Epigenetic regulation of genetic integrity is reprogrammed during cloning

Cloning by somatic cell nuclear transfer (SCNT) circumvents processes that normally function during gametogenesis to prepare the gamete genomes to support development of new progeny following fertilization. One such process is enhanced maintenance of genetic integrity in germ cells, such that germ c...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 106; no. 12; pp. 4731 - 4735
Main Authors Murphey, Patricia, Yamazaki, Yukiko, McMahan, C. Alex, Walter, Christi A, Yanagimachi, Ryuzo, McCarrey, John R
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 24.03.2009
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cloning by somatic cell nuclear transfer (SCNT) circumvents processes that normally function during gametogenesis to prepare the gamete genomes to support development of new progeny following fertilization. One such process is enhanced maintenance of genetic integrity in germ cells, such that germ cells typically carry fewer spontaneously acquired mutations than somatic cells in the same individual. Thus, embryos produced from somatic cells by SCNT could directly inherit more mutations than naturally conceived embryos. Alternatively, they could inherit epigenetic programming that predisposes more rapid accumulation of de novo mutations during development. We used a transgenic mouse system to test these possibilities by producing cloned midgestation mouse fetuses from three different donor somatic cell types carrying significantly different initial frequencies of spontaneous mutations. We found that on an individual locus basis, mutations acquired spontaneously in a population of donor somatic cells are not likely to be propagated to cloned embryos by SCNT. In addition, we found that the rate of accumulation of spontaneous mutations was similar in fetuses produced by either natural conception or cloning, indicating that cloned fetuses do not acquire mutations more rapidly than naturally conceived fetuses. These results represent the first direct demonstration that the process of cloning by SCNT does not lead to an increase in the frequency of point mutations. These results also demonstrate that epigenetic mechanisms normally contribute to the regulation of genetic integrity in a tissue-specific manner, and that these mechanisms are subject to reprogramming during cloning.
AbstractList Cloning by somatic cell nuclear transfer (SCNT) circumvents processes that normally function during gametogenesis to prepare the gamete genomes to support development of new progeny following fertilization. One such process is enhanced maintenance of genetic integrity in germ cells, such that germ cells typically carry fewer spontaneously acquired mutations than somatic cells in the same individual. Thus, embryos produced from somatic cells by SCNT could directly inherit more mutations than naturally conceived embryos. Alternatively, they could inherit epigenetic programming that predisposes more rapid accumulation of de novo mutations during development. We used a transgenic mouse system to test these possibilities by producing cloned midgestation mouse fetuses from three different donor somatic cell types carrying significantly different initial frequencies of spontaneous mutations. We found that on an individual locus basis, mutations acquired spontaneously in a population of donor somatic cells are not likely to be propagated to cloned embryos by SCNT. In addition, we found that the rate of accumulation of spontaneous mutations was similar in fetuses produced by either natural conception or cloning, indicating that cloned fetuses do not acquire mutations more rapidly than naturally conceived fetuses. These results represent the first direct demonstration that the process of cloning by SCNT does not lead to an increase in the frequency of point mutations. These results also demonstrate that epigenetic mechanisms normally contribute to the regulation of genetic integrity in a tissue-specific manner, and that these mechanisms are subject to reprogramming during cloning.
Cloning by somatic cell nuclear transfer (SCNT) circumvents processes that normally function during gametogenesis to prepare the gamete genomes to support development of new progeny following fertilization. One such process is enhanced maintenance of genetic integrity in germ cells, such that germ cells typically carry fewer spontaneously acquired mutations than somatic cells in the same individual. Thus, embryos produced from somatic cells by SCNT could directly inherit more mutations than naturally conceived embryos. Alternatively, they could inherit epigenetic programming that predisposes more rapid accumulation of de novo mutations during development. We used a transgenic mouse system to test these possibilities by producing cloned midgestation mouse fetuses from three different donor somatic cell types carrying significantly different initial frequencies of spontaneous mutations. We found that on an individual locus basis, mutations acquired spontaneously in a population of donor somatic cells are not likely to be propagated to cloned embryos by SCNT. In addition, we found that the rate of accumulation of spontaneous mutations was similar in fetuses produced by either natural conception or cloning, indicating that cloned fetuses do not acquire mutations more rapidly than naturally conceived fetuses. These results represent the first direct demonstration that the process of cloning by SCNT does not lead to an increase in the frequency of point mutations. These results also demonstrate that epigenetic mechanisms normally contribute to the regulation of genetic integrity in a tissue-specific manner, and that these mechanisms are subject to reprogramming during cloning. [PUBLICATION ABSTRACT]
Cloning by somatic cell nuclear transfer (SCNT) circumvents processes that normally function during gametogenesis to prepare the gamete genomes to support development of new progeny following fertilization. One such process is enhanced maintenance of genetic integrity in germ cells, such that germ cells typically carry fewer spontaneously acquired mutations than somatic cells in the same individual. Thus, embryos produced from somatic cells by SCNT could directly inherit more mutations than naturally conceived embryos. Alternatively, they could inherit epigenetic programming that predisposes more rapid accumulation of de novo mutations during development. We used a transgenic mouse system to test these possibilities by producing cloned midgestation mouse fetuses from three different donor somatic cell types carrying significantly different initial frequencies of spontaneous mutations. We found that on an individual locus basis, mutations acquired spontaneously in a population of donor somatic cells are not likely to be propagated to cloned embryos by SCNT. In addition, we found that the rate of accumulation of spontaneous mutations was similar in fetuses produced by either natural conception or cloning, indicating that cloned fetuses do not acquire mutations more rapidly than naturally conceived fetuses. These results represent the first direct demonstration that the process of cloning by SCNT does not lead to an increase in the frequency of point mutations. These results also demonstrate that epigenetic mechanisms normally contribute to the regulation of genetic integrity in a tissue-specific manner, and that these mechanisms are subject to reprogramming during cloning.
Cloning by somatic cell nuclear transfer (SCNT) circumvents processes that normally function during gametogenesis to prepare the gamete genomes to support development of new progeny following fertilization. One such process is enhanced maintenance of genetic integrity in germ cells, such that germ cells typically carry fewer spontaneously acquired mutations than somatic cells in the same individual. Thus, embryos produced from somatic cells by SCNT could directly inherit more mutations than naturally conceived embryos. Alternatively, they could inherit epigenetic programming that predisposes more rapid accumulation of de novo mutations during development. We used a transgenic mouse system to test these possibilities by producing cloned midgestation mouse fetuses from three different donor somatic cell types carrying significantly different initial frequencies of spontaneous mutations. We found that on an individual locus basis, mutations acquired spontaneously in a population of donor somatic cells are not likely to be propagated to cloned embryos by SCNT. In addition, we found that the rate of accumulation of spontaneous mutations was similar in fetuses produced by either natural conception or cloning, indicating that cloned fetuses do not acquire mutations more rapidly than naturally conceived fetuses. These results represent the first direct demonstration that the process of cloning by SCNT does not lead to an increase in the frequency of point mutations. These results also demonstrate that epigenetic mechanisms normally contribute to the regulation of genetic integrity in a tissue-specific manner, and that these mechanisms are subject to reprogramming during cloning.Cloning by somatic cell nuclear transfer (SCNT) circumvents processes that normally function during gametogenesis to prepare the gamete genomes to support development of new progeny following fertilization. One such process is enhanced maintenance of genetic integrity in germ cells, such that germ cells typically carry fewer spontaneously acquired mutations than somatic cells in the same individual. Thus, embryos produced from somatic cells by SCNT could directly inherit more mutations than naturally conceived embryos. Alternatively, they could inherit epigenetic programming that predisposes more rapid accumulation of de novo mutations during development. We used a transgenic mouse system to test these possibilities by producing cloned midgestation mouse fetuses from three different donor somatic cell types carrying significantly different initial frequencies of spontaneous mutations. We found that on an individual locus basis, mutations acquired spontaneously in a population of donor somatic cells are not likely to be propagated to cloned embryos by SCNT. In addition, we found that the rate of accumulation of spontaneous mutations was similar in fetuses produced by either natural conception or cloning, indicating that cloned fetuses do not acquire mutations more rapidly than naturally conceived fetuses. These results represent the first direct demonstration that the process of cloning by SCNT does not lead to an increase in the frequency of point mutations. These results also demonstrate that epigenetic mechanisms normally contribute to the regulation of genetic integrity in a tissue-specific manner, and that these mechanisms are subject to reprogramming during cloning.
Author Murphey, Patricia
Walter, Christi A
Yamazaki, Yukiko
McMahan, C. Alex
McCarrey, John R
Yanagimachi, Ryuzo
Author_xml – sequence: 1
  fullname: Murphey, Patricia
– sequence: 2
  fullname: Yamazaki, Yukiko
– sequence: 3
  fullname: McMahan, C. Alex
– sequence: 4
  fullname: Walter, Christi A
– sequence: 5
  fullname: Yanagimachi, Ryuzo
– sequence: 6
  fullname: McCarrey, John R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19255429$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1P3DAQhq2KqiyUc09tox6qXgLjjzjxpRJCtEVC6qFwtryOk3qVtVPbqeDf12EXlnKA00j2M-_MvDMHaM95ZxB6h-EYQ01PRqfiMQgA3tQY-Cu0wCBwyZmAPbQAIHXZMML20UGMKwAQVQNv0D4WpKoYEQt0cT7a3jiTrC6C6adBJetd4bvi_tW6ZPpg021hY0bG4Pug1mvTFu0UrOsLPXiX41v0ulNDNEfbeIiuv51fnf0oL39-vzg7vSx11dBUMm0U1V0tCBZdpbAQZKkZ1pprg4WiDWgCda0F6SrataRpOWG8bUGZJWspoYfo60Z3nJa5C21cCmqQY7BrFW6lV1b-_-Psb9n7v5JwnoVpFvi8FQj-z2RikmsbtRkG5YyfouR1dpYBexFknJC6AvwiSIAQIe7AT0_AlZ-Cy3ZlBlNKuZjLfng84MNk90vLwMkG0MHHGEy3Q0DOZyHns5C7s8gZ1ZMMbdPdprNDdngm7-O2lfljV4VLTCSr6TzRl-cJ2U3DkMxNyuj7DbqKyYcHNjvNcNM8KtYpL1U-uSivf822AOYYY4bpP9SV534
CitedBy_id crossref_primary_10_1016_j_mce_2011_09_014
crossref_primary_10_1095_biolreprod_109_080952
crossref_primary_10_1016_j_scr_2016_12_029
crossref_primary_10_1016_S1472_6483_10_60449_X
crossref_primary_10_1089_scd_2016_0221
crossref_primary_10_1016_j_cub_2011_07_002
crossref_primary_10_1016_j_anireprosci_2012_08_010
crossref_primary_10_1016_j_scr_2014_09_006
crossref_primary_10_1016_j_theriogenology_2016_04_021
crossref_primary_10_1111_j_2047_2927_2014_00238_x
crossref_primary_10_1021_acs_est_7b01094
crossref_primary_10_1371_journal_pone_0168038
crossref_primary_10_1095_biolreprod_112_103481
Cites_doi 10.1002/em.2850180421
10.1016/j.molcel.2007.12.027
10.1080/10915810701876620
10.1146/annurev.pa.35.040195.001045
10.1016/j.cell.2008.01.015
10.1016/j.cell.2008.02.009
10.1073/pnas.88.18.7958
10.1007/978-1-59745-154-3_11
10.1073/pnas.231489398
10.1002/dvdy.20915
10.1093/mutage/gen033
10.1530/rep.0.1220049
10.1093/mutage/gel036
10.1093/nar/29.6.1366
10.1089/clo.2006.8.237
10.1073/pnas.95.17.10015
10.1002/mrd.20126
10.1016/S0303-7207(01)00697-9
10.1073/pnas.0611642104
10.1089/1536230041372319
10.1007/BF02255837
10.1038/28615
10.1016/j.mrfmmm.2006.12.003
10.1152/physiolgenomics.00223.2007
10.1126/science.1063206
10.1038/nature06534
10.1007/978-3-642-46856-8_29
10.1016/S0065-227X(03)80003-5
10.1073/pnas.90.22.10681
10.1093/nar/30.2.545
10.1093/mutage/9.4.367
10.1002/em.2850260103
10.1016/S1383-5718(98)00147-8
10.1016/0378-4274(95)03472-2
10.1095/biolreprod55.3.630
10.1002/em.20004
10.2527/jas.2006-258
10.1002/em.20157
10.1095/biolreprod.103.017293
10.1002/em.2850250309
10.1056/NEJMp048304
10.1002/0471249688
10.3109/10408449409021608
ContentType Journal Article
Copyright Copyright 1993-2008 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Mar 24, 2009
Copyright_xml – notice: Copyright 1993-2008 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Mar 24, 2009
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0900687106
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
MEDLINE
Virology and AIDS Abstracts



CrossRef

MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 4735
ExternalDocumentID PMC2660773
1668761371
19255429
10_1073_pnas_0900687106
106_12_4731
40441886
US201301611141
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P20 GM103457
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFHIN
AFOSN
AFQQW
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c583t-4cea3cf79219f5a1992bc41cc6ce19a380c2077c92f53fd28d6246dd0aeb4d323
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:06:17 EDT 2025
Fri Jul 11 02:37:52 EDT 2025
Thu Jul 10 23:43:50 EDT 2025
Fri Jul 11 10:10:01 EDT 2025
Mon Jun 30 10:27:41 EDT 2025
Thu Apr 03 06:57:24 EDT 2025
Thu Apr 24 22:56:30 EDT 2025
Tue Jul 01 02:39:13 EDT 2025
Wed Nov 11 00:29:06 EST 2020
Thu May 30 08:50:57 EDT 2019
Thu May 29 08:42:56 EDT 2025
Thu Apr 03 09:44:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c583t-4cea3cf79219f5a1992bc41cc6ce19a380c2077c92f53fd28d6246dd0aeb4d323
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Author contributions: P.M., Y.Y., C.A.W., R.Y., and J.R.M. designed research; P.M. and Y.Y. performed research; P.M., Y.Y., C.A.M., R.Y., and J.R.M. analyzed data; and P.M. and J.R.M. wrote the paper.
Contributed by Ryuzo Yanagimachi, January 22, 2009
OpenAccessLink https://www.pnas.org/content/pnas/106/12/4731.full.pdf
PMID 19255429
PQID 201333694
PQPubID 42026
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2660773
proquest_journals_201333694
jstor_primary_40441886
fao_agris_US201301611141
pnas_primary_106_12_4731
proquest_miscellaneous_46227501
proquest_miscellaneous_20229901
crossref_citationtrail_10_1073_pnas_0900687106
proquest_miscellaneous_67073404
crossref_primary_10_1073_pnas_0900687106
pubmed_primary_19255429
pnas_primary_106_12_4731_fulltext
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-03-24
PublicationDateYYYYMMDD 2009-03-24
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-24
  day: 24
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2009
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
Walker VE (e_1_3_3_32_2) 1996; 56
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
Westhusin M (e_1_3_3_5_2) 2003; 5
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
9442305 - Arch Toxicol Suppl. 1998;20:321-30
18295571 - Cell. 2008 Feb 22;132(4):544-8
18573814 - Mutagenesis. 2008 Nov;23(6):445-50
8248160 - Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10681-5
11698647 - Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):14022-6
7968580 - Mutagenesis. 1994 Jul;9(4):367-75
12748125 - Biol Reprod. 2003 Sep;69(3):902-14
17275039 - Mutat Res. 2007 Apr 1;617(1-2):71-8
7641713 - Environ Mol Mutagen. 1995;26(1):9-15
11498580 - Science. 2001 Aug 10;293(5532):1093-8
11425329 - Reproduction. 2001 Jul;122(1):49-60
15957192 - Environ Mol Mutagen. 2006 Jan;47(1):6-17
8840980 - Cancer Res. 1996 Oct 15;56(20):4654-61
18089771 - Physiol Genomics. 2008 Mar 14;33(1):65-77
9707592 - Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10015-9
7737140 - Environ Mol Mutagen. 1995;25(3):218-30
17179549 - J Anim Sci. 2007 Jan;85(1):138-42
18293211 - Int J Toxicol. 2008 Jan-Feb;27(1):35-42
15685639 - Mol Reprod Dev. 2005 Apr;70(4):417-21
11788717 - Nucleic Acids Res. 2002 Jan 15;30(2):545-9
11988333 - Mol Cell Endocrinol. 2002 Feb 22;187(1-2):241-8
9690471 - Nature. 1998 Jul 23;394(6691):369-74
9838042 - Mutat Res. 1998 Dec 3;420(1-3):55-65
18313385 - Mol Cell. 2008 Feb 29;29(4):477-87
11239003 - Nucleic Acids Res. 2001 Mar 15;29(6):1366-72
15625328 - N Engl J Med. 2004 Dec 30;351(27):2787-91
7598490 - Annu Rev Pharmacol Toxicol. 1995;35:145-64
18295576 - Cell. 2008 Feb 22;132(4):567-82
16988379 - Methods Mol Biol. 2006;348:169-82
16881069 - Dev Dyn. 2006 Sep;235(9):2460-9
1836179 - Environ Mol Mutagen. 1991;18(4):316-21
16895946 - Mutagenesis. 2006 Sep;21(5):305-11
8597040 - Toxicol Lett. 1995 Dec;82-83:131-4
12954552 - Adv Biophys. 2003;37:49-89
15268786 - Cloning Stem Cells. 2004;6(2):126-32
1832771 - Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7958-62
7892645 - Somat Cell Mol Genet. 1994 Nov;20(6):451-61
17360354 - Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5085-90
7945893 - Crit Rev Toxicol. 1994;24(3):255-80
14733749 - Cloning Stem Cells. 2003;5(4):301-17
17196088 - Cloning Stem Cells. 2006 Winter;8(4):237-9
18157115 - Nature. 2008 Jan 10;451(7175):141-6
14991751 - Environ Mol Mutagen. 2004;43(2):110-20
8862781 - Biol Reprod. 1996 Sep;55(3):630-5
References_xml – ident: e_1_3_3_17_2
  doi: 10.1002/em.2850180421
– volume: 56
  start-page: 4654
  year: 1996
  ident: e_1_3_3_32_2
  article-title: Frequency and spectrum of ethylnitrosourea-induced mutation at the hprt and lacI loci in splenic lymphocytes of exposed lacI transgenic mice
  publication-title: Cancer Res
– ident: e_1_3_3_35_2
  doi: 10.1016/j.molcel.2007.12.027
– ident: e_1_3_3_29_2
  doi: 10.1080/10915810701876620
– ident: e_1_3_3_24_2
  doi: 10.1146/annurev.pa.35.040195.001045
– ident: e_1_3_3_40_2
  doi: 10.1016/j.cell.2008.01.015
– ident: e_1_3_3_38_2
  doi: 10.1016/j.cell.2008.02.009
– ident: e_1_3_3_41_2
  doi: 10.1073/pnas.88.18.7958
– ident: e_1_3_3_4_2
  doi: 10.1007/978-1-59745-154-3_11
– ident: e_1_3_3_42_2
  doi: 10.1073/pnas.231489398
– ident: e_1_3_3_2_2
  doi: 10.1002/dvdy.20915
– ident: e_1_3_3_30_2
  doi: 10.1093/mutage/gen033
– ident: e_1_3_3_43_2
  doi: 10.1530/rep.0.1220049
– ident: e_1_3_3_27_2
  doi: 10.1093/mutage/gel036
– ident: e_1_3_3_34_2
  doi: 10.1093/nar/29.6.1366
– ident: e_1_3_3_11_2
  doi: 10.1089/clo.2006.8.237
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.95.17.10015
– ident: e_1_3_3_7_2
  doi: 10.1002/mrd.20126
– ident: e_1_3_3_6_2
  doi: 10.1016/S0303-7207(01)00697-9
– ident: e_1_3_3_18_2
  doi: 10.1073/pnas.0611642104
– ident: e_1_3_3_10_2
  doi: 10.1089/1536230041372319
– ident: e_1_3_3_36_2
  doi: 10.1007/BF02255837
– ident: e_1_3_3_44_2
  doi: 10.1038/28615
– ident: e_1_3_3_28_2
  doi: 10.1016/j.mrfmmm.2006.12.003
– ident: e_1_3_3_9_2
  doi: 10.1152/physiolgenomics.00223.2007
– ident: e_1_3_3_16_2
  doi: 10.1126/science.1063206
– ident: e_1_3_3_39_2
  doi: 10.1038/nature06534
– ident: e_1_3_3_25_2
  doi: 10.1007/978-3-642-46856-8_29
– ident: e_1_3_3_15_2
  doi: 10.1016/S0065-227X(03)80003-5
– ident: e_1_3_3_31_2
  doi: 10.1073/pnas.90.22.10681
– ident: e_1_3_3_12_2
  doi: 10.1093/nar/30.2.545
– ident: e_1_3_3_20_2
  doi: 10.1093/mutage/9.4.367
– ident: e_1_3_3_33_2
  doi: 10.1002/em.2850260103
– ident: e_1_3_3_19_2
  doi: 10.1016/S1383-5718(98)00147-8
– ident: e_1_3_3_23_2
  doi: 10.1016/0378-4274(95)03472-2
– ident: e_1_3_3_37_2
  doi: 10.1095/biolreprod55.3.630
– volume: 5
  start-page: 301
  year: 2003
  ident: e_1_3_3_5_2
  article-title: Cloning companion animals (horses, cats, and dogs)
  publication-title: J Anim Sci
– ident: e_1_3_3_13_2
  doi: 10.1002/em.20004
– ident: e_1_3_3_3_2
  doi: 10.2527/jas.2006-258
– ident: e_1_3_3_26_2
  doi: 10.1002/em.20157
– ident: e_1_3_3_8_2
  doi: 10.1095/biolreprod.103.017293
– ident: e_1_3_3_21_2
  doi: 10.1002/em.2850250309
– ident: e_1_3_3_1_2
  doi: 10.1056/NEJMp048304
– ident: e_1_3_3_45_2
  doi: 10.1002/0471249688
– ident: e_1_3_3_22_2
  doi: 10.3109/10408449409021608
– reference: 11698647 - Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):14022-6
– reference: 15268786 - Cloning Stem Cells. 2004;6(2):126-32
– reference: 8597040 - Toxicol Lett. 1995 Dec;82-83:131-4
– reference: 17179549 - J Anim Sci. 2007 Jan;85(1):138-42
– reference: 18157115 - Nature. 2008 Jan 10;451(7175):141-6
– reference: 12748125 - Biol Reprod. 2003 Sep;69(3):902-14
– reference: 11788717 - Nucleic Acids Res. 2002 Jan 15;30(2):545-9
– reference: 7892645 - Somat Cell Mol Genet. 1994 Nov;20(6):451-61
– reference: 7598490 - Annu Rev Pharmacol Toxicol. 1995;35:145-64
– reference: 7641713 - Environ Mol Mutagen. 1995;26(1):9-15
– reference: 8248160 - Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10681-5
– reference: 11498580 - Science. 2001 Aug 10;293(5532):1093-8
– reference: 9690471 - Nature. 1998 Jul 23;394(6691):369-74
– reference: 18089771 - Physiol Genomics. 2008 Mar 14;33(1):65-77
– reference: 1832771 - Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7958-62
– reference: 18295576 - Cell. 2008 Feb 22;132(4):567-82
– reference: 7945893 - Crit Rev Toxicol. 1994;24(3):255-80
– reference: 7737140 - Environ Mol Mutagen. 1995;25(3):218-30
– reference: 8862781 - Biol Reprod. 1996 Sep;55(3):630-5
– reference: 15957192 - Environ Mol Mutagen. 2006 Jan;47(1):6-17
– reference: 7968580 - Mutagenesis. 1994 Jul;9(4):367-75
– reference: 17360354 - Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):5085-90
– reference: 18313385 - Mol Cell. 2008 Feb 29;29(4):477-87
– reference: 8840980 - Cancer Res. 1996 Oct 15;56(20):4654-61
– reference: 11425329 - Reproduction. 2001 Jul;122(1):49-60
– reference: 16988379 - Methods Mol Biol. 2006;348:169-82
– reference: 17196088 - Cloning Stem Cells. 2006 Winter;8(4):237-9
– reference: 17275039 - Mutat Res. 2007 Apr 1;617(1-2):71-8
– reference: 12954552 - Adv Biophys. 2003;37:49-89
– reference: 9707592 - Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10015-9
– reference: 18573814 - Mutagenesis. 2008 Nov;23(6):445-50
– reference: 16881069 - Dev Dyn. 2006 Sep;235(9):2460-9
– reference: 15625328 - N Engl J Med. 2004 Dec 30;351(27):2787-91
– reference: 14733749 - Cloning Stem Cells. 2003;5(4):301-17
– reference: 9838042 - Mutat Res. 1998 Dec 3;420(1-3):55-65
– reference: 14991751 - Environ Mol Mutagen. 2004;43(2):110-20
– reference: 16895946 - Mutagenesis. 2006 Sep;21(5):305-11
– reference: 11988333 - Mol Cell Endocrinol. 2002 Feb 22;187(1-2):241-8
– reference: 15685639 - Mol Reprod Dev. 2005 Apr;70(4):417-21
– reference: 18295571 - Cell. 2008 Feb 22;132(4):544-8
– reference: 18293211 - Int J Toxicol. 2008 Jan-Feb;27(1):35-42
– reference: 11239003 - Nucleic Acids Res. 2001 Mar 15;29(6):1366-72
– reference: 1836179 - Environ Mol Mutagen. 1991;18(4):316-21
– reference: 9442305 - Arch Toxicol Suppl. 1998;20:321-30
SSID ssj0009580
Score 2.0249727
Snippet Cloning by somatic cell nuclear transfer (SCNT) circumvents processes that normally function during gametogenesis to prepare the gamete genomes to support...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4731
SubjectTerms Animals
Biological Sciences
Cells
Cellular Reprogramming - genetics
Cloning
conception
Embryos
Epigenesis, Genetic
epigenetics
Female
Fertilization
Fetus
Fetus - metabolism
Fetuses
Gametes
Gametogenesis
Genes
Genetic mutation
Genetic research
genome
Genomes
Genomics
Germ cells
loci
Male
Mice
Mutation
Mutation - genetics
Neurons
Nuclear Transfer Techniques
Point mutation
Progeny
Research Embryo Creation
Rodents
somatic cell nuclear transfer
Somatic cells
Spermatozoa - metabolism
Transgenes
Transgenic animals
Transgenic mice
Title Epigenetic regulation of genetic integrity is reprogrammed during cloning
URI https://www.jstor.org/stable/40441886
http://www.pnas.org/content/106/12/4731.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19255429
https://www.proquest.com/docview/201333694
https://www.proquest.com/docview/20229901
https://www.proquest.com/docview/46227501
https://www.proquest.com/docview/67073404
https://pubmed.ncbi.nlm.nih.gov/PMC2660773
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKeOEFMWAsjD9B4mFoSklsJ04ep2moIK2axCptT5HjOCzaaCfSvux78H25i-0kndYJeIlax3HSu-v57nL3O0I-yiqUsoxYwMFaDrgQcVCkmQ5kBc4EUzHY-FicfDJNJjP-7Tw-H41-D7KWVstirG7vrSv5H67CGPAVq2T_gbPdojAAn4G_cAQOw_GveHx8g1ia2sAw_7CNuND8c6MGDAIN7bp9PWCSsWADdOWJ6roNxw5N1NNuS2tcAsHURQwP-_oTqxSag-DgdNp3M24ZZ8LgBv2_7vT-hfwpb6Vpk32xuqqvFn1Q8ERemkjs0bituRnE-W3nEIOCUNvYq4tTZJioRfs45UNPOlTQFDZNbq9zCjpMhpJIB_qWC7uHaPc1vndfAEWGzYznshmHGZbFCLfoOtj27DvFV7lgBoOfCE71YwreR5svOhliOaemssk-q0OMEuzznTusGTuPKrlwWa8IpQtT73Nr7mbnDsyds2fkqfVT_EMjdNtkpOfPybYjpb9v4co_vSBfeyn0eyn0F5XvRjsp9OvGH0qhb6TQt1L4ksy-HJ8dTQLboCNQccqWAVdaMlWJDLa9KpaYyVwoHimVKB1lkqWhoqEQKqNVzKqSpmVCeVKWodQFLxllO2RrvpjrXeJnPJSpznQkVcERML6ANcuwTFSRRrEIPTJ2lMyVRa_HJirXeZtFIViO9Mx70ntkv7vgxgC3bJ66C6zJJVCiydclwCM7Lb-6JXgI_kOa4jXtKv3SSR7RHOXRIx82ncorm9HlkT3H-NwqlCbHGzOWZNwj77uzoO3xFZ6c68UKp1C0H6PNM0DnYsuGB2YkAmgAv8Mjr4yg9U-a0Rj713lErIlgNwGx6NfPzOvLFpMe7HzgNHu9mZR75EmvFt6QreWvlX4LBv2yeNf-vf4ABsX0hQ
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epigenetic+regulation+of+genetic+integrity+is+reprogrammed+during+cloning&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Murphey%2C+Patricia&rft.au=Yamazaki%2C+Yukiko&rft.au=McMahan%2C+C.+Alex&rft.au=Walter%2C+Christi+A&rft.date=2009-03-24&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.volume=106&rft.issue=12&rft.spage=4731&rft.epage=4735&rft_id=info:doi/10.1073%2Fpnas.0900687106&rft.externalDocID=US201301611141
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F12.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F12.cover.gif