stgf_YYh0Zc7zCdH7_nNqyJm2kLaAbcHHRo-KR7fkpFthuMy1BDFXA05fvXz38neOs_CN6GxTrKaSy8y3ZgfvL67nfR9ZnYvSTln4xWAIY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VokpcENAiAgW5ErcSNYmfOSFe26oITlTqzbIdG7gkpbs99N8z4yRbpRIcEzvJZDyPz-PxGOCta2LrAg-I3GRTCm142TZelSgb6F-0caHL2Rbf1dmFOL-Ul1PAbT2lVc42MRvqbggUIz9pBNpbnMtx8f7qT0mnRtHq6nSExgN4WDdaUUqfWZ1uYyxU_dwIMe2Vqbg5WYtsGWjORJJYl2bhj3LZ_gXWvJ8peW-5NHuh1RN4PMFH9mEc76ewE_tnsDceKHm7D1-_RQTTjH9m9DxlNLPNNnbOEJ8y8mNj-I_NlSLwig2J5UDOLb6XjdWdD-Bi9eXHp7NyOi6hDNLwTamCF11TSfR6tehah9pqQhBa-pZYh5oaET65tuOJC5d8zZNOLSJsx3lSTvHnsNsPfXwBzAWVZBVkp7wSynsjHDc-ck95iJXjBRzPTLNXY1UMm1ezubEjiy2y2GYWW1PAR-LrtidVtM43huufdlIQS-SlLoUWCREOYZtMtZDamTbEVDW-gMN5VOykZmt7JxQFHG2bUUFo1cP1cbgZ-whNW2oL0IvRXBC0bOl__8qltjXOztBOFfBuHve7j__7h1_-n9ZX8KghCaTCuuIQdjfXN_E1QpuNf5Pl9y9XuvdU priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlAvFU8RWpCRuEFgN-Pnoap4VRWonFipN8t2bEBCWdhuJfbfM3aSRanKhWNiO7bnkfnGHo8BnrsmGhcwEHITTc2Vxto0XtYkG2RflHahLdEWn-Xpgn88F-c7MF53NBDw4lrXLt8ntVj9ePX71-aYFP6oPzKuX1_wou7ZEcriNa_1DbjZkGXMIV5nA9wvf2Y05NDw4ezM9U334DY2ykgtcWKqSkb_CQy9GkR5ZSe1GKiTO7A_IEv2pheFu7ATu3twq79rcnMfPp1FmiLD9yy3z8HObL1dVmcEXVk2cf3KIBuTSNATWyZW1ng29F3WJ35-AIuTD1_endbDTQp1EBrXtQyet81MkEGc89Y4Io0OgSvhDVkx8tB0JGTlTIsJuUt-jkklQ-DbISbpJD6E3W7ZxUfAXJBJzIJopZdceq-5Q-0j-hyiOHNYwYuRaPZnnzDDlo1u1LantiVq20Jtqyt4m-m6rZmTXZcXy9VXO-iOzcNLbQqGBsIdITqR5lwop02Iadb4Cg5HrthRgCzxP_dG86vg2baYdCdviLguLi_7Olzl07YVqAk3JwOalnTfv5Us3IocN_qFVfBy5Pvfzv894cf_3dEB7DVZTnM6Xn4Iu-vVZXxCgGjtnxYp_wPFRQfz priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VqkpcKqBFpN0iI3Fro-7GzxzLAkIgOLHS3izbsQWXLILlwL_vjJPdKis49JjETux5ZD6P7c8AJ66KtQs8IHKTVSm04WVdeVWibWB80caFJq-2uFWXM3E1l_OeJof2wgzm77n5_SyyK9Mgh0xnUpot-IgxWJM1T9V0nU8hpnMjRL8v5u2qg9iTKfoHuHJzVeTG1GiOOBe78LmHiuxPp9s9-BDbffjUHR75-gWubyICZ8bPGNWn1ctsuc6TM8SijGJWl-pjK1YIvGKLxHLS5hXfyzom568wuzi_m16W_dEIZZCGL0sVvGiqscQINxFN7dAzTQhCS19jWMIhl4kIlVzd8MSFS37Ck041omnHeVJO8QPYbhdtPATmgkpyHGSjvBLKeyMcNz5yT2sOx44X8HMlNPvYMWDYPHPNje1EbFHENovYmgJOSa7rksRenW-gUm3vDJaal5oUamyIcAjRZJoIqZ2pQ0zjyhcwWmnF9i71bCtBPVPYvwKO14_RGWiGw7Vx8dKVEZq2zxagB9ocNGj4pH24z7TaGkdi-E8q4NdK7_8-_n6Hv_1f8e-wU5FFEqmuGMH28ukl_kBYs_RH2Z7_AhgU8EM priority: 102 providerName: Springer Nature |
Title | Metal 3D printing technology for functional integration of catalytic system |
URI | https://link.springer.com/article/10.1038/s41467-020-17941-8 https://www.proquest.com/docview/2434146934 https://search.proquest.com/docview/2434476478 https://pubmed.ncbi.nlm.nih.gov/PMC7428005 https://doaj.org/article/488efdfc9a634a8395f1457a89cef02b |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQ0i8THyKsFEZiTfImsbfj11ZmYo6TcCkvlm2E8Mklk5b97D_nrOTFDKJF14cxXZi-3z2_c4-nwHe27LW1lOPyI2XOZOK5rp0IkfeQPkilfVVsrY4E6cXbLHiqx3g_VmYZLTv3eVR8-vqqLn8mWwrr6_8uLcTG58vZ6jOIc7h413YRfH7l4qepl-qUWth3QGZgqrxLUvTQVSUIvtN8nhJHy2lFkrQgTxKbvsHWPOhpeSD7dIkheZPYb-Dj2TaVvMZ7NTNc3jcXih5_wK-LGsE04R-IvH7aNFMNtu1c4L4lEQ51i7_kd5TBL6RdSBpIece_0ta784v4WJ-8n12mnfXJeSeK7rJhXesKguOUm_CKm1xtCrvmeROo6hCNUzVCJ-srmigzAY3oUEGjQjbUhqEFfQV7DXrpn4NxHoReOF5JZxgwjnFLFWupi7aIRaWZvChJ5q5br1imLSbTZVpqW2Q2iZR26gMjiNdtzmjR-sUsb75Ybp-NbF6oQpeY0WYRdjGw4RxaZX2dShKl8Fh3yumG2a3pmSxZQLbl8G7bTIOkLjrYZt6fdfmYTIeqc1ADnpzUKFhCnJecrXdcVoGH_t-_1P4vxv85r8LOoAnZeTT6HOXHcLe5uaufouoZ-NGyOsriaGafx7Bo-l08W2Bz-OTs_OvGDsTs1FaT8BwydQojYnfqn0H_w |
link.rule.ids | 230,314,727,780,784,864,885,2102,12056,12765,21388,24318,27924,27925,31719,31720,33373,33374,33744,33745,41120,42189,43310,43600,43805,51576,53791,53793,73745,74035,74302 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVgguiKdIKWAkbhA1Gz_inBCFVgttVwi1Um-W7diFS9J2t4f-e2acZKtUgmMSJ3HG8_g8nnwG-GDLUFvPPSI3Weai0jyvS6dy1A2ML5W2vknVFku1OBU_zuTZkHBbDWWVo09MjrrpPOXId0uB_hbnclx8vrjMadcoWl0dttC4D1vEnC5nsLW3v_z5a5NlIf5zLcTwt0zB9e5KJN9AsybSxXmuJxEpEfdP0ObdWsk7C6YpDh08gccDgGRf-hF_CvdC-wwe9FtK3jyHw-OAcJrxb4zup5pmtt5kzxkiVEaRrE8AspErAo9YF1lK5dzgc1nP7_wCTg_2T74u8mHDhNxLzde58k40ZSEx7s1FU1u0V-29qKSrSXhoqwEBlK0bHrmw0c15rGKNGNtyHpVV_CXM2q4Nr4BZr6IsvGyUU0I5p4Xl2gXuqBKxsDyDj6PQzEXPi2HSejbXphexQRGbJGKjM9gjuW5aEqd1OtFdnZvBRAx1LzbR19gRYRG4yTgXsrK69iEWpctgZxwVMxjaytyqRQbvN5fRRGjdw7ahu-7biIp-qs2gmozmpEPTK-2f34lsu8L5GXqqDD6N43778n9_8Pb_-_oOHi5Ojo_M0ffl4Wt4VJI2Es2u2IHZ-uo6vEGgs3ZvB23-C0f8-6U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVqBeEE8RKGAkbhBtNn7EOSFKuyoUVhWiUm-W7cTAJWm720P_PTOOs1UqwTGxk0zG8_g8Ho8B3tmyra3nHpGbLHNRaZ7XpVM5ygb6l0pb38Rsi5U6OhVfz-RZyn9ap7TK0SZGQ930nmLk81KgvcW5HBfzkNIiTg6WH88vcjpBilZa03Ead2EHvWJRzmBn_3B18mMbcaFa6FqItHOm4Hq-FtFO0AyK5HKR64l3ikX8J8jzdt7krcXT6JOWD-FBApPs0zD6j-BO2z2Ge8PxktdP4Ph7i9Ca8QNGz1N-M9tsI-kM0SojrzYEA9lYNwKvWB9YDOtc43vZUOv5KZwuD39-PsrT4Qm5l5pvcuWdaMpCog9ciKa2qLvae1FJVxMjUW9bBFO2bnjgwga34KEKNeJty3lQVvFnMOv6rn0OzHoVZOFlo5wSyjktLNeu5Y6yEgvLM3g_Ms2cDzUyTFzb5toMLDbIYhNZbHQG-8TXbU-qbx1v9Je_TFIXQ-SFJvgaCREWQZwMCyErq2vfhqJ0GeyNo2KS0q3NjYhk8HbbjOpCayC2a_uroY-oaINtBtVkNCcETVu6P79j4e0K52potTL4MI77zcf__cMv_k_rG7iPgmy-fVkdv4TdkoSRKu6KPZhtLq_aV4h5Nu51Eua__Nr_0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+3D+printing+technology+for+functional+integration+of+catalytic+system&rft.jtitle=Nature+communications&rft.au=Wei%2C+Qinhong&rft.au=Li%2C+Hangjie&rft.au=Liu%2C+Guoguo&rft.au=He%2C+Yingluo&rft.date=2020-08-14&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=11&rft_id=info:doi/10.1038%2Fs41467-020-17941-8&rft_id=info%3Apmid%2F32796863&rft.externalDBID=PMC7428005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |