universal distribution of evolutionary rates of genes and distinct characteristics of eukaryotic genes of different apparent ages

The evolutionary rates of protein-coding genes in an organism span, approximately, 3 orders of magnitude and show a universal, approximately log-normal distribution in a broad variety of species from prokaryotes to mammals. This universal distribution implies a steady-state process, with identical d...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 106; no. 18; pp. 7273 - 7280
Main Authors Wolf, Yuri I, Novichkov, Pavel S, Karev, Georgy P, Koonin, Eugene V, Lipman, David J
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 05.05.2009
National Acad Sciences
SeriesInaugural Article
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.0901808106

Cover

Loading…
Abstract The evolutionary rates of protein-coding genes in an organism span, approximately, 3 orders of magnitude and show a universal, approximately log-normal distribution in a broad variety of species from prokaryotes to mammals. This universal distribution implies a steady-state process, with identical distributions of evolutionary rates among genes that are gained and genes that are lost. A mathematical model of such process is developed under the single assumption of the constancy of the distributions of the propensities for gene loss (PGL). This model predicts that genes of different ages, that is, genes with homologs detectable at different phylogenetic depths, substantially differ in those variables that correlate with PGL. We computationally partition protein-coding genes from humans, flies, and Aspergillus fungus into age classes, and show that genes of different ages retain the universal log-normal distribution of evolutionary rates, with a shift toward higher rates in "younger" classes but also with a substantial overlap. The only exception involves human primate-specific genes that show a heavy tail of rapidly evolving genes, probably owing to gene annotation artifacts. As predicted, the gene age classes differ in characteristics correlated with PGL. Compared with "young" genes (e.g., mammal-specific human ones), "old" genes (e.g., eukaryote-specific), on average, are longer, are expressed at a higher level, possess a higher intron density, evolve slower on the short time scale, and are subject to stronger purifying selection. Thus, genome evolution fits a simple model with approximately uniform rates of gene gain and loss, without major bursts of genomic innovation.
AbstractList The evolutionary rates of protein-coding genes in an organism span, approximately, 3 orders of magnitude and show a universal, approximately log-normal distribution in a broad variety of species from prokaryotes to mammals. This universal distribution implies a steady-state process, with identical distributions of evolutionary rates among genes that are gained and genes that are lost. A mathematical model of such process is developed under the single assumption of the constancy of the distributions of the propensities for gene loss (PGL). This model predicts that genes of different ages, that is, genes with homologs detectable at different phylogenetic depths, substantially differ in those variables that correlate with PGL. We computationally partition protein-coding genes from humans, flies, and Aspergillus fungus into age classes, and show that genes of different ages retain the universal log-normal distribution of evolutionary rates, with a shift toward higher rates in “younger” classes but also with a substantial overlap. The only exception involves human primate-specific genes that show a heavy tail of rapidly evolving genes, probably owing to gene annotation artifacts. As predicted, the gene age classes differ in characteristics correlated with PGL. Compared with “young” genes (e.g., mammal-specific human ones), “old” genes (e.g., eukaryote-specific), on average, are longer, are expressed at a higher level, possess a higher intron density, evolve slower on the short time scale, and are subject to stronger purifying selection. Thus, genome evolution fits a simple model with approximately uniform rates of gene gain and loss, without major bursts of genomic innovation.
The evolutionary rates of protein-coding genes in an organism span, approximately, 3 orders of magnitude and show a universal, approximately log-normal distribution in a broad variety of species from prokaryotes to mammals. This universal distribution implies a steady-state process, with identical distributions of evolutionary rates among genes that are gained and genes that are lost. A mathematical model of such process is developed under the single assumption of the constancy of the distributions of the propensities for gene loss (PGL). This model predicts that genes of different ages, that is, genes with homologs detectable at different phylogenetic depths, substantially differ in those variables that correlate with PGL. We computationally partition protein-coding genes from humans, flies, and Aspergillus fungus into age classes, and show that genes of different ages retain the universal log-normal distribution of evolutionary rates, with a shift toward higher rates in 'younger' classes but also with a substantial overlap. The only exception involves human primate-specific genes that show a heavy tail of rapidly evolving genes, probably owing to gene annotation artifacts. As predicted, the gene age classes differ in characteristics correlated with PGL. Compared with 'young' genes (e.g., mammal-specific human ones), 'old' genes (e.g., eukaryote-specific), on average, are longer, are expressed at a higher level, possess a higher intron density, evolve slower on the short time scale, and are subject to stronger purifying selection. Thus, genome evolution fits a simple model with approximately uniform rates of gene gain and loss, without major bursts of genomic innovation.
The evolutionary rates of protein-coding genes in an organism span, approximately, 3 orders of magnitude and show a universal, approximately log-normal distribution in a broad variety of species from prokaryotes to mammals. This universal distribution implies a steady-state process, with identical distributions of evolutionary rates among genes that are gained and genes that are lost. A mathematical model of such process is developed under the single assumption of the constancy of the distributions of the propensities for gene loss (PGL). This model predicts that genes of different ages, that is, genes with homologs detectable at different phylogenetic depths, substantially differ in those variables that correlate with PGL. We computationally partition protein-coding genes from humans, flies, and Aspergillus fungus into age classes, and show that genes of different ages retain the universal log-normal distribution of evolutionary rates, with a shift toward higher rates in "younger" classes but also with a substantial overlap. The only exception involves human primate-specific genes that show a heavy tail of rapidly evolving genes, probably owing to gene annotation artifacts. As predicted, the gene age classes differ in characteristics correlated with PGL. Compared with "young" genes (e.g., mammal-specific human ones), "old" genes (e.g., eukaryote-specific), on average, are longer, are expressed at a higher level, possess a higher intron density, evolve slower on the short time scale, and are subject to stronger purifying selection. Thus, genome evolution fits a simple model with approximately uniform rates of gene gain and loss, without major bursts of genomic innovation.The evolutionary rates of protein-coding genes in an organism span, approximately, 3 orders of magnitude and show a universal, approximately log-normal distribution in a broad variety of species from prokaryotes to mammals. This universal distribution implies a steady-state process, with identical distributions of evolutionary rates among genes that are gained and genes that are lost. A mathematical model of such process is developed under the single assumption of the constancy of the distributions of the propensities for gene loss (PGL). This model predicts that genes of different ages, that is, genes with homologs detectable at different phylogenetic depths, substantially differ in those variables that correlate with PGL. We computationally partition protein-coding genes from humans, flies, and Aspergillus fungus into age classes, and show that genes of different ages retain the universal log-normal distribution of evolutionary rates, with a shift toward higher rates in "younger" classes but also with a substantial overlap. The only exception involves human primate-specific genes that show a heavy tail of rapidly evolving genes, probably owing to gene annotation artifacts. As predicted, the gene age classes differ in characteristics correlated with PGL. Compared with "young" genes (e.g., mammal-specific human ones), "old" genes (e.g., eukaryote-specific), on average, are longer, are expressed at a higher level, possess a higher intron density, evolve slower on the short time scale, and are subject to stronger purifying selection. Thus, genome evolution fits a simple model with approximately uniform rates of gene gain and loss, without major bursts of genomic innovation.
The evolutionary rates of protein-coding genes in an organism span, approximately, 3 orders of magnitude and show a universal, approximately log-normal distribution in a broad variety of species from prokaryotes to mammals. This universal distribution implies a steady-state process, with identical distributions of evolutionary rates among genes that are gained and genes that are lost. A mathematical model of such process is developed under the single assumption of the constancy of the distributions of the propensities for gene loss (PGL). This model predicts that genes of different ages, that is, genes with homologs detectable at different phylogenetic depths, substantially differ in those variables that correlate with PGL. We computationally partition protein-coding genes from humans, flies, and Aspergillus fungus into age classes, and show that genes of different ages retain the universal log-normal distribution of evolutionary rates, with a shift toward higher rates in "younger" classes but also with a substantial overlap. The only exception involves human primate-specific genes that show a heavy tail of rapidly evolving genes, probably owing to gene annotation artifacts. As predicted, the gene age classes differ in characteristics correlated with PGL. Compared with "young" genes (e.g., mammal-specific human ones), "old" genes (e.g., eukaryotespecific), on average, are longer, are expressed at a higher level, possess a higher intron density, evolve slower on the short time scale, and are subject to stronger purifying selection. Thus, genome evolution fits a simple model with approximately uniform rates of gene gain and loss, without major bursts of genomic innovation.
