Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction
Developing active single-atom-catalyst (SAC) for alkaline hydrogen evolution reaction (HER) is a promising solution to lower the green hydrogen cost. However, the correlations are not clear between the chemical environments around the active-sites and their desired catalytic activity. Here we study...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 6875 - 14 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.11.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing active single-atom-catalyst (SAC) for alkaline hydrogen evolution reaction (HER) is a promising solution to lower the green hydrogen cost. However, the correlations are not clear between the chemical environments around the active-sites and their desired catalytic activity. Here we study a group of SACs prepared by anchoring platinum atoms on NiFe-layered-double-hydroxide. While maintaining the homogeneity of the Pt-SACs, various axial ligands (−F, −Cl, −Br, −I, −OH) are employed
via
a facile irradiation-impregnation procedure, enabling us to discover definite chemical-environments/performance correlations. Owing to its high first-electron-affinity, chloride chelated Pt-SAC exhibits optimized bindings with hydrogen and hydroxide, which favor the sluggish water dissociation and further promote the alkaline HER. Specifically, it shows high mass-activity of 30.6 A mgPt
−1
and turnover frequency of 30.3 H
2
s
−1
at 100 mV overpotential, which are significantly higher than those of the state-of-the-art Pt-SACs and commercial Pt/C catalyst. Moreover, high energy efficiency of 80% is obtained for the alkaline water electrolyser assembled using the above catalyst under practical-relevant conditions.
Establishing robust structure/performance correlations is critical for the development of single-atom-catalysts with improved activity. Here, the axial ligand on Pt single-atom-catalyst is precisely adjusted and studied, showing that the ligand’s first electron affinity is crucial for the catalysis. |
---|---|
AbstractList | Developing active single-atom-catalyst (SAC) for alkaline hydrogen evolution reaction (HER) is a promising solution to lower the green hydrogen cost. However, the correlations are not clear between the chemical environments around the active-sites and their desired catalytic activity. Here we study a group of SACs prepared by anchoring platinum atoms on NiFe-layered-double-hydroxide. While maintaining the homogeneity of the Pt-SACs, various axial ligands (−F, −Cl, −Br, −I, −OH) are employed
via
a facile irradiation-impregnation procedure, enabling us to discover definite chemical-environments/performance correlations. Owing to its high first-electron-affinity, chloride chelated Pt-SAC exhibits optimized bindings with hydrogen and hydroxide, which favor the sluggish water dissociation and further promote the alkaline HER. Specifically, it shows high mass-activity of 30.6 A mgPt
−1
and turnover frequency of 30.3 H
2
s
−1
at 100 mV overpotential, which are significantly higher than those of the state-of-the-art Pt-SACs and commercial Pt/C catalyst. Moreover, high energy efficiency of 80% is obtained for the alkaline water electrolyser assembled using the above catalyst under practical-relevant conditions.
Establishing robust structure/performance correlations is critical for the development of single-atom-catalysts with improved activity. Here, the axial ligand on Pt single-atom-catalyst is precisely adjusted and studied, showing that the ligand’s first electron affinity is crucial for the catalysis. Developing active single-atom-catalyst (SAC) for alkaline hydrogen evolution reaction (HER) is a promising solution to lower the green hydrogen cost. However, the correlations are not clear between the chemical environments around the active-sites and their desired catalytic activity. Here we study a group of SACs prepared by anchoring platinum atoms on NiFe-layered-double-hydroxide. While maintaining the homogeneity of the Pt-SACs, various axial ligands (-F, -Cl, -Br, -I, -OH) are employed via a facile irradiation-impregnation procedure, enabling us to discover definite chemical-environments/performance correlations. Owing to its high first-electron-affinity, chloride chelated Pt-SAC exhibits optimized bindings with hydrogen and hydroxide, which favor the sluggish water dissociation and further promote the alkaline HER. Specifically, it shows high mass-activity of 30.6 A mgPt-1 and turnover frequency of 30.3 H2 s-1 at 100 mV overpotential, which are significantly higher than those of the state-of-the-art Pt-SACs and commercial Pt/C catalyst. Moreover, high energy efficiency of 80% is obtained for the alkaline water electrolyser assembled using the above catalyst under practical-relevant conditions.Developing active single-atom-catalyst (SAC) for alkaline hydrogen evolution reaction (HER) is a promising solution to lower the green hydrogen cost. However, the correlations are not clear between the chemical environments around the active-sites and their desired catalytic activity. Here we study a group of SACs prepared by anchoring platinum atoms on NiFe-layered-double-hydroxide. While maintaining the homogeneity of the Pt-SACs, various axial ligands (-F, -Cl, -Br, -I, -OH) are employed via a facile irradiation-impregnation procedure, enabling us to discover definite chemical-environments/performance correlations. Owing to its high first-electron-affinity, chloride chelated Pt-SAC exhibits optimized bindings with hydrogen and hydroxide, which favor the sluggish water dissociation and further promote the alkaline HER. Specifically, it shows high mass-activity of 30.6 A mgPt-1 and turnover frequency of 30.3 H2 s-1 at 100 mV overpotential, which are significantly higher than those of the state-of-the-art Pt-SACs and commercial Pt/C catalyst. Moreover, high energy efficiency of 80% is obtained for the alkaline water electrolyser assembled using the above catalyst under practical-relevant conditions. Establishing robust structure/performance correlations is critical for the development of single-atom-catalysts with improved activity. Here, the axial ligand on Pt single-atom-catalyst is precisely adjusted and studied, showing that the ligand’s first electron affinity is crucial for the catalysis. Developing active single-atom-catalyst (SAC) for alkaline hydrogen evolution reaction (HER) is a promising solution to lower the green hydrogen cost. However, the correlations are not clear between the chemical environments around the active-sites and their desired catalytic activity. Here we study a group of SACs prepared by anchoring platinum atoms on NiFe-layered-double-hydroxide. While maintaining the homogeneity of the Pt-SACs, various axial ligands (−F, −Cl, −Br, −I, −OH) are employed via a facile irradiation-impregnation procedure, enabling us to discover definite chemical-environments/performance correlations. Owing to its high first-electron-affinity, chloride chelated Pt-SAC exhibits optimized bindings with hydrogen and hydroxide, which favor the sluggish water dissociation and further promote the alkaline HER. Specifically, it shows high mass-activity of 30.6 A mgPt−1 and turnover frequency of 30.3 H2 s−1 at 100 mV overpotential, which are significantly higher than those of the state-of-the-art Pt-SACs and commercial Pt/C catalyst. Moreover, high energy efficiency of 80% is obtained for the alkaline water electrolyser assembled using the above catalyst under practical-relevant conditions.Establishing robust structure/performance correlations is critical for the development of single-atom-catalysts with improved activity. Here, the axial ligand on Pt single-atom-catalyst is precisely adjusted and studied, showing that the ligand’s first electron affinity is crucial for the catalysis. Developing active single-atom-catalyst (SAC) for alkaline hydrogen evolution reaction (HER) is a promising solution to lower the green hydrogen cost. However, the correlations are not clear between the chemical environments around the active-sites and their desired catalytic activity. Here we study a group of SACs prepared by anchoring platinum atoms on NiFe-layered-double-hydroxide. While maintaining the homogeneity of the Pt-SACs, various axial ligands (−F, −Cl, −Br, −I, −OH) are employed via a facile irradiation-impregnation procedure, enabling us to discover definite chemical-environments/performance correlations. Owing to its high first-electron-affinity, chloride chelated Pt-SAC exhibits optimized bindings with hydrogen and hydroxide, which favor the sluggish water dissociation and further promote the alkaline HER. Specifically, it shows high mass-activity of 30.6 A mgPt −1 and turnover frequency of 30.3 H 2 s −1 at 100 mV overpotential, which are significantly higher than those of the state-of-the-art Pt-SACs and commercial Pt/C catalyst. Moreover, high energy efficiency of 80% is obtained for the alkaline water electrolyser assembled using the above catalyst under practical-relevant conditions. |
ArticleNumber | 6875 |
Author | Chen, Jiayi Wang, Yu Fang, Yingyan Jin, Jing Wang, Lei Liu, Junfeng Zhang, Tianyu Chen, Junmei Han, Xu Li, Yaping |
Author_xml | – sequence: 1 givenname: Tianyu surname: Zhang fullname: Zhang, Tianyu organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Department of Chemical and Biomolecular Engineering, National University of Singapore – sequence: 2 givenname: Jing surname: Jin fullname: Jin, Jing organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences Institution – sequence: 3 givenname: Junmei surname: Chen fullname: Chen, Junmei organization: Department of Chemical and Biomolecular Engineering, National University of Singapore – sequence: 4 givenname: Yingyan surname: Fang fullname: Fang, Yingyan organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology – sequence: 5 givenname: Xu surname: Han fullname: Han, Xu organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology – sequence: 6 givenname: Jiayi surname: Chen fullname: Chen, Jiayi organization: Department of Chemical and Biomolecular Engineering, National University of Singapore – sequence: 7 givenname: Yaping surname: Li fullname: Li, Yaping organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology – sequence: 8 givenname: Yu orcidid: 0000-0002-9071-0238 surname: Wang fullname: Wang, Yu organization: Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences – sequence: 9 givenname: Junfeng orcidid: 0000-0002-7455-6314 surname: Liu fullname: Liu, Junfeng email: ljf@mail.buct.edu.cn organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology – sequence: 10 givenname: Lei orcidid: 0000-0002-1931-7767 surname: Wang fullname: Wang, Lei email: wanglei8@nus.edu.sg organization: Department of Chemical and Biomolecular Engineering, National University of Singapore |
BookMark | eNp9kk1vFSEUhiemxtbaP-BqEjduRmEYBmZjYho_mjTRha4JA4e5XLlwBab1xj8vc6dR20XZcMJ53pdz4DyvTnzwUFUvMXqDEeFvU4e7njWobRvS9Xho6JPqrEUdbjBrycl_8Wl1kdIWlUUGzLvuWXVKesJw17Kz6vdX6_fB-mz9VOcN1PKXla52dpJe12AMqFwHX--dLMi8q1MBHTQyh12jZJbukHKdw62MOi28VRZ8rqX7IZ31UG8OOoYJfA03wc3ZFq8IUi3Bi-qpkS7Bxd1-Xn3_-OHb5efm-sunq8v3142inORjexgzzglwagZFEet7M4Ki7ahLptWS9nJJUaVGzanCEkyHYKSYY8PJeXW1-uogt2If7U7GgwjSiuNBiJOQMVvlQCDVEskGAK15R5geUQ-Ma6OQMUb1i9e71Ws_jzvQqvQapbtnej_j7UZM4UYMPSVk6IrB6zuDGH7OkLLY2aTAOekhzEm0jFDeD5Sigr56gG7DHH15qiNFWU8HVqh2pVQMKUUwf4vBSCyjItZREWVUxHFUBC0i_kCkbJbLp5SirXtcSlZpKvf4CeK_qh5R_QFgZtcQ |
CitedBy_id | crossref_primary_10_1002_smll_202207527 crossref_primary_10_1002_ange_202307133 crossref_primary_10_1002_smll_202309675 crossref_primary_10_1021_acsami_3c01412 crossref_primary_10_1002_aic_18161 crossref_primary_10_1002_cctc_202300926 crossref_primary_10_1002_adma_202408259 crossref_primary_10_1021_acscatal_4c05108 crossref_primary_10_1039_D3QM00586K crossref_primary_10_1016_j_ijhydene_2024_05_151 crossref_primary_10_1021_acscatal_4c01706 crossref_primary_10_1007_s11426_024_2324_8 crossref_primary_10_1016_j_cplett_2025_142002 crossref_primary_10_1002_ange_202219227 crossref_primary_10_1021_acsnano_3c05810 crossref_primary_10_1016_j_apcatb_2024_124728 crossref_primary_10_1016_j_jpowsour_2024_234653 crossref_primary_10_1007_s40820_023_01196_1 crossref_primary_10_1016_j_nanoen_2024_109923 crossref_primary_10_1039_D4CS00333K crossref_primary_10_1002_adfm_202301925 crossref_primary_10_1002_anie_202308686 crossref_primary_10_1002_adfm_202405328 crossref_primary_10_1002_smll_202308053 crossref_primary_10_1016_j_cej_2024_148706 crossref_primary_10_1038_s41467_024_45534_2 crossref_primary_10_1002_adfm_202421552 crossref_primary_10_1016_j_ces_2025_121330 crossref_primary_10_1016_j_jcis_2022_12_066 crossref_primary_10_1016_j_ijhydene_2025_02_234 crossref_primary_10_1016_j_checat_2024_101004 crossref_primary_10_1002_aenm_202404684 crossref_primary_10_1002_chem_202400329 crossref_primary_10_1016_j_jmst_2024_07_025 crossref_primary_10_1016_j_pmatsci_2024_101410 crossref_primary_10_1021_acs_inorgchem_3c04240 crossref_primary_10_1039_D3TA02610H crossref_primary_10_1016_j_jallcom_2025_178588 crossref_primary_10_1016_j_jcis_2024_07_184 crossref_primary_10_1002_adma_202410039 crossref_primary_10_1016_j_cej_2023_146576 crossref_primary_10_1002_smll_202304086 crossref_primary_10_1002_aenm_202303935 crossref_primary_10_1038_s41467_024_50791_2 crossref_primary_10_1002_adfm_202405919 crossref_primary_10_1002_adfm_202404828 crossref_primary_10_1021_acs_iecr_4c04465 crossref_primary_10_1002_adfm_202301343 crossref_primary_10_1002_ange_202314243 crossref_primary_10_1039_D3CP05892A crossref_primary_10_1021_acs_nanolett_4c05523 crossref_primary_10_1016_j_apcatb_2023_122920 crossref_primary_10_1021_jacs_4c12665 crossref_primary_10_1002_adma_202500595 crossref_primary_10_1016_j_jcis_2023_07_119 crossref_primary_10_1016_j_jcis_2024_06_034 crossref_primary_10_1002_adfm_202408872 crossref_primary_10_1021_acs_est_3c09811 crossref_primary_10_1002_adfm_202405881 crossref_primary_10_1016_j_cej_2024_148596 crossref_primary_10_1016_j_nanoen_2024_109869 crossref_primary_10_1016_j_bios_2024_117001 crossref_primary_10_1002_anie_202307133 crossref_primary_10_1021_acs_energyfuels_3c02121 crossref_primary_10_1016_j_jcis_2023_11_065 crossref_primary_10_1002_adfm_202423158 crossref_primary_10_1016_j_envres_2024_118643 crossref_primary_10_1021_acs_chemrev_3c00332 crossref_primary_10_1039_D3NR01276J crossref_primary_10_1016_j_cej_2023_141676 crossref_primary_10_1007_s40820_024_01420_6 crossref_primary_10_1016_j_apsusc_2025_162842 crossref_primary_10_1016_j_enchem_2025_100150 crossref_primary_10_1021_acsnano_4c03668 crossref_primary_10_1016_j_cclet_2024_109686 crossref_primary_10_1039_D3TA04199A crossref_primary_10_1016_j_memsci_2024_123500 crossref_primary_10_1021_acs_jpcc_3c07748 crossref_primary_10_1002_advs_202306599 crossref_primary_10_1002_adfm_202305893 crossref_primary_10_1002_adfm_202420728 crossref_primary_10_1007_s42114_024_01128_6 crossref_primary_10_1002_cjoc_202400442 crossref_primary_10_1039_D3NR06359C crossref_primary_10_1002_anie_202425569 crossref_primary_10_1002_aenm_202404978 crossref_primary_10_1016_j_ijhydene_2024_10_099 crossref_primary_10_1002_smll_202302056 crossref_primary_10_1021_jacsau_3c00001 crossref_primary_10_1039_D3EY00157A crossref_primary_10_1021_prechem_3c00022 crossref_primary_10_1038_s41467_023_43698_x crossref_primary_10_1039_D3EE04457B crossref_primary_10_1002_ange_202425569 crossref_primary_10_1002_smll_202311799 crossref_primary_10_1007_s11426_023_1760_x crossref_primary_10_1039_D2CS00931E crossref_primary_10_1002_advs_202303110 crossref_primary_10_1016_j_apcatb_2024_124801 crossref_primary_10_1016_j_comptc_2024_114981 crossref_primary_10_1039_D4CC03901G crossref_primary_10_1016_j_clay_2023_107108 crossref_primary_10_1038_s41467_024_47061_6 crossref_primary_10_1016_j_apsusc_2024_160065 crossref_primary_10_1039_D3EE03896C crossref_primary_10_1016_j_watres_2024_123077 crossref_primary_10_1002_adma_202404659 crossref_primary_10_1021_acsami_4c02766 crossref_primary_10_1002_ange_202316319 crossref_primary_10_1039_D4TA08359H crossref_primary_10_1016_j_apcatb_2024_124074 crossref_primary_10_20517_microstructures_2024_62 crossref_primary_10_1002_adfm_202423537 crossref_primary_10_1002_anie_202314243 crossref_primary_10_1021_acscatal_2c05992 crossref_primary_10_1016_j_jechem_2023_10_027 crossref_primary_10_1016_j_apcatb_2023_123568 crossref_primary_10_1002_smll_202309509 crossref_primary_10_1016_j_apsusc_2025_162751 crossref_primary_10_1016_j_surfcoat_2023_129943 crossref_primary_10_1002_anie_202417092 crossref_primary_10_1038_s41467_024_54019_1 crossref_primary_10_1021_acscatal_4c05602 crossref_primary_10_1021_acscatal_3c02628 crossref_primary_10_1002_agt2_430 crossref_primary_10_1021_acsnano_4c18216 crossref_primary_10_1002_aenm_202300148 crossref_primary_10_1002_smll_202410343 crossref_primary_10_1002_anie_202406082 crossref_primary_10_1002_anie_202316319 crossref_primary_10_1002_smll_202411061 crossref_primary_10_1016_j_jechem_2024_01_056 crossref_primary_10_1016_j_apsusc_2024_160310 crossref_primary_10_1007_s12274_023_5700_4 crossref_primary_10_1021_acscatal_5c00405 crossref_primary_10_1016_j_jcis_2024_10_136 crossref_primary_10_1002_adma_202310033 crossref_primary_10_26599_NR_2025_94907004 crossref_primary_10_1002_sstr_202300284 crossref_primary_10_1002_adma_202304144 crossref_primary_10_1016_j_cej_2024_152547 crossref_primary_10_1002_adma_202306687 crossref_primary_10_1002_adma_202307017 crossref_primary_10_1039_D4EY00205A crossref_primary_10_1002_ange_202406082 crossref_primary_10_1016_j_matchemphys_2023_127585 crossref_primary_10_1021_acs_nanolett_4c03031 crossref_primary_10_1002_ange_202417092 crossref_primary_10_1002_adma_202418527 crossref_primary_10_1039_D4TA06411A crossref_primary_10_1038_s41598_024_56510_7 crossref_primary_10_1039_D3QM00722G crossref_primary_10_1016_j_jallcom_2023_173234 crossref_primary_10_1016_j_fuel_2023_130602 crossref_primary_10_1002_anie_202219227 crossref_primary_10_1002_adma_202312724 crossref_primary_10_1016_j_apcatb_2024_124655 crossref_primary_10_1002_ange_202308686 crossref_primary_10_1002_smll_202411696 |
Cites_doi | 10.1016/j.watres.2016.06.051 10.1021/je000019h 10.1103/PhysRevB.58.7565 10.1038/nmat4738 10.1038/s41929-021-00663-5 10.1126/science.abe5757 10.1126/science.1127180 10.1021/ac60181a002 10.1016/j.nanoen.2019.103963 10.1103/PhysRevB.54.11169 10.1039/D0QI00124D 10.1103/PhysRevB.13.5188 10.1021/jacs.2c01094 10.1021/acs.jpcc.8b03660 10.1103/PhysRevB.63.125120 10.1038/nchem.121 10.1038/s41560-020-00710-8 10.1016/j.watres.2021.117678 10.1007/s41918-020-00076-1 10.1038/s41467-019-12459-0 10.1103/RevModPhys.72.621 10.1126/science.aaa8765 10.1016/j.jelechem.2016.12.037 10.1038/s41570-018-0010-1 10.1103/PhysRevB.59.1758 10.1038/s41467-021-27735-1 10.1038/s41560-018-0292-z 10.1021/jacs.9b06482 10.1016/0021-9517(76)90328-6 10.1002/anie.201709455 10.1107/S0909049505012719 10.1021/j100875a018 10.1002/aenm.201602579 10.1103/PhysRevB.71.094110 10.1002/adma.202107291 10.1038/s41467-021-24079-8 10.1002/anie.202015738 10.1103/PhysRevB.50.17953 10.1021/acsami.7b18835 10.1088/0953-8984/21/34/345501 10.1038/35104599 10.1016/j.chempr.2020.10.023 10.1103/PhysRevB.71.035105 10.1021/acs.jpclett.2c01411 10.1021/jacs.8b13543 10.1103/PhysRevB.49.14251 10.1038/s41929-020-00540-7 10.1126/science.aaf5251 10.1073/pnas.1006652108 10.1002/adma.201808066 10.1038/s41467-019-08804-y 10.1039/C8EE03282C 10.1038/s41467-018-03380-z 10.1126/science.1103197 10.1107/S0909049507031901 10.1021/acscatal.6b01997 10.1038/s41560-020-0550-8 10.1103/PhysRevB.40.3616 10.1038/nchem.1095 10.1038/s41467-022-30148-3 10.1021/acs.chemrev.9b00248 10.1002/adfm.202109218 10.1063/1.437376 10.1002/prot.20251 10.1039/D1EE03825G 10.1021/acsenergylett.1c00246 10.1103/PhysRevLett.77.3865 10.1038/ncomms13638 10.1038/s41929-017-0008-y 10.1103/PhysRevB.57.1505 10.1002/anie.201204842 10.1038/s41467-021-27143-5 10.1016/S0006-3495(00)76513-1 10.1038/s41467-019-09765-y 10.1080/08927020211971 10.1038/s41467-021-23306-6 10.1016/0009-2614(80)80396-4 10.1038/s41467-022-28953-x 10.1021/jacs.1c10814 10.1007/s41918-019-00050-6 10.1038/s41467-019-14274-z 10.1149/2.0501514jes 10.1149/2.0271815jes 10.1021/acs.chemrev.9b00818 10.1039/D1CY01170G 10.1002/aic.17582 10.1039/D1EE01395E 10.1038/376238a0 10.1021/acsnano.8b07700 10.1021/acs.chemmater.9b05244 10.1039/c3cp55094j 10.1038/s41467-020-14848-2 10.1016/j.cpc.2021.108033 10.1016/0927-0256(96)00008-0 10.1039/C4EE00440J 10.1103/RevModPhys.64.1045 10.1038/s41467-019-12773-7 10.1039/c0cp00104j 10.1007/BF00721955 10.1038/nenergy.2017.31 10.1016/j.apsadv.2021.100112 10.1021/jacs.1c07116 10.1038/s41467-019-12887-y 10.1126/science.1211934 10.1002/anie.202116068 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-34619-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_0c23a79eedd8437db06e78dfc0fffc68 PMC9653394 10_1038_s41467_022_34619_5 |
GrantInformation_xml | – fundername: Agency for Science, Technology and Research (A*STAR) grantid: U2102d2002 funderid: https://doi.org/10.13039/501100001348 – fundername: National Research Foundation Singapore (National Research Foundation-Prime Minister's office, Republic of Singapore) grantid: NRF-NRFF13-2021-0007 funderid: https://doi.org/10.13039/501100001381 – fundername: ; grantid: U2102d2002 – fundername: ; grantid: NRF-NRFF13-2021-0007 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c583t-3461117883e85f9c50766fbec52bd1112da56a85f95ccbd85c1aef40eb5181f83 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:26:31 EDT 2025 Thu Aug 21 18:39:22 EDT 2025 Sun Aug 24 03:49:45 EDT 2025 Wed Aug 13 11:25:24 EDT 2025 Tue Jul 01 00:58:32 EDT 2025 Thu Apr 24 23:44:04 EDT 2025 Fri Feb 21 02:38:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-3461117883e85f9c50766fbec52bd1112da56a85f95ccbd85c1aef40eb5181f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9071-0238 0000-0002-1931-7767 0000-0002-7455-6314 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-34619-5 |
PMID | 36371427 |
PQID | 2735576597 |
PQPubID | 546298 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0c23a79eedd8437db06e78dfc0fffc68 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9653394 proquest_miscellaneous_2735869550 proquest_journals_2735576597 crossref_primary_10_1038_s41467_022_34619_5 crossref_citationtrail_10_1038_s41467_022_34619_5 springer_journals_10_1038_s41467_022_34619_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-12 |
PublicationDateYYYYMMDD | 2022-11-12 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Yang, Patil, McKone, Saidi (CR67) 2021; 11 Zhang (CR13) 2019; 10 Voiry (CR59) 2018; 12 Zhou (CR92) 2022; 68 Norskov Jens, Christensen Claus (CR6) 2006; 312 Anantharaj (CR8) 2021; 60 Chen (CR39) 2021; 14 Fei (CR74) 2018; 1 Nørskov, Bligaard, Rossmeisl, Christensen (CR101) 2009; 1 Galus, Olson, Lee, Adams (CR81) 1962; 34 Chen, McCrum, Schwarz, Janik, Koper (CR53) 2017; 56 Lin, Lasia (CR63) 2017; 785 Sacchi, Jenkins (CR98) 2014; 16 Tilak, Chen (CR66) 1993; 23 Lytle, Wei, Greegor, Via, Sinfelt (CR49) 1979; 70 Joly (CR77) 2001; 63 Zheng, Yan, Xu (CR60) 2015; 162 Bunău, Joly (CR78) 2009; 21 Nørskov Jens, Abild-Pedersen, Studt, Bligaard (CR70) 2011; 108 Pulay (CR95) 1980; 73 Payne, Teter, Allan, Arias, Joannopoulos (CR96) 1992; 64 Cheng, Zhang, Doyle-Davis, Sun (CR21) 2019; 2 Fang (CR36) 2020; 11 Kresse, Joubert (CR87) 1999; 59 Zhu (CR57) 2020; 7 Dresselhaus, Thomas (CR1) 2001; 414 Li (CR80) 2017; 7 Krieger, Darden, Nabuurs, Finkelstein, Vriend (CR103) 2004; 57 Intikhab (CR14) 2019; 64 Zhang (CR27) 2018; 9 Yang, Saidi (CR68) 2022; 13 Wang, Xu, Liu, Tang, Geng (CR100) 2021; 267 Lytle (CR48) 1976; 43 Sipos, Hefter, May (CR82) 2000; 45 Danilovic (CR64) 2012; 51 Cheng (CR12) 2016; 7 Perdew, Burke, Ernzerhof (CR89) 1996; 77 Blöchl (CR88) 1994; 50 McCrum, Koper (CR3) 2020; 5 Jia, Zhao, Huo, Guo (CR22) 2020; 3 Zhao, Li, Wang, Cai, Zang (CR31) 2022; 34 Fairley (CR45) 2021; 5 Ravel, Newville (CR72) 2005; 12 Rehr, Albers (CR79) 2000; 72 Chen (CR47) 2021; 143 Huang (CR30) 2022; 61 Fu (CR55) 2022; 144 Ren (CR24) 2019; 10 Turner John (CR2) 2004; 305 Yu (CR58) 2020; 11 Zhang (CR26) 2022; 13 Huang (CR46) 2015; 348 Dong (CR51) 2019; 4 Tian, Zhao, Sheng (CR61) 2019; 31 Monkhorst, Pack (CR97) 1976; 13 Zhou (CR34) 2021; 12 Hulva (CR102) 2021; 371 Sun (CR50) 2022; 15 Methfessel, Paxton (CR94) 1989; 40 Rebollar, Intikhab, Snyder, Tang (CR62) 2018; 165 Tonda, Kumar, Bhardwaj, Yadav, Ogale (CR41) 2018; 10 Schouten, van der Niet (CR65) 2010; 12 Cococcioni, de Gironcoli (CR91) 2005; 71 Ji (CR19) 2020; 120 Kresse, Furthmüller (CR84) 1996; 6 Wang (CR25) 2021; 7 Dudarev, Botton, Savrasov, Humphreys, Sutton (CR90) 1998; 57 McCrum, Chen, Schwarz, Janik, Koper (CR54) 2018; 122 Tong (CR4) 2020; 5 Qiao (CR20) 2011; 3 Funke, Chukalina, Scheinost (CR76) 2007; 14 Kresse, Furthmüller (CR85) 1996; 54 Li (CR43) 2016; 102 Qiu, Tai, Niklasson, Edvinsson (CR56) 2019; 12 Stamenkovic, Strmcnik, Lopes, Markovic (CR10) 2017; 16 Hu, Yun, Hermans (CR104) 2002; 28 Ledezma-Yanez (CR9) 2017; 2 Li, Xiang (CR32) 2022; 13 Zhao (CR93) 2016; 6 Ma, Tsai, Nussinov (CR99) 2000; 79 Zhu, Hu, Zhao, Lee, Wong (CR7) 2020; 120 Jiang (CR35) 2019; 10 Liu (CR40) 2019; 10 Hammer, Norskov (CR71) 1995; 376 Craig, García-Melchor (CR16) 2020; 3 Ruetschi, Amlie (CR83) 1966; 70 Kresse, Hafner (CR86) 1994; 49 Yan (CR44) 2021; 205 Jin (CR23) 2022; 32 Shi (CR33) 2021; 12 Wang, Li, Zhang (CR18) 2018; 2 Zhu (CR17) 2021; 4 Funke, Scheinost, Chukalina (CR75) 2005; 71 Mun (CR29) 2019; 141 Hodges (CR105) 2022; 13 Subbaraman (CR15) 2011; 334 Ankudinov, Ravel, Rehr, Conradson (CR73) 1998; 58 Li (CR38) 2021; 12 Liu (CR42) 2016; 352 Li (CR28) 2019; 141 Wang, Xu, Jaroniec, Zheng, Qiao (CR52) 2019; 10 Hansen (CR5) 2021; 6 Durst (CR11) 2014; 7 Yang (CR37) 2022; 144 Yang, Tan, Saidi (CR69) 2020; 32 N Fairley (34619_CR45) 2021; 5 L-Y Zhou (34619_CR92) 2022; 68 Z Qiu (34619_CR56) 2019; 12 MJ Craig (34619_CR16) 2020; 3 J Zheng (34619_CR60) 2015; 162 Z Yan (34619_CR44) 2021; 205 J Zhang (34619_CR27) 2018; 9 J Zhu (34619_CR7) 2020; 120 S Intikhab (34619_CR14) 2019; 64 S Fang (34619_CR36) 2020; 11 J Hulva (34619_CR102) 2021; 371 J Zhu (34619_CR57) 2020; 7 L Rebollar (34619_CR62) 2018; 165 X Chen (34619_CR53) 2017; 56 Z Zhang (34619_CR26) 2022; 13 H Funke (34619_CR75) 2005; 71 VR Stamenkovic (34619_CR10) 2017; 16 W Chen (34619_CR39) 2021; 14 H Funke (34619_CR76) 2007; 14 M Jia (34619_CR22) 2020; 3 Y Joly (34619_CR77) 2001; 63 J Li (34619_CR38) 2021; 12 A Turner John (34619_CR2) 2004; 305 A Hodges (34619_CR105) 2022; 13 O Bunău (34619_CR78) 2009; 21 R Subbaraman (34619_CR15) 2011; 334 M Methfessel (34619_CR94) 1989; 40 J-C Dong (34619_CR51) 2019; 4 S-N Zhao (34619_CR31) 2022; 34 L Zhang (34619_CR13) 2019; 10 S Ji (34619_CR19) 2020; 120 Y Ren (34619_CR24) 2019; 10 J Li (34619_CR28) 2019; 141 KL Zhou (34619_CR34) 2021; 12 FW Lytle (34619_CR48) 1976; 43 P Liu (34619_CR42) 2016; 352 G Kresse (34619_CR86) 1994; 49 BV Tilak (34619_CR66) 1993; 23 Y Shi (34619_CR33) 2021; 12 SL Dudarev (34619_CR90) 1998; 57 M Sacchi (34619_CR98) 2014; 16 K Norskov Jens (34619_CR6) 2006; 312 J Jin (34619_CR23) 2022; 32 B Ravel (34619_CR72) 2005; 12 MC Payne (34619_CR96) 1992; 64 IT McCrum (34619_CR3) 2020; 5 HQ Fu (34619_CR55) 2022; 144 M Cococcioni (34619_CR91) 2005; 71 MS Dresselhaus (34619_CR1) 2001; 414 X Tian (34619_CR61) 2019; 31 S Anantharaj (34619_CR8) 2021; 60 G Kresse (34619_CR85) 1996; 54 JJ Rehr (34619_CR79) 2000; 72 F-Y Yu (34619_CR58) 2020; 11 J Durst (34619_CR11) 2014; 7 K Nørskov Jens (34619_CR70) 2011; 108 T Li (34619_CR43) 2016; 102 PM Sipos (34619_CR82) 2000; 45 W Li (34619_CR80) 2017; 7 Y Mun (34619_CR29) 2019; 141 K Liu (34619_CR40) 2019; 10 P Ruetschi (34619_CR83) 1966; 70 N Cheng (34619_CR12) 2016; 7 KJP Schouten (34619_CR65) 2010; 12 PE Blöchl (34619_CR88) 1994; 50 AL Ankudinov (34619_CR73) 1998; 58 B Hammer (34619_CR71) 1995; 376 H Fei (34619_CR74) 2018; 1 P Pulay (34619_CR95) 1980; 73 Q Yang (34619_CR37) 2022; 144 G Kresse (34619_CR87) 1999; 59 JK Nørskov (34619_CR101) 2009; 1 E Krieger (34619_CR103) 2004; 57 B Qiao (34619_CR20) 2011; 3 H Hu (34619_CR104) 2002; 28 W Zhao (34619_CR93) 2016; 6 JP Perdew (34619_CR89) 1996; 77 A Wang (34619_CR18) 2018; 2 H Huang (34619_CR30) 2022; 61 S Zhu (34619_CR17) 2021; 4 S Tonda (34619_CR41) 2018; 10 Y Chen (34619_CR47) 2021; 143 N Danilovic (34619_CR64) 2012; 51 G Kresse (34619_CR84) 1996; 6 HJ Monkhorst (34619_CR97) 1976; 13 Y Sun (34619_CR50) 2022; 15 TT Yang (34619_CR69) 2020; 32 Y Wang (34619_CR25) 2021; 7 JN Hansen (34619_CR5) 2021; 6 Z Galus (34619_CR81) 1962; 34 TT Yang (34619_CR67) 2021; 11 D Voiry (34619_CR59) 2018; 12 B Ma (34619_CR99) 2000; 79 K Jiang (34619_CR35) 2019; 10 TT Yang (34619_CR68) 2022; 13 V Wang (34619_CR100) 2021; 267 W Tong (34619_CR4) 2020; 5 I Ledezma-Yanez (34619_CR9) 2017; 2 D Lin (34619_CR63) 2017; 785 X Li (34619_CR32) 2022; 13 IT McCrum (34619_CR54) 2018; 122 X Huang (34619_CR46) 2015; 348 N Cheng (34619_CR21) 2019; 2 X Wang (34619_CR52) 2019; 10 FW Lytle (34619_CR49) 1979; 70 |
References_xml | – volume: 102 start-page: 421 year: 2016 end-page: 427 ident: CR43 article-title: Transformation of humic acid and halogenated byproduct formation in UV-chlorine processes publication-title: Water Res doi: 10.1016/j.watres.2016.06.051 – volume: 45 start-page: 613 year: 2000 end-page: 617 ident: CR82 article-title: Viscosities and densities of highly concentrated aqueous MOH solutions (M = Na , K , Li , Cs , (CH ) N ) at 25.0 °C publication-title: J. Chem. Eng. Data. doi: 10.1021/je000019h – volume: 58 start-page: 7565 year: 1998 end-page: 7576 ident: CR73 article-title: Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.58.7565 – volume: 16 start-page: 57 year: 2017 end-page: 69 ident: CR10 article-title: Energy and fuels from electrochemical interfaces publication-title: Nat. Mater. doi: 10.1038/nmat4738 – volume: 4 start-page: 711 year: 2021 end-page: 718 ident: CR17 article-title: The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum publication-title: Nat. Catal. doi: 10.1038/s41929-021-00663-5 – volume: 371 start-page: 375 year: 2021 end-page: 379 ident: CR102 article-title: Unraveling CO adsorption on model single-atom catalysts publication-title: Science doi: 10.1126/science.abe5757 – volume: 312 start-page: 1322 year: 2006 end-page: 1323 ident: CR6 article-title: Toward efficient hydrogen production at surfaces publication-title: Science doi: 10.1126/science.1127180 – volume: 34 start-page: 164 year: 1962 end-page: 166 ident: CR81 article-title: Rotating disk electrodes publication-title: Anal. Chem. doi: 10.1021/ac60181a002 – volume: 64 start-page: 103963 year: 2019 ident: CR14 article-title: Exploiting dynamic water structure and structural sensitivity for nanoscale electrocatalyst design publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103963 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR85 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.54.11169 – volume: 7 start-page: 1892 year: 2020 end-page: 1899 ident: CR57 article-title: An In situ Raman study of intermediate adsorption engineering by high-index facet control during the hydrogen evolution reaction publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI00124D – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: CR97 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.13.5188 – volume: 144 start-page: 6028 year: 2022 end-page: 6039 ident: CR55 article-title: Hydrogen spillover-bridged volmer/tafel processes enabling ampere-level current density alkaline hydrogen evolution reaction under low overpotential publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c01094 – volume: 122 start-page: 16756 year: 2018 end-page: 16764 ident: CR54 article-title: Effect of step density and orientation on the apparent pH dependence of hydrogen and hydroxide adsorption on stepped platinum surfaces publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.8b03660 – volume: 63 start-page: 125120 year: 2001 ident: CR77 article-title: X-ray absorption near-edge structure calculations beyond the muffin-tin approximation publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.63.125120 – volume: 1 start-page: 37 year: 2009 end-page: 46 ident: CR101 article-title: Towards the computational design of solid catalysts publication-title: Nat. Chem. doi: 10.1038/nchem.121 – volume: 5 start-page: 891 year: 2020 end-page: 899 ident: CR3 article-title: The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum publication-title: Nat. Energy doi: 10.1038/s41560-020-00710-8 – volume: 205 start-page: 117678 year: 2021 ident: CR44 article-title: Facile ammonium oxidation to nitrogen gas in acid wastewater by in situ photogenerated chlorine radicals publication-title: Water Res doi: 10.1016/j.watres.2021.117678 – volume: 3 start-page: 656 year: 2020 end-page: 689 ident: CR22 article-title: Comprehensive investigation into garnet electrolytes toward application-oriented solid lithium batteries publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-020-00076-1 – volume: 10 year: 2019 ident: CR24 article-title: Unraveling the coordination structure-performance relationship in Pt /Fe O single-atom catalyst publication-title: Nat. Commun. doi: 10.1038/s41467-019-12459-0 – volume: 72 start-page: 621 year: 2000 end-page: 654 ident: CR79 article-title: Theoretical approaches to X-ray absorption fine structure publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.72.621 – volume: 348 start-page: 1230 year: 2015 end-page: 1234 ident: CR46 article-title: High-performance transition metal–doped Pt Ni octahedra for oxygen reduction reaction publication-title: Science doi: 10.1126/science.aaa8765 – volume: 785 start-page: 190 year: 2017 end-page: 195 ident: CR63 article-title: Electrochemical impedance study of the kinetics of hydrogen evolution at a rough palladium electrode in acidic solution publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.12.037 – volume: 2 start-page: 65 year: 2018 end-page: 81 ident: CR18 article-title: Heterogeneous single-atom catalysis publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR87 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.59.1758 – volume: 13 year: 2022 ident: CR32 article-title: Identifying the impact of the covalent-bonded carbon matrix to FeN sites for acidic oxygen reduction publication-title: Nat. Commun. doi: 10.1038/s41467-021-27735-1 – volume: 4 start-page: 60 year: 2019 end-page: 67 ident: CR51 article-title: In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces publication-title: Nat. Energy doi: 10.1038/s41560-018-0292-z – volume: 141 start-page: 14515 year: 2019 end-page: 14519 ident: CR28 article-title: Highly active and stable metal single-atom catalysts achieved by strong electronic metal–support interactions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b06482 – volume: 43 start-page: 376 year: 1976 end-page: 379 ident: CR48 article-title: Determination of d-band occupancy in pure metals and supported catalysts by measurement of the LIII X-ray absorption threshold publication-title: J. Catal. doi: 10.1016/0021-9517(76)90328-6 – volume: 56 start-page: 15025 year: 2017 end-page: 15029 ident: CR53 article-title: Co-adsorption of cations as the cause of the apparent pH dependence of hydrogen adsorption on a stepped platinum single-crystal electrode publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201709455 – volume: 12 start-page: 537 year: 2005 end-page: 541 ident: CR72 article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049505012719 – volume: 70 start-page: 718 year: 1966 end-page: 723 ident: CR83 article-title: Solubility of hydrogen in potassium hydroxide and sulfuric acid. salting-out and hydration publication-title: J. Phys. Chem. doi: 10.1021/j100875a018 – volume: 7 start-page: 1602579 year: 2017 ident: CR80 article-title: Hydrothermal synthesis of monolithic Co Se nanowire electrodes for oxygen evolution and overall water splitting with high efficiency and extraordinary catalytic stability publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602579 – volume: 71 start-page: 094110 year: 2005 ident: CR75 article-title: Wavelet analysis of extended X-ray absorption fine structure data publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.71.094110 – volume: 34 start-page: 2107291 year: 2022 ident: CR31 article-title: Electronically and geometrically modified single-atom Fe sites by adjacent Fe nanoparticles for enhanced oxygen reduction publication-title: Adv. Mater. doi: 10.1002/adma.202107291 – volume: 12 year: 2021 ident: CR34 article-title: Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction publication-title: Nat. Commun. doi: 10.1038/s41467-021-24079-8 – volume: 60 start-page: 18981 year: 2021 end-page: 19006 ident: CR8 article-title: Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202015738 – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR88 article-title: Projector augmented-wave method publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.50.17953 – volume: 10 start-page: 2667 year: 2018 end-page: 2678 ident: CR41 article-title: g-C N /NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO into renewable fuels publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.7b18835 – volume: 21 start-page: 345501 year: 2009 ident: CR78 article-title: Self-consistent aspects of X-ray absorption calculations publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/34/345501 – volume: 414 start-page: 332 year: 2001 end-page: 337 ident: CR1 article-title: Alternative energy technologies publication-title: Nature doi: 10.1038/35104599 – volume: 7 start-page: 436 year: 2021 end-page: 449 ident: CR25 article-title: Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity publication-title: Chem doi: 10.1016/j.chempr.2020.10.023 – volume: 71 start-page: 035105 year: 2005 ident: CR91 article-title: Linear response approach to the calculation of the effective interaction parameters in the LDA+U method publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.71.035105 – volume: 61 start-page: e202116068 year: 2022 ident: CR30 article-title: Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal–air batteries publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 5310 year: 2022 end-page: 5315 ident: CR68 article-title: Reconciling the volcano trend with the Butler–Volmer model for the hydrogen evolution reaction publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c01411 – volume: 141 start-page: 6254 year: 2019 end-page: 6262 ident: CR29 article-title: Versatile strategy for tuning orr activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13543 – volume: 49 start-page: 14251 year: 1994 end-page: 14269 ident: CR86 article-title: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.49.14251 – volume: 3 start-page: 967 year: 2020 end-page: 968 ident: CR16 article-title: Faster hydrogen production in alkaline media publication-title: Nat. Catal. doi: 10.1038/s41929-020-00540-7 – volume: 352 start-page: 797 year: 2016 end-page: 800 ident: CR42 article-title: Photochemical route for synthesizing atomically dispersed palladium catalysts publication-title: Science doi: 10.1126/science.aaf5251 – volume: 108 start-page: 937 year: 2011 end-page: 943 ident: CR70 article-title: Density functional theory in surface chemistry and catalysis publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1006652108 – volume: 31 start-page: 1808066 year: 2019 ident: CR61 article-title: Hydrogen evolution and oxidation: mechanistic studies and material advances publication-title: Adv. Mater. doi: 10.1002/adma.201808066 – volume: 10 year: 2019 ident: CR40 article-title: Genesis of electron deficient Pt1(0) in PDMS-PEG aggregates publication-title: Nat. Commun. doi: 10.1038/s41467-019-08804-y – volume: 12 start-page: 572 year: 2019 end-page: 581 ident: CR56 article-title: Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03282C – volume: 9 year: 2018 ident: CR27 article-title: Cation vacancy stabilization of single-atomic-site Pt /Ni(OH) catalyst for diboration of alkynes and alkenes publication-title: Nat. Commun. doi: 10.1038/s41467-018-03380-z – volume: 305 start-page: 972 year: 2004 end-page: 974 ident: CR2 article-title: Sustainable hydrogen production publication-title: Science doi: 10.1126/science.1103197 – volume: 14 start-page: 426 year: 2007 end-page: 432 ident: CR76 article-title: A new FEFF-based wavelet for EXAFS data analysis publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049507031901 – volume: 6 start-page: 7377 year: 2016 end-page: 7384 ident: CR93 article-title: Water dissociative adsorption on NiO(111): energetics and structure of the hydroxylated surface publication-title: ACS Catal. doi: 10.1021/acscatal.6b01997 – volume: 5 start-page: 367 year: 2020 end-page: 377 ident: CR4 article-title: Electrolysis of low-grade and saline surface water publication-title: Nat. Energy doi: 10.1038/s41560-020-0550-8 – volume: 40 start-page: 3616 year: 1989 end-page: 3621 ident: CR94 article-title: High-precision sampling for Brillouin-zone integration in metals publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.40.3616 – volume: 3 start-page: 634 year: 2011 end-page: 641 ident: CR20 article-title: Single-atom catalysis of CO oxidation using Pt /FeO publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 13 year: 2022 ident: CR26 article-title: Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution publication-title: Nat. Commun. doi: 10.1038/s41467-022-30148-3 – volume: 120 start-page: 851 year: 2020 end-page: 918 ident: CR7 article-title: Recent advances in electrocatalytic hydrogen evolution using nanoparticles publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00248 – volume: 32 start-page: 2109218 year: 2022 ident: CR23 article-title: Microenvironment engineering of ru single-atom catalysts by regulating the cation vacancies in NiFe-Layered double hydroxides publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202109218 – volume: 70 start-page: 4849 year: 1979 end-page: 4855 ident: CR49 article-title: Effect of chemical environment on magnitude of X-ray absorption resonance at LIII edges. Studies on metallic elements, compounds, and catalysts publication-title: J. Chem. Phys. doi: 10.1063/1.437376 – volume: 57 start-page: 678 year: 2004 end-page: 683 ident: CR103 article-title: Making optimal use of empirical energy functions: Force-field parameterization in crystal space publication-title: Proteins doi: 10.1002/prot.20251 – volume: 15 start-page: 1201 year: 2022 end-page: 1210 ident: CR50 article-title: Plasma-induced large-area N,Pt-doping and phase engineering of MoS nanosheets for alkaline hydrogen evolution publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03825G – volume: 6 start-page: 1175 year: 2021 end-page: 1180 ident: CR5 article-title: Is there anything better than Pt for HER? publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00246 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR89 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 7 year: 2016 ident: CR12 article-title: Platinum single-atom and cluster catalysis of the hydrogen evolution reaction publication-title: Nat. Commun. doi: 10.1038/ncomms13638 – volume: 1 start-page: 63 year: 2018 end-page: 72 ident: CR74 article-title: General synthesis and definitive structural identification of MN C single-atom catalysts with tunable electrocatalytic activities publication-title: Nat. Catal. doi: 10.1038/s41929-017-0008-y – volume: 57 start-page: 1505 year: 1998 end-page: 1509 ident: CR90 article-title: Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.57.1505 – volume: 51 start-page: 12495 year: 2012 end-page: 12498 ident: CR64 article-title: Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH) /metal catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204842 – volume: 12 year: 2021 ident: CR38 article-title: A general strategy for preparing pyrrolic-N type single-atom catalysts via pre-located isolated atoms publication-title: Nat. Commun. doi: 10.1038/s41467-021-27143-5 – volume: 79 start-page: 2739 year: 2000 end-page: 2753 ident: CR99 article-title: A systematic study of the vibrational free energies of polypeptides in folded and random states publication-title: Biophys. J. doi: 10.1016/S0006-3495(00)76513-1 – volume: 10 year: 2019 ident: CR35 article-title: Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction publication-title: Nat. Commun. doi: 10.1038/s41467-019-09765-y – volume: 28 start-page: 67 year: 2002 end-page: 80 ident: CR104 article-title: Reversibility of free energy simulations∶ slow growth may have a unique advantage publication-title: Mol. Simul. doi: 10.1080/08927020211971 – volume: 12 year: 2021 ident: CR33 article-title: Electronic metal–support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction publication-title: Nat. Commun. doi: 10.1038/s41467-021-23306-6 – volume: 73 start-page: 393 year: 1980 end-page: 398 ident: CR95 article-title: Convergence acceleration of iterative sequences. the case of scf iteration publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(80)80396-4 – volume: 13 year: 2022 ident: CR105 article-title: A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen publication-title: Nat. Commun. doi: 10.1038/s41467-022-28953-x – volume: 144 start-page: 2171 year: 2022 end-page: 2178 ident: CR37 article-title: Single carbon vacancy traps atomic platinum for hydrogen evolution catalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c10814 – volume: 2 start-page: 539 year: 2019 end-page: 573 ident: CR21 article-title: Single-atom catalysts: from design to application publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-019-00050-6 – volume: 11 year: 2020 ident: CR58 article-title: Pt-O bond as an active site superior to Pt in hydrogen evolution reaction publication-title: Nat. Commun. doi: 10.1038/s41467-019-14274-z – volume: 162 start-page: F1470 year: 2015 end-page: F1481 ident: CR60 article-title: Correcting the hydrogen diffusion limitation in rotating disk electrode measurements of hydrogen evolution reaction kinetics publication-title: J. Electrochem. Soc. doi: 10.1149/2.0501514jes – volume: 165 start-page: J3209 year: 2018 end-page: J3221 ident: CR62 article-title: Determining the viability of hydroxide-mediated bifunctional HER/HOR mechanisms through single-crystal voltammetry and microkinetic modeling publication-title: J. Electrochem. Soc. doi: 10.1149/2.0271815jes – volume: 120 start-page: 11900 year: 2020 end-page: 11955 ident: CR19 article-title: Chemical synthesis of single atomic site catalysts publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00818 – volume: 11 start-page: 6832 year: 2021 end-page: 6838 ident: CR67 article-title: Revisiting trends in the exchange current for hydrogen evolution publication-title: Catal. Sci. Technol. doi: 10.1039/D1CY01170G – volume: 68 start-page: e17582 year: 2022 ident: CR92 article-title: Quantitatively evaluating activity and number of catalytic sites on metal oxide for ammonium perchlorate decomposition publication-title: Aiche J. doi: 10.1002/aic.17582 – volume: 14 start-page: 6428 year: 2021 end-page: 6440 ident: CR39 article-title: Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01395E – volume: 376 start-page: 238 year: 1995 end-page: 240 ident: CR71 article-title: Why gold is the noblest of all the metals publication-title: Nature doi: 10.1038/376238a0 – volume: 12 start-page: 9635 year: 2018 end-page: 9638 ident: CR59 article-title: Best practices for reporting electrocatalytic performance of nanomaterials publication-title: ACS Nano doi: 10.1021/acsnano.8b07700 – volume: 32 start-page: 1315 year: 2020 end-page: 1321 ident: CR69 article-title: High activity toward the hydrogen evolution reaction on the edges of MoS -supported platinum nanoclusters using cluster expansion and electrochemical modeling publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b05244 – volume: 16 start-page: 6101 year: 2014 end-page: 6107 ident: CR98 article-title: Co-adsorption of water and glycine on Cu{110} publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp55094j – volume: 11 year: 2020 ident: CR36 article-title: Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction publication-title: Nat. Commun. doi: 10.1038/s41467-020-14848-2 – volume: 267 start-page: 108033 year: 2021 ident: CR100 article-title: VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108033 – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR84 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 7 start-page: 2255 year: 2014 end-page: 2260 ident: CR11 article-title: New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00440J – volume: 64 start-page: 1045 year: 1992 end-page: 1097 ident: CR96 article-title: Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.64.1045 – volume: 10 year: 2019 ident: CR52 article-title: Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions publication-title: Nat. Commun. doi: 10.1038/s41467-019-12773-7 – volume: 12 start-page: 15217 year: 2010 end-page: 15224 ident: CR65 article-title: Koper MTM. Impedance spectroscopy of H and OH adsorption on stepped single-crystal platinum electrodes in alkaline and acidic media publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp00104j – volume: 23 start-page: 631 year: 1993 end-page: 640 ident: CR66 article-title: Generalized analytical expressions for Tafel slope, reaction order and a.c. impedance for the hydrogen evolution reaction (HER): mechanism of HER on platinum in alkaline media publication-title: J. Appl. Electrochem. doi: 10.1007/BF00721955 – volume: 2 start-page: 17031 year: 2017 ident: CR9 article-title: Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes publication-title: Nat. Energy doi: 10.1038/nenergy.2017.31 – volume: 5 start-page: 100112 year: 2021 ident: CR45 article-title: Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy publication-title: Appl. Surf. Sci. Adv. doi: 10.1016/j.apsadv.2021.100112 – volume: 143 start-page: 20144 year: 2021 end-page: 20156 ident: CR47 article-title: A theory-guided X-ray absorption spectroscopy approach for identifying active sites in atomically dispersed transition-metal catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c07116 – volume: 10 year: 2019 ident: CR13 article-title: Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction publication-title: Nat. Commun. doi: 10.1038/s41467-019-12887-y – volume: 334 start-page: 1256 year: 2011 end-page: 1260 ident: CR15 article-title: Enhancing hydrogen evolution activity in water splitting by Tailoring Li -Ni(OH) -Pt interfaces publication-title: Science doi: 10.1126/science.1211934 – volume: 59 start-page: 1758 year: 1999 ident: 34619_CR87 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.59.1758 – volume: 12 year: 2021 ident: 34619_CR38 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27143-5 – volume: 141 start-page: 6254 year: 2019 ident: 34619_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13543 – volume: 31 start-page: 1808066 year: 2019 ident: 34619_CR61 publication-title: Adv. Mater. doi: 10.1002/adma.201808066 – volume: 1 start-page: 63 year: 2018 ident: 34619_CR74 publication-title: Nat. Catal. doi: 10.1038/s41929-017-0008-y – volume: 7 start-page: 436 year: 2021 ident: 34619_CR25 publication-title: Chem doi: 10.1016/j.chempr.2020.10.023 – volume: 63 start-page: 125120 year: 2001 ident: 34619_CR77 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.63.125120 – volume: 51 start-page: 12495 year: 2012 ident: 34619_CR64 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204842 – volume: 40 start-page: 3616 year: 1989 ident: 34619_CR94 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.40.3616 – volume: 21 start-page: 345501 year: 2009 ident: 34619_CR78 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/34/345501 – volume: 371 start-page: 375 year: 2021 ident: 34619_CR102 publication-title: Science doi: 10.1126/science.abe5757 – volume: 58 start-page: 7565 year: 1998 ident: 34619_CR73 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.58.7565 – volume: 13 year: 2022 ident: 34619_CR32 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27735-1 – volume: 305 start-page: 972 year: 2004 ident: 34619_CR2 publication-title: Science doi: 10.1126/science.1103197 – volume: 785 start-page: 190 year: 2017 ident: 34619_CR63 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.12.037 – volume: 3 start-page: 656 year: 2020 ident: 34619_CR22 publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-020-00076-1 – volume: 4 start-page: 711 year: 2021 ident: 34619_CR17 publication-title: Nat. Catal. doi: 10.1038/s41929-021-00663-5 – volume: 45 start-page: 613 year: 2000 ident: 34619_CR82 publication-title: J. Chem. Eng. Data. doi: 10.1021/je000019h – volume: 312 start-page: 1322 year: 2006 ident: 34619_CR6 publication-title: Science doi: 10.1126/science.1127180 – volume: 9 year: 2018 ident: 34619_CR27 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03380-z – volume: 10 year: 2019 ident: 34619_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12887-y – volume: 5 start-page: 891 year: 2020 ident: 34619_CR3 publication-title: Nat. Energy doi: 10.1038/s41560-020-00710-8 – volume: 122 start-page: 16756 year: 2018 ident: 34619_CR54 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.8b03660 – volume: 43 start-page: 376 year: 1976 ident: 34619_CR48 publication-title: J. Catal. doi: 10.1016/0021-9517(76)90328-6 – volume: 6 start-page: 15 year: 1996 ident: 34619_CR84 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 57 start-page: 678 year: 2004 ident: 34619_CR103 publication-title: Proteins doi: 10.1002/prot.20251 – volume: 60 start-page: 18981 year: 2021 ident: 34619_CR8 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202015738 – volume: 71 start-page: 094110 year: 2005 ident: 34619_CR75 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.71.094110 – volume: 70 start-page: 4849 year: 1979 ident: 34619_CR49 publication-title: J. Chem. Phys. doi: 10.1063/1.437376 – volume: 68 start-page: e17582 year: 2022 ident: 34619_CR92 publication-title: Aiche J. doi: 10.1002/aic.17582 – volume: 14 start-page: 6428 year: 2021 ident: 34619_CR39 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01395E – volume: 7 start-page: 1892 year: 2020 ident: 34619_CR57 publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI00124D – volume: 376 start-page: 238 year: 1995 ident: 34619_CR71 publication-title: Nature doi: 10.1038/376238a0 – volume: 348 start-page: 1230 year: 2015 ident: 34619_CR46 publication-title: Science doi: 10.1126/science.aaa8765 – volume: 13 year: 2022 ident: 34619_CR105 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28953-x – volume: 10 year: 2019 ident: 34619_CR52 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12773-7 – volume: 16 start-page: 6101 year: 2014 ident: 34619_CR98 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp55094j – volume: 414 start-page: 332 year: 2001 ident: 34619_CR1 publication-title: Nature doi: 10.1038/35104599 – volume: 13 start-page: 5188 year: 1976 ident: 34619_CR97 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.13.5188 – volume: 10 year: 2019 ident: 34619_CR40 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08804-y – volume: 7 start-page: 2255 year: 2014 ident: 34619_CR11 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00440J – volume: 54 start-page: 11169 year: 1996 ident: 34619_CR85 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.54.11169 – volume: 3 start-page: 967 year: 2020 ident: 34619_CR16 publication-title: Nat. Catal. doi: 10.1038/s41929-020-00540-7 – volume: 64 start-page: 103963 year: 2019 ident: 34619_CR14 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103963 – volume: 49 start-page: 14251 year: 1994 ident: 34619_CR86 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.49.14251 – volume: 11 year: 2020 ident: 34619_CR36 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14848-2 – volume: 162 start-page: F1470 year: 2015 ident: 34619_CR60 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0501514jes – volume: 70 start-page: 718 year: 1966 ident: 34619_CR83 publication-title: J. Phys. Chem. doi: 10.1021/j100875a018 – volume: 71 start-page: 035105 year: 2005 ident: 34619_CR91 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.71.035105 – volume: 102 start-page: 421 year: 2016 ident: 34619_CR43 publication-title: Water Res doi: 10.1016/j.watres.2016.06.051 – volume: 12 start-page: 15217 year: 2010 ident: 34619_CR65 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp00104j – volume: 143 start-page: 20144 year: 2021 ident: 34619_CR47 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c07116 – volume: 1 start-page: 37 year: 2009 ident: 34619_CR101 publication-title: Nat. Chem. doi: 10.1038/nchem.121 – volume: 10 year: 2019 ident: 34619_CR35 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09765-y – volume: 12 start-page: 572 year: 2019 ident: 34619_CR56 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03282C – volume: 165 start-page: J3209 year: 2018 ident: 34619_CR62 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0271815jes – volume: 64 start-page: 1045 year: 1992 ident: 34619_CR96 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.64.1045 – volume: 267 start-page: 108033 year: 2021 ident: 34619_CR100 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108033 – volume: 120 start-page: 851 year: 2020 ident: 34619_CR7 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00248 – volume: 12 year: 2021 ident: 34619_CR33 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23306-6 – volume: 144 start-page: 2171 year: 2022 ident: 34619_CR37 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c10814 – volume: 23 start-page: 631 year: 1993 ident: 34619_CR66 publication-title: J. Appl. Electrochem. doi: 10.1007/BF00721955 – volume: 3 start-page: 634 year: 2011 ident: 34619_CR20 publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 144 start-page: 6028 year: 2022 ident: 34619_CR55 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c01094 – volume: 11 start-page: 6832 year: 2021 ident: 34619_CR67 publication-title: Catal. Sci. Technol. doi: 10.1039/D1CY01170G – volume: 6 start-page: 1175 year: 2021 ident: 34619_CR5 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00246 – volume: 28 start-page: 67 year: 2002 ident: 34619_CR104 publication-title: Mol. Simul. doi: 10.1080/08927020211971 – volume: 334 start-page: 1256 year: 2011 ident: 34619_CR15 publication-title: Science doi: 10.1126/science.1211934 – volume: 12 start-page: 537 year: 2005 ident: 34619_CR72 publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049505012719 – volume: 34 start-page: 2107291 year: 2022 ident: 34619_CR31 publication-title: Adv. Mater. doi: 10.1002/adma.202107291 – volume: 34 start-page: 164 year: 1962 ident: 34619_CR81 publication-title: Anal. Chem. doi: 10.1021/ac60181a002 – volume: 2 start-page: 65 year: 2018 ident: 34619_CR18 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 352 start-page: 797 year: 2016 ident: 34619_CR42 publication-title: Science doi: 10.1126/science.aaf5251 – volume: 5 start-page: 100112 year: 2021 ident: 34619_CR45 publication-title: Appl. Surf. Sci. Adv. doi: 10.1016/j.apsadv.2021.100112 – volume: 5 start-page: 367 year: 2020 ident: 34619_CR4 publication-title: Nat. Energy doi: 10.1038/s41560-020-0550-8 – volume: 205 start-page: 117678 year: 2021 ident: 34619_CR44 publication-title: Water Res doi: 10.1016/j.watres.2021.117678 – volume: 10 year: 2019 ident: 34619_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12459-0 – volume: 2 start-page: 539 year: 2019 ident: 34619_CR21 publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-019-00050-6 – volume: 77 start-page: 3865 year: 1996 ident: 34619_CR89 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 7 year: 2016 ident: 34619_CR12 publication-title: Nat. Commun. doi: 10.1038/ncomms13638 – volume: 50 start-page: 17953 year: 1994 ident: 34619_CR88 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.50.17953 – volume: 13 year: 2022 ident: 34619_CR26 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30148-3 – volume: 141 start-page: 14515 year: 2019 ident: 34619_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b06482 – volume: 4 start-page: 60 year: 2019 ident: 34619_CR51 publication-title: Nat. Energy doi: 10.1038/s41560-018-0292-z – volume: 2 start-page: 17031 year: 2017 ident: 34619_CR9 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.31 – volume: 10 start-page: 2667 year: 2018 ident: 34619_CR41 publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.7b18835 – volume: 108 start-page: 937 year: 2011 ident: 34619_CR70 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1006652108 – volume: 16 start-page: 57 year: 2017 ident: 34619_CR10 publication-title: Nat. Mater. doi: 10.1038/nmat4738 – volume: 12 start-page: 9635 year: 2018 ident: 34619_CR59 publication-title: ACS Nano doi: 10.1021/acsnano.8b07700 – volume: 72 start-page: 621 year: 2000 ident: 34619_CR79 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.72.621 – volume: 32 start-page: 1315 year: 2020 ident: 34619_CR69 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b05244 – volume: 14 start-page: 426 year: 2007 ident: 34619_CR76 publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049507031901 – volume: 7 start-page: 1602579 year: 2017 ident: 34619_CR80 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602579 – volume: 79 start-page: 2739 year: 2000 ident: 34619_CR99 publication-title: Biophys. J. doi: 10.1016/S0006-3495(00)76513-1 – volume: 11 year: 2020 ident: 34619_CR58 publication-title: Nat. Commun. doi: 10.1038/s41467-019-14274-z – volume: 73 start-page: 393 year: 1980 ident: 34619_CR95 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(80)80396-4 – volume: 32 start-page: 2109218 year: 2022 ident: 34619_CR23 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202109218 – volume: 61 start-page: e202116068 year: 2022 ident: 34619_CR30 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202116068 – volume: 6 start-page: 7377 year: 2016 ident: 34619_CR93 publication-title: ACS Catal. doi: 10.1021/acscatal.6b01997 – volume: 12 year: 2021 ident: 34619_CR34 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24079-8 – volume: 120 start-page: 11900 year: 2020 ident: 34619_CR19 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00818 – volume: 56 start-page: 15025 year: 2017 ident: 34619_CR53 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201709455 – volume: 15 start-page: 1201 year: 2022 ident: 34619_CR50 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03825G – volume: 13 start-page: 5310 year: 2022 ident: 34619_CR68 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c01411 – volume: 57 start-page: 1505 year: 1998 ident: 34619_CR90 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.57.1505 |
SSID | ssj0000391844 |
Score | 2.6875913 |
Snippet | Developing active single-atom-catalyst (SAC) for alkaline hydrogen evolution reaction (HER) is a promising solution to lower the green hydrogen cost. However,... Establishing robust structure/performance correlations is critical for the development of single-atom-catalysts with improved activity. Here, the axial ligand... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6875 |
SubjectTerms | 119/118 140/131 140/133 140/146 147/135 147/137 147/143 639/301/299/886 639/638/675 639/925/357 Affinity Alkaline water Catalysis Catalysts Catalytic activity Correlation Electron affinity Energy efficiency Green hydrogen Homogeneity Humanities and Social Sciences Hydrogen Hydrogen evolution reactions Iron compounds Irradiation Ligands multidisciplinary Nickel compounds Platinum Science Science (multidisciplinary) Single atom catalysts |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA6yIPgiXrHuKhF807Kd5tLkUcVlERQfXNi3kObiFmfTYacjDv55T04743ZBffG1SWiSc5J8X3IuhLyUPj_OBVZ6oX3JPRAUACGyjLyyEo4zzlh2FP74SZ6e8Q_n4vxaqq9sEzaGBx4n7rhyNbONhq3cK84a31YyNMpHV8UYnUQ3XzjzrpEp3IOZBurCJy-ZiqnjNcc9AY3XObCGUsxOIgzYP0OZN20kbzyU4vlzco_cnYAjfTN2-D65FdIDcntMJbl9SH5-7tKq7zDvAwVQR-0P0Cy67L7a5OlotUH7RFfZ9i1tLmm-I1iGEjj3ZYl3ONv1QAc0ol3n-h16SlK7_GYzEqUXW3_Vg7bR8H3SVgp4E70iHpGzk_df3p2WU2KF0gnFBpyAxQLILwtKRO0AE0oZQZqibj2U1N4KaXORcK71SriFDSC90AoABFGxx-Qg9Sk8IdRW2scmAspwNReh0Sq2CjAWwDqhbC0KsthNsnFT1PGc_GJp8PWbKTMKxoBgDArGQJtX-zarMebGX2u_zbLb18zxsvEDaJGZtMj8S4sKcrSTvJkW8doAshNAx4ByFeTFvhiWX35TsSn0m7GOkhp4XkGamcbMOjQvSd0FBvLWEsC25gV5vdOt3z__84Cf_o8BH5I7dV4L2aCxPiIHw9UmPAN4NbTPcSX9AsqKJIk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA66IvgiXrG6SgTftGzbXJo-iYrjIig-uLBvIc1lt-xsOk474uCf9yTNzNIF97VJaJtzkvOdO0JvuAnOOUtywxqTUwMKCoAQnjtaKA7ijBISEoW_fefHJ_TrKTtNBrchhVXu7sR4UZteBxv5EYhZBtgY8O_71a88dI0K3tXUQuM2ulOCpAkhXWLxZW9jCdXPBaUpV6Yg4mig8WaIIewUdIeczeRRLNs_w5rXIyWvuUujFFo8QPcTfMQfJno_RLesf4TuTg0lt4_R3x-dX_Vd7P6AAdph9Qf4Cy-7M-UNnmI3cO_xKkTA-c0lDpaCpc1B877MoyVnO4x4jKG0Q5jfxXxJrJYXKuBRfL416x54DtvfiWcxoM6YG_EEnSw-__x0nKf2CrlmgoxxA8oSVGBiBXONBmTIuQOasqo1MFIZxbgKQ0zr1gimS2WBhrZlAAucIE_Rge-9fYawKhrjagdYQ1eU2boRrhWAtADcMaEqlqFyt8lSp9rjoQXGUkYfOBFyIowEwshIGAlr3u7XrKbKGzfO_hhot58ZqmbHB_36TKZDKAtdEVU3AAuMoKQ2bcFtLYzThXNOc5Ghwx3lZTrKg7xivAy93g_DIQyeFeVtv5nmCN6AtpehesYxsw-aj_juPJbzbjhA7oZm6N2Ot65e_v8ffn7zt75A96rA5SFgsTpEB-N6Y18CfBrbV_GM_ANTBBpv priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OOwRfxE-sd0oE37TYbT6aPq7icSwogh7cW0jzcVfca5fdrrjcP-8kbVd6qOBrM6FpZqb5TeYL4LWwwTnnaGp5aVNm0UBBECJSzzIt8DhjlIZE4U-fxdk5W1zwiwPIx1yYGLQfS1rG3_QYHfZuw6JKx9hzhqA_5XfgKJRqR9k-ms8XXxf7m5VQ81wyNmTIZFT-YfLkFIrF-icI83Z85C0naTx7Th_A_QE0knm_zIdw4JpHcLdvI7l7DDdf6mbV1rHnA0FAR_RPlCqyrC91Y0kfsUHahqxC3FuzvSbhfmDpUrS3r9N4f7PbdKSLAbSbQF_HLEmil991QKHkamfXLUoacT8GSSWINWNGxBM4P_347cNZOjRVSA2XtIsbMJuh4Uud5L40iAeF8MhJnlcWR3KrudBhiBtTWcnNTDvknKs4ggEv6VM4bNrGPQOis9L6wiPCMDnjriilryTiK4R0XOqcJzAbN1mZoeJ4aHyxVNHzTaXqGaOQMSoyRuGcN_s5q77exj-p3wfe7SlDrez4oF1fqkF2VGZyqosSwYCVjBa2yoQrpPUm894bIRM4GTmvBgXeKER1HE0xNLcSeLUfRtUL_hTduHbb00hRoo2XQDGRmMmCpiNNfRWLeJcCgXbJEng7ytbvl__9g5__H_kx3MuD1IewxfwEDrv11r1AENVVLwet-QVKhxl- priority: 102 providerName: Springer Nature |
Title | Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction |
URI | https://link.springer.com/article/10.1038/s41467-022-34619-5 https://www.proquest.com/docview/2735576597 https://www.proquest.com/docview/2735869550 https://pubmed.ncbi.nlm.nih.gov/PMC9653394 https://doaj.org/article/0c23a79eedd8437db06e78dfc0fffc68 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aRaC9IK5aYFRG4g0CbRw7zgNCXbUyVdo0AZX6FjmxvUVkSWlTtIo_z7GTFDoNHnhJpdhWUp9z4u-zzwXgNVf2cE5TX7FY-aFCgoIghPsm7EuOy1lIqQ0UPjvnp9NwMmOzHejKHbUTuLyT2tl6UtNF8e7m-_ojGvyHJmRcvF-GztydX3qIhMBnu7CPK1NkKxqctXDffZlpjIQmbGNn7h56APcpt2nsbJ2ZP5Yql9F_C4bedqK8dZLqFqjxQ3jQIksybFThEezo8jHca2pNrp_Az4u8nFe5KwxBEPUReYOqR4r8UpaKNG4dpCrJ3DrHlatrYjcRCu0jKb_23SbPelmT2nnZLm3_3IVSEll8kxaqkqu1WlSojkT_aNWZICB1YRNPYTo--To69dvKC37GBK3dXAwGyI6pFszEGYJGzg2KmwWpwpZAScalbWJZlirBsoHUKF6dMkQMRtBnsFdWpT4EIvuxMpFBGJIFIdNRLEwqEIQh7mNCBsyDQTfJSdamJbfVMYrEHY9TkTQySlBGiZNRgmPebMbMm6Qc_-x9bGW36WkTarsb1eIyae0z6WcBlVGMiEGJkEYq7XMdCWWyvjEm48KDo07ySaekCUI_hnwNOZkHrzbNaJ_20EWWulo1fQSPkQh6EG1pzNYLbbeU-ZXL9B1zRONx6MHbTrd-P_zvf_j5fz_oBRwE1hasm2NwBHv1YqVfIuiq0x7sRrMIr2L8qQf7w-HkywR_j0_OLz7j3REf9dx2Rs9Z3C82MjGi |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4qkGChgJThA1jR9xDgjxWrb0IQ6t1Jtx_Ggjtsmy2QVW_Cd-I2Mn2SqV6K3XtbOxMzOebzwvhF5w451zlsSG5SamBgwUACE8djRRHNQZJcQnCu8f8PER_XLMjtfQ3z4XxodV9mdiOKhNrf0d-RaoWQbYGPDv2-mP2HeN8t7VvoVGyxa7dvkLTLbmzc5HoO_LNB19OvwwjruuArFmgsxjQjnIN1h-xArmcg2AiHMHW2FpYWAkNYpx5YeY1oURTG8rC0u3BQNt6ASB_72GrsMmcm_sidHn1Z2Or7YuKO1ycxIithoaTqIQMg_vzWM20H-hTcAA216MzLzgng1ab3QH3e7gKn7X8tddtGare-hG28ByeR_9-VpW07oM3SYwQEmsfgM_40l5oiqD21gRXFd46iPuqsUZ9jcTExuDpX8Wh5ujZTPH8xC62_j5ZcjPxGryXXn8i0-XZlYDj2P7s5MRDCg35GI8QEdX8uEfovWqruwGwirJjcscYBudUmazXLhCALIDMMmESlmEtvuPLHVX69y33JjI4HMnQraEkUAYGQgj4ZlXq2embaWPS2e_97RbzfRVusMP9exEdkIvE50SleUAQ4ygJDNFwm0mjNOJc05zEaHNnvKyOzoaec7oEXq-Ggah954cVdl60c4RPAfrMkLZgGMGCxqOVOVpKB-ec4D4OY3Q6563zl_-_w0_unytz9DN8eH-ntzbOdh9jG6lnuN9sGS6idbns4V9AtBtXjwN8oLRt6sW0H-DCFcv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLbKVCAuiFUdKGAkOEE0abzEOSBEaUcthdEIUak343hpI6bJMAsw4p_x63h2kqlSid56jZ3FeYu_57ch9JIb75yzJDIsMxE1YKAACOGRo7HisJ1RQnyi8OcRPzimH0_YyQb62-bC-LDKVicGRW0q7c_IB7DNMsDGgH8HrgmLGO8N301_RL6DlPe0tu00ahY5sqtfYL7N3x7uAa1fJclw_-uHg6jpMBBpJsgiIpSDrIMVSKxgLtMAjjh3sCyW5AZGEqMYV36IaZ0bwfSOsrAMmzPYGZ0g8NwbaDP1VlEPbe7uj8Zf1ic8vva6oLTJ1ImJGMxp0EshgB7enEWssxuGpgEdpHs5TvOSszbsgcO76E4DXvH7mtvuoQ1b3kc363aWqwfoz7gop1URek9gAJZY_QbuxpPiVJUG15EjuCrx1Mfflctz7M8pJjYCu_88CudIq_kCL0Ig79zPL0K2JlaT78qjYXy2MrMKOB7bn43EYMC8ITPjITq-ll__CPXKqrRbCKs4My51gHR0QplNM-FyATgPoCUTKmF9tNP-ZKmbyue-AcdEBg88EbImjATCyEAYCfe8Xt8zret-XDl719NuPdPX7A4XqtmpbFSAjHVCVJoBKDGCktTkMbepME7HzjnNRR9tt5SXjSKZywu276MX62FQAd6vo0pbLes5gmdga_ZR2uGYzgd1R8riLBQTzzgA_oz20ZuWty5e_v8FP776W5-jWyCc8tPh6OgJup14hveRk8k26i1mS_sUcNwif9YIDEbfrltG_wEeFFzB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pinpointing+the+axial+ligand+effect+on+platinum+single-atom-catalyst+towards+efficient+alkaline+hydrogen+evolution+reaction&rft.jtitle=Nature+communications&rft.au=Zhang%2C+Tianyu&rft.au=Jin%2C+Jing&rft.au=Chen%2C+Junmei&rft.au=Fang%2C+Yingyan&rft.date=2022-11-12&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft_id=info:doi/10.1038%2Fs41467-022-34619-5&rft_id=info%3Apmid%2F36371427&rft.externalDocID=PMC9653394 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |