Targeting the carbohydrates on HIV-1: Interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN
It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4⁺ T cells such as lymph nodes. A cons...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 105; no. 10; pp. 3690 - 3695 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
11.03.2008
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4⁺ T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate-protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC₅₀ in the nanomolar range. A second-generation Man₉ dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent. |
---|---|
AbstractList | It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4... T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate-protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC... in the nanomolar range. A second-generation Man... dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent. (ProQuest: ... denotes formulae/symbols omitted.) It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4⁺ T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate-protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC₅₀ in the nanomolar range. A second-generation Man₉ dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent. It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4(+) T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate-protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC(50) in the nanomolar range. A second-generation Man(9) dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent.It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4(+) T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate-protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC(50) in the nanomolar range. A second-generation Man(9) dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent. It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4(+) T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate-protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC(50) in the nanomolar range. A second-generation Man(9) dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent. It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4 + T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate–protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC 50 in the nanomolar range. A second-generation Man 9 dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent. It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4 + T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate–protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC 50 in the nanomolar range. A second-generation Man 9 dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent. glycodendron high mannose multivalency HIV vaccine antiviral agent It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4 super(+) T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate-protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC sub(50) in the nanomolar range. A second-generation Man sub(9) dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent. It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4⁺ T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate-protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC₅₀ in the nanomolar range. A second-generation Man9 dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent. |
Author | Astronomo, Rena D Liang, Pi-Hui Wong, Chi-Huey Wang, Sheng-Kai Hsu, Tsui-Ling Hsieh, Shie-Liang Burton, Dennis R |
Author_xml | – sequence: 1 fullname: Wang, Sheng-Kai – sequence: 2 fullname: Liang, Pi-Hui – sequence: 3 fullname: Astronomo, Rena D – sequence: 4 fullname: Hsu, Tsui-Ling – sequence: 5 fullname: Hsieh, Shie-Liang – sequence: 6 fullname: Burton, Dennis R – sequence: 7 fullname: Wong, Chi-Huey |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18310320$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEUhUeoiD5gzQqwWCA2016_ZjwskFCANFIFi7ZsLY_tSSaa2MF2gPDrcZSQQCXoyvK93zn2fZwWR847WxRPMZxjqOnF0ql4DjUmlFQY-IPiBEODy4o1cFScAJC6FIyw4-I0xjkANFzAo-IYC4qBEjgpft6oMLWpd1OUZhZpFVo_W5ugko3IO3Q5-VLiN2jikg1Kpz6HfIf80E_9Qjnno0XGOhO8i-h7n2ZotspxtPDO68E7NSDlUt96s0ZkjEm-GfR-VF5Pxp8eFw87NUT7ZHeeFbcfP9yMLsurz-PJ6N1VqbmgqeSiZbUgtukqbbHilGhBhFaGQ2NI29G2U4YYW-G6Eq3BjLXKEk1yH2pjNKdnxdut73LVLqzR1qWgBrkM_UKFtfSql39nXD-TU_9NElIJASIbvNoZBP91ZWOSiz5qOwzKWb-Ksgba1IxX94Ks5oIBu9-RgKgocJbBl3fAuV-F3NYNgxnkZ0mGnv9Z4L6y31POAN8COvgYg-2k7pPaDDPX2w8Sg9xsk9xskzxsU9Zd3NHtrf-peL37yiZxoPlGQasGZLcahmR_pIy--D-aiWdbYh6TD3uEcFZhCvjg0Ckv1TT0Ud5e57ZQAFFDxWr6C9oq92g |
CitedBy_id | crossref_primary_10_1002_ejoc_202200113 crossref_primary_10_1016_j_foodchem_2020_128262 crossref_primary_10_1039_b815961k crossref_primary_10_1021_mp900159n crossref_primary_10_1038_ncomms2302 crossref_primary_10_1002_anie_201403186 crossref_primary_10_1016_j_carres_2019_107815 crossref_primary_10_3390_nano13111794 crossref_primary_10_1016_j_ijbiomac_2015_07_036 crossref_primary_10_3390_pharmaceutics15020524 crossref_primary_10_3934_molsci_2018_1_96 crossref_primary_10_1371_journal_pone_0073027 crossref_primary_10_1021_ja411212q crossref_primary_10_1002_ange_201100125 crossref_primary_10_1016_j_celrep_2017_02_003 crossref_primary_10_1245_s10434_009_0718_8 crossref_primary_10_1245_s10434_012_2393_4 crossref_primary_10_1002_ijc_24189 crossref_primary_10_1097_QAD_0b013e3283217f9f crossref_primary_10_1245_s10434_011_1597_3 crossref_primary_10_1021_ja3053305 crossref_primary_10_1039_c2cc30773a crossref_primary_10_1021_acs_bioconjchem_9b00526 crossref_primary_10_1021_bc200644d crossref_primary_10_1074_jbc_M109_021204 crossref_primary_10_1016_j_celrep_2017_07_050 crossref_primary_10_1245_s10434_010_0912_8 crossref_primary_10_1590_S1984_82502013000700009 crossref_primary_10_1016_j_bmc_2009_10_058 crossref_primary_10_1016_j_fbio_2024_105374 crossref_primary_10_1128_JVI_02820_12 crossref_primary_10_1021_jacs_1c03194 crossref_primary_10_1074_jbc_M109_011601 crossref_primary_10_1016_j_jecm_2011_10_008 crossref_primary_10_3390_molecules24193486 crossref_primary_10_1002_ejoc_200901122 crossref_primary_10_1126_science_1213256 crossref_primary_10_1002_ange_201500157 crossref_primary_10_1155_2019_4569718 crossref_primary_10_1021_bm1004788 crossref_primary_10_1039_D0OB01380C crossref_primary_10_1016_j_carres_2010_02_025 crossref_primary_10_1021_jacs_5b08844 crossref_primary_10_1002_anie_201003482 crossref_primary_10_1111_1574_6976_12052 crossref_primary_10_1021_cb300260p crossref_primary_10_1007_s11030_010_9285_y crossref_primary_10_1002_chem_201003402 crossref_primary_10_1021_acs_bioconjchem_9b00066 crossref_primary_10_1073_pnas_1002717107 crossref_primary_10_1007_s13277_013_1005_7 crossref_primary_10_1093_glycob_cww031 crossref_primary_10_1002_chem_201803317 crossref_primary_10_1039_c0ob01017k crossref_primary_10_1007_s13277_015_3668_8 crossref_primary_10_1021_acs_jmedchem_1c00818 crossref_primary_10_1002_cbic_201200119 crossref_primary_10_1021_la303484e crossref_primary_10_1002_ange_201003482 crossref_primary_10_1021_acs_langmuir_6b04021 crossref_primary_10_1002_cbic_201000567 crossref_primary_10_1016_j_ica_2013_06_017 crossref_primary_10_1002_anie_201500157 crossref_primary_10_1007_s13277_015_3157_0 crossref_primary_10_1016_j_cbpa_2010_02_016 crossref_primary_10_1128_JVI_01110_10 crossref_primary_10_1073_pnas_0807837105 crossref_primary_10_1002_anie_201100125 crossref_primary_10_1016_j_chembiol_2010_03_012 crossref_primary_10_1002_adfm_201910031 crossref_primary_10_1021_acs_bioconjchem_8b00731 crossref_primary_10_1128_JVI_00105_10 crossref_primary_10_1039_C9FD00021F crossref_primary_10_1021_acschembio_5b00302 crossref_primary_10_15406_jhvrv_2020_08_00227 crossref_primary_10_1002_cbic_201800742 crossref_primary_10_1245_s10434_011_1692_5 crossref_primary_10_1371_journal_pone_0035123 crossref_primary_10_1073_pnas_1222649110 crossref_primary_10_1097_COH_0b013e32832e6184 crossref_primary_10_1021_acsomega_6b00143 crossref_primary_10_1021_acssynbio_0c00210 crossref_primary_10_1093_glycob_cwp184 crossref_primary_10_1039_c1cc13213j crossref_primary_10_1021_cb900216e crossref_primary_10_1016_j_progpolymsci_2013_03_003 crossref_primary_10_1016_j_vaccine_2015_08_012 crossref_primary_10_3390_ph15101172 crossref_primary_10_1002_pat_3264 crossref_primary_10_1016_j_carres_2017_10_017 crossref_primary_10_1039_b819201d crossref_primary_10_1177_1535370216647811 crossref_primary_10_2217_nnm_11_151 crossref_primary_10_1245_s10434_011_2064_x crossref_primary_10_1089_aid_2013_0102 crossref_primary_10_1177_1010428317702649 crossref_primary_10_1021_acs_chemrev_1c01032 crossref_primary_10_1021_ja500678v crossref_primary_10_1021_cb900103n crossref_primary_10_1002_chem_202005065 crossref_primary_10_2174_0929867326666190104164653 crossref_primary_10_1039_b902510n crossref_primary_10_1002_chem_201204298 crossref_primary_10_1586_1744666X_2015_987663 crossref_primary_10_1002_ejoc_200901045 crossref_primary_10_1002_chem_201103318 crossref_primary_10_1039_c3cs60089k crossref_primary_10_4155_fmc_12_95 crossref_primary_10_1039_C4NJ01915F crossref_primary_10_1002_med_21405 crossref_primary_10_1586_erv_10_120 crossref_primary_10_1002_marc_202100083 crossref_primary_10_1002_chem_200900923 crossref_primary_10_1586_14760584_2015_1027690 crossref_primary_10_1039_C6OB01546H crossref_primary_10_1002_med_20216 crossref_primary_10_1016_j_colsurfb_2017_04_003 crossref_primary_10_1039_B901839P crossref_primary_10_1007_s13277_015_4751_x crossref_primary_10_3390_chemosensors7040055 crossref_primary_10_1002_chem_201303848 crossref_primary_10_1371_journal_ppat_1002209 crossref_primary_10_1245_s10434_010_1504_3 crossref_primary_10_1021_cr500303t crossref_primary_10_1016_j_carres_2014_07_012 crossref_primary_10_1016_j_bmc_2017_12_036 crossref_primary_10_1002_cmdc_202100348 crossref_primary_10_36233_0372_9311_2019_3_22_27 crossref_primary_10_1128_JVI_01349_10 crossref_primary_10_1039_C4CS00339J crossref_primary_10_1155_2013_164203 crossref_primary_10_1016_j_virol_2017_10_003 crossref_primary_10_1038_nrd3012 crossref_primary_10_1016_j_biomaterials_2014_01_014 crossref_primary_10_1371_journal_ppat_1002200 crossref_primary_10_1016_j_immuni_2017_03_017 crossref_primary_10_1007_s00418_016_1523_7 crossref_primary_10_1039_C6NR06431K crossref_primary_10_1002_cbic_200900294 crossref_primary_10_1039_C4BM00138A crossref_primary_10_1002_open_201600024 crossref_primary_10_1039_c3sc50862e crossref_primary_10_1039_C6RA20401E crossref_primary_10_1016_j_addr_2011_05_016 crossref_primary_10_1021_acs_joc_0c01597 crossref_primary_10_1021_acs_bioconjchem_8b00145 crossref_primary_10_18632_oncotarget_18989 crossref_primary_10_1128_JVI_02537_08 crossref_primary_10_1039_c0cc00830c crossref_primary_10_1007_s12010_009_8883_6 crossref_primary_10_1002_chem_201500831 crossref_primary_10_1351_pac_con_12_11_14 crossref_primary_10_1016_j_jconrel_2014_08_003 crossref_primary_10_1039_D1CC01281A crossref_primary_10_1093_intimm_dxs115 crossref_primary_10_1038_s41467_018_03245_5 crossref_primary_10_3389_fimmu_2024_1292588 crossref_primary_10_1002_cmdc_201500498 crossref_primary_10_1097_SLA_0b013e3181a6ce7e crossref_primary_10_1021_acs_macromol_7b00952 crossref_primary_10_1021_bc4000806 crossref_primary_10_1002_mas_20333 crossref_primary_10_1007_s13277_013_1024_4 crossref_primary_10_1002_cbic_202500106 crossref_primary_10_1016_j_chembiol_2013_09_010 crossref_primary_10_1002_bip_22329 crossref_primary_10_1128_JVI_06201_11 crossref_primary_10_1016_j_cbpa_2009_05_127 crossref_primary_10_4155_fmc_10_203 crossref_primary_10_1016_j_carres_2015_01_022 crossref_primary_10_1021_jo8008935 crossref_primary_10_1038_nature10373 crossref_primary_10_1002_ange_201403186 crossref_primary_10_1016_j_ijms_2010_11_009 crossref_primary_10_1007_s13277_013_0958_x crossref_primary_10_1007_s13277_015_4669_3 crossref_primary_10_1007_s13277_013_1056_9 crossref_primary_10_1016_j_tibtech_2016_01_004 crossref_primary_10_1002_ejoc_201100296 crossref_primary_10_1016_j_jmb_2011_03_042 crossref_primary_10_1073_pnas_1006498107 crossref_primary_10_1021_bi802151w crossref_primary_10_1039_D2CS00736C crossref_primary_10_1016_j_ddtec_2020_09_004 crossref_primary_10_1038_nchembio_1685 crossref_primary_10_1021_ja409097c crossref_primary_10_1007_s10719_010_9295_0 crossref_primary_10_1021_cr900341m crossref_primary_10_1007_s13277_015_4254_9 crossref_primary_10_1002_chem_201002052 crossref_primary_10_1039_C9NJ02564B crossref_primary_10_1016_j_cbpa_2013_10_001 crossref_primary_10_1021_bc200663r crossref_primary_10_1016_j_coi_2010_02_012 crossref_primary_10_1007_s13346_021_01103_4 crossref_primary_10_1021_acs_biomac_7b01193 crossref_primary_10_1002_chem_201102034 crossref_primary_10_1074_jbc_M114_550848 crossref_primary_10_1097_QAD_0b013e32834e1567 crossref_primary_10_1002_mabi_201400298 crossref_primary_10_1016_j_celrep_2022_110611 crossref_primary_10_1002_adfm_201200423 crossref_primary_10_1021_bm300998c crossref_primary_10_1016_j_addr_2013_05_007 crossref_primary_10_1002_ange_200903328 crossref_primary_10_1039_c2ob26432c crossref_primary_10_1002_anie_201105555 crossref_primary_10_1039_c1ob05573a crossref_primary_10_1016_j_tetlet_2015_01_016 crossref_primary_10_1016_j_msec_2018_03_002 crossref_primary_10_1245_s10434_011_2055_y crossref_primary_10_1021_jo801850f crossref_primary_10_1042_BA20100010 crossref_primary_10_1021_cr900157q crossref_primary_10_1039_C7MD00158D crossref_primary_10_1039_C2SC00767C crossref_primary_10_1002_ange_201105555 crossref_primary_10_1002_chem_201002871 crossref_primary_10_1021_acs_biochem_0c00732 crossref_primary_10_1021_acs_biomac_6b00685 crossref_primary_10_1039_C4MD00143E crossref_primary_10_1245_s10434_011_1598_2 crossref_primary_10_1245_s10434_011_2188_z crossref_primary_10_1002_cplu_202300598 crossref_primary_10_1002_anie_200903328 crossref_primary_10_1002_cbic_202000238 crossref_primary_10_1021_acsnano_7b08479 crossref_primary_10_1371_journal_ppat_1000433 crossref_primary_10_1002_chem_201002519 crossref_primary_10_1007_s13277_014_2257_6 crossref_primary_10_1002_cbic_202100321 crossref_primary_10_1039_c0ob00372g crossref_primary_10_1016_j_tet_2009_02_018 |
Cites_doi | 10.1002/anie.200353105 10.1038/nature05818 10.1021/bc0600620 10.1021/ja047720g 10.1038/nrmicro1707 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3 10.1002/cbic.200300669 10.4052/tigg.15.291 10.1021/cr030449l 10.1021/ja002596w 10.1002/bip.10597 10.1038/415081a 10.1021/ja049684r 10.1038/35001095 10.1073/pnas.0505763102 10.1038/nri1182 10.1126/science.2986291 10.1021/bc0502816 10.1128/JVI.76.20.10299-10306.2002 10.1126/science.318.5855.1360 10.1021/cr000418f 10.1021/ar00056a001 10.1002/anie.200502794 10.1021/ja074804r 10.1074/jbc.M104565200 10.1038/nri1960 10.1016/j.chembiol.2007.07.007 10.1021/ja072931h 10.1007/3-540-45010-6_7 10.1089/aid.1994.10.359 10.1016/j.chembiol.2003.12.020 10.1126/science.1083182 10.1128/jvi.70.2.1100-1108.1996 10.1126/science.1066371 10.1016/j.pbiomolbio.2004.05.001 10.1016/S0008-6215(00)84141-5 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4 10.1021/ma052448w 10.1128/JVI.76.14.7306-7321.2002 10.1038/nm0698-679 10.1016/S0092-8674(00)80694-7 10.1073/pnas.0407902101 10.1002/cbic.200700266 |
ContentType | Journal Article |
Copyright | Copyright 2008 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Mar 11, 2008 2008 by The National Academy of Sciences of the USA |
Copyright_xml | – notice: Copyright 2008 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Mar 11, 2008 – notice: 2008 by The National Academy of Sciences of the USA |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7QO 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0712326105 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Biotechnology Research Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology Research Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts AGRICOLA MEDLINE - Academic MEDLINE CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 3695 |
ExternalDocumentID | PMC2268808 1446307451 18310320 10_1073_pnas_0712326105 105_10_3690 25461301 US201300870647 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7QO 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c583t-58b4782e9f6ce1a532c828cad509d2bf3bfad2de61768bd144bae2c20917ddc53 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:45:22 EDT 2025 Fri Jul 11 06:02:16 EDT 2025 Fri Jul 11 11:31:51 EDT 2025 Fri Jul 11 08:42:22 EDT 2025 Mon Jun 30 08:41:44 EDT 2025 Wed Feb 19 02:32:18 EST 2025 Thu Apr 24 23:08:24 EDT 2025 Tue Jul 01 02:38:54 EDT 2025 Wed Nov 11 00:29:13 EST 2020 Thu May 30 08:50:29 EDT 2019 Thu May 29 08:42:52 EDT 2025 Wed Dec 27 19:17:00 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c583t-58b4782e9f6ce1a532c828cad509d2bf3bfad2de61768bd144bae2c20917ddc53 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: S.-K.W., D.R.B., and C.-H.W. designed research; S.-K.W., P.-H.L., R.D.A., and T.-L.H. performed research; S.-L.H. and D.R.B. contributed new reagents/analytic tools; P.-H.L., R.D.A., and T.-L.H. analyzed data; and S.-K.W., D.R.B., and C.-H.W. wrote the paper. Contributed by Chi-Huey Wong, December 31, 2007 |
OpenAccessLink | http://doi.org/10.1073/pnas.0712326105 |
PMID | 18310320 |
PQID | 201407452 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1073_pnas_0712326105 pubmed_primary_18310320 proquest_miscellaneous_47584048 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2268808 crossref_citationtrail_10_1073_pnas_0712326105 fao_agris_US201300870647 proquest_miscellaneous_20863054 pnas_primary_105_10_3690 jstor_primary_25461301 proquest_journals_201407452 pnas_primary_105_10_3690_fulltext proquest_miscellaneous_70397456 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-03-11 |
PublicationDateYYYYMMDD | 2008-03-11 |
PublicationDate_xml | – month: 03 year: 2008 text: 2008-03-11 day: 11 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2008 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 Turnbull WB (e_1_3_3_29_2) 2002; 90 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_14_2 doi: 10.1002/anie.200353105 – ident: e_1_3_3_42_2 doi: 10.1038/nature05818 – ident: e_1_3_3_34_2 doi: 10.1021/bc0600620 – ident: e_1_3_3_18_2 doi: 10.1021/ja047720g – ident: e_1_3_3_41_2 doi: 10.1038/nrmicro1707 – ident: e_1_3_3_16_2 doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3 – ident: e_1_3_3_32_2 doi: 10.1002/cbic.200300669 – ident: e_1_3_3_28_2 doi: 10.4052/tigg.15.291 – ident: e_1_3_3_39_2 doi: 10.1021/cr030449l – ident: e_1_3_3_31_2 doi: 10.1021/ja002596w – ident: e_1_3_3_37_2 doi: 10.1002/bip.10597 – ident: e_1_3_3_30_2 doi: 10.1038/415081a – ident: e_1_3_3_40_2 doi: 10.1021/ja049684r – ident: e_1_3_3_25_2 doi: 10.1038/35001095 – ident: e_1_3_3_15_2 doi: 10.1073/pnas.0505763102 – ident: e_1_3_3_10_2 doi: 10.1038/nri1182 – ident: e_1_3_3_2_2 doi: 10.1126/science.2986291 – ident: e_1_3_3_19_2 doi: 10.1021/bc0502816 – ident: e_1_3_3_4_2 doi: 10.1128/JVI.76.20.10299-10306.2002 – ident: e_1_3_3_1_2 doi: 10.1126/science.318.5855.1360 – ident: e_1_3_3_23_2 doi: 10.1021/cr000418f – ident: e_1_3_3_17_2 doi: 10.1021/ar00056a001 – ident: e_1_3_3_22_2 doi: 10.1002/anie.200502794 – ident: e_1_3_3_20_2 doi: 10.1021/ja074804r – ident: e_1_3_3_13_2 doi: 10.1074/jbc.M104565200 – ident: e_1_3_3_11_2 doi: 10.1038/nri1960 – ident: e_1_3_3_36_2 doi: 10.1016/j.chembiol.2007.07.007 – ident: e_1_3_3_21_2 doi: 10.1021/ja072931h – ident: e_1_3_3_24_2 doi: 10.1007/3-540-45010-6_7 – ident: e_1_3_3_5_2 doi: 10.1089/aid.1994.10.359 – ident: e_1_3_3_27_2 doi: 10.1016/j.chembiol.2003.12.020 – ident: e_1_3_3_8_2 doi: 10.1126/science.1083182 – ident: e_1_3_3_6_2 doi: 10.1128/jvi.70.2.1100-1108.1996 – ident: e_1_3_3_12_2 doi: 10.1126/science.1066371 – ident: e_1_3_3_43_2 doi: 10.1016/j.pbiomolbio.2004.05.001 – ident: e_1_3_3_26_2 doi: 10.1016/S0008-6215(00)84141-5 – ident: e_1_3_3_38_2 doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4 – ident: e_1_3_3_33_2 doi: 10.1021/ma052448w – volume: 90 start-page: 231 year: 2002 ident: e_1_3_3_29_2 article-title: Design and synthesis of glycodendrimers. publication-title: J Biotechnol – ident: e_1_3_3_7_2 doi: 10.1128/JVI.76.14.7306-7321.2002 – ident: e_1_3_3_3_2 doi: 10.1038/nm0698-679 – ident: e_1_3_3_9_2 doi: 10.1016/S0092-8674(00)80694-7 – ident: e_1_3_3_44_2 doi: 10.1073/pnas.0407902101 – ident: e_1_3_3_35_2 doi: 10.1002/cbic.200700266 |
SSID | ssj0009580 |
Score | 2.4084136 |
Snippet | It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3690 |
SubjectTerms | Antibodies Antibodies, Monoclonal - metabolism Antiviral agents Antivirals Biochemistry Biological Sciences Carbohydrate Metabolism Carbohydrates CD4-positive T-lymphocytes Cell Adhesion Molecules - metabolism Dendrimers Dendrimers - chemical synthesis Dendrimers - chemistry Dendrimers - metabolism dendritic cells epitopes Flow Cytometry Glycoproteins Glycosylation HIV HIV 1 HIV-1 - metabolism Human immunodeficiency virus Human immunodeficiency virus 1 Humans Immune system Infections Inhibitory concentration 50 Jurkat Cells lectins Lectins, C-Type - metabolism Ligands Lymph nodes Mannose - chemical synthesis Mannose - chemistry Mannose - metabolism microarray technology monoclonal antibodies Physical Sciences Polymers - chemistry Polymers - metabolism Polysaccharides Receptors, Cell Surface - metabolism Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization T cell receptors T lymphocytes Vaccination vaccine development Vaccines viruses |
Title | Targeting the carbohydrates on HIV-1: Interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN |
URI | https://www.jstor.org/stable/25461301 http://www.pnas.org/content/105/10/3690.abstract https://www.ncbi.nlm.nih.gov/pubmed/18310320 https://www.proquest.com/docview/201407452 https://www.proquest.com/docview/20863054 https://www.proquest.com/docview/47584048 https://www.proquest.com/docview/70397456 https://pubmed.ncbi.nlm.nih.gov/PMC2268808 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa68cILYsBYNi5G4mFo8kicOMl4qyZYB6iqtA32FtlOskVqk6lpH7YfxO_k2LGTdKwS8BK18SVtzpdzcT6fg9B7wSVjEh5ACBVyAghhREjmEgYSzr2c577QBNlxOLoIvl6yy8HgV4-1tFyIQ3n34L6S_5EqnAO5ql2y_yDZdlI4AZ9BvnAECcPx72Ssadx2w5Pkc1Fd36Yq-YN-CTA6_UE8FfLrZT9TFBycw2paXFUzXpaKqw56J50rvoxekW1K9sEfqORUrxHCjS9Eld4e0BOPNrzlY3J2ejLue7WT1grWlnMwtouMw27LitEj9QE5mIy7Asg_7ZL1dVZekW-8aElChWmZFGS0bE8Pa7V8X82qBh4l71jLo3qpAVgvC_LdGmW7pqE3-RmdmzV6GNwYEgZNJdFWUbusj0i3p3f9sOn6h0EADaaqGJe8VqkYwX0MzSw9eNzMND48XXONup1lbPmKtmkDPaIQjmgC6aif3Dl2bdqoyP9472oqL60Zv-L8bOS8sixYlVoXRj0U5txn6_bcn_On6ImJW_CwAeEWGmTlM7RlJYr3TfryD8_RXYtKDEDAK6jEVYk1Kj_hHiZxleM-JrHFJFaYxBqTuMMktpjECpPwLcUGky_QxZfP58cjYip8EMlif0FYLAJwUbOjPJSZx5lPZUxjwCW4sSkVoChyntI0Azc7jEUKwb_gGZUU0BGlqWT-NtosqzLbQRiGqVIM3E29OADNJIJQRJHwpc8DN3eZgw7trU-kSX-vqrBME03DiPxECSDpxOag_XbATZP5ZX3XHZBlwq_ALicXZ1SxAVxFIAgiB21rAbdTqPoT0OzBGD1LNzVT0ysgO-jduqYkN5QwB-1ZpCRGI9UJVcslUcCog962rWAu1DtAXmbVUnWJQzDxwfoeQQQxCdj19T3gPh_BVUIHvWyQ2f1Sg3MHRSuYbTuoZParLWVxrZPaQxgIrkS8u3bOPfS4UxWv0OZivsxeQ0CwEG_00_gbLIAHtQ |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+the+carbohydrates+on+HIV-1%3A+Interaction+of+oligomannose+dendrons+with+human+monoclonal+antibody+2G12+and+DC-SIGN&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Sheng-Kai&rft.au=Liang%2C+Pi-Hui&rft.au=Astronomo%2C+Rena+D&rft.au=Hsu%2C+Tsui-Ling&rft.date=2008-03-11&rft.eissn=1091-6490&rft.volume=105&rft.issue=10&rft.spage=3690&rft_id=info:doi/10.1073%2Fpnas.0712326105&rft_id=info%3Apmid%2F18310320&rft.externalDocID=18310320 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F10.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F10.cover.gif |