Nano- to macro-scale control of 3D printed materials via polymerization induced microphase separation

Although 3D printing allows the macroscopic structure of objects to be easily controlled, controlling the nanostructure of 3D printed materials has rarely been reported. Herein, we report an efficient and versatile process for fabricating 3D printed materials with controlled nanoscale structural fea...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 3577 - 10
Main Authors Bobrin, Valentin A., Yao, Yin, Shi, Xiaobing, Xiu, Yuan, Zhang, Jin, Corrigan, Nathaniel, Boyer, Cyrille
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.06.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although 3D printing allows the macroscopic structure of objects to be easily controlled, controlling the nanostructure of 3D printed materials has rarely been reported. Herein, we report an efficient and versatile process for fabricating 3D printed materials with controlled nanoscale structural features. This approach uses resins containing macromolecular chain transfer agents (macroCTAs) which microphase separate during the photoinduced 3D printing process to form nanostructured materials. By varying the chain length of the macroCTA, we demonstrate a high level of control over the microphase separation behavior, resulting in materials with controllable nanoscale sizes and morphologies. Importantly, the bulk mechanical properties of 3D printed objects are correlated with their morphologies; transitioning from discrete globular to interpenetrating domains results in a marked improvement in mechanical performance, which is ascribed to the increased interfacial interaction between soft and hard domains. Overall, the findings of this work enable the simplified production of materials with tightly controllable nanostructures for broad potential applications. 3D printing allows the macroscopic structure of objects to be easily controlled but controlling the nanostructure of 3D printed materials has rarely been reported. Here, the authors report an efficient and versatile process for fabricating 3D printed materials with controlled nano-scale structural features.
AbstractList Although 3D printing allows the macroscopic structure of objects to be easily controlled, controlling the nanostructure of 3D printed materials has rarely been reported. Herein, we report an efficient and versatile process for fabricating 3D printed materials with controlled nanoscale structural features. This approach uses resins containing macromolecular chain transfer agents (macroCTAs) which microphase separate during the photoinduced 3D printing process to form nanostructured materials. By varying the chain length of the macroCTA, we demonstrate a high level of control over the microphase separation behavior, resulting in materials with controllable nanoscale sizes and morphologies. Importantly, the bulk mechanical properties of 3D printed objects are correlated with their morphologies; transitioning from discrete globular to interpenetrating domains results in a marked improvement in mechanical performance, which is ascribed to the increased interfacial interaction between soft and hard domains. Overall, the findings of this work enable the simplified production of materials with tightly controllable nanostructures for broad potential applications.
Although 3D printing allows the macroscopic structure of objects to be easily controlled, controlling the nanostructure of 3D printed materials has rarely been reported. Herein, we report an efficient and versatile process for fabricating 3D printed materials with controlled nanoscale structural features. This approach uses resins containing macromolecular chain transfer agents (macroCTAs) which microphase separate during the photoinduced 3D printing process to form nanostructured materials. By varying the chain length of the macroCTA, we demonstrate a high level of control over the microphase separation behavior, resulting in materials with controllable nanoscale sizes and morphologies. Importantly, the bulk mechanical properties of 3D printed objects are correlated with their morphologies; transitioning from discrete globular to interpenetrating domains results in a marked improvement in mechanical performance, which is ascribed to the increased interfacial interaction between soft and hard domains. Overall, the findings of this work enable the simplified production of materials with tightly controllable nanostructures for broad potential applications. 3D printing allows the macroscopic structure of objects to be easily controlled but controlling the nanostructure of 3D printed materials has rarely been reported. Here, the authors report an efficient and versatile process for fabricating 3D printed materials with controlled nano-scale structural features.
Although 3D printing allows the macroscopic structure of objects to be easily controlled, controlling the nanostructure of 3D printed materials has rarely been reported. Herein, we report an efficient and versatile process for fabricating 3D printed materials with controlled nanoscale structural features. This approach uses resins containing macromolecular chain transfer agents (macroCTAs) which microphase separate during the photoinduced 3D printing process to form nanostructured materials. By varying the chain length of the macroCTA, we demonstrate a high level of control over the microphase separation behavior, resulting in materials with controllable nanoscale sizes and morphologies. Importantly, the bulk mechanical properties of 3D printed objects are correlated with their morphologies; transitioning from discrete globular to interpenetrating domains results in a marked improvement in mechanical performance, which is ascribed to the increased interfacial interaction between soft and hard domains. Overall, the findings of this work enable the simplified production of materials with tightly controllable nanostructures for broad potential applications.Although 3D printing allows the macroscopic structure of objects to be easily controlled, controlling the nanostructure of 3D printed materials has rarely been reported. Herein, we report an efficient and versatile process for fabricating 3D printed materials with controlled nanoscale structural features. This approach uses resins containing macromolecular chain transfer agents (macroCTAs) which microphase separate during the photoinduced 3D printing process to form nanostructured materials. By varying the chain length of the macroCTA, we demonstrate a high level of control over the microphase separation behavior, resulting in materials with controllable nanoscale sizes and morphologies. Importantly, the bulk mechanical properties of 3D printed objects are correlated with their morphologies; transitioning from discrete globular to interpenetrating domains results in a marked improvement in mechanical performance, which is ascribed to the increased interfacial interaction between soft and hard domains. Overall, the findings of this work enable the simplified production of materials with tightly controllable nanostructures for broad potential applications.
Although 3D printing allows the macroscopic structure of objects to be easily controlled, controlling the nanostructure of 3D printed materials has rarely been reported. Herein, we report an efficient and versatile process for fabricating 3D printed materials with controlled nanoscale structural features. This approach uses resins containing macromolecular chain transfer agents (macroCTAs) which microphase separate during the photoinduced 3D printing process to form nanostructured materials. By varying the chain length of the macroCTA, we demonstrate a high level of control over the microphase separation behavior, resulting in materials with controllable nanoscale sizes and morphologies. Importantly, the bulk mechanical properties of 3D printed objects are correlated with their morphologies; transitioning from discrete globular to interpenetrating domains results in a marked improvement in mechanical performance, which is ascribed to the increased interfacial interaction between soft and hard domains. Overall, the findings of this work enable the simplified production of materials with tightly controllable nanostructures for broad potential applications.3D printing allows the macroscopic structure of objects to be easily controlled but controlling the nanostructure of 3D printed materials has rarely been reported. Here, the authors report an efficient and versatile process for fabricating 3D printed materials with controlled nano-scale structural features.
3D printing allows the macroscopic structure of objects to be easily controlled but controlling the nanostructure of 3D printed materials has rarely been reported. Here, the authors report an efficient and versatile process for fabricating 3D printed materials with controlled nano-scale structural features.
ArticleNumber 3577
Author Shi, Xiaobing
Zhang, Jin
Corrigan, Nathaniel
Yao, Yin
Boyer, Cyrille
Xiu, Yuan
Bobrin, Valentin A.
Author_xml – sequence: 1
  givenname: Valentin A.
  surname: Bobrin
  fullname: Bobrin, Valentin A.
  organization: Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales
– sequence: 2
  givenname: Yin
  surname: Yao
  fullname: Yao, Yin
  organization: Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales
– sequence: 3
  givenname: Xiaobing
  surname: Shi
  fullname: Shi, Xiaobing
  organization: Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales
– sequence: 4
  givenname: Yuan
  surname: Xiu
  fullname: Xiu, Yuan
  organization: Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales
– sequence: 5
  givenname: Jin
  orcidid: 0000-0002-4257-8148
  surname: Zhang
  fullname: Zhang, Jin
  email: jin.zhang6@unsw.edu.au
  organization: School of Mechanical and Manufacturing Engineering, University of New South Wales
– sequence: 6
  givenname: Nathaniel
  surname: Corrigan
  fullname: Corrigan, Nathaniel
  email: n.corrigan@unsw.edu.au
  organization: Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales
– sequence: 7
  givenname: Cyrille
  orcidid: 0000-0002-4564-4702
  surname: Boyer
  fullname: Boyer, Cyrille
  email: cboyer@unsw.edu.au
  organization: Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales
BookMark eNp9UstuFDEQtFAQCUt-gNNIXLgM-G3PBQklPCJFcIGz1Wv3bLyaGS_2bKTw9Xh3giA5xBe_qqq7S_WSnExpQkJeM_qOUWHfF8mkNi3lvBWMdqrtnpEzTiVrmeHi5L_zKTkvZUvrEh2zUr4gp0IZwTWXZwS_wZTaZk7NCD6ntngYsPFpmnMamtQ34rLZ5TjNGCpixhxhKM1thGaXhrux3n_DHNPUxCns_QEUq8zuBgo2BXeQj7-vyPO-8vD8fl-Rn58__bj42l5__3J18fG69cqKuVWcSctRazA6CAU97Xu_VtSAZ0IrAdxaaTxKyhn6ToVgtQcMKMHbbq3FilwtuiHB1tW-R8h3LkF0x4eUNw7yHP2AjlnwtaqUhlFJPVhlaAhd4Kr3oepXrQ-L1m6_HjF4rJbA8ED04c8Ub9wm3bqOM9PVeVbk7b1ATr_2WGY3xuJxGGDCtC-Oa0u5UJTxCn3zCLpN-zxVqyrKdFJrwU1F2QVVHS4lY-98nI_-1vpxcIy6QzTcEg1Xo-GO0XBdpfJH1L9zPEkSC6kcErDB_K-rJ1h_AGubzPk
CitedBy_id crossref_primary_10_1039_D3PY00261F
crossref_primary_10_1002_mame_202300041
crossref_primary_10_3389_fmats_2024_1490070
crossref_primary_10_3390_polym15173519
crossref_primary_10_1016_j_progpolymsci_2023_101691
crossref_primary_10_1002_smll_202502776
crossref_primary_10_1002_pol_20240079
crossref_primary_10_1039_D4SC02089H
crossref_primary_10_1016_j_eurpolymj_2024_113317
crossref_primary_10_1039_D4PY00275J
crossref_primary_10_1002_smll_202403497
crossref_primary_10_1080_17452759_2023_2248101
crossref_primary_10_1016_j_compositesb_2024_111362
crossref_primary_10_1021_acsapm_3c02796
crossref_primary_10_1002_admt_202201054
crossref_primary_10_1016_j_addma_2024_104391
crossref_primary_10_1002_adma_202210208
crossref_primary_10_1016_j_addma_2025_104713
crossref_primary_10_1038_s41467_024_47673_y
crossref_primary_10_1002_ange_202307329
crossref_primary_10_1002_pol_20230634
crossref_primary_10_1016_j_progpolymsci_2023_101738
crossref_primary_10_1002_marc_202400282
crossref_primary_10_1021_acsapm_3c03164
crossref_primary_10_1002_adma_202312915
crossref_primary_10_1002_adma_202305099
crossref_primary_10_1002_adem_202201785
crossref_primary_10_1002_smll_202207637
crossref_primary_10_1016_j_eurpolymj_2023_112298
crossref_primary_10_1016_j_eurpolymj_2023_112335
crossref_primary_10_1016_j_polymer_2022_125589
crossref_primary_10_1021_acs_macromol_4c02426
crossref_primary_10_1038_s41563_024_02036_2
crossref_primary_10_1002_ange_202316431
crossref_primary_10_1080_1023666X_2023_2255024
crossref_primary_10_1002_adma_202412407
crossref_primary_10_1039_D4PY00482E
crossref_primary_10_1039_D4PY00365A
crossref_primary_10_1002_adma_202314204
crossref_primary_10_1002_anie_202316431
crossref_primary_10_1002_marc_202300458
crossref_primary_10_1016_j_giant_2023_100150
crossref_primary_10_1021_acsapm_4c01980
crossref_primary_10_1002_adfm_202315679
crossref_primary_10_1002_marc_202300736
crossref_primary_10_1002_smll_202305268
crossref_primary_10_1002_pi_6713
crossref_primary_10_1002_admt_202400162
crossref_primary_10_1039_D4SC05597G
crossref_primary_10_1016_j_eurpolymj_2023_112000
crossref_primary_10_1016_j_addma_2023_103514
crossref_primary_10_1016_j_nxmate_2024_100140
crossref_primary_10_1002_anie_202307329
crossref_primary_10_1016_j_progpolymsci_2024_101871
crossref_primary_10_1016_j_eurpolymj_2024_112761
crossref_primary_10_1016_j_polymer_2024_127997
crossref_primary_10_1002_admt_202301400
crossref_primary_10_1016_j_polymer_2024_126785
crossref_primary_10_1021_acsami_3c08265
crossref_primary_10_1039_D1CS00069A
crossref_primary_10_1021_acs_chemrev_3c00570
crossref_primary_10_1002_chem_202404038
crossref_primary_10_1002_smsc_202300275
crossref_primary_10_1016_j_addma_2024_104014
crossref_primary_10_1021_acsami_3c11681
crossref_primary_10_1007_s11426_024_2422_2
crossref_primary_10_1002_cjoc_202200620
crossref_primary_10_1002_asia_202400648
crossref_primary_10_3390_lubricants13030112
crossref_primary_10_1002_adma_202409811
crossref_primary_10_1039_D4NJ05112B
crossref_primary_10_1002_smll_202500941
crossref_primary_10_1002_admt_202400337
crossref_primary_10_1073_pnas_2407929121
crossref_primary_10_1002_marc_202300236
crossref_primary_10_1021_acs_biomac_4c01212
crossref_primary_10_1016_j_jcis_2023_12_185
crossref_primary_10_1016_j_cej_2025_159703
crossref_primary_10_1021_acs_macromol_2c02585
crossref_primary_10_1002_advs_202304734
Cites_doi 10.1021/acsmacrolett.7b00677
10.1021/mz400192f
10.1038/s41563-019-0525-y
10.1021/ma960690k
10.1002/adma.201506126
10.1021/acs.macromol.9b00177
10.1016/j.mtbio.2019.100024
10.1021/acs.macromol.6b02570
10.1063/1.882522
10.1002/pola.10424
10.1002/polb.23709
10.1021/acs.chemmater.7b04340
10.1021/acsami.7b02514
10.1063/1.453006
10.1021/acssensors.7b00512
10.1021/acsami.5b12366
10.1002/adma.202107643
10.1002/adfm.201907795
10.1021/acsapm.9b00741
10.1007/BFb0115519
10.1021/nl4034818
10.1021/acsanm.1c00396
10.1021/acs.chemmater.8b04696
10.1002/adma.201004060
10.1063/1.1377881
10.1016/j.polymer.2020.122699
10.1021/acs.chemrev.7b00074
10.1039/C5SM02009C
10.1021/acsmacrolett.5b00734
10.1021/acsaem.0c00804
10.1021/acsmacrolett.0c00036
10.1038/s41467-020-20256-3
10.1016/j.jeurceramsoc.2018.11.013
10.1002/app.33721
10.1021/ma961078w
10.1016/j.apmt.2017.02.004
10.1021/ja511581w
10.1021/jacs.5b04992
10.1002/anie.201704695
10.1038/s41467-020-20498-1
10.1002/adma.202106068
10.1002/app.1980.070250825
10.1002/(SICI)1097-4628(19970919)65:12<2433::AID-APP15>3.0.CO;2-1
10.1002/adma.201505516
10.1038/s41467-019-10249-2
10.1126/science.1221383
10.1021/acsabm.0c00228
10.1002/adma.201201644
10.1146/annurev.pc.41.100190.002521
10.1021/ma00061a013
10.1126/science.aax8760
10.1021/acsnano.1c02690
10.1063/1.467387
10.1126/sciadv.abc6900
10.1039/D1PY01283E
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-31095-9
DatabaseName Springer Nature OA/Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_18acc584471040ca8570dd9d25fcd021
PMC9217958
10_1038_s41467_022_31095_9
GrantInformation_xml – fundername: Department of Education and Training | Australian Research Council (ARC)
  grantid: DP210100094; DP210100094; DP210100094
  funderid: https://doi.org/10.13039/501100000923
– fundername: ;
  grantid: DP210100094; DP210100094; DP210100094
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c583t-521482e66a76d35af0ffcb507ac13653a28847ce4021ec95dd86caede4ac89b63
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:22:29 EDT 2025
Thu Aug 21 17:42:16 EDT 2025
Mon Jul 21 10:26:12 EDT 2025
Wed Aug 13 11:25:46 EDT 2025
Thu Apr 24 23:10:01 EDT 2025
Tue Jul 01 00:58:16 EDT 2025
Fri Feb 21 02:38:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-521482e66a76d35af0ffcb507ac13653a28847ce4021ec95dd86caede4ac89b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4564-4702
0000-0002-4257-8148
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-31095-9
PMID 35732624
PQID 2679466327
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_18acc584471040ca8570dd9d25fcd021
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9217958
proquest_miscellaneous_2680235012
proquest_journals_2679466327
crossref_citationtrail_10_1038_s41467_022_31095_9
crossref_primary_10_1038_s41467_022_31095_9
springer_journals_10_1038_s41467_022_31095_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-22
PublicationDateYYYYMMDD 2022-06-22
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Chopade (CR30) 2017; 9
Deore (CR16) 2021; 12
Former, Castro, Fellows, Tanner, Gilbert (CR38) 2002; 40
Chen (CR4) 2019; 39
Teubner, Strey (CR47) 1987; 87
Seo, Murphy, Hillmyer (CR27) 2013; 2
Saba, Mousavi, Bühlmann, Hillmyer (CR24) 2015; 137
Moore, Barbera, Masania, Studart (CR14) 2020; 19
Seo, Kim, Oh, Kim, Hillmyer (CR26) 2015; 137
Hampu, Hillmyer (CR50) 2020; 9
Chopade (CR29) 2017; 2
Klein (CR5) 2011; 23
Dong (CR15) 2021; 12
Hasa, Stansbury, Guymon (CR53) 2020; 202
Hasa, Scholte, Jessop, Stansbury, Guymon (CR42) 2019; 52
Barner-Kowollik (CR12) 2017; 56
CR40
Hickey, Gillard, Irwin, Lodge, Bates (CR51) 2016; 12
Ni (CR3) 2019; 3
Chopade, So, Hillmyer, Lodge (CR31) 2016; 8
Bobrin, Lee, Zhang, Corrigan, Boyer (CR21) 2022; 34
Guo, Gao, Luo (CR55) 2015; 53
Geng, Wang, Chen, Chen (CR9) 2019; 10
Zhuo, Ruan, Zhao, Ran (CR41) 2011; 121
CR17
Kim (CR34) 2021; 4
Xie, Hillmyer (CR36) 2020; 3
CR56
Ligon, Liska, Stampfl, Gurr, Mülhaupt (CR2) 2017; 117
Bates, Fredrickson (CR46) 1999; 52
Schulze, Hillmyer (CR25) 2017; 50
Saba, Lee, Hillmyer (CR23) 2017; 6
Peterson, Hillmyer (CR35) 2019; 1
Chan, Rey (CR19) 1996; 29
Girard-Reydet, Vicard, Pascault, Sautereau (CR54) 1997; 65
Bates, Fredrickson (CR45) 1990; 41
Oh, Kim, Lee, Kim, Seo (CR37) 2018; 30
Chen, Chang, Strey (CR52) 1990; 81
Seo, Hillmyer (CR22) 2012; 336
Müller (CR13) 2019; 31
Xiong (CR8) 2016; 28
Zosel, Ley (CR39) 1993; 26
Lee, An, Chua (CR1) 2017; 7
Jeon, Choi, Kim, Seo (CR33) 2020; 3
Hahn (CR10) 2020; 30
Schulze, McIntosh, Hillmyer, Lodge (CR32) 2014; 14
Endo (CR48) 2001; 115
Saha Sourabh (CR11) 2019; 366
Dong (CR18) 2021; 33
Lee, Singer, Thomas (CR7) 2012; 24
Blasco (CR6) 2016; 28
Oh, Seo (CR28) 2015; 4
Greenberg, Kusy (CR43) 1980; 25
Lee, Seo (CR44) 2021; 15
Chan, Rey (CR20) 1997; 30
Schubert, Strey, Kline, Kaler (CR49) 1994; 101
SA Chopade (31095_CR30) 2017; 9
RJ Hickey (31095_CR51) 2016; 12
J-Y Lee (31095_CR1) 2017; 7
SA Saba (31095_CR23) 2017; 6
C Peterson (31095_CR35) 2019; 1
M Seo (31095_CR27) 2013; 2
M Teubner (31095_CR47) 1987; 87
C Barner-Kowollik (31095_CR12) 2017; 56
Z Dong (31095_CR15) 2021; 12
H Endo (31095_CR48) 2001; 115
B Deore (31095_CR16) 2021; 12
SA Chopade (31095_CR31) 2016; 8
F Klein (31095_CR5) 2011; 23
AR Greenberg (31095_CR43) 1980; 25
31095_CR40
SA Chopade (31095_CR29) 2017; 2
A Zosel (31095_CR39) 1993; 26
E Blasco (31095_CR6) 2016; 28
KV Schubert (31095_CR49) 1994; 101
MW Schulze (31095_CR25) 2017; 50
J Oh (31095_CR37) 2018; 30
MW Schulze (31095_CR32) 2014; 14
DG Moore (31095_CR14) 2020; 19
M Seo (31095_CR26) 2015; 137
SC Ligon (31095_CR2) 2017; 117
Q Geng (31095_CR9) 2019; 10
E Girard-Reydet (31095_CR54) 1997; 65
FS Bates (31095_CR45) 1990; 41
J Ni (31095_CR3) 2019; 3
31095_CR56
Y Xie (31095_CR36) 2020; 3
K Saha Sourabh (31095_CR11) 2019; 366
Z Chen (31095_CR4) 2019; 39
C Former (31095_CR38) 2002; 40
N Hampu (31095_CR50) 2020; 9
31095_CR17
VA Bobrin (31095_CR21) 2022; 34
Y Guo (31095_CR55) 2015; 53
V Hahn (31095_CR10) 2020; 30
J Oh (31095_CR28) 2015; 4
C Jeon (31095_CR33) 2020; 3
D Zhuo (31095_CR41) 2011; 121
W Xiong (31095_CR8) 2016; 28
PK Chan (31095_CR19) 1996; 29
E Hasa (31095_CR42) 2019; 52
E Hasa (31095_CR53) 2020; 202
SH Chen (31095_CR52) 1990; 81
S Kim (31095_CR34) 2021; 4
J-H Lee (31095_CR7) 2012; 24
Z Dong (31095_CR18) 2021; 33
FS Bates (31095_CR46) 1999; 52
PK Chan (31095_CR20) 1997; 30
SA Saba (31095_CR24) 2015; 137
M Seo (31095_CR22) 2012; 336
P Müller (31095_CR13) 2019; 31
J Lee (31095_CR44) 2021; 15
References_xml – volume: 6
  start-page: 1232
  year: 2017
  end-page: 1236
  ident: CR23
  article-title: Tricontinuous nanostructured polymers via polymerization-induced microphase separation
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.7b00677
– volume: 2
  start-page: 617
  year: 2013
  end-page: 620
  ident: CR27
  article-title: One-step synthesis of cross-linked block polymer precursor to a nanoporous thermoset
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz400192f
– volume: 19
  start-page: 212
  year: 2020
  end-page: 217
  ident: CR14
  article-title: Three-dimensional printing of multicomponent glasses using phase-separating resins
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0525-y
– volume: 29
  start-page: 8934
  year: 1996
  end-page: 8941
  ident: CR19
  article-title: Polymerization-induced phase separation. 1. Droplet size selection mechanism
  publication-title: Macromolecules
  doi: 10.1021/ma960690k
– volume: 28
  start-page: 3592
  year: 2016
  end-page: 3595
  ident: CR6
  article-title: Fabrication of conductive 3D gold-containing microstructures via direct laser writing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506126
– volume: 52
  start-page: 2975
  year: 2019
  end-page: 2986
  ident: CR42
  article-title: Kinetically controlled photoinduced phase separation for hybrid radical/cationic systems
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b00177
– volume: 3
  start-page: 100024
  year: 2019
  ident: CR3
  article-title: Three-dimensional printing of metals for biomedical applications
  publication-title: Mater. Today Bio.
  doi: 10.1016/j.mtbio.2019.100024
– volume: 50
  start-page: 997
  year: 2017
  end-page: 1007
  ident: CR25
  article-title: Tuning mesoporosity in cross-linked nanostructured thermosets via polymerization-induced microphase separation
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b02570
– volume: 52
  start-page: 32
  year: 1999
  end-page: 38
  ident: CR46
  article-title: Block copolymers—designer soft materials
  publication-title: Phys. Today
  doi: 10.1063/1.882522
– volume: 40
  start-page: 3335
  year: 2002
  end-page: 3349
  ident: CR38
  article-title: Effect of branching and molecular weight on the viscoelastic properties of poly(butyl acrylate)
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.10424
– volume: 53
  start-page: 860
  year: 2015
  end-page: 868
  ident: CR55
  article-title: Mechanical properties of gradient copolymers of styrene and n-butyl acrylate
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/polb.23709
– volume: 30
  start-page: 273
  year: 2018
  end-page: 279
  ident: CR37
  article-title: Semipermeable microcapsules with a block-polymer-templated nanoporous membrane
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b04340
– volume: 9
  start-page: 14561
  year: 2017
  end-page: 14565
  ident: CR30
  article-title: Robust polymer electrolyte membranes with high ambient-temperature lithium-ion conductivity via polymerization-induced microphase separation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02514
– volume: 87
  start-page: 3195
  year: 1987
  end-page: 3200
  ident: CR47
  article-title: Origin of the scattering peak in microemulsions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.453006
– volume: 2
  start-page: 1498
  year: 2017
  end-page: 1504
  ident: CR29
  article-title: Self-supporting, hydrophobic, ionic liquid-based reference electrodes prepared by polymerization-induced microphase separation
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00512
– volume: 8
  start-page: 6200
  year: 2016
  end-page: 6210
  ident: CR31
  article-title: Anhydrous proton conducting polymer electrolyte membranes via polymerization-induced microphase separation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12366
– volume: 34
  start-page: 2107643
  year: 2022
  ident: CR21
  article-title: Nanostructure control in 3D printed materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107643
– volume: 30
  start-page: 1907795
  year: 2020
  ident: CR10
  article-title: Rapid assembly of small materials building blocks (Voxels) into large functional 3D metamaterials
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201907795
– volume: 1
  start-page: 2778
  year: 2019
  end-page: 2786
  ident: CR35
  article-title: Fast photochromic dye response in rigid block polymer thermosets
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.9b00741
– volume: 81
  start-page: 30
  year: 1990
  end-page: 35
  ident: CR52
  article-title: On the interpretation of scattering peaks from bicontinuous microemulsions
  publication-title: Trends Colloid Interface Sci. IV
  doi: 10.1007/BFb0115519
– volume: 14
  start-page: 122
  year: 2014
  end-page: 126
  ident: CR32
  article-title: High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separation
  publication-title: Nano Lett.
  doi: 10.1021/nl4034818
– volume: 4
  start-page: 4070
  year: 2021
  end-page: 4076
  ident: CR34
  article-title: Nesting well-defined Pt nanoparticles within a hierarchically porous polymer as a heterogeneous Suzuki–Miyaura catalyst
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.1c00396
– volume: 31
  start-page: 1966
  year: 2019
  end-page: 1972
  ident: CR13
  article-title: STED-inspired laser lithography based on photoswitchable spirothiopyran moieties
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b04696
– volume: 23
  start-page: 1341
  year: 2011
  end-page: 1345
  ident: CR5
  article-title: Two-component polymer scaffolds for controlled three-dimensional cell culture
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004060
– volume: 115
  start-page: 580
  year: 2001
  end-page: 600
  ident: CR48
  article-title: Effect of amphiphilic block copolymers on the structure and phase behavior of oil–water-surfactant mixtures
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1377881
– volume: 202
  start-page: 122699
  year: 2020
  ident: CR53
  article-title: Manipulation of crosslinking in photo-induced phase separated polymers to control morphology and thermo-mechanical properties
  publication-title: Polymer
  doi: 10.1016/j.polymer.2020.122699
– volume: 117
  start-page: 10212
  year: 2017
  end-page: 10290
  ident: CR2
  article-title: Polymers for 3D printing and customized additive manufacturing
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00074
– volume: 12
  start-page: 53
  year: 2016
  end-page: 66
  ident: CR51
  article-title: Structure, viscoelasticity, and interfacial dynamics of a model polymeric bicontinuous microemulsion
  publication-title: Soft Matter
  doi: 10.1039/C5SM02009C
– volume: 4
  start-page: 1244
  year: 2015
  end-page: 1248
  ident: CR28
  article-title: Photoinitiated polymerization-induced microphase separation for the preparation of nanoporous polymer films
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.5b00734
– volume: 3
  start-page: 5874
  year: 2020
  end-page: 5881
  ident: CR33
  article-title: Achieving fast proton transport and high vanadium ion rejection with uniformly mesoporous composite membranes for high-efficiency vanadium redox flow batteries
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00804
– volume: 9
  start-page: 382
  year: 2020
  end-page: 388
  ident: CR50
  article-title: Molecular engineering of nanostructures in disordered block polymers
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.0c00036
– volume: 12
  year: 2021
  ident: CR16
  article-title: Direct printing of functional 3D objects using polymerization-induced phase separation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20256-3
– volume: 39
  start-page: 661
  year: 2019
  end-page: 687
  ident: CR4
  article-title: 3D printing of ceramics: a review
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.11.013
– volume: 121
  start-page: 660
  year: 2011
  end-page: 665
  ident: CR41
  article-title: Kinetics of UV-initiated RAFT crosslinking polymerization of dimethacrylates
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.33721
– volume: 30
  start-page: 2135
  year: 1997
  end-page: 2143
  ident: CR20
  article-title: Polymerization-induced phase separation. 2. morphological analysis
  publication-title: Macromolecules
  doi: 10.1021/ma961078w
– volume: 7
  start-page: 120
  year: 2017
  end-page: 133
  ident: CR1
  article-title: Fundamentals and applications of 3D printing for novel materials
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2017.02.004
– volume: 137
  start-page: 600
  year: 2015
  end-page: 603
  ident: CR26
  article-title: Hierarchically porous polymers from hyper-cross-linked block polymer precursors
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511581w
– volume: 137
  start-page: 8896
  year: 2015
  end-page: 8899
  ident: CR24
  article-title: Hierarchically porous polymer monoliths by combining controlled macro- and microphase separation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04992
– volume: 56
  start-page: 15828
  year: 2017
  end-page: 15845
  ident: CR12
  article-title: 3D laser micro- and nanoprinting: challenges for chemistry
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201704695
– volume: 12
  year: 2021
  ident: CR15
  article-title: 3D printing of inherently nanoporous polymers via polymerization-induced phase separation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20498-1
– ident: CR56
– volume: 33
  start-page: 2106068
  year: 2021
  ident: CR18
  article-title: 3D printing of superhydrophobic objects with bulk nanostructure
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106068
– ident: CR40
– volume: 25
  start-page: 1785
  year: 1980
  end-page: 1788
  ident: CR43
  article-title: Influence of crosslinking on the glass transition of poly(acrylic acid)
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1980.070250825
– volume: 65
  start-page: 2433
  year: 1997
  end-page: 2445
  ident: CR54
  article-title: Polyetherimide-modified epoxy networks: Influence of cure conditions on morphology and mechanical properties
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/(SICI)1097-4628(19970919)65:12<2433::AID-APP15>3.0.CO;2-1
– volume: 28
  start-page: 2002
  year: 2016
  end-page: 2009
  ident: CR8
  article-title: Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505516
– volume: 10
  year: 2019
  ident: CR9
  article-title: Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10249-2
– volume: 336
  start-page: 1422
  year: 2012
  end-page: 1425
  ident: CR22
  article-title: Reticulated nanoporous polymers by controlled polymerization-induced microphase separation
  publication-title: Science
  doi: 10.1126/science.1221383
– volume: 3
  start-page: 3236
  year: 2020
  end-page: 3247
  ident: CR36
  article-title: Nanostructured polymer monoliths for biomedical delivery applications
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.0c00228
– volume: 24
  start-page: 4782
  year: 2012
  end-page: 4810
  ident: CR7
  article-title: Micro-/nanostructured mechanical metamaterials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201644
– ident: CR17
– volume: 41
  start-page: 525
  year: 1990
  end-page: 557
  ident: CR45
  article-title: Block copolymer thermodynamics: theory and experiment
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.41.100190.002521
– volume: 26
  start-page: 2222
  year: 1993
  end-page: 2227
  ident: CR39
  article-title: Influence of crosslinking on structure, mechanical properties, and strength of latex films
  publication-title: Macromolecules
  doi: 10.1021/ma00061a013
– volume: 366
  start-page: 105
  year: 2019
  end-page: 109
  ident: CR11
  article-title: Scalable submicrometer additive manufacturing
  publication-title: Science
  doi: 10.1126/science.aax8760
– volume: 15
  start-page: 9154
  year: 2021
  end-page: 9166
  ident: CR44
  article-title: Downsizing of block polymer-templated nanopores to one nanometer via hyper-cross-linking of high χ–low N precursors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c02690
– volume: 101
  start-page: 5343
  year: 1994
  end-page: 5355
  ident: CR49
  article-title: Small angle neutron scattering near Lifshitz lines: transition from weakly structured mixtures to microemulsions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.467387
– volume: 24
  start-page: 4782
  year: 2012
  ident: 31095_CR7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201644
– volume: 12
  year: 2021
  ident: 31095_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20256-3
– volume: 12
  start-page: 53
  year: 2016
  ident: 31095_CR51
  publication-title: Soft Matter
  doi: 10.1039/C5SM02009C
– volume: 4
  start-page: 4070
  year: 2021
  ident: 31095_CR34
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.1c00396
– volume: 39
  start-page: 661
  year: 2019
  ident: 31095_CR4
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2018.11.013
– volume: 1
  start-page: 2778
  year: 2019
  ident: 31095_CR35
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.9b00741
– volume: 2
  start-page: 1498
  year: 2017
  ident: 31095_CR29
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00512
– volume: 52
  start-page: 2975
  year: 2019
  ident: 31095_CR42
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b00177
– volume: 52
  start-page: 32
  year: 1999
  ident: 31095_CR46
  publication-title: Phys. Today
  doi: 10.1063/1.882522
– volume: 336
  start-page: 1422
  year: 2012
  ident: 31095_CR22
  publication-title: Science
  doi: 10.1126/science.1221383
– volume: 14
  start-page: 122
  year: 2014
  ident: 31095_CR32
  publication-title: Nano Lett.
  doi: 10.1021/nl4034818
– volume: 23
  start-page: 1341
  year: 2011
  ident: 31095_CR5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004060
– volume: 28
  start-page: 3592
  year: 2016
  ident: 31095_CR6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506126
– volume: 30
  start-page: 1907795
  year: 2020
  ident: 31095_CR10
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201907795
– volume: 137
  start-page: 8896
  year: 2015
  ident: 31095_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04992
– volume: 117
  start-page: 10212
  year: 2017
  ident: 31095_CR2
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00074
– volume: 115
  start-page: 580
  year: 2001
  ident: 31095_CR48
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1377881
– volume: 30
  start-page: 2135
  year: 1997
  ident: 31095_CR20
  publication-title: Macromolecules
  doi: 10.1021/ma961078w
– volume: 121
  start-page: 660
  year: 2011
  ident: 31095_CR41
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.33721
– volume: 8
  start-page: 6200
  year: 2016
  ident: 31095_CR31
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12366
– volume: 12
  year: 2021
  ident: 31095_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20498-1
– volume: 28
  start-page: 2002
  year: 2016
  ident: 31095_CR8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505516
– volume: 3
  start-page: 3236
  year: 2020
  ident: 31095_CR36
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.0c00228
– volume: 53
  start-page: 860
  year: 2015
  ident: 31095_CR55
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
  doi: 10.1002/polb.23709
– volume: 30
  start-page: 273
  year: 2018
  ident: 31095_CR37
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b04340
– ident: 31095_CR56
– ident: 31095_CR17
  doi: 10.1126/sciadv.abc6900
– volume: 33
  start-page: 2106068
  year: 2021
  ident: 31095_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106068
– volume: 2
  start-page: 617
  year: 2013
  ident: 31095_CR27
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz400192f
– volume: 31
  start-page: 1966
  year: 2019
  ident: 31095_CR13
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b04696
– volume: 87
  start-page: 3195
  year: 1987
  ident: 31095_CR47
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.453006
– volume: 6
  start-page: 1232
  year: 2017
  ident: 31095_CR23
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.7b00677
– volume: 25
  start-page: 1785
  year: 1980
  ident: 31095_CR43
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1980.070250825
– volume: 34
  start-page: 2107643
  year: 2022
  ident: 31095_CR21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107643
– ident: 31095_CR40
  doi: 10.1039/D1PY01283E
– volume: 3
  start-page: 100024
  year: 2019
  ident: 31095_CR3
  publication-title: Mater. Today Bio.
  doi: 10.1016/j.mtbio.2019.100024
– volume: 4
  start-page: 1244
  year: 2015
  ident: 31095_CR28
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.5b00734
– volume: 26
  start-page: 2222
  year: 1993
  ident: 31095_CR39
  publication-title: Macromolecules
  doi: 10.1021/ma00061a013
– volume: 101
  start-page: 5343
  year: 1994
  ident: 31095_CR49
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.467387
– volume: 15
  start-page: 9154
  year: 2021
  ident: 31095_CR44
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c02690
– volume: 3
  start-page: 5874
  year: 2020
  ident: 31095_CR33
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00804
– volume: 9
  start-page: 14561
  year: 2017
  ident: 31095_CR30
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02514
– volume: 9
  start-page: 382
  year: 2020
  ident: 31095_CR50
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.0c00036
– volume: 65
  start-page: 2433
  year: 1997
  ident: 31095_CR54
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/(SICI)1097-4628(19970919)65:12<2433::AID-APP15>3.0.CO;2-1
– volume: 366
  start-page: 105
  year: 2019
  ident: 31095_CR11
  publication-title: Science
  doi: 10.1126/science.aax8760
– volume: 50
  start-page: 997
  year: 2017
  ident: 31095_CR25
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b02570
– volume: 137
  start-page: 600
  year: 2015
  ident: 31095_CR26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511581w
– volume: 202
  start-page: 122699
  year: 2020
  ident: 31095_CR53
  publication-title: Polymer
  doi: 10.1016/j.polymer.2020.122699
– volume: 29
  start-page: 8934
  year: 1996
  ident: 31095_CR19
  publication-title: Macromolecules
  doi: 10.1021/ma960690k
– volume: 81
  start-page: 30
  year: 1990
  ident: 31095_CR52
  publication-title: Trends Colloid Interface Sci. IV
  doi: 10.1007/BFb0115519
– volume: 7
  start-page: 120
  year: 2017
  ident: 31095_CR1
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2017.02.004
– volume: 56
  start-page: 15828
  year: 2017
  ident: 31095_CR12
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201704695
– volume: 41
  start-page: 525
  year: 1990
  ident: 31095_CR45
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.41.100190.002521
– volume: 40
  start-page: 3335
  year: 2002
  ident: 31095_CR38
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.10424
– volume: 10
  year: 2019
  ident: 31095_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10249-2
– volume: 19
  start-page: 212
  year: 2020
  ident: 31095_CR14
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0525-y
SSID ssj0000391844
Score 2.6185684
Snippet Although 3D printing allows the macroscopic structure of objects to be easily controlled, controlling the nanostructure of 3D printed materials has rarely been...
3D printing allows the macroscopic structure of objects to be easily controlled but controlling the nanostructure of 3D printed materials has rarely been...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3577
SubjectTerms 140/131
147/3
3-D printers
639/301/923/1028
639/638/298/923/1028
639/638/455/957
Chain transfer
Controllability
Domains
Humanities and Social Sciences
Macromolecules
Mechanical properties
Molecular chains
Morphology
multidisciplinary
Nanostructure
Nanostructured materials
Printed materials
Printing
Resins
Science
Science (multidisciplinary)
Separation
Three dimensional printing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KINBLSJqGONkUFXprTWzJlqVjPhpCoD01kJuQJZldSOwl6w3sv89I8m7jQJpLr_LYsjQjvRk0egPwzTTGIYyVaYX4jAFKXaTCcZEKxnlm0UZ0yKr89Ztf3xY3d-Xdi1JfPics0gPHiTvNhTYGURI3UbQ3oz0hu7USP9MYm4Ur5BQx70UwFfZgJjF0KYZbMhkTp4si7AkheT3PfIHCERIFwv6Rl_k6R_LVQWnAn6td2BkcR3IWf3gPPrj2E2zHUpKrfXC4TXYp6TvyoLG_dIFz78iQiE66hrBL4r-MDiZK9NHuyNNMk3l3v_LHNvE-JsEYHbWNQj5Tbz5FkCMLFwnCu_Yz3F79_HNxnQ4lFFKcM9ZjmOl5Ph3nuuKWlbrJmsbU6ANq4_PbmKYC4ck4jCJzZ2RpreBGO-sKbYSsOTuArbZr3SGQsrK5pazWNQayrJSSNjnVVY0t6LYIlkC-nk5lBn5xX-biXoVzbiZUVIFCFaigAiUT-L55Zx7ZNf4pfe61tJH0zNihAe1FDfai3rOXBCZrHathuS4U5YFnn9Eqga-bx7jQ_OmJbl239DKeK69EQE-gGtnG6IfGT9rZNFB2S4z8ZCkS-LG2or-dvz3go_8x4GP4SL3VZzyldAJb_ePSnaAj1ddfwpp5Bkx2GIs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9cwED90Ivgi_sTqHBn4pmVt0qbpk6hzjIE-Ofi-hTRJ3WBrvq6dsP_euzTf7-jAvTbXpuld7kfu-jmAD7a3Hs1YnTdonzFA6apcealyJaQsHMqIiVWVP37K49PqZFWv0oHbmMoqNzoxKmoXLJ2RH3AZodAFbz6v_-TUNYqyq6mFxkN4RNBlVNLVrJrtGQuhn6uqSv_KFEIdjFXUDLGEvSyoTeHCHkXY_oWvebdS8k66NFqho2fwNLmP7MvM7-fwwA8v4PHcUPLmJXhUliFnU2CXBufLR-SAZ6kcnYWeiUNGT0Y3EymmWfrY33PD1uHihpI381-ZDCN15DkSUb3e-gxNHRv9DBMehldwevT917fjPDVSyG2txITBJqF9eilNI52oTV_0ve3QEzSWqtyE4QqNlPUYS5betrVzSlrjna-MVW0nxWvYGcLg3wCrG1c6LjrTYTgr6rblfclN0-EVdF6UyKDcfE5tE8o4Nbu40DHbLZSeWaCRBTqyQLcZfNzes54xNu6l_kpc2lISPna8EK5-67TddKmMxbVXaHpRS1lDMP7OtSh8vXW4ygx2NzzWadOO-lbEMtjfDuN2oxyKGXy4JhpCzKvRrGfQLGRj8ULLkeH8LAJ3txj_oZRm8GkjRbeT_3_Bb-9_13fwhJM8FzLnfBd2pqtr_x4dpanbi7vhH5wdEIQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA/Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na90wDBddy2CXsn6MZe2GB7utYYkdO86xe1sphfXUQm_GsZ210CWPvnTQ_76Sk7ySsg12teX4Q7IlRfLPAJ9c4wKqMZmWqJ_RQamLVAelUy2UyjzKiI1ZlT_O1ellcXYlrzaAT3dhYtJ-hLSMx_SUHfZlVcQtHXPP84zeF3wBWwTdTlK9UIv1fxVCPNdFMd6PyYT-Q9OZDopQ_TP78nl25LMQadQ8J69hezQZ2fEwyB3YCO0uvBwekXzYg4AHZJeyvmO_LPaXrnDVAxtT0FnXMPGN0ZfRtESKfpA49vvGsmV3-0ABm-EmJkPvHPmMRJSjt7xG9cZWYYAG79p9uDz5frE4TcfHE1IntejRwSSEz6CULZUX0jZZ07garT_rKLNNWK5RMbmA_mMeXCW918rZ4ENhna5qJd7AZtu14S0wWfrcc1HbGl1YIauKNzm3ZY0laLBokUA-LadxI7I4PXBxa2KEW2gzsMAgC0xkgakS-LxusxxwNf5J_ZW4tKYkTOxY0N39NKOMmFxbh3MvUN3iyeQsQfd7X6HANc7jLBM4nHhsxo26MlxFhH3BywQ-rqtxi1HcxLahuycaQsmTqMoTKGeyMRvQvKa9uY5g3RX6fJXUCRxNUvTU-d8n_O7_yA_gFSf5zlTK-SFs9nf34T0aS339Ie6OR-vnDjo
  priority: 102
  providerName: Springer Nature
Title Nano- to macro-scale control of 3D printed materials via polymerization induced microphase separation
URI https://link.springer.com/article/10.1038/s41467-022-31095-9
https://www.proquest.com/docview/2679466327
https://www.proquest.com/docview/2680235012
https://pubmed.ncbi.nlm.nih.gov/PMC9217958
https://doaj.org/article/18acc584471040ca8570dd9d25fcd021
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ6C9THyKsFEZiTcINHFiOw8IdWVlqrQJAZX6Zjm2s00qSWkzRP97zk5SlGnwwEsiOZc4zt357uLz7wBe6UJbNGNpyNE-Y4CSJ6GwTISCMjY0KCPKZ1WeX7CzWTKdp_Md6ModtR9wfWdo5-pJzVaLt79-bD6gwr9vtoyLd-vEq7vPS4-GrvbgLuyjZeJOUc9bd9_PzDTDgCZp987cfesB3KcpR6cmTnqmyiP699zQ20mUt1ZSvYGaPIDD1rMko0YUHsKOLR_BvabW5OYxWJxHq5DUFfmusL9wjcyxpM1UJ1VB6EfinoweKFLUjWCSn9eKLKvFxq3rNBs2CQbxKA5I5FL5lldoBcnaNgjiVfkEZpPTb-OzsK2xEOpU0BrjUAcEahlTnBmaqmJYFDpHJ1FplwBHVSzQfmmLYWZkdZYaI5hW1thEaZHljD6FvbIq7TMgKTeRiWmucox0aZplcRHFiufYgn6NoAFE3eeUugUgd3UwFtIvhFMhG25I5Ib03JBZAK-39ywb-I1_Up84Lm0pHXS2b6hWl7LVRBkJpXHsCVplnMC0cgj_xmQol4U2OMoAjjsey04cZcw8ED-NeQAvt5dRE93yiiptdeNoHJheihY_AN6Tjd4L9a-U11ce0zvD0DBLRQBvOin60_nfB_z8vzs6goPYSf2QhXF8DHv16sa-QPeqzgewy-ccj2LyaQD7o9H06xTPJ6cXn79g65iNB_7HxcDr1m97GSe7
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFNNKWAkOEHUxE4c54AQUKotfZxaaW_GsR26Upss3S1o_xS_kRkn2Wor0VuvyeThzDevzHgG4K2trUczlscF2mcMUKosVl6qWAkpE4cYMaGq8vBIjk6y7-N8vAZ_h70wVFY56MSgqF1r6R_5NpehFbrgxafpr5imRlF2dRih0cFi3y_-YMg2-7i3g_x9x_nut-Ovo7ifKhDbXIk5Rl7U-tJLaQrpRG7qpK5thW6RsVTyJQxXqLGtx8Aq9bbMnVPSGu98ZqwqKynwvnfgLhrehCSqGBfLfzrUbV1lWb83JxFqe5YFTRRK5tOExiKu2L8wJmDFt71emXktPRus3u4jeNi7q-xzh6_HsOabJ3CvG2C5eAoelXMbs3nLzg0-L54hxz3ry99ZWzOxw-jO6NYixbxDO_s9MWzani0oWdTtAmWTxiHGkIjqA6enaFrZzHdtydvmGZzcyid-DutN2_gNYHnhUsdFZSoMn0VelrxOuSkqPILOkhIRpMPn1Lbvak7DNc50yK4LpTsWaGSBDizQZQTvl9dMu54eN1J_IS4tKakfdzjQXvzUvXjrVBmLa8_Q1KNWtIbGBjhXIthr63CVEWwNPNa9kpjpK0hH8GZ5GsWbcjam8e0l0VCHvhzdiAiKFWysvNDqmWZyGhqFlxhvlrmK4MOAoquH_3_Bmze_62u4Pzo-PNAHe0f7L-ABJ2wnMuZ8C9bnF5f-JTpp8-pVkAwGP25bFP8B-dtN7w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxFMNLWAkOEHUxI4d54AQsKxaChUHKu3NOLZDVyrJtklB-9f4dYydZKutRG-9JpOHM9-8MuMZgJemMg7NGI9ztM8YoJRZLJ2QsWRCJBYxokNV5ddDsXeUfZ7x2Qb8HffC-LLKUScGRW0b4_-R71IRWqEzDNWroSzi22T6bnEa-wlSPtM6jtPoIXLgln8wfGvf7k-Q168onX76_nEvHiYMxIZL1mEU5ttgOiF0LizjukqqypToImnjy7-YphK1t3EYZKXOFNxaKYx21mXayKIUDO97A27mjKdexvJZvvq_4zuvyywb9ukkTO62WdBKoXw-TfyIxDVbGEYGrPm5l6s0L6VqgwWc3oO7g-tK3vdYuw8brn4At_phlsuH4FBRNzHpGvJL4_PiFrnvyFAKT5qKsAnxd0YXFym6Hvnk91yTRXOy9ImjfkcomdcW8YZEvlZwcYxmlrSub1He1I_g6Fo-8WPYrJvabQHhuU0tZaUuMZRmvCholVKdl3gEHSfJIkjHz6nM0OHcD9o4USHTzqTqWaCQBSqwQBURvF5ds-j7e1xJ_cFzaUXpe3OHA83ZTzWIukqlNrj2DM0-akij_QgBawsEfmUsrjKCnZHHalAYrbqAdwQvVqdR1H3-RteuOfc0vlsfR5cignwNG2svtH6mnh-HpuEFxp4FlxG8GVF08fD_L_jJ1e_6HG6jEKov-4cH23CHemgnIqZ0Bza7s3P3FP21rnwWBIPAj-uWxH-FOVIl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nano-+to+macro-scale+control+of+3D+printed+materials+via+polymerization+induced+microphase+separation&rft.jtitle=Nature+communications&rft.au=Bobrin%2C+Valentin+A.&rft.au=Yao%2C+Yin&rft.au=Shi%2C+Xiaobing&rft.au=Xiu%2C+Yuan&rft.date=2022-06-22&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft_id=info:doi/10.1038%2Fs41467-022-31095-9&rft_id=info%3Apmid%2F35732624&rft.externalDocID=PMC9217958
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon