Metformin ameliorates polycystic ovary syndrome in a rat model by decreasing excessive autophagy in ovarian granulosa cells via the PI3K/AKT/mTOR pathway
Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by a variety of clinical features, including anovulation, hyperandrogenism, and ovarian abnormalities, resulting in infertility. PCOS affects approximately 6%–15% of all reproductive-age women worldwide. Metformin, a popu...
Saved in:
Published in | Endocrine Journal Vol. 69; no. 7; pp. 863 - 875 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Japan Endocrine Society
01.01.2022
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by a variety of clinical features, including anovulation, hyperandrogenism, and ovarian abnormalities, resulting in infertility. PCOS affects approximately 6%–15% of all reproductive-age women worldwide. Metformin, a popular drug used to treat PCOS in patients, has beneficial effects in reducing hyperandrogenism and inducing ovulation; however, the mechanisms by which metformin ameliorates PCOS are not clear. Hence, we aimed to explore the mechanisms of metformin in treating PCOS. In the present study, we first treated a letrozole-induced PCOS rat model with metformin, detected the pathological recovery of PCOS, and then assessed the effects of metformin on H2O2-induced autophagy in ovarian granulosa cells (GCs) by detecting the level of oxidative stress and the expression of autophagy-associated proteins and key proteins in the PI3K/AKT/mTOR pathway. We demonstrated that metformin ameliorated PCOS in a rat model by downregulating autophagy in GCs, and metformin decreased the levels of oxidative stress and autophagy in H2O2-induced GCs and affected the PI3K/AKT/mTOR signaling pathway. Taken together, our results indicate that metformin ameliorates PCOS in a rat model by decreasing excessive autophagy in GCs via the PI3K/AKT/mTOR pathway, and this study provides evidence for targeted reduction of excessive autophagy of ovarian granulosa cells and improvement of PCOS. |
---|---|
AbstractList | Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by a variety of clinical features, including anovulation, hyperandrogenism, and ovarian abnormalities, resulting in infertility. PCOS affects approximately 6%-15% of all reproductive-age women worldwide. Metformin, a popular drug used to treat PCOS in patients, has beneficial effects in reducing hyperandrogenism and inducing ovulation; however, the mechanisms by which metformin ameliorates PCOS are not clear. Hence, we aimed to explore the mechanisms of metformin in treating PCOS. In the present study, we first treated a letrozole-induced PCOS rat model with metformin, detected the pathological recovery of PCOS, and then assessed the effects of metformin on H2O2-induced autophagy in ovarian granulosa cells (GCs) by detecting the level of oxidative stress and the expression of autophagy-associated proteins and key proteins in the PI3K/AKT/mTOR pathway. We demonstrated that metformin ameliorated PCOS in a rat model by downregulating autophagy in GCs, and metformin decreased the levels of oxidative stress and autophagy in H2O2-induced GCs and affected the PI3K/AKT/mTOR signaling pathway. Taken together, our results indicate that metformin ameliorates PCOS in a rat model by decreasing excessive autophagy in GCs via the PI3K/AKT/mTOR pathway, and this study provides evidence for targeted reduction of excessive autophagy of ovarian granulosa cells and improvement of PCOS.Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by a variety of clinical features, including anovulation, hyperandrogenism, and ovarian abnormalities, resulting in infertility. PCOS affects approximately 6%-15% of all reproductive-age women worldwide. Metformin, a popular drug used to treat PCOS in patients, has beneficial effects in reducing hyperandrogenism and inducing ovulation; however, the mechanisms by which metformin ameliorates PCOS are not clear. Hence, we aimed to explore the mechanisms of metformin in treating PCOS. In the present study, we first treated a letrozole-induced PCOS rat model with metformin, detected the pathological recovery of PCOS, and then assessed the effects of metformin on H2O2-induced autophagy in ovarian granulosa cells (GCs) by detecting the level of oxidative stress and the expression of autophagy-associated proteins and key proteins in the PI3K/AKT/mTOR pathway. We demonstrated that metformin ameliorated PCOS in a rat model by downregulating autophagy in GCs, and metformin decreased the levels of oxidative stress and autophagy in H2O2-induced GCs and affected the PI3K/AKT/mTOR signaling pathway. Taken together, our results indicate that metformin ameliorates PCOS in a rat model by decreasing excessive autophagy in GCs via the PI3K/AKT/mTOR pathway, and this study provides evidence for targeted reduction of excessive autophagy of ovarian granulosa cells and improvement of PCOS. Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by a variety of clinical features, including anovulation, hyperandrogenism, and ovarian abnormalities, resulting in infertility. PCOS affects approximately 6%–15% of all reproductive-age women worldwide. Metformin, a popular drug used to treat PCOS in patients, has beneficial effects in reducing hyperandrogenism and inducing ovulation; however, the mechanisms by which metformin ameliorates PCOS are not clear. Hence, we aimed to explore the mechanisms of metformin in treating PCOS. In the present study, we first treated a letrozole-induced PCOS rat model with metformin, detected the pathological recovery of PCOS, and then assessed the effects of metformin on H2O2-induced autophagy in ovarian granulosa cells (GCs) by detecting the level of oxidative stress and the expression of autophagy-associated proteins and key proteins in the PI3K/AKT/mTOR pathway. We demonstrated that metformin ameliorated PCOS in a rat model by downregulating autophagy in GCs, and metformin decreased the levels of oxidative stress and autophagy in H2O2-induced GCs and affected the PI3K/AKT/mTOR signaling pathway. Taken together, our results indicate that metformin ameliorates PCOS in a rat model by decreasing excessive autophagy in GCs via the PI3K/AKT/mTOR pathway, and this study provides evidence for targeted reduction of excessive autophagy of ovarian granulosa cells and improvement of PCOS. Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by a variety of clinical features, including anovulation, hyperandrogenism, and ovarian abnormalities, resulting in infertility. PCOS affects approximately 6%-15% of all reproductive-age women worldwide. Metformin, a popular drug used to treat PCOS in patients, has beneficial effects in reducing hyperandrogenism and inducing ovulation; however, the mechanisms by which metformin ameliorates PCOS are not clear. Hence, we aimed to explore the mechanisms of metformin in treating PCOS. In the present study, we first treated a letrozole-induced PCOS rat model with metformin, detected the pathological recovery of PCOS, and then assessed the effects of metformin on H O -induced autophagy in ovarian granulosa cells (GCs) by detecting the level of oxidative stress and the expression of autophagy-associated proteins and key proteins in the PI3K/AKT/mTOR pathway. We demonstrated that metformin ameliorated PCOS in a rat model by downregulating autophagy in GCs, and metformin decreased the levels of oxidative stress and autophagy in H O -induced GCs and affected the PI3K/AKT/mTOR signaling pathway. Taken together, our results indicate that metformin ameliorates PCOS in a rat model by decreasing excessive autophagy in GCs via the PI3K/AKT/mTOR pathway, and this study provides evidence for targeted reduction of excessive autophagy of ovarian granulosa cells and improvement of PCOS. |
ArticleNumber | EJ21-0480 |
Author | Zhang, Jingjing Xu, Bo Han, Hang Liu, Ling Du, Xing Pei, Xiuying Fu, Xufeng Dai, Wenjie |
Author_xml | – sequence: 1 fullname: Xu, Bo organization: Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China – sequence: 2 fullname: Dai, Wenjie organization: Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China – sequence: 3 fullname: Liu, Ling organization: Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China – sequence: 4 fullname: Han, Hang organization: Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China – sequence: 5 fullname: Zhang, Jingjing organization: Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China – sequence: 6 fullname: Du, Xing organization: Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China – sequence: 7 fullname: Pei, Xiuying organization: Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China – sequence: 8 fullname: Fu, Xufeng organization: Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35228471$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFv0zAYhiM0xLrBD-CCLHHhktVO7MY-TtMYY0NDqJytr86X1lUSF9sp5Kfwb3HUrocduNgHP8-nz-97kZ31rscse8_oFRO0mmNfO-O3V7dfC5ZTLumrbMZKLnMuOD3LZlQxmUsl1Hl2EcKW0rIUvHyTnZeiKCSv2Cz7-w1j43xnewIdttZ5iBjIzrWjGUO0hrg9-JGEsa-965BMIEkQ6VyNLVmNpEbjEYLt1wT_GAzB7pHAEN1uA-txEqYRFnqy9tAPrQtADLZtIHsLJG6QfL8vH-bXD8t5t3z6QXYQN79hfJu9bqAN-O54X2Y_P98ub77kj0939zfXj7kRsoz5okqfhEqiUGxV87pmsqYrLo0AyVAtoGqqhppV05SyUJzxQmJ6B96IRiWkvMw-HebuvPs1YIi6s2HaD3p0Q9DFIiUqmKJFQj--QLdu8H3aLlGqYqKkSiXqw5EaVh3WeudtlyLUz6EnoDoAxrsQPDba2AjRuj56sK1mVE_16mO9eqpXT_Umk70wn4f_z7k7ONsQYY0nA3xqt8WTsVC6mo6TeSLMBnzCyn8Tn8YY |
CitedBy_id | crossref_primary_10_1016_j_phyplu_2023_100515 crossref_primary_10_1080_09513590_2023_2210232 crossref_primary_10_3389_fendo_2022_1091147 crossref_primary_10_1007_s10787_022_00980_6 crossref_primary_10_1016_j_ecoenv_2024_116319 crossref_primary_10_1016_j_lfs_2023_122109 crossref_primary_10_1016_j_xfss_2024_03_001 crossref_primary_10_1016_j_ejphar_2023_176119 crossref_primary_10_1080_09513590_2023_2244600 crossref_primary_10_1002_mrd_23768 crossref_primary_10_1016_j_repbio_2023_100763 crossref_primary_10_1007_s43032_023_01255_3 crossref_primary_10_3390_ijms24119205 crossref_primary_10_3390_toxins15110663 crossref_primary_10_1016_j_semcdb_2023_02_013 crossref_primary_10_1038_s41598_024_76211_5 crossref_primary_10_1016_j_jep_2023_116551 crossref_primary_10_1186_s13048_023_01278_z crossref_primary_10_1007_s12020_024_03843_y crossref_primary_10_1016_j_ecoenv_2023_115534 crossref_primary_10_1055_a_2280_7130 crossref_primary_10_1080_13697137_2024_2354742 crossref_primary_10_1016_j_ejphar_2025_177516 crossref_primary_10_1016_j_tice_2024_102394 crossref_primary_10_1111_jog_16060 crossref_primary_10_1111_1440_1681_13862 crossref_primary_10_1007_s11357_023_00768_8 crossref_primary_10_1186_s13048_024_01355_x crossref_primary_10_3390_ijms25168706 crossref_primary_10_1080_14767058_2024_2372695 crossref_primary_10_3389_fneur_2023_1275266 crossref_primary_10_3390_cells12172189 crossref_primary_10_1016_j_biopha_2023_116093 |
Cites_doi | 10.1055/s-0034-1371090 10.1097/CAD.0000000000000463 10.4161/auto.9099 10.1016/j.numecd.2017.04.009 10.1074/jbc.C114.627778 10.1186/s13578-019-0332-9 10.1016/j.biopha.2018.04.072 10.3390/ijms19113692 10.1093/humupd/dms059 10.1038/ncomms3192 10.1016/j.biopha.2021.111286 10.1096/fj.202000605RR 10.1038/nrendo.2010.217 10.1530/eje.0.1380269 10.1038/srep30679 10.4161/auto.24870 10.1186/s40199-017-0188-7 10.1155/2019/9203934 10.1152/ajpendo.00006.2020 10.1080/13510002.2021.1927396 10.1159/000494300 10.1038/s41598-020-64776-w 10.1371/journal.pone.0182777 10.1002/jcp.27501 10.12659/MSM.922136 10.1080/15548627.2021.1938914 10.1093/humrep/der154 10.1093/molehr/gaaa081 10.1016/j.mce.2018.04.012 10.1210/er.2015-1104 10.3389/fendo.2018.00675 10.1530/REP-17-0499 10.1016/j.redox.2018.07.004 10.1111/1471-0528.12070 10.1210/en.2014-1765 10.1515/JPEM.2007.20.1.41 10.1016/j.jep.2019.111965 10.1177/1933719116667606 10.1080/15548627.2019.1569913 10.1126/scisignal.aag2791 10.1155/2019/8768327 10.1111/crj.13091 10.1080/09513590.2018.1540567 10.1016/j.lfs.2016.02.024 10.1007/s11684-017-0575-y 10.3390/antiox8110518 10.3892/ijmm.2018.3794 10.1186/s12958-020-00677-x 10.3906/sag-1308-65 10.1080/13813455.2018.1499120 10.1016/j.bbadis.2019.165621 10.1016/j.arcmed.2003.10.005 10.1016/j.lfs.2020.118003 10.1210/jc.85.1.139 10.1016/S0140-6736(03)13493-9 10.37290/ctnr2641-452X.18:331-336 10.1017/S0033291718002076 10.1007/978-981-15-4272-5_33 10.3892/etm.2017.5650 10.3390/ijms20071635 10.1016/j.ebiom.2017.03.023 10.4236/ojemd.2016.61008 10.1016/S0015-0282(02)04925-7 10.1080/15548627.2017.1327941 10.1016/j.febslet.2010.01.017 |
ContentType | Journal Article |
Copyright | The Japan Endocrine Society Copyright Japan Science and Technology Agency 2022 |
Copyright_xml | – notice: The Japan Endocrine Society – notice: Copyright Japan Science and Technology Agency 2022 |
DBID | AAYXX CITATION NPM 7QP 7T5 7TK 8FD FR3 H94 K9. NAPCQ P64 RC3 7X8 |
DOI | 10.1507/endocrj.EJ21-0480 |
DatabaseName | CrossRef PubMed Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Nursing & Allied Health Premium Genetics Abstracts Technology Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Nursing & Allied Health Premium PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1348-4540 |
EndPage | 875 |
ExternalDocumentID | 35228471 10_1507_endocrj_EJ21_0480 article_endocrj_69_7_69_EJ21_0480_article_char_en |
Genre | Journal Article |
GroupedDBID | --- .55 .GJ 29G 2WC 3O- 53G 5GY 5RE AAEJM AAUGY ACPRK ACRZS ADBBV AENEX AJJEV ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP CS3 DIK DU5 E3Z EBD EBS EJD EMOBN F5P JMI JSF JSH KQ8 MOJWN M~E OK1 P2P RJT RNS RZJ SV3 TKC TR2 X7M XSB ZGI ZXP AAFWJ AAYXX AFPKN CITATION GROUPED_DOAJ OVT RPM NPM 7QP 7T5 7TK 8FD FR3 H94 K9. NAPCQ P64 RC3 7X8 |
ID | FETCH-LOGICAL-c583t-67918a78e591bd4dd18d0b48c5a81e96a7f7f0cbff382941428e0b4a4f5f9a813 |
ISSN | 0918-8959 1348-4540 |
IngestDate | Fri Jul 11 10:16:15 EDT 2025 Mon Jun 30 07:51:26 EDT 2025 Thu Jan 02 22:56:41 EST 2025 Tue Jul 01 01:17:33 EDT 2025 Thu Apr 24 22:54:57 EDT 2025 Thu Aug 17 20:31:08 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Polycystic ovary syndrome Ovarian granulosa cells Excessive autophagy PI3K/AKT/mTOR Metformin |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c583t-67918a78e591bd4dd18d0b48c5a81e96a7f7f0cbff382941428e0b4a4f5f9a813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/endocrj/69/7/69_EJ21-0480/_article/-char/en |
PMID | 35228471 |
PQID | 2697153099 |
PQPubID | 2048504 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2634851902 proquest_journals_2697153099 pubmed_primary_35228471 crossref_citationtrail_10_1507_endocrj_EJ21_0480 crossref_primary_10_1507_endocrj_EJ21_0480 jstage_primary_article_endocrj_69_7_69_EJ21_0480_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Kyoto |
PublicationTitle | Endocrine Journal |
PublicationTitleAlternate | Endocr J |
PublicationYear | 2022 |
Publisher | The Japan Endocrine Society Japan Science and Technology Agency |
Publisher_xml | – name: The Japan Endocrine Society – name: Japan Science and Technology Agency |
References | 7 Li D, You Y, Bi FF, Zhang TN, Jiao J, et al. (2018) Autophagy is activated in the ovarian tissue of polycystic ovary syndrome. Reproduction 155: 85–92. 26 Zhang Y, Sun X, Sun X, Meng F, Hu M, et al. (2016) Molecular characterization of insulin resistance and glycolytic metabolism in the rat uterus. Sci Rep 6: 30679. 43 Bannigida DM, Nayak BS, Vijayaraghavan R (2020) Insulin resistance and oxidative marker in women with PCOS. Arch Physiol Biochem 126: 183–186. 46 Genç A, Üçok K, Şener Ü, Koyuncu T, Akar O, et al. (2014) Association analyses of oxidative stress, aerobic capacity, daily physical activity, and body composition parameters in patients with mild to moderate COPD. Turk J Med Sci 44: 972–979. 59 Li Y, Zheng Q, Sun D, Cui X, Chen S, et al. (2019) Dehydroepiandrosterone stimulates inflammation and impairs ovarian functions of polycystic ovary syndrome. J Cell Physiol 234: 7435–7447. 16 Geng Y, Hernández Villanueva A, Oun A, Buist-Homan M, Blokzijl H, et al. (2020) Protective effect of metformin against palmitate-induced hepatic cell death. Biochim Biophys Acta Mol Basis Dis 1866: 165621. 23 Lu G, Wu Z, Shang J, Xie Z, Chen C, et al. (2021) The effects of metformin on autophagy. Biomed Pharmacother 137: 111286. 35 Karateke A, Dokuyucu R, Dogan H, Ozgur T, Tas ZA, et al. (2018) Investigation of therapeutic effects of erdosteine on polycystic ovary syndrome in a rat model. Med Princ Pract 27: 515–522. 15 Kim CH, Chon SJ, Lee SH (2020) Effects of lifestyle modification in polycystic ovary syndrome compared to metformin only or metformin addition: a systematic review and meta-analysis. Sci Rep 10: 7802. 38 Faure M, Bertoldo MJ, Khoueiry R, Bongrani A, Brion F et al. (2018) Metformin in reproductive biology. Front Endocrinol (Lausanne) 9: 675. 63 Qiu Z, Dong J, Xue C, Li X, Liu K, et al. (2020) Liuwei Dihuang Pills alleviate the polycystic ovary syndrome with improved insulin sensitivity through PI3K/Akt signaling pathway. J Ethnopharmacol 250: 111965. 67 Li X, Lv B, Wang H, Qian Q (2020) Dioscin ameliorates polycystic ovary syndrome by inhibiting PI3K/Akt pathway-mediated proliferation and apoptosis of ovarian granulosa cells. Curr Top Nutraceutical Res 18: 331–336. 27 Shen M, Cao Y, Jiang Y, Wei Y, Liu H (2018) Melatonin protects mouse granulosa cells against oxidative damage by inhibiting FOXO1-mediated autophagy: implication of an antioxidation-independent mechanism. Redox Biol 18: 138–157. 66 Li T, Mo H, Chen W, Li L, Xiao Y, et al. (2017). Role of the PI3K-Akt signaling pathway in the pathogenesis of polycystic ovary syndrome. Reprod Sci 24: 646–655. 54 Li X, Hu X, Wang J, Xu W, Yi C, et al. (2018) Inhibition of autophagy via activation of PI3K/Akt/mTOR pathway contributes to the protection of hesperidin against myocardial ischemia/reperfusion injury. Int J Mol Med 42: 1917–1924. 21 Niu C, Chen Z, Kim KT, Sun J, Xue M, et al. (2019) Metformin alleviates hyperglycemia-induced endothelial impairment by downregulating autophagy via the Hedgehog pathway. Autophagy 15: 843–870. 9 Tao T, Xu H (2020) Autophagy and obesity-related reproductive dysfunction. Adv Exp Med Biol 1207: 463–466. 3 Damone AL, Joham AE, Loxton D, Earnest A, Teede HJ, et al. (2019) Depression, anxiety and perceived stress in women with and without PCOS: a community-based study. Psychol Med 49: 1510–1520. 29 Chen N, Debnath J (2013) IκB kinase complex (IKK) triggers detachment-induced autophagy in mammary epithelial cells independently of the PI3K-AKT-MTORC1 pathway. Autophagy 9: 1214–1227. 14 Harborne L, Fleming R, Lyall H, Norman J, Sattar N (2003) Descriptive review of the evidence for the use of metformin in polycystic ovary syndrome. Lancet 361: 1894–1901. 13 Moghetti P, Castello R, Negri C, Tosi F, Perrone F, et al. (2000) Metformin effects on clinical features, endocrine and metabolic profiles, and insulin sensitivity in polycystic ovary syndrome: a randomized, double-blind, placebo-controlled 6-month trial, followed by open, long-term clinical evaluation. J Clin Endocrinol Metab 85: 139–146. 4 Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R (2011) Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol 7: 219–231. 30 Palomba S, Falbo A, La Sala GB (2013) Effects of metformin in women with polycystic ovary syndrome treated with gonadotrophins for in vitro fertilisation and intracytoplasmic sperm injection cycles: a systematic review and meta-analysis of randomised controlled trials. BJOG 120: 267–276. 42 Shen M, Jiang Y, Guan Z, Cao Y, Li L, et al. (2017) Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy. Autophagy 13: 1364–1385. 28 Simon HU, Friis R, Tait SW, Ryan KM (2017) Retrograde signaling from autophagy modulates stress responses. Sci Signal 10: eaag2791. 6 Li X, Qi J, Zhu Q, He Y, Wang Y, et al. (2019) The role of androgen in autophagy of granulosa cells from PCOS. Gynecol Endocrinol 35: 669–672. 37 Mansfield R, Galea R, Brincat M, Hole D, Mason H (2003) Metformin has direct effects on human ovarian steroidogenesis. Fertil Steril 79: 956–962. 24 Kafali H, Iriadam M, Ozardali I, Demir N (2004) Letrozole-induced polycystic ovaries in the rat: a new model for cystic ovarian disease. Arch Med Res 35: 103–108. 51 Zeng J, Zhu L, Liu J, Zhu T, Xie Z, et al. (2019) Metformin protects against oxidative stress injury induced by ischemia/reperfusion via regulation of the lncRNA-H19/miR-148a-3p/Rock2 axis. Oxid Med Cell Longev 2019: 8768327. 53 Wu YT, Tan HL, Huang Q, Ong CN, Shen HM (2009) Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy 5: 824–834. 62 Zhao H, Zhou D, Chen Y, Liu D, Chu S, et al. (2017). Beneficial effects of Heqi san on rat model of polycystic ovary syndrome through the PI3K/AKT pathway. Daru 25: 21. 39 Zhang C, Hu J, Wang W, Sun Y, Sun K (2020) HMGB1-induced aberrant autophagy contributes to insulin resistance in granulosa cells in PCOS. FASEB J 34: 9563–9574. 19 Wang Z, Guo J, Han X, Xue M, Wang W, et al. (2019) Metformin represses the pathophysiology of AAA by suppressing the activation of PI3K/AKT/mTOR/autophagy pathway in ApoE–/– mice. Cell Biosci 9: 68. 20 Chen H, Lin C, Lu C, Wang Y, Han R, et al. (2019) Metformin-sensitized NSCLC cells to osimertinib via AMPK-dependent autophagy inhibition. Clin Respir J 13: 781–790. 5 Diamanti-Kandarakis E, Kouli C, Tsianateli T, Bergiele A (1998) Therapeutic effects of metformin on insulin resistance and hyperandrogenism in polycystic ovary syndrome. Eur J Endocrinol 138: 269–274. 17 Jiating L, Buyun J, Yinchang Z (2019) Role of metformin on osteoblast differentiation in type 2 diabetes. Biomed Res Int 2019: 9203934. 10 Rosenfield RL, Ehrmann DA (2016) The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev 37: 467–520. 31 Kjøtrød SB, Carlsen SM, Rasmussen PE, Holst-Larsen T, Mellembakken J, et al. (2011) Use of metformin before and during assisted reproductive technology in non-obese young infertile women with polycystic ovary syndrome: a prospective, randomized, double-blind, multi-centre study. Hum Reprod 26: 2045–2053. 36 Di Pietro M, Parborell F, Irusta G, Pascuali N, Bas D, et al. (2015) Metformin regulates ovarian angiogenesis and follicular development in a female polycystic ovary syndrome rat model. Endocrinology 156: 1453–1463. 2 Littlejohn EE, Weiss RE, Deplewski D, Edidin DV, Rosenfield R (2007) Intractable early childhood obesity as the initial sign of insulin resistant hyperinsulinism and precursor of polycystic ovary syndrome. J Pediatr Endocrinol Metab 20: 41–51. 64 Li Q, Du X, Pan Z, Zhang L, Li Q (2018) The transcription factor SMAD4 and miR-10b contribute to E2 release and cell apoptosis in ovarian granulosa cells by targeting CYP19A1. Mol Cell Endocrinol 476: 84–95. 61 Zhang Y, Hu M, Meng F, Sun X, Xu H, et al. (2017) Metformin ameliorates uterine defects in a rat model of polycystic ovary syndrome. EBioMedicine 18: 157–170. 12 Gong Y, Luo S, Fan P, Zhu H, Li Y, et al. (2020) Growth hormone activates PI3K/Akt signaling and inhibits ROS accumulation and apoptosis in granulosa cells of patients with polycystic ovary syndrome. Reprod Biol Endocrinol 18: 121. 56 Petherick KJ, Conway OJ, Mpamhanga C, Osborne SA, Kamal A, et al. (2015) Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J Biol Chem 290: 11376–11383. 1 Barbosa G, de Sá LB, Wanderley Rocha DR, Arbex AK (2016) Polycystic ovary Syndrome (PCOS) and Fertility. Open J Endocr Metab Dis 6: 58–65. 11 Wang Y, Li N, Zeng Z, Tang L, Zhao S, et al. (2021) Humanin regulates oxidative stress in the ovaries of polycystic ovary syndrome patients via the Keap1/Nrf2 pathway. Mol Hum Reprod 27: gaaa081. 48 Hack CT, Buck T, Bagnjuk K, Eubler K, Kunz L, et al. (2019) A role for H2O2 and TRPM2 in the induction of cell death: studies in KGN cells. Antioxidants (Basel) 8: 518. 55 Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584: 1287–1295. 47 Khadrawy O, Gebremedhn S, Salilew-Wondim D, Taqi MO, Neuhoff C, et al. (2019) Endogenous and exogenous modulation of Nrf2 mediated oxidative stress response in bovine granulosa cells: potential implication for ovarian function. Int J Mol Sci 20: 1635. 18 Schexnayder C, Broussard K, Onuaguluchi D, Poché A, Ismail M, et al. (2018) Metformin inhibits migration and invasion by suppressing ROS production and COX2 expression in MDA-MB-231 breast cancer cells. Int J Mol Sci 19: 3692. 25 Wu Y, Li P, Zhang D, Sun Y (2018) Metformin and pioglitazone combination therapy ameliorate polycystic ovary syndrome through AMPK/PI3K/JNK pathway. Exp Ther Med 15: 2120–2127. 52 Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, et al. (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4: 2192. 8 Kumariya S, Ubba V, Jha RK, Gayen JR (2021) Autophagy in ovary and polycystic ovary syndrome: ro 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 1 2 3 4 5 6 7 8 9 60 61 62 63 20 64 21 65 22 66 23 67 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – reference: 45 Lai Q, Xiang W, Li Q, Zhang H, Li Y, et al. (2018) Oxidative stress in granulosa cells contributes to poor oocyte quality and IVF-ET outcomes in women with polycystic ovary syndrome. Front Med 12: 518–524. – reference: 10 Rosenfield RL, Ehrmann DA (2016) The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev 37: 467–520. – reference: 35 Karateke A, Dokuyucu R, Dogan H, Ozgur T, Tas ZA, et al. (2018) Investigation of therapeutic effects of erdosteine on polycystic ovary syndrome in a rat model. Med Princ Pract 27: 515–522. – reference: 49 Nesti L, Natali A (2017) Metformin effects on the heart and the cardiovascular system: a review of experimental and clinical data. Nutr Metab Cardiovasc Dis 27: 657-669. – reference: 20 Chen H, Lin C, Lu C, Wang Y, Han R, et al. (2019) Metformin-sensitized NSCLC cells to osimertinib via AMPK-dependent autophagy inhibition. Clin Respir J 13: 781–790. – reference: 8 Kumariya S, Ubba V, Jha RK, Gayen JR (2021) Autophagy in ovary and polycystic ovary syndrome: role, dispute and future perspective. Autophagy 17: 2706–2733. – reference: 64 Li Q, Du X, Pan Z, Zhang L, Li Q (2018) The transcription factor SMAD4 and miR-10b contribute to E2 release and cell apoptosis in ovarian granulosa cells by targeting CYP19A1. Mol Cell Endocrinol 476: 84–95. – reference: 11 Wang Y, Li N, Zeng Z, Tang L, Zhao S, et al. (2021) Humanin regulates oxidative stress in the ovaries of polycystic ovary syndrome patients via the Keap1/Nrf2 pathway. Mol Hum Reprod 27: gaaa081. – reference: 16 Geng Y, Hernández Villanueva A, Oun A, Buist-Homan M, Blokzijl H, et al. (2020) Protective effect of metformin against palmitate-induced hepatic cell death. Biochim Biophys Acta Mol Basis Dis 1866: 165621. – reference: 44 Yi S, Zheng B, Zhu Y, Cai Y, Sun H, et al. (2020) Melatonin ameliorates excessive PINK1/Parkin-mediated mitophagy by enhancing SIRT1 expression in granulosa cells of PCOS. Am J Physiol Endocrinol Metab 319: E91–E101. – reference: 31 Kjøtrød SB, Carlsen SM, Rasmussen PE, Holst-Larsen T, Mellembakken J, et al. (2011) Use of metformin before and during assisted reproductive technology in non-obese young infertile women with polycystic ovary syndrome: a prospective, randomized, double-blind, multi-centre study. Hum Reprod 26: 2045–2053. – reference: 21 Niu C, Chen Z, Kim KT, Sun J, Xue M, et al. (2019) Metformin alleviates hyperglycemia-induced endothelial