Flow-induced order–order transitions in amyloid fibril liquid crystalline tactoids
Liquid crystalline droplets, also known as tactoids, forming by nucleation and growth within the phase diagram region where isotropic and nematic phases coexist, challenge our understanding of liquid crystals under confinement due to anisotropic surface boundaries at vanishingly small interfacial te...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 5416 - 9 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.10.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liquid crystalline droplets, also known as tactoids, forming by nucleation and growth within the phase diagram region where isotropic and nematic phases coexist, challenge our understanding of liquid crystals under confinement due to anisotropic surface boundaries at vanishingly small interfacial tension, resulting in complex, non-spherical shapes. Little is known about their dynamical properties, since they are mostly studied under quiescent, quasi-equilibrium conditions. Here we show that different classes of amyloid based nematic and cholesteric tactoids undergo order–order transitions by flow-induced deformations of their shape. Tactoids align under extensional flow, undergoing extreme deformation into highly elongated prolate shapes, with the cholesteric pitch decreasing as an inverse power-law of the tactoids aspect ratio. Free energy functional theory and experimental measurements are combined to rationalize the critical elongation above which the director-field configuration of tactoids transforms from bipolar and uniaxial cholesteric to homogenous and to debate on the thermodynamic nature of these transitions.
Tactoids are liquid crystal droplets with nearly vanishing interfacial tension. Almohammadi et al. show using a microfluidic focusing device how to manipulate them gently enough to facilitate the study of amyloid liquid crystal phase transitions subject to non-equilibirum forcing and shape changes. |
---|---|
AbstractList | Tactoids are liquid crystal droplets with nearly vanishing interfacial tension. Almohammadi et al. show using a microfluidic focusing device how to manipulate them gently enough to facilitate the study of amyloid liquid crystal phase transitions subject to non-equilibirum forcing and shape changes. Liquid crystalline droplets, also known as tactoids, forming by nucleation and growth within the phase diagram region where isotropic and nematic phases coexist, challenge our understanding of liquid crystals under confinement due to anisotropic surface boundaries at vanishingly small interfacial tension, resulting in complex, non-spherical shapes. Little is known about their dynamical properties, since they are mostly studied under quiescent, quasi-equilibrium conditions. Here we show that different classes of amyloid based nematic and cholesteric tactoids undergo order–order transitions by flow-induced deformations of their shape. Tactoids align under extensional flow, undergoing extreme deformation into highly elongated prolate shapes, with the cholesteric pitch decreasing as an inverse power-law of the tactoids aspect ratio. Free energy functional theory and experimental measurements are combined to rationalize the critical elongation above which the director-field configuration of tactoids transforms from bipolar and uniaxial cholesteric to homogenous and to debate on the thermodynamic nature of these transitions. Tactoids are liquid crystal droplets with nearly vanishing interfacial tension. Almohammadi et al. show using a microfluidic focusing device how to manipulate them gently enough to facilitate the study of amyloid liquid crystal phase transitions subject to non-equilibirum forcing and shape changes. Liquid crystalline droplets, also known as tactoids, forming by nucleation and growth within the phase diagram region where isotropic and nematic phases coexist, challenge our understanding of liquid crystals under confinement due to anisotropic surface boundaries at vanishingly small interfacial tension, resulting in complex, non-spherical shapes. Little is known about their dynamical properties, since they are mostly studied under quiescent, quasi-equilibrium conditions. Here we show that different classes of amyloid based nematic and cholesteric tactoids undergo order–order transitions by flow-induced deformations of their shape. Tactoids align under extensional flow, undergoing extreme deformation into highly elongated prolate shapes, with the cholesteric pitch decreasing as an inverse power-law of the tactoids aspect ratio. Free energy functional theory and experimental measurements are combined to rationalize the critical elongation above which the director-field configuration of tactoids transforms from bipolar and uniaxial cholesteric to homogenous and to debate on the thermodynamic nature of these transitions. Liquid crystalline droplets, also known as tactoids, forming by nucleation and growth within the phase diagram region where isotropic and nematic phases coexist, challenge our understanding of liquid crystals under confinement due to anisotropic surface boundaries at vanishingly small interfacial tension, resulting in complex, non-spherical shapes. Little is known about their dynamical properties, since they are mostly studied under quiescent, quasi-equilibrium conditions. Here we show that different classes of amyloid based nematic and cholesteric tactoids undergo order-order transitions by flow-induced deformations of their shape. Tactoids align under extensional flow, undergoing extreme deformation into highly elongated prolate shapes, with the cholesteric pitch decreasing as an inverse power-law of the tactoids aspect ratio. Free energy functional theory and experimental measurements are combined to rationalize the critical elongation above which the director-field configuration of tactoids transforms from bipolar and uniaxial cholesteric to homogenous and to debate on the thermodynamic nature of these transitions.Liquid crystalline droplets, also known as tactoids, forming by nucleation and growth within the phase diagram region where isotropic and nematic phases coexist, challenge our understanding of liquid crystals under confinement due to anisotropic surface boundaries at vanishingly small interfacial tension, resulting in complex, non-spherical shapes. Little is known about their dynamical properties, since they are mostly studied under quiescent, quasi-equilibrium conditions. Here we show that different classes of amyloid based nematic and cholesteric tactoids undergo order-order transitions by flow-induced deformations of their shape. Tactoids align under extensional flow, undergoing extreme deformation into highly elongated prolate shapes, with the cholesteric pitch decreasing as an inverse power-law of the tactoids aspect ratio. Free energy functional theory and experimental measurements are combined to rationalize the critical elongation above which the director-field configuration of tactoids transforms from bipolar and uniaxial cholesteric to homogenous and to debate on the thermodynamic nature of these transitions. Liquid crystalline droplets, also known as tactoids, forming by nucleation and growth within the phase diagram region where isotropic and nematic phases coexist, challenge our understanding of liquid crystals under confinement due to anisotropic surface boundaries at vanishingly small interfacial tension, resulting in complex, non-spherical shapes. Little is known about their dynamical properties, since they are mostly studied under quiescent, quasi-equilibrium conditions. Here we show that different classes of amyloid based nematic and cholesteric tactoids undergo order–order transitions by flow-induced deformations of their shape. Tactoids align under extensional flow, undergoing extreme deformation into highly elongated prolate shapes, with the cholesteric pitch decreasing as an inverse power-law of the tactoids aspect ratio. Free energy functional theory and experimental measurements are combined to rationalize the critical elongation above which the director-field configuration of tactoids transforms from bipolar and uniaxial cholesteric to homogenous and to debate on the thermodynamic nature of these transitions.Tactoids are liquid crystal droplets with nearly vanishing interfacial tension. Almohammadi et al. show using a microfluidic focusing device how to manipulate them gently enough to facilitate the study of amyloid liquid crystal phase transitions subject to non-equilibirum forcing and shape changes. |
ArticleNumber | 5416 |
Author | Bagnani, Massimo Almohammadi, Hamed Mezzenga, Raffaele |
Author_xml | – sequence: 1 givenname: Hamed orcidid: 0000-0002-1795-3575 surname: Almohammadi fullname: Almohammadi, Hamed organization: Department of Health Sciences and Technology, ETH Zurich – sequence: 2 givenname: Massimo orcidid: 0000-0002-1326-1600 surname: Bagnani fullname: Bagnani, Massimo organization: Department of Health Sciences and Technology, ETH Zurich – sequence: 3 givenname: Raffaele orcidid: 0000-0002-5739-2610 surname: Mezzenga fullname: Mezzenga, Raffaele email: raffaele.mezzenga@hest.ethz.ch organization: Department of Health Sciences and Technology, ETH Zurich, Department of Materials, ETH Zurich |
BookMark | eNp9ks1OFTEUxxuDEQRewNUkbtyM9HM63ZgYAkpC4gbWTac9c-1NbwvtjHJ3voNv6JNY7kAUFnRz-vH7_9vTc96ivZgiIPSO4I8Es_6kcMI72WKKW6IoYe3dK3RAMSctkZTt_TffR8elrHEdTJGe8zdonzFCMO74Abo6D-ln66ObLbgmZQf5z6_fu9hM2cTiJ59iaXxszGYbknfN6IfsQxP87VxXNm_LZELwEZrJ2KkS5Qi9Hk0ocPwQD9H1-dnV6df28tuXi9PPl60VPZta3ktHuJVysKCstLRjVBCHJTN0dGBkr_igKJAeD7zDgxHOWoF7KkxPQYzsEF0svi6Ztb7JfmPyVifj9W4j5ZU2efI2gB67UUo-kE5yzjFVhoLCwKWRQ6dsx6vXp8XrZh424CzEmn54Yvr0JPrvepV-aCkU4UpUgw8PBjndzlAmvfHFQggmQpqLplyIWg6lZEXfP0PXac6xflWlJBGUsY5Wql8om1MpGUZt_WTuy1Hv90ETrO87QS-doGsn6F0n6Lsqpc-kj3m8KGKLqFQ4riD_e9ULqr9aqMiR |
CitedBy_id | crossref_primary_10_1016_j_jcis_2020_08_052 crossref_primary_10_1103_PhysRevE_103_062703 crossref_primary_10_1103_PhysRevE_109_054706 crossref_primary_10_1016_j_solmat_2025_113482 crossref_primary_10_1038_s41377_024_01453_x crossref_primary_10_1038_s41377_021_00483_z crossref_primary_10_1063_5_0064873 crossref_primary_10_1016_j_jcis_2023_01_105 crossref_primary_10_1021_acsnano_1c08374 crossref_primary_10_1364_OE_478260 crossref_primary_10_1038_s41467_023_36292_8 crossref_primary_10_1002_smll_202305839 crossref_primary_10_1021_acsnano_2c06591 crossref_primary_10_1016_j_foodhyd_2023_108845 crossref_primary_10_1088_1361_6633_adb441 crossref_primary_10_1063_5_0078056 crossref_primary_10_1021_acsnano_2c12065 crossref_primary_10_1016_j_ejpb_2022_11_021 crossref_primary_10_1016_j_nantod_2024_102615 crossref_primary_10_1016_j_cocis_2021_101500 crossref_primary_10_1038_s41563_022_01202_8 crossref_primary_10_1021_acs_langmuir_4c01846 crossref_primary_10_1002_adma_202312564 crossref_primary_10_1364_OE_494773 crossref_primary_10_1016_j_cej_2025_160258 crossref_primary_10_1021_acs_nanolett_3c02860 crossref_primary_10_1039_D3MH01585H crossref_primary_10_1038_s41467_022_30123_y |
Cites_doi | 10.1016/0377-0257(91)87018-S 10.1038/s41598-019-48996-3 10.1021/ma502264c 10.1002/1521-4095(200108)13:15<1135::AID-ADMA1135>3.0.CO;2-S 10.1038/s41598-017-01287-1 10.1038/nature04163 10.1103/PhysRevE.82.020702 10.1038/natrevmats.2015.11 10.1016/0377-0257(95)01386-3 10.1017/S0022112009991662 10.1038/s41565-018-0071-9 10.1073/pnas.1100087108 10.1017/S0022112069000759 10.1103/PhysRevE.75.061902 10.1021/acsnano.8b00512 10.1017/S0022112007006210 10.1103/PhysRevLett.110.048303 10.1103/PhysRevLett.91.165701 10.1038/nphys1682 10.1021/la990101e 10.1088/0022-3727/46/11/114002 10.1146/annurev-fluid-122414-034425 10.1007/BF00712313 10.1021/ac980656z 10.1021/acsnano.8b07557 10.1146/annurev.fl.16.010184.000401 10.1085/jgp.25.1.111 10.1017/jfm.2012.536 10.1038/nnano.2010.59 10.1016/j.jnnfm.2009.03.004 10.1002/adma.201505961 10.1038/158027b0 10.3390/cryst9030143 10.1098/rspa.1934.0169 10.1103/PhysRevLett.101.208102 10.1007/s00397-013-0701-y 10.1103/PhysRevLett.108.074506 10.1103/PhysRevE.68.021701 10.1063/1.3670365 10.1073/pnas.1219340110 10.1103/RevModPhys.85.1143 10.1038/s41467-018-05666-8 10.1093/oso/9780198520245.001.0001 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-020-19213-x |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_f6f774b167444029a2e90e47a7b69c64 PMC7591495 10_1038_s41467_020_19213_x |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c583t-487d14c77bce9c7c263251d073a2fdea7894b92e180b460ba5dcc50825a82e5f3 |
IEDL.DBID | 7X7 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:18 EDT 2025 Thu Aug 21 13:42:09 EDT 2025 Fri Jul 11 08:57:50 EDT 2025 Wed Aug 13 07:38:41 EDT 2025 Thu Apr 24 22:54:02 EDT 2025 Tue Jul 01 04:09:06 EDT 2025 Fri Feb 21 02:40:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-487d14c77bce9c7c263251d073a2fdea7894b92e180b460ba5dcc50825a82e5f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5739-2610 0000-0002-1795-3575 0000-0002-1326-1600 |
OpenAccessLink | https://www.proquest.com/docview/2471523362?pq-origsite=%requestingapplication% |
PMID | 33110064 |
PQID | 2471523362 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f6f774b167444029a2e90e47a7b69c64 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7591495 proquest_miscellaneous_2455172997 proquest_journals_2471523362 crossref_citationtrail_10_1038_s41467_020_19213_x crossref_primary_10_1038_s41467_020_19213_x springer_journals_10_1038_s41467_020_19213_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-27 |
PublicationDateYYYYMMDD | 2020-10-27 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Puech, Grelet, Poulin, Blanc, Van Der Schoot (CR16) 2010; 82 Nyström, Arcari, Adamcik, Usov, Mezzenga (CR17) 2018; 12 Tortora, Lavrentovich (CR10) 2011; 108 Cox (CR36) 1969; 37 Tamaoki (CR41) 2001; 13 Bagnani, Nyström, De Michele, Mezzenga (CR1) 2019; 13 Delaby, Muller, Ernst (CR39) 1995; 34 Prinsen, van der Schoot (CR2) 2003; 68 Adamcik (CR20) 2010; 5 Toose, Geurts, Kuerten (CR35) 1995; 60 Duffy, McDonald, Schueller, Whitesides (CR44) 1998; 70 Miesowicz (CR38) 1946; 158 Milliken, Leal (CR27) 1991; 40 De Gennes, Prost (CR32) 1993 Bhat (CR26) 2010; 6 Aggarwal, Sarkar (CR40) 2007; 584 Doostmohammadi, Ignés-Mullol, Yeomans, Sagués (CR12) 2018; 9 Sengupta (CR33) 2013; 110 Atencia, Beebe (CR6) 2005; 437 Gao, Hu, Castañeda (CR34) 2013; 715 Anna (CR5) 2016; 48 Hsu, Leal (CR30) 2009; 160 Knowles, Mezzenga (CR19) 2016; 28 Usov, Mezzenga (CR43) 2015; 48 Dogic (CR14) 2003; 91 Dodson, Dimitrakopoulos (CR31) 2008; 101 Marchetti (CR11) 2013; 85 Li, Zhou, Han (CR9) 2016; 1 Umbanhowar, Prasad, Weitz (CR7) 2000; 16 Bernal, Fankuchen (CR13) 1941; 25 Trebbin (CR24) 2013; 110 Ober, Haward, Pipe, Soulages, McKinley (CR23) 2013; 52 Nyström, Arcari, Mezzenga (CR3) 2018; 13 Oakes, Viamontes, Tang (CR15) 2007; 75 Taylor (CR28) 1934; 146 Castrejon-Pita, Castrejon-Pita, Hutchings (CR25) 2012; 108 Vigolo (CR42) 2017; 7 Rallison (CR37) 1984; 16 Nunes, Tsai, Wan, Stone (CR4) 2013; 46 Shum, Varnell, Weitz (CR22) 2012; 6 Dodson, Dimitrakopoulos (CR29) 2009; 641 Wang, MacLachlan (CR8) 2018; 376 Bagnani, Azzari, Assenza, Mezzenga (CR18) 2019; 9 Wensink (CR21) 2019; 9 JK Nunes (19213_CR4) 2013; 46 WR Dodson (19213_CR29) 2009; 641 TJ Ober (19213_CR23) 2013; 52 GI Taylor (19213_CR28) 1934; 146 L Tortora (19213_CR10) 2011; 108 AA Castrejon-Pita (19213_CR25) 2012; 108 PW Oakes (19213_CR15) 2007; 75 PB Umbanhowar (19213_CR7) 2000; 16 M Bagnani (19213_CR18) 2019; 9 JM Rallison (19213_CR37) 1984; 16 EM Toose (19213_CR35) 1995; 60 MC Marchetti (19213_CR11) 2013; 85 B Li (19213_CR9) 2016; 1 A Doostmohammadi (19213_CR12) 2018; 9 TPJ Knowles (19213_CR19) 2016; 28 PP Bhat (19213_CR26) 2010; 6 HH Wensink (19213_CR21) 2019; 9 AS Hsu (19213_CR30) 2009; 160 N Tamaoki (19213_CR41) 2001; 13 WR Dodson III (19213_CR31) 2008; 101 PG De Gennes (19213_CR32) 1993 J Atencia (19213_CR6) 2005; 437 N Aggarwal (19213_CR40) 2007; 584 A Sengupta (19213_CR33) 2013; 110 RG Cox (19213_CR36) 1969; 37 JD Bernal (19213_CR13) 1941; 25 P Prinsen (19213_CR2) 2003; 68 I Delaby (19213_CR39) 1995; 34 G Nyström (19213_CR17) 2018; 12 M Trebbin (19213_CR24) 2013; 110 M Bagnani (19213_CR1) 2019; 13 D Vigolo (19213_CR42) 2017; 7 PX Wang (19213_CR8) 2018; 376 WJ Milliken (19213_CR27) 1991; 40 T Gao (19213_CR34) 2013; 715 DC Duffy (19213_CR44) 1998; 70 I Usov (19213_CR43) 2015; 48 M Miesowicz (19213_CR38) 1946; 158 Z Dogic (19213_CR14) 2003; 91 J Adamcik (19213_CR20) 2010; 5 HC Shum (19213_CR22) 2012; 6 G Nyström (19213_CR3) 2018; 13 SL Anna (19213_CR5) 2016; 48 N Puech (19213_CR16) 2010; 82 |
References_xml | – volume: 40 start-page: 355 year: 1991 end-page: 379 ident: CR27 article-title: Deformation and breakup of viscoelastic drops in planar extensional flows publication-title: J. Non-Newton. Fluid Mech. doi: 10.1016/0377-0257(91)87018-S – volume: 9 start-page: 1 year: 2019 end-page: 9 ident: CR18 article-title: Six-fold director field configuration in amyloid nematic and cholesteric phases publication-title: Sci. Rep. doi: 10.1038/s41598-019-48996-3 – volume: 48 start-page: 1269 year: 2015 end-page: 1280 ident: CR43 article-title: FiberApp: an open-source software for tracking and analyzing polymers, filaments, biomacromolecules, and fibrous objects publication-title: Macromolecules doi: 10.1021/ma502264c – volume: 13 start-page: 1135 year: 2001 end-page: 1147 ident: CR41 article-title: Cholesteric liquid crystals for color information technology publication-title: Adv. Mater. doi: 10.1002/1521-4095(200108)13:15<1135::AID-ADMA1135>3.0.CO;2-S – volume: 376 start-page: 20170042 year: 2018 ident: CR8 article-title: Liquid crystalline tactoids: ordered structure, defective coalescence and evolution in confined geometries publication-title: Philos. Trans. A Math Phys. Eng. Sci. – volume: 7 year: 2017 ident: CR42 article-title: Continuous isotropic-nematic transition in amyloid fibril suspensions driven by thermophoresis publication-title: Sci. Rep. doi: 10.1038/s41598-017-01287-1 – volume: 437 start-page: 648 year: 2005 end-page: 655 ident: CR6 article-title: Controlled microfluidic interfaces publication-title: Nature doi: 10.1038/nature04163 – volume: 82 start-page: 020702 year: 2010 ident: CR16 article-title: Nematic droplets in aqueous dispersions of carbon nanotubes publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.82.020702 – volume: 1 start-page: 15011 year: 2016 ident: CR9 article-title: Assembly and phase transitions of colloidal crystals publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2015.11 – volume: 60 start-page: 129 year: 1995 end-page: 154 ident: CR35 article-title: A boundary integral method for two-dimensional (non)-Newtonian drops in slow viscous flow publication-title: J. Non-Newton. Fluid Mech. doi: 10.1016/0377-0257(95)01386-3 – volume: 641 start-page: 263 year: 2009 end-page: 296 ident: CR29 article-title: Dynamics of strain-hardening and strain-softening capsules in strong planar extensional flows via an interfacial spectral boundary element algorithm for elastic membranes publication-title: J. Fluid Mech. doi: 10.1017/S0022112009991662 – volume: 13 start-page: 330 year: 2018 end-page: 336 ident: CR3 article-title: Confinement-induced liquid crystalline transitions in amyloid fibril cholesteric tactoids publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0071-9 – volume: 108 start-page: 5163 year: 2011 end-page: 5168 ident: CR10 article-title: Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1100087108 – volume: 37 start-page: 601 year: 1969 end-page: 623 ident: CR36 article-title: The deformation of a drop in a general time-dependent fluid flow publication-title: J. Fluid Mech. doi: 10.1017/S0022112069000759 – volume: 75 start-page: 061902 year: 2007 ident: CR15 article-title: Growth of tactoidal droplets during the first-order isotropic to nematic phase transition of F-actin publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.75.061902 – volume: 12 start-page: 5141 year: 2018 end-page: 5148 ident: CR17 article-title: Nanocellulose fragmentation mechanisms and inversion of chirality from the single particle to the cholesteric phase publication-title: ACS Nano doi: 10.1021/acsnano.8b00512 – volume: 584 start-page: 1 year: 2007 end-page: 21 ident: CR40 article-title: Deformation and breakup of a viscoelastic drop in a Newtonian matrix under steady shear publication-title: J. Fluid Mech. doi: 10.1017/S0022112007006210 – volume: 110 start-page: 048303 year: 2013 ident: CR33 article-title: Liquid crystal microfluidics for tunable flow shaping publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.048303 – year: 1993 ident: CR32 publication-title: The Physics of Liquid Crystals – volume: 91 start-page: 165701 year: 2003 ident: CR14 article-title: Surface freezing and a two-step pathway of the isotropic-smectic phase transition in colloidal rods publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.165701 – volume: 6 start-page: 625 year: 2010 end-page: 631 ident: CR26 article-title: Formation of beads-on-a-string structures during break-up of viscoelastic filaments publication-title: Nat. Phys. doi: 10.1038/nphys1682 – volume: 16 start-page: 347 year: 2000 end-page: 351 ident: CR7 article-title: Monodisperse emulsion generation via drop break off in a coflowing stream publication-title: Langmuir doi: 10.1021/la990101e – volume: 46 start-page: 114002 year: 2013 ident: CR4 article-title: Dripping and jetting in microfluidic multiphase flows applied to particle and fiber synthesis publication-title: J. Phys. D doi: 10.1088/0022-3727/46/11/114002 – volume: 48 start-page: 285 year: 2016 end-page: 309 ident: CR5 article-title: Droplets and bubbles in microfluidic devices publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-122414-034425 – volume: 34 start-page: 525 year: 1995 end-page: 533 ident: CR39 article-title: Drop deformation during elongational flow in blends of viscoelastic fluids. Small deformation theory and comparison with experimental results publication-title: Rheol. Acta doi: 10.1007/BF00712313 – volume: 70 start-page: 4974 year: 1998 end-page: 4984 ident: CR44 article-title: Rapid prototyping of microfluidic systems in poly (dimethylsiloxane) publication-title: Anal. Chem. doi: 10.1021/ac980656z – volume: 13 start-page: 591 year: 2019 end-page: 600 ident: CR1 article-title: Amyloid fibrils length controls shape and structure of nematic and cholesteric tactoids publication-title: ACS Nano doi: 10.1021/acsnano.8b07557 – volume: 16 start-page: 45 year: 1984 end-page: 66 ident: CR37 article-title: The deformation of small viscous drops and bubbles in shear flows publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.16.010184.000401 – volume: 25 start-page: 111 year: 1941 ident: CR13 article-title: X-ray and crystallographic studies of plant virus preparations: I. Introduction and preparation of specimens II. Modes of aggregation of the virus particles publication-title: J. Gen. Physiol. doi: 10.1085/jgp.25.1.111 – volume: 715 start-page: 573 year: 2013 end-page: 596 ident: CR34 article-title: Dynamics and rheology of elastic particles in an extensional flow publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.536 – volume: 5 start-page: 423 year: 2010 end-page: 428 ident: CR20 article-title: Understanding amyloid aggregation by statistical analysis of atomic force microscopy images publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.59 – volume: 160 start-page: 176 year: 2009 end-page: 180 ident: CR30 article-title: Deformation of a viscoelastic drop in planar extensional flows of a Newtonian fluid publication-title: J. Non-Newton. Fluid Mech. doi: 10.1016/j.jnnfm.2009.03.004 – volume: 28 start-page: 6546 year: 2016 end-page: 6561 ident: CR19 article-title: Amyloid fibrils as building blocks for natural and artifcial functional materials publication-title: Adv. Mater. doi: 10.1002/adma.201505961 – volume: 158 start-page: 27 year: 1946 ident: CR38 article-title: The three coefficients of viscosity of anisotropic liquids publication-title: Nature doi: 10.1038/158027b0 – volume: 9 start-page: 143 year: 2019 ident: CR21 article-title: Effect of size polydispersity on the pitch of nanorod cholesterics publication-title: Crystals doi: 10.3390/cryst9030143 – volume: 146 start-page: 501 year: 1934 end-page: 523 ident: CR28 article-title: The formation of emulsions in definable fields of flow publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1934.0169 – volume: 101 start-page: 208102 year: 2008 ident: CR31 article-title: Spindles, cusps, and bifurcation for capsules in Stokes flow publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.208102 – volume: 52 start-page: 529 year: 2013 end-page: 546 ident: CR23 article-title: Microfluidic extensional rheometry using a hyperbolic contraction geometry publication-title: Rheol. Acta doi: 10.1007/s00397-013-0701-y – volume: 108 start-page: 074506 year: 2012 ident: CR25 article-title: Breakup of liquid filaments publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.074506 – volume: 68 start-page: 21701 year: 2003 ident: CR2 article-title: Shape and director-field transformation of tactoids publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.68.021701 – volume: 6 start-page: 012808 year: 2012 ident: CR22 article-title: Microfluidic fabrication of water-in-water (w/w) jets and emulsions publication-title: Biomicrofluidics doi: 10.1063/1.3670365 – volume: 110 start-page: 6706 year: 2013 end-page: 6711 ident: CR24 article-title: Anisotropic particles align perpendicular to the flow direction in narrow microchannels publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1219340110 – volume: 85 start-page: 1143 year: 2013 end-page: 1189 ident: CR11 article-title: Hydrodynamics of soft active matter publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.1143 – volume: 9 year: 2018 ident: CR12 article-title: Active nematics publication-title: Nat. Commun. doi: 10.1038/s41467-018-05666-8 – volume: 584 start-page: 1 year: 2007 ident: 19213_CR40 publication-title: J. Fluid Mech. doi: 10.1017/S0022112007006210 – volume: 9 start-page: 1 year: 2019 ident: 19213_CR18 publication-title: Sci. Rep. doi: 10.1038/s41598-019-48996-3 – volume: 85 start-page: 1143 year: 2013 ident: 19213_CR11 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.1143 – volume: 110 start-page: 048303 year: 2013 ident: 19213_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.048303 – volume: 158 start-page: 27 year: 1946 ident: 19213_CR38 publication-title: Nature doi: 10.1038/158027b0 – volume: 16 start-page: 45 year: 1984 ident: 19213_CR37 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.16.010184.000401 – volume: 641 start-page: 263 year: 2009 ident: 19213_CR29 publication-title: J. Fluid Mech. doi: 10.1017/S0022112009991662 – volume: 68 start-page: 21701 year: 2003 ident: 19213_CR2 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.68.021701 – volume: 12 start-page: 5141 year: 2018 ident: 19213_CR17 publication-title: ACS Nano doi: 10.1021/acsnano.8b00512 – volume: 160 start-page: 176 year: 2009 ident: 19213_CR30 publication-title: J. Non-Newton. Fluid Mech. doi: 10.1016/j.jnnfm.2009.03.004 – volume: 16 start-page: 347 year: 2000 ident: 19213_CR7 publication-title: Langmuir doi: 10.1021/la990101e – volume: 75 start-page: 061902 year: 2007 ident: 19213_CR15 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.75.061902 – volume: 9 start-page: 143 year: 2019 ident: 19213_CR21 publication-title: Crystals doi: 10.3390/cryst9030143 – volume: 437 start-page: 648 year: 2005 ident: 19213_CR6 publication-title: Nature doi: 10.1038/nature04163 – volume: 40 start-page: 355 year: 1991 ident: 19213_CR27 publication-title: J. Non-Newton. Fluid Mech. doi: 10.1016/0377-0257(91)87018-S – volume: 146 start-page: 501 year: 1934 ident: 19213_CR28 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1934.0169 – volume: 13 start-page: 591 year: 2019 ident: 19213_CR1 publication-title: ACS Nano doi: 10.1021/acsnano.8b07557 – volume: 715 start-page: 573 year: 2013 ident: 19213_CR34 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.536 – volume: 91 start-page: 165701 year: 2003 ident: 19213_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.165701 – volume: 9 year: 2018 ident: 19213_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05666-8 – volume: 376 start-page: 20170042 year: 2018 ident: 19213_CR8 publication-title: Philos. Trans. A Math Phys. Eng. Sci. – volume: 108 start-page: 074506 year: 2012 ident: 19213_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.074506 – volume: 6 start-page: 625 year: 2010 ident: 19213_CR26 publication-title: Nat. Phys. doi: 10.1038/nphys1682 – volume: 82 start-page: 020702 year: 2010 ident: 19213_CR16 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.82.020702 – volume: 48 start-page: 285 year: 2016 ident: 19213_CR5 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-122414-034425 – volume: 108 start-page: 5163 year: 2011 ident: 19213_CR10 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1100087108 – volume: 5 start-page: 423 year: 2010 ident: 19213_CR20 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.59 – volume: 46 start-page: 114002 year: 2013 ident: 19213_CR4 publication-title: J. Phys. D doi: 10.1088/0022-3727/46/11/114002 – volume: 7 year: 2017 ident: 19213_CR42 publication-title: Sci. Rep. doi: 10.1038/s41598-017-01287-1 – volume: 48 start-page: 1269 year: 2015 ident: 19213_CR43 publication-title: Macromolecules doi: 10.1021/ma502264c – volume: 70 start-page: 4974 year: 1998 ident: 19213_CR44 publication-title: Anal. Chem. doi: 10.1021/ac980656z – volume: 52 start-page: 529 year: 2013 ident: 19213_CR23 publication-title: Rheol. Acta doi: 10.1007/s00397-013-0701-y – volume: 1 start-page: 15011 year: 2016 ident: 19213_CR9 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2015.11 – volume: 34 start-page: 525 year: 1995 ident: 19213_CR39 publication-title: Rheol. Acta doi: 10.1007/BF00712313 – volume: 13 start-page: 1135 year: 2001 ident: 19213_CR41 publication-title: Adv. Mater. doi: 10.1002/1521-4095(200108)13:15<1135::AID-ADMA1135>3.0.CO;2-S – volume: 25 start-page: 111 year: 1941 ident: 19213_CR13 publication-title: J. Gen. Physiol. doi: 10.1085/jgp.25.1.111 – volume: 110 start-page: 6706 year: 2013 ident: 19213_CR24 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1219340110 – volume: 28 start-page: 6546 year: 2016 ident: 19213_CR19 publication-title: Adv. Mater. doi: 10.1002/adma.201505961 – volume: 60 start-page: 129 year: 1995 ident: 19213_CR35 publication-title: J. Non-Newton. Fluid Mech. doi: 10.1016/0377-0257(95)01386-3 – volume: 6 start-page: 012808 year: 2012 ident: 19213_CR22 publication-title: Biomicrofluidics doi: 10.1063/1.3670365 – volume: 101 start-page: 208102 year: 2008 ident: 19213_CR31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.208102 – volume-title: The Physics of Liquid Crystals year: 1993 ident: 19213_CR32 doi: 10.1093/oso/9780198520245.001.0001 – volume: 13 start-page: 330 year: 2018 ident: 19213_CR3 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0071-9 – volume: 37 start-page: 601 year: 1969 ident: 19213_CR36 publication-title: J. Fluid Mech. doi: 10.1017/S0022112069000759 |
SSID | ssj0000391844 |
Score | 2.4751935 |
Snippet | Liquid crystalline droplets, also known as tactoids, forming by nucleation and growth within the phase diagram region where isotropic and nematic phases... Tactoids are liquid crystal droplets with nearly vanishing interfacial tension. Almohammadi et al. show using a microfluidic focusing device how to manipulate... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5416 |
SubjectTerms | 147/3 639/301/923/1029 639/301/923/614 639/301/923/916 639/301/923/919 Aspect ratio Crystal structure Crystallinity Crystals Deformation Droplets Elongation Equilibrium conditions Free energy Humanities and Social Sciences Liquid crystals Microfluidics multidisciplinary Nucleation Phase diagrams Phase transitions Science Science (multidisciplinary) Surface tension |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEB5KoNBLadOWuk2CArmlIv6RLeuYhCwhh54SyE3oz9Sw9bZZL0lufYe-YZ-kM7J3GwfSXnoytmQsjWY086HxNwAHKrcupKnlBrWHi8xVvPbKciKpNsIWOPiY5fu5Or8SF9fl9YNSX5QTNtADD4I7aqoGIxRLyfICsY4yeVBpENJIWylXRSZQ9HkPwFTcgwuF0EWMf8mkRX20FHFPILREFGAFv5t4okjYP4kyH-dIPjoojf5n9gpejoEjOx4G_BqehW4bng-lJO_fwOVsvrjlCLBxqTyLhJq_fvyMV9aTPxpSs1jbMfMVQXrrWUPZ_nM2b7-v8M7d3GOgSAzdgfVUhKf1y7dwNTu7PD3nY8UE7sq66DmiD58JJyUugHLSERl7mXk0Y5M3PhhZK2FVHrI6taJKrSm9cyWhRFPnoWyKd7DVLbrwHpgkbj-F3t3bSjQys0GWPnUG7VtlxqgEsrX0tBvpxKmqxVzHY-2i1oPENUpcR4nruwQON-98G8g0_tr7hBZl05OIsOMDVA89qof-l3oksLNeUj1a51Ln6JERgKPvTmB_04x2RYclpguLFfXBWBIVVskE5EQVJgOatnTtl8jQLUtFyDOBT2ul-fPxpyf84X9M-CO8yKOSpzyXO7DV36zCLsZNvd2LJvIb_AMUgQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Li9RAEC6WFcGL-MToKhG8aWsenXT6IKLisAh62oG9Nf2KBrIZdyaDOzf_g__QX2JVJxnJsu4pJN1NOvVI1Ud3fwXwQmbG-iQxTKP1MJ7aklVOGkYk1ZqbHCcfdvl-LY-X_PNpcXoAU7mjUYCbK6Ed1ZNartvXF-e7d-jwb4cj49WbDQ_uTkCI2L1yhjnlDYxMghz1y5juhz9zLhHQ8PHszNVDZ_Ep0PjPcs_LOycvLZ-GqLS4A7fHdDJ-P-j_Lhz47h7cHApM7u7DyaJd_WQIu1GBLg40m39-_Q7XuKcoNWzYipsu1mcI3RsX13QGoI3b5nyLd3a9w_SReLt93FNpnsZtHsBy8enk4zEb6ygwW1R5zxCTuJRbIVAt0gpLFO1F6tC5dVY7r0UluZGZT6vE8DIxunDWFoQddZX5os4fwmG36vwjiAUx_kmM-c6UvBap8aJwidXo9TLVWkaQTtJTdiQZp1oXrQqL3XmlBokrlLgKElcXEbzcj_kxUGxc2_sDKWXfk-ixw4PV-psavU3VZY1praETFhwBstSZl4nnQgtTSlvyCI4mlarJ5FSGcRphOUb0CJ7vm9HbaAlFd361pT6YYaIZSxGBmJnCbELzlq75Hni7RSEJj0bwajKafy___wc_vn6uT-BWFsw3YZk4gsN-vfVPMU_qzbNg_H8BQcYQSw priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VrZC4IMpDBAoyEjewyMOJ42NZsao4cGql3iy_ApGWLN3NCnrjP_AP-SWdcZJFqQCJU5R4ojjjmcx88fgzwCuVWxfS1HKD1sNF5ipee2U5kVQbYQvsfKzy_VidXYgPl-XlAeTTWphYtB8pLeNneqoOe7sV0aUJ7BCDV8Exbzwi6nay6kW12P9XIcbzWohxfUxa1H-4dRaDIlX_LL-8XR15a4o0Rp7lfbg3pozsdOjkMRyE7gHcGTaRvH4I58vV-htHaI2D5Fmk0vz142c8sp4i0VCUxdqOmS8Iz1vPGqrzX7FVe7XDM7e5xhSRuLkD62n7ndZvH8HF8v354oyPeyVwV9ZFzxF3-Ew4KVH1yklHNOxl5tGBTd74YGSthFV5yOrUiiq1pvTOlYQPTZ2Hsikew2G37sITYJJY_RTGdW8r0cjMBln61Bn0bJUZoxLIJu1pNxKJ034WKx0ntItaDxrXqHEdNa6_J_B6f8_XgUbjn9LvaFD2kkSBHS-sN5_0aBK6qRpMXS2tohAIgpXJg0qDkEbaSrlKJHAyDake_XKrc4zFCL0xaifwct-MHkXTJKYL6x3JYBaJpqpkAnJmCrMOzVu69nPk5palIsyZwJvJaH4__O8v_PT_xJ_B3Tyac8pzeQKH_WYXnmNu1NsX0RluAKIfCyw priority: 102 providerName: Springer Nature |
Title | Flow-induced order–order transitions in amyloid fibril liquid crystalline tactoids |
URI | https://link.springer.com/article/10.1038/s41467-020-19213-x https://www.proquest.com/docview/2471523362 https://www.proquest.com/docview/2455172997 https://pubmed.ncbi.nlm.nih.gov/PMC7591495 https://doaj.org/article/f6f774b167444029a2e90e47a7b69c64 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFRIXxFMEyipI3MBqHk5sn9B21aVaiQpBK-3N8isQaUna3axob_wH_iG_hBknu9VWopdEcRzFmZdn7Mk3hLyTmbE-SQzVID2UpbakwklDEaRaM5PD4EOW72l5cs5m82I-LLithrTKjU0Mhtq1FtfIDzOwohA0gb39eHFJsWoU7q4OJTTuk32ELsOULj7n2zUWRD8XjA3_yiS5OFyxYBkwZkIgsJxe7cxHAbZ_x9e8nSl5a7s0zELTx-TR4D7G457fT8g93zwlD_qCktfPyNl00f6iEGYDw1wcYDX__v4TznGHs1KfoBXXTax_Qqheu7jCnP9FvKgv13Bll9fgLiJOt487LMVTu9Vzcj49Ppuc0KFuArWFyDsKMYhLmeUc2CAttwjJXqQOlFlnlfOaC8mMzHwqEsPKxOjCWVtgrKhF5osqf0H2mrbxL0nMEeFPAuGdKVnFU-N54RKrQctlqrWMSLqhnrIDqDjWtliosLmdC9VTXAHFVaC4uorI--0zFz2kxp29j5Ap254Ihx0a2uV3NWiXqsoK3FiDf1QwCIilzrxMPOOam1LakkXkYMNSNejoSt1IVETebm-DduGWiW58u8Y-4FGC2EoeEb4jCjsD2r3T1D8CTjcvJMafEfmwEZqbl___g1_dPdbX5GEWxDehGT8ge91y7d-AX9SZURB-OIrppxHZH49n32ZwPjo-_fIVWiflZBRWHOD4mYl_uW4Tlg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ikCBYIEJ7CahxPHB4R4rba09LSV9mb8Cqy0JO1uVu3e-A_8D34Uv4QZJ9kqleitpyixkzjjb8Yzsf0NIS9Foo2LIk0VoIey2OS0sEJTJKlWTKfQeL_K9zAfH7Ev02y6Rf70e2FwWWVvE72htrXBf-S7CVhRCJrA3r47PqGYNQpnV_sUGi0s9t36FEK25du9T9C_r5Jk9HnycUy7rALUZEXaUPDQbcwM59BIYbhBwvIstgB1lZTWKV4IpkXi4iLSLI-0yqwxGUZSqkhcVqbw3GvkOgy8EWoUn_LNPx1kWy8Y6_bmRGmxu2TeEmGMhsRjKT0bjH8-TcDAt724MvPC9Kwf9UZ3yO3OXQ3ft_i6S7ZcdY_caBNYru-TyWhen1II6wEgNvQ0nn9__fbHsMFRsF0QFs6qUP1cz-uZDUvcYzAP57OTFZyZxRrcU-QFd2GDqX9mdvmAHF2JRB-S7aqu3CMScmQUFNDRVues5LF2PLORUWBVRKyUCEjcS0-ajsQcc2nMpZ9MTwvZSlyCxKWXuDwLyOvNPccthceltT9gp2xqIv22v1AvvstOm2WZl-A2a9zBwSAAFypxInKMK65zYXIWkJ2-S2VnE5byHMEBebEpBm3GKRpVuXqFdcCDBTURPCB8AIVBg4Yl1eyH5wXnmcB4NyBvetCcv_z_H_z48rY-JzfHk68H8mDvcP8JuZV4KEc04Ttku1ms3FPwyRr9zCtCSL5dteb9A9f1SYU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKEYgL4lekFAgSnMDa_DhxfEAIKKuWoopDK-3N-C-w0jZpd7Nq98Y78DY8Dk_CjJNslUr01lO0sXfjHX8znonH3xDySiTauCjSVAF6KItNTgsrNEWSasV0CoP3Wb4H-e4R-zLJJhvkT38WBtMqe5voDbWtDb4jHyVgRSFoAns7Kru0iG874_cnpxQrSOFOa19Oo4XIvludQfi2eLe3A3P9OknGnw8_7dKuwgA1WZE2FLx1GzPDOQxYGG6QvDyLLcBeJaV1iheCaZG4uIg0yyOtMmtMhlGVKhKXlSn87g1yk6dZjDrGJ3z9fgeZ1wvGunM6UVqMFsxbJYzXkIQspeeDtdCXDBj4uZezNC9t1foVcHyP3O1c1_BDi7X7ZMNVD8ittpjl6iE5HM_qMwohPoDFhp7S8--v3_4aNrgitslh4bQK1fFqVk9tWOJ5g1k4m54u4ZOZr8BVRY5wFzZYBmhqF4_I0bVI9DHZrOrKPSEhR3ZBAZNudc5KHmvHMxsZBRZGxEqJgMS99KTpCM2xrsZM-o31tJCtxCVIXHqJy_OAvFl_56Sl87iy90eclHVPpOL2N-r5D9lptizzElxojac5GATjQiVORI5xxXUuTM4Cst1Pqezsw0JeoDkgL9fNoNm4XaMqVy-xD3izoDKCB4QPoDAY0LClmv70HOE8Exj7BuRtD5qLh___D29dPdYX5DbonPy6d7D_lNxJPJIjmvBtstnMl-4ZuGeNfu71ICTfr1vx_gEiU027 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow-induced+order%E2%80%93order+transitions+in+amyloid+fibril+liquid+crystalline+tactoids&rft.jtitle=Nature+communications&rft.au=Almohammadi+Hamed&rft.au=Bagnani+Massimo&rft.au=Mezzenga+Raffaele&rft.date=2020-10-27&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-19213-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |