Targeting the carbohydrates on HIV-1: Interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN

It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4⁺ T cells such as lymph nodes. A cons...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 105; no. 10; pp. 3690 - 3695
Main Authors Wang, Sheng-Kai, Liang, Pi-Hui, Astronomo, Rena D, Hsu, Tsui-Ling, Hsieh, Shie-Liang, Burton, Dennis R, Wong, Chi-Huey
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 11.03.2008
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4⁺ T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate-protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC₅₀ in the nanomolar range. A second-generation Man₉ dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent.
AbstractList It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4... T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate-protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC... in the nanomolar range. A second-generation Man... dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent. (ProQuest: ... denotes formulae/symbols omitted.)
It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4⁺ T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate-protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC₅₀ in the nanomolar range. A second-generation Man₉ dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent.
It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4(+) T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate-protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC(50) in the nanomolar range. A second-generation Man(9) dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent.It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4(+) T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate-protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC(50) in the nanomolar range. A second-generation Man(9) dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent.
It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4(+) T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate-protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC(50) in the nanomolar range. A second-generation Man(9) dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent.
It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4 + T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate–protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC 50 in the nanomolar range. A second-generation Man 9 dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent.
It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4 + T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate–protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC 50 in the nanomolar range. A second-generation Man 9 dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent. glycodendron high mannose multivalency HIV vaccine antiviral agent
It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4 super(+) T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate-protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC sub(50) in the nanomolar range. A second-generation Man sub(9) dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent.
It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system and may promote infection in vivo by interaction with dendritic cells and transport to tissue rich in CD4⁺ T cells such as lymph nodes. A conserved cluster of oligomannose glycans on gp120 has been identified as the epitope recognized by the broadly HIV-1-neutralizing monoclonal antibody 2G12. Oligomannose glycans are also the ligands for DC-SIGN, a C-type lectin found on the surface of dendritic cells. Multivalency is fundamental for carbohydrate-protein interactions, and mimicking of the high glycan density on the virus surface has become essential for designing carbohydrate-based HIV vaccines and antiviral agents. We report an efficient synthesis of oligomannose dendrons, which display multivalent oligomannoses in high density, and characterize their interaction with 2G12 and DC-SIGN by a glycan microarray binding assay. The solution and the surface binding analysis of 2G12 to a prototype oligomannose dendron clearly demonstrated the efficacy of dendrimeric display. We further showed that these glycodendrons inhibit the binding of gp120 to 2G12 and recombinant dimeric DC-SIGN with IC₅₀ in the nanomolar range. A second-generation Man9 dendron was identified as a potential immunogen for HIV vaccine development and as a potential antiviral agent.
Author Astronomo, Rena D
Liang, Pi-Hui
Wong, Chi-Huey
Wang, Sheng-Kai
Hsu, Tsui-Ling
Hsieh, Shie-Liang
Burton, Dennis R
Author_xml – sequence: 1
  fullname: Wang, Sheng-Kai
– sequence: 2
  fullname: Liang, Pi-Hui
– sequence: 3
  fullname: Astronomo, Rena D
– sequence: 4
  fullname: Hsu, Tsui-Ling
– sequence: 5
  fullname: Hsieh, Shie-Liang
– sequence: 6
  fullname: Burton, Dennis R
– sequence: 7
  fullname: Wong, Chi-Huey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18310320$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEUhUeoiD5gzQqwWCA2016_ZjwskFCANFIFi7ZsLY_tSSaa2MF2gPDrcZSQQCXoyvK93zn2fZwWR847WxRPMZxjqOnF0ql4DjUmlFQY-IPiBEODy4o1cFScAJC6FIyw4-I0xjkANFzAo-IYC4qBEjgpft6oMLWpd1OUZhZpFVo_W5ugko3IO3Q5-VLiN2jikg1Kpz6HfIf80E_9Qjnno0XGOhO8i-h7n2ZotspxtPDO68E7NSDlUt96s0ZkjEm-GfR-VF5Pxp8eFw87NUT7ZHeeFbcfP9yMLsurz-PJ6N1VqbmgqeSiZbUgtukqbbHilGhBhFaGQ2NI29G2U4YYW-G6Eq3BjLXKEk1yH2pjNKdnxdut73LVLqzR1qWgBrkM_UKFtfSql39nXD-TU_9NElIJASIbvNoZBP91ZWOSiz5qOwzKWb-Ksgba1IxX94Ks5oIBu9-RgKgocJbBl3fAuV-F3NYNgxnkZ0mGnv9Z4L6y31POAN8COvgYg-2k7pPaDDPX2w8Sg9xsk9xskzxsU9Zd3NHtrf-peL37yiZxoPlGQasGZLcahmR_pIy--D-aiWdbYh6TD3uEcFZhCvjg0Ckv1TT0Ud5e57ZQAFFDxWr6C9oq92g
CitedBy_id crossref_primary_10_1002_ejoc_202200113
crossref_primary_10_1016_j_foodchem_2020_128262
crossref_primary_10_1039_b815961k
crossref_primary_10_1021_mp900159n
crossref_primary_10_1038_ncomms2302
crossref_primary_10_1002_anie_201403186
crossref_primary_10_1016_j_carres_2019_107815
crossref_primary_10_3390_nano13111794
crossref_primary_10_1016_j_ijbiomac_2015_07_036
crossref_primary_10_3390_pharmaceutics15020524
crossref_primary_10_3934_molsci_2018_1_96
crossref_primary_10_1371_journal_pone_0073027
crossref_primary_10_1021_ja411212q
crossref_primary_10_1002_ange_201100125
crossref_primary_10_1016_j_celrep_2017_02_003
crossref_primary_10_1245_s10434_009_0718_8
crossref_primary_10_1245_s10434_012_2393_4
crossref_primary_10_1002_ijc_24189
crossref_primary_10_1097_QAD_0b013e3283217f9f
crossref_primary_10_1245_s10434_011_1597_3
crossref_primary_10_1021_ja3053305
crossref_primary_10_1039_c2cc30773a
crossref_primary_10_1021_acs_bioconjchem_9b00526
crossref_primary_10_1021_bc200644d
crossref_primary_10_1074_jbc_M109_021204
crossref_primary_10_1016_j_celrep_2017_07_050
crossref_primary_10_1245_s10434_010_0912_8
crossref_primary_10_1590_S1984_82502013000700009
crossref_primary_10_1016_j_bmc_2009_10_058
crossref_primary_10_1016_j_fbio_2024_105374
crossref_primary_10_1128_JVI_02820_12
crossref_primary_10_1021_jacs_1c03194
crossref_primary_10_1074_jbc_M109_011601
crossref_primary_10_1016_j_jecm_2011_10_008
crossref_primary_10_3390_molecules24193486
crossref_primary_10_1002_ejoc_200901122
crossref_primary_10_1126_science_1213256
crossref_primary_10_1002_ange_201500157
crossref_primary_10_1155_2019_4569718
crossref_primary_10_1021_bm1004788
crossref_primary_10_1039_D0OB01380C
crossref_primary_10_1016_j_carres_2010_02_025
crossref_primary_10_1021_jacs_5b08844
crossref_primary_10_1002_anie_201003482
crossref_primary_10_1111_1574_6976_12052
crossref_primary_10_1021_cb300260p
crossref_primary_10_1007_s11030_010_9285_y
crossref_primary_10_1002_chem_201003402
crossref_primary_10_1021_acs_bioconjchem_9b00066
crossref_primary_10_1073_pnas_1002717107
crossref_primary_10_1007_s13277_013_1005_7
crossref_primary_10_1093_glycob_cww031
crossref_primary_10_1002_chem_201803317
crossref_primary_10_1039_c0ob01017k
crossref_primary_10_1007_s13277_015_3668_8
crossref_primary_10_1021_acs_jmedchem_1c00818
crossref_primary_10_1002_cbic_201200119
crossref_primary_10_1021_la303484e
crossref_primary_10_1002_ange_201003482
crossref_primary_10_1021_acs_langmuir_6b04021
crossref_primary_10_1002_cbic_201000567
crossref_primary_10_1016_j_ica_2013_06_017
crossref_primary_10_1002_anie_201500157
crossref_primary_10_1007_s13277_015_3157_0
crossref_primary_10_1016_j_cbpa_2010_02_016
crossref_primary_10_1128_JVI_01110_10
crossref_primary_10_1073_pnas_0807837105
crossref_primary_10_1002_anie_201100125
crossref_primary_10_1016_j_chembiol_2010_03_012
crossref_primary_10_1002_adfm_201910031
crossref_primary_10_1021_acs_bioconjchem_8b00731
crossref_primary_10_1128_JVI_00105_10
crossref_primary_10_1039_C9FD00021F
crossref_primary_10_1021_acschembio_5b00302
crossref_primary_10_15406_jhvrv_2020_08_00227
crossref_primary_10_1002_cbic_201800742
crossref_primary_10_1245_s10434_011_1692_5
crossref_primary_10_1371_journal_pone_0035123
crossref_primary_10_1073_pnas_1222649110
crossref_primary_10_1097_COH_0b013e32832e6184
crossref_primary_10_1021_acsomega_6b00143
crossref_primary_10_1021_acssynbio_0c00210
crossref_primary_10_1093_glycob_cwp184
crossref_primary_10_1039_c1cc13213j
crossref_primary_10_1021_cb900216e
crossref_primary_10_1016_j_progpolymsci_2013_03_003
crossref_primary_10_1016_j_vaccine_2015_08_012
crossref_primary_10_3390_ph15101172
crossref_primary_10_1002_pat_3264
crossref_primary_10_1016_j_carres_2017_10_017
crossref_primary_10_1039_b819201d
crossref_primary_10_1177_1535370216647811
crossref_primary_10_2217_nnm_11_151
crossref_primary_10_1245_s10434_011_2064_x
crossref_primary_10_1089_aid_2013_0102
crossref_primary_10_1177_1010428317702649
crossref_primary_10_1021_acs_chemrev_1c01032
crossref_primary_10_1021_ja500678v
crossref_primary_10_1021_cb900103n
crossref_primary_10_1002_chem_202005065
crossref_primary_10_2174_0929867326666190104164653
crossref_primary_10_1039_b902510n
crossref_primary_10_1002_chem_201204298
crossref_primary_10_1586_1744666X_2015_987663
crossref_primary_10_1002_ejoc_200901045
crossref_primary_10_1002_chem_201103318
crossref_primary_10_1039_c3cs60089k
crossref_primary_10_4155_fmc_12_95
crossref_primary_10_1039_C4NJ01915F
crossref_primary_10_1002_med_21405
crossref_primary_10_1586_erv_10_120
crossref_primary_10_1002_marc_202100083
crossref_primary_10_1002_chem_200900923
crossref_primary_10_1586_14760584_2015_1027690
crossref_primary_10_1039_C6OB01546H
crossref_primary_10_1002_med_20216
crossref_primary_10_1016_j_colsurfb_2017_04_003
crossref_primary_10_1039_B901839P
crossref_primary_10_1007_s13277_015_4751_x
crossref_primary_10_3390_chemosensors7040055
crossref_primary_10_1002_chem_201303848
crossref_primary_10_1371_journal_ppat_1002209
crossref_primary_10_1245_s10434_010_1504_3
crossref_primary_10_1021_cr500303t
crossref_primary_10_1016_j_carres_2014_07_012
crossref_primary_10_1016_j_bmc_2017_12_036
crossref_primary_10_1002_cmdc_202100348
crossref_primary_10_36233_0372_9311_2019_3_22_27
crossref_primary_10_1128_JVI_01349_10
crossref_primary_10_1039_C4CS00339J
crossref_primary_10_1155_2013_164203
crossref_primary_10_1016_j_virol_2017_10_003
crossref_primary_10_1038_nrd3012
crossref_primary_10_1016_j_biomaterials_2014_01_014
crossref_primary_10_1371_journal_ppat_1002200
crossref_primary_10_1016_j_immuni_2017_03_017
crossref_primary_10_1007_s00418_016_1523_7
crossref_primary_10_1039_C6NR06431K
crossref_primary_10_1002_cbic_200900294
crossref_primary_10_1039_C4BM00138A
crossref_primary_10_1002_open_201600024
crossref_primary_10_1039_c3sc50862e
crossref_primary_10_1039_C6RA20401E
crossref_primary_10_1016_j_addr_2011_05_016
crossref_primary_10_1021_acs_joc_0c01597
crossref_primary_10_1021_acs_bioconjchem_8b00145
crossref_primary_10_18632_oncotarget_18989
crossref_primary_10_1128_JVI_02537_08
crossref_primary_10_1039_c0cc00830c
crossref_primary_10_1007_s12010_009_8883_6
crossref_primary_10_1002_chem_201500831
crossref_primary_10_1351_pac_con_12_11_14
crossref_primary_10_1016_j_jconrel_2014_08_003
crossref_primary_10_1039_D1CC01281A
crossref_primary_10_1093_intimm_dxs115
crossref_primary_10_1038_s41467_018_03245_5
crossref_primary_10_3389_fimmu_2024_1292588
crossref_primary_10_1002_cmdc_201500498
crossref_primary_10_1097_SLA_0b013e3181a6ce7e
crossref_primary_10_1021_acs_macromol_7b00952
crossref_primary_10_1021_bc4000806
crossref_primary_10_1002_mas_20333
crossref_primary_10_1007_s13277_013_1024_4
crossref_primary_10_1002_cbic_202500106
crossref_primary_10_1016_j_chembiol_2013_09_010
crossref_primary_10_1002_bip_22329
crossref_primary_10_1128_JVI_06201_11
crossref_primary_10_1016_j_cbpa_2009_05_127
crossref_primary_10_4155_fmc_10_203
crossref_primary_10_1016_j_carres_2015_01_022
crossref_primary_10_1021_jo8008935
crossref_primary_10_1038_nature10373
crossref_primary_10_1002_ange_201403186
crossref_primary_10_1016_j_ijms_2010_11_009
crossref_primary_10_1007_s13277_013_0958_x
crossref_primary_10_1007_s13277_015_4669_3
crossref_primary_10_1007_s13277_013_1056_9
crossref_primary_10_1016_j_tibtech_2016_01_004
crossref_primary_10_1002_ejoc_201100296
crossref_primary_10_1016_j_jmb_2011_03_042
crossref_primary_10_1073_pnas_1006498107
crossref_primary_10_1021_bi802151w
crossref_primary_10_1039_D2CS00736C
crossref_primary_10_1016_j_ddtec_2020_09_004
crossref_primary_10_1038_nchembio_1685
crossref_primary_10_1021_ja409097c
crossref_primary_10_1007_s10719_010_9295_0
crossref_primary_10_1021_cr900341m
crossref_primary_10_1007_s13277_015_4254_9
crossref_primary_10_1002_chem_201002052
crossref_primary_10_1039_C9NJ02564B
crossref_primary_10_1016_j_cbpa_2013_10_001
crossref_primary_10_1021_bc200663r
crossref_primary_10_1016_j_coi_2010_02_012
crossref_primary_10_1007_s13346_021_01103_4
crossref_primary_10_1021_acs_biomac_7b01193
crossref_primary_10_1002_chem_201102034
crossref_primary_10_1074_jbc_M114_550848
crossref_primary_10_1097_QAD_0b013e32834e1567
crossref_primary_10_1002_mabi_201400298
crossref_primary_10_1016_j_celrep_2022_110611
crossref_primary_10_1002_adfm_201200423
crossref_primary_10_1021_bm300998c
crossref_primary_10_1016_j_addr_2013_05_007
crossref_primary_10_1002_ange_200903328
crossref_primary_10_1039_c2ob26432c
crossref_primary_10_1002_anie_201105555
crossref_primary_10_1039_c1ob05573a
crossref_primary_10_1016_j_tetlet_2015_01_016
crossref_primary_10_1016_j_msec_2018_03_002
crossref_primary_10_1245_s10434_011_2055_y
crossref_primary_10_1021_jo801850f
crossref_primary_10_1042_BA20100010
crossref_primary_10_1021_cr900157q
crossref_primary_10_1039_C7MD00158D
crossref_primary_10_1039_C2SC00767C
crossref_primary_10_1002_ange_201105555
crossref_primary_10_1002_chem_201002871
crossref_primary_10_1021_acs_biochem_0c00732
crossref_primary_10_1021_acs_biomac_6b00685
crossref_primary_10_1039_C4MD00143E
crossref_primary_10_1245_s10434_011_1598_2
crossref_primary_10_1245_s10434_011_2188_z
crossref_primary_10_1002_cplu_202300598
crossref_primary_10_1002_anie_200903328
crossref_primary_10_1002_cbic_202000238
crossref_primary_10_1021_acsnano_7b08479
crossref_primary_10_1371_journal_ppat_1000433
crossref_primary_10_1002_chem_201002519
crossref_primary_10_1007_s13277_014_2257_6
crossref_primary_10_1002_cbic_202100321
crossref_primary_10_1039_c0ob00372g
crossref_primary_10_1016_j_tet_2009_02_018
Cites_doi 10.1002/anie.200353105
10.1038/nature05818
10.1021/bc0600620
10.1021/ja047720g
10.1038/nrmicro1707
10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3
10.1002/cbic.200300669
10.4052/tigg.15.291
10.1021/cr030449l
10.1021/ja002596w
10.1002/bip.10597
10.1038/415081a
10.1021/ja049684r
10.1038/35001095
10.1073/pnas.0505763102
10.1038/nri1182
10.1126/science.2986291
10.1021/bc0502816
10.1128/JVI.76.20.10299-10306.2002
10.1126/science.318.5855.1360
10.1021/cr000418f
10.1021/ar00056a001
10.1002/anie.200502794
10.1021/ja074804r
10.1074/jbc.M104565200
10.1038/nri1960
10.1016/j.chembiol.2007.07.007
10.1021/ja072931h
10.1007/3-540-45010-6_7
10.1089/aid.1994.10.359
10.1016/j.chembiol.2003.12.020
10.1126/science.1083182
10.1128/jvi.70.2.1100-1108.1996
10.1126/science.1066371
10.1016/j.pbiomolbio.2004.05.001
10.1016/S0008-6215(00)84141-5
10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
10.1021/ma052448w
10.1128/JVI.76.14.7306-7321.2002
10.1038/nm0698-679
10.1016/S0092-8674(00)80694-7
10.1073/pnas.0407902101
10.1002/cbic.200700266
ContentType Journal Article
Copyright Copyright 2008 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Mar 11, 2008
2008 by The National Academy of Sciences of the USA
Copyright_xml – notice: Copyright 2008 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Mar 11, 2008
– notice: 2008 by The National Academy of Sciences of the USA
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7QO
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0712326105
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology Research Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
AGRICOLA
MEDLINE - Academic
MEDLINE
CrossRef


Virology and AIDS Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 3695
ExternalDocumentID PMC2268808
1446307451
18310320
10_1073_pnas_0712326105
105_10_3690
25461301
US201300870647
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7QO
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c583t-58b4782e9f6ce1a532c828cad509d2bf3bfad2de61768bd144bae2c20917ddc53
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:45:22 EDT 2025
Fri Jul 11 06:02:16 EDT 2025
Fri Jul 11 11:31:51 EDT 2025
Fri Jul 11 08:42:22 EDT 2025
Mon Jun 30 08:41:44 EDT 2025
Wed Feb 19 02:32:18 EST 2025
Thu Apr 24 23:08:24 EDT 2025
Tue Jul 01 02:38:54 EDT 2025
Wed Nov 11 00:29:13 EST 2020
Thu May 30 08:50:29 EDT 2019
Thu May 29 08:42:52 EDT 2025
Wed Dec 27 19:17:00 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c583t-58b4782e9f6ce1a532c828cad509d2bf3bfad2de61768bd144bae2c20917ddc53
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: S.-K.W., D.R.B., and C.-H.W. designed research; S.-K.W., P.-H.L., R.D.A., and T.-L.H. performed research; S.-L.H. and D.R.B. contributed new reagents/analytic tools; P.-H.L., R.D.A., and T.-L.H. analyzed data; and S.-K.W., D.R.B., and C.-H.W. wrote the paper.