impairment by downregulating autophagy via the Hedgehog pathway. Autophagy 15: 843–870. – reference: 62 Zhao H, Zhou D, Chen Y, Liu D, Chu S, et al. (2017). Beneficial effects of Heqi san on rat model of polycystic ovary syndrome through the PI3K/AKT pathway. Daru 25: 21. – reference: 66 Li T, Mo H, Chen W, Li L, Xiao Y, et al. (2017). Role of the PI3K-Akt signaling pathway in the pathogenesis of polycystic ovary syndrome. Reprod Sci 24: 646–655. – reference: 15 Kim CH, Chon SJ, Lee SH (2020) Effects of lifestyle modification in polycystic ovary syndrome compared to metformin only or metformin addition: a systematic review and meta-analysis. Sci Rep 10: 7802. – reference: 57 Yang J, Pi C, Wang G (2018) Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed Pharmacother 103: 699–707. – reference: 3 Damone AL, Joham AE, Loxton D, Earnest A, Teede HJ, et al. (2019) Depression, anxiety and perceived stress in women with and without PCOS: a community-based study. Psychol Med 49: 1510–1520. – reference: 63 Qiu Z, Dong J, Xue C, Li X, Liu K, et al. (2020) Liuwei Dihuang Pills alleviate the polycystic ovary syndrome with improved insulin sensitivity through PI3K/Akt signaling pathway. J Ethnopharmacol 250: 111965. – reference: 34 Kausar F, Rather MA, Bashir SM, Alsaffar RM, Nabi SU, et al. (2021) Ameliorative effects of Cuscuta reflexa and Peucedanum grande on letrozole induced polycystic ovary syndrome in Wistar rats. Redox Rep 26: 94–104. – reference: 25 Wu Y, Li P, Zhang D, Sun Y (2018) Metformin and pioglitazone combination therapy ameliorate polycystic ovary syndrome through AMPK/PI3K/JNK pathway. Exp Ther Med 15: 2120–2127. – reference: 27 Shen M, Cao Y, Jiang Y, Wei Y, Liu H (2018) Melatonin protects mouse granulosa cells against oxidative damage by inhibiting FOXO1-mediated autophagy: implication of an antioxidation-independent mechanism. Redox Biol 18: 138–157. – reference: 28 Simon HU, Friis R, Tait SW, Ryan KM (2017) Retrograde signaling from autophagy modulates stress responses. Sci Signal 10: eaag2791. – reference: 2 Littlejohn EE, Weiss RE, Deplewski D, Edidin DV, Rosenfield R (2007) Intractable early childhood obesity as the initial sign of insulin resistant hyperinsulinism and precursor of polycystic ovary syndrome. J Pediatr Endocrinol Metab 20: 41–51. – reference: 14 Harborne L, Fleming R, Lyall H, Norman J, Sattar N (2003) Descriptive review of the evidence for the use of metformin in polycystic ovary syndrome. Lancet 361: 1894–1901. – reference: 24 Kafali H, Iriadam M, Ozardali I, Demir N (2004) Letrozole-induced polycystic ovaries in the rat: a new model for cystic ovarian disease. Arch Med Res 35: 103–108. – reference: 46 Genç A, Üçok K, Şener Ü, Koyuncu T, Akar O, et al. (2014) Association analyses of oxidative stress, aerobic capacity, daily physical activity, and body composition parameters in patients with mild to moderate COPD. Turk J Med Sci 44: 972–979. – reference: 37 Mansfield R, Galea R, Brincat M, Hole D, Mason H (2003) Metformin has direct effects on human ovarian steroidogenesis. Fertil Steril 79: 956–962. – reference: 53 Wu YT, Tan HL, Huang Q, Ong CN, Shen HM (2009) Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy 5: 824–834. – reference: 6 Li X, Qi J, Zhu Q, He Y, Wang Y, et al. (2019) The role of androgen in autophagy of granulosa cells from PCOS. Gynecol Endocrinol 35: 669–672. – reference: 54 Li X, Hu X, Wang J, Xu W, Yi C, et al. (2018) Inhibition of autophagy via activation of PI3K/Akt/mTOR pathway contributes to the protection of hesperidin against myocardial ischemia/reperfusion injury. Int J Mol Med 42: 1917–1924. – reference: 4 Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R (2011) Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol 7: 219–231. – reference: 65 Abuelezz NZ, Shabana ME, Abdel-Mageed HM, Rashed L, Morcos GNB (2020) Nanocurcumin alleviates insulin resistance and pancreatic deficits in polycystic ovary syndrome rats: Insights on PI3K/AkT/mTOR and TNF-α modulations. Life Sci 256: 118003. – reference: 56 Petherick KJ, Conway OJ, Mpamhanga C, Osborne SA, Kamal A, et al. (2015) Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J Biol Chem 290: 11376–11383. – reference: 59 Li Y, Zheng Q, Sun D, Cui X, Chen S, et al. (2019) Dehydroepiandrosterone stimulates inflammation and impairs ovarian functions of polycystic ovary syndrome. J Cell Physiol 234: 7435–7447. – reference: 30 Palomba S, Falbo A, La Sala GB (2013) Effects of metformin in women with polycystic ovary syndrome treated with gonadotrophins for in vitro fertilisation and intracytoplasmic sperm injection cycles: a systematic review and meta-analysis of randomised controlled trials. BJOG 120: 267–276. – reference: 47 Khadrawy O, Gebremedhn S, Salilew-Wondim D, Taqi MO, Neuhoff C, et al. (2019) Endogenous and exogenous modulation of Nrf2 mediated oxidative stress response in bovine granulosa cells: potential implication for ovarian function. Int J Mol Sci 20: 1635. – reference: 32 Maliqueo M, Benrick A, Stener-Victorin E (2014) Rodent models of polycystic ovary syndrome: phenotypic presentation, pathophysiology, and the effects of different interventions. Semin Reprod Med 32: 183–193. – reference: 29 Chen N, Debnath J (2013) IκB kinase complex (IKK) triggers detachment-induced autophagy in mammary epithelial cells independently of the PI3K-AKT-MTORC1 pathway. Autophagy 9: 1214–1227. – reference: 36 Di Pietro M, Parborell F, Irusta G, Pascuali N, Bas D, et al. (2015) Metformin regulates ovarian angiogenesis and follicular development in a female polycystic ovary syndrome rat model. Endocrinology 156: 1453–1463. – reference: 67 Li X, Lv B, Wang H, Qian Q (2020) Dioscin ameliorates polycystic ovary syndrome by inhibiting PI3K/Akt pathway-mediated proliferation and apoptosis of ovarian granulosa cells. Curr Top Nutraceutical Res 18: 331–336. – reference: 22 Khallaghi B, Safarian F, Nasoohi S, Ahmadiani A, Dargahi L (2016) Metformin-induced protection against oxidative stress is associated with AKT/mTOR restoration in PC12 cells. Life Sci 148: 286–292. – reference: 61 Zhang Y, Hu M, Meng F, Sun X, Xu H, et al. (2017) Metformin ameliorates uterine defects in a rat model of polycystic ovary syndrome. EBioMedicine 18: 157–170. – reference: 12 Gong Y, Luo S, Fan P, Zhu H, Li Y, et al. (2020) Growth hormone activates PI3K/Akt signaling and inhibits ROS accumulation and apoptosis in granulosa cells of patients with polycystic ovary syndrome. Reprod Biol Endocrinol 18: 121. – reference: 13 Moghetti P, Castello R, Negri C, Tosi F, Perrone F, et al. (2000) Metformin effects on clinical features, endocrine and metabolic profiles, and insulin sensitivity in polycystic ovary syndrome: a randomized, double-blind, placebo-controlled 6-month trial, followed by open, long-term clinical evaluation. J Clin Endocrinol Metab 85: 139–146. – reference: 18 Schexnayder C, Broussard K, Onuaguluchi D, Poché A, Ismail M, et al. (2018) Metformin inhibits migration and invasion by suppressing ROS production and COX2 expression in MDA-MB-231 breast cancer cells. Int J Mol Sci 19: 3692. – reference: 38 Faure M, Bertoldo MJ, Khoueiry R, Bongrani A, Brion F et al. (2018) Metformin in reproductive biology. Front Endocrinol (Lausanne) 9: 675. – reference: 52 Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, et al. (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4: 2192. – reference: 50 Wang X, Yang L, Kang L, Li J, Yang L, et al. (2017) Metformin attenuates myocardial ischemia-reperfusion injury via up-regulation of antioxidant enzymes. PLoS One 12: e0182777. – reference: 5 Diamanti-Kandarakis E, Kouli C, Tsianateli T, Bergiele A (1998) Therapeutic effects of metformin on insulin resistance and hyperandrogenism in polycystic ovary syndrome. Eur J Endocrinol 138: 269–274. – reference: 19 Wang Z, Guo J, Han X, Xue M, Wang W, et al. (2019) Metformin represses the pathophysiology of AAA by suppressing the activation of PI3K/AKT/mTOR/autophagy pathway in ApoE–/– mice. Cell Biosci 9: 68. – reference: 33 Wang MX, Yin Q, Xu X (2020) A rat model of polycystic ovary syndrome with insulin resistance induced by letrozole combined with high fat diet. Med Sci Monit 26: e922136. – reference: 43 Bannigida DM, Nayak BS, Vijayaraghavan R (2020) Insulin resistance and oxidative marker in women with PCOS. Arch Physiol Biochem 126: 183–186. – reference: 9 Tao T, Xu H (2020) Autophagy and obesity-related reproductive dysfunction. Adv Exp Med Biol 1207: 463–466. – reference: 26 Zhang Y, Sun X, Sun X, Meng F, Hu M, et al. (2016) Molecular characterization of insulin resistance and glycolytic metabolism in the rat uterus. Sci Rep 6: 30679. – reference: 1 Barbosa G, de Sá LB, Wanderley Rocha DR, Arbex AK (2016) Polycystic ovary Syndrome (PCOS) and Fertility. Open J Endocr Metab Dis 6: 58–65. – reference: 7 Li D, You Y, Bi FF, Zhang TN, Jiao J, et al. (2018) Autophagy is activated in the ovarian tissue of polycystic ovary syndrome. Reproduction 155: 85–92. – reference: 42 Shen M, Jiang Y, Guan Z, Cao Y, Li L, et al. (2017) Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy. Autophagy 13: 1364–1385. – reference: 40 Li X, Qi J, Zhu Q, He Y, Wang Y, et al. (2019) The role of androgen in autophagy of granulosa cells from PCOS. Gynecol Endocrinol 35: 669–672. – reference: 48 Hack CT, Buck T, Bagnjuk K, Eubler K, Kunz L, et al. (2019) A role for H2O2 and TRPM2 in the induction of cell death: studies in KGN cells. Antioxidants (Basel) 8: 518. – reference: 51 Zeng J, Zhu L, Liu J, Zhu T, Xie Z, et al. (2019) Metformin protects against oxidative stress injury induced by ischemia/reperfusion via regulation of the lncRNA-H19/miR-148a-3p/Rock2 axis. Oxid Med Cell Longev 2019: 8768327. – reference: 41 Murri M, Luque-Ramírez M, Insenser M, Ojeda-Ojeda M, Escobar-Morreale HF (2013) Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum Reprod Update 19: 268–288. – reference: 55 Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584: 1287–1295. – reference: 23 Lu G, Wu Z, Shang J, Xie Z, Chen C, et al. (2021) The effects of metformin on autophagy. Biomed Pharmacother 137: 111286. – reference: 58 Ryabaya OO, Inshakov AN, Egorova AV, Emelyanova MA, Nasedkina TV, et al. (2017) Autophagy inhibitors chloroquine and LY294002 enhance temozolomide cytotoxicity on cutaneous melanoma cell lines in vitro. Anticancer Drugs 28: 307–315. – reference: 60 Gong Y, Luo S, Fan P, Zhu H, Li Y, et al. (2020) Growth hormone activates PI3K/Akt signaling and inhibits ROS accumulation and apoptosis in granulosa cells of patients with polycystic ovary syndrome. Reprod Biol Endocrinol 18: 121. – reference: 39 Zhang C, Hu J, Wang W, Sun Y, Sun K (2020) HMGB1-induced aberrant autophagy contributes to insulin resistance in granulosa cells in PCOS. FASEB J 34: 9563–9574. – reference: 17 Jiating L, Buyun J, Yinchang Z (2019) Role of metformin on osteoblast differentiation in type 2 diabetes. Biomed Res Int 2019: 9203934. – ident: 32 doi: 10.1055/s-0034-1371090 – ident: 58 doi: 10.1097/CAD.0000000000000463 – ident: 53 doi: 10.4161/auto.9099 – ident: 49 doi: 10.1016/j.numecd.2017.04.009 – ident: 56 doi: 10.1074/jbc.C114.627778 – ident: 19 doi: 10.1186/s13578-019-0332-9 – ident: 57 doi: 10.1016/j.biopha.2018.04.072 – ident: 18 doi: 10.3390/ijms19113692 – ident: 41 doi: 10.1093/humupd/dms059 – ident: 52 doi: 10.1038/ncomms3192 – ident: 23 doi: 10.1016/j.biopha.2021.111286 – ident: 39 doi: 10.1096/fj.202000605RR – ident: 4 doi: 10.1038/nrendo.2010.217 – ident: 5 doi: 10.1530/eje.0.1380269 – ident: 26 doi: 10.1038/srep30679 – ident: 29 doi: 10.4161/auto.24870 – ident: 62 doi: 10.1186/s40199-017-0188-7 – ident: 17 doi: 10.1155/2019/9203934 – ident: 44 doi: 10.1152/ajpendo.00006.2020 – ident: 34 doi: 10.1080/13510002.2021.1927396 – ident: 35 doi: 10.1159/000494300 – ident: 15 doi: 10.1038/s41598-020-64776-w – ident: 50 doi: 10.1371/journal.pone.0182777 – ident: 59 doi: 10.1002/jcp.27501 – ident: 33 doi: 10.12659/MSM.922136 – ident: 8 doi: 10.1080/15548627.2021.1938914 – ident: 31 doi: 10.1093/humrep/der154 – ident: 11 doi: 10.1093/molehr/gaaa081 – ident: 64 doi: 10.1016/j.mce.2018.04.012 – ident: 10 doi: 10.1210/er.2015-1104 – ident: 38 doi: 10.3389/fendo.2018.00675 – ident: 7 doi: 10.1530/REP-17-0499 – ident: 27 doi: 10.1016/j.redox.2018.07.004 – ident: 30 doi: 10.1111/1471-0528.12070 – ident: 36 doi: 10.1210/en.2014-1765 – ident: 2 doi: 10.1515/JPEM.2007.20.1.41 – ident: 63 doi: 10.1016/j.jep.2019.111965 – ident: 66 doi: 10.1177/1933719116667606 – ident: 21 doi: 10.1080/15548627.2019.1569913 – ident: 28 doi: 10.1126/scisignal.aag2791 – ident: 51 doi: 10.1155/2019/8768327 – ident: 20 doi: 10.1111/crj.13091 – ident: 6 doi: 10.1080/09513590.2018.1540567 – ident: 22 doi: 10.1016/j.lfs.2016.02.024 – ident: 45 doi: 10.1007/s11684-017-0575-y – ident: 48 doi: 10.3390/antiox8110518 – ident: 54 doi: 10.3892/ijmm.2018.3794 – ident: 60 doi: 10.1186/s12958-020-00677-x – ident: 46 doi: 10.3906/sag-1308-65 – ident: 43 doi: 10.1080/13813455.2018.1499120 – ident: 16 doi: 10.1016/j.bbadis.2019.165621 – ident: 24 doi: 10.1016/j.arcmed.2003.10.005 – ident: 65 doi: 10.1016/j.lfs.2020.118003 – ident: 13 doi: 10.1210/jc.85.1.139 – ident: 14 doi: 10.1016/S0140-6736(03)13493-9 – ident: 67 doi: 10.37290/ctnr2641-452X.18:331-336 – ident: 3 doi: 10.1017/S0033291718002076 – ident: 9 doi: 10.1007/978-981-15-4272-5_33 – ident: 25 doi: 10.3892/etm.2017.5650 – ident: 40 doi: 10.1080/09513590.2018.1540567 – ident: 47 doi: 10.3390/ijms20071635 – ident: 61 doi: 10.1016/j.ebiom.2017.03.023 – ident: 1 doi: 10.4236/ojemd.2016.61008 – ident: 12 doi: 10.1186/s12958-020-00677-x – ident: 37 doi: 10.1016/S0015-0282(02)04925-7 – ident: 42 doi: 10.1080/15548627.2017.1327941 – ident: 55 doi: 10.1016/j.febslet.2010.01.017 |
SSID | ssj0033543 |
Score | 2.492857 |
Snippet | Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by a variety of clinical features, including anovulation, hyperandrogenism, and... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 863 |
SubjectTerms | 1-Phosphatidylinositol 3-kinase AKT protein Autophagy Excessive autophagy Granulosa cells Hydrogen peroxide Infertility Metformin Ovarian granulosa cells Ovaries Ovulation Oxidative stress PI3K/AKT/mTOR Polycystic ovary syndrome Signal transduction TOR protein |
Title | Metformin ameliorates polycystic ovary syndrome in a rat model by decreasing excessive autophagy in ovarian granulosa cells via the PI3K/AKT/mTOR pathway |
URI | https://www.jstage.jst.go.jp/article/endocrj/69/7/69_EJ21-0480/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/35228471 https://www.proquest.com/docview/2697153099 https://www.proquest.com/docview/2634851902 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Endocrine Journal, 2022, Vol.69(7), pp.863-875 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKQIgXxOcoDGQknqjS5ctx8gZCncbaboBa0bfISZzSqksm2gzKG38G_y13juN22kCDF7dyznGS-_l8d_adCXnFPJ4mIWMWl5ltYQ4pKxTMtlLuOY70MjdUUe_D4-Bw7B9N2KTV-rkdXbJKuumPK-NK_oerUAd8xSjZf-CsuSlUwH_gL5TAYSivxeOhXKHOOSs64lQuMNgevahn5WKdrjH_cqc8x01xTVYC9G2IDhDV59-g5pkprVH5C-R3jBjAjUSiwmwDog4JxFugEJjCpFYtyqXooK9_2TmfCaW0fnjv9TEpQ38E5eno5BOmav3yTVxYLu4VWZlinGFn-72Az5NKAazcOMzV7oLPspjPDOQGs0q7D6YbgamkJfxMt_0Wrrvlt6hFrYeuTFYna-rKK-q0fK6PctE45FvCNqxF46VJgKl9H1K92bzbO3KhYz-0NzNes8p_fBIfjAeDeNSbjG6Qmy5YGigq-x_NQpTnsTpGo3kwvTAOXexf6uCCanNrDtr9VP7ZcFEKzOgeuastD_q2htF90pLFA3J7qPdWPCS_DJroFproBk1UoYk2aKJISIGIKjTRZE03aKIGTdSgCRtoNFGDJqrQRAFNFNBEEU37gKV9RBLVSHpExge90btDSx_cYaUs9FZWwCMnFDyULHKSzM8yJ8zsxA9TJkJHRoHgOc_tNMlzL3QjH5P-Sbgu_JzlEZB4j8lOURbyCaE8cTzQ8oMEjxXIAyYYd7IgdVMBs1Ga8zaxm28epzqrPR6usojRugU2xZpNMbIpRja1yWvT5KxO6fI34jc1Iw2pHu2GNIhijoVpYigwbhLI2mSvgUCsB9kydoOIg7IB9lmbvDSXQbTjVxeFLCukAdSBhWW7bbJbQ8c8BdpNqFg-vUbrZ-TOZgDukZ3V10o-B1V6lbxQYP8NHv7Pmg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metformin+ameliorates+polycystic+ovary+syndrome+in+a+rat+model+by+decreasing+excessive+autophagy+in+ovarian+granulosa+cells+via+the+PI3K%2FAKT%2FmTOR+pathway&rft.jtitle=Endocrine+journal&rft.au=Xu%2C+Bo&rft.au=Dai%2C+Wenjie&rft.au=Liu%2C+Ling&rft.au=Han%2C+Hang&rft.date=2022-01-01&rft.issn=1348-4540&rft.eissn=1348-4540&rft.volume=69&rft.issue=7&rft.spage=863&rft_id=info:doi/10.1507%2Fendocrj.EJ21-0480&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-8959&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-8959&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-8959&client=summon |