Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting
Bismuth vanadate (BiVO 4 ) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient cocatalysts and limited understanding of the underlying mechanism. Here we demonstrate significantly enhanced water oxidation on the particu...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 484 - 9 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.01.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bismuth vanadate (BiVO
4
) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient cocatalysts and limited understanding of the underlying mechanism. Here we demonstrate significantly enhanced water oxidation on the particulate BiVO
4
photocatalyst via in situ facet-selective photodeposition of dual-cocatalysts that exist separately as metallic Ir nanoparticles and nanocomposite of FeOOH and CoOOH (denoted as FeCoO
x
), as revealed by advanced techniques. The mechanism of water oxidation promoted by the dual-cocatalysts is experimentally and theoretically unraveled, and mainly ascribed to the synergistic effect of the spatially separated dual-cocatalysts (Ir, FeCoO
x
) on both interface charge separation and surface catalysis. Combined with the H
2
-evolving photocatalysts, we finally construct a Z-scheme overall water splitting system using [Fe(CN)
6
]
3−/4−
as the redox mediator, whose apparent quantum efficiency at 420 nm and solar-to-hydrogen conversion efficiency are optimized to be 12.3% and 0.6%, respectively.
Artificial photosynthesis offers an integrated means to convert light to fuel, but efficiencies are often low. Here, authors report a Z-scheme system utilizing Ir and FeCoO
x
co-catalysts to enhance charge separation on BiVO
4
facets that achieves high quantum efficiencies for overall water splitting. |
---|---|
AbstractList | Bismuth vanadate (BiVO4) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient cocatalysts and limited understanding of the underlying mechanism. Here we demonstrate significantly enhanced water oxidation on the particulate BiVO4 photocatalyst via in situ facet-selective photodeposition of dual-cocatalysts that exist separately as metallic Ir nanoparticles and nanocomposite of FeOOH and CoOOH (denoted as FeCoOx), as revealed by advanced techniques. The mechanism of water oxidation promoted by the dual-cocatalysts is experimentally and theoretically unraveled, and mainly ascribed to the synergistic effect of the spatially separated dual-cocatalysts (Ir, FeCoOx) on both interface charge separation and surface catalysis. Combined with the H2-evolving photocatalysts, we finally construct a Z-scheme overall water splitting system using [Fe(CN)6]3−/4− as the redox mediator, whose apparent quantum efficiency at 420 nm and solar-to-hydrogen conversion efficiency are optimized to be 12.3% and 0.6%, respectively.Artificial photosynthesis offers an integrated means to convert light to fuel, but efficiencies are often low. Here, authors report a Z-scheme system utilizing Ir and FeCoOx co-catalysts to enhance charge separation on BiVO4 facets that achieves high quantum efficiencies for overall water splitting. Bismuth vanadate (BiVO4) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient cocatalysts and limited understanding of the underlying mechanism. Here we demonstrate significantly enhanced water oxidation on the particulate BiVO4 photocatalyst via in situ facet-selective photodeposition of dual-cocatalysts that exist separately as metallic Ir nanoparticles and nanocomposite of FeOOH and CoOOH (denoted as FeCoOx), as revealed by advanced techniques. The mechanism of water oxidation promoted by the dual-cocatalysts is experimentally and theoretically unraveled, and mainly ascribed to the synergistic effect of the spatially separated dual-cocatalysts (Ir, FeCoOx) on both interface charge separation and surface catalysis. Combined with the H2-evolving photocatalysts, we finally construct a Z-scheme overall water splitting system using [Fe(CN)6]3-/4- as the redox mediator, whose apparent quantum efficiency at 420 nm and solar-to-hydrogen conversion efficiency are optimized to be 12.3% and 0.6%, respectively.Bismuth vanadate (BiVO4) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient cocatalysts and limited understanding of the underlying mechanism. Here we demonstrate significantly enhanced water oxidation on the particulate BiVO4 photocatalyst via in situ facet-selective photodeposition of dual-cocatalysts that exist separately as metallic Ir nanoparticles and nanocomposite of FeOOH and CoOOH (denoted as FeCoOx), as revealed by advanced techniques. The mechanism of water oxidation promoted by the dual-cocatalysts is experimentally and theoretically unraveled, and mainly ascribed to the synergistic effect of the spatially separated dual-cocatalysts (Ir, FeCoOx) on both interface charge separation and surface catalysis. Combined with the H2-evolving photocatalysts, we finally construct a Z-scheme overall water splitting system using [Fe(CN)6]3-/4- as the redox mediator, whose apparent quantum efficiency at 420 nm and solar-to-hydrogen conversion efficiency are optimized to be 12.3% and 0.6%, respectively. Artificial photosynthesis offers an integrated means to convert light to fuel, but efficiencies are often low. Here, authors report a Z-scheme system utilizing Ir and FeCoOx co-catalysts to enhance charge separation on BiVO4 facets that achieves high quantum efficiencies for overall water splitting. Bismuth vanadate (BiVO 4 ) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient cocatalysts and limited understanding of the underlying mechanism. Here we demonstrate significantly enhanced water oxidation on the particulate BiVO 4 photocatalyst via in situ facet-selective photodeposition of dual-cocatalysts that exist separately as metallic Ir nanoparticles and nanocomposite of FeOOH and CoOOH (denoted as FeCoO x ), as revealed by advanced techniques. The mechanism of water oxidation promoted by the dual-cocatalysts is experimentally and theoretically unraveled, and mainly ascribed to the synergistic effect of the spatially separated dual-cocatalysts (Ir, FeCoO x ) on both interface charge separation and surface catalysis. Combined with the H 2 -evolving photocatalysts, we finally construct a Z-scheme overall water splitting system using [Fe(CN) 6 ] 3−/4− as the redox mediator, whose apparent quantum efficiency at 420 nm and solar-to-hydrogen conversion efficiency are optimized to be 12.3% and 0.6%, respectively. Artificial photosynthesis offers an integrated means to convert light to fuel, but efficiencies are often low. Here, authors report a Z-scheme system utilizing Ir and FeCoO x co-catalysts to enhance charge separation on BiVO 4 facets that achieves high quantum efficiencies for overall water splitting. Bismuth vanadate (BiVO 4 ) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient cocatalysts and limited understanding of the underlying mechanism. Here we demonstrate significantly enhanced water oxidation on the particulate BiVO 4 photocatalyst via in situ facet-selective photodeposition of dual-cocatalysts that exist separately as metallic Ir nanoparticles and nanocomposite of FeOOH and CoOOH (denoted as FeCoO x ), as revealed by advanced techniques. The mechanism of water oxidation promoted by the dual-cocatalysts is experimentally and theoretically unraveled, and mainly ascribed to the synergistic effect of the spatially separated dual-cocatalysts (Ir, FeCoO x ) on both interface charge separation and surface catalysis. Combined with the H 2 -evolving photocatalysts, we finally construct a Z-scheme overall water splitting system using [Fe(CN) 6 ] 3−/4− as the redox mediator, whose apparent quantum efficiency at 420 nm and solar-to-hydrogen conversion efficiency are optimized to be 12.3% and 0.6%, respectively. |
ArticleNumber | 484 |
Author | Chen, Shanshan Liu, Wei Li, Deng Cui, Junyan Kong, Yuan Zhao, Yue Zhang, Jiangwei Domen, Kazunari Chen, Yifan Qi, Yu Xie, Tengfeng Li, Can Zhang, Fuxiang |
Author_xml | – sequence: 1 givenname: Yu surname: Qi fullname: Qi, Yu organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 2 givenname: Jiangwei orcidid: 0000-0002-1221-3033 surname: Zhang fullname: Zhang, Jiangwei organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 3 givenname: Yuan surname: Kong fullname: Kong, Yuan organization: Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China – sequence: 4 givenname: Yue surname: Zhao fullname: Zhao, Yue organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 5 givenname: Shanshan orcidid: 0000-0002-1801-8466 surname: Chen fullname: Chen, Shanshan organization: Research Initiative for Supra-Materials (RISM), Shinshu University – sequence: 6 givenname: Deng surname: Li fullname: Li, Deng organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 7 givenname: Wei surname: Liu fullname: Liu, Wei organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 8 givenname: Yifan surname: Chen fullname: Chen, Yifan organization: College of Chemistry, Jilin University – sequence: 9 givenname: Tengfeng surname: Xie fullname: Xie, Tengfeng organization: College of Chemistry, Jilin University – sequence: 10 givenname: Junyan surname: Cui fullname: Cui, Junyan organization: School of Material Science and Engineering, Zhengzhou University – sequence: 11 givenname: Can orcidid: 0000-0002-9301-7850 surname: Li fullname: Li, Can email: canli@dicp.ac.cn organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 12 givenname: Kazunari orcidid: 0000-0001-7995-4832 surname: Domen fullname: Domen, Kazunari organization: Research Initiative for Supra-Materials (RISM), Shinshu University, Office of University Professors, The University of Tokyo – sequence: 13 givenname: Fuxiang orcidid: 0000-0002-7859-0616 surname: Zhang fullname: Zhang, Fuxiang email: fxzhang@dicp.ac.cn organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences |
BookMark | eNp9kktv1DAUhS1UREvpH2BliQ2bgF9J7A0SVLRUqtQNZWvZzs3UI08cbE-r-fd4JkXQLuqNX9859r06b9HRFCdA6D0lnyjh8nMWVHR9QxhrmKzLpnuFThgRtKE940f_rY_RWc5rUgdXVArxBh3zlvSq7k_QeDslcw_BTyscR-yiM8WEXS4Zz3exxAHmmH2BAWcI4Iqv7A7HCY_GQYWq5pv_dSNwidjGmAvOMZiEH0yBhPMcfCnV-x16PZqQ4exxPkW3F99_nv9orm8ur86_Xjeulbw03KrRKtYxyU1npRjU2KkeRtX1PbNyMIMbuIVxdIQ6SxUTwjFgwnBouaOKn6KrxXeIZq3n5Dcm7XQ0Xh8OYlppk4p3AbQkHQgKrRVABeFDbSJlQI1wvbNEQPX6snjNW7uBwcFUkglPTJ_eTP5Or-K9lr1UUtFq8PHRIMXfW8hFb3x2EIKZIG6zrnUy1UrGRUU_PEPXcZum2qoD1cle8K5ScqFcijknGLXzxRQf9-_7oCnR-2zoJRu6ZkMfsqH3UvZM-reOF0V8EeUKTytI_371guoP35_N-A |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_2c06834 crossref_primary_10_1007_s12274_024_6773_4 crossref_primary_10_1021_acs_langmuir_4c02294 crossref_primary_10_1039_D4EE01543F crossref_primary_10_1021_jacs_3c12666 crossref_primary_10_1002_celc_202400600 crossref_primary_10_1007_s12274_022_5332_0 crossref_primary_10_1016_j_cej_2024_154262 crossref_primary_10_1016_j_heliyon_2023_e20675 crossref_primary_10_1016_j_fuel_2024_131847 crossref_primary_10_1002_anie_202214143 crossref_primary_10_1021_acssuschemeng_4c09246 crossref_primary_10_1002_adma_202210164 crossref_primary_10_1002_anie_202501141 crossref_primary_10_1016_j_cej_2024_149104 crossref_primary_10_1021_acscatal_4c07138 crossref_primary_10_1038_s41467_024_49168_2 crossref_primary_10_1016_j_seppur_2024_126407 crossref_primary_10_1039_D2SE01455F crossref_primary_10_26599_NRE_2024_9120117 crossref_primary_10_1016_j_ijhydene_2024_11_435 crossref_primary_10_1021_jacs_3c12417 crossref_primary_10_1002_ange_202409693 crossref_primary_10_1016_j_jcis_2022_08_142 crossref_primary_10_1016_j_jallcom_2024_175609 crossref_primary_10_1039_D3TA06532D crossref_primary_10_1007_s12598_024_03072_2 crossref_primary_10_1126_science_adg0164 crossref_primary_10_1002_advs_202300034 crossref_primary_10_1016_j_apsusc_2022_155847 crossref_primary_10_1016_j_nanoen_2022_107573 crossref_primary_10_1002_anie_202307246 crossref_primary_10_1002_ange_202418017 crossref_primary_10_1039_D4TA08318K crossref_primary_10_1039_D3CY00331K crossref_primary_10_1039_D3TA06783A crossref_primary_10_1007_s12274_022_4758_8 crossref_primary_10_1007_s11426_025_2564_4 crossref_primary_10_1016_j_checat_2024_101233 crossref_primary_10_1126_sciadv_ade4589 crossref_primary_10_1016_j_apcatb_2023_122369 crossref_primary_10_1039_D3EE01522J crossref_primary_10_1016_j_ijhydene_2023_12_171 crossref_primary_10_1002_sstr_202300123 crossref_primary_10_1126_sciadv_ado7373 crossref_primary_10_1016_j_apcatb_2024_123894 crossref_primary_10_1016_j_cej_2023_144395 crossref_primary_10_1016_j_ijhydene_2022_05_267 crossref_primary_10_1002_ange_202420327 crossref_primary_10_1016_j_matre_2023_100232 crossref_primary_10_1002_smll_202201556 crossref_primary_10_1016_j_ijhydene_2024_09_166 crossref_primary_10_1039_D3TA04353C