Epigenetic regulation of genetic integrity is reprogrammed during cloning
Cloning by somatic cell nuclear transfer (SCNT) circumvents processes that normally function during gametogenesis to prepare the gamete genomes to support development of new progeny following fertilization. One such process is enhanced maintenance of genetic integrity in germ cells, such that germ c...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 106; no. 12; pp. 4731 - 4735 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
24.03.2009
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cloning by somatic cell nuclear transfer (SCNT) circumvents processes that normally function during gametogenesis to prepare the gamete genomes to support development of new progeny following fertilization. One such process is enhanced maintenance of genetic integrity in germ cells, such that germ cells typically carry fewer spontaneously acquired mutations than somatic cells in the same individual. Thus, embryos produced from somatic cells by SCNT could directly inherit more mutations than naturally conceived embryos. Alternatively, they could inherit epigenetic programming that predisposes more rapid accumulation of de novo mutations during development. We used a transgenic mouse system to test these possibilities by producing cloned midgestation mouse fetuses from three different donor somatic cell types carrying significantly different initial frequencies of spontaneous mutations. We found that on an individual locus basis, mutations acquired spontaneously in a population of donor somatic cells are not likely to be propagated to cloned embryos by SCNT. In addition, we found that the rate of accumulation of spontaneous mutations was similar in fetuses produced by either natural conception or cloning, indicating that cloned fetuses do not acquire mutations more rapidly than naturally conceived fetuses. These results represent the first direct demonstration that the process of cloning by SCNT does not lead to an increase in the frequency of point mutations. These results also demonstrate that epigenetic mechanisms normally contribute to the regulation of genetic integrity in a tissue-specific manner, and that these mechanisms are subject to reprogramming during cloning. |
---|---|
AbstractList | Cloning by somatic cell nuclear transfer (SCNT) circumvents processes that normally function during gametogenesis to prepare the gamete genomes to support development of new progeny following fertilization. One such process is enhanced maintenance of genetic integrity in germ cells, such that germ cells typically carry fewer spontaneously acquired mutations than somatic cells in the same individual. Thus, embryos produced from somatic cells by SCNT could directly inherit more mutations than naturally conceived embryos. Alternatively, they could inherit epigenetic programming that predisposes more rapid accumulation of de novo mutations during development. We used a transgenic mouse system to test these possibilities by producing cloned midgestation mouse fetuses from three different donor somatic cell types carrying significantly different initial frequencies of spontaneous mutations. We found that on an individual locus basis, mutations acquired spontaneously in a population of donor somatic cells are not likely to be propagated to cloned embryos by SCNT. In addition, we found that the rate of accumulation of spontaneous mutations was similar in fetuses produced by either natural conception or cloning, indicating that cloned fetuses do not acquire mutations more rapidly than naturally conceived fetuses. These results represent the first direct demonstration that the process of cloning by SCNT does not lead to an increase in the frequency of point mutations. These results also demonstrate that epigenetic mechanisms normally contribute to the regulation of genetic integrity in a tissue-specific manner, and that these mechanisms are subject to reprogramming during cloning. Cloning by somatic cell nuclear transfer (SCNT) circumvents processes that normally function during gametogenesis to prepare the gamete genomes to support development of new progeny following fertilization. One such process is enhanced maintenance of genetic integrity in germ cells, such that germ cells typically carry fewer spontaneously acquired mutations than somatic cells in the same individual. Thus, embryos produced from somatic cells by SCNT could directly inherit more mutations than naturally conceived embryos. Alternatively, they could inherit epigenetic programming that predisposes more rapid accumulation of de novo mutations during development. We used a transgenic mouse system to test these possibilities by producing cloned midgestation mouse fetuses from three different donor somatic cell types carrying significantly different initial frequencies of spontaneous mutations. We found that on an individual locus basis, mutations acquired spontaneously in a population of donor somatic cells are not likely to be propagated to cloned embryos by SCNT. In addition, we found that the rate of accumulation of spontaneous mutations was similar in fetuses produced by either natural conception or cloning, indicating that cloned fetuses do not acquire mutations more rapidly than naturally conceived fetuses. These results represent the first direct demonstration that the process of cloning by SCNT does not lead to an increase in the frequency of point mutations. These results also demonstrate that epigenetic mechanisms normally contribute to the regulation of genetic integrity in a tissue-specific manner, and that these mechanisms are subject to reprogramming during cloning. [PUBLICATION ABSTRACT] Cloning by somatic cell nuclear transfer (SCNT) circumvents processes that normally function during gametogenesis to prepare the gamete genomes to support development of new progeny following fertilization. One such process is enhanced maintenance of genetic integrity in germ cells, such that germ cells typically carry fewer spontaneously acquired mutations than somatic cells in the same individual. Thus, embryos produced from somatic cells by SCNT could directly inherit more mutations than naturally conceived embryos. Alternatively, they could inherit epigenetic programming that predisposes more rapid accumulation of de novo mutations during development. We used a transgenic mouse system to test these possibilities by producing cloned midgestation mouse fetuses from three different donor somatic cell types carrying significantly different initial frequencies of spontaneous mutations. We found that on an individual locus basis, mutations acquired spontaneously in a population of donor somatic cells are not likely to be propagated to cloned embryos by SCNT. In addition, we found that the rate of accumulation of spontaneous mutations was similar in fetuses produced by either natural conception or cloning, indicating that cloned fetuses do not acquire mutations more rapidly than naturally conceived fetuses. These results represent the first direct demonstration that the process of cloning by SCNT does not lead to an increase in the frequency of point mutations. These results also demonstrate that epigenetic mechanisms normally contribute to the regulation of genetic integrity in a tissue-specific manner, and that these mechanisms are subject to reprogramming during cloning. Cloning by somatic cell nuclear transfer (SCNT) circumvents processes that normally function during gametogenesis to prepare the gamete genomes to support development of new progeny following fertilization. One such process is enhanced maintenance of genetic integrity in germ cells, such that germ cells typically carry fewer spontaneously acquired mutations than somatic cells in the same individual. Thus, embryos produced from somatic cells by SCNT could directly inherit more mutations than naturally conceived embryos. Alternatively, they could inherit epigenetic programming that predisposes more rapid accumulation of de novo mutations during development. We used a transgenic mouse system to test these possibilities by producing cloned midgestation mouse fetuses from three different donor somatic cell types carrying significantly different initial frequencies of spontaneous mutations. We found that on an individual locus basis, mutations acquired spontaneously in a population of donor somatic cells are not likely to be propagated to cloned embryos by SCNT. In addition, we found that the rate of accumulation of spontaneous mutations was similar in fetuses produced by either natural conception or cloning, indicating that cloned fetuses do not acquire mutations more rapidly than naturally conceived fetuses. These results represent the first direct demonstration that the process of cloning by SCNT does not lead to an increase in the frequency of point mutations. These results also demonstrate that epigenetic mechanisms normally contribute to the regulation of genetic integrity in a tissue-specific manner, and that these mechanisms are subject to reprogramming during cloning.Cloning by somatic cell nuclear transfer (SCNT) circumvents processes that normally function during gametogenesis to prepare the gamete genomes to support development of new progeny following fertilization. One such process is enhanced maintenance of genetic integrity in germ cells, such that germ cells typically carry fewer spontaneously acquired mutations than somatic cells in the same individual. Thus, embryos produced from somatic cells by SCNT could directly inherit more mutations than naturally conceived embryos. Alternatively, they could inherit epigenetic programming that predisposes more rapid accumulation of de novo mutations during development. We used a transgenic mouse system to test these possibilities by producing cloned midgestation mouse fetuses from three different donor somatic cell types carrying significantly different initial frequencies of spontaneous mutations. We found that on an individual locus basis, mutations acquired spontaneously in a population of donor somatic cells are not likely to be propagated to cloned embryos by SCNT. In addition, we found that the rate of accumulation of spontaneous mutations was similar in fetuses produced by either natural conception or cloning, indicating that cloned fetuses do not acquire mutations more rapidly than naturally conceived fetuses. These results represent the first direct demonstration that the process of cloning by SCNT does not lead to an increase in the frequency of point mutations. These results also demonstrate that epigenetic mechanisms normally contribute to the regulation of genetic integrity in a tissue-specific manner, and that these mechanisms are subject to reprogramming during cloning. |
Author | Murphey, Patricia Walter, Christi A Yamazaki, Yukiko McMahan, C. Alex McCarrey, John R Yanagimachi, Ryuzo |
Author_xml | – sequence: 1 fullname: Murphey, Patricia – sequence: 2 fullname: Yamazaki, Yukiko – sequence: 3 fullname: McMahan, C. Alex – sequence: 4 fullname: Walter, Christi A – sequence: 5 fullname: Yanagimachi, Ryuzo – sequence: 6 fullname: McCarrey, John R |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19255429$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1P3DAQhq2KqiyUc09tox6qXgLjjzjxpRJCtEVC6qFwtryOk3qVtVPbqeDf12EXlnKA00j2M-_MvDMHaM95ZxB6h-EYQ01PRqfiMQgA3tQY-Cu0wCBwyZmAPbQAIHXZMML20UGMKwAQVQNv0D4WpKoYEQt0cT7a3jiTrC6C6adBJetd4bvi_tW6ZPpg021hY0bG4Pug1mvTFu0UrOsLPXiX41v0ulNDNEfbeIiuv51fnf0oL39-vzg7vSx11dBUMm0U1V0tCBZdpbAQZKkZ1pprg4WiDWgCda0F6SrataRpOWG8bUGZJWspoYfo60Z3nJa5C21cCmqQY7BrFW6lV1b-_-Psb9n7v5JwnoVpFvi8FQj-z2RikmsbtRkG5YyfouR1dpYBexFknJC6AvwiSIAQIe7AT0_AlZ-Cy3ZlBlNKuZjLfng84MNk90vLwMkG0MHHGEy3Q0DOZyHns5C7s8gZ1ZMMbdPdprNDdngm7-O2lfljV4VLTCSr6TzRl-cJ2U3DkMxNyuj7DbqKyYcHNjvNcNM8KtYpL1U-uSivf822AOYYY4bpP9SV534 |
CitedBy_id | crossref_primary_10_1016_j_mce_2011_09_014 crossref_primary_10_1095_biolreprod_109_080952 crossref_primary_10_1016_j_scr_2016_12_029 crossref_primary_10_1016_S1472_6483_10_60449_X crossref_primary_10_1089_scd_2016_0221 crossref_primary_10_1016_j_cub_2011_07_002 crossref_primary_10_1016_j_anireprosci_2012_08_010 crossref_primary_10_1016_j_scr_2014_09_006 crossref_primary_10_1016_j_theriogenology_2016_04_021 crossref_primary_10_1111_j_2047_2927_2014_00238_x crossref_primary_10_1021_acs_est_7b01094 crossref_primary_10_1371_journal_pone_0168038 crossref_primary_10_1095_biolreprod_112_103481 |
Cites_doi | 10.1002/em.2850180421 10.1016/j.molcel.2007.12.027 10.1080/10915810701876620 10.1146/annurev.pa.35.040195.001045 10.1016/j.cell.2008.01.015 10.1016/j.cell.2008.02.009 10.1073/pnas.88.18.7958 10.1007/978-1-59745-154-3_11 10.1073/pnas.231489398 10.1002/dvdy.20915 10.1093/mutage/gen033 10.1530/rep.0.1220049 10.1093/mutage/gel036 10.1093/nar/29.6.1366 10.1089/clo.2006.8.237 10.1073/pnas.95.17.10015 10.1002/mrd.20126 10.1016/S0303-7207(01)00697-9 10.1073/pnas.0611642104 10.1089/1536230041372319 10.1007/BF02255837 10.1038/28615 10.1016/j.mrfmmm.2006.12.003 10.1152/physiolgenomics.00223.2007 10.1126/science.1063206 10.1038/nature06534 10.1007/978-3-642-46856-8_29 10.1016/S0065-227X(03)80003-5 10.1073/pnas.90.22.10681 10.1093/nar/30.2.545 10.1093/mutage/9.4.367 10.1002/em.2850260103 10.1016/S1383-5718(98)00147-8 10.1016/0378-4274(95)03472-2 10.1095/biolreprod55.3.630 10.1002/em.20004 10.2527/jas.2006-258 10.1002/em.20157 10.1095/biolreprod.103.017293 10.1002/em.2850250309 10.1056/NEJMp048304 10.1002/0471249688 10.3109/10408449409021608 |
ContentType | Journal Article |
Copyright | Copyright 1993-2008 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Mar 24, 2009 |
Copyright_xml | – notice: Copyright 1993-2008 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Mar 24, 2009 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0900687106 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE Virology and AIDS Abstracts CrossRef MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 4735 |
ExternalDocumentID | PMC2660773 1668761371 19255429 10_1073_pnas_0900687106 106_12_4731 40441886 US201301611141 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P20 GM103457 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFHIN AFOSN AFQQW AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c583t-4cea3cf79219f5a1992bc41cc6ce19a380c2077c92f53fd28d6246dd0aeb4d323 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:06:17 EDT 2025 Fri Jul 11 02:37:52 EDT 2025 Thu Jul 10 23:43:50 EDT 2025 Fri Jul 11 10:10:01 EDT 2025 Mon Jun 30 10:27:41 EDT 2025 Thu Apr 03 06:57:24 EDT 2025 Thu Apr 24 22:56:30 EDT 2025 Tue Jul 01 02:39:13 EDT 2025 Wed Nov 11 00:29:06 EST 2020 Thu May 30 08:50:57 EDT 2019 Thu May 29 08:42:56 EDT 2025 Thu Apr 03 09:44:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c583t-4cea3cf79219f5a1992bc41cc6ce19a380c2077c92f53fd28d6246dd0aeb4d323 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Author contributions: P.M., Y.Y., C.A.W., R.Y., and J.R.M. designed research; P.M. and Y.Y. performed research; P.M., Y.Y., C.A.M., R.Y., and J.R.M. analyzed data; and P.M. and J.R.M. wrote the paper. Contributed by Ryuzo Yanagimachi, January 22, 2009 |
OpenAccessLink | https://www.pnas.org/content/pnas/106/12/4731.full.pdf |
PMID | 19255429 |
PQID | 201333694 |
PQPubID | 42026 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2660773 proquest_journals_201333694 jstor_primary_40441886 fao_agris_US201301611141 pnas_primary_106_12_4731 proquest_miscellaneous_46227501 proquest_miscellaneous_20229901 crossref_citationtrail_10_1073_pnas_0900687106 proquest_miscellaneous_67073404 crossref_primary_10_1073_pnas_0900687106 pubmed_primary_19255429 pnas_primary_106_12_4731_fulltext |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-03-24 |
PublicationDateYYYYMMDD | 2009-03-24 |
PublicationDate_xml | – month: 03 year: 2009 text: 2009-03-24 day: 24 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2009 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 Walker VE (e_1_3_3_32_2) 1996; 56 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 Westhusin M (e_1_3_3_5_2) 2003; 5 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 9442305 - Arch Toxicol Suppl. 1998;20:321-30 18295571 - Cell. 2008 Feb 22;132(4):544-8 18573814 - Mutagenesis. 2008 Nov;23(6):445-50 8248160 - Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10681-5 11698647 - Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):14022-6 7968580 - Mutagenesis. 1994 Jul;9(4):367-75 12748125 - Biol Reprod. 2003 Sep;69(3):902-14 17275039 - Mutat Res. 2007 Apr 1;617(1-2):71-8 7641713 - Environ Mol Mutagen. 1995;26(1):9-15 11498580 - Science. 2001 Aug 10;293(5532):1093-8 11425329 - Reproduction. 2001 Jul;122(1):49-60 15957192 - Environ Mol Mutagen. 2006 Jan;47(1):6-17 8840980 - Cancer Res. 1996 Oct 15;56(20):4654-61 18089771 - Physiol Genomics. 2008 Mar 14;33(1):65-77 9707592 - Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10015-9 7737140 - Environ Mol Mutagen. 1995;25(3):218-30 17179549 - J Anim Sci. 2007 Jan;85(1):138-42 18293211 - Int J Toxicol. 2008 Jan-Feb;27(1):35-42 15685639 - Mol Reprod Dev. 2005 Apr;70(4):417-21 11788717 - Nucleic Acids Res. 2002 Jan 15;30(2):545-9 11988333 - Mol Cell Endocrinol. 2002 Feb 22;187(1-2):241-8 9690471 - Nature. 1998 Jul 23;394(6691):369-74 9838042 - Mutat Res. 1998 Dec 3;420(1-3):55-65 18313385 - Mol Cell. 2008 Feb 29;29(4):477-87 11239003 - Nucleic Acids Res. 2001 Mar 15;29(6):1366-72 15625328 - N Engl J Med. 2004 Dec 30;351(27):2787-91 7598490 - Annu Rev Pharmacol Toxicol. 1995;35:145-64 18295576 - Cell. 2008 Feb 22;132(4):567-82 16988379 - Methods Mol Biol. 2006;348:169-82 16881069 - Dev Dyn. 2006 Sep;235(9):2460-9 1836179 - Environ Mol Mutagen. 1991;18(4):316-21 16895946 - Mutagenesis. 2006 Sep;21(5):305-11 8597040 - Toxicol Lett. 1995 Dec;82-83:131-4 12954552 - Adv Biophys. 2003;37:49-89 15268786 - Cloning Stem Cells. 2004;6(2):126-32 1832771 - Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7958-62 7892645 - Somat Cell Mol Genet. 1994 Nov;20(6):451-61 17360354 - Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5085-90 7945893 - Crit Rev Toxicol. 1994;24(3):255-80 14733749 - Cloning Stem Cells. 2003;5(4):301-17 17196088 - Cloning Stem Cells. 2006 Winter;8(4):237-9 18157115 - Nature. 2008 Jan 10;451(7175):141-6 14991751 - Environ Mol Mutagen. 2004;43(2):110-20 8862781 - Biol Reprod. 1996 Sep;55(3):630-5 |
References_xml | – ident: e_1_3_3_17_2 doi: 10.1002/em.2850180421 – volume: 56 start-page: 4654 year: 1996 ident: e_1_3_3_32_2 article-title: Frequency and spectrum of ethylnitrosourea-induced mutation at the hprt and lacI loci in splenic lymphocytes of exposed lacI transgenic mice publication-title: Cancer Res – ident: e_1_3_3_35_2 doi: 10.1016/j.molcel.2007.12.027 – ident: e_1_3_3_29_2 doi: 10.1080/10915810701876620 – ident: e_1_3_3_24_2 doi: 10.1146/annurev.pa.35.040195.001045 – ident: e_1_3_3_40_2 doi: 10.1016/j.cell.2008.01.015 – ident: e_1_3_3_38_2 doi: 10.1016/j.cell.2008.02.009 – ident: e_1_3_3_41_2 doi: 10.1073/pnas.88.18.7958 – ident: e_1_3_3_4_2 doi: 10.1007/978-1-59745-154-3_11 – ident: e_1_3_3_42_2 doi: 10.1073/pnas.231489398 – ident: e_1_3_3_2_2 doi: 10.1002/dvdy.20915 – ident: e_1_3_3_30_2 doi: 10.1093/mutage/gen033 – ident: e_1_3_3_43_2 doi: 10.1530/rep.0.1220049 – ident: e_1_3_3_27_2 doi: 10.1093/mutage/gel036 – ident: e_1_3_3_34_2 doi: 10.1093/nar/29.6.1366 – ident: e_1_3_3_11_2 doi: 10.1089/clo.2006.8.237 – ident: e_1_3_3_14_2 doi: 10.1073/pnas.95.17.10015 – ident: e_1_3_3_7_2 doi: 10.1002/mrd.20126 – ident: e_1_3_3_6_2 doi: 10.1016/S0303-7207(01)00697-9 – ident: e_1_3_3_18_2 doi: 10.1073/pnas.0611642104 – ident: e_1_3_3_10_2 doi: 10.1089/1536230041372319 – ident: e_1_3_3_36_2 doi: 10.1007/BF02255837 – ident: e_1_3_3_44_2 doi: 10.1038/28615 – ident: e_1_3_3_28_2 doi: 10.1016/j.mrfmmm.2006.12.003 – ident: e_1_3_3_9_2 doi: 10.1152/physiolgenomics.00223.2007 – ident: e_1_3_3_16_2 doi: 10.1126/science.1063206 – ident: e_1_3_3_39_2 doi: 10.1038/nature06534 – ident: e_1_3_3_25_2 doi: 10.1007/978-3-642-46856-8_29 – ident: e_1_3_3_15_2 doi: 10.1016/S0065-227X(03)80003-5 – ident: e_1_3_3_31_2 doi: 10.1073/pnas.90.22.10681 – ident: e_1_3_3_12_2 doi: 10.1093/nar/30.2.545 – ident: e_1_3_3_20_2 doi: 10.1093/mutage/9.4.367 – ident: e_1_3_3_33_2 doi: 10.1002/em.2850260103 – ident: e_1_3_3_19_2 doi: 10.1016/S1383-5718(98)00147-8 – ident: e_1_3_3_23_2 doi: 10.1016/0378-4274(95)03472-2 – ident: e_1_3_3_37_2 doi: 10.1095/biolreprod55.3.630 – volume: 5 start-page: 301 year: 2003 ident: e_1_3_3_5_2 article-title: Cloning companion animals (horses, cats, and dogs) publication-title: J Anim Sci – ident: e_1_3_3_13_2 doi: 10.1002/em.20004 – ident: e_1_3_3_3_2 doi: 10.2527/jas.2006-258 – ident: e_1_3_3_26_2 doi: 10.1002/em.20157 – ident: e_1_3_3_8_2 doi: 10.1095/biolreprod.103.017293 – ident: e_1_3_3_21_2 doi: 10.1002/em.2850250309 – ident: e_1_3_3_1_2 doi: 10.1056/NEJMp048304 – ident: e_1_3_3_45_2 doi: 10.1002/0471249688 – ident: e_1_3_3_22_2 doi: 10.3109/10408449409021608 – reference: 11698647 - Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):14022-6 – reference: 15268786 - Cloning Stem Cells. 2004;6(2):126-32 – reference: 8597040 - Toxicol Lett. 1995 Dec;82-83:131-4 – reference: 17179549 - J Anim Sci. 2007 Jan;85(1):138-42 – reference: 18157115 - Nature. 2008 Jan 10;451(7175):141-6 – reference: 12748125 - Biol Reprod. 2003 Sep;69(3):902-14 – reference: 11788717 - Nucleic Acids Res. 2002 Jan 15;30(2):545-9 – reference: 7892645 - Somat Cell Mol Genet. 1994 Nov;20(6):451-61 – reference: 7598490 - Annu Rev Pharmacol Toxicol. 1995;35:145-64 – reference: 7641713 - Environ Mol Mutagen. 1995;26(1):9-15 – reference: 8248160 - Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10681-5 – reference: 11498580 - Science. 2001 Aug 10;293(5532):1093-8 – reference: 9690471 - Nature. 1998 Jul 23;394(6691):369-74 – reference: 18089771 - Physiol Genomics. 2008 Mar 14;33(1):65-77 – reference: 1832771 - Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7958-62 – reference: 18295576 - Cell. 2008 Feb 22;132(4):567-82 – reference: 7945893 - Crit Rev Toxicol. 1994;24(3):255-80 – reference: 7737140 - Environ Mol Mutagen. 1995;25(3):218-30 – reference: 8862781 - Biol Reprod. 1996 Sep;55(3):630-5 – reference: 15957192 - Environ Mol Mutagen. 2006 Jan;47(1):6-17 – reference: 7968580 - Mutagenesis. 1994 Jul;9(4):367-75 – reference: 17360354 - Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5085-90 – reference: 18313385 - Mol Cell. 2008 Feb 29;29(4):477-87 – reference: 8840980 - Cancer Res. 1996 Oct 15;56(20):4654-61 – reference: 11425329 - Reproduction. 2001 Jul;122(1):49-60 – reference: 16988379 - Methods Mol Biol. 2006;348:169-82 – reference: 17196088 - Cloning Stem Cells. 2006 Winter;8(4):237-9 – reference: 17275039 - Mutat Res. 2007 Apr 1;617(1-2):71-8 – reference: 12954552 - Adv Biophys. 2003;37:49-89 – reference: 9707592 - Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10015-9 – reference: 18573814 - Mutagenesis. 2008 Nov;23(6):445-50 – reference: 16881069 - Dev Dyn. 2006 Sep;235(9):2460-9 – reference: 15625328 - N Engl J Med. 2004 Dec 30;351(27):2787-91 – reference: 14733749 - Cloning Stem Cells. 2003;5(4):301-17 – reference: 9838042 - Mutat Res. 1998 Dec 3;420(1-3):55-65 – reference: 14991751 - Environ Mol Mutagen. 2004;43(2):110-20 – reference: 16895946 - Mutagenesis. 2006 Sep;21(5):305-11 – reference: 11988333 - Mol Cell Endocrinol. 2002 Feb 22;187(1-2):241-8 – reference: 15685639 - Mol Reprod Dev. 2005 Apr;70(4):417-21 – reference: 18295571 - Cell. 2008 Feb 22;132(4):544-8 – reference: 18293211 - Int J Toxicol. 2008 Jan-Feb;27(1):35-42 – reference: 11239003 - Nucleic Acids Res. 2001 Mar 15;29(6):1366-72 – reference: 1836179 - Environ Mol Mutagen. 1991;18(4):316-21 – reference: 9442305 - Arch Toxicol Suppl. 1998;20:321-30 |
SSID | ssj0009580 |
Score | 2.0249727 |
Snippet | Cloning by somatic cell nuclear transfer (SCNT) circumvents processes that normally function during gametogenesis to prepare the gamete genomes to support... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4731 |
SubjectTerms | Animals Biological Sciences Cells Cellular Reprogramming - genetics Cloning conception Embryos Epigenesis, Genetic epigenetics Female Fertilization Fetus Fetus - metabolism Fetuses Gametes Gametogenesis Genes Genetic mutation Genetic research genome Genomes Genomics Germ cells loci Male Mice Mutation Mutation - genetics Neurons Nuclear Transfer Techniques Point mutation Progeny Research Embryo Creation Rodents somatic cell nuclear transfer Somatic cells Spermatozoa - metabolism Transgenes Transgenic animals Transgenic mice |
Title | Epigenetic regulation of genetic integrity is reprogrammed during cloning |
URI | https://www.jstor.org/stable/40441886 http://www.pnas.org/content/106/12/4731.abstract https://www.ncbi.nlm.nih.gov/pubmed/19255429 https://www.proquest.com/docview/201333694 https://www.proquest.com/docview/20229901 https://www.proquest.com/docview/46227501 https://www.proquest.com/docview/67073404 https://pubmed.ncbi.nlm.nih.gov/PMC2660773 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKeOEFMWAsjD9B4mFoSklsJ04ep2moIK2axCptT5HjOCzaaCfSvux78H25i-0kndYJeIlax3HSu-v57nL3O0I-yiqUsoxYwMFaDrgQcVCkmQ5kBc4EUzHY-FicfDJNJjP-7Tw-H41-D7KWVstirG7vrSv5H67CGPAVq2T_gbPdojAAn4G_cAQOw_GveHx8g1ia2sAw_7CNuND8c6MGDAIN7bp9PWCSsWADdOWJ6roNxw5N1NNuS2tcAsHURQwP-_oTqxSag-DgdNp3M24ZZ8LgBv2_7vT-hfwpb6Vpk32xuqqvFn1Q8ERemkjs0bituRnE-W3nEIOCUNvYq4tTZJioRfs45UNPOlTQFDZNbq9zCjpMhpJIB_qWC7uHaPc1vndfAEWGzYznshmHGZbFCLfoOtj27DvFV7lgBoOfCE71YwreR5svOhliOaemssk-q0OMEuzznTusGTuPKrlwWa8IpQtT73Nr7mbnDsyds2fkqfVT_EMjdNtkpOfPybYjpb9v4co_vSBfeyn0eyn0F5XvRjsp9OvGH0qhb6TQt1L4ksy-HJ8dTQLboCNQccqWAVdaMlWJDLa9KpaYyVwoHimVKB1lkqWhoqEQKqNVzKqSpmVCeVKWodQFLxllO2RrvpjrXeJnPJSpznQkVcERML6ANcuwTFSRRrEIPTJ2lMyVRa_HJirXeZtFIViO9Mx70ntkv7vgxgC3bJ66C6zJJVCiydclwCM7Lb-6JXgI_kOa4jXtKv3SSR7RHOXRIx82ncorm9HlkT3H-NwqlCbHGzOWZNwj77uzoO3xFZ6c68UKp1C0H6PNM0DnYsuGB2YkAmgAv8Mjr4yg9U-a0Rj713lErIlgNwGx6NfPzOvLFpMe7HzgNHu9mZR75EmvFt6QreWvlX4LBv2yeNf-vf4ABsX0hQ |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epigenetic+regulation+of+genetic+integrity+is+reprogrammed+during+cloning&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Murphey%2C+Patricia&rft.au=Yamazaki%2C+Yukiko&rft.au=McMahan%2C+C.+Alex&rft.au=Walter%2C+Christi+A&rft.date=2009-03-24&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=106&rft.issue=12&rft.spage=4731&rft.epage=4735&rft_id=info:doi/10.1073%2Fpnas.0900687106&rft.externalDocID=US201301611141 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F12.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F12.cover.gif |