Contributed by Chi-Huey Wong, December 31, 2007
OpenAccessLink http://doi.org/10.1073/pnas.0712326105
PMID 18310320
PQID 201407452
PQPubID 42026
PageCount 6
ParticipantIDs crossref_primary_10_1073_pnas_0712326105
pubmed_primary_18310320
proquest_miscellaneous_47584048
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2268808
crossref_citationtrail_10_1073_pnas_0712326105
fao_agris_US201300870647
proquest_miscellaneous_20863054
pnas_primary_105_10_3690
jstor_primary_25461301
proquest_journals_201407452
pnas_primary_105_10_3690_fulltext
proquest_miscellaneous_70397456
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-03-11
PublicationDateYYYYMMDD 2008-03-11
PublicationDate_xml – month: 03
  year: 2008
  text: 2008-03-11
  day: 11
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2008
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
Turnbull WB (e_1_3_3_29_2) 2002; 90
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_14_2
  doi: 10.1002/anie.200353105
– ident: e_1_3_3_42_2
  doi: 10.1038/nature05818
– ident: e_1_3_3_34_2
  doi: 10.1021/bc0600620
– ident: e_1_3_3_18_2
  doi: 10.1021/ja047720g
– ident: e_1_3_3_41_2
  doi: 10.1038/nrmicro1707
– ident: e_1_3_3_16_2
  doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3
– ident: e_1_3_3_32_2
  doi: 10.1002/cbic.200300669
– ident: e_1_3_3_28_2
  doi: 10.4052/tigg.15.291
– ident: e_1_3_3_39_2
  doi: 10.1021/cr030449l
– ident: e_1_3_3_31_2
  doi: 10.1021/ja002596w
– ident: e_1_3_3_37_2
  doi: 10.1002/bip.10597
– ident: e_1_3_3_30_2
  doi: 10.1038/415081a
– ident: e_1_3_3_40_2
  doi: 10.1021/ja049684r
– ident: e_1_3_3_25_2
  doi: 10.1038/35001095
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.0505763102
– ident: e_1_3_3_10_2
  doi: 10.1038/nri1182
– ident: e_1_3_3_2_2
  doi: 10.1126/science.2986291
– ident: e_1_3_3_19_2
  doi: 10.1021/bc0502816
– ident: e_1_3_3_4_2
  doi: 10.1128/JVI.76.20.10299-10306.2002
– ident: e_1_3_3_1_2
  doi: 10.1126/science.318.5855.1360
– ident: e_1_3_3_23_2
  doi: 10.1021/cr000418f
– ident: e_1_3_3_17_2
  doi: 10.1021/ar00056a001
– ident: e_1_3_3_22_2
  doi: 10.1002/anie.200502794
– ident: e_1_3_3_20_2
  doi: 10.1021/ja074804r
– ident: e_1_3_3_13_2
  doi: 10.1074/jbc.M104565200
– ident: e_1_3_3_11_2
  doi: 10.1038/nri1960
– ident: e_1_3_3_36_2
  doi: 10.1016/j.chembiol.2007.07.007
– ident: e_1_3_3_21_2
  doi: 10.1021/ja072931h
– ident: e_1_3_3_24_2
  doi: 10.1007/3-540-45010-6_7
– ident: e_1_3_3_5_2
  doi: 10.1089/aid.1994.10.359
– ident: e_1_3_3_27_2
  doi: 10.1016/j.chembiol.2003.12.020
– ident: e_1_3_3_8_2
  doi: 10.1126/science.1083182
– ident: e_1_3_3_6_2
  doi: 10.1128/jvi.70.2.1100-1108.1996
– ident: e_1_3_3_12_2
  doi: 10.1126/science.1066371
– ident: e_1_3_3_43_2
  doi: 10.1016/j.pbiomolbio.2004.05.001
– ident: e_1_3_3_26_2
  doi: 10.1016/S0008-6215(00)84141-5
– ident: e_1_3_3_38_2
  doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
– ident: e_1_3_3_33_2
  doi: 10.1021/ma052448w
– volume: 90
  start-page: 231
  year: 2002
  ident: e_1_3_3_29_2
  article-title: Design and synthesis of glycodendrimers.
  publication-title: J Biotechnol
– ident: e_1_3_3_7_2
  doi: 10.1128/JVI.76.14.7306-7321.2002
– ident: e_1_3_3_3_2
  doi: 10.1038/nm0698-679
– ident: e_1_3_3_9_2
  doi: 10.1016/S0092-8674(00)80694-7
– ident: e_1_3_3_44_2
  doi: 10.1073/pnas.0407902101
– ident: e_1_3_3_35_2
  doi: 10.1002/cbic.200700266
SSID ssj0009580
Score 2.4084136
Snippet It is widely accepted that the heavily glycosylated glycoprotein gp120 on the surface of HIV-1 shields peptide epitopes from recognition by the immune system...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3690
SubjectTerms Antibodies
Antibodies, Monoclonal - metabolism
Antiviral agents
Antivirals
Biochemistry
Biological Sciences
Carbohydrate Metabolism
Carbohydrates
CD4-positive T-lymphocytes
Cell Adhesion Molecules - metabolism
Dendrimers
Dendrimers - chemical synthesis
Dendrimers - chemistry
Dendrimers - metabolism
dendritic cells
epitopes
Flow Cytometry
Glycoproteins
Glycosylation
HIV
HIV 1
HIV-1 - metabolism
Human immunodeficiency virus
Human immunodeficiency virus 1
Humans
Immune system
Infections
Inhibitory concentration 50
Jurkat Cells
lectins
Lectins, C-Type - metabolism
Ligands
Lymph nodes
Mannose - chemical synthesis
Mannose - chemistry
Mannose - metabolism
microarray technology
monoclonal antibodies
Physical Sciences
Polymers - chemistry
Polymers - metabolism
Polysaccharides
Receptors, Cell Surface - metabolism
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
T cell receptors
T lymphocytes
Vaccination
vaccine development
Vaccines
viruses
Title Targeting the carbohydrates on HIV-1: Interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN
URI https://www.jstor.org/stable/25461301
http://www.pnas.org/content/105/10/3690.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18310320
https://www.proquest.com/docview/201407452
https://www.proquest.com/docview/20863054
https://www.proquest.com/docview/47584048
https://www.proquest.com/docview/70397456
https://pubmed.ncbi.nlm.nih.gov/PMC2268808
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa68cILYsBYNi5G4mFo8kicOMl4qyZYB6iqtA32FtlOskVqk6lpH7YfxO_k2LGTdKwS8BK18SVtzpdzcT6fg9B7wSVjEh5ACBVyAghhREjmEgYSzr2c577QBNlxOLoIvl6yy8HgV4-1tFyIQ3n34L6S_5EqnAO5ql2y_yDZdlI4AZ9BvnAECcPx72Ssadx2w5Pkc1Fd36Yq-YN-CTA6_UE8FfLrZT9TFBycw2paXFUzXpaKqw56J50rvoxekW1K9sEfqORUrxHCjS9Eld4e0BOPNrzlY3J2ejLue7WT1grWlnMwtouMw27LitEj9QE5mIy7Asg_7ZL1dVZekW-8aElChWmZFGS0bE8Pa7V8X82qBh4l71jLo3qpAVgvC_LdGmW7pqE3-RmdmzV6GNwYEgZNJdFWUbusj0i3p3f9sOn6h0EADaaqGJe8VqkYwX0MzSw9eNzMND48XXONup1lbPmKtmkDPaIQjmgC6aif3Dl2bdqoyP9472oqL60Zv-L8bOS8sixYlVoXRj0U5txn6_bcn_On6ImJW_CwAeEWGmTlM7RlJYr3TfryD8_RXYtKDEDAK6jEVYk1Kj_hHiZxleM-JrHFJFaYxBqTuMMktpjECpPwLcUGky_QxZfP58cjYip8EMlif0FYLAJwUbOjPJSZx5lPZUxjwCW4sSkVoChyntI0Azc7jEUKwb_gGZUU0BGlqWT-NtosqzLbQRiGqVIM3E29OADNJIJQRJHwpc8DN3eZgw7trU-kSX-vqrBME03DiPxECSDpxOag_XbATZP5ZX3XHZBlwq_ALicXZ1SxAVxFIAgiB21rAbdTqPoT0OzBGD1LNzVT0ysgO-jduqYkN5QwB-1ZpCRGI9UJVcslUcCog962rWAu1DtAXmbVUnWJQzDxwfoeQQQxCdj19T3gPh_BVUIHvWyQ2f1Sg3MHRSuYbTuoZParLWVxrZPaQxgIrkS8u3bOPfS4UxWv0OZivsxeQ0CwEG_00_gbLIAHtQ
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+the+carbohydrates+on+HIV-1%3A+Interaction+of+oligomannose+dendrons+with+human+monoclonal+antibody+2G12+and+DC-SIGN&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wang%2C+Sheng-Kai&rft.au=Liang%2C+Pi-Hui&rft.au=Astronomo%2C+Rena+D&rft.au=Hsu%2C+Tsui-Ling&rft.date=2008-03-11&rft.eissn=1091-6490&rft.volume=105&rft.issue=10&rft.spage=3690&rft_id=info:doi/10.1073%2Fpnas.0712326105&rft_id=info%3Apmid%2F18310320&rft.externalDocID=18310320
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F10.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F10.cover.gif