Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting

Bismuth vanadate (BiVO 4 ) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient cocatalysts and limited understanding of the underlying mechanism. Here we demonstrate significantly enhanced water oxidation on the particu...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 484 - 9
Main Authors Qi, Yu, Zhang, Jiangwei, Kong, Yuan, Zhao, Yue, Chen, Shanshan, Li, Deng, Liu, Wei, Chen, Yifan, Xie, Tengfeng, Cui, Junyan, Li, Can, Domen, Kazunari, Zhang, Fuxiang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.01.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bismuth vanadate (BiVO 4 ) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient cocatalysts and limited understanding of the underlying mechanism. Here we demonstrate significantly enhanced water oxidation on the particulate BiVO 4 photocatalyst via in situ facet-selective photodeposition of dual-cocatalysts that exist separately as metallic Ir nanoparticles and nanocomposite of FeOOH and CoOOH (denoted as FeCoO x ), as revealed by advanced techniques. The mechanism of water oxidation promoted by the dual-cocatalysts is experimentally and theoretically unraveled, and mainly ascribed to the synergistic effect of the spatially separated dual-cocatalysts (Ir, FeCoO x ) on both interface charge separation and surface catalysis. Combined with the H 2 -evolving photocatalysts, we finally construct a Z-scheme overall water splitting system using [Fe(CN) 6 ] 3−/4− as the redox mediator, whose apparent quantum efficiency at 420 nm and solar-to-hydrogen conversion efficiency are optimized to be 12.3% and 0.6%, respectively. Artificial photosynthesis offers an integrated means to convert light to fuel, but efficiencies are often low. Here, authors report a Z-scheme system utilizing Ir and FeCoO x co-catalysts to enhance charge separation on BiVO 4 facets that achieves high quantum efficiencies for overall water splitting.
AbstractList Bismuth vanadate (BiVO4) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient cocatalysts and limited understanding of the underlying mechanism. Here we demonstrate significantly enhanced water oxidation on the particulate BiVO4 photocatalyst via in situ facet-selective photodeposition of dual-cocatalysts that exist separately as metallic Ir nanoparticles and nanocomposite of FeOOH and CoOOH (denoted as FeCoOx), as revealed by advanced techniques. The mechanism of water oxidation promoted by the dual-cocatalysts is experimentally and theoretically unraveled, and mainly ascribed to the synergistic effect of the spatially separated dual-cocatalysts (Ir, FeCoOx) on both interface charge separation and surface catalysis. Combined with the H2-evolving photocatalysts, we finally construct a Z-scheme overall water splitting system using [Fe(CN)6]3−/4− as the redox mediator, whose apparent quantum efficiency at 420 nm and solar-to-hydrogen conversion efficiency are optimized to be 12.3% and 0.6%, respectively.Artificial photosynthesis offers an integrated means to convert light to fuel, but efficiencies are often low. Here, authors report a Z-scheme system utilizing Ir and FeCoOx co-catalysts to enhance charge separation on BiVO4 facets that achieves high quantum efficiencies for overall water splitting.
Bismuth vanadate (BiVO4) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient cocatalysts and limited understanding of the underlying mechanism. Here we demonstrate significantly enhanced water oxidation on the particulate BiVO4 photocatalyst via in situ facet-selective photodeposition of dual-cocatalysts that exist separately as metallic Ir nanoparticles and nanocomposite of FeOOH and CoOOH (denoted as FeCoOx), as revealed by advanced techniques. The mechanism of water oxidation promoted by the dual-cocatalysts is experimentally and theoretically unraveled, and mainly ascribed to the synergistic effect of the spatially separated dual-cocatalysts (Ir, FeCoOx) on both interface charge separation and surface catalysis. Combined with the H2-evolving photocatalysts, we finally construct a Z-scheme overall water splitting system using [Fe(CN)6]3-/4- as the redox mediator, whose apparent quantum efficiency at 420 nm and solar-to-hydrogen conversion efficiency are optimized to be 12.3% and 0.6%, respectively.Bismuth vanadate (BiVO4) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient cocatalysts and limited understanding of the underlying mechanism. Here we demonstrate significantly enhanced water oxidation on the particulate BiVO4 photocatalyst via in situ facet-selective photodeposition of dual-cocatalysts that exist separately as metallic Ir nanoparticles and nanocomposite of FeOOH and CoOOH (denoted as FeCoOx), as revealed by advanced techniques. The mechanism of water oxidation promoted by the dual-cocatalysts is experimentally and theoretically unraveled, and mainly ascribed to the synergistic effect of the spatially separated dual-cocatalysts (Ir, FeCoOx) on both interface charge separation and surface catalysis. Combined with the H2-evolving photocatalysts, we finally construct a Z-scheme overall water splitting system using [Fe(CN)6]3-/4- as the redox mediator, whose apparent quantum efficiency at 420 nm and solar-to-hydrogen conversion efficiency are optimized to be 12.3% and 0.6%, respectively.
Artificial photosynthesis offers an integrated means to convert light to fuel, but efficiencies are often low. Here, authors report a Z-scheme system utilizing Ir and FeCoOx co-catalysts to enhance charge separation on BiVO4 facets that achieves high quantum efficiencies for overall water splitting.
Bismuth vanadate (BiVO 4 ) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient cocatalysts and limited understanding of the underlying mechanism. Here we demonstrate significantly enhanced water oxidation on the particulate BiVO 4 photocatalyst via in situ facet-selective photodeposition of dual-cocatalysts that exist separately as metallic Ir nanoparticles and nanocomposite of FeOOH and CoOOH (denoted as FeCoO x ), as revealed by advanced techniques. The mechanism of water oxidation promoted by the dual-cocatalysts is experimentally and theoretically unraveled, and mainly ascribed to the synergistic effect of the spatially separated dual-cocatalysts (Ir, FeCoO x ) on both interface charge separation and surface catalysis. Combined with the H 2 -evolving photocatalysts, we finally construct a Z-scheme overall water splitting system using [Fe(CN) 6 ] 3−/4− as the redox mediator, whose apparent quantum efficiency at 420 nm and solar-to-hydrogen conversion efficiency are optimized to be 12.3% and 0.6%, respectively. Artificial photosynthesis offers an integrated means to convert light to fuel, but efficiencies are often low. Here, authors report a Z-scheme system utilizing Ir and FeCoO x co-catalysts to enhance charge separation on BiVO 4 facets that achieves high quantum efficiencies for overall water splitting.
Bismuth vanadate (BiVO 4 ) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient cocatalysts and limited understanding of the underlying mechanism. Here we demonstrate significantly enhanced water oxidation on the particulate BiVO 4 photocatalyst via in situ facet-selective photodeposition of dual-cocatalysts that exist separately as metallic Ir nanoparticles and nanocomposite of FeOOH and CoOOH (denoted as FeCoO x ), as revealed by advanced techniques. The mechanism of water oxidation promoted by the dual-cocatalysts is experimentally and theoretically unraveled, and mainly ascribed to the synergistic effect of the spatially separated dual-cocatalysts (Ir, FeCoO x ) on both interface charge separation and surface catalysis. Combined with the H 2 -evolving photocatalysts, we finally construct a Z-scheme overall water splitting system using [Fe(CN) 6 ] 3−/4− as the redox mediator, whose apparent quantum efficiency at 420 nm and solar-to-hydrogen conversion efficiency are optimized to be 12.3% and 0.6%, respectively.
ArticleNumber 484
Author Chen, Shanshan
Liu, Wei
Li, Deng
Cui, Junyan
Kong, Yuan
Zhao, Yue
Zhang, Jiangwei
Domen, Kazunari
Chen, Yifan
Qi, Yu
Xie, Tengfeng
Li, Can
Zhang, Fuxiang
Author_xml – sequence: 1
  givenname: Yu
  surname: Qi
  fullname: Qi, Yu
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 2
  givenname: Jiangwei
  orcidid: 0000-0002-1221-3033
  surname: Zhang
  fullname: Zhang, Jiangwei
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 3
  givenname: Yuan
  surname: Kong
  fullname: Kong, Yuan
  organization: Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China
– sequence: 4
  givenname: Yue
  surname: Zhao
  fullname: Zhao, Yue
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 5
  givenname: Shanshan
  orcidid: 0000-0002-1801-8466
  surname: Chen
  fullname: Chen, Shanshan
  organization: Research Initiative for Supra-Materials (RISM), Shinshu University
– sequence: 6
  givenname: Deng
  surname: Li
  fullname: Li, Deng
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 7
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 8
  givenname: Yifan
  surname: Chen
  fullname: Chen, Yifan
  organization: College of Chemistry, Jilin University
– sequence: 9
  givenname: Tengfeng
  surname: Xie
  fullname: Xie, Tengfeng
  organization: College of Chemistry, Jilin University
– sequence: 10
  givenname: Junyan
  surname: Cui
  fullname: Cui, Junyan
  organization: School of Material Science and Engineering, Zhengzhou University
– sequence: 11
  givenname: Can
  orcidid: 0000-0002-9301-7850
  surname: Li
  fullname: Li, Can
  email: canli@dicp.ac.cn
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 12
  givenname: Kazunari
  orcidid: 0000-0001-7995-4832
  surname: Domen
  fullname: Domen, Kazunari
  organization: Research Initiative for Supra-Materials (RISM), Shinshu University, Office of University Professors, The University of Tokyo
– sequence: 13
  givenname: Fuxiang
  orcidid: 0000-0002-7859-0616
  surname: Zhang
  fullname: Zhang, Fuxiang
  email: fxzhang@dicp.ac.cn
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
BookMark eNp9kktv1DAUhS1UREvpH2BliQ2bgF9J7A0SVLRUqtQNZWvZzs3UI08cbE-r-fd4JkXQLuqNX9859r06b9HRFCdA6D0lnyjh8nMWVHR9QxhrmKzLpnuFThgRtKE940f_rY_RWc5rUgdXVArxBh3zlvSq7k_QeDslcw_BTyscR-yiM8WEXS4Zz3exxAHmmH2BAWcI4Iqv7A7HCY_GQYWq5pv_dSNwidjGmAvOMZiEH0yBhPMcfCnV-x16PZqQ4exxPkW3F99_nv9orm8ur86_Xjeulbw03KrRKtYxyU1npRjU2KkeRtX1PbNyMIMbuIVxdIQ6SxUTwjFgwnBouaOKn6KrxXeIZq3n5Dcm7XQ0Xh8OYlppk4p3AbQkHQgKrRVABeFDbSJlQI1wvbNEQPX6snjNW7uBwcFUkglPTJ_eTP5Or-K9lr1UUtFq8PHRIMXfW8hFb3x2EIKZIG6zrnUy1UrGRUU_PEPXcZum2qoD1cle8K5ScqFcijknGLXzxRQf9-_7oCnR-2zoJRu6ZkMfsqH3UvZM-reOF0V8EeUKTytI_371guoP35_N-A
CitedBy_id crossref_primary_10_1021_acs_jpcc_2c06834
crossref_primary_10_1007_s12274_024_6773_4
crossref_primary_10_1021_acs_langmuir_4c02294
crossref_primary_10_1039_D4EE01543F
crossref_primary_10_1021_jacs_3c12666
crossref_primary_10_1002_celc_202400600
crossref_primary_10_1007_s12274_022_5332_0
crossref_primary_10_1016_j_cej_2024_154262
crossref_primary_10_1016_j_heliyon_2023_e20675
crossref_primary_10_1016_j_fuel_2024_131847
crossref_primary_10_1002_anie_202214143
crossref_primary_10_1021_acssuschemeng_4c09246
crossref_primary_10_1002_adma_202210164
crossref_primary_10_1002_anie_202501141
crossref_primary_10_1016_j_cej_2024_149104
crossref_primary_10_1021_acscatal_4c07138
crossref_primary_10_1038_s41467_024_49168_2
crossref_primary_10_1016_j_seppur_2024_126407
crossref_primary_10_1039_D2SE01455F
crossref_primary_10_26599_NRE_2024_9120117
crossref_primary_10_1016_j_ijhydene_2024_11_435
crossref_primary_10_1021_jacs_3c12417
crossref_primary_10_1002_ange_202409693
crossref_primary_10_1016_j_jcis_2022_08_142
crossref_primary_10_1016_j_jallcom_2024_175609
crossref_primary_10_1039_D3TA06532D
crossref_primary_10_1007_s12598_024_03072_2
crossref_primary_10_1126_science_adg0164
crossref_primary_10_1002_advs_202300034
crossref_primary_10_1016_j_apsusc_2022_155847
crossref_primary_10_1016_j_nanoen_2022_107573
crossref_primary_10_1002_anie_202307246
crossref_primary_10_1002_ange_202418017
crossref_primary_10_1039_D4TA08318K
crossref_primary_10_1039_D3CY00331K
crossref_primary_10_1039_D3TA06783A
crossref_primary_10_1007_s12274_022_4758_8
crossref_primary_10_1007_s11426_025_2564_4
crossref_primary_10_1016_j_checat_2024_101233
crossref_primary_10_1126_sciadv_ade4589
crossref_primary_10_1016_j_apcatb_2023_122369
crossref_primary_10_1039_D3EE01522J
crossref_primary_10_1016_j_ijhydene_2023_12_171
crossref_primary_10_1002_sstr_202300123
crossref_primary_10_1126_sciadv_ado7373
crossref_primary_10_1016_j_apcatb_2024_123894
crossref_primary_10_1016_j_cej_2023_144395
crossref_primary_10_1016_j_ijhydene_2022_05_267
crossref_primary_10_1002_ange_202420327
crossref_primary_10_1016_j_matre_2023_100232
crossref_primary_10_1002_smll_202201556
crossref_primary_10_1016_j_ijhydene_2024_09_166
crossref_primary_10_1039_D3TA04353C
crossref_primary_10_1002_advs_202203832
crossref_primary_10_1007_s10562_023_04293_3
crossref_primary_10_1002_cssc_202301526
crossref_primary_10_1002_smll_202311841
crossref_primary_10_1016_j_ccr_2024_216245
crossref_primary_10_1007_s12209_024_00387_0
crossref_primary_10_1016_j_enrev_2024_100110
crossref_primary_10_1016_j_seppur_2023_125185
crossref_primary_10_1002_adfm_202306466
crossref_primary_10_1002_cphc_202300939
crossref_primary_10_1002_advs_202412326
crossref_primary_10_1016_j_jece_2024_115293
crossref_primary_10_1016_j_ijhydene_2022_11_221
crossref_primary_10_1016_j_nanoms_2024_05_010
crossref_primary_10_3390_mi15030387
crossref_primary_10_1016_j_apsusc_2024_160298
crossref_primary_10_1021_acs_energyfuels_4c03598
crossref_primary_10_3390_en15249578
crossref_primary_10_1002_anie_202409693
crossref_primary_10_1039_D3RA00775H
crossref_primary_10_1016_j_joule_2023_10_004
crossref_primary_10_1016_j_cej_2022_139468
crossref_primary_10_1016_j_cej_2025_161832
crossref_primary_10_1039_D3CS00145H
crossref_primary_10_1016_j_inoche_2023_111729
crossref_primary_10_1021_acscatal_4c02285
crossref_primary_10_1039_D4NR00097H
crossref_primary_10_1016_j_apcatb_2023_123433
crossref_primary_10_1007_s11356_023_25434_6
crossref_primary_10_1021_acscatal_4c07058
crossref_primary_10_1016_j_apsusc_2023_156402
crossref_primary_10_1016_j_ijhydene_2023_11_295
crossref_primary_10_1021_acscatal_4c02172
crossref_primary_10_1039_D3CY00018D
crossref_primary_10_1016_j_fuel_2024_131813
crossref_primary_10_1088_1361_6463_aca6f7
crossref_primary_10_1016_S1872_2067_24_60152_X
crossref_primary_10_3390_catal12101160
crossref_primary_10_1002_ange_202501141
crossref_primary_10_1021_acscatal_3c02504
crossref_primary_10_1039_D3NR05498E
crossref_primary_10_1002_smll_202306513
crossref_primary_10_1039_D3NA00182B
crossref_primary_10_1002_ange_202312306
crossref_primary_10_1039_D1CS01182K
crossref_primary_10_1016_j_cplett_2022_140087
crossref_primary_10_1039_D4EE04849K
crossref_primary_10_1002_aenm_202403067
crossref_primary_10_1021_jacs_2c13687
crossref_primary_10_1142_S1088424623501067
crossref_primary_10_1039_D4EE04959D
crossref_primary_10_1016_j_jechem_2024_07_006
crossref_primary_10_1002_adfm_202314973
crossref_primary_10_1021_acscatal_4c04444
crossref_primary_10_1007_s43979_023_00064_6
crossref_primary_10_1021_jacs_4c10962
crossref_primary_10_1016_j_physb_2024_415878
crossref_primary_10_1021_acsaem_3c00592
crossref_primary_10_1002_anie_202219076
crossref_primary_10_1016_j_cclet_2025_111062
crossref_primary_10_3390_nano15050331
crossref_primary_10_1021_acs_jpclett_3c03268
crossref_primary_10_1016_j_jcis_2025_03_002
crossref_primary_10_1021_acsaem_5c00215
crossref_primary_10_1002_smll_202408680
crossref_primary_10_1016_j_jcis_2024_05_218
crossref_primary_10_1016_j_seppur_2024_128680
crossref_primary_10_1016_j_fuel_2023_128368
crossref_primary_10_1039_D4CP03976A
crossref_primary_10_1016_j_jcat_2023_115187
crossref_primary_10_1002_adfm_202419705
crossref_primary_10_1038_s41467_025_56180_7
crossref_primary_10_1016_j_apcatb_2024_124018
crossref_primary_10_3390_ma17040936
crossref_primary_10_1016_j_ijhydene_2025_03_043
crossref_primary_10_1039_D2NA00915C
crossref_primary_10_1016_j_apcatb_2022_121865
crossref_primary_10_1016_j_joule_2022_06_017
crossref_primary_10_1039_D3CP02066E
crossref_primary_10_1016_j_jclepro_2024_141709
crossref_primary_10_1039_D2CP05427B
crossref_primary_10_1007_s10854_022_09726_0
crossref_primary_10_1039_D2DT01205G
crossref_primary_10_1016_j_cej_2022_139382
crossref_primary_10_1002_anie_202420327
crossref_primary_10_1021_jacs_4c11827
crossref_primary_10_1016_j_nxener_2023_100056
crossref_primary_10_1016_j_apmate_2022_100077
crossref_primary_10_1002_smll_202404303
crossref_primary_10_1002_ange_202219076
crossref_primary_10_1002_aenm_202402395
crossref_primary_10_3390_catal13020373
crossref_primary_10_1016_j_apcatb_2024_124207
crossref_primary_10_3389_fsci_2024_1411644
crossref_primary_10_1016_j_apcatb_2024_124209
crossref_primary_10_1002_cssc_202401338
crossref_primary_10_1021_acsmaterialslett_4c00636
crossref_primary_10_1039_D4SC05065G
crossref_primary_10_1002_ange_202307246
crossref_primary_10_1016_j_apcatb_2024_124564
crossref_primary_10_1016_j_colsurfa_2022_130825
crossref_primary_10_1016_j_ijhydene_2024_10_342
crossref_primary_10_1021_acs_inorgchem_3c02622
crossref_primary_10_3390_catal12101123
crossref_primary_10_1016_j_jcis_2022_11_142
crossref_primary_10_1002_anie_202418017
crossref_primary_10_1002_adfm_202401122
crossref_primary_10_1002_anie_202312306
crossref_primary_10_1002_ange_202420188
crossref_primary_10_1039_D4QI00989D
crossref_primary_10_1039_D4TA07592G
crossref_primary_10_1016_j_seppur_2025_132646
crossref_primary_10_1002_aenm_202401964
crossref_primary_10_1016_j_apcatb_2023_122679
crossref_primary_10_1039_D2TA01758J
crossref_primary_10_1002_adfm_202416091
crossref_primary_10_1016_j_jechem_2024_12_023
crossref_primary_10_1039_D3QI00895A
crossref_primary_10_1002_adma_202403464
crossref_primary_10_1021_acsomega_2c03244
crossref_primary_10_1021_acs_jpcc_4c04463
crossref_primary_10_1007_s42823_024_00794_2
crossref_primary_10_1016_j_cej_2024_155179
crossref_primary_10_1039_D4NJ02232G
crossref_primary_10_1016_j_cej_2022_137301
crossref_primary_10_1021_acsnano_4c08309
crossref_primary_10_1002_aesr_202300130
crossref_primary_10_1002_adfm_202409566
crossref_primary_10_1016_j_apcata_2023_119024
crossref_primary_10_1016_S1872_2067_24_60082_3
crossref_primary_10_1002_cey2_413
crossref_primary_10_1016_j_cej_2024_149721
crossref_primary_10_1016_j_ijhydene_2024_09_309
crossref_primary_10_1016_j_inoche_2024_113845
crossref_primary_10_1002_adfm_202410548
crossref_primary_10_1039_D4EY00007B
crossref_primary_10_1016_j_apcatb_2025_125162
crossref_primary_10_1021_acscatal_4c04927
crossref_primary_10_1002_smll_202311441
crossref_primary_10_1021_acscatal_2c05014
crossref_primary_10_1038_s41467_024_51183_2
crossref_primary_10_1016_j_cej_2023_142489
crossref_primary_10_1016_j_ijhydene_2023_05_047
crossref_primary_10_1039_D3CE00953J
crossref_primary_10_1038_s41467_023_43838_3
crossref_primary_10_1016_j_cej_2024_152330
crossref_primary_10_1002_adma_202400764
crossref_primary_10_1002_advs_202205726
crossref_primary_10_1002_ange_202214143
crossref_primary_10_3390_ma17010271
crossref_primary_10_1016_j_cej_2023_147372
crossref_primary_10_1016_S1872_2067_24_60143_9
crossref_primary_10_1016_j_jiec_2024_07_052
crossref_primary_10_1038_s41467_024_44706_4
crossref_primary_10_1021_acsanm_4c04156
crossref_primary_10_1002_anie_202415975
crossref_primary_10_1002_anie_202422940
crossref_primary_10_1002_aenm_202203827
crossref_primary_10_1016_j_jallcom_2023_170769
crossref_primary_10_1016_j_jcis_2024_10_036
crossref_primary_10_1016_j_apcatb_2024_124527
crossref_primary_10_1016_j_jallcom_2022_167193
crossref_primary_10_1002_adfm_202313706
crossref_primary_10_1016_j_apcatb_2023_122865
crossref_primary_10_1039_D4MH00515E
crossref_primary_10_1016_j_jcis_2024_04_166
crossref_primary_10_1039_D3TA02021E
crossref_primary_10_1016_S1872_2067_24_60178_6
crossref_primary_10_1039_D3QI00914A
crossref_primary_10_1021_acsmaterialslett_4c00715
crossref_primary_10_1073_pnas_2217148120
crossref_primary_10_1016_j_nanoen_2023_108993
crossref_primary_10_1021_jacs_2c07501
crossref_primary_10_1002_anie_202416039
crossref_primary_10_20517_ss_2024_59
crossref_primary_10_1007_s40820_024_01382_9
crossref_primary_10_1016_j_jechem_2024_09_018
crossref_primary_10_1016_S1872_2067_23_64534_6
crossref_primary_10_1021_acscatal_4c05717
crossref_primary_10_1002_smll_202304050
crossref_primary_10_1007_s12274_022_4704_9
crossref_primary_10_1038_s41467_024_53426_8
crossref_primary_10_1016_j_scib_2022_11_018
crossref_primary_10_1016_j_jelechem_2023_117520
crossref_primary_10_1016_j_apcata_2023_119035
crossref_primary_10_1016_j_jcat_2024_115668
crossref_primary_10_1016_j_seppur_2022_121706
crossref_primary_10_1016_j_joule_2023_12_005
crossref_primary_10_1038_s41467_023_36338_x
crossref_primary_10_1016_j_jallcom_2024_176490
crossref_primary_10_1002_adma_202304669
crossref_primary_10_1021_acsaem_4c01147
crossref_primary_10_1039_D4TC04703F
crossref_primary_10_1021_acscatal_2c00972
crossref_primary_10_1002_cphc_202400692
crossref_primary_10_1016_j_nxmate_2024_100343
crossref_primary_10_1002_anie_202420188
crossref_primary_10_1021_acs_jpclett_3c00603
crossref_primary_10_1002_aenm_202401285
crossref_primary_10_1021_acscatal_2c06278
crossref_primary_10_1002_smtd_202301120
crossref_primary_10_1002_cctc_202201386
crossref_primary_10_1016_j_jechem_2023_08_038
crossref_primary_10_1088_1402_4896_ace391
crossref_primary_10_1016_j_seppur_2024_129254
crossref_primary_10_1016_j_jcis_2025_01_242
crossref_primary_10_1016_j_scib_2024_08_014
crossref_primary_10_1002_ange_202415975
crossref_primary_10_1016_j_chemosphere_2024_141911
crossref_primary_10_1021_acsami_4c07117
crossref_primary_10_1002_adma_202300064
crossref_primary_10_1007_s13399_022_03270_x
crossref_primary_10_1002_ece2_11
crossref_primary_10_1002_adfm_202402676
crossref_primary_10_1002_ange_202422940
crossref_primary_10_1007_s11705_024_2398_0
crossref_primary_10_1016_j_nanoen_2024_109495
crossref_primary_10_1021_jacs_4c18032
crossref_primary_10_1016_j_cej_2023_143898
crossref_primary_10_1016_j_jphotochem_2024_115834
crossref_primary_10_1016_j_cej_2023_147338
crossref_primary_10_1016_j_jcis_2025_01_014
crossref_primary_10_1002_cphc_202300216
crossref_primary_10_1016_j_apsusc_2024_160322
crossref_primary_10_1021_jacs_4c09219
crossref_primary_10_1016_j_mcat_2022_112429
crossref_primary_10_1021_acsmaterialslett_4c01333
crossref_primary_10_1063_5_0130217
crossref_primary_10_1155_2022_4282485
crossref_primary_10_1016_j_cej_2024_154833
crossref_primary_10_1016_j_jcis_2024_07_203
crossref_primary_10_1016_j_seppur_2024_127866
crossref_primary_10_1002_ange_202416039
crossref_primary_10_1021_acs_chemmater_3c02929
Cites_doi 10.1039/c2ee21801a
10.1016/j.joule.2018.07.029
10.1021/ja511739y
10.1038/s41929-020-00525-6
10.1038/s41929-020-0428-y
10.1002/anie.202001438
10.1002/aenm.201501754
10.1038/s41586-020-2278-9
10.1021/ja203296z
10.1039/c1ee01812d
10.1023/A:1019034728816
10.1038/440295a
10.1021/acs.chemrev.7b00286
10.1126/science.1246913
10.1038/s41929-019-0242-6
10.1246/cl.2004.1348
10.1038/ncomms2401
10.1038/nmat4589
10.1126/science.aaf1525
10.1021/cr1001645
10.1002/adfm.201802685
10.1021/ja1009025
10.1039/B800489G
10.1038/s41565-018-0251-7
10.1021/ja992541y
10.1021/ar00051a007
10.1038/s41560-020-0678-6
10.1039/c3ee40831k
10.1126/science.1137014
10.1038/natrevmats.2017.50
10.1021/acsenergylett.9b00153
10.1039/C5EE01434D
10.1002/adma.201806938
10.1021/acs.chemrev.9b00201
10.1002/anie.201502686
10.1073/pnas.1913403117
10.1038/238037a0
10.1038/s41929-018-0077-6
10.1088/0034-4885/53/10/001
10.1021/ar300227e
10.1038/ncomms3195
10.1016/j.mattod.2018.04.009
10.1016/0079-6816(91)90007-Q
10.1038/nmat3151
10.1021/la100722w
10.1038/s41560-018-0308-8
10.1021/acscentsci.5b00402
10.1038/s41570-018-0024-8
10.1016/j.jcat.2008.07.017
10.1021/jp110025x
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-28146-6
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection (Hollins)
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic



CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_806e41e5b4e1403d81412e1a4c7cb04e
PMC8789891
10_1038_s41467_022_28146_6
GrantInformation_xml – fundername: National Key R&D Program of China (2017YFA0204904)
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 201902156; 21925206; 21633009
  funderid: https://doi.org/10.13039/501100001809
– fundername: Dalian Science and Technology Innovation Fund (2020JJ26GX032)
– fundername: the National Key R&D Program of China (2020YFA0406102), the DICP Foundation of Innovative Research (DICP I201927)
– fundername: ;
– fundername: ;
  grantid: 201902156; 21925206; 21633009
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c583t-3b9fb926283a6b84d9f697ef96772b8dadcd3beffc01cb19244c2e24a3e53c193
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 00:47:11 EDT 2025
Thu Aug 21 13:46:49 EDT 2025
Fri Jul 11 11:01:24 EDT 2025
Wed Aug 13 11:26:25 EDT 2025
Tue Jul 01 04:17:43 EDT 2025
Thu Apr 24 22:54:03 EDT 2025
Fri Feb 21 02:38:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-3b9fb926283a6b84d9f697ef96772b8dadcd3beffc01cb19244c2e24a3e53c193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1801-8466
0000-0002-7859-0616
0000-0002-9301-7850
0000-0001-7995-4832
0000-0002-1221-3033
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-28146-6
PMID 35079003
PQID 2622687436
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_806e41e5b4e1403d81412e1a4c7cb04e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8789891
proquest_miscellaneous_2622958234
proquest_journals_2622687436
crossref_citationtrail_10_1038_s41467_022_28146_6
crossref_primary_10_1038_s41467_022_28146_6
springer_journals_10_1038_s41467_022_28146_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-25
PublicationDateYYYYMMDD 2022-01-25
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Chen (CR4) 2010; 110
Sasaki (CR35) 2008; 259
Ma (CR38) 2012; 5
Cheng (CR47) 2019; 4
Kim (CR50) 2016; 6
Kim, Lee (CR23) 2019; 31
Fabian (CR14) 2015; 8
Lewis (CR2) 2007; 315
Wang (CR28) 2020; 5
Abdi (CR25) 2013; 4
Resasco (CR27) 2016; 2
Norsköv (CR45) 1991; 38
Kornienko (CR10) 2018; 13
Li (CR32) 2013; 4
Kato (CR29) 2004; 33
Zhang (CR43) 2020; 3
Linic, Christopher, Ingram (CR5) 2011; 10
Qi (CR16) 2018; 2
Kong (CR12) 2018; 21
Wang (CR41) 2018; 28
Bard, Fox (CR13) 1995; 28
Tabata (CR37) 2010; 26
Takata (CR19) 2020; 581
Luo (CR24) 2011; 4
Zhang (CR46) 2016; 352
Pan (CR31) 2018; 1
Fujishima, Honda (CR1) 1972; 238
Maeda (CR17) 2006; 440
Hisatomi, Domen (CR8) 2019; 2
Chu (CR42) 2020; 117
Maeda (CR49) 2010; 132
Pinaud (CR6) 2013; 6
Wang (CR15) 2016; 15
Chen, Takata, Domen (CR18) 2017; 2
Iwase (CR30) 2011; 133
Kudo, Miseki (CR3) 2009; 38
Kim, Choi (CR22) 2014; 343
Chen, Manser, Kamat (CR26) 2015; 137
Li, Tung, Wu (CR7) 2018; 2
Maeda, Abe, Domen (CR36) 2011; 115
Wang, Domen (CR11) 2020; 120
Chen (CR48) 2015; 54
Kudo (CR20) 1998; 53
Yang (CR33) 2013; 46
Norsköv (CR44) 1990; 53
Li (CR40) 2019; 4
Wang (CR34) 2018; 118
Kudo, Omori, Kato (CR21) 1999; 121
Cestellos-Blanco (CR9) 2020; 3
Zhao (CR39) 2020; 59
J Yang (28146_CR33) 2013; 46
W Cheng (28146_CR47) 2019; 4
X Li (28146_CR7) 2018; 2
B Zhang (28146_CR43) 2020; 3
X Chen (28146_CR4) 2010; 110
SSK Ma (28146_CR38) 2012; 5
Q Wang (28146_CR28) 2020; 5
DM Fabian (28146_CR14) 2015; 8
K Maeda (28146_CR17) 2006; 440
A Fujishima (28146_CR1) 1972; 238
Y Zhao (28146_CR39) 2020; 59
S Chen (28146_CR48) 2015; 54
B Zhang (28146_CR46) 2016; 352
S Wang (28146_CR41) 2018; 28
T Hisatomi (28146_CR8) 2019; 2
YS Chen (28146_CR26) 2015; 137
W Luo (28146_CR24) 2011; 4
K Maeda (28146_CR49) 2010; 132
A Kudo (28146_CR20) 1998; 53
R Li (28146_CR32) 2013; 4
A Iwase (28146_CR30) 2011; 133
C Chu (28146_CR42) 2020; 117
FF Abdi (28146_CR25) 2013; 4
JK Norsköv (28146_CR44) 1990; 53
A Kudo (28146_CR21) 1999; 121
Y Wang (28146_CR34) 2018; 118
JK Norsköv (28146_CR45) 1991; 38
S Cestellos-Blanco (28146_CR9) 2020; 3
N Kornienko (28146_CR10) 2018; 13
TW Kim (28146_CR22) 2014; 343
Y Sasaki (28146_CR35) 2008; 259
S Linic (28146_CR5) 2011; 10
Q Wang (28146_CR15) 2016; 15
D Li (28146_CR40) 2019; 4
A Kudo (28146_CR3) 2009; 38
Q Wang (28146_CR11) 2020; 120
AJ Bard (28146_CR13) 1995; 28
J Resasco (28146_CR27) 2016; 2
M Tabata (28146_CR37) 2010; 26
S Chen (28146_CR18) 2017; 2
NS Lewis (28146_CR2) 2007; 315
H Kato (28146_CR29) 2004; 33
K Maeda (28146_CR36) 2011; 115
BA Pinaud (28146_CR6) 2013; 6
C Kim (28146_CR50) 2016; 6
D Kong (28146_CR12) 2018; 21
JH Kim (28146_CR23) 2019; 31
L Pan (28146_CR31) 2018; 1
Y Qi (28146_CR16) 2018; 2
T Takata (28146_CR19) 2020; 581
References_xml – volume: 5
  start-page: 8390
  year: 2012
  end-page: 8397
  ident: CR38
  article-title: Visible-light-driven nonsacrificial water oxidation over tungsten trioxide powder modified with two different cocatalysts
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21801a
– volume: 2
  start-page: 2393
  year: 2018
  end-page: 2402
  ident: CR16
  article-title: Redox-based visible-light-driven Z-scheme overall water splitting with apparent quantum efficiency exceeding 10%
  publication-title: Joule
  doi: 10.1016/j.joule.2018.07.029
– volume: 137
  start-page: 974
  year: 2015
  end-page: 981
  ident: CR26
  article-title: All solution-processed lead halide perovskite-BiVO tandem assembly for photolytic solar fuels production
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511739y
– volume: 3
  start-page: 985
  year: 2020
  end-page: 992
  ident: CR43
  article-title: High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00525-6
– volume: 3
  start-page: 245
  year: 2020
  end-page: 255
  ident: CR9
  article-title: Photosynthetic semiconductor biohybrids for solar-driven biocatalysis
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-0428-y
– volume: 59
  start-page: 9653
  year: 2020
  end-page: 9658
  ident: CR39
  article-title: A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202001438
– volume: 6
  start-page: 1501754
  year: 2016
  ident: CR50
  article-title: (040)-Crystal facet engineering of BiVO plate photoanodes for solar fuel production
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501754
– volume: 581
  start-page: 411
  year: 2020
  end-page: 414
  ident: CR19
  article-title: Photocatalytic water splitting with a quantum efficiency of almost unity
  publication-title: Nature
  doi: 10.1038/s41586-020-2278-9
– volume: 133
  start-page: 11054
  year: 2011
  end-page: 11057
  ident: CR30
  article-title: Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja203296z
– volume: 4
  start-page: 4046
  year: 2011
  end-page: 4051
  ident: CR24
  article-title: Solar hydrogen generation from seawater with a modified BiVO photoanode
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01812d
– volume: 53
  start-page: 229
  year: 1998
  end-page: 230
  ident: CR20
  article-title: Photocatalytic O evolution under visible light irradiation on BiVO in aqueous AgNO solution
  publication-title: Catal. Lett
  doi: 10.1023/A:1019034728816
– volume: 440
  start-page: 295
  year: 2006
  ident: CR17
  article-title: Photocatalyst releasing hydrogen from water
  publication-title: Nature
  doi: 10.1038/440295a
– volume: 118
  start-page: 5201
  year: 2018
  end-page: 5241
  ident: CR34
  article-title: Mimicking natural photosynthesis: solar to renewable H fuel synthesis by Z-scheme water splitting systems
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00286
– volume: 343
  start-page: 990
  year: 2014
  end-page: 994
  ident: CR22
  article-title: Nanoporous BiVO photoanodes with dual-layer oxygen evolution catalysts for solar water splitting
  publication-title: Science
  doi: 10.1126/science.1246913
– volume: 2
  start-page: 387
  year: 2019
  end-page: 399
  ident: CR8
  article-title: Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0242-6
– volume: 33
  start-page: 1348
  year: 2004
  end-page: 1349
  ident: CR29
  article-title: Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H and O under visible light irradiation
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2004.1348
– volume: 4
  year: 2013
  ident: CR32
  article-title: Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2401
– volume: 15
  start-page: 611
  year: 2016
  end-page: 615
  ident: CR15
  article-title: Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4589
– volume: 352
  start-page: 333
  year: 2016
  end-page: 337
  ident: CR46
  article-title: Homogeneously dispersed multimetal oxygen-evolving catalysts
  publication-title: Science
  doi: 10.1126/science.aaf1525
– volume: 110
  start-page: 6503
  year: 2010
  end-page: 6570
  ident: CR4
  article-title: Semiconductor-based photocatalytic hydrogen generation
  publication-title: Chem. Rev.
  doi: 10.1021/cr1001645
– volume: 28
  start-page: 1802685
  year: 2018
  ident: CR41
  article-title: New iron-cobalt oxide catalysts promoting BiVO films for photoelectrochemical water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802685
– volume: 132
  start-page: 5858
  year: 2010
  end-page: 5868
  ident: CR49
  article-title: Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1009025
– volume: 38
  start-page: 253
  year: 2009
  end-page: 278
  ident: CR3
  article-title: Heterogeneous photocatalyst materials for water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B800489G
– volume: 13
  start-page: 890
  year: 2018
  end-page: 899
  ident: CR10
  article-title: Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis
  publication-title: Nature Nanotech
  doi: 10.1038/s41565-018-0251-7
– volume: 121
  start-page: 11459
  year: 1999
  end-page: 11467
  ident: CR21
  article-title: A first aqueous process for preparation of crystal form-controlled and highly crystalline BiVO powder from layered vanadates at room temperature and its photocatalytic and photophysical properties
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja992541y
– volume: 28
  start-page: 141
  year: 1995
  end-page: 145
  ident: CR13
  article-title: Artificial photosynthesis: solar splitting of water to hydrogen and oxygen
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00051a007
– volume: 5
  start-page: 703
  year: 2020
  end-page: 710
  ident: CR28
  article-title: Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0678-6
– volume: 6
  start-page: 1983
  year: 2013
  end-page: 2002
  ident: CR6
  article-title: Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40831k
– volume: 315
  start-page: 798
  year: 2007
  end-page: 801
  ident: CR2
  article-title: Toward cost-effective solar energy use
  publication-title: Science
  doi: 10.1126/science.1137014
– volume: 2
  start-page: 17050
  year: 2017
  ident: CR18
  article-title: Particulate photocatalysts for overall water splitting
  publication-title: Nat. Rev. Mater
  doi: 10.1038/natrevmats.2017.50
– volume: 4
  start-page: 825
  year: 2019
  end-page: 831
  ident: CR40
  article-title: Crystallographic-orientation-dependent charge separation of BiVO for solar water oxidation
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00153
– volume: 8
  start-page: 2825
  year: 2015
  end-page: 2850
  ident: CR14
  article-title: Particle suspension reactors and materials for solar-driven water splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01434D
– volume: 31
  start-page: 1806938
  year: 2019
  ident: CR23
  article-title: Elaborately modified BiVO photoanodes for solar water splitting
  publication-title: Adv. Mater
  doi: 10.1002/adma.201806938
– volume: 120
  start-page: 919
  year: 2020
  end-page: 985
  ident: CR11
  article-title: Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00201
– volume: 54
  start-page: 8498
  year: 2015
  end-page: 8501
  ident: CR48
  article-title: Efficient visible-light-driven Z-scheme overall water splitting using a MgTa O N /TaON heterostructure photocatalyst for H evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201502686
– volume: 117
  start-page: 6376
  year: 2020
  end-page: 6382
  ident: CR42
  article-title: Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H O production
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1913403117
– volume: 238
  start-page: 37
  year: 1972
  end-page: 38
  ident: CR1
  article-title: Electrochemical photolysis of water at a semiconductor electrode
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 1
  start-page: 412
  year: 2018
  end-page: 420
  ident: CR31
  article-title: Boosting the performance of Cu O photocathodes for unassisted solar water splitting devices
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0077-6
– volume: 53
  start-page: 1253
  year: 1990
  end-page: 1295
  ident: CR44
  article-title: Chemisorption on metal-surfaces
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/53/10/001
– volume: 46
  start-page: 1900
  year: 2013
  end-page: 1909
  ident: CR33
  article-title: Roles of cocatalysts in photocatalysis and photoelectrocatalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300227e
– volume: 4
  year: 2013
  ident: CR25
  article-title: Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3195
– volume: 21
  start-page: 897
  year: 2018
  end-page: 924
  ident: CR12
  article-title: Recent advances in visible light-driven water oxidation and reduction in suspension systems
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.04.009
– volume: 38
  start-page: 103
  year: 1991
  end-page: 144
  ident: CR45
  article-title: Electronic factors in catalysis
  publication-title: Prog. Surf. Sci
  doi: 10.1016/0079-6816(91)90007-Q
– volume: 10
  start-page: 911
  year: 2011
  end-page: 921
  ident: CR5
  article-title: Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3151
– volume: 26
  start-page: 9161
  year: 2010
  end-page: 9165
  ident: CR37
  article-title: Modified Ta N powder as a photocatalyst for O evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light
  publication-title: Langmuir
  doi: 10.1021/la100722w
– volume: 4
  start-page: 115
  year: 2019
  end-page: 122
  ident: CR47
  article-title: Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0308-8
– volume: 2
  start-page: 80
  year: 2016
  end-page: 88
  ident: CR27
  article-title: TiO /BiVO nanowire heterostructure photoanodes based on Type II band alignment
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.5b00402
– volume: 2
  start-page: 160
  year: 2018
  end-page: 173
  ident: CR7
  article-title: Semiconducting quantum dots for artificial photosynthesis
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0024-8
– volume: 259
  start-page: 133
  year: 2008
  end-page: 137
  ident: CR35
  article-title: The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe /Fe electron mediator on overall water splitting under visible light irradiation
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2008.07.017
– volume: 115
  start-page: 3057
  year: 2011
  end-page: 3064
  ident: CR36
  article-title: Role and function of ruthenium species as promoters with TaON-based photocatalysts for oxygen evolution in two-step water splitting under visible light
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp110025x
– volume: 1
  start-page: 412
  year: 2018
  ident: 28146_CR31
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0077-6
– volume: 2
  start-page: 160
  year: 2018
  ident: 28146_CR7
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0024-8
– volume: 2
  start-page: 80
  year: 2016
  ident: 28146_CR27
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.5b00402
– volume: 15
  start-page: 611
  year: 2016
  ident: 28146_CR15
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4589
– volume: 13
  start-page: 890
  year: 2018
  ident: 28146_CR10
  publication-title: Nature Nanotech
  doi: 10.1038/s41565-018-0251-7
– volume: 6
  start-page: 1983
  year: 2013
  ident: 28146_CR6
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40831k
– volume: 3
  start-page: 985
  year: 2020
  ident: 28146_CR43
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00525-6
– volume: 440
  start-page: 295
  year: 2006
  ident: 28146_CR17
  publication-title: Nature
  doi: 10.1038/440295a
– volume: 33
  start-page: 1348
  year: 2004
  ident: 28146_CR29
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2004.1348
– volume: 5
  start-page: 8390
  year: 2012
  ident: 28146_CR38
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21801a
– volume: 5
  start-page: 703
  year: 2020
  ident: 28146_CR28
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0678-6
– volume: 352
  start-page: 333
  year: 2016
  ident: 28146_CR46
  publication-title: Science
  doi: 10.1126/science.aaf1525
– volume: 121
  start-page: 11459
  year: 1999
  ident: 28146_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja992541y
– volume: 53
  start-page: 229
  year: 1998
  ident: 28146_CR20
  publication-title: Catal. Lett
  doi: 10.1023/A:1019034728816
– volume: 120
  start-page: 919
  year: 2020
  ident: 28146_CR11
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00201
– volume: 4
  start-page: 825
  year: 2019
  ident: 28146_CR40
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00153
– volume: 3
  start-page: 245
  year: 2020
  ident: 28146_CR9
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-0428-y
– volume: 133
  start-page: 11054
  year: 2011
  ident: 28146_CR30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja203296z
– volume: 28
  start-page: 1802685
  year: 2018
  ident: 28146_CR41
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802685
– volume: 118
  start-page: 5201
  year: 2018
  ident: 28146_CR34
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00286
– volume: 28
  start-page: 141
  year: 1995
  ident: 28146_CR13
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00051a007
– volume: 4
  year: 2013
  ident: 28146_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3195
– volume: 8
  start-page: 2825
  year: 2015
  ident: 28146_CR14
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01434D
– volume: 110
  start-page: 6503
  year: 2010
  ident: 28146_CR4
  publication-title: Chem. Rev.
  doi: 10.1021/cr1001645
– volume: 38
  start-page: 253
  year: 2009
  ident: 28146_CR3
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B800489G
– volume: 54
  start-page: 8498
  year: 2015
  ident: 28146_CR48
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201502686
– volume: 581
  start-page: 411
  year: 2020
  ident: 28146_CR19
  publication-title: Nature
  doi: 10.1038/s41586-020-2278-9
– volume: 31
  start-page: 1806938
  year: 2019
  ident: 28146_CR23
  publication-title: Adv. Mater
  doi: 10.1002/adma.201806938
– volume: 115
  start-page: 3057
  year: 2011
  ident: 28146_CR36
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp110025x
– volume: 26
  start-page: 9161
  year: 2010
  ident: 28146_CR37
  publication-title: Langmuir
  doi: 10.1021/la100722w
– volume: 259
  start-page: 133
  year: 2008
  ident: 28146_CR35
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2008.07.017
– volume: 2
  start-page: 2393
  year: 2018
  ident: 28146_CR16
  publication-title: Joule
  doi: 10.1016/j.joule.2018.07.029
– volume: 21
  start-page: 897
  year: 2018
  ident: 28146_CR12
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.04.009
– volume: 6
  start-page: 1501754
  year: 2016
  ident: 28146_CR50
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501754
– volume: 238
  start-page: 37
  year: 1972
  ident: 28146_CR1
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 4
  start-page: 4046
  year: 2011
  ident: 28146_CR24
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01812d
– volume: 2
  start-page: 17050
  year: 2017
  ident: 28146_CR18
  publication-title: Nat. Rev. Mater
  doi: 10.1038/natrevmats.2017.50
– volume: 4
  year: 2013
  ident: 28146_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2401
– volume: 53
  start-page: 1253
  year: 1990
  ident: 28146_CR44
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/53/10/001
– volume: 343
  start-page: 990
  year: 2014
  ident: 28146_CR22
  publication-title: Science
  doi: 10.1126/science.1246913
– volume: 117
  start-page: 6376
  year: 2020
  ident: 28146_CR42
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1913403117
– volume: 59
  start-page: 9653
  year: 2020
  ident: 28146_CR39
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202001438
– volume: 132
  start-page: 5858
  year: 2010
  ident: 28146_CR49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1009025
– volume: 10
  start-page: 911
  year: 2011
  ident: 28146_CR5
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3151
– volume: 4
  start-page: 115
  year: 2019
  ident: 28146_CR47
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0308-8
– volume: 137
  start-page: 974
  year: 2015
  ident: 28146_CR26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511739y
– volume: 2
  start-page: 387
  year: 2019
  ident: 28146_CR8
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0242-6
– volume: 46
  start-page: 1900
  year: 2013
  ident: 28146_CR33
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300227e
– volume: 38
  start-page: 103
  year: 1991
  ident: 28146_CR45
  publication-title: Prog. Surf. Sci
  doi: 10.1016/0079-6816(91)90007-Q
– volume: 315
  start-page: 798
  year: 2007
  ident: 28146_CR2
  publication-title: Science
  doi: 10.1126/science.1137014
SSID ssj0000391844
Score 2.7093506
Snippet Bismuth vanadate (BiVO 4 ) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient...
Bismuth vanadate (BiVO4) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient...
Artificial photosynthesis offers an integrated means to convert light to fuel, but efficiencies are often low. Here, authors report a Z-scheme system utilizing...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 484
SubjectTerms 119/118
147/135
147/143
639/638/224/909/4101/4050
639/638/439/890
639/925/357
Bismuth oxides
Catalysis
Catalysts
Ferricyanide
Humanities and Social Sciences
multidisciplinary
Nanocomposites
Nanoparticles
Oxidation
Photocatalysts
Photosynthesis
Quantum efficiency
Science
Science (multidisciplinary)
Separation
Splitting
Surface charge
Synergistic effect
Vanadate
Vanadates
Water splitting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyIn_hsKxG86dLNxybZoy2WIqgXn_QW8jGhhbJbulvk_fdOsvue3YJ68bqZkGxmMvklmfyGkHfJ69Aw01ZaubqSzqvKBxUr8LrxQRgIKT8U_vJVna3l5_Pm_E6qrxwTNtEDTwN3ZGoFkkHjJWRquWiYZByYk0EHX0vI3hfXvDubqeKDRYtbFzm_kqmFORpk8Qk5eJ3nY69KLVaiQti_QJn3YyTvXZSW9ef0CXk8A0f6cerwU_IAumfk4ZRKcvOcpHWXEwnlx-W0TxTdXD6X2QzjQK8v-rGPUMKzINKhZL5BJ3e1oX1HkwuAQljn-PLHN0nHniLwHkY65E0v_YlY9IYOCFVLgPQLsj799P3krJpzKFShMWKshG-Tz5yARjjljYxtUq2G1CqE1d5EF0MUHlIKNQs-78Zk4MClE9CIgOjuJdnr-g5eEeqg5d4lRCwREGQJozWLYDzKed4EvSJsO542zATjOc_FlS0X3cLYSQcWdWCLDqxakfe7OtcTvcZfpY-zmnaSmRq7fECDsbPB2H8ZzIocbJVs5_k6WBwgrgyiKWzj7a4YZ1q-PnEd9LeTTNsYLuSK6IVxLDq0LOkuLwpnt9E5TydbkQ9bM_rd-J9_-PX_-OF98ohns69ZxZsDsjfe3MIhIqnRvymT5hc3DRvF
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96IvgifmK9UyL4puHaJk3SJ_HE4xDUF1f2LeRj4h0c7brtIfvfXybt7rEH3mszoWlnMvllMvkNIe-jU76pdMuUtCUT1knmvAwMnGqc5xp8xIvC33_Is4X4tmyWc8BtmNMqtz4xO-rQe4yRH9cyAQWd1jv5afWXYdUoPF2dS2jcJw-QugxTutRS7WIsyH6uhZjvypRcHw8iewZMYa8x-MXk3nqUafv3sObtTMlbx6V5FTp9Qh7P8JF-nvT9lNyD7hl5OBWU3DwncdFhOSG8Yk77SJOzw-jMZhgHujrvxz5ATtKCQIdc_ya5ussN7TsarYcklPqcXPz-KejY0wS_h5EOuPWl_xIiXdMhAdacJv2CLE6__vpyxuZKCsw3mo-MuzY6ZAbU3EqnRWijbBXEViZw7XSwwQfuIEZfVt7hnkz4GmphOTTcJ4z3khx0fQevCLXQ1s7GhFsCJKjFtVJVAO2SnKsbrwpSbf-n8TPNOFa7uDT5uJtrM-nAJB2YrAMjC_Jh12c1kWzcKX2CatpJIkF2ftCv_5h5vhldShAVNE4AMhKG1LWqobLCK-9KAQU52irZzLN2MDc2VpB3u-Y03_AQxXbQX00yydJqLgqi9oxjb0D7Ld3FeWbu1gqrdVYF-bg1o5uX__-DX9891kPyqEaDLitWN0fkYFxfwZuElEb3Nk-HaygKE8Q
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEA_riuBF_MTqKhG8abFN0iQ9ug-XRVAvPtlbyMfEXVja5bXL8v57M2nfky4qeG1mSJqZJL8kk98Q8jY65Ztat6WStiqFdbJ0XoYSnGqc5xp8xIfCX77K07X4fNacHRC2ewuTg_YzpWWepnfRYR8GkYc0xp4zPLUq5R1yF6nb0atXcrU_V0HGcy3E_D6m4voPqos1KFP1L_Dl7ejIW1ekeeU5eUgezJCRfpwa-YgcQPeY3JuSSG6fkLjuMIUQPiunfaRpgsMTme0wDvTqvB_7ADkwCwIdcs6bNL1dbmnf0Wg9JKGkc3zx45ugY08T5B5GOuB2l94kFLqhQwKpOTT6KVmffPq-Oi3n7AmlbzQfS-7a6JANUHMrnRahjbJVEFuZALXTwQYfuIMYfVV7h_sw4RkwYTk03Cdc94wcdn0Hzwm10DJnY8IqARK84lqpOoB2Sc6xxquC1Lv-NH6mFscMF5cmX3FzbSYbmGQDk21gZEHe7XWuJmKNf0ofo5n2kkiKnT_0m59mdhKjKwmihsYJQBbCkFRrBrUVXnlXCSjI0c7IZh6pg0kdxGRyJJ7qeLMvTmMML05sB_31JNM2mnFRELVwjkWDliXdxXlm69YKM3TWBXm_c6Pflf_9h1_8n_hLcp-hg1d1yZojcjhuruFVQkuje52Hxy-m6xGG
  priority: 102
  providerName: Springer Nature
Title Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting
URI https://link.springer.com/article/10.1038/s41467-022-28146-6
https://www.proquest.com/docview/2622687436
https://www.proquest.com/docview/2622958234
https://pubmed.ncbi.nlm.nih.gov/PMC8789891
https://doaj.org/article/806e41e5b4e1403d81412e1a4c7cb04e
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELf2ISReEJ-iMCoj8QaBxHZs5wGhtlqZKm0goKhvUeyct0lVMppM0P-es5MWdRpIvCRSfI6T-_D9_HVHyCtnlE0TnUVKFnEkCiMjY2UZgVGpsVyDdf6g8OmZPJmL2SJd7JFNuqOegc2tQzufT2q-Wr799WP9AQ3-fXdkXL9rRDB3vy-d-RmtSO6TQ_RMyhvqaQ_3Q8_MMxzQ-IVmFoskQt_N-3M0t79mx1eFkP47OPTmLsobS6nBQ03vk3s9tKSjThcekD2oHpI7XbLJ9SPi5pVPNeSPn9PaUewI_czNumkbenVRt3UJYQMXlLQJuXGwG1yuaV1RV1hAIqwzvvz-SdC2pgjNm5Y2nnf0J6LVFW0QzIYt1I_JfHr8bXIS9VkWIptq3kbcZM74qIGaF9JoUWZOZgpcJhF4G10WpS25AedsnFjjx2vCMmCi4JByi_jvCTmo6gqeElpAxkzhENOUgDCMa6WSErRBOsNSqwYk2fAzt30Icp8JY5mHpXCu804GOcogDzLI5YC83ta56gJw_JN67MW0pfTBs8ODenWe97aY61iCSCA1Any0whKrJgySQlhlTSxgQI42Qs43Cpkjg5jUiLewjZfbYrRFv8BSVFBfdzRZqhkXA6J2lGPng3ZLqsuLENVbK5_JMxmQNxs1-tP433_42X-x5zm5y7x-x0nE0iNy0K6u4QWCqtYMyb5aKLzq6cchORyNZl9neB8fn33-gk8ncjIM0xXDYFG_AeStI0s
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxFMEChgJThA1sR3bOSBEgWpLH1y6aG8mfrWVqmTZpKr2T_Eb8TjJVluJ3nqNx0riefizPZ4PoXdeC1PkskwFr7KUVZqn2nCbOi0Kbah0xsNF4cMjPpmyH7NitoH-jndhIK1yjIkxUNvGwB75NuEBKMgw3_HP8z8psEbB6epIodGbxb5bXoYlW_tp71vQ73tCdr8ff52kA6tAagpJu5Tq0muokidpxbVktvS8FM6XPABNLW1ljaXaeW-y3GhYnzBDHGEVdQU1ORRfCiH_Tph4M_AoMROrPR2oti4ZG-7mZFRutyxGIkiZJ7DZlvK1-S_SBKxh2-uZmdeOZ-Ost_sQPRjgKv7S29cjtOHqx-huT2C5fIL8tAb6IrjSjhuPQ3CF3aBl27V4ftp0jXUxKcxZ3Ea-nRBaz5e4qbGvjAtCoc_O2a-fDHcNDnC_7XALS218GRDwArcBIMe07Kdoeitj_Axt1k3tniNcuZLoygecZF2AdlQKkVsndZDTpDAiQfk4nsoMZc2BXeNcxeN1KlWvAxV0oKIOFE_Qh1WfeV_U40bpHVDTShIKcscHzeJEDf6tZMYdy12hmYMKiDZ0zYnLK2aE0RlzCdoalayGKNGqK5tO0NtVc_BvOLSpatdc9DJlIQllCRJrxrH2Qest9dlprBQuBbCD5gn6OJrR1cv__8Mvbv7WN-je5PjwQB3sHe2_RPcJGHeWp6TYQpvd4sK9Ciit06-ja2D0-7Z98R_mMVGv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhAXxFMEChgJThBtYju2c0CIUlYthcKBRXsz8YtWqpJlk6rav8avw-MkW20leus1HiuJ5-HP9ng-hF55LUyRyzIVvMpSVmmeasNt6rQotKHSGQ8Xhb8e8f0Z-zwv5lvo73gXBtIqx5gYA7VtDOyRTwgPQEGG-Y5P_JAW8X1v-n7xJwUGKThpHek0ehM5dKvzsHxr3x3sBV2_JmT66cfH_XRgGEhNIWmXUl16DRXzJK24lsyWnpfC-ZIH0KmlrayxVDvvTZYbDWsVZogjrKKuoCaHQkwh_N8QtMjBx8RcrPd3oPK6ZGy4p5NROWlZjEqQPk9g4y3lG3NhpAzYwLmXszQvHdXGGXB6F90ZoCv-0NvaPbTl6vvoZk9muXqA_KwGKiO43o4bj0OghZ2hVdu1eHHcdI11MUHMWdxG7p0QZk9XuKmxr4wLQqHP7snPbwx3DQ7Qv-1wC8tufB7Q8BK3ASzHFO2HaHYtY_wIbddN7R4jXLmS6MoHzGRdgHlUCpFbJ3WQ06QwIkH5OJ7KDCXOgWnjVMWjdipVrwMVdKCiDhRP0Jt1n0Vf4ONK6V1Q01oSinPHB83ytxp8XcmMO5a7QjMH1RBt6JoTl1fMCKMz5hK0MypZDRGjVRf2naCX6-bg63CAU9WuOetlykISyhIkNoxj44M2W-qT41g1XApgCs0T9HY0o4uX__-Hn1z9rS_QreCF6svB0eFTdJuAbWd5SoodtN0tz9yzANg6_Tx6Bka_rtsV_wGGK1Xl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+of+cocatalysts+photodeposited+selectively+on+facets+of+BiVO4+to+boost+solar+water+splitting&rft.jtitle=Nature+communications&rft.au=Qi%2C+Yu&rft.au=Zhang%2C+Jiangwei&rft.au=Kong%2C+Yuan&rft.au=Zhao%2C+Yue&rft.date=2022-01-25&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-28146-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_022_28146_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon