universal distribution of evolutionary rates of genes and distinct characteristics of eukaryotic genes of different apparent ages
The evolutionary rates of protein-coding genes in an organism span, approximately, 3 orders of magnitude and show a universal, approximately log-normal distribution in a broad variety of species from prokaryotes to mammals. This universal distribution implies a steady-state process, with identical d...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 106; no. 18; pp. 7273 - 7280 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
05.05.2009
National Acad Sciences |
Series | Inaugural Article |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.0901808106 |
Cover
Loading…
Abstract | The evolutionary rates of protein-coding genes in an organism span, approximately, 3 orders of magnitude and show a universal, approximately log-normal distribution in a broad variety of species from prokaryotes to mammals. This universal distribution implies a steady-state process, with identical distributions of evolutionary rates among genes that are gained and genes that are lost. A mathematical model of such process is developed under the single assumption of the constancy of the distributions of the propensities for gene loss (PGL). This model predicts that genes of different ages, that is, genes with homologs detectable at different phylogenetic depths, substantially differ in those variables that correlate with PGL. We computationally partition protein-coding genes from humans, flies, and Aspergillus fungus into age classes, and show that genes of different ages retain the universal log-normal distribution of evolutionary rates, with a shift toward higher rates in "younger" classes but also with a substantial overlap. The only exception involves human primate-specific genes that show a heavy tail of rapidly evolving genes, probably owing to gene annotation artifacts. As predicted, the gene age classes differ in characteristics correlated with PGL. Compared with "young" genes (e.g., mammal-specific human ones), "old" genes (e.g., eukaryote-specific), on average, are longer, are expressed at a higher level, possess a higher intron density, evolve slower on the short time scale, and are subject to stronger purifying selection. Thus, genome evolution fits a simple model with approximately uniform rates of gene gain and loss, without major bursts of genomic innovation. |
---|---|
AbstractList | The evolutionary rates of protein-coding genes in an organism span, approximately, 3 orders of magnitude and show a universal, approximately log-normal distribution in a broad variety of species from prokaryotes to mammals. This universal distribution implies a steady-state process, with identical distributions of evolutionary rates among genes that are gained and genes that are lost. A mathematical model of such process is developed under the single assumption of the constancy of the distributions of the propensities for gene loss (PGL). This model predicts that genes of different ages, that is, genes with homologs detectable at different phylogenetic depths, substantially differ in those variables that correlate with PGL. We computationally partition protein-coding genes from humans, flies, and
Aspergillus
fungus into age classes, and show that genes of different ages retain the universal log-normal distribution of evolutionary rates, with a shift toward higher rates in “younger” classes but also with a substantial overlap. The only exception involves human primate-specific genes that show a heavy tail of rapidly evolving genes, probably owing to gene annotation artifacts. As predicted, the gene age classes differ in characteristics correlated with PGL. Compared with “young” genes (e.g., mammal-specific human ones), “old” genes (e.g., eukaryote-specific), on average, are longer, are expressed at a higher level, possess a higher intron density, evolve slower on the short time scale, and are subject to stronger purifying selection. Thus, genome evolution fits a simple model with approximately uniform rates of gene gain and loss, without major bursts of genomic innovation. The evolutionary rates of protein-coding genes in an organism span, approximately, 3 orders of magnitude and show a universal, approximately log-normal distribution in a broad variety of species from prokaryotes to mammals. This universal distribution implies a steady-state process, with identical distributions of evolutionary rates among genes that are gained and genes that are lost. A mathematical model of such process is developed under the single assumption of the constancy of the distributions of the propensities for gene loss (PGL). This model predicts that genes of different ages, that is, genes with homologs detectable at different phylogenetic depths, substantially differ in those variables that correlate with PGL. We computationally partition protein-coding genes from humans, flies, and Aspergillus fungus into age classes, and show that genes of different ages retain the universal log-normal distribution of evolutionary rates, with a shift toward higher rates in 'younger' classes but also with a substantial overlap. The only exception involves human primate-specific genes that show a heavy tail of rapidly evolving genes, probably owing to gene annotation artifacts. As predicted, the gene age classes differ in characteristics correlated with PGL. Compared with 'young' genes (e.g., mammal-specific human ones), 'old' genes (e.g., eukaryote-specific), on average, are longer, are expressed at a higher level, possess a higher intron density, evolve slower on the short time scale, and are subject to stronger purifying selection. Thus, genome evolution fits a simple model with approximately uniform rates of gene gain and loss, without major bursts of genomic innovation. The evolutionary rates of protein-coding genes in an organism span, approximately, 3 orders of magnitude and show a universal, approximately log-normal distribution in a broad variety of species from prokaryotes to mammals. This universal distribution implies a steady-state process, with identical distributions of evolutionary rates among genes that are gained and genes that are lost. A mathematical model of such process is developed under the single assumption of the constancy of the distributions of the propensities for gene loss (PGL). This model predicts that genes of different ages, that is, genes with homologs detectable at different phylogenetic depths, substantially differ in those variables that correlate with PGL. We computationally partition protein-coding genes from humans, flies, and Aspergillus fungus into age classes, and show that genes of different ages retain the universal log-normal distribution of evolutionary rates, with a shift toward higher rates in "younger" classes but also with a substantial overlap. The only exception involves human primate-specific genes that show a heavy tail of rapidly evolving genes, probably owing to gene annotation artifacts. As predicted, the gene age classes differ in characteristics correlated with PGL. Compared with "young" genes (e.g., mammal-specific human ones), "old" genes (e.g., eukaryote-specific), on average, are longer, are expressed at a higher level, possess a higher intron density, evolve slower on the short time scale, and are subject to stronger purifying selection. Thus, genome evolution fits a simple model with approximately uniform rates of gene gain and loss, without major bursts of genomic innovation.The evolutionary rates of protein-coding genes in an organism span, approximately, 3 orders of magnitude and show a universal, approximately log-normal distribution in a broad variety of species from prokaryotes to mammals. This universal distribution implies a steady-state process, with identical distributions of evolutionary rates among genes that are gained and genes that are lost. A mathematical model of such process is developed under the single assumption of the constancy of the distributions of the propensities for gene loss (PGL). This model predicts that genes of different ages, that is, genes with homologs detectable at different phylogenetic depths, substantially differ in those variables that correlate with PGL. We computationally partition protein-coding genes from humans, flies, and Aspergillus fungus into age classes, and show that genes of different ages retain the universal log-normal distribution of evolutionary rates, with a shift toward higher rates in "younger" classes but also with a substantial overlap. The only exception involves human primate-specific genes that show a heavy tail of rapidly evolving genes, probably owing to gene annotation artifacts. As predicted, the gene age classes differ in characteristics correlated with PGL. Compared with "young" genes (e.g., mammal-specific human ones), "old" genes (e.g., eukaryote-specific), on average, are longer, are expressed at a higher level, possess a higher intron density, evolve slower on the short time scale, and are subject to stronger purifying selection. Thus, genome evolution fits a simple model with approximately uniform rates of gene gain and loss, without major bursts of genomic innovation. The evolutionary rates of protein-coding genes in an organism span, approximately, 3 orders of magnitude and show a universal, approximately log-normal distribution in a broad variety of species from prokaryotes to mammals. This universal distribution implies a steady-state process, with identical distributions of evolutionary rates among genes that are gained and genes that are lost. A mathematical model of such process is developed under the single assumption of the constancy of the distributions of the propensities for gene loss (PGL). This model predicts that genes of different ages, that is, genes with homologs detectable at different phylogenetic depths, substantially differ in those variables that correlate with PGL. We computationally partition protein-coding genes from humans, flies, and Aspergillus fungus into age classes, and show that genes of different ages retain the universal log-normal distribution of evolutionary rates, with a shift toward higher rates in "younger" classes but also with a substantial overlap. The only exception involves human primate-specific genes that show a heavy tail of rapidly evolving genes, probably owing to gene annotation artifacts. As predicted, the gene age classes differ in characteristics correlated with PGL. Compared with "young" genes (e.g., mammal-specific human ones), "old" genes (e.g., eukaryotespecific), on average, are longer, are expressed at a higher level, possess a higher intron density, evolve slower on the short time scale, and are subject to stronger purifying selection. Thus, genome evolution fits a simple model with approximately uniform rates of gene gain and loss, without major bursts of genomic innovation. The evolutionary rates of protein-coding genes in an organism span, approximately, 3 orders of magnitude and show a universal, approximately log-normal distribution in a broad variety of species from prokaryotes to mammals. This universal distribution implies a steady-state process, with identical distributions of evolutionary rates among genes that are gained and genes that are lost. A mathematical model of such process is developed under the single assumption of the constancy of the distributions of the propensities for gene loss (PGL). This model predicts that genes of different ages, that is, genes with homologs detectable at different phylogenetic depths, substantially differ in those variables that correlate with PGL. We computationally partition protein-coding genes from humans, flies, and Aspergillus fungus into age classes, and show that genes of different ages retain the universal log-normal distribution of evolutionary rates, with a shift toward higher rates in "younger" classes but also with a substantial overlap. The only exception involves human primate-specific genes that show a heavy tail of rapidly evolving genes, probably owing to gene annotation artifacts. As predicted, the gene age classes differ in characteristics correlated with PGL. Compared with "young" genes (e.g., mammal-specific human ones), "old" genes (e.g., eukaryote-specific), on average, are longer, are expressed at a higher level, possess a higher intron density, evolve slower on the short time scale, and are subject to stronger purifying selection. Thus, genome evolution fits a simple model with approximately uniform rates of gene gain and loss, without major bursts of genomic innovation. [PUBLICATION ABSTRACT] |
Author | Koonin, Eugene V Novichkov, Pavel S Wolf, Yuri I Lipman, David J Karev, Georgy P |
Author_xml | – sequence: 1 fullname: Wolf, Yuri I – sequence: 2 fullname: Novichkov, Pavel S – sequence: 3 fullname: Karev, Georgy P – sequence: 4 fullname: Koonin, Eugene V – sequence: 5 fullname: Lipman, David J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19351897$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstvEzEQxleoiKaFMydgxQFxSevX-nGphCpeUiUO0LPl3R2nDhs72N4IjvzneJPQQA-tL_aMf9_YHn8n1ZEPHqrqOUZnGAl6vvYmnSGFsEQSI_6ommGk8JwzhY6qGUJEzCUj7Lg6SWmJEFKNRE-qY6xog6USs-r36N0GYjJD3buUo2vH7IKvg61hE4ZtYOKvOpoMacouwJeF8f2Wd77LdXdjoukyxCnRbSkYvxdVKOFeUHK9sxYi-Fyb9drsFgtIT6vH1gwJnu3n0-r6w_tvl5_mV18-fr58dzXvGknznBLVWmxBWdkbKhrWQKt6pZSg0FCOoMWdElYYoojsgXcMDFYIrOiZ6K2kp9XFru56bFfQd-X8aAa9jm5VrqqDcfr_He9u9CJsNOFlYF4KvNkXiOHHCCnrlUsdDIPxEMakuSCESYEfBBknjHOBHgQJIpQzRgv4-g64DGP0pV2FwQwrSUiBXv77wNuX_f3sApzvgC6GlCLYA4L0ZCc92Ukf7FQUzR1F57KZPFE65IZ7dG_3V5k2DqdwjaUWpCjsOAwZfuaCvrofLcSLHbFMOcRbhCEmKeHkUMGaoM2iuFBffy1toQhzIhEX9A9gH_1_ |
CitedBy_id | crossref_primary_10_1093_molbev_msab352 crossref_primary_10_1016_j_tibs_2016_05_013 crossref_primary_10_1111_nph_18039 crossref_primary_10_1186_1471_2105_14_S15_S12 crossref_primary_10_3389_fpls_2016_00304 crossref_primary_10_1016_j_gene_2016_05_041 crossref_primary_10_1007_s00438_019_01574_8 crossref_primary_10_1098_rsos_220939 crossref_primary_10_1186_1745_6150_7_8 crossref_primary_10_1038_s41598_021_82656_9 crossref_primary_10_1371_journal_pbio_3001775 crossref_primary_10_1371_journal_pbio_3002746 crossref_primary_10_1371_journal_pgen_1003476 crossref_primary_10_3389_fgene_2023_1091575 crossref_primary_10_1186_1471_2164_15_S6_S16 crossref_primary_10_1371_journal_pone_0068119 crossref_primary_10_1093_bib_bbab128 crossref_primary_10_1038_s41588_018_0040_0 crossref_primary_10_1016_j_humimm_2018_12_007 crossref_primary_10_1093_molbev_mss014 crossref_primary_10_1186_1741_7007_11_46 crossref_primary_10_1093_molbev_msx266 crossref_primary_10_1113_jphysiol_2014_272625 crossref_primary_10_1159_000430942 crossref_primary_10_1093_dnares_dsy005 crossref_primary_10_1093_nar_gkr986 crossref_primary_10_1186_s12862_018_1157_6 crossref_primary_10_1371_journal_pone_0291688 crossref_primary_10_1093_gbe_evp038 crossref_primary_10_1016_j_ajhg_2013_10_022 crossref_primary_10_1007_s00239_020_09966_w crossref_primary_10_1093_nar_gks279 crossref_primary_10_1038_nrg3053 crossref_primary_10_1016_j_ajhg_2017_12_014 crossref_primary_10_1093_molbev_msab105 crossref_primary_10_1101_gr_233809_117 crossref_primary_10_1016_j_ympev_2013_02_013 crossref_primary_10_1093_gbe_evw216 crossref_primary_10_1093_molbev_msq086 crossref_primary_10_1111_jeu_12510 crossref_primary_10_1093_molbev_msp270 crossref_primary_10_1093_molbev_msu046 crossref_primary_10_1016_S1673_8527_08_60156_3 crossref_primary_10_1038_s41598_022_15419_9 crossref_primary_10_1093_molbev_msu286 crossref_primary_10_1074_jbc_M109_061622 crossref_primary_10_1101_gr_239822_118 crossref_primary_10_1093_molbev_mss238 crossref_primary_10_3389_fgene_2021_559998 crossref_primary_10_1073_pnas_1104695108 crossref_primary_10_1177_1176934319855988 crossref_primary_10_3390_genes10120963 crossref_primary_10_3389_fmicb_2019_02374 crossref_primary_10_1016_j_ajhg_2014_11_003 crossref_primary_10_1038_ncomms11438 crossref_primary_10_3389_fgene_2017_00034 crossref_primary_10_1007_s12298_022_01198_0 crossref_primary_10_1093_molbev_mss235 crossref_primary_10_1093_gbe_evae064 crossref_primary_10_1186_1479_7364_5_2_99 crossref_primary_10_1093_molbev_mst166 crossref_primary_10_1016_j_tig_2009_09_007 crossref_primary_10_1093_gbe_evp013 crossref_primary_10_1093_gbe_evu091 crossref_primary_10_1088_1478_3975_12_3_035001 crossref_primary_10_1089_cmb_2018_0178 crossref_primary_10_1016_j_cub_2024_02_021 crossref_primary_10_1093_nar_gkv363 crossref_primary_10_1038_nature11184 crossref_primary_10_1089_cmb_2012_0054 crossref_primary_10_1093_bib_bbz072 crossref_primary_10_1016_j_ygeno_2018_07_008 crossref_primary_10_1186_s12864_023_09311_7 crossref_primary_10_1016_j_celrep_2015_02_058 crossref_primary_10_1093_molbev_mss242 crossref_primary_10_1007_s00239_020_09939_z crossref_primary_10_1007_s42995_023_00205_x crossref_primary_10_1371_journal_pone_0072343 crossref_primary_10_1093_gbe_evz095 crossref_primary_10_7554_eLife_22472 crossref_primary_10_1109_TCBB_2017_2712695 crossref_primary_10_1093_bioinformatics_btz175 crossref_primary_10_1111_tpj_15875 crossref_primary_10_1371_journal_pone_0176234 crossref_primary_10_1093_gbe_evy161 crossref_primary_10_1093_hmg_ddw145 crossref_primary_10_1186_s12859_015_0821_8 crossref_primary_10_1186_1471_2148_10_316 crossref_primary_10_1093_gbe_evw301 crossref_primary_10_1093_hr_uhae252 crossref_primary_10_1038_s41559_023_02186_7 crossref_primary_10_1093_gbe_evac028 crossref_primary_10_1093_gbe_evt158 crossref_primary_10_1186_1471_2164_14_65 crossref_primary_10_1073_pnas_1318703111 crossref_primary_10_1111_nph_19604 crossref_primary_10_1093_molbev_msr085 crossref_primary_10_1007_s10142_021_00794_9 crossref_primary_10_1039_C7MB00230K crossref_primary_10_1186_1745_6150_5_55 crossref_primary_10_1186_s13059_022_02742_7 crossref_primary_10_1371_journal_pcbi_1002542 crossref_primary_10_1371_journal_pgen_1008160 crossref_primary_10_1186_s13015_014_0026_0 crossref_primary_10_1371_journal_pcbi_1002785 crossref_primary_10_1093_gbe_evw132 crossref_primary_10_1101_gr_109595_110 crossref_primary_10_1038_nmicrobiol_2016_208 crossref_primary_10_1093_gbe_evx189 crossref_primary_10_1093_gbe_evz008 crossref_primary_10_1093_gbe_evt024 crossref_primary_10_1186_s12862_014_0212_1 crossref_primary_10_1371_journal_pone_0120784 crossref_primary_10_1093_bib_bbv098 crossref_primary_10_1093_bib_bbae306 crossref_primary_10_1093_molbev_mss064 crossref_primary_10_1534_g3_115_023499 crossref_primary_10_1038_s41420_018_0093_y crossref_primary_10_1186_s12864_019_6212_1 crossref_primary_10_1093_gbe_evq019 crossref_primary_10_1016_j_tig_2013_07_001 crossref_primary_10_1101_gr_228411_117 crossref_primary_10_1186_1745_6150_6_13 crossref_primary_10_1371_journal_pone_0086805 crossref_primary_10_1016_j_sbi_2010_03_004 crossref_primary_10_1186_s13062_022_00337_7 crossref_primary_10_1098_rsob_210261 crossref_primary_10_3389_fmicb_2019_03018 crossref_primary_10_1093_gbe_evq010 crossref_primary_10_7554_eLife_01311 crossref_primary_10_1073_pnas_1015994108 crossref_primary_10_1186_s12864_015_2098_8 crossref_primary_10_1002_bies_201400070 crossref_primary_10_1016_j_cbd_2021_100836 crossref_primary_10_1093_bib_bby074 crossref_primary_10_3389_fpls_2022_902649 crossref_primary_10_1093_gbe_evt098 crossref_primary_10_1016_j_aquaculture_2024_741720 crossref_primary_10_1101_gr_275638_121 crossref_primary_10_18699_vjgb_24_103 crossref_primary_10_1093_nar_gkv1328 crossref_primary_10_1016_j_ympev_2021_107200 crossref_primary_10_1186_s12864_019_6371_0 crossref_primary_10_1186_s12864_016_3062_y crossref_primary_10_1186_s12915_022_01339_7 crossref_primary_10_7554_eLife_53500 crossref_primary_10_1186_1471_2148_12_99 crossref_primary_10_1242_bio_20136924 crossref_primary_10_1016_j_gene_2019_04_052 crossref_primary_10_1016_j_jmb_2023_168208 crossref_primary_10_1093_gbe_evw198 crossref_primary_10_1371_journal_pcbi_1002567 crossref_primary_10_1534_genetics_117_300467 crossref_primary_10_1371_journal_pcbi_1002173 crossref_primary_10_1093_gbe_evw113 crossref_primary_10_1186_1471_2148_11_371 crossref_primary_10_1186_1471_2164_14_117 crossref_primary_10_1186_1471_2164_14_910 crossref_primary_10_1038_nrg2810 crossref_primary_10_1101_gr_113803_110 crossref_primary_10_1186_1471_2148_11_133 crossref_primary_10_1073_pnas_0910445107 crossref_primary_10_1093_nar_gkad797 crossref_primary_10_1093_bib_bbr030 crossref_primary_10_1152_ajpheart_00249_2020 crossref_primary_10_1155_2014_696485 |
Cites_doi | 10.1093/molbev/msj038 10.1073/pnas.0501761102 10.1016/j.cell.2008.05.042 10.1098/rspb.2006.3472 10.1016/S0962-8924(99)01664-5 10.1093/nar/gkl792 10.1038/nrg1838 10.1093/nar/gkg033 10.1038/nature02848 10.1093/genetics/158.2.927 10.1016/S1367-5931(01)00278-2 10.1038/nature04546 10.1093/molbev/msi122 10.1016/S0968-0004(03)00052-5 10.1093/nar/gkm883 10.1016/j.jhevol.2004.11.007 10.1101/gr.1589103 10.1093/nar/gkn668 10.1093/nar/gkh340 10.1371/journal.pbio.0040352 10.1214/aoms/1177704472 10.1016/S0076-6879(96)66026-1 10.1093/bioinformatics/btm015 10.1016/j.tig.2006.04.009 10.1073/pnas.0709013104 10.1101/gr.87702 10.1016/S0168-9525(02)02722-1 10.1073/pnas.0504070102 10.1101/gr.3194805 10.1007/0-387-36747-0_12 10.1093/molbev/msh160 10.1093/nar/29.14.2994 10.1101/gr.174302 10.1017/CBO9780511623486 10.1186/1471-2148-2-18 10.1016/S0960-9822(99)80334-0 10.1146/annurev.bi.46.070177.003041 10.1038/35012500 10.1093/nar/gkl928 10.1038/nature06107 10.1016/S0959-437X(00)00252-5 10.1007/978-3-642-86659-3 10.1126/science.278.5338.631 10.1016/j.tig.2004.09.001 10.1101/gr.5978207 10.1186/gb-2003-4-4-r28 10.1016/j.tig.2007.10.002 10.1038/nrg1204 10.1016/B978-1-4832-3211-9.50009-7 10.1093/molbev/msm088 10.1016/j.copbio.2006.08.003 10.1186/gb-2004-5-2-r7 10.1038/35082561 10.1093/molbev/msj006 10.1093/nar/25.17.3389 10.1101/gr.10.7.991 10.1016/j.tibtech.2005.07.009 10.1038/nrg1271 10.1186/1471-2148-2-20 10.1016/j.gene.2008.02.014 10.1093/molbev/msi045 |
ContentType | Journal Article |
Copyright | Copyright 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences May 5, 2009 |
Copyright_xml | – notice: Copyright 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences May 5, 2009 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0901808106 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef Genetics Abstracts AGRICOLA MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 7280 |
ExternalDocumentID | PMC2666616 1704864001 19351897 10_1073_pnas_0901808106 106_18_7273 40483262 US201301628067 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c583t-329bf1fe9f8da37545eb9d99973e5360eb1c97f7a2928de6c4ea190ef7d47df83 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:57:52 EDT 2025 Fri Jul 11 07:32:57 EDT 2025 Thu Jul 10 23:42:46 EDT 2025 Thu Jul 10 20:09:25 EDT 2025 Sat Aug 16 23:11:43 EDT 2025 Thu Apr 03 07:03:21 EDT 2025 Tue Jul 01 02:39:15 EDT 2025 Thu Apr 24 23:11:13 EDT 2025 Thu May 30 08:50:58 EDT 2019 Wed Nov 11 00:29:07 EST 2020 Thu May 29 08:42:57 EDT 2025 Wed Dec 27 19:28:59 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c583t-329bf1fe9f8da37545eb9d99973e5360eb1c97f7a2928de6c4ea190ef7d47df83 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Author contributions: Y.I.W., E.V.K., and D.J.L. designed research; Y.I.W., P.S.N., and E.V.K. performed research; Y.I.W., G.P.K., E.V.K., and D.J.L. analyzed data; and Y.I.W., E.V.K., and D.J.L. wrote the paper. This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2003. Contributed by David J. Lipman, February 20, 2009 |
OpenAccessLink | http://doi.org/10.1073/pnas.0901808106 |
PMID | 19351897 |
PQID | 201419822 |
PQPubID | 42026 |
PageCount | 8 |
ParticipantIDs | pnas_primary_106_18_7273 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2666616 proquest_miscellaneous_20236443 fao_agris_US201301628067 proquest_journals_201419822 pnas_primary_106_18_7273_fulltext pubmed_primary_19351897 proquest_miscellaneous_67224871 jstor_primary_40483262 proquest_miscellaneous_46246670 crossref_primary_10_1073_pnas_0901808106 crossref_citationtrail_10_1073_pnas_0901808106 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-05-05 |
PublicationDateYYYYMMDD | 2009-05-05 |
PublicationDate_xml | – month: 05 year: 2009 text: 2009-05-05 day: 05 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | Inaugural Article |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2009 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 Koonin EV (e_1_3_3_17_2) 2008 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 Jones DT (e_1_3_3_61_2) 1992; 8 Li WH (e_1_3_3_41_2) 1997 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_64_2 10899148 - Genome Res. 2000 Jul;10(7):991-1000 18054114 - Trends Genet. 2008 Jan;24(1):1-4 11452024 - Nucleic Acids Res. 2001 Jul 15;29(14):2994-3005 16572163 - Nature. 2006 Mar 30;440(7084):623-30 17105342 - PLoS Biol. 2006 Nov;4(11):e352 18378100 - Gene. 2008 May 15;414(1-2):85-94 14759257 - Genome Biol. 2004;5(2):R7 18662548 - Cell. 2008 Jul 25;134(2):341-52 17142222 - Nucleic Acids Res. 2007 Jan;35(Database issue):D668-73 15155797 - Mol Biol Evol. 2004 Sep;21(9):1643-60 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 16697070 - Trends Genet. 2006 Jul;22(7):354-7 16176987 - Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14338-43 16619049 - Nat Rev Genet. 2006 May;7(5):337-48 16962765 - Curr Opin Biotechnol. 2006 Oct;17(5):481-7 15537804 - Mol Biol Evol. 2005 Mar;22(3):598-606 10421576 - Curr Biol. 1999 Jul 15;9(14):747-50 15737392 - J Hum Evol. 2005 Mar;48(3):237-57 17158152 - Nucleic Acids Res. 2007;35(1):e7 17984083 - Nucleic Acids Res. 2008 Jan;36(Database issue):D440-4 12519941 - Nucleic Acids Res. 2003 Jan 1;31(1):28-33 409339 - Annu Rev Biochem. 1977;46:573-639 1633570 - Comput Appl Biosci. 1992 Jun;8(3):275-82 14735123 - Nat Rev Genet. 2004 Feb;5(2):123-35 12713906 - Trends Biochem Sci. 2003 Apr;28(4):215-20 17237036 - Bioinformatics. 2007 Apr 1;23(7):815-24 12410938 - BMC Evol Biol. 2002 Nov 1;2:20 10611671 - Trends Cell Biol. 1999 Dec;9(12):M5-8 15746013 - Mol Biol Evol. 2005 May;22(5):1345-54 11827821 - Curr Opin Chem Biol. 2002 Feb;6(1):39-45 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91 12045149 - Genome Res. 2002 Jun;12(6):962-8 15475113 - Trends Genet. 2004 Nov;20(11):544-9 17805289 - Nature. 2007 Sep 6;449(7158):54-61 12702209 - Genome Biol. 2003;4(4):R28 15800036 - Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5483-8 16777745 - Proc Biol Sci. 2006 Jun 22;273(1593):1507-15 16054255 - Trends Biotechnol. 2005 Oct;23(10):485-7 10830951 - Nature. 2000 May 18;405(6784):299-304 18040051 - Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19428-33 18948295 - Nucleic Acids Res. 2008 Dec;36(21):6688-719 9381173 - Science. 1997 Oct 24;278(5338):631-7 11430355 - Genetics. 2001 Jun;158(2):927-31 15034147 - Nucleic Acids Res. 2004;32(5):1792-7 15356622 - Nature. 2004 Sep 9;431(7005):152-5 12379152 - BMC Evol Biol. 2002;2:18 11682312 - Curr Opin Genet Dev. 2001 Dec;11(6):673-80 8743697 - Methods Enzymol. 1996;266:418-27 11429604 - Nature. 2001 Jun 28;411(6841):1046-9 12097341 - Genome Res. 2002 Jul;12(7):1048-59 16237209 - Mol Biol Evol. 2006 Feb;23(2):327-37 14634634 - Nat Rev Genet. 2003 Nov;4(11):865-75 17495009 - Genome Res. 2007 Jul;17(7):1045-50 15687288 - Genome Res. 2005 Feb;15(2):250-9 12175810 - Trends Genet. 2002 Sep;18(9):486 14525925 - Genome Res. 2003 Oct;13(10):2229-35 16151190 - Mol Biol Evol. 2006 Jan;23(1):1-3 |
References_xml | – ident: e_1_3_3_30_2 doi: 10.1093/molbev/msj038 – ident: e_1_3_3_26_2 doi: 10.1073/pnas.0501761102 – ident: e_1_3_3_31_2 doi: 10.1016/j.cell.2008.05.042 – ident: e_1_3_3_32_2 doi: 10.1098/rspb.2006.3472 – ident: e_1_3_3_1_2 doi: 10.1016/S0962-8924(99)01664-5 – ident: e_1_3_3_15_2 doi: 10.1093/nar/gkl792 – ident: e_1_3_3_20_2 doi: 10.1038/nrg1838 – ident: e_1_3_3_53_2 doi: 10.1093/nar/gkg033 – ident: e_1_3_3_6_2 doi: 10.1038/nature02848 – ident: e_1_3_3_27_2 doi: 10.1093/genetics/158.2.927 – ident: e_1_3_3_52_2 doi: 10.1016/S1367-5931(01)00278-2 – ident: e_1_3_3_4_2 doi: 10.1038/nature04546 – ident: e_1_3_3_29_2 doi: 10.1093/molbev/msi122 – ident: e_1_3_3_42_2 doi: 10.1016/S0968-0004(03)00052-5 – volume: 8 start-page: 275 year: 1992 ident: e_1_3_3_61_2 article-title: The rapid generation of mutation data matrices from protein sequences publication-title: Comput Appl Biosci – ident: e_1_3_3_44_2 doi: 10.1093/nar/gkm883 – ident: e_1_3_3_38_2 doi: 10.1016/j.jhevol.2004.11.007 – ident: e_1_3_3_14_2 doi: 10.1101/gr.1589103 – start-page: 11 volume-title: Evolutionary Genomics and Proteomics year: 2008 ident: e_1_3_3_17_2 – ident: e_1_3_3_3_2 doi: 10.1093/nar/gkn668 – ident: e_1_3_3_57_2 doi: 10.1093/nar/gkh340 – ident: e_1_3_3_48_2 doi: 10.1371/journal.pbio.0040352 – ident: e_1_3_3_64_2 doi: 10.1214/aoms/1177704472 – ident: e_1_3_3_60_2 doi: 10.1016/S0076-6879(96)66026-1 – ident: e_1_3_3_37_2 doi: 10.1093/bioinformatics/btm015 – ident: e_1_3_3_19_2 doi: 10.1016/j.tig.2006.04.009 – ident: e_1_3_3_39_2 doi: 10.1073/pnas.0709013104 – ident: e_1_3_3_25_2 doi: 10.1101/gr.87702 – ident: e_1_3_3_40_2 doi: 10.1016/S0168-9525(02)02722-1 – volume-title: Molecular Evolution year: 1997 ident: e_1_3_3_41_2 – ident: e_1_3_3_28_2 doi: 10.1073/pnas.0504070102 – ident: e_1_3_3_47_2 doi: 10.1101/gr.3194805 – ident: e_1_3_3_35_2 doi: 10.1007/0-387-36747-0_12 – ident: e_1_3_3_5_2 doi: 10.1093/molbev/msh160 – ident: e_1_3_3_55_2 doi: 10.1093/nar/29.14.2994 – ident: e_1_3_3_51_2 doi: 10.1101/gr.174302 – ident: e_1_3_3_21_2 doi: 10.1017/CBO9780511623486 – ident: e_1_3_3_49_2 doi: 10.1186/1471-2148-2-18 – ident: e_1_3_3_23_2 doi: 10.1016/S0960-9822(99)80334-0 – ident: e_1_3_3_22_2 doi: 10.1146/annurev.bi.46.070177.003041 – ident: e_1_3_3_2_2 doi: 10.1038/35012500 – ident: e_1_3_3_62_2 doi: 10.1093/nar/gkl928 – ident: e_1_3_3_36_2 doi: 10.1038/nature06107 – ident: e_1_3_3_11_2 doi: 10.1016/S0959-437X(00)00252-5 – ident: e_1_3_3_10_2 doi: 10.1007/978-3-642-86659-3 – ident: e_1_3_3_56_2 doi: 10.1126/science.278.5338.631 – ident: e_1_3_3_12_2 doi: 10.1016/j.tig.2004.09.001 – ident: e_1_3_3_43_2 doi: 10.1101/gr.5978207 – ident: e_1_3_3_63_2 doi: 10.1186/gb-2003-4-4-r28 – ident: e_1_3_3_9_2 doi: 10.1016/j.tig.2007.10.002 – ident: e_1_3_3_13_2 doi: 10.1038/nrg1204 – ident: e_1_3_3_58_2 doi: 10.1016/B978-1-4832-3211-9.50009-7 – ident: e_1_3_3_59_2 doi: 10.1093/molbev/msm088 – ident: e_1_3_3_18_2 doi: 10.1016/j.copbio.2006.08.003 – ident: e_1_3_3_8_2 doi: 10.1186/gb-2004-5-2-r7 – ident: e_1_3_3_24_2 doi: 10.1038/35082561 – ident: e_1_3_3_46_2 doi: 10.1093/molbev/msj006 – ident: e_1_3_3_54_2 doi: 10.1093/nar/25.17.3389 – ident: e_1_3_3_34_2 doi: 10.1101/gr.10.7.991 – ident: e_1_3_3_16_2 doi: 10.1016/j.tibtech.2005.07.009 – ident: e_1_3_3_7_2 doi: 10.1038/nrg1271 – ident: e_1_3_3_33_2 doi: 10.1186/1471-2148-2-20 – ident: e_1_3_3_50_2 doi: 10.1016/j.gene.2008.02.014 – ident: e_1_3_3_45_2 doi: 10.1093/molbev/msi045 – reference: 14735123 - Nat Rev Genet. 2004 Feb;5(2):123-35 – reference: 15537804 - Mol Biol Evol. 2005 Mar;22(3):598-606 – reference: 16237209 - Mol Biol Evol. 2006 Feb;23(2):327-37 – reference: 16619049 - Nat Rev Genet. 2006 May;7(5):337-48 – reference: 16054255 - Trends Biotechnol. 2005 Oct;23(10):485-7 – reference: 10611671 - Trends Cell Biol. 1999 Dec;9(12):M5-8 – reference: 17142222 - Nucleic Acids Res. 2007 Jan;35(Database issue):D668-73 – reference: 18040051 - Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19428-33 – reference: 11682312 - Curr Opin Genet Dev. 2001 Dec;11(6):673-80 – reference: 16572163 - Nature. 2006 Mar 30;440(7084):623-30 – reference: 16176987 - Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14338-43 – reference: 14759257 - Genome Biol. 2004;5(2):R7 – reference: 15155797 - Mol Biol Evol. 2004 Sep;21(9):1643-60 – reference: 12379152 - BMC Evol Biol. 2002;2:18 – reference: 12713906 - Trends Biochem Sci. 2003 Apr;28(4):215-20 – reference: 11429604 - Nature. 2001 Jun 28;411(6841):1046-9 – reference: 18054114 - Trends Genet. 2008 Jan;24(1):1-4 – reference: 10421576 - Curr Biol. 1999 Jul 15;9(14):747-50 – reference: 16151190 - Mol Biol Evol. 2006 Jan;23(1):1-3 – reference: 15687288 - Genome Res. 2005 Feb;15(2):250-9 – reference: 15356622 - Nature. 2004 Sep 9;431(7005):152-5 – reference: 409339 - Annu Rev Biochem. 1977;46:573-639 – reference: 15737392 - J Hum Evol. 2005 Mar;48(3):237-57 – reference: 10830951 - Nature. 2000 May 18;405(6784):299-304 – reference: 17805289 - Nature. 2007 Sep 6;449(7158):54-61 – reference: 18378100 - Gene. 2008 May 15;414(1-2):85-94 – reference: 12410938 - BMC Evol Biol. 2002 Nov 1;2:20 – reference: 15746013 - Mol Biol Evol. 2005 May;22(5):1345-54 – reference: 12702209 - Genome Biol. 2003;4(4):R28 – reference: 1633570 - Comput Appl Biosci. 1992 Jun;8(3):275-82 – reference: 12097341 - Genome Res. 2002 Jul;12(7):1048-59 – reference: 17158152 - Nucleic Acids Res. 2007;35(1):e7 – reference: 12045149 - Genome Res. 2002 Jun;12(6):962-8 – reference: 17105342 - PLoS Biol. 2006 Nov;4(11):e352 – reference: 11452024 - Nucleic Acids Res. 2001 Jul 15;29(14):2994-3005 – reference: 9381173 - Science. 1997 Oct 24;278(5338):631-7 – reference: 15800036 - Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5483-8 – reference: 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91 – reference: 17495009 - Genome Res. 2007 Jul;17(7):1045-50 – reference: 8743697 - Methods Enzymol. 1996;266:418-27 – reference: 17984083 - Nucleic Acids Res. 2008 Jan;36(Database issue):D440-4 – reference: 18948295 - Nucleic Acids Res. 2008 Dec;36(21):6688-719 – reference: 17237036 - Bioinformatics. 2007 Apr 1;23(7):815-24 – reference: 11827821 - Curr Opin Chem Biol. 2002 Feb;6(1):39-45 – reference: 16962765 - Curr Opin Biotechnol. 2006 Oct;17(5):481-7 – reference: 14525925 - Genome Res. 2003 Oct;13(10):2229-35 – reference: 12175810 - Trends Genet. 2002 Sep;18(9):486 – reference: 12519941 - Nucleic Acids Res. 2003 Jan 1;31(1):28-33 – reference: 16697070 - Trends Genet. 2006 Jul;22(7):354-7 – reference: 18662548 - Cell. 2008 Jul 25;134(2):341-52 – reference: 16777745 - Proc Biol Sci. 2006 Jun 22;273(1593):1507-15 – reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 – reference: 10899148 - Genome Res. 2000 Jul;10(7):991-1000 – reference: 11430355 - Genetics. 2001 Jun;158(2):927-31 – reference: 15034147 - Nucleic Acids Res. 2004;32(5):1792-7 – reference: 15475113 - Trends Genet. 2004 Nov;20(11):544-9 – reference: 14634634 - Nat Rev Genet. 2003 Nov;4(11):865-75 |
SSID | ssj0009580 |
Score | 2.3863945 |
Snippet | The evolutionary rates of protein-coding genes in an organism span, approximately, 3 orders of magnitude and show a universal, approximately log-normal... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7273 |
SubjectTerms | Age structure Animals Aspergillus Biological evolution Biological Sciences Correlation analysis Diptera Divergent evolution Eukaryotes Eukaryotic Cells - metabolism Evolution Evolution, Molecular fungi gene deletion Gene Transfer, Horizontal Genes Genome Genomes Genomics Humans introns lognormal distribution Mammals Mathematical models Models, Genetic phylogeny prokaryotic cells Proteins Proteins - genetics Wolves |
Title | universal distribution of evolutionary rates of genes and distinct characteristics of eukaryotic genes of different apparent ages |
URI | https://www.jstor.org/stable/40483262 http://www.pnas.org/content/106/18/7273.abstract https://www.ncbi.nlm.nih.gov/pubmed/19351897 https://www.proquest.com/docview/201419822 https://www.proquest.com/docview/20236443 https://www.proquest.com/docview/46246670 https://www.proquest.com/docview/67224871 https://pubmed.ncbi.nlm.nih.gov/PMC2666616 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe28cILYsBYGB9G4mFoSmmc1I4fJ7QxwSiTaEV5stLE6apNybR-SPDO_8OfyJ1jJ-lYxcdLFDm2k_R-vfM5d78j5FWQBV3NxtrPmeB-hGkyEqDjg7XhHExUHklMFP7Y5yfD6P2oN9rY-NmKWlrMx530-615Jf8jVWgDuWKW7D9Itp4UGuAc5AtHkDAc_1rGiyqyovrWUpevwjWgXtqbY2AcMkKYqI0JKjfzyQD7T4t0jsm_K6TNOHZxAaNKZHOtBkCbq6ViiMiT6mRiQxDt8vasNoczF3zQd7uNh03uilUoswP_4KzfVEL-Ul4aisivi-tps5vbL0GZnV-Uy2rBu9SXzXYtprIt6639b02y2ocSt5mrTB58ARvL67Y3pAkm7LVVNgMzGlWJ1rXK7vI2NuODqw6uw3ystdXSxtjWsuzu6m9WA9QcljouklmnK5HRLHY3WOHn7n9Sx8PTUzU4Gg02yR0GjgmagnejoEXzHFdJT_ahHZmUCN_cmH5lHbSZJ6ULiEWWXeh6m8dzM3C3tRIa3Cf3rAtDDys8bpMNXTwg206mdN8ymb9-SH4AQGkNUNoGKC1z2gYoNQDFVoM3CgClDqD0BkDN2BqgdgC01QClDqAUAfqIDI-PBm9PfFv3w097cTj3QybHeZBrmcdZgiWae3osM_BkRKh7Ie_C8iKVIhcJkyzONE8jncC6Vucii0SWx-EO2SrKQu8SKtHlAScnCZFmKdQSHJJQSKx0y8csjTzScVJQqSXFx9osl8oEZ4hQoSxUIzaP7NcDrio-mPVdd0GsKpnAj6OGnxnGCAQcIxmER3aMrOspIqzswDiDMWaWZmquglghkD3yct0lldtAMY_sOdAoq6dmimEsN9J0euRFfRWMCH4ZTApdLrAL1pGIwvU9Is4izkV3fQ8uwBuIReCRxxVImyeVYS-IJby1WIFv3QEp7levFNNzQ3UPBgMcCP7kj8-1R-422uMp2ZpfL_QzcBfm4-fmH_oLK84YKQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+universal+distribution+of+evolutionary+rates+of+genes+and+distinct+characteristics+of+eukaryotic+genes+of+different+apparent+ages&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wolf%2C+Yuri+I&rft.au=Novichkov%2C+Pavel+S&rft.au=Karev%2C+Georgy+P&rft.au=Koonin%2C+Eugene+V&rft.date=2009-05-05&rft.issn=0027-8424&rft.volume=106&rft.issue=18+p.7273-7280&rft.spage=7273&rft.epage=7280&rft_id=info:doi/10.1073%2Fpnas.0901808106&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F18.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F18.cover.gif |