crossref_primary_10_1002_advs_202203832 crossref_primary_10_1007_s10562_023_04293_3 crossref_primary_10_1002_cssc_202301526 crossref_primary_10_1002_smll_202311841 crossref_primary_10_1016_j_ccr_2024_216245 crossref_primary_10_1007_s12209_024_00387_0 crossref_primary_10_1016_j_enrev_2024_100110 crossref_primary_10_1016_j_seppur_2023_125185 crossref_primary_10_1002_adfm_202306466 crossref_primary_10_1002_cphc_202300939 crossref_primary_10_1002_advs_202412326 crossref_primary_10_1016_j_jece_2024_115293 crossref_primary_10_1016_j_ijhydene_2022_11_221 crossref_primary_10_1016_j_nanoms_2024_05_010 crossref_primary_10_3390_mi15030387 crossref_primary_10_1016_j_apsusc_2024_160298 crossref_primary_10_1021_acs_energyfuels_4c03598 crossref_primary_10_3390_en15249578 crossref_primary_10_1002_anie_202409693 crossref_primary_10_1039_D3RA00775H crossref_primary_10_1016_j_joule_2023_10_004 crossref_primary_10_1016_j_cej_2022_139468 crossref_primary_10_1016_j_cej_2025_161832 crossref_primary_10_1039_D3CS00145H crossref_primary_10_1016_j_inoche_2023_111729 crossref_primary_10_1021_acscatal_4c02285 crossref_primary_10_1039_D4NR00097H crossref_primary_10_1016_j_apcatb_2023_123433 crossref_primary_10_1007_s11356_023_25434_6 crossref_primary_10_1021_acscatal_4c07058 crossref_primary_10_1016_j_apsusc_2023_156402 crossref_primary_10_1016_j_ijhydene_2023_11_295 crossref_primary_10_1021_acscatal_4c02172 crossref_primary_10_1039_D3CY00018D crossref_primary_10_1016_j_fuel_2024_131813 crossref_primary_10_1088_1361_6463_aca6f7 crossref_primary_10_1016_S1872_2067_24_60152_X crossref_primary_10_3390_catal12101160 crossref_primary_10_1002_ange_202501141 crossref_primary_10_1021_acscatal_3c02504 crossref_primary_10_1039_D3NR05498E crossref_primary_10_1002_smll_202306513 crossref_primary_10_1039_D3NA00182B crossref_primary_10_1002_ange_202312306 crossref_primary_10_1039_D1CS01182K crossref_primary_10_1016_j_cplett_2022_140087 crossref_primary_10_1039_D4EE04849K crossref_primary_10_1002_aenm_202403067 crossref_primary_10_1021_jacs_2c13687 crossref_primary_10_1142_S1088424623501067 crossref_primary_10_1039_D4EE04959D crossref_primary_10_1016_j_jechem_2024_07_006 crossref_primary_10_1002_adfm_202314973 crossref_primary_10_1021_acscatal_4c04444 crossref_primary_10_1007_s43979_023_00064_6 crossref_primary_10_1021_jacs_4c10962 crossref_primary_10_1016_j_physb_2024_415878 crossref_primary_10_1021_acsaem_3c00592 crossref_primary_10_1002_anie_202219076 crossref_primary_10_1016_j_cclet_2025_111062 crossref_primary_10_3390_nano15050331 crossref_primary_10_1021_acs_jpclett_3c03268 crossref_primary_10_1016_j_jcis_2025_03_002 crossref_primary_10_1021_acsaem_5c00215 crossref_primary_10_1002_smll_202408680 crossref_primary_10_1016_j_jcis_2024_05_218 crossref_primary_10_1016_j_seppur_2024_128680 crossref_primary_10_1016_j_fuel_2023_128368 crossref_primary_10_1039_D4CP03976A crossref_primary_10_1016_j_jcat_2023_115187 crossref_primary_10_1002_adfm_202419705 crossref_primary_10_1038_s41467_025_56180_7 crossref_primary_10_1016_j_apcatb_2024_124018 crossref_primary_10_3390_ma17040936 crossref_primary_10_1016_j_ijhydene_2025_03_043 crossref_primary_10_1039_D2NA00915C crossref_primary_10_1016_j_apcatb_2022_121865 crossref_primary_10_1016_j_joule_2022_06_017 crossref_primary_10_1039_D3CP02066E crossref_primary_10_1016_j_jclepro_2024_141709 crossref_primary_10_1039_D2CP05427B crossref_primary_10_1007_s10854_022_09726_0 crossref_primary_10_1039_D2DT01205G crossref_primary_10_1016_j_cej_2022_139382 crossref_primary_10_1002_anie_202420327 crossref_primary_10_1021_jacs_4c11827 crossref_primary_10_1016_j_nxener_2023_100056 crossref_primary_10_1016_j_apmate_2022_100077 crossref_primary_10_1002_smll_202404303 crossref_primary_10_1002_ange_202219076 crossref_primary_10_1002_aenm_202402395 crossref_primary_10_3390_catal13020373 crossref_primary_10_1016_j_apcatb_2024_124207 crossref_primary_10_3389_fsci_2024_1411644 crossref_primary_10_1016_j_apcatb_2024_124209 crossref_primary_10_1002_cssc_202401338 crossref_primary_10_1021_acsmaterialslett_4c00636 crossref_primary_10_1039_D4SC05065G crossref_primary_10_1002_ange_202307246 crossref_primary_10_1016_j_apcatb_2024_124564 crossref_primary_10_1016_j_colsurfa_2022_130825 crossref_primary_10_1016_j_ijhydene_2024_10_342 crossref_primary_10_1021_acs_inorgchem_3c02622 crossref_primary_10_3390_catal12101123 crossref_primary_10_1016_j_jcis_2022_11_142 crossref_primary_10_1002_anie_202418017 crossref_primary_10_1002_adfm_202401122 crossref_primary_10_1002_anie_202312306 crossref_primary_10_1002_ange_202420188 crossref_primary_10_1039_D4QI00989D crossref_primary_10_1039_D4TA07592G crossref_primary_10_1016_j_seppur_2025_132646 crossref_primary_10_1002_aenm_202401964 crossref_primary_10_1016_j_apcatb_2023_122679 crossref_primary_10_1039_D2TA01758J crossref_primary_10_1002_adfm_202416091 crossref_primary_10_1016_j_jechem_2024_12_023 crossref_primary_10_1039_D3QI00895A crossref_primary_10_1002_adma_202403464 crossref_primary_10_1021_acsomega_2c03244 crossref_primary_10_1021_acs_jpcc_4c04463 crossref_primary_10_1007_s42823_024_00794_2 crossref_primary_10_1016_j_cej_2024_155179 crossref_primary_10_1039_D4NJ02232G crossref_primary_10_1016_j_cej_2022_137301 crossref_primary_10_1021_acsnano_4c08309 crossref_primary_10_1002_aesr_202300130 crossref_primary_10_1002_adfm_202409566 crossref_primary_10_1016_j_apcata_2023_119024 crossref_primary_10_1016_S1872_2067_24_60082_3 crossref_primary_10_1002_cey2_413 crossref_primary_10_1016_j_cej_2024_149721 crossref_primary_10_1016_j_ijhydene_2024_09_309 crossref_primary_10_1016_j_inoche_2024_113845 crossref_primary_10_1002_adfm_202410548 crossref_primary_10_1039_D4EY00007B crossref_primary_10_1016_j_apcatb_2025_125162 crossref_primary_10_1021_acscatal_4c04927 crossref_primary_10_1002_smll_202311441 crossref_primary_10_1021_acscatal_2c05014 crossref_primary_10_1038_s41467_024_51183_2 crossref_primary_10_1016_j_cej_2023_142489 crossref_primary_10_1016_j_ijhydene_2023_05_047 crossref_primary_10_1039_D3CE00953J crossref_primary_10_1038_s41467_023_43838_3 crossref_primary_10_1016_j_cej_2024_152330 crossref_primary_10_1002_adma_202400764 crossref_primary_10_1002_advs_202205726 crossref_primary_10_1002_ange_202214143 crossref_primary_10_3390_ma17010271 crossref_primary_10_1016_j_cej_2023_147372 crossref_primary_10_1016_S1872_2067_24_60143_9 crossref_primary_10_1016_j_jiec_2024_07_052 crossref_primary_10_1038_s41467_024_44706_4 crossref_primary_10_1021_acsanm_4c04156 crossref_primary_10_1002_anie_202415975 crossref_primary_10_1002_anie_202422940 crossref_primary_10_1002_aenm_202203827 crossref_primary_10_1016_j_jallcom_2023_170769 crossref_primary_10_1016_j_jcis_2024_10_036 crossref_primary_10_1016_j_apcatb_2024_124527 crossref_primary_10_1016_j_jallcom_2022_167193 crossref_primary_10_1002_adfm_202313706 crossref_primary_10_1016_j_apcatb_2023_122865 crossref_primary_10_1039_D4MH00515E crossref_primary_10_1016_j_jcis_2024_04_166 crossref_primary_10_1039_D3TA02021E crossref_primary_10_1016_S1872_2067_24_60178_6 crossref_primary_10_1039_D3QI00914A crossref_primary_10_1021_acsmaterialslett_4c00715 crossref_primary_10_1073_pnas_2217148120 crossref_primary_10_1016_j_nanoen_2023_108993 crossref_primary_10_1021_jacs_2c07501 crossref_primary_10_1002_anie_202416039 crossref_primary_10_20517_ss_2024_59 crossref_primary_10_1007_s40820_024_01382_9 crossref_primary_10_1016_j_jechem_2024_09_018 crossref_primary_10_1016_S1872_2067_23_64534_6 crossref_primary_10_1021_acscatal_4c05717 crossref_primary_10_1002_smll_202304050 crossref_primary_10_1007_s12274_022_4704_9 crossref_primary_10_1038_s41467_024_53426_8 crossref_primary_10_1016_j_scib_2022_11_018 crossref_primary_10_1016_j_jelechem_2023_117520 crossref_primary_10_1016_j_apcata_2023_119035 crossref_primary_10_1016_j_jcat_2024_115668 crossref_primary_10_1016_j_seppur_2022_121706 crossref_primary_10_1016_j_joule_2023_12_005 crossref_primary_10_1038_s41467_023_36338_x crossref_primary_10_1016_j_jallcom_2024_176490 crossref_primary_10_1002_adma_202304669 crossref_primary_10_1021_acsaem_4c01147 crossref_primary_10_1039_D4TC04703F crossref_primary_10_1021_acscatal_2c00972 crossref_primary_10_1002_cphc_202400692 crossref_primary_10_1016_j_nxmate_2024_100343 crossref_primary_10_1002_anie_202420188 crossref_primary_10_1021_acs_jpclett_3c00603 crossref_primary_10_1002_aenm_202401285 crossref_primary_10_1021_acscatal_2c06278 crossref_primary_10_1002_smtd_202301120 crossref_primary_10_1002_cctc_202201386 crossref_primary_10_1016_j_jechem_2023_08_038 crossref_primary_10_1088_1402_4896_ace391 crossref_primary_10_1016_j_seppur_2024_129254 crossref_primary_10_1016_j_jcis_2025_01_242 crossref_primary_10_1016_j_scib_2024_08_014 crossref_primary_10_1002_ange_202415975 crossref_primary_10_1016_j_chemosphere_2024_141911 crossref_primary_10_1021_acsami_4c07117 crossref_primary_10_1002_adma_202300064 crossref_primary_10_1007_s13399_022_03270_x crossref_primary_10_1002_ece2_11 crossref_primary_10_1002_adfm_202402676 crossref_primary_10_1002_ange_202422940 crossref_primary_10_1007_s11705_024_2398_0 crossref_primary_10_1016_j_nanoen_2024_109495 crossref_primary_10_1021_jacs_4c18032 crossref_primary_10_1016_j_cej_2023_143898 crossref_primary_10_1016_j_jphotochem_2024_115834 crossref_primary_10_1016_j_cej_2023_147338 crossref_primary_10_1016_j_jcis_2025_01_014 crossref_primary_10_1002_cphc_202300216 crossref_primary_10_1016_j_apsusc_2024_160322 crossref_primary_10_1021_jacs_4c09219 crossref_primary_10_1016_j_mcat_2022_112429 crossref_primary_10_1021_acsmaterialslett_4c01333 crossref_primary_10_1063_5_0130217 crossref_primary_10_1155_2022_4282485 crossref_primary_10_1016_j_cej_2024_154833 crossref_primary_10_1016_j_jcis_2024_07_203 crossref_primary_10_1016_j_seppur_2024_127866 crossref_primary_10_1002_ange_202416039 crossref_primary_10_1021_acs_chemmater_3c02929 |
Cites_doi | 10.1039/c2ee21801a 10.1016/j.joule.2018.07.029 10.1021/ja511739y 10.1038/s41929-020-00525-6 10.1038/s41929-020-0428-y 10.1002/anie.202001438 10.1002/aenm.201501754 10.1038/s41586-020-2278-9 10.1021/ja203296z 10.1039/c1ee01812d 10.1023/A:1019034728816 10.1038/440295a 10.1021/acs.chemrev.7b00286 10.1126/science.1246913 10.1038/s41929-019-0242-6 10.1246/cl.2004.1348 10.1038/ncomms2401 10.1038/nmat4589 10.1126/science.aaf1525 10.1021/cr1001645 10.1002/adfm.201802685 10.1021/ja1009025 10.1039/B800489G 10.1038/s41565-018-0251-7 10.1021/ja992541y 10.1021/ar00051a007 10.1038/s41560-020-0678-6 10.1039/c3ee40831k 10.1126/science.1137014 10.1038/natrevmats.2017.50 10.1021/acsenergylett.9b00153 10.1039/C5EE01434D 10.1002/adma.201806938 10.1021/acs.chemrev.9b00201 10.1002/anie.201502686 10.1073/pnas.1913403117 10.1038/238037a0 10.1038/s41929-018-0077-6 10.1088/0034-4885/53/10/001 10.1021/ar300227e 10.1038/ncomms3195 10.1016/j.mattod.2018.04.009 10.1016/0079-6816(91)90007-Q 10.1038/nmat3151 10.1021/la100722w 10.1038/s41560-018-0308-8 10.1021/acscentsci.5b00402 10.1038/s41570-018-0024-8 10.1016/j.jcat.2008.07.017 10.1021/jp110025x |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-28146-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection (Hollins) Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_806e41e5b4e1403d81412e1a4c7cb04e PMC8789891 10_1038_s41467_022_28146_6 |
GrantInformation_xml | – fundername: National Key R&D Program of China (2017YFA0204904) – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 201902156; 21925206; 21633009 funderid: https://doi.org/10.13039/501100001809 – fundername: Dalian Science and Technology Innovation Fund (2020JJ26GX032) – fundername: the National Key R&D Program of China (2020YFA0406102), the DICP Foundation of Innovative Research (DICP I201927) – fundername: ; – fundername: ; grantid: 201902156; 21925206; 21633009 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c583t-3b9fb926283a6b84d9f697ef96772b8dadcd3beffc01cb19244c2e24a3e53c193 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 00:47:11 EDT 2025 Thu Aug 21 13:46:49 EDT 2025 Fri Jul 11 11:01:24 EDT 2025 Wed Aug 13 11:26:25 EDT 2025 Tue Jul 01 04:17:43 EDT 2025 Thu Apr 24 22:54:03 EDT 2025 Fri Feb 21 02:38:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-3b9fb926283a6b84d9f697ef96772b8dadcd3beffc01cb19244c2e24a3e53c193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1801-8466 0000-0002-7859-0616 0000-0002-9301-7850 0000-0001-7995-4832 0000-0002-1221-3033 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-28146-6 |
PMID | 35079003 |
PQID | 2622687436 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_806e41e5b4e1403d81412e1a4c7cb04e pubmedcentral_primary_oai_pubmedcentral_nih_gov_8789891 proquest_miscellaneous_2622958234 proquest_journals_2622687436 crossref_citationtrail_10_1038_s41467_022_28146_6 crossref_primary_10_1038_s41467_022_28146_6 springer_journals_10_1038_s41467_022_28146_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-25 |
PublicationDateYYYYMMDD | 2022-01-25 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Chen (CR4) 2010; 110 Sasaki (CR35) 2008; 259 Ma (CR38) 2012; 5 Cheng (CR47) 2019; 4 Kim (CR50) 2016; 6 Kim, Lee (CR23) 2019; 31 Fabian (CR14) 2015; 8 Lewis (CR2) 2007; 315 Wang (CR28) 2020; 5 Abdi (CR25) 2013; 4 Resasco (CR27) 2016; 2 Norsköv (CR45) 1991; 38 Kornienko (CR10) 2018; 13 Li (CR32) 2013; 4 Kato (CR29) 2004; 33 Zhang (CR43) 2020; 3 Linic, Christopher, Ingram (CR5) 2011; 10 Qi (CR16) 2018; 2 Kong (CR12) 2018; 21 Wang (CR41) 2018; 28 Bard, Fox (CR13) 1995; 28 Tabata (CR37) 2010; 26 Takata (CR19) 2020; 581 Luo (CR24) 2011; 4 Zhang (CR46) 2016; 352 Pan (CR31) 2018; 1 Fujishima, Honda (CR1) 1972; 238 Maeda (CR17) 2006; 440 Hisatomi, Domen (CR8) 2019; 2 Chu (CR42) 2020; 117 Maeda (CR49) 2010; 132 Pinaud (CR6) 2013; 6 Wang (CR15) 2016; 15 Chen, Takata, Domen (CR18) 2017; 2 Iwase (CR30) 2011; 133 Kudo, Miseki (CR3) 2009; 38 Kim, Choi (CR22) 2014; 343 Chen, Manser, Kamat (CR26) 2015; 137 Li, Tung, Wu (CR7) 2018; 2 Maeda, Abe, Domen (CR36) 2011; 115 Wang, Domen (CR11) 2020; 120 Chen (CR48) 2015; 54 Kudo (CR20) 1998; 53 Yang (CR33) 2013; 46 Norsköv (CR44) 1990; 53 Li (CR40) 2019; 4 Wang (CR34) 2018; 118 Kudo, Omori, Kato (CR21) 1999; 121 Cestellos-Blanco (CR9) 2020; 3 Zhao (CR39) 2020; 59 J Yang (28146_CR33) 2013; 46 W Cheng (28146_CR47) 2019; 4 X Li (28146_CR7) 2018; 2 B Zhang (28146_CR43) 2020; 3 X Chen (28146_CR4) 2010; 110 SSK Ma (28146_CR38) 2012; 5 Q Wang (28146_CR28) 2020; 5 DM Fabian (28146_CR14) 2015; 8 K Maeda (28146_CR17) 2006; 440 A Fujishima (28146_CR1) 1972; 238 Y Zhao (28146_CR39) 2020; 59 S Chen (28146_CR48) 2015; 54 B Zhang (28146_CR46) 2016; 352 S Wang (28146_CR41) 2018; 28 T Hisatomi (28146_CR8) 2019; 2 YS Chen (28146_CR26) 2015; 137 W Luo (28146_CR24) 2011; 4 K Maeda (28146_CR49) 2010; 132 A Kudo (28146_CR20) 1998; 53 R Li (28146_CR32) 2013; 4 A Iwase (28146_CR30) 2011; 133 C Chu (28146_CR42) 2020; 117 FF Abdi (28146_CR25) 2013; 4 JK Norsköv (28146_CR44) 1990; 53 A Kudo (28146_CR21) 1999; 121 Y Wang (28146_CR34) 2018; 118 JK Norsköv (28146_CR45) 1991; 38 S Cestellos-Blanco (28146_CR9) 2020; 3 N Kornienko (28146_CR10) 2018; 13 TW Kim (28146_CR22) 2014; 343 Y Sasaki (28146_CR35) 2008; 259 S Linic (28146_CR5) 2011; 10 Q Wang (28146_CR15) 2016; 15 D Li (28146_CR40) 2019; 4 A Kudo (28146_CR3) 2009; 38 Q Wang (28146_CR11) 2020; 120 AJ Bard (28146_CR13) 1995; 28 J Resasco (28146_CR27) 2016; 2 M Tabata (28146_CR37) 2010; 26 S Chen (28146_CR18) 2017; 2 NS Lewis (28146_CR2) 2007; 315 H Kato (28146_CR29) 2004; 33 K Maeda (28146_CR36) 2011; 115 BA Pinaud (28146_CR6) 2013; 6 C Kim (28146_CR50) 2016; 6 D Kong (28146_CR12) 2018; 21 JH Kim (28146_CR23) 2019; 31 L Pan (28146_CR31) 2018; 1 Y Qi (28146_CR16) 2018; 2 T Takata (28146_CR19) 2020; 581 |
References_xml | – volume: 5 start-page: 8390 year: 2012 end-page: 8397 ident: CR38 article-title: Visible-light-driven nonsacrificial water oxidation over tungsten trioxide powder modified with two different cocatalysts publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21801a – volume: 2 start-page: 2393 year: 2018 end-page: 2402 ident: CR16 article-title: Redox-based visible-light-driven Z-scheme overall water splitting with apparent quantum efficiency exceeding 10% publication-title: Joule doi: 10.1016/j.joule.2018.07.029 – volume: 137 start-page: 974 year: 2015 end-page: 981 ident: CR26 article-title: All solution-processed lead halide perovskite-BiVO tandem assembly for photolytic solar fuels production publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511739y – volume: 3 start-page: 985 year: 2020 end-page: 992 ident: CR43 article-title: High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics publication-title: Nat. Catal. doi: 10.1038/s41929-020-00525-6 – volume: 3 start-page: 245 year: 2020 end-page: 255 ident: CR9 article-title: Photosynthetic semiconductor biohybrids for solar-driven biocatalysis publication-title: Nat. Catal. doi: 10.1038/s41929-020-0428-y – volume: 59 start-page: 9653 year: 2020 end-page: 9658 ident: CR39 article-title: A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202001438 – volume: 6 start-page: 1501754 year: 2016 ident: CR50 article-title: (040)-Crystal facet engineering of BiVO plate photoanodes for solar fuel production publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501754 – volume: 581 start-page: 411 year: 2020 end-page: 414 ident: CR19 article-title: Photocatalytic water splitting with a quantum efficiency of almost unity publication-title: Nature doi: 10.1038/s41586-020-2278-9 – volume: 133 start-page: 11054 year: 2011 end-page: 11057 ident: CR30 article-title: Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light publication-title: J. Am. Chem. Soc. doi: 10.1021/ja203296z – volume: 4 start-page: 4046 year: 2011 end-page: 4051 ident: CR24 article-title: Solar hydrogen generation from seawater with a modified BiVO photoanode publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01812d – volume: 53 start-page: 229 year: 1998 end-page: 230 ident: CR20 article-title: Photocatalytic O evolution under visible light irradiation on BiVO in aqueous AgNO solution publication-title: Catal. Lett doi: 10.1023/A:1019034728816 – volume: 440 start-page: 295 year: 2006 ident: CR17 article-title: Photocatalyst releasing hydrogen from water publication-title: Nature doi: 10.1038/440295a – volume: 118 start-page: 5201 year: 2018 end-page: 5241 ident: CR34 article-title: Mimicking natural photosynthesis: solar to renewable H fuel synthesis by Z-scheme water splitting systems publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00286 – volume: 343 start-page: 990 year: 2014 end-page: 994 ident: CR22 article-title: Nanoporous BiVO photoanodes with dual-layer oxygen evolution catalysts for solar water splitting publication-title: Science doi: 10.1126/science.1246913 – volume: 2 start-page: 387 year: 2019 end-page: 399 ident: CR8 article-title: Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts publication-title: Nat. Catal. doi: 10.1038/s41929-019-0242-6 – volume: 33 start-page: 1348 year: 2004 end-page: 1349 ident: CR29 article-title: Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H and O under visible light irradiation publication-title: Chem. Lett. doi: 10.1246/cl.2004.1348 – volume: 4 year: 2013 ident: CR32 article-title: Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO publication-title: Nat. Commun. doi: 10.1038/ncomms2401 – volume: 15 start-page: 611 year: 2016 end-page: 615 ident: CR15 article-title: Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1% publication-title: Nat. Mater. doi: 10.1038/nmat4589 – volume: 352 start-page: 333 year: 2016 end-page: 337 ident: CR46 article-title: Homogeneously dispersed multimetal oxygen-evolving catalysts publication-title: Science doi: 10.1126/science.aaf1525 – volume: 110 start-page: 6503 year: 2010 end-page: 6570 ident: CR4 article-title: Semiconductor-based photocatalytic hydrogen generation publication-title: Chem. Rev. doi: 10.1021/cr1001645 – volume: 28 start-page: 1802685 year: 2018 ident: CR41 article-title: New iron-cobalt oxide catalysts promoting BiVO films for photoelectrochemical water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802685 – volume: 132 start-page: 5858 year: 2010 end-page: 5868 ident: CR49 article-title: Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1009025 – volume: 38 start-page: 253 year: 2009 end-page: 278 ident: CR3 article-title: Heterogeneous photocatalyst materials for water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/B800489G – volume: 13 start-page: 890 year: 2018 end-page: 899 ident: CR10 article-title: Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis publication-title: Nature Nanotech doi: 10.1038/s41565-018-0251-7 – volume: 121 start-page: 11459 year: 1999 end-page: 11467 ident: CR21 article-title: A first aqueous process for preparation of crystal form-controlled and highly crystalline BiVO powder from layered vanadates at room temperature and its photocatalytic and photophysical properties publication-title: J. Am. Chem. Soc. doi: 10.1021/ja992541y – volume: 28 start-page: 141 year: 1995 end-page: 145 ident: CR13 article-title: Artificial photosynthesis: solar splitting of water to hydrogen and oxygen publication-title: Acc. Chem. Res. doi: 10.1021/ar00051a007 – volume: 5 start-page: 703 year: 2020 end-page: 710 ident: CR28 article-title: Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water publication-title: Nat. Energy doi: 10.1038/s41560-020-0678-6 – volume: 6 start-page: 1983 year: 2013 end-page: 2002 ident: CR6 article-title: Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40831k – volume: 315 start-page: 798 year: 2007 end-page: 801 ident: CR2 article-title: Toward cost-effective solar energy use publication-title: Science doi: 10.1126/science.1137014 – volume: 2 start-page: 17050 year: 2017 ident: CR18 article-title: Particulate photocatalysts for overall water splitting publication-title: Nat. Rev. Mater doi: 10.1038/natrevmats.2017.50 – volume: 4 start-page: 825 year: 2019 end-page: 831 ident: CR40 article-title: Crystallographic-orientation-dependent charge separation of BiVO for solar water oxidation publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00153 – volume: 8 start-page: 2825 year: 2015 end-page: 2850 ident: CR14 article-title: Particle suspension reactors and materials for solar-driven water splitting publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01434D – volume: 31 start-page: 1806938 year: 2019 ident: CR23 article-title: Elaborately modified BiVO photoanodes for solar water splitting publication-title: Adv. Mater doi: 10.1002/adma.201806938 – volume: 120 start-page: 919 year: 2020 end-page: 985 ident: CR11 article-title: Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00201 – volume: 54 start-page: 8498 year: 2015 end-page: 8501 ident: CR48 article-title: Efficient visible-light-driven Z-scheme overall water splitting using a MgTa O N /TaON heterostructure photocatalyst for H evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201502686 – volume: 117 start-page: 6376 year: 2020 end-page: 6382 ident: CR42 article-title: Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H O production publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1913403117 – volume: 238 start-page: 37 year: 1972 end-page: 38 ident: CR1 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature doi: 10.1038/238037a0 – volume: 1 start-page: 412 year: 2018 end-page: 420 ident: CR31 article-title: Boosting the performance of Cu O photocathodes for unassisted solar water splitting devices publication-title: Nat. Catal. doi: 10.1038/s41929-018-0077-6 – volume: 53 start-page: 1253 year: 1990 end-page: 1295 ident: CR44 article-title: Chemisorption on metal-surfaces publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/53/10/001 – volume: 46 start-page: 1900 year: 2013 end-page: 1909 ident: CR33 article-title: Roles of cocatalysts in photocatalysis and photoelectrocatalysis publication-title: Acc. Chem. Res. doi: 10.1021/ar300227e – volume: 4 year: 2013 ident: CR25 article-title: Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode publication-title: Nat. Commun. doi: 10.1038/ncomms3195 – volume: 21 start-page: 897 year: 2018 end-page: 924 ident: CR12 article-title: Recent advances in visible light-driven water oxidation and reduction in suspension systems publication-title: Mater. Today doi: 10.1016/j.mattod.2018.04.009 – volume: 38 start-page: 103 year: 1991 end-page: 144 ident: CR45 article-title: Electronic factors in catalysis publication-title: Prog. Surf. Sci doi: 10.1016/0079-6816(91)90007-Q – volume: 10 start-page: 911 year: 2011 end-page: 921 ident: CR5 article-title: Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy publication-title: Nat. Mater. doi: 10.1038/nmat3151 – volume: 26 start-page: 9161 year: 2010 end-page: 9165 ident: CR37 article-title: Modified Ta N powder as a photocatalyst for O evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light publication-title: Langmuir doi: 10.1021/la100722w – volume: 4 start-page: 115 year: 2019 end-page: 122 ident: CR47 article-title: Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis publication-title: Nat. Energy doi: 10.1038/s41560-018-0308-8 – volume: 2 start-page: 80 year: 2016 end-page: 88 ident: CR27 article-title: TiO /BiVO nanowire heterostructure photoanodes based on Type II band alignment publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.5b00402 – volume: 2 start-page: 160 year: 2018 end-page: 173 ident: CR7 article-title: Semiconducting quantum dots for artificial photosynthesis publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0024-8 – volume: 259 start-page: 133 year: 2008 end-page: 137 ident: CR35 article-title: The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe /Fe electron mediator on overall water splitting under visible light irradiation publication-title: J. Catal. doi: 10.1016/j.jcat.2008.07.017 – volume: 115 start-page: 3057 year: 2011 end-page: 3064 ident: CR36 article-title: Role and function of ruthenium species as promoters with TaON-based photocatalysts for oxygen evolution in two-step water splitting under visible light publication-title: J. Phys. Chem. C doi: 10.1021/jp110025x – volume: 1 start-page: 412 year: 2018 ident: 28146_CR31 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0077-6 – volume: 2 start-page: 160 year: 2018 ident: 28146_CR7 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0024-8 – volume: 2 start-page: 80 year: 2016 ident: 28146_CR27 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.5b00402 – volume: 15 start-page: 611 year: 2016 ident: 28146_CR15 publication-title: Nat. Mater. doi: 10.1038/nmat4589 – volume: 13 start-page: 890 year: 2018 ident: 28146_CR10 publication-title: Nature Nanotech doi: 10.1038/s41565-018-0251-7 – volume: 6 start-page: 1983 year: 2013 ident: 28146_CR6 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40831k – volume: 3 start-page: 985 year: 2020 ident: 28146_CR43 publication-title: Nat. Catal. doi: 10.1038/s41929-020-00525-6 – volume: 440 start-page: 295 year: 2006 ident: 28146_CR17 publication-title: Nature doi: 10.1038/440295a – volume: 33 start-page: 1348 year: 2004 ident: 28146_CR29 publication-title: Chem. Lett. doi: 10.1246/cl.2004.1348 – volume: 5 start-page: 8390 year: 2012 ident: 28146_CR38 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21801a – volume: 5 start-page: 703 year: 2020 ident: 28146_CR28 publication-title: Nat. Energy doi: 10.1038/s41560-020-0678-6 – volume: 352 start-page: 333 year: 2016 ident: 28146_CR46 publication-title: Science doi: 10.1126/science.aaf1525 – volume: 121 start-page: 11459 year: 1999 ident: 28146_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja992541y – volume: 53 start-page: 229 year: 1998 ident: 28146_CR20 publication-title: Catal. Lett doi: 10.1023/A:1019034728816 – volume: 120 start-page: 919 year: 2020 ident: 28146_CR11 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00201 – volume: 4 start-page: 825 year: 2019 ident: 28146_CR40 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00153 – volume: 3 start-page: 245 year: 2020 ident: 28146_CR9 publication-title: Nat. Catal. doi: 10.1038/s41929-020-0428-y – volume: 133 start-page: 11054 year: 2011 ident: 28146_CR30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja203296z – volume: 28 start-page: 1802685 year: 2018 ident: 28146_CR41 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802685 – volume: 118 start-page: 5201 year: 2018 ident: 28146_CR34 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00286 – volume: 28 start-page: 141 year: 1995 ident: 28146_CR13 publication-title: Acc. Chem. Res. doi: 10.1021/ar00051a007 – volume: 4 year: 2013 ident: 28146_CR25 publication-title: Nat. Commun. doi: 10.1038/ncomms3195 – volume: 8 start-page: 2825 year: 2015 ident: 28146_CR14 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01434D – volume: 110 start-page: 6503 year: 2010 ident: 28146_CR4 publication-title: Chem. Rev. doi: 10.1021/cr1001645 – volume: 38 start-page: 253 year: 2009 ident: 28146_CR3 publication-title: Chem. Soc. Rev. doi: 10.1039/B800489G – volume: 54 start-page: 8498 year: 2015 ident: 28146_CR48 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201502686 – volume: 581 start-page: 411 year: 2020 ident: 28146_CR19 publication-title: Nature doi: 10.1038/s41586-020-2278-9 – volume: 31 start-page: 1806938 year: 2019 ident: 28146_CR23 publication-title: Adv. Mater doi: 10.1002/adma.201806938 – volume: 115 start-page: 3057 year: 2011 ident: 28146_CR36 publication-title: J. Phys. Chem. C doi: 10.1021/jp110025x – volume: 26 start-page: 9161 year: 2010 ident: 28146_CR37 publication-title: Langmuir doi: 10.1021/la100722w – volume: 259 start-page: 133 year: 2008 ident: 28146_CR35 publication-title: J. Catal. doi: 10.1016/j.jcat.2008.07.017 – volume: 2 start-page: 2393 year: 2018 ident: 28146_CR16 publication-title: Joule doi: 10.1016/j.joule.2018.07.029 – volume: 21 start-page: 897 year: 2018 ident: 28146_CR12 publication-title: Mater. Today doi: 10.1016/j.mattod.2018.04.009 – volume: 6 start-page: 1501754 year: 2016 ident: 28146_CR50 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501754 – volume: 238 start-page: 37 year: 1972 ident: 28146_CR1 publication-title: Nature doi: 10.1038/238037a0 – volume: 4 start-page: 4046 year: 2011 ident: 28146_CR24 publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01812d – volume: 2 start-page: 17050 year: 2017 ident: 28146_CR18 publication-title: Nat. Rev. Mater doi: 10.1038/natrevmats.2017.50 – volume: 4 year: 2013 ident: 28146_CR32 publication-title: Nat. Commun. doi: 10.1038/ncomms2401 – volume: 53 start-page: 1253 year: 1990 ident: 28146_CR44 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/53/10/001 – volume: 343 start-page: 990 year: 2014 ident: 28146_CR22 publication-title: Science doi: 10.1126/science.1246913 – volume: 117 start-page: 6376 year: 2020 ident: 28146_CR42 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1913403117 – volume: 59 start-page: 9653 year: 2020 ident: 28146_CR39 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202001438 – volume: 132 start-page: 5858 year: 2010 ident: 28146_CR49 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1009025 – volume: 10 start-page: 911 year: 2011 ident: 28146_CR5 publication-title: Nat. Mater. doi: 10.1038/nmat3151 – volume: 4 start-page: 115 year: 2019 ident: 28146_CR47 publication-title: Nat. Energy doi: 10.1038/s41560-018-0308-8 – volume: 137 start-page: 974 year: 2015 ident: 28146_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511739y – volume: 2 start-page: 387 year: 2019 ident: 28146_CR8 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0242-6 – volume: 46 start-page: 1900 year: 2013 ident: 28146_CR33 publication-title: Acc. Chem. Res. doi: 10.1021/ar300227e – volume: 38 start-page: 103 year: 1991 ident: 28146_CR45 publication-title: Prog. Surf. Sci doi: 10.1016/0079-6816(91)90007-Q – volume: 315 start-page: 798 year: 2007 ident: 28146_CR2 publication-title: Science doi: 10.1126/science.1137014 |
SSID | ssj0000391844 |
Score | 2.7093506 |
Snippet | Bismuth vanadate (BiVO
4
) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient... Bismuth vanadate (BiVO4) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient... Artificial photosynthesis offers an integrated means to convert light to fuel, but efficiencies are often low. Here, authors report a Z-scheme system utilizing... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 484 |
SubjectTerms | 119/118 147/135 147/143 639/638/224/909/4101/4050 639/638/439/890 639/925/357 Bismuth oxides Catalysis Catalysts Ferricyanide Humanities and Social Sciences multidisciplinary Nanocomposites Nanoparticles Oxidation Photocatalysts Photosynthesis Quantum efficiency Science Science (multidisciplinary) Separation Splitting Surface charge Synergistic effect Vanadate Vanadates Water splitting |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyIn_hsKxG86dLNxybZoy2WIqgXn_QW8jGhhbJbulvk_fdOsvue3YJ68bqZkGxmMvklmfyGkHfJ69Aw01ZaubqSzqvKBxUr8LrxQRgIKT8U_vJVna3l5_Pm_E6qrxwTNtEDTwN3ZGoFkkHjJWRquWiYZByYk0EHX0vI3hfXvDubqeKDRYtbFzm_kqmFORpk8Qk5eJ3nY69KLVaiQti_QJn3YyTvXZSW9ef0CXk8A0f6cerwU_IAumfk4ZRKcvOcpHWXEwnlx-W0TxTdXD6X2QzjQK8v-rGPUMKzINKhZL5BJ3e1oX1HkwuAQljn-PLHN0nHniLwHkY65E0v_YlY9IYOCFVLgPQLsj799P3krJpzKFShMWKshG-Tz5yARjjljYxtUq2G1CqE1d5EF0MUHlIKNQs-78Zk4MClE9CIgOjuJdnr-g5eEeqg5d4lRCwREGQJozWLYDzKed4EvSJsO542zATjOc_FlS0X3cLYSQcWdWCLDqxakfe7OtcTvcZfpY-zmnaSmRq7fECDsbPB2H8ZzIocbJVs5_k6WBwgrgyiKWzj7a4YZ1q-PnEd9LeTTNsYLuSK6IVxLDq0LOkuLwpnt9E5TydbkQ9bM_rd-J9_-PX_-OF98ohns69ZxZsDsjfe3MIhIqnRvymT5hc3DRvF priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96IvgifmK9UyL4puHaJk3SJ_HE4xDUF1f2LeRj4h0c7brtIfvfXybt7rEH3mszoWlnMvllMvkNIe-jU76pdMuUtCUT1knmvAwMnGqc5xp8xIvC33_Is4X4tmyWc8BtmNMqtz4xO-rQe4yRH9cyAQWd1jv5afWXYdUoPF2dS2jcJw-QugxTutRS7WIsyH6uhZjvypRcHw8iewZMYa8x-MXk3nqUafv3sObtTMlbx6V5FTp9Qh7P8JF-nvT9lNyD7hl5OBWU3DwncdFhOSG8Yk77SJOzw-jMZhgHujrvxz5ATtKCQIdc_ya5ussN7TsarYcklPqcXPz-KejY0wS_h5EOuPWl_xIiXdMhAdacJv2CLE6__vpyxuZKCsw3mo-MuzY6ZAbU3EqnRWijbBXEViZw7XSwwQfuIEZfVt7hnkz4GmphOTTcJ4z3khx0fQevCLXQ1s7GhFsCJKjFtVJVAO2SnKsbrwpSbf-n8TPNOFa7uDT5uJtrM-nAJB2YrAMjC_Jh12c1kWzcKX2CatpJIkF2ftCv_5h5vhldShAVNE4AMhKG1LWqobLCK-9KAQU52irZzLN2MDc2VpB3u-Y03_AQxXbQX00yydJqLgqi9oxjb0D7Ld3FeWbu1gqrdVYF-bg1o5uX__-DX9891kPyqEaDLitWN0fkYFxfwZuElEb3Nk-HaygKE8Q priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEA_riuBF_MTqKhG8abFN0iQ9ug-XRVAvPtlbyMfEXVja5bXL8v57M2nfky4qeG1mSJqZJL8kk98Q8jY65Ztat6WStiqFdbJ0XoYSnGqc5xp8xIfCX77K07X4fNacHRC2ewuTg_YzpWWepnfRYR8GkYc0xp4zPLUq5R1yF6nb0atXcrU_V0HGcy3E_D6m4voPqos1KFP1L_Dl7ejIW1ekeeU5eUgezJCRfpwa-YgcQPeY3JuSSG6fkLjuMIUQPiunfaRpgsMTme0wDvTqvB_7ADkwCwIdcs6bNL1dbmnf0Wg9JKGkc3zx45ugY08T5B5GOuB2l94kFLqhQwKpOTT6KVmffPq-Oi3n7AmlbzQfS-7a6JANUHMrnRahjbJVEFuZALXTwQYfuIMYfVV7h_sw4RkwYTk03Cdc94wcdn0Hzwm10DJnY8IqARK84lqpOoB2Sc6xxquC1Lv-NH6mFscMF5cmX3FzbSYbmGQDk21gZEHe7XWuJmKNf0ofo5n2kkiKnT_0m59mdhKjKwmihsYJQBbCkFRrBrUVXnlXCSjI0c7IZh6pg0kdxGRyJJ7qeLMvTmMML05sB_31JNM2mnFRELVwjkWDliXdxXlm69YKM3TWBXm_c6Pflf_9h1_8n_hLcp-hg1d1yZojcjhuruFVQkuje52Hxy-m6xGG priority: 102 providerName: Springer Nature |
Title | Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting |
URI | https://link.springer.com/article/10.1038/s41467-022-28146-6 https://www.proquest.com/docview/2622687436 https://www.proquest.com/docview/2622958234 https://pubmed.ncbi.nlm.nih.gov/PMC8789891 https://doaj.org/article/806e41e5b4e1403d81412e1a4c7cb04e |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELf2ISReEJ-iMCoj8QaBxHZs5wGhtlqZKm0goKhvUeyct0lVMppM0P-es5MWdRpIvCRSfI6T-_D9_HVHyCtnlE0TnUVKFnEkCiMjY2UZgVGpsVyDdf6g8OmZPJmL2SJd7JFNuqOegc2tQzufT2q-Wr799WP9AQ3-fXdkXL9rRDB3vy-d-RmtSO6TQ_RMyhvqaQ_3Q8_MMxzQ-IVmFoskQt_N-3M0t79mx1eFkP47OPTmLsobS6nBQ03vk3s9tKSjThcekD2oHpI7XbLJ9SPi5pVPNeSPn9PaUewI_czNumkbenVRt3UJYQMXlLQJuXGwG1yuaV1RV1hAIqwzvvz-SdC2pgjNm5Y2nnf0J6LVFW0QzIYt1I_JfHr8bXIS9VkWIptq3kbcZM74qIGaF9JoUWZOZgpcJhF4G10WpS25AedsnFjjx2vCMmCi4JByi_jvCTmo6gqeElpAxkzhENOUgDCMa6WSErRBOsNSqwYk2fAzt30Icp8JY5mHpXCu804GOcogDzLI5YC83ta56gJw_JN67MW0pfTBs8ODenWe97aY61iCSCA1Any0whKrJgySQlhlTSxgQI42Qs43Cpkjg5jUiLewjZfbYrRFv8BSVFBfdzRZqhkXA6J2lGPng3ZLqsuLENVbK5_JMxmQNxs1-tP433_42X-x5zm5y7x-x0nE0iNy0K6u4QWCqtYMyb5aKLzq6cchORyNZl9neB8fn33-gk8ncjIM0xXDYFG_AeStI0s |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFMEChgJThA1sR3bOSBEgWpLH1y6aG8mfrWVqmTZpKr2T_Eb8TjJVluJ3nqNx0riefizPZ4PoXdeC1PkskwFr7KUVZqn2nCbOi0Kbah0xsNF4cMjPpmyH7NitoH-jndhIK1yjIkxUNvGwB75NuEBKMgw3_HP8z8psEbB6epIodGbxb5bXoYlW_tp71vQ73tCdr8ff52kA6tAagpJu5Tq0muokidpxbVktvS8FM6XPABNLW1ljaXaeW-y3GhYnzBDHGEVdQU1ORRfCiH_Tph4M_AoMROrPR2oti4ZG-7mZFRutyxGIkiZJ7DZlvK1-S_SBKxh2-uZmdeOZ-Ost_sQPRjgKv7S29cjtOHqx-huT2C5fIL8tAb6IrjSjhuPQ3CF3aBl27V4ftp0jXUxKcxZ3Ea-nRBaz5e4qbGvjAtCoc_O2a-fDHcNDnC_7XALS218GRDwArcBIMe07Kdoeitj_Axt1k3tniNcuZLoygecZF2AdlQKkVsndZDTpDAiQfk4nsoMZc2BXeNcxeN1KlWvAxV0oKIOFE_Qh1WfeV_U40bpHVDTShIKcscHzeJEDf6tZMYdy12hmYMKiDZ0zYnLK2aE0RlzCdoalayGKNGqK5tO0NtVc_BvOLSpatdc9DJlIQllCRJrxrH2Qest9dlprBQuBbCD5gn6OJrR1cv__8Mvbv7WN-je5PjwQB3sHe2_RPcJGHeWp6TYQpvd4sK9Ciit06-ja2D0-7Z98R_mMVGv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhAXxFMEChgJThBtYju2c0CIUlYthcKBRXsz8YtWqpJlk6rav8avw-MkW20leus1HiuJ5-HP9ng-hF55LUyRyzIVvMpSVmmeasNt6rQotKHSGQ8Xhb8e8f0Z-zwv5lvo73gXBtIqx5gYA7VtDOyRTwgPQEGG-Y5P_JAW8X1v-n7xJwUGKThpHek0ehM5dKvzsHxr3x3sBV2_JmT66cfH_XRgGEhNIWmXUl16DRXzJK24lsyWnpfC-ZIH0KmlrayxVDvvTZYbDWsVZogjrKKuoCaHQkwh_N8QtMjBx8RcrPd3oPK6ZGy4p5NROWlZjEqQPk9g4y3lG3NhpAzYwLmXszQvHdXGGXB6F90ZoCv-0NvaPbTl6vvoZk9muXqA_KwGKiO43o4bj0OghZ2hVdu1eHHcdI11MUHMWdxG7p0QZk9XuKmxr4wLQqHP7snPbwx3DQ7Qv-1wC8tufB7Q8BK3ASzHFO2HaHYtY_wIbddN7R4jXLmS6MoHzGRdgHlUCpFbJ3WQ06QwIkH5OJ7KDCXOgWnjVMWjdipVrwMVdKCiDhRP0Jt1n0Vf4ONK6V1Q01oSinPHB83ytxp8XcmMO5a7QjMH1RBt6JoTl1fMCKMz5hK0MypZDRGjVRf2naCX6-bg63CAU9WuOetlykISyhIkNoxj44M2W-qT41g1XApgCs0T9HY0o4uX__-Hn1z9rS_QreCF6svB0eFTdJuAbWd5SoodtN0tz9yzANg6_Tx6Bka_rtsV_wGGK1Xl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+of+cocatalysts+photodeposited+selectively+on+facets+of+BiVO4+to+boost+solar+water+splitting&rft.jtitle=Nature+communications&rft.au=Qi%2C+Yu&rft.au=Zhang%2C+Jiangwei&rft.au=Kong%2C+Yuan&rft.au=Zhao%2C+Yue&rft.date=2022-01-25&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-28146-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_022_28146_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |