Metformin ameliorates polycystic ovary syndrome in a rat model by decreasing excessive autophagy in ovarian granulosa cells via the PI3K/AKT/mTOR pathway

Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by a variety of clinical features, including anovulation, hyperandrogenism, and ovarian abnormalities, resulting in infertility. PCOS affects approximately 6%–15% of all reproductive-age women worldwide. Metformin, a popu...

Full description

Saved in:
Bibliographic Details
Published inEndocrine Journal Vol. 69; no. 7; pp. 863 - 875
Main Authors Xu, Bo, Dai, Wenjie, Liu, Ling, Han, Hang, Zhang, Jingjing, Du, Xing, Pei, Xiuying, Fu, Xufeng
Format Journal Article
LanguageEnglish
Published Japan The Japan Endocrine Society 01.01.2022
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by a variety of clinical features, including anovulation, hyperandrogenism, and ovarian abnormalities, resulting in infertility. PCOS affects approximately 6%–15% of all reproductive-age women worldwide. Metformin, a popular drug used to treat PCOS in patients, has beneficial effects in reducing hyperandrogenism and inducing ovulation; however, the mechanisms by which metformin ameliorates PCOS are not clear. Hence, we aimed to explore the mechanisms of metformin in treating PCOS. In the present study, we first treated a letrozole-induced PCOS rat model with metformin, detected the pathological recovery of PCOS, and then assessed the effects of metformin on H2O2-induced autophagy in ovarian granulosa cells (GCs) by detecting the level of oxidative stress and the expression of autophagy-associated proteins and key proteins in the PI3K/AKT/mTOR pathway. We demonstrated that metformin ameliorated PCOS in a rat model by downregulating autophagy in GCs, and metformin decreased the levels of oxidative stress and autophagy in H2O2-induced GCs and affected the PI3K/AKT/mTOR signaling pathway. Taken together, our results indicate that metformin ameliorates PCOS in a rat model by decreasing excessive autophagy in GCs via the PI3K/AKT/mTOR pathway, and this study provides evidence for targeted reduction of excessive autophagy of ovarian granulosa cells and improvement of PCOS.
AbstractList Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by a variety of clinical features, including anovulation, hyperandrogenism, and ovarian abnormalities, resulting in infertility. PCOS affects approximately 6%-15% of all reproductive-age women worldwide. Metformin, a popular drug used to treat PCOS in patients, has beneficial effects in reducing hyperandrogenism and inducing ovulation; however, the mechanisms by which metformin ameliorates PCOS are not clear. Hence, we aimed to explore the mechanisms of metformin in treating PCOS. In the present study, we first treated a letrozole-induced PCOS rat model with metformin, detected the pathological recovery of PCOS, and then assessed the effects of metformin on H2O2-induced autophagy in ovarian granulosa cells (GCs) by detecting the level of oxidative stress and the expression of autophagy-associated proteins and key proteins in the PI3K/AKT/mTOR pathway. We demonstrated that metformin ameliorated PCOS in a rat model by downregulating autophagy in GCs, and metformin decreased the levels of oxidative stress and autophagy in H2O2-induced GCs and affected the PI3K/AKT/mTOR signaling pathway. Taken together, our results indicate that metformin ameliorates PCOS in a rat model by decreasing excessive autophagy in GCs via the PI3K/AKT/mTOR pathway, and this study provides evidence for targeted reduction of excessive autophagy of ovarian granulosa cells and improvement of PCOS.Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by a variety of clinical features, including anovulation, hyperandrogenism, and ovarian abnormalities, resulting in infertility. PCOS affects approximately 6%-15% of all reproductive-age women worldwide. Metformin, a popular drug used to treat PCOS in patients, has beneficial effects in reducing hyperandrogenism and inducing ovulation; however, the mechanisms by which metformin ameliorates PCOS are not clear. Hence, we aimed to explore the mechanisms of metformin in treating PCOS. In the present study, we first treated a letrozole-induced PCOS rat model with metformin, detected the pathological recovery of PCOS, and then assessed the effects of metformin on H2O2-induced autophagy in ovarian granulosa cells (GCs) by detecting the level of oxidative stress and the expression of autophagy-associated proteins and key proteins in the PI3K/AKT/mTOR pathway. We demonstrated that metformin ameliorated PCOS in a rat model by downregulating autophagy in GCs, and metformin decreased the levels of oxidative stress and autophagy in H2O2-induced GCs and affected the PI3K/AKT/mTOR signaling pathway. Taken together, our results indicate that metformin ameliorates PCOS in a rat model by decreasing excessive autophagy in GCs via the PI3K/AKT/mTOR pathway, and this study provides evidence for targeted reduction of excessive autophagy of ovarian granulosa cells and improvement of PCOS.
Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by a variety of clinical features, including anovulation, hyperandrogenism, and ovarian abnormalities, resulting in infertility. PCOS affects approximately 6%–15% of all reproductive-age women worldwide. Metformin, a popular drug used to treat PCOS in patients, has beneficial effects in reducing hyperandrogenism and inducing ovulation; however, the mechanisms by which metformin ameliorates PCOS are not clear. Hence, we aimed to explore the mechanisms of metformin in treating PCOS. In the present study, we first treated a letrozole-induced PCOS rat model with metformin, detected the pathological recovery of PCOS, and then assessed the effects of metformin on H2O2-induced autophagy in ovarian granulosa cells (GCs) by detecting the level of oxidative stress and the expression of autophagy-associated proteins and key proteins in the PI3K/AKT/mTOR pathway. We demonstrated that metformin ameliorated PCOS in a rat model by downregulating autophagy in GCs, and metformin decreased the levels of oxidative stress and autophagy in H2O2-induced GCs and affected the PI3K/AKT/mTOR signaling pathway. Taken together, our results indicate that metformin ameliorates PCOS in a rat model by decreasing excessive autophagy in GCs via the PI3K/AKT/mTOR pathway, and this study provides evidence for targeted reduction of excessive autophagy of ovarian granulosa cells and improvement of PCOS.
Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by a variety of clinical features, including anovulation, hyperandrogenism, and ovarian abnormalities, resulting in infertility. PCOS affects approximately 6%-15% of all reproductive-age women worldwide. Metformin, a popular drug used to treat PCOS in patients, has beneficial effects in reducing hyperandrogenism and inducing ovulation; however, the mechanisms by which metformin ameliorates PCOS are not clear. Hence, we aimed to explore the mechanisms of metformin in treating PCOS. In the present study, we first treated a letrozole-induced PCOS rat model with metformin, detected the pathological recovery of PCOS, and then assessed the effects of metformin on H O -induced autophagy in ovarian granulosa cells (GCs) by detecting the level of oxidative stress and the expression of autophagy-associated proteins and key proteins in the PI3K/AKT/mTOR pathway. We demonstrated that metformin ameliorated PCOS in a rat model by downregulating autophagy in GCs, and metformin decreased the levels of oxidative stress and autophagy in H O -induced GCs and affected the PI3K/AKT/mTOR signaling pathway. Taken together, our results indicate that metformin ameliorates PCOS in a rat model by decreasing excessive autophagy in GCs via the PI3K/AKT/mTOR pathway, and this study provides evidence for targeted reduction of excessive autophagy of ovarian granulosa cells and improvement of PCOS.
ArticleNumber EJ21-0480
Author Zhang, Jingjing
Xu, Bo
Han, Hang
Liu, Ling
Du, Xing
Pei, Xiuying
Fu, Xufeng
Dai, Wenjie
Author_xml – sequence: 1
  fullname: Xu, Bo
  organization: Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
– sequence: 2
  fullname: Dai, Wenjie
  organization: Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
– sequence: 3
  fullname: Liu, Ling
  organization: Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
– sequence: 4
  fullname: Han, Hang
  organization: Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
– sequence: 5
  fullname: Zhang, Jingjing
  organization: Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
– sequence: 6
  fullname: Du, Xing
  organization: Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
– sequence: 7
  fullname: Pei, Xiuying
  organization: Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
– sequence: 8
  fullname: Fu, Xufeng
  organization: Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35228471$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv0zAYhiM0xLrBD-CCLHHhktVO7MY-TtMYY0NDqJytr86X1lUSF9sp5Kfwb3HUrocduNgHP8-nz-97kZ31rscse8_oFRO0mmNfO-O3V7dfC5ZTLumrbMZKLnMuOD3LZlQxmUsl1Hl2EcKW0rIUvHyTnZeiKCSv2Cz7-w1j43xnewIdttZ5iBjIzrWjGUO0hrg9-JGEsa-965BMIEkQ6VyNLVmNpEbjEYLt1wT_GAzB7pHAEN1uA-txEqYRFnqy9tAPrQtADLZtIHsLJG6QfL8vH-bXD8t5t3z6QXYQN79hfJu9bqAN-O54X2Y_P98ub77kj0939zfXj7kRsoz5okqfhEqiUGxV87pmsqYrLo0AyVAtoGqqhppV05SyUJzxQmJ6B96IRiWkvMw-HebuvPs1YIi6s2HaD3p0Q9DFIiUqmKJFQj--QLdu8H3aLlGqYqKkSiXqw5EaVh3WeudtlyLUz6EnoDoAxrsQPDba2AjRuj56sK1mVE_16mO9eqpXT_Umk70wn4f_z7k7ONsQYY0nA3xqt8WTsVC6mo6TeSLMBnzCyn8Tn8YY
CitedBy_id crossref_primary_10_1016_j_phyplu_2023_100515
crossref_primary_10_1080_09513590_2023_2210232
crossref_primary_10_3389_fendo_2022_1091147
crossref_primary_10_1007_s10787_022_00980_6
crossref_primary_10_1016_j_ecoenv_2024_116319
crossref_primary_10_1016_j_lfs_2023_122109
crossref_primary_10_1016_j_xfss_2024_03_001
crossref_primary_10_1016_j_ejphar_2023_176119
crossref_primary_10_1080_09513590_2023_2244600
crossref_primary_10_1002_mrd_23768
crossref_primary_10_1016_j_repbio_2023_100763
crossref_primary_10_1007_s43032_023_01255_3
crossref_primary_10_3390_ijms24119205
crossref_primary_10_3390_toxins15110663
crossref_primary_10_1016_j_semcdb_2023_02_013
crossref_primary_10_1038_s41598_024_76211_5
crossref_primary_10_1016_j_jep_2023_116551
crossref_primary_10_1186_s13048_023_01278_z
crossref_primary_10_1007_s12020_024_03843_y
crossref_primary_10_1016_j_ecoenv_2023_115534
crossref_primary_10_1055_a_2280_7130
crossref_primary_10_1080_13697137_2024_2354742
crossref_primary_10_1016_j_ejphar_2025_177516
crossref_primary_10_1016_j_tice_2024_102394
crossref_primary_10_1111_jog_16060
crossref_primary_10_1111_1440_1681_13862
crossref_primary_10_1007_s11357_023_00768_8
crossref_primary_10_1186_s13048_024_01355_x
crossref_primary_10_3390_ijms25168706
crossref_primary_10_1080_14767058_2024_2372695
crossref_primary_10_3389_fneur_2023_1275266
crossref_primary_10_3390_cells12172189
crossref_primary_10_1016_j_biopha_2023_116093
Cites_doi 10.1055/s-0034-1371090
10.1097/CAD.0000000000000463
10.4161/auto.9099
10.1016/j.numecd.2017.04.009
10.1074/jbc.C114.627778
10.1186/s13578-019-0332-9
10.1016/j.biopha.2018.04.072
10.3390/ijms19113692
10.1093/humupd/dms059
10.1038/ncomms3192
10.1016/j.biopha.2021.111286
10.1096/fj.202000605RR
10.1038/nrendo.2010.217
10.1530/eje.0.1380269
10.1038/srep30679
10.4161/auto.24870
10.1186/s40199-017-0188-7
10.1155/2019/9203934
10.1152/ajpendo.00006.2020
10.1080/13510002.2021.1927396
10.1159/000494300
10.1038/s41598-020-64776-w
10.1371/journal.pone.0182777
10.1002/jcp.27501
10.12659/MSM.922136
10.1080/15548627.2021.1938914
10.1093/humrep/der154
10.1093/molehr/gaaa081
10.1016/j.mce.2018.04.012
10.1210/er.2015-1104
10.3389/fendo.2018.00675
10.1530/REP-17-0499
10.1016/j.redox.2018.07.004
10.1111/1471-0528.12070
10.1210/en.2014-1765
10.1515/JPEM.2007.20.1.41
10.1016/j.jep.2019.111965
10.1177/1933719116667606
10.1080/15548627.2019.1569913
10.1126/scisignal.aag2791
10.1155/2019/8768327
10.1111/crj.13091
10.1080/09513590.2018.1540567
10.1016/j.lfs.2016.02.024
10.1007/s11684-017-0575-y
10.3390/antiox8110518
10.3892/ijmm.2018.3794
10.1186/s12958-020-00677-x
10.3906/sag-1308-65
10.1080/13813455.2018.1499120
10.1016/j.bbadis.2019.165621
10.1016/j.arcmed.2003.10.005
10.1016/j.lfs.2020.118003
10.1210/jc.85.1.139
10.1016/S0140-6736(03)13493-9
10.37290/ctnr2641-452X.18:331-336
10.1017/S0033291718002076
10.1007/978-981-15-4272-5_33
10.3892/etm.2017.5650
10.3390/ijms20071635
10.1016/j.ebiom.2017.03.023
10.4236/ojemd.2016.61008
10.1016/S0015-0282(02)04925-7
10.1080/15548627.2017.1327941
10.1016/j.febslet.2010.01.017
ContentType Journal Article
Copyright The Japan Endocrine Society
Copyright Japan Science and Technology Agency 2022
Copyright_xml – notice: The Japan Endocrine Society
– notice: Copyright Japan Science and Technology Agency 2022
DBID AAYXX
CITATION
NPM
7QP
7T5
7TK
8FD
FR3
H94
K9.
NAPCQ
P64
RC3
7X8
DOI 10.1507/endocrj.EJ21-0480
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Nursing & Allied Health Premium

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1348-4540
EndPage 875
ExternalDocumentID 35228471
10_1507_endocrj_EJ21_0480
article_endocrj_69_7_69_EJ21_0480_article_char_en
Genre Journal Article
GroupedDBID ---
.55
.GJ
29G
2WC
3O-
53G
5GY
5RE
AAEJM
AAUGY
ACPRK
ACRZS
ADBBV
AENEX
AJJEV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMOBN
F5P
JMI
JSF
JSH
KQ8
MOJWN
M~E
OK1
P2P
RJT
RNS
RZJ
SV3
TKC
TR2
X7M
XSB
ZGI
ZXP
AAFWJ
AAYXX
AFPKN
CITATION
GROUPED_DOAJ
OVT
RPM
NPM
7QP
7T5
7TK
8FD
FR3
H94
K9.
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c583t-67918a78e591bd4dd18d0b48c5a81e96a7f7f0cbff382941428e0b4a4f5f9a813
ISSN 0918-8959
1348-4540
IngestDate Fri Jul 11 10:16:15 EDT 2025
Mon Jun 30 07:51:26 EDT 2025
Thu Jan 02 22:56:41 EST 2025
Tue Jul 01 01:17:33 EDT 2025
Thu Apr 24 22:54:57 EDT 2025
Thu Aug 17 20:31:08 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Polycystic ovary syndrome
Ovarian granulosa cells
Excessive autophagy
PI3K/AKT/mTOR
Metformin
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c583t-67918a78e591bd4dd18d0b48c5a81e96a7f7f0cbff382941428e0b4a4f5f9a813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/endocrj/69/7/69_EJ21-0480/_article/-char/en
PMID 35228471
PQID 2697153099
PQPubID 2048504
PageCount 13
ParticipantIDs proquest_miscellaneous_2634851902
proquest_journals_2697153099
pubmed_primary_35228471
crossref_citationtrail_10_1507_endocrj_EJ21_0480
crossref_primary_10_1507_endocrj_EJ21_0480
jstage_primary_article_endocrj_69_7_69_EJ21_0480_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Kyoto
PublicationTitle Endocrine Journal
PublicationTitleAlternate Endocr J
PublicationYear 2022
Publisher The Japan Endocrine Society
Japan Science and Technology Agency
Publisher_xml – name: The Japan Endocrine Society
– name: Japan Science and Technology Agency
References 7 Li D, You Y, Bi FF, Zhang TN, Jiao J, et al. (2018) Autophagy is activated in the ovarian tissue of polycystic ovary syndrome. Reproduction 155: 85–92.
26 Zhang Y, Sun X, Sun X, Meng F, Hu M, et al. (2016) Molecular characterization of insulin resistance and glycolytic metabolism in the rat uterus. Sci Rep 6: 30679.
43 Bannigida DM, Nayak BS, Vijayaraghavan R (2020) Insulin resistance and oxidative marker in women with PCOS. Arch Physiol Biochem 126: 183–186.
46 Genç A, Üçok K, Şener Ü, Koyuncu T, Akar O, et al. (2014) Association analyses of oxidative stress, aerobic capacity, daily physical activity, and body composition parameters in patients with mild to moderate COPD. Turk J Med Sci 44: 972–979.
59 Li Y, Zheng Q, Sun D, Cui X, Chen S, et al. (2019) Dehydroepiandrosterone stimulates inflammation and impairs ovarian functions of polycystic ovary syndrome. J Cell Physiol 234: 7435–7447.
16 Geng Y, Hernández Villanueva A, Oun A, Buist-Homan M, Blokzijl H, et al. (2020) Protective effect of metformin against palmitate-induced hepatic cell death. Biochim Biophys Acta Mol Basis Dis 1866: 165621.
23 Lu G, Wu Z, Shang J, Xie Z, Chen C, et al. (2021) The effects of metformin on autophagy. Biomed Pharmacother 137: 111286.
35 Karateke A, Dokuyucu R, Dogan H, Ozgur T, Tas ZA, et al. (2018) Investigation of therapeutic effects of erdosteine on polycystic ovary syndrome in a rat model. Med Princ Pract 27: 515–522.
15 Kim CH, Chon SJ, Lee SH (2020) Effects of lifestyle modification in polycystic ovary syndrome compared to metformin only or metformin addition: a systematic review and meta-analysis. Sci Rep 10: 7802.
38 Faure M, Bertoldo MJ, Khoueiry R, Bongrani A, Brion F et al. (2018) Metformin in reproductive biology. Front Endocrinol (Lausanne) 9: 675.
63 Qiu Z, Dong J, Xue C, Li X, Liu K, et al. (2020) Liuwei Dihuang Pills alleviate the polycystic ovary syndrome with improved insulin sensitivity through PI3K/Akt signaling pathway. J Ethnopharmacol 250: 111965.
67 Li X, Lv B, Wang H, Qian Q (2020) Dioscin ameliorates polycystic ovary syndrome by inhibiting PI3K/Akt pathway-mediated proliferation and apoptosis of ovarian granulosa cells. Curr Top Nutraceutical Res 18: 331–336.
27 Shen M, Cao Y, Jiang Y, Wei Y, Liu H (2018) Melatonin protects mouse granulosa cells against oxidative damage by inhibiting FOXO1-mediated autophagy: implication of an antioxidation-independent mechanism. Redox Biol 18: 138–157.
66 Li T, Mo H, Chen W, Li L, Xiao Y, et al. (2017). Role of the PI3K-Akt signaling pathway in the pathogenesis of polycystic ovary syndrome. Reprod Sci 24: 646–655.
54 Li X, Hu X, Wang J, Xu W, Yi C, et al. (2018) Inhibition of autophagy via activation of PI3K/Akt/mTOR pathway contributes to the protection of hesperidin against myocardial ischemia/reperfusion injury. Int J Mol Med 42: 1917–1924.
21 Niu C, Chen Z, Kim KT, Sun J, Xue M, et al. (2019) Metformin alleviates hyperglycemia-induced endothelial impairment by downregulating autophagy via the Hedgehog pathway. Autophagy 15: 843–870.
9 Tao T, Xu H (2020) Autophagy and obesity-related reproductive dysfunction. Adv Exp Med Biol 1207: 463–466.
3 Damone AL, Joham AE, Loxton D, Earnest A, Teede HJ, et al. (2019) Depression, anxiety and perceived stress in women with and without PCOS: a community-based study. Psychol Med 49: 1510–1520.
29 Chen N, Debnath J (2013) IκB kinase complex (IKK) triggers detachment-induced autophagy in mammary epithelial cells independently of the PI3K-AKT-MTORC1 pathway. Autophagy 9: 1214–1227.
14 Harborne L, Fleming R, Lyall H, Norman J, Sattar N (2003) Descriptive review of the evidence for the use of metformin in polycystic ovary syndrome. Lancet 361: 1894–1901.
13 Moghetti P, Castello R, Negri C, Tosi F, Perrone F, et al. (2000) Metformin effects on clinical features, endocrine and metabolic profiles, and insulin sensitivity in polycystic ovary syndrome: a randomized, double-blind, placebo-controlled 6-month trial, followed by open, long-term clinical evaluation. J Clin Endocrinol Metab 85: 139–146.
4 Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R (2011) Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol 7: 219–231.
30 Palomba S, Falbo A, La Sala GB (2013) Effects of metformin in women with polycystic ovary syndrome treated with gonadotrophins for in vitro fertilisation and intracytoplasmic sperm injection cycles: a systematic review and meta-analysis of randomised controlled trials. BJOG 120: 267–276.
42 Shen M, Jiang Y, Guan Z, Cao Y, Li L, et al. (2017) Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy. Autophagy 13: 1364–1385.
28 Simon HU, Friis R, Tait SW, Ryan KM (2017) Retrograde signaling from autophagy modulates stress responses. Sci Signal 10: eaag2791.
6 Li X, Qi J, Zhu Q, He Y, Wang Y, et al. (2019) The role of androgen in autophagy of granulosa cells from PCOS. Gynecol Endocrinol 35: 669–672.
37 Mansfield R, Galea R, Brincat M, Hole D, Mason H (2003) Metformin has direct effects on human ovarian steroidogenesis. Fertil Steril 79: 956–962.
24 Kafali H, Iriadam M, Ozardali I, Demir N (2004) Letrozole-induced polycystic ovaries in the rat: a new model for cystic ovarian disease. Arch Med Res 35: 103–108.
51 Zeng J, Zhu L, Liu J, Zhu T, Xie Z, et al. (2019) Metformin protects against oxidative stress injury induced by ischemia/reperfusion via regulation of the lncRNA-H19/miR-148a-3p/Rock2 axis. Oxid Med Cell Longev 2019: 8768327.
53 Wu YT, Tan HL, Huang Q, Ong CN, Shen HM (2009) Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy 5: 824–834.
62 Zhao H, Zhou D, Chen Y, Liu D, Chu S, et al. (2017). Beneficial effects of Heqi san on rat model of polycystic ovary syndrome through the PI3K/AKT pathway. Daru 25: 21.
39 Zhang C, Hu J, Wang W, Sun Y, Sun K (2020) HMGB1-induced aberrant autophagy contributes to insulin resistance in granulosa cells in PCOS. FASEB J 34: 9563–9574.
19 Wang Z, Guo J, Han X, Xue M, Wang W, et al. (2019) Metformin represses the pathophysiology of AAA by suppressing the activation of PI3K/AKT/mTOR/autophagy pathway in ApoE–/– mice. Cell Biosci 9: 68.
20 Chen H, Lin C, Lu C, Wang Y, Han R, et al. (2019) Metformin-sensitized NSCLC cells to osimertinib via AMPK-dependent autophagy inhibition. Clin Respir J 13: 781–790.
5 Diamanti-Kandarakis E, Kouli C, Tsianateli T, Bergiele A (1998) Therapeutic effects of metformin on insulin resistance and hyperandrogenism in polycystic ovary syndrome. Eur J Endocrinol 138: 269–274.
17 Jiating L, Buyun J, Yinchang Z (2019) Role of metformin on osteoblast differentiation in type 2 diabetes. Biomed Res Int 2019: 9203934.
10 Rosenfield RL, Ehrmann DA (2016) The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev 37: 467–520.
31 Kjøtrød SB, Carlsen SM, Rasmussen PE, Holst-Larsen T, Mellembakken J, et al. (2011) Use of metformin before and during assisted reproductive technology in non-obese young infertile women with polycystic ovary syndrome: a prospective, randomized, double-blind, multi-centre study. Hum Reprod 26: 2045–2053.
36 Di Pietro M, Parborell F, Irusta G, Pascuali N, Bas D, et al. (2015) Metformin regulates ovarian angiogenesis and follicular development in a female polycystic ovary syndrome rat model. Endocrinology 156: 1453–1463.
2 Littlejohn EE, Weiss RE, Deplewski D, Edidin DV, Rosenfield R (2007) Intractable early childhood obesity as the initial sign of insulin resistant hyperinsulinism and precursor of polycystic ovary syndrome. J Pediatr Endocrinol Metab 20: 41–51.
64 Li Q, Du X, Pan Z, Zhang L, Li Q (2018) The transcription factor SMAD4 and miR-10b contribute to E2 release and cell apoptosis in ovarian granulosa cells by targeting CYP19A1. Mol Cell Endocrinol 476: 84–95.
61 Zhang Y, Hu M, Meng F, Sun X, Xu H, et al. (2017) Metformin ameliorates uterine defects in a rat model of polycystic ovary syndrome. EBioMedicine 18: 157–170.
12 Gong Y, Luo S, Fan P, Zhu H, Li Y, et al. (2020) Growth hormone activates PI3K/Akt signaling and inhibits ROS accumulation and apoptosis in granulosa cells of patients with polycystic ovary syndrome. Reprod Biol Endocrinol 18: 121.
56 Petherick KJ, Conway OJ, Mpamhanga C, Osborne SA, Kamal A, et al. (2015) Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J Biol Chem 290: 11376–11383.
1 Barbosa G, de Sá LB, Wanderley Rocha DR, Arbex AK (2016) Polycystic ovary Syndrome (PCOS) and Fertility. Open J Endocr Metab Dis 6: 58–65.
11 Wang Y, Li N, Zeng Z, Tang L, Zhao S, et al. (2021) Humanin regulates oxidative stress in the ovaries of polycystic ovary syndrome patients via the Keap1/Nrf2 pathway. Mol Hum Reprod 27: gaaa081.
48 Hack CT, Buck T, Bagnjuk K, Eubler K, Kunz L, et al. (2019) A role for H2O2 and TRPM2 in the induction of cell death: studies in KGN cells. Antioxidants (Basel) 8: 518.
55 Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584: 1287–1295.
47 Khadrawy O, Gebremedhn S, Salilew-Wondim D, Taqi MO, Neuhoff C, et al. (2019) Endogenous and exogenous modulation of Nrf2 mediated oxidative stress response in bovine granulosa cells: potential implication for ovarian function. Int J Mol Sci 20: 1635.
18 Schexnayder C, Broussard K, Onuaguluchi D, Poché A, Ismail M, et al. (2018) Metformin inhibits migration and invasion by suppressing ROS production and COX2 expression in MDA-MB-231 breast cancer cells. Int J Mol Sci 19: 3692.
25 Wu Y, Li P, Zhang D, Sun Y (2018) Metformin and pioglitazone combination therapy ameliorate polycystic ovary syndrome through AMPK/PI3K/JNK pathway. Exp Ther Med 15: 2120–2127.
52 Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, et al. (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4: 2192.
8 Kumariya S, Ubba V, Jha RK, Gayen JR (2021) Autophagy in ovary and polycystic ovary syndrome: ro
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
60
61
62
63
20
64
21
65
22
66
23
67
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – reference: 45 Lai Q, Xiang W, Li Q, Zhang H, Li Y, et al. (2018) Oxidative stress in granulosa cells contributes to poor oocyte quality and IVF-ET outcomes in women with polycystic ovary syndrome. Front Med 12: 518–524.
– reference: 10 Rosenfield RL, Ehrmann DA (2016) The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev 37: 467–520.
– reference: 35 Karateke A, Dokuyucu R, Dogan H, Ozgur T, Tas ZA, et al. (2018) Investigation of therapeutic effects of erdosteine on polycystic ovary syndrome in a rat model. Med Princ Pract 27: 515–522.
– reference: 49 Nesti L, Natali A (2017) Metformin effects on the heart and the cardiovascular system: a review of experimental and clinical data. Nutr Metab Cardiovasc Dis 27: 657-669.
– reference: 20 Chen H, Lin C, Lu C, Wang Y, Han R, et al. (2019) Metformin-sensitized NSCLC cells to osimertinib via AMPK-dependent autophagy inhibition. Clin Respir J 13: 781–790.
– reference: 8 Kumariya S, Ubba V, Jha RK, Gayen JR (2021) Autophagy in ovary and polycystic ovary syndrome: role, dispute and future perspective. Autophagy 17: 2706–2733.
– reference: 64 Li Q, Du X, Pan Z, Zhang L, Li Q (2018) The transcription factor SMAD4 and miR-10b contribute to E2 release and cell apoptosis in ovarian granulosa cells by targeting CYP19A1. Mol Cell Endocrinol 476: 84–95.
– reference: 11 Wang Y, Li N, Zeng Z, Tang L, Zhao S, et al. (2021) Humanin regulates oxidative stress in the ovaries of polycystic ovary syndrome patients via the Keap1/Nrf2 pathway. Mol Hum Reprod 27: gaaa081.
– reference: 16 Geng Y, Hernández Villanueva A, Oun A, Buist-Homan M, Blokzijl H, et al. (2020) Protective effect of metformin against palmitate-induced hepatic cell death. Biochim Biophys Acta Mol Basis Dis 1866: 165621.
– reference: 44 Yi S, Zheng B, Zhu Y, Cai Y, Sun H, et al. (2020) Melatonin ameliorates excessive PINK1/Parkin-mediated mitophagy by enhancing SIRT1 expression in granulosa cells of PCOS. Am J Physiol Endocrinol Metab 319: E91–E101.
– reference: 31 Kjøtrød SB, Carlsen SM, Rasmussen PE, Holst-Larsen T, Mellembakken J, et al. (2011) Use of metformin before and during assisted reproductive technology in non-obese young infertile women with polycystic ovary syndrome: a prospective, randomized, double-blind, multi-centre study. Hum Reprod 26: 2045–2053.
– reference: 21 Niu C, Chen Z, Kim KT, Sun J, Xue M, et al. (2019) Metformin alleviates hyperglycemia-induced endothelial impairment by downregulating autophagy via the Hedgehog pathway. Autophagy 15: 843–870.
– reference: 62 Zhao H, Zhou D, Chen Y, Liu D, Chu S, et al. (2017). Beneficial effects of Heqi san on rat model of polycystic ovary syndrome through the PI3K/AKT pathway. Daru 25: 21.
– reference: 66 Li T, Mo H, Chen W, Li L, Xiao Y, et al. (2017). Role of the PI3K-Akt signaling pathway in the pathogenesis of polycystic ovary syndrome. Reprod Sci 24: 646–655.
– reference: 15 Kim CH, Chon SJ, Lee SH (2020) Effects of lifestyle modification in polycystic ovary syndrome compared to metformin only or metformin addition: a systematic review and meta-analysis. Sci Rep 10: 7802.
– reference: 57 Yang J, Pi C, Wang G (2018) Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed Pharmacother 103: 699–707.
– reference: 3 Damone AL, Joham AE, Loxton D, Earnest A, Teede HJ, et al. (2019) Depression, anxiety and perceived stress in women with and without PCOS: a community-based study. Psychol Med 49: 1510–1520.
– reference: 63 Qiu Z, Dong J, Xue C, Li X, Liu K, et al. (2020) Liuwei Dihuang Pills alleviate the polycystic ovary syndrome with improved insulin sensitivity through PI3K/Akt signaling pathway. J Ethnopharmacol 250: 111965.
– reference: 34 Kausar F, Rather MA, Bashir SM, Alsaffar RM, Nabi SU, et al. (2021) Ameliorative effects of Cuscuta reflexa and Peucedanum grande on letrozole induced polycystic ovary syndrome in Wistar rats. Redox Rep 26: 94–104.
– reference: 25 Wu Y, Li P, Zhang D, Sun Y (2018) Metformin and pioglitazone combination therapy ameliorate polycystic ovary syndrome through AMPK/PI3K/JNK pathway. Exp Ther Med 15: 2120–2127.
– reference: 27 Shen M, Cao Y, Jiang Y, Wei Y, Liu H (2018) Melatonin protects mouse granulosa cells against oxidative damage by inhibiting FOXO1-mediated autophagy: implication of an antioxidation-independent mechanism. Redox Biol 18: 138–157.
– reference: 28 Simon HU, Friis R, Tait SW, Ryan KM (2017) Retrograde signaling from autophagy modulates stress responses. Sci Signal 10: eaag2791.
– reference: 2 Littlejohn EE, Weiss RE, Deplewski D, Edidin DV, Rosenfield R (2007) Intractable early childhood obesity as the initial sign of insulin resistant hyperinsulinism and precursor of polycystic ovary syndrome. J Pediatr Endocrinol Metab 20: 41–51.
– reference: 14 Harborne L, Fleming R, Lyall H, Norman J, Sattar N (2003) Descriptive review of the evidence for the use of metformin in polycystic ovary syndrome. Lancet 361: 1894–1901.
– reference: 24 Kafali H, Iriadam M, Ozardali I, Demir N (2004) Letrozole-induced polycystic ovaries in the rat: a new model for cystic ovarian disease. Arch Med Res 35: 103–108.
– reference: 46 Genç A, Üçok K, Şener Ü, Koyuncu T, Akar O, et al. (2014) Association analyses of oxidative stress, aerobic capacity, daily physical activity, and body composition parameters in patients with mild to moderate COPD. Turk J Med Sci 44: 972–979.
– reference: 37 Mansfield R, Galea R, Brincat M, Hole D, Mason H (2003) Metformin has direct effects on human ovarian steroidogenesis. Fertil Steril 79: 956–962.
– reference: 53 Wu YT, Tan HL, Huang Q, Ong CN, Shen HM (2009) Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy 5: 824–834.
– reference: 6 Li X, Qi J, Zhu Q, He Y, Wang Y, et al. (2019) The role of androgen in autophagy of granulosa cells from PCOS. Gynecol Endocrinol 35: 669–672.
– reference: 54 Li X, Hu X, Wang J, Xu W, Yi C, et al. (2018) Inhibition of autophagy via activation of PI3K/Akt/mTOR pathway contributes to the protection of hesperidin against myocardial ischemia/reperfusion injury. Int J Mol Med 42: 1917–1924.
– reference: 4 Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R (2011) Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol 7: 219–231.
– reference: 65 Abuelezz NZ, Shabana ME, Abdel-Mageed HM, Rashed L, Morcos GNB (2020) Nanocurcumin alleviates insulin resistance and pancreatic deficits in polycystic ovary syndrome rats: Insights on PI3K/AkT/mTOR and TNF-α modulations. Life Sci 256: 118003.
– reference: 56 Petherick KJ, Conway OJ, Mpamhanga C, Osborne SA, Kamal A, et al. (2015) Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J Biol Chem 290: 11376–11383.
– reference: 59 Li Y, Zheng Q, Sun D, Cui X, Chen S, et al. (2019) Dehydroepiandrosterone stimulates inflammation and impairs ovarian functions of polycystic ovary syndrome. J Cell Physiol 234: 7435–7447.
– reference: 30 Palomba S, Falbo A, La Sala GB (2013) Effects of metformin in women with polycystic ovary syndrome treated with gonadotrophins for in vitro fertilisation and intracytoplasmic sperm injection cycles: a systematic review and meta-analysis of randomised controlled trials. BJOG 120: 267–276.
– reference: 47 Khadrawy O, Gebremedhn S, Salilew-Wondim D, Taqi MO, Neuhoff C, et al. (2019) Endogenous and exogenous modulation of Nrf2 mediated oxidative stress response in bovine granulosa cells: potential implication for ovarian function. Int J Mol Sci 20: 1635.
– reference: 32 Maliqueo M, Benrick A, Stener-Victorin E (2014) Rodent models of polycystic ovary syndrome: phenotypic presentation, pathophysiology, and the effects of different interventions. Semin Reprod Med 32: 183–193.
– reference: 29 Chen N, Debnath J (2013) IκB kinase complex (IKK) triggers detachment-induced autophagy in mammary epithelial cells independently of the PI3K-AKT-MTORC1 pathway. Autophagy 9: 1214–1227.
– reference: 36 Di Pietro M, Parborell F, Irusta G, Pascuali N, Bas D, et al. (2015) Metformin regulates ovarian angiogenesis and follicular development in a female polycystic ovary syndrome rat model. Endocrinology 156: 1453–1463.
– reference: 67 Li X, Lv B, Wang H, Qian Q (2020) Dioscin ameliorates polycystic ovary syndrome by inhibiting PI3K/Akt pathway-mediated proliferation and apoptosis of ovarian granulosa cells. Curr Top Nutraceutical Res 18: 331–336.
– reference: 22 Khallaghi B, Safarian F, Nasoohi S, Ahmadiani A, Dargahi L (2016) Metformin-induced protection against oxidative stress is associated with AKT/mTOR restoration in PC12 cells. Life Sci 148: 286–292.
– reference: 61 Zhang Y, Hu M, Meng F, Sun X, Xu H, et al. (2017) Metformin ameliorates uterine defects in a rat model of polycystic ovary syndrome. EBioMedicine 18: 157–170.
– reference: 12 Gong Y, Luo S, Fan P, Zhu H, Li Y, et al. (2020) Growth hormone activates PI3K/Akt signaling and inhibits ROS accumulation and apoptosis in granulosa cells of patients with polycystic ovary syndrome. Reprod Biol Endocrinol 18: 121.
– reference: 13 Moghetti P, Castello R, Negri C, Tosi F, Perrone F, et al. (2000) Metformin effects on clinical features, endocrine and metabolic profiles, and insulin sensitivity in polycystic ovary syndrome: a randomized, double-blind, placebo-controlled 6-month trial, followed by open, long-term clinical evaluation. J Clin Endocrinol Metab 85: 139–146.
– reference: 18 Schexnayder C, Broussard K, Onuaguluchi D, Poché A, Ismail M, et al. (2018) Metformin inhibits migration and invasion by suppressing ROS production and COX2 expression in MDA-MB-231 breast cancer cells. Int J Mol Sci 19: 3692.
– reference: 38 Faure M, Bertoldo MJ, Khoueiry R, Bongrani A, Brion F et al. (2018) Metformin in reproductive biology. Front Endocrinol (Lausanne) 9: 675.
– reference: 52 Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, et al. (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4: 2192.
– reference: 50 Wang X, Yang L, Kang L, Li J, Yang L, et al. (2017) Metformin attenuates myocardial ischemia-reperfusion injury via up-regulation of antioxidant enzymes. PLoS One 12: e0182777.
– reference: 5 Diamanti-Kandarakis E, Kouli C, Tsianateli T, Bergiele A (1998) Therapeutic effects of metformin on insulin resistance and hyperandrogenism in polycystic ovary syndrome. Eur J Endocrinol 138: 269–274.
– reference: 19 Wang Z, Guo J, Han X, Xue M, Wang W, et al. (2019) Metformin represses the pathophysiology of AAA by suppressing the activation of PI3K/AKT/mTOR/autophagy pathway in ApoE–/– mice. Cell Biosci 9: 68.
– reference: 33 Wang MX, Yin Q, Xu X (2020) A rat model of polycystic ovary syndrome with insulin resistance induced by letrozole combined with high fat diet. Med Sci Monit 26: e922136.
– reference: 43 Bannigida DM, Nayak BS, Vijayaraghavan R (2020) Insulin resistance and oxidative marker in women with PCOS. Arch Physiol Biochem 126: 183–186.
– reference: 9 Tao T, Xu H (2020) Autophagy and obesity-related reproductive dysfunction. Adv Exp Med Biol 1207: 463–466.
– reference: 26 Zhang Y, Sun X, Sun X, Meng F, Hu M, et al. (2016) Molecular characterization of insulin resistance and glycolytic metabolism in the rat uterus. Sci Rep 6: 30679.
– reference: 1 Barbosa G, de Sá LB, Wanderley Rocha DR, Arbex AK (2016) Polycystic ovary Syndrome (PCOS) and Fertility. Open J Endocr Metab Dis 6: 58–65.
– reference: 7 Li D, You Y, Bi FF, Zhang TN, Jiao J, et al. (2018) Autophagy is activated in the ovarian tissue of polycystic ovary syndrome. Reproduction 155: 85–92.
– reference: 42 Shen M, Jiang Y, Guan Z, Cao Y, Li L, et al. (2017) Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy. Autophagy 13: 1364–1385.
– reference: 40 Li X, Qi J, Zhu Q, He Y, Wang Y, et al. (2019) The role of androgen in autophagy of granulosa cells from PCOS. Gynecol Endocrinol 35: 669–672.
– reference: 48 Hack CT, Buck T, Bagnjuk K, Eubler K, Kunz L, et al. (2019) A role for H2O2 and TRPM2 in the induction of cell death: studies in KGN cells. Antioxidants (Basel) 8: 518.
– reference: 51 Zeng J, Zhu L, Liu J, Zhu T, Xie Z, et al. (2019) Metformin protects against oxidative stress injury induced by ischemia/reperfusion via regulation of the lncRNA-H19/miR-148a-3p/Rock2 axis. Oxid Med Cell Longev 2019: 8768327.
– reference: 41 Murri M, Luque-Ramírez M, Insenser M, Ojeda-Ojeda M, Escobar-Morreale HF (2013) Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum Reprod Update 19: 268–288.
– reference: 55 Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584: 1287–1295.
– reference: 23 Lu G, Wu Z, Shang J, Xie Z, Chen C, et al. (2021) The effects of metformin on autophagy. Biomed Pharmacother 137: 111286.
– reference: 58 Ryabaya OO, Inshakov AN, Egorova AV, Emelyanova MA, Nasedkina TV, et al. (2017) Autophagy inhibitors chloroquine and LY294002 enhance temozolomide cytotoxicity on cutaneous melanoma cell lines in vitro. Anticancer Drugs 28: 307–315.
– reference: 60 Gong Y, Luo S, Fan P, Zhu H, Li Y, et al. (2020) Growth hormone activates PI3K/Akt signaling and inhibits ROS accumulation and apoptosis in granulosa cells of patients with polycystic ovary syndrome. Reprod Biol Endocrinol 18: 121.
– reference: 39 Zhang C, Hu J, Wang W, Sun Y, Sun K (2020) HMGB1-induced aberrant autophagy contributes to insulin resistance in granulosa cells in PCOS. FASEB J 34: 9563–9574.
– reference: 17 Jiating L, Buyun J, Yinchang Z (2019) Role of metformin on osteoblast differentiation in type 2 diabetes. Biomed Res Int 2019: 9203934.
– ident: 32
  doi: 10.1055/s-0034-1371090
– ident: 58
  doi: 10.1097/CAD.0000000000000463
– ident: 53
  doi: 10.4161/auto.9099
– ident: 49
  doi: 10.1016/j.numecd.2017.04.009
– ident: 56
  doi: 10.1074/jbc.C114.627778
– ident: 19
  doi: 10.1186/s13578-019-0332-9
– ident: 57
  doi: 10.1016/j.biopha.2018.04.072
– ident: 18
  doi: 10.3390/ijms19113692
– ident: 41
  doi: 10.1093/humupd/dms059
– ident: 52
  doi: 10.1038/ncomms3192
– ident: 23
  doi: 10.1016/j.biopha.2021.111286
– ident: 39
  doi: 10.1096/fj.202000605RR
– ident: 4
  doi: 10.1038/nrendo.2010.217
– ident: 5
  doi: 10.1530/eje.0.1380269
– ident: 26
  doi: 10.1038/srep30679
– ident: 29
  doi: 10.4161/auto.24870
– ident: 62
  doi: 10.1186/s40199-017-0188-7
– ident: 17
  doi: 10.1155/2019/9203934
– ident: 44
  doi: 10.1152/ajpendo.00006.2020
– ident: 34
  doi: 10.1080/13510002.2021.1927396
– ident: 35
  doi: 10.1159/000494300
– ident: 15
  doi: 10.1038/s41598-020-64776-w
– ident: 50
  doi: 10.1371/journal.pone.0182777
– ident: 59
  doi: 10.1002/jcp.27501
– ident: 33
  doi: 10.12659/MSM.922136
– ident: 8
  doi: 10.1080/15548627.2021.1938914
– ident: 31
  doi: 10.1093/humrep/der154
– ident: 11
  doi: 10.1093/molehr/gaaa081
– ident: 64
  doi: 10.1016/j.mce.2018.04.012
– ident: 10
  doi: 10.1210/er.2015-1104
– ident: 38
  doi: 10.3389/fendo.2018.00675
– ident: 7
  doi: 10.1530/REP-17-0499
– ident: 27
  doi: 10.1016/j.redox.2018.07.004
– ident: 30
  doi: 10.1111/1471-0528.12070
– ident: 36
  doi: 10.1210/en.2014-1765
– ident: 2
  doi: 10.1515/JPEM.2007.20.1.41
– ident: 63
  doi: 10.1016/j.jep.2019.111965
– ident: 66
  doi: 10.1177/1933719116667606
– ident: 21
  doi: 10.1080/15548627.2019.1569913
– ident: 28
  doi: 10.1126/scisignal.aag2791
– ident: 51
  doi: 10.1155/2019/8768327
– ident: 20
  doi: 10.1111/crj.13091
– ident: 6
  doi: 10.1080/09513590.2018.1540567
– ident: 22
  doi: 10.1016/j.lfs.2016.02.024
– ident: 45
  doi: 10.1007/s11684-017-0575-y
– ident: 48
  doi: 10.3390/antiox8110518
– ident: 54
  doi: 10.3892/ijmm.2018.3794
– ident: 60
  doi: 10.1186/s12958-020-00677-x
– ident: 46
  doi: 10.3906/sag-1308-65
– ident: 43
  doi: 10.1080/13813455.2018.1499120
– ident: 16
  doi: 10.1016/j.bbadis.2019.165621
– ident: 24
  doi: 10.1016/j.arcmed.2003.10.005
– ident: 65
  doi: 10.1016/j.lfs.2020.118003
– ident: 13
  doi: 10.1210/jc.85.1.139
– ident: 14
  doi: 10.1016/S0140-6736(03)13493-9
– ident: 67
  doi: 10.37290/ctnr2641-452X.18:331-336
– ident: 3
  doi: 10.1017/S0033291718002076
– ident: 9
  doi: 10.1007/978-981-15-4272-5_33
– ident: 25
  doi: 10.3892/etm.2017.5650
– ident: 40
  doi: 10.1080/09513590.2018.1540567
– ident: 47
  doi: 10.3390/ijms20071635
– ident: 61
  doi: 10.1016/j.ebiom.2017.03.023
– ident: 1
  doi: 10.4236/ojemd.2016.61008
– ident: 12
  doi: 10.1186/s12958-020-00677-x
– ident: 37
  doi: 10.1016/S0015-0282(02)04925-7
– ident: 42
  doi: 10.1080/15548627.2017.1327941
– ident: 55
  doi: 10.1016/j.febslet.2010.01.017
SSID ssj0033543
Score 2.492857
Snippet Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by a variety of clinical features, including anovulation, hyperandrogenism, and...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 863
SubjectTerms 1-Phosphatidylinositol 3-kinase
AKT protein
Autophagy
Excessive autophagy
Granulosa cells
Hydrogen peroxide
Infertility
Metformin
Ovarian granulosa cells
Ovaries
Ovulation
Oxidative stress
PI3K/AKT/mTOR
Polycystic ovary syndrome
Signal transduction
TOR protein
Title Metformin ameliorates polycystic ovary syndrome in a rat model by decreasing excessive autophagy in ovarian granulosa cells via the PI3K/AKT/mTOR pathway
URI https://www.jstage.jst.go.jp/article/endocrj/69/7/69_EJ21-0480/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/35228471
https://www.proquest.com/docview/2697153099
https://www.proquest.com/docview/2634851902
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Endocrine Journal, 2022, Vol.69(7), pp.863-875
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKQIgXxOcoDGQknqjS5ctx8gZCncbaboBa0bfISZzSqksm2gzKG38G_y13juN22kCDF7dyznGS-_l8d_adCXnFPJ4mIWMWl5ltYQ4pKxTMtlLuOY70MjdUUe_D4-Bw7B9N2KTV-rkdXbJKuumPK-NK_oerUAd8xSjZf-CsuSlUwH_gL5TAYSivxeOhXKHOOSs64lQuMNgevahn5WKdrjH_cqc8x01xTVYC9G2IDhDV59-g5pkprVH5C-R3jBjAjUSiwmwDog4JxFugEJjCpFYtyqXooK9_2TmfCaW0fnjv9TEpQ38E5eno5BOmav3yTVxYLu4VWZlinGFn-72Az5NKAazcOMzV7oLPspjPDOQGs0q7D6YbgamkJfxMt_0Wrrvlt6hFrYeuTFYna-rKK-q0fK6PctE45FvCNqxF46VJgKl9H1K92bzbO3KhYz-0NzNes8p_fBIfjAeDeNSbjG6Qmy5YGigq-x_NQpTnsTpGo3kwvTAOXexf6uCCanNrDtr9VP7ZcFEKzOgeuastD_q2htF90pLFA3J7qPdWPCS_DJroFproBk1UoYk2aKJISIGIKjTRZE03aKIGTdSgCRtoNFGDJqrQRAFNFNBEEU37gKV9RBLVSHpExge90btDSx_cYaUs9FZWwCMnFDyULHKSzM8yJ8zsxA9TJkJHRoHgOc_tNMlzL3QjH5P-Sbgu_JzlEZB4j8lOURbyCaE8cTzQ8oMEjxXIAyYYd7IgdVMBs1Ga8zaxm28epzqrPR6usojRugU2xZpNMbIpRja1yWvT5KxO6fI34jc1Iw2pHu2GNIhijoVpYigwbhLI2mSvgUCsB9kydoOIg7IB9lmbvDSXQbTjVxeFLCukAdSBhWW7bbJbQ8c8BdpNqFg-vUbrZ-TOZgDukZ3V10o-B1V6lbxQYP8NHv7Pmg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metformin+ameliorates+polycystic+ovary+syndrome+in+a+rat+model+by+decreasing+excessive+autophagy+in+ovarian+granulosa+cells+via+the+PI3K%2FAKT%2FmTOR+pathway&rft.jtitle=Endocrine+journal&rft.au=Xu%2C+Bo&rft.au=Dai%2C+Wenjie&rft.au=Liu%2C+Ling&rft.au=Han%2C+Hang&rft.date=2022-01-01&rft.issn=1348-4540&rft.eissn=1348-4540&rft.volume=69&rft.issue=7&rft.spage=863&rft_id=info:doi/10.1507%2Fendocrj.EJ21-0480&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-8959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-8959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-8959&client=summon