The evolutionary rates of protein-coding genes in an organism span, approximately, 3 orders of magnitude and show a universal, approximately log-normal distribution in a broad variety of species from prokaryotes to mammals. This universal distribution implies a steady-state process, with identical distributions of evolutionary rates among genes that are gained and genes that are lost. A mathematical model of such process is developed under the single assumption of the constancy of the distributions of the propensities for gene loss (PGL). This model predicts that genes of different ages, that is, genes with homologs detectable at different phylogenetic depths, substantially differ in those variables that correlate with PGL. We computationally partition protein-coding genes from humans, flies, and Aspergillus fungus into age classes, and show that genes of different ages retain the universal log-normal distribution of evolutionary rates, with a shift toward higher rates in "younger" classes but also with a substantial overlap. The only exception involves human primate-specific genes that show a heavy tail of rapidly evolving genes, probably owing to gene annotation artifacts. As predicted, the gene age classes differ in characteristics correlated with PGL. Compared with "young" genes (e.g., mammal-specific human ones), "old" genes (e.g., eukaryote-specific), on average, are longer, are expressed at a higher level, possess a higher intron density, evolve slower on the short time scale, and are subject to stronger purifying selection. Thus, genome evolution fits a simple model with approximately uniform rates of gene gain and loss, without major bursts of genomic innovation. [PUBLICATION ABSTRACT]
Author Koonin, Eugene V
Novichkov, Pavel S
Wolf, Yuri I
Lipman, David J
Karev, Georgy P
Author_xml – sequence: 1
  fullname: Wolf, Yuri I
– sequence: 2
  fullname: Novichkov, Pavel S
– sequence: 3
  fullname: Karev, Georgy P
– sequence: 4
  fullname: Koonin, Eugene V
– sequence: 5
  fullname: Lipman, David J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19351897$$D View this record in MEDLINE/PubMed
BookMark eNqFkstvEzEQxleoiKaFMydgxQFxSevX-nGphCpeUiUO0LPl3R2nDhs72N4IjvzneJPQQA-tL_aMf9_YHn8n1ZEPHqrqOUZnGAl6vvYmnSGFsEQSI_6ommGk8JwzhY6qGUJEzCUj7Lg6SWmJEFKNRE-qY6xog6USs-r36N0GYjJD3buUo2vH7IKvg61hE4ZtYOKvOpoMacouwJeF8f2Wd77LdXdjoukyxCnRbSkYvxdVKOFeUHK9sxYi-Fyb9drsFgtIT6vH1gwJnu3n0-r6w_tvl5_mV18-fr58dzXvGknznBLVWmxBWdkbKhrWQKt6pZSg0FCOoMWdElYYoojsgXcMDFYIrOiZ6K2kp9XFru56bFfQd-X8aAa9jm5VrqqDcfr_He9u9CJsNOFlYF4KvNkXiOHHCCnrlUsdDIPxEMakuSCESYEfBBknjHOBHgQJIpQzRgv4-g64DGP0pV2FwQwrSUiBXv77wNuX_f3sApzvgC6GlCLYA4L0ZCc92Ukf7FQUzR1F57KZPFE65IZ7dG_3V5k2DqdwjaUWpCjsOAwZfuaCvrofLcSLHbFMOcRbhCEmKeHkUMGaoM2iuFBffy1toQhzIhEX9A9gH_1_
CitedBy_id crossref_primary_10_1093_molbev_msab352
crossref_primary_10_1016_j_tibs_2016_05_013
crossref_primary_10_1111_nph_18039
crossref_primary_10_1186_1471_2105_14_S15_S12
crossref_primary_10_3389_fpls_2016_00304
crossref_primary_10_1016_j_gene_2016_05_041
crossref_primary_10_1007_s00438_019_01574_8
crossref_primary_10_1098_rsos_220939
crossref_primary_10_1186_1745_6150_7_8
crossref_primary_10_1038_s41598_021_82656_9
crossref_primary_10_1371_journal_pbio_3001775
crossref_primary_10_1371_journal_pbio_3002746
crossref_primary_10_1371_journal_pgen_1003476
crossref_primary_10_3389_fgene_2023_1091575
crossref_primary_10_1186_1471_2164_15_S6_S16
crossref_primary_10_1371_journal_pone_0068119
crossref_primary_10_1093_bib_bbab128
crossref_primary_10_1038_s41588_018_0040_0
crossref_primary_10_1016_j_humimm_2018_12_007
crossref_primary_10_1093_molbev_mss014
crossref_primary_10_1186_1741_7007_11_46
crossref_primary_10_1093_molbev_msx266
crossref_primary_10_1113_jphysiol_2014_272625
crossref_primary_10_1159_000430942
crossref_primary_10_1093_dnares_dsy005
crossref_primary_10_1093_nar_gkr986
crossref_primary_10_1186_s12862_018_1157_6
crossref_primary_10_1371_journal_pone_0291688
crossref_primary_10_1093_gbe_evp038
crossref_primary_10_1016_j_ajhg_2013_10_022
crossref_primary_10_1007_s00239_020_09966_w
crossref_primary_10_1093_nar_gks279
crossref_primary_10_1038_nrg3053
crossref_primary_10_1016_j_ajhg_2017_12_014
crossref_primary_10_1093_molbev_msab105
crossref_primary_10_1101_gr_233809_117
crossref_primary_10_1016_j_ympev_2013_02_013
crossref_primary_10_1093_gbe_evw216
crossref_primary_10_1093_molbev_msq086
crossref_primary_10_1111_jeu_12510
crossref_primary_10_1093_molbev_msp270
crossref_primary_10_1093_molbev_msu046
crossref_primary_10_1016_S1673_8527_08_60156_3
crossref_primary_10_1038_s41598_022_15419_9
crossref_primary_10_1093_molbev_msu286
crossref_primary_10_1074_jbc_M109_061622
crossref_primary_10_1101_gr_239822_118
crossref_primary_10_1093_molbev_mss238
crossref_primary_10_3389_fgene_2021_559998
crossref_primary_10_1073_pnas_1104695108
crossref_primary_10_1177_1176934319855988
crossref_primary_10_3390_genes10120963
crossref_primary_10_3389_fmicb_2019_02374
crossref_primary_10_1016_j_ajhg_2014_11_003
crossref_primary_10_1038_ncomms11438
crossref_primary_10_3389_fgene_2017_00034
crossref_primary_10_1007_s12298_022_01198_0
crossref_primary_10_1093_molbev_mss235
crossref_primary_10_1093_gbe_evae064
crossref_primary_10_1186_1479_7364_5_2_99
crossref_primary_10_1093_molbev_mst166
crossref_primary_10_1016_j_tig_2009_09_007
crossref_primary_10_1093_gbe_evp013
crossref_primary_10_1093_gbe_evu091
crossref_primary_10_1088_1478_3975_12_3_035001
crossref_primary_10_1089_cmb_2018_0178
crossref_primary_10_1016_j_cub_2024_02_021
crossref_primary_10_1093_nar_gkv363
crossref_primary_10_1038_nature11184
crossref_primary_10_1089_cmb_2012_0054
crossref_primary_10_1093_bib_bbz072
crossref_primary_10_1016_j_ygeno_2018_07_008
crossref_primary_10_1186_s12864_023_09311_7
crossref_primary_10_1016_j_celrep_2015_02_058
crossref_primary_10_1093_molbev_mss242
crossref_primary_10_1007_s00239_020_09939_z
crossref_primary_10_1007_s42995_023_00205_x
crossref_primary_10_1371_journal_pone_0072343
crossref_primary_10_1093_gbe_evz095
crossref_primary_10_7554_eLife_22472
crossref_primary_10_1109_TCBB_2017_2712695
crossref_primary_10_1093_bioinformatics_btz175
crossref_primary_10_1111_tpj_15875
crossref_primary_10_1371_journal_pone_0176234
crossref_primary_10_1093_gbe_evy161
crossref_primary_10_1093_hmg_ddw145
crossref_primary_10_1186_s12859_015_0821_8
crossref_primary_10_1186_1471_2148_10_316
crossref_primary_10_1093_gbe_evw301
crossref_primary_10_1093_hr_uhae252
crossref_primary_10_1038_s41559_023_02186_7
crossref_primary_10_1093_gbe_evac028
crossref_primary_10_1093_gbe_evt158
crossref_primary_10_1186_1471_2164_14_65
crossref_primary_10_1073_pnas_1318703111
crossref_primary_10_1111_nph_19604
crossref_primary_10_1093_molbev_msr085
crossref_primary_10_1007_s10142_021_00794_9
crossref_primary_10_1039_C7MB00230K
crossref_primary_10_1186_1745_6150_5_55
crossref_primary_10_1186_s13059_022_02742_7
crossref_primary_10_1371_journal_pcbi_1002542
crossref_primary_10_1371_journal_pgen_1008160
crossref_primary_10_1186_s13015_014_0026_0
crossref_primary_10_1371_journal_pcbi_1002785
crossref_primary_10_1093_gbe_evw132
crossref_primary_10_1101_gr_109595_110
crossref_primary_10_1038_nmicrobiol_2016_208
crossref_primary_10_1093_gbe_evx189
crossref_primary_10_1093_gbe_evz008
crossref_primary_10_1093_gbe_evt024
crossref_primary_10_1186_s12862_014_0212_1
crossref_primary_10_1371_journal_pone_0120784
crossref_primary_10_1093_bib_bbv098
crossref_primary_10_1093_bib_bbae306
crossref_primary_10_1093_molbev_mss064
crossref_primary_10_1534_g3_115_023499
crossref_primary_10_1038_s41420_018_0093_y
crossref_primary_10_1186_s12864_019_6212_1
crossref_primary_10_1093_gbe_evq019
crossref_primary_10_1016_j_tig_2013_07_001
crossref_primary_10_1101_gr_228411_117
crossref_primary_10_1186_1745_6150_6_13
crossref_primary_10_1371_journal_pone_0086805
crossref_primary_10_1016_j_sbi_2010_03_004
crossref_primary_10_1186_s13062_022_00337_7
crossref_primary_10_1098_rsob_210261
crossref_primary_10_3389_fmicb_2019_03018
crossref_primary_10_1093_gbe_evq010
crossref_primary_10_7554_eLife_01311
crossref_primary_10_1073_pnas_1015994108
crossref_primary_10_1186_s12864_015_2098_8
crossref_primary_10_1002_bies_201400070
crossref_primary_10_1016_j_cbd_2021_100836
crossref_primary_10_1093_bib_bby074
crossref_primary_10_3389_fpls_2022_902649
crossref_primary_10_1093_gbe_evt098
crossref_primary_10_1016_j_aquaculture_2024_741720
crossref_primary_10_1101_gr_275638_121
crossref_primary_10_18699_vjgb_24_103
crossref_primary_10_1093_nar_gkv1328
crossref_primary_10_1016_j_ympev_2021_107200
crossref_primary_10_1186_s12864_019_6371_0
crossref_primary_10_1186_s12864_016_3062_y
crossref_primary_10_1186_s12915_022_01339_7
crossref_primary_10_7554_eLife_53500
crossref_primary_10_1186_1471_2148_12_99
crossref_primary_10_1242_bio_20136924
crossref_primary_10_1016_j_gene_2019_04_052
crossref_primary_10_1016_j_jmb_2023_168208
crossref_primary_10_1093_gbe_evw198
crossref_primary_10_1371_journal_pcbi_1002567
crossref_primary_10_1534_genetics_117_300467
crossref_primary_10_1371_journal_pcbi_1002173
crossref_primary_10_1093_gbe_evw113
crossref_primary_10_1186_1471_2148_11_371
crossref_primary_10_1186_1471_2164_14_117
crossref_primary_10_1186_1471_2164_14_910
crossref_primary_10_1038_nrg2810
crossref_primary_10_1101_gr_113803_110
crossref_primary_10_1186_1471_2148_11_133
crossref_primary_10_1073_pnas_0910445107
crossref_primary_10_1093_nar_gkad797
crossref_primary_10_1093_bib_bbr030
crossref_primary_10_1152_ajpheart_00249_2020
crossref_primary_10_1155_2014_696485
Cites_doi 10.1093/molbev/msj038
10.1073/pnas.0501761102
10.1016/j.cell.2008.05.042
10.1098/rspb.2006.3472
10.1016/S0962-8924(99)01664-5
10.1093/nar/gkl792
10.1038/nrg1838
10.1093/nar/gkg033
10.1038/nature02848
10.1093/genetics/158.2.927
10.1016/S1367-5931(01)00278-2
10.1038/nature04546
10.1093/molbev/msi122
10.1016/S0968-0004(03)00052-5
10.1093/nar/gkm883
10.1016/j.jhevol.2004.11.007
10.1101/gr.1589103
10.1093/nar/gkn668
10.1093/nar/gkh340
10.1371/journal.pbio.0040352
10.1214/aoms/1177704472
10.1016/S0076-6879(96)66026-1
10.1093/bioinformatics/btm015
10.1016/j.tig.2006.04.009
10.1073/pnas.0709013104
10.1101/gr.87702
10.1016/S0168-9525(02)02722-1
10.1073/pnas.0504070102
10.1101/gr.3194805
10.1007/0-387-36747-0_12
10.1093/molbev/msh160
10.1093/nar/29.14.2994
10.1101/gr.174302
10.1017/CBO9780511623486
10.1186/1471-2148-2-18
10.1016/S0960-9822(99)80334-0
10.1146/annurev.bi.46.070177.003041
10.1038/35012500
10.1093/nar/gkl928
10.1038/nature06107
10.1016/S0959-437X(00)00252-5
10.1007/978-3-642-86659-3
10.1126/science.278.5338.631
10.1016/j.tig.2004.09.001
10.1101/gr.5978207
10.1186/gb-2003-4-4-r28
10.1016/j.tig.2007.10.002
10.1038/nrg1204
10.1016/B978-1-4832-3211-9.50009-7
10.1093/molbev/msm088
10.1016/j.copbio.2006.08.003
10.1186/gb-2004-5-2-r7
10.1038/35082561
10.1093/molbev/msj006
10.1093/nar/25.17.3389
10.1101/gr.10.7.991
10.1016/j.tibtech.2005.07.009
10.1038/nrg1271
10.1186/1471-2148-2-20
10.1016/j.gene.2008.02.014
10.1093/molbev/msi045
ContentType Journal Article
Copyright Copyright 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences May 5, 2009
Copyright_xml – notice: Copyright 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences May 5, 2009
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0901808106
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList CrossRef
Genetics Abstracts

AGRICOLA
MEDLINE
MEDLINE - Academic



Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 7280
ExternalDocumentID PMC2666616
1704864001
19351897
10_1073_pnas_0901808106
106_18_7273
40483262
US201301628067
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c583t-329bf1fe9f8da37545eb9d99973e5360eb1c97f7a2928de6c4ea190ef7d47df83
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:57:52 EDT 2025
Fri Jul 11 07:32:57 EDT 2025
Thu Jul 10 23:42:46 EDT 2025
Thu Jul 10 20:09:25 EDT 2025
Sat Aug 16 23:11:43 EDT 2025
Thu Apr 03 07:03:21 EDT 2025
Tue Jul 01 02:39:15 EDT 2025
Thu Apr 24 23:11:13 EDT 2025
Thu May 30 08:50:58 EDT 2019
Wed Nov 11 00:29:07 EST 2020
Thu May 29 08:42:57 EDT 2025
Wed Dec 27 19:28:59 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c583t-329bf1fe9f8da37545eb9d99973e5360eb1c97f7a2928de6c4ea190ef7d47df83
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Author contributions: Y.I.W., E.V.K., and D.J.L. designed research; Y.I.W., P.S.N., and E.V.K. performed research; Y.I.W., G.P.K., E.V.K., and D.J.L. analyzed data; and Y.I.W., E.V.K., and D.J.L. wrote the paper.
This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2003.
Contributed by David J. Lipman, February 20, 2009
OpenAccessLink http://doi.org/10.1073/pnas.0901808106
PMID 19351897
PQID 201419822
PQPubID 42026
PageCount 8
ParticipantIDs pnas_primary_106_18_7273
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2666616
proquest_miscellaneous_20236443
fao_agris_US201301628067
proquest_journals_201419822
pnas_primary_106_18_7273_fulltext
pubmed_primary_19351897
proquest_miscellaneous_67224871
jstor_primary_40483262
proquest_miscellaneous_46246670
crossref_primary_10_1073_pnas_0901808106
crossref_citationtrail_10_1073_pnas_0901808106
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-05-05
PublicationDateYYYYMMDD 2009-05-05
PublicationDate_xml – month: 05
  year: 2009
  text: 2009-05-05
  day: 05
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle Inaugural Article
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2009
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
Koonin EV (e_1_3_3_17_2) 2008
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
Jones DT (e_1_3_3_61_2) 1992; 8
Li WH (e_1_3_3_41_2) 1997
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_64_2
10899148 - Genome Res. 2000 Jul;10(7):991-1000
18054114 - Trends Genet. 2008 Jan;24(1):1-4
11452024 - Nucleic Acids Res. 2001 Jul 15;29(14):2994-3005
16572163 - Nature. 2006 Mar 30;440(7084):623-30
17105342 - PLoS Biol. 2006 Nov;4(11):e352
18378100 - Gene. 2008 May 15;414(1-2):85-94
14759257 - Genome Biol. 2004;5(2):R7
18662548 - Cell. 2008 Jul 25;134(2):341-52
17142222 - Nucleic Acids Res. 2007 Jan;35(Database issue):D668-73
15155797 - Mol Biol Evol. 2004 Sep;21(9):1643-60
9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
16697070 - Trends Genet. 2006 Jul;22(7):354-7
16176987 - Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14338-43
16619049 - Nat Rev Genet. 2006 May;7(5):337-48
16962765 - Curr Opin Biotechnol. 2006 Oct;17(5):481-7
15537804 - Mol Biol Evol. 2005 Mar;22(3):598-606
10421576 - Curr Biol. 1999 Jul 15;9(14):747-50
15737392 - J Hum Evol. 2005 Mar;48(3):237-57
17158152 - Nucleic Acids Res. 2007;35(1):e7
17984083 - Nucleic Acids Res. 2008 Jan;36(Database issue):D440-4
12519941 - Nucleic Acids Res. 2003 Jan 1;31(1):28-33
409339 - Annu Rev Biochem. 1977;46:573-639
1633570 - Comput Appl Biosci. 1992 Jun;8(3):275-82
14735123 - Nat Rev Genet. 2004 Feb;5(2):123-35
12713906 - Trends Biochem Sci. 2003 Apr;28(4):215-20
17237036 - Bioinformatics. 2007 Apr 1;23(7):815-24
12410938 - BMC Evol Biol. 2002 Nov 1;2:20
10611671 - Trends Cell Biol. 1999 Dec;9(12):M5-8
15746013 - Mol Biol Evol. 2005 May;22(5):1345-54
11827821 - Curr Opin Chem Biol. 2002 Feb;6(1):39-45
17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91
12045149 - Genome Res. 2002 Jun;12(6):962-8
15475113 - Trends Genet. 2004 Nov;20(11):544-9
17805289 - Nature. 2007 Sep 6;449(7158):54-61
12702209 - Genome Biol. 2003;4(4):R28
15800036 - Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5483-8
16777745 - Proc Biol Sci. 2006 Jun 22;273(1593):1507-15
16054255 - Trends Biotechnol. 2005 Oct;23(10):485-7
10830951 - Nature. 2000 May 18;405(6784):299-304
18040051 - Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19428-33
18948295 - Nucleic Acids Res. 2008 Dec;36(21):6688-719
9381173 - Science. 1997 Oct 24;278(5338):631-7
11430355 - Genetics. 2001 Jun;158(2):927-31
15034147 - Nucleic Acids Res. 2004;32(5):1792-7
15356622 - Nature. 2004 Sep 9;431(7005):152-5
12379152 - BMC Evol Biol. 2002;2:18
11682312 - Curr Opin Genet Dev. 2001 Dec;11(6):673-80
8743697 - Methods Enzymol. 1996;266:418-27
11429604 - Nature. 2001 Jun 28;411(6841):1046-9
12097341 - Genome Res. 2002 Jul;12(7):1048-59
16237209 - Mol Biol Evol. 2006 Feb;23(2):327-37
14634634 - Nat Rev Genet. 2003 Nov;4(11):865-75
17495009 - Genome Res. 2007 Jul;17(7):1045-50
15687288 - Genome Res. 2005 Feb;15(2):250-9
12175810 - Trends Genet. 2002 Sep;18(9):486
14525925 - Genome Res. 2003 Oct;13(10):2229-35
16151190 - Mol Biol Evol. 2006 Jan;23(1):1-3
References_xml – ident: e_1_3_3_30_2
  doi: 10.1093/molbev/msj038
– ident: e_1_3_3_26_2
  doi: 10.1073/pnas.0501761102
– ident: e_1_3_3_31_2
  doi: 10.1016/j.cell.2008.05.042
– ident: e_1_3_3_32_2
  doi: 10.1098/rspb.2006.3472
– ident: e_1_3_3_1_2
  doi: 10.1016/S0962-8924(99)01664-5
– ident: e_1_3_3_15_2
  doi: 10.1093/nar/gkl792
– ident: e_1_3_3_20_2
  doi: 10.1038/nrg1838
– ident: e_1_3_3_53_2
  doi: 10.1093/nar/gkg033
– ident: e_1_3_3_6_2
  doi: 10.1038/nature02848
– ident: e_1_3_3_27_2
  doi: 10.1093/genetics/158.2.927
– ident: e_1_3_3_52_2
  doi: 10.1016/S1367-5931(01)00278-2
– ident: e_1_3_3_4_2
  doi: 10.1038/nature04546
– ident: e_1_3_3_29_2
  doi: 10.1093/molbev/msi122
– ident: e_1_3_3_42_2
  doi: 10.1016/S0968-0004(03)00052-5
– volume: 8
  start-page: 275
  year: 1992
  ident: e_1_3_3_61_2
  article-title: The rapid generation of mutation data matrices from protein sequences
  publication-title: Comput Appl Biosci
– ident: e_1_3_3_44_2
  doi: 10.1093/nar/gkm883
– ident: e_1_3_3_38_2
  doi: 10.1016/j.jhevol.2004.11.007
– ident: e_1_3_3_14_2
  doi: 10.1101/gr.1589103
– start-page: 11
  volume-title: Evolutionary Genomics and Proteomics
  year: 2008
  ident: e_1_3_3_17_2
– ident: e_1_3_3_3_2
  doi: 10.1093/nar/gkn668
– ident: e_1_3_3_57_2
  doi: 10.1093/nar/gkh340
– ident: e_1_3_3_48_2
  doi: 10.1371/journal.pbio.0040352
– ident: e_1_3_3_64_2
  doi: 10.1214/aoms/1177704472
– ident: e_1_3_3_60_2
  doi: 10.1016/S0076-6879(96)66026-1
– ident: e_1_3_3_37_2
  doi: 10.1093/bioinformatics/btm015
– ident: e_1_3_3_19_2
  doi: 10.1016/j.tig.2006.04.009
– ident: e_1_3_3_39_2
  doi: 10.1073/pnas.0709013104
– ident: e_1_3_3_25_2
  doi: 10.1101/gr.87702
– ident: e_1_3_3_40_2
  doi: 10.1016/S0168-9525(02)02722-1
– volume-title: Molecular Evolution
  year: 1997
  ident: e_1_3_3_41_2
– ident: e_1_3_3_28_2
  doi: 10.1073/pnas.0504070102
– ident: e_1_3_3_47_2
  doi: 10.1101/gr.3194805
– ident: e_1_3_3_35_2
  doi: 10.1007/0-387-36747-0_12
– ident: e_1_3_3_5_2
  doi: 10.1093/molbev/msh160
– ident: e_1_3_3_55_2
  doi: 10.1093/nar/29.14.2994
– ident: e_1_3_3_51_2
  doi: 10.1101/gr.174302
– ident: e_1_3_3_21_2
  doi: 10.1017/CBO9780511623486
– ident: e_1_3_3_49_2
  doi: 10.1186/1471-2148-2-18
– ident: e_1_3_3_23_2
  doi: 10.1016/S0960-9822(99)80334-0
– ident: e_1_3_3_22_2
  doi: 10.1146/annurev.bi.46.070177.003041
– ident: e_1_3_3_2_2
  doi: 10.1038/35012500
– ident: e_1_3_3_62_2
  doi: 10.1093/nar/gkl928
– ident: e_1_3_3_36_2
  doi: 10.1038/nature06107
– ident: e_1_3_3_11_2
  doi: 10.1016/S0959-437X(00)00252-5
– ident: e_1_3_3_10_2
  doi: 10.1007/978-3-642-86659-3
– ident: e_1_3_3_56_2
  doi: 10.1126/science.278.5338.631
– ident: e_1_3_3_12_2
  doi: 10.1016/j.tig.2004.09.001
– ident: e_1_3_3_43_2
  doi: 10.1101/gr.5978207
– ident: e_1_3_3_63_2
  doi: 10.1186/gb-2003-4-4-r28
– ident: e_1_3_3_9_2
  doi: 10.1016/j.tig.2007.10.002
– ident: e_1_3_3_13_2
  doi: 10.1038/nrg1204
– ident: e_1_3_3_58_2
  doi: 10.1016/B978-1-4832-3211-9.50009-7
– ident: e_1_3_3_59_2
  doi: 10.1093/molbev/msm088
– ident: e_1_3_3_18_2
  doi: 10.1016/j.copbio.2006.08.003
– ident: e_1_3_3_8_2
  doi: 10.1186/gb-2004-5-2-r7
– ident: e_1_3_3_24_2
  doi: 10.1038/35082561
– ident: e_1_3_3_46_2
  doi: 10.1093/molbev/msj006
– ident: e_1_3_3_54_2
  doi: 10.1093/nar/25.17.3389
– ident: e_1_3_3_34_2
  doi: 10.1101/gr.10.7.991
– ident: e_1_3_3_16_2
  doi: 10.1016/j.tibtech.2005.07.009
– ident: e_1_3_3_7_2
  doi: 10.1038/nrg1271
– ident: e_1_3_3_33_2
  doi: 10.1186/1471-2148-2-20
– ident: e_1_3_3_50_2
  doi: 10.1016/j.gene.2008.02.014
– ident: e_1_3_3_45_2
  doi: 10.1093/molbev/msi045
– reference: 14735123 - Nat Rev Genet. 2004 Feb;5(2):123-35
– reference: 15537804 - Mol Biol Evol. 2005 Mar;22(3):598-606
– reference: 16237209 - Mol Biol Evol. 2006 Feb;23(2):327-37
– reference: 16619049 - Nat Rev Genet. 2006 May;7(5):337-48
– reference: 16054255 - Trends Biotechnol. 2005 Oct;23(10):485-7
– reference: 10611671 - Trends Cell Biol. 1999 Dec;9(12):M5-8
– reference: 17142222 - Nucleic Acids Res. 2007 Jan;35(Database issue):D668-73
– reference: 18040051 - Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19428-33
– reference: 11682312 - Curr Opin Genet Dev. 2001 Dec;11(6):673-80
– reference: 16572163 - Nature. 2006 Mar 30;440(7084):623-30
– reference: 16176987 - Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14338-43
– reference: 14759257 - Genome Biol. 2004;5(2):R7
– reference: 15155797 - Mol Biol Evol. 2004 Sep;21(9):1643-60
– reference: 12379152 - BMC Evol Biol. 2002;2:18
– reference: 12713906 - Trends Biochem Sci. 2003 Apr;28(4):215-20
– reference: 11429604 - Nature. 2001 Jun 28;411(6841):1046-9
– reference: 18054114 - Trends Genet. 2008 Jan;24(1):1-4
– reference: 10421576 - Curr Biol. 1999 Jul 15;9(14):747-50
– reference: 16151190 - Mol Biol Evol. 2006 Jan;23(1):1-3
– reference: 15687288 - Genome Res. 2005 Feb;15(2):250-9
– reference: 15356622 - Nature. 2004 Sep 9;431(7005):152-5
– reference: 409339 - Annu Rev Biochem. 1977;46:573-639
– reference: 15737392 - J Hum Evol. 2005 Mar;48(3):237-57
– reference: 10830951 - Nature. 2000 May 18;405(6784):299-304
– reference: 17805289 - Nature. 2007 Sep 6;449(7158):54-61
– reference: 18378100 - Gene. 2008 May 15;414(1-2):85-94
– reference: 12410938 - BMC Evol Biol. 2002 Nov 1;2:20
– reference: 15746013 - Mol Biol Evol. 2005 May;22(5):1345-54
– reference: 12702209 - Genome Biol. 2003;4(4):R28
– reference: 1633570 - Comput Appl Biosci. 1992 Jun;8(3):275-82
– reference: 12097341 - Genome Res. 2002 Jul;12(7):1048-59
– reference: 17158152 - Nucleic Acids Res. 2007;35(1):e7
– reference: 12045149 - Genome Res. 2002 Jun;12(6):962-8
– reference: 17105342 - PLoS Biol. 2006 Nov;4(11):e352
– reference: 11452024 - Nucleic Acids Res. 2001 Jul 15;29(14):2994-3005
– reference: 9381173 - Science. 1997 Oct 24;278(5338):631-7
– reference: 15800036 - Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5483-8
– reference: 17483113 - Mol Biol Evol. 2007 Aug;24(8):1586-91
– reference: 17495009 - Genome Res. 2007 Jul;17(7):1045-50
– reference: 8743697 - Methods Enzymol. 1996;266:418-27
– reference: 17984083 - Nucleic Acids Res. 2008 Jan;36(Database issue):D440-4
– reference: 18948295 - Nucleic Acids Res. 2008 Dec;36(21):6688-719
– reference: 17237036 - Bioinformatics. 2007 Apr 1;23(7):815-24
– reference: 11827821 - Curr Opin Chem Biol. 2002 Feb;6(1):39-45
– reference: 16962765 - Curr Opin Biotechnol. 2006 Oct;17(5):481-7
– reference: 14525925 - Genome Res. 2003 Oct;13(10):2229-35
– reference: 12175810 - Trends Genet. 2002 Sep;18(9):486
– reference: 12519941 - Nucleic Acids Res. 2003 Jan 1;31(1):28-33
– reference: 16697070 - Trends Genet. 2006 Jul;22(7):354-7
– reference: 18662548 - Cell. 2008 Jul 25;134(2):341-52
– reference: 16777745 - Proc Biol Sci. 2006 Jun 22;273(1593):1507-15
– reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
– reference: 10899148 - Genome Res. 2000 Jul;10(7):991-1000
– reference: 11430355 - Genetics. 2001 Jun;158(2):927-31
– reference: 15034147 - Nucleic Acids Res. 2004;32(5):1792-7
– reference: 15475113 - Trends Genet. 2004 Nov;20(11):544-9
– reference: 14634634 - Nat Rev Genet. 2003 Nov;4(11):865-75
SSID ssj0009580
Score 2.3863945
Snippet The evolutionary rates of protein-coding genes in an organism span, approximately, 3 orders of magnitude and show a universal, approximately log-normal...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7273
SubjectTerms Age structure
Animals
Aspergillus
Biological evolution
Biological Sciences
Correlation analysis
Diptera
Divergent evolution
Eukaryotes
Eukaryotic Cells - metabolism
Evolution
Evolution, Molecular
fungi
gene deletion
Gene Transfer, Horizontal
Genes
Genome
Genomes
Genomics
Humans
introns
lognormal distribution
Mammals
Mathematical models
Models, Genetic
phylogeny
prokaryotic cells
Proteins
Proteins - genetics
Wolves
Title universal distribution of evolutionary rates of genes and distinct characteristics of eukaryotic genes of different apparent ages
URI https://www.jstor.org/stable/40483262
http://www.pnas.org/content/106/18/7273.abstract
https://www.ncbi.nlm.nih.gov/pubmed/19351897
https://www.proquest.com/docview/201419822
https://www.proquest.com/docview/20236443
https://www.proquest.com/docview/46246670
https://www.proquest.com/docview/67224871
https://pubmed.ncbi.nlm.nih.gov/PMC2666616
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe28cILYsBYGB9G4mFoSmmc1I4fJ7QxwSiTaEV5stLE6apNybR-SPDO_8OfyJ1jJ-lYxcdLFDm2k_R-vfM5d78j5FWQBV3NxtrPmeB-hGkyEqDjg7XhHExUHklMFP7Y5yfD6P2oN9rY-NmKWlrMx530-615Jf8jVWgDuWKW7D9Itp4UGuAc5AtHkDAc_1rGiyqyovrWUpevwjWgXtqbY2AcMkKYqI0JKjfzyQD7T4t0jsm_K6TNOHZxAaNKZHOtBkCbq6ViiMiT6mRiQxDt8vasNoczF3zQd7uNh03uilUoswP_4KzfVEL-Ul4aisivi-tps5vbL0GZnV-Uy2rBu9SXzXYtprIt6639b02y2ocSt5mrTB58ARvL67Y3pAkm7LVVNgMzGlWJ1rXK7vI2NuODqw6uw3ystdXSxtjWsuzu6m9WA9QcljouklmnK5HRLHY3WOHn7n9Sx8PTUzU4Gg02yR0GjgmagnejoEXzHFdJT_ahHZmUCN_cmH5lHbSZJ6ULiEWWXeh6m8dzM3C3tRIa3Cf3rAtDDys8bpMNXTwg206mdN8ymb9-SH4AQGkNUNoGKC1z2gYoNQDFVoM3CgClDqD0BkDN2BqgdgC01QClDqAUAfqIDI-PBm9PfFv3w097cTj3QybHeZBrmcdZgiWae3osM_BkRKh7Ie_C8iKVIhcJkyzONE8jncC6Vucii0SWx-EO2SrKQu8SKtHlAScnCZFmKdQSHJJQSKx0y8csjTzScVJQqSXFx9osl8oEZ4hQoSxUIzaP7NcDrio-mPVdd0GsKpnAj6OGnxnGCAQcIxmER3aMrOspIqzswDiDMWaWZmquglghkD3yct0lldtAMY_sOdAoq6dmimEsN9J0euRFfRWMCH4ZTApdLrAL1pGIwvU9Is4izkV3fQ8uwBuIReCRxxVImyeVYS-IJby1WIFv3QEp7levFNNzQ3UPBgMcCP7kj8-1R-422uMp2ZpfL_QzcBfm4-fmH_oLK84YKQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+universal+distribution+of+evolutionary+rates+of+genes+and+distinct+characteristics+of+eukaryotic+genes+of+different+apparent+ages&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wolf%2C+Yuri+I&rft.au=Novichkov%2C+Pavel+S&rft.au=Karev%2C+Georgy+P&rft.au=Koonin%2C+Eugene+V&rft.date=2009-05-05&rft.issn=0027-8424&rft.volume=106&rft.issue=18+p.7273-7280&rft.spage=7273&rft.epage=7280&rft_id=info:doi/10.1073%2Fpnas.0901808106&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F18.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F106%2F18.cover.gif