Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile
Excellent ductility is crucial not only for shaping but also for strengthening metals and alloys. The ever most widely used eutectic alloys are suffering from the limited ductility and losing competitiveness among advanced structural materials. Here we report a distinctive concept of phase-selective...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 4697 - 8 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
10.08.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Excellent ductility is crucial not only for shaping but also for strengthening metals and alloys. The ever most widely used eutectic alloys are suffering from the limited ductility and losing competitiveness among advanced structural materials. Here we report a distinctive concept of phase-selective recrystallization to overcome this challenge for eutectic alloys by triggering the strain hardening capacity of the duplex phases completely. We manipulate the strain partitioning behavior of the two phases in a eutectic high-entropy alloy (EHEA) to obtain the phase-selectively recrystallized microstructure with a fully recrystallized soft phase embedded in the skeleton of a hard phase. The resulting microstructure fully releases the strain hardening capacity in EHEA by eliminating the weak boundaries. Our phase-selectively recrystallized EHEA achieves a high ductility of ∼35% uniform elongation with true stress of ∼2 GPa. This concept is universal for various duplex alloys with soft and hard phases and opens new frontiers for traditional eutectic alloys as high-strength metallic materials.
The ever most widely used eutectic alloys often suffer from limited ductility. Here the authors propose a distinctive concept of phase-selective recrystallization to significantly improve their ductility and strength and pave the way for new applications of the widespread eutectic alloys. |
---|---|
AbstractList | Excellent ductility is crucial not only for shaping but also for strengthening metals and alloys. The ever most widely used eutectic alloys are suffering from the limited ductility and losing competitiveness among advanced structural materials. Here we report a distinctive concept of phase-selective recrystallization to overcome this challenge for eutectic alloys by triggering the strain hardening capacity of the duplex phases completely. We manipulate the strain partitioning behavior of the two phases in a eutectic high-entropy alloy (EHEA) to obtain the phase-selectively recrystallized microstructure with a fully recrystallized soft phase embedded in the skeleton of a hard phase. The resulting microstructure fully releases the strain hardening capacity in EHEA by eliminating the weak boundaries. Our phase-selectively recrystallized EHEA achieves a high ductility of ∼35% uniform elongation with true stress of ∼2 GPa. This concept is universal for various duplex alloys with soft and hard phases and opens new frontiers for traditional eutectic alloys as high-strength metallic materials.The ever most widely used eutectic alloys often suffer from limited ductility. Here the authors propose a distinctive concept of phase-selective recrystallization to significantly improve their ductility and strength and pave the way for new applications of the widespread eutectic alloys. The ever most widely used eutectic alloys often suffer from limited ductility. Here the authors propose a distinctive concept of phase-selective recrystallization to significantly improve their ductility and strength and pave the way for new applications of the widespread eutectic alloys. Excellent ductility is crucial not only for shaping but also for strengthening metals and alloys. The ever most widely used eutectic alloys are suffering from the limited ductility and losing competitiveness among advanced structural materials. Here we report a distinctive concept of phase-selective recrystallization to overcome this challenge for eutectic alloys by triggering the strain hardening capacity of the duplex phases completely. We manipulate the strain partitioning behavior of the two phases in a eutectic high-entropy alloy (EHEA) to obtain the phase-selectively recrystallized microstructure with a fully recrystallized soft phase embedded in the skeleton of a hard phase. The resulting microstructure fully releases the strain hardening capacity in EHEA by eliminating the weak boundaries. Our phase-selectively recrystallized EHEA achieves a high ductility of ∼35% uniform elongation with true stress of ∼2 GPa. This concept is universal for various duplex alloys with soft and hard phases and opens new frontiers for traditional eutectic alloys as high-strength metallic materials. The ever most widely used eutectic alloys often suffer from limited ductility. Here the authors propose a distinctive concept of phase-selective recrystallization to significantly improve their ductility and strength and pave the way for new applications of the widespread eutectic alloys. Excellent ductility is crucial not only for shaping but also for strengthening metals and alloys. The ever most widely used eutectic alloys are suffering from the limited ductility and losing competitiveness among advanced structural materials. Here we report a distinctive concept of phase-selective recrystallization to overcome this challenge for eutectic alloys by triggering the strain hardening capacity of the duplex phases completely. We manipulate the strain partitioning behavior of the two phases in a eutectic high-entropy alloy (EHEA) to obtain the phase-selectively recrystallized microstructure with a fully recrystallized soft phase embedded in the skeleton of a hard phase. The resulting microstructure fully releases the strain hardening capacity in EHEA by eliminating the weak boundaries. Our phase-selectively recrystallized EHEA achieves a high ductility of ∼35% uniform elongation with true stress of ∼2 GPa. This concept is universal for various duplex alloys with soft and hard phases and opens new frontiers for traditional eutectic alloys as high-strength metallic materials.Excellent ductility is crucial not only for shaping but also for strengthening metals and alloys. The ever most widely used eutectic alloys are suffering from the limited ductility and losing competitiveness among advanced structural materials. Here we report a distinctive concept of phase-selective recrystallization to overcome this challenge for eutectic alloys by triggering the strain hardening capacity of the duplex phases completely. We manipulate the strain partitioning behavior of the two phases in a eutectic high-entropy alloy (EHEA) to obtain the phase-selectively recrystallized microstructure with a fully recrystallized soft phase embedded in the skeleton of a hard phase. The resulting microstructure fully releases the strain hardening capacity in EHEA by eliminating the weak boundaries. Our phase-selectively recrystallized EHEA achieves a high ductility of ∼35% uniform elongation with true stress of ∼2 GPa. This concept is universal for various duplex alloys with soft and hard phases and opens new frontiers for traditional eutectic alloys as high-strength metallic materials. Excellent ductility is crucial not only for shaping but also for strengthening metals and alloys. The ever most widely used eutectic alloys are suffering from the limited ductility and losing competitiveness among advanced structural materials. Here we report a distinctive concept of phase-selective recrystallization to overcome this challenge for eutectic alloys by triggering the strain hardening capacity of the duplex phases completely. We manipulate the strain partitioning behavior of the two phases in a eutectic high-entropy alloy (EHEA) to obtain the phase-selectively recrystallized microstructure with a fully recrystallized soft phase embedded in the skeleton of a hard phase. The resulting microstructure fully releases the strain hardening capacity in EHEA by eliminating the weak boundaries. Our phase-selectively recrystallized EHEA achieves a high ductility of ∼35% uniform elongation with true stress of ∼2 GPa. This concept is universal for various duplex alloys with soft and hard phases and opens new frontiers for traditional eutectic alloys as high-strength metallic materials. |
ArticleNumber | 4697 |
Author | Wang, Jincheng Li, Junjie He, Feng Wu, Qingfeng Kim, Hyoung Seop Wang, Zhijun |
Author_xml | – sequence: 1 givenname: Qingfeng surname: Wu fullname: Wu, Qingfeng organization: State Key Laboratory of Solidification Processing, Northwestern Polytechnical University – sequence: 2 givenname: Feng surname: He fullname: He, Feng organization: State Key Laboratory of Solidification Processing, Northwestern Polytechnical University – sequence: 3 givenname: Junjie surname: Li fullname: Li, Junjie organization: State Key Laboratory of Solidification Processing, Northwestern Polytechnical University – sequence: 4 givenname: Hyoung Seop orcidid: 0000-0002-3155-583X surname: Kim fullname: Kim, Hyoung Seop email: hskim@postech.ac.kr organization: Graduate Institute of Ferrous & Energy Materials Technology, Pohang University of Science and Technology (POSTECH), Advanced Institute for Materials Research (WPI-AIMR), Tohoku University – sequence: 5 givenname: Zhijun orcidid: 0000-0003-4802-8435 surname: Wang fullname: Wang, Zhijun email: zhjwang@nwpu.edu.cn organization: State Key Laboratory of Solidification Processing, Northwestern Polytechnical University – sequence: 6 givenname: Jincheng orcidid: 0000-0002-9918-1563 surname: Wang fullname: Wang, Jincheng email: jchwang@nwpu.edu.cn organization: State Key Laboratory of Solidification Processing, Northwestern Polytechnical University |
BookMark | eNp9kk9vVCEUxYmpsbX2C7h6iRs3KH8fsDExjbZNmmiMrgkP7swwMo8R3msyfnqZmRptF2UDgd853AvnJToZ8wgIvabkHSVcv6-Cil5hwhjmTAiBxTN0xoigmCrGT_5bn6KLWtekDW6oFuIFOuXSCC0VPUPfvq5cBVwhgZ_iHXQFfNnVyaUUf7sp5rHbuJ9QO5inPeG7VVyuMIxTydtd17C8q92cpuJwmBuQ4BV6vnCpwsX9fI5-fP70_fIa3365urn8eIu91HzCnATfSzJQ4cPQWhiAchYo057qAQbFF8xIFZwiPCjwQ2-UI55TI7xQwQA_RzdH35Dd2m5L3Liys9lFe9jIZWldaRUnsEpBH5Q0kkgujNEmaKqp4XwQCz4o3bw-HL2287CB4Pf9ufTA9OHJGFd2me-s4b3UpG8Gb-8NSv41Q53sJlYPKbkR8lwtU4QSxaQgDX3zCF3nuYztqfYUEZKSnjVKHylfcq0FFtbH6fAh7f6YLCV2nwN7zIFtObCHHFjRpOyR9G8fT4r4UVQbPC6h_KvqCdUfJPfF0A |
CitedBy_id | crossref_primary_10_1016_j_actbio_2024_06_007 crossref_primary_10_1007_s12598_024_02852_0 crossref_primary_10_1016_j_msea_2023_145413 crossref_primary_10_1016_j_msea_2023_145419 crossref_primary_10_1016_j_msea_2023_144725 crossref_primary_10_1016_j_msea_2023_145817 crossref_primary_10_1016_j_jmps_2025_106106 crossref_primary_10_1016_j_jmrt_2024_12_255 crossref_primary_10_1016_j_jmst_2024_06_040 crossref_primary_10_1021_acsnano_4c03435 crossref_primary_10_1016_j_addma_2024_104471 crossref_primary_10_1016_j_vacuum_2024_113424 crossref_primary_10_1002_adfm_202410521 crossref_primary_10_1016_j_actamat_2023_118702 crossref_primary_10_1016_j_jmrt_2024_09_127 crossref_primary_10_1016_j_jmst_2023_05_003 crossref_primary_10_1016_j_actamat_2023_119115 crossref_primary_10_1016_j_msea_2024_147689 crossref_primary_10_1016_j_msea_2024_146991 crossref_primary_10_1016_j_actamat_2023_119112 crossref_primary_10_1016_j_jmst_2023_05_081 crossref_primary_10_1016_j_msea_2024_146992 crossref_primary_10_1016_j_msea_2024_147289 crossref_primary_10_1007_s41403_023_00442_7 crossref_primary_10_1016_j_matchar_2024_114122 crossref_primary_10_1016_j_msea_2023_144676 crossref_primary_10_1063_5_0220500 crossref_primary_10_1016_j_matchar_2023_113059 crossref_primary_10_1016_j_jmrt_2024_01_058 crossref_primary_10_1016_j_jmst_2023_11_080 crossref_primary_10_3390_ma17122995 crossref_primary_10_1126_science_adr4917 crossref_primary_10_1039_D3TA07131F crossref_primary_10_3390_met14060726 crossref_primary_10_1007_s11665_023_08963_6 crossref_primary_10_1016_j_jmrt_2024_05_193 crossref_primary_10_1016_j_matchar_2025_114812 crossref_primary_10_1016_j_ijplas_2023_103853 crossref_primary_10_1016_j_matdes_2024_113101 crossref_primary_10_1016_j_jmrt_2024_03_115 crossref_primary_10_1016_j_msea_2023_145757 crossref_primary_10_1016_j_jallcom_2024_175083 crossref_primary_10_1016_j_jmst_2023_11_054 crossref_primary_10_1016_j_matchar_2023_113020 crossref_primary_10_1016_j_jmst_2023_01_002 crossref_primary_10_1016_j_jmst_2023_11_050 crossref_primary_10_1016_j_ijmecsci_2025_110161 crossref_primary_10_3390_ma16216836 crossref_primary_10_1016_j_intermet_2024_108427 crossref_primary_10_1016_j_intermet_2025_108669 crossref_primary_10_1016_j_heliyon_2024_e29384 crossref_primary_10_1016_j_jmst_2024_01_044 crossref_primary_10_1016_j_corsci_2023_111224 crossref_primary_10_1016_j_intermet_2025_108667 crossref_primary_10_3390_ma16093348 crossref_primary_10_1007_s40843_023_2520_1 crossref_primary_10_1016_j_intermet_2023_108104 crossref_primary_10_1038_s41524_024_01385_5 crossref_primary_10_1016_j_actamat_2024_120494 crossref_primary_10_1016_j_scriptamat_2022_115154 crossref_primary_10_1007_s41365_024_01508_z crossref_primary_10_1016_j_ijrmhm_2023_106243 crossref_primary_10_3390_ma15227900 crossref_primary_10_1016_j_compositesb_2023_110833 crossref_primary_10_1016_j_jallcom_2025_179858 crossref_primary_10_1016_j_msea_2024_147436 crossref_primary_10_1016_j_intermet_2024_108361 crossref_primary_10_1016_j_corsci_2024_112456 crossref_primary_10_1007_s40195_024_01752_7 crossref_primary_10_1016_j_ijplas_2024_104180 crossref_primary_10_1016_j_matlet_2024_136549 crossref_primary_10_1016_j_jmrt_2023_08_071 crossref_primary_10_1016_j_jallcom_2023_171469 crossref_primary_10_1016_j_msea_2024_147248 crossref_primary_10_1007_s10853_024_09752_9 crossref_primary_10_1016_j_scriptamat_2022_115058 crossref_primary_10_1016_j_actamat_2025_120930 crossref_primary_10_1016_j_matlet_2023_135182 crossref_primary_10_1016_j_msea_2023_145326 crossref_primary_10_1016_j_matchar_2023_113372 crossref_primary_10_1016_j_actamat_2024_120434 crossref_primary_10_1016_j_compositesb_2024_111523 crossref_primary_10_1007_s11665_024_10531_5 crossref_primary_10_1016_j_compositesb_2024_111372 crossref_primary_10_1016_j_actamat_2023_119427 crossref_primary_10_1080_21663831_2023_2284328 crossref_primary_10_1038_s43246_024_00450_2 crossref_primary_10_1016_j_matchar_2024_113744 crossref_primary_10_1016_j_scriptamat_2024_116277 crossref_primary_10_1016_j_intermet_2025_108650 crossref_primary_10_1016_j_ijplas_2024_104204 crossref_primary_10_1016_j_scriptamat_2024_116031 crossref_primary_10_1063_5_0222897 crossref_primary_10_1016_j_matchar_2024_114479 crossref_primary_10_1016_j_matchar_2023_113464 crossref_primary_10_1016_j_jmrt_2025_03_036 crossref_primary_10_1038_s41467_024_48435_6 crossref_primary_10_1080_21663831_2024_2383352 crossref_primary_10_1016_j_msea_2024_147346 crossref_primary_10_1016_j_msea_2024_146138 crossref_primary_10_1016_j_addma_2024_104258 crossref_primary_10_1016_j_msea_2024_147469 crossref_primary_10_1016_j_jmapro_2024_05_051 crossref_primary_10_1038_s41467_023_40492_7 crossref_primary_10_1016_j_jmst_2023_08_062 crossref_primary_10_3390_cryst13040573 crossref_primary_10_1007_s12613_024_2892_x crossref_primary_10_1016_j_ijplas_2024_104223 crossref_primary_10_1016_j_msea_2024_147594 crossref_primary_10_1016_j_jallcom_2024_175431 crossref_primary_10_1016_j_jmrt_2023_06_266 crossref_primary_10_1016_j_msea_2023_144582 crossref_primary_10_1002_adma_202405459 crossref_primary_10_1016_j_jallcom_2024_176088 |
Cites_doi | 10.1016/j.msea.2016.08.048 10.1016/j.mattod.2020.09.029 10.1016/j.mtla.2020.100639 10.1016/j.matlet.2019.06.067 10.1007/BF01397346 10.1126/science.1242578 10.1073/pnas.1517193112 10.1016/j.scriptamat.2020.04.035 10.1016/j.intermet.2020.107024 10.1016/j.mtla.2019.100252 10.1126/science.abf6986 10.1016/j.actamat.2016.11.016 10.1038/s41467-021-23689-6 10.1016/j.actamat.2020.03.001 10.1007/BF02645206 10.1038/srep06200 10.1016/j.jmst.2020.04.073 10.1016/j.actamat.2017.07.041 10.1016/j.jallcom.2015.09.264 10.1016/j.msea.2021.142190 10.1016/0025-5416(87)90507-6 10.1126/science.abb6830 10.1016/0079-6425(63)90037-9 10.1007/s11661-003-0190-1 10.1016/j.actamat.2015.05.017 10.1016/j.matlet.2018.01.017 10.1016/0022-5096(52)90002-1 10.1016/j.scriptamat.2018.07.022 10.1038/s41467-019-08460-2 10.1038/s41586-020-2409-3 10.1080/21663831.2020.1796836 10.1016/j.scriptamat.2022.114875 10.1016/j.matdes.2014.08.021 10.1016/j.pmatsci.2020.100675 10.1016/j.actamat.2015.05.038 10.1016/j.scriptamat.2007.09.018 10.1016/j.actamat.2019.10.043 10.1016/S1359-6454(96)00124-3 10.1016/j.mtphys.2018.12.002 10.1016/j.actamat.2015.12.037 10.1038/nature22032 10.1016/S1359-6454(98)00067-6 10.1016/j.matchar.2018.07.030 10.1016/0921-5093(91)90804-V 10.2320/matertrans.45.323 10.1016/j.pmatsci.2021.100793 10.1126/science.aba9413 10.1016/j.actamat.2009.02.032 10.1016/B978-008044164-1/50016-5 10.1016/B978-0-408-70933-0.50006-2 10.1016/B978-008045370-5.50007-9 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-32444-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_77e6d759505349989d8181933b4f3b78 PMC9365806 10_1038_s41467_022_32444_4 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52001266; 51871183 funderid: https://doi.org/10.13039/501100001809 – fundername: Funder: Research Fund of the State Key Laboratory of Solidification Processing Grant No. 2020-TS-06 – fundername: National Research Foundation of Korea (NRF) grantid: NRF-2021R1A2C3006662 funderid: https://doi.org/10.13039/501100003725 – fundername: Funder: National Natural Science Foundation of Shaanxi Province in China Grant No. 2020JQ-720 – fundername: ; – fundername: ; grantid: 52001266; 51871183 – fundername: ; grantid: NRF-2021R1A2C3006662 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c583t-30dc650b14cdb324be132d128c18beb73f2957da703d7ecb697a0c3194c47d9e3 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:24:07 EDT 2025 Thu Aug 21 13:29:55 EDT 2025 Fri Jul 11 11:33:24 EDT 2025 Wed Aug 13 07:37:30 EDT 2025 Tue Jul 01 00:58:22 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Fri Feb 21 02:38:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-30dc650b14cdb324be132d128c18beb73f2957da703d7ecb697a0c3194c47d9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3155-583X 0000-0002-9918-1563 0000-0003-4802-8435 |
OpenAccessLink | https://doaj.org/article/77e6d759505349989d8181933b4f3b78 |
PMID | 35948571 |
PQID | 2700451062 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_77e6d759505349989d8181933b4f3b78 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9365806 proquest_miscellaneous_2701072540 proquest_journals_2700451062 crossref_citationtrail_10_1038_s41467_022_32444_4 crossref_primary_10_1038_s41467_022_32444_4 springer_journals_10_1038_s41467_022_32444_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-10 |
PublicationDateYYYYMMDD | 2022-08-10 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Liu, Zhang, Lu (CR11) 2013; 342 Dutta, Ponge, Sandlöbes, Raabe (CR37) 2019; 5 Liao, Wu, Zhou, Yang (CR20) 2015; 65 Shi (CR24) 2020; 41 Liu (CR13) 2020; 368 CR34 Yang, Jeng, Bain, Amato (CR16) 1997; 45 Jin, Liang, Bi, Li (CR33) 2020; 10 Yan, Tasan, Raabe (CR51) 2015; 96 Wu (CR22) 2019; 253 Lu (CR5) 2014; 4 Feng (CR44) 2021; 12 Gao (CR26) 2017; 141 CR4 CR3 Jin, Zhou, Zhang, Du, Li (CR27) 2018; 216 Shukla, Wang, Cotton, Mishra (CR39) 2018; 156 CR9 Xiong, Zheng, Pang, Ma (CR31) 2020; 186 Chadwick (CR1) 1963; 12 Baker, Wu, Wang (CR6) 2019; 147 CR47 CR45 Su, Gurland (CR55) 1987; 95 Swift (CR52) 1952; 1 Wu (CR23) 2020; 182 Chen (CR29) 2021; 128 Tripathy, Malladi, Bhattacharjee (CR32) 2022; 831 Liu (CR50) 2020; 189 Robson, Henry, Davis (CR46) 2009; 57 CR53 García-Infanta, Zhilyaev, Cepeda-Jiménez, Ruano, Carreño (CR21) 2008; 58 Lu (CR10) 2017; 124 Lian, Jiang, Liu (CR49) 1991; 147 Li (CR19) 2015; 95 Jiang (CR12) 2017; 544 Nogita, McDonald, Dahle (CR18) 2004; 45 Tiwary (CR2) 2022; 123 Kurdjumow, Sachs (CR25) 1930; 64 Kürnsteiner (CR14) 2020; 582 Wu (CR54) 2022; 219 Wu, Fan (CR38) 2020; 113 Parthasarathy, Mendiratta, Dimiduk (CR35) 1998; 46 Wang, Caceres, Griffiths (CR17) 2003; 34 Kapp, Hohenwarter, Wurster, Yang, Pippan (CR36) 2016; 106 Xiong (CR40) 2021; 65 Wu, Yang, Yuan, Wu, Zhu (CR41) 2015; 112 Shi (CR7) 2019; 10 Shi (CR8) 2021; 373 Baker, Meng, Wu, Brandenberg (CR28) 2016; 656 Cho, Gurland (CR48) 1988; 19 Yang (CR15) 2020; 369 Wani (CR30) 2016; 675 Zhu (CR42) 2021; 9 Wang (CR43) 2019; 8 T Xiong (32444_CR31) 2020; 186 G Kurdjumow (32444_CR25) 1930; 64 X Chen (32444_CR29) 2021; 128 R Feng (32444_CR44) 2021; 12 CS Tiwary (32444_CR2) 2022; 123 32444_CR34 HW Swift (32444_CR52) 1952; 1 Y Zhu (32444_CR42) 2021; 9 Y Lu (32444_CR5) 2014; 4 A Dutta (32444_CR37) 2019; 5 JM García-Infanta (32444_CR21) 2008; 58 S Shukla (32444_CR39) 2018; 156 MW Kapp (32444_CR36) 2016; 106 32444_CR47 32444_CR45 YL Su (32444_CR55) 1987; 95 P Shi (32444_CR24) 2020; 41 XP Li (32444_CR19) 2015; 95 TA Parthasarathy (32444_CR35) 1998; 46 X Jin (32444_CR33) 2020; 10 IS Wani (32444_CR30) 2016; 675 J Lian (32444_CR49) 1991; 147 Q Wu (32444_CR23) 2020; 182 H Liao (32444_CR20) 2015; 65 D Yan (32444_CR51) 2015; 96 32444_CR53 I Baker (32444_CR28) 2016; 656 32444_CR9 P Shi (32444_CR7) 2019; 10 S Jiang (32444_CR12) 2017; 544 X Gao (32444_CR26) 2017; 141 X Jin (32444_CR27) 2018; 216 Y Liu (32444_CR50) 2020; 189 T Xiong (32444_CR40) 2021; 65 X Wu (32444_CR41) 2015; 112 JD Robson (32444_CR46) 2009; 57 B Tripathy (32444_CR32) 2022; 831 JM Yang (32444_CR16) 1997; 45 H Wu (32444_CR38) 2020; 113 I Baker (32444_CR6) 2019; 147 L Wang (32444_CR43) 2019; 8 Q Wu (32444_CR22) 2019; 253 XC Liu (32444_CR11) 2013; 342 Y Lu (32444_CR10) 2017; 124 GA Chadwick (32444_CR1) 1963; 12 P Kürnsteiner (32444_CR14) 2020; 582 K Nogita (32444_CR18) 2004; 45 K Cho (32444_CR48) 1988; 19 T Yang (32444_CR15) 2020; 369 Q Wu (32444_CR54) 2022; 219 QG Wang (32444_CR17) 2003; 34 P Shi (32444_CR8) 2021; 373 L Liu (32444_CR13) 2020; 368 32444_CR4 32444_CR3 |
References_xml | – ident: CR45 – volume: 675 start-page: 99 year: 2016 end-page: 109 ident: CR30 article-title: Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2016.08.048 – volume: 41 start-page: 62 year: 2020 end-page: 71 ident: CR24 article-title: Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys publication-title: Mater. Today doi: 10.1016/j.mattod.2020.09.029 – ident: CR4 – volume: 10 start-page: 100639 year: 2020 ident: CR33 article-title: Enhanced strength and ductility of Al0.9CoCrNi2.1 eutectic high entropy alloy by thermomechanical processing publication-title: Materialia doi: 10.1016/j.mtla.2020.100639 – volume: 253 start-page: 268 year: 2019 end-page: 271 ident: CR22 article-title: A casting eutectic high entropy alloy with superior strength-ductility combination publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.06.067 – volume: 64 start-page: 325 year: 1930 end-page: 343 ident: CR25 article-title: Über den mechanismus der stahlhärtung publication-title: Z. für. Phys. doi: 10.1007/BF01397346 – volume: 342 start-page: 337 year: 2013 end-page: 340 ident: CR11 article-title: Strain-induced ultrahard and ultrastable nanolaminated structure in nickel publication-title: Science doi: 10.1126/science.1242578 – volume: 112 start-page: 14501 year: 2015 ident: CR41 article-title: Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1517193112 – volume: 186 start-page: 336 year: 2020 end-page: 340 ident: CR31 article-title: High-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure publication-title: Scr. Materialia doi: 10.1016/j.scriptamat.2020.04.035 – volume: 128 start-page: 107024 year: 2021 ident: CR29 article-title: Influences of Ti additions on the microstructure and tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy publication-title: Intermetallics doi: 10.1016/j.intermet.2020.107024 – volume: 5 start-page: 100252 year: 2019 ident: CR37 article-title: Strain partitioning and strain localization in medium manganese steels measured by in situ microscopic digital image correlation publication-title: Materialia doi: 10.1016/j.mtla.2019.100252 – volume: 373 start-page: 912 year: 2021 end-page: 918 ident: CR8 article-title: Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys publication-title: Science doi: 10.1126/science.abf6986 – volume: 124 start-page: 143 year: 2017 end-page: 150 ident: CR10 article-title: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range publication-title: Acta Materialia doi: 10.1016/j.actamat.2016.11.016 – volume: 12 year: 2021 ident: CR44 article-title: Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy publication-title: Nat. Commun. doi: 10.1038/s41467-021-23689-6 – volume: 189 start-page: 129 year: 2020 end-page: 144 ident: CR50 article-title: Critical microstructures and defects in heterostructured materials and their effects on mechanical properties publication-title: Acta Materialia doi: 10.1016/j.actamat.2020.03.001 – ident: CR9 – volume: 19 start-page: 2027 year: 1988 end-page: 2040 ident: CR48 article-title: The law of mixtures applied to the plastic deformation of two-phase alloys of coarse microstructures publication-title: Metall. Trans. A doi: 10.1007/BF02645206 – volume: 4 year: 2014 ident: CR5 article-title: A promising new class of high-temperature alloys: eutectic high-entropy alloys publication-title: Sci. Rep. doi: 10.1038/srep06200 – volume: 65 start-page: 216 year: 2021 end-page: 227 ident: CR40 article-title: Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.04.073 – volume: 141 start-page: 59 year: 2017 end-page: 66 ident: CR26 article-title: Microstructural origins of high strength and high ductility in an AlCoCrFeNi 2.1 eutectic high-entropy alloy publication-title: Acta Materialia doi: 10.1016/j.actamat.2017.07.041 – volume: 656 start-page: 458 year: 2016 end-page: 464 ident: CR28 article-title: Recrystallization of a novel two-phase FeNiMnAlCr high entropy alloy publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2015.09.264 – volume: 831 start-page: 142190 year: 2022 ident: CR32 article-title: Development of ultrafine grained cobalt-free AlCrFe2Ni2 high entropy alloy with superior mechanical properties by thermo-mechanical processing publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2021.142190 – volume: 95 start-page: 151 year: 1987 end-page: 165 ident: CR55 article-title: Strain partition, uniform elongation and fracture strain in dual-phase steels publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(87)90507-6 – volume: 369 start-page: 427 year: 2020 end-page: 432 ident: CR15 article-title: Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces publication-title: Science doi: 10.1126/science.abb6830 – volume: 12 start-page: 99 year: 1963 end-page: 182 ident: CR1 article-title: Eutectic alloy solidification publication-title: Prog. Mater. Sci. doi: 10.1016/0079-6425(63)90037-9 – volume: 34 start-page: 2901 year: 2003 end-page: 2912 ident: CR17 article-title: Damage by eutectic particle cracking in aluminum casting alloys A356/357 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-003-0190-1 – volume: 95 start-page: 74 year: 2015 end-page: 82 ident: CR19 article-title: A selective laser melting and solution heat treatment refined Al–12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility publication-title: Acta Materialia doi: 10.1016/j.actamat.2015.05.017 – ident: CR47 – volume: 216 start-page: 144 year: 2018 end-page: 146 ident: CR27 article-title: A novel Fe 20 Co 20 Ni 41 Al 19 eutectic high entropy alloy with excellent tensile properties publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.01.017 – volume: 1 start-page: 1 year: 1952 end-page: 18 ident: CR52 article-title: Plastic instability under plane stress publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(52)90002-1 – volume: 156 start-page: 105 year: 2018 end-page: 109 ident: CR39 article-title: Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy publication-title: Scr. Materialia doi: 10.1016/j.scriptamat.2018.07.022 – ident: CR53 – volume: 10 year: 2019 ident: CR7 article-title: Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae publication-title: Nat. Commun. doi: 10.1038/s41467-019-08460-2 – volume: 582 start-page: 515 year: 2020 end-page: 519 ident: CR14 article-title: High-strength Damascus steel by additive manufacturing publication-title: Nature doi: 10.1038/s41586-020-2409-3 – volume: 9 start-page: 1 year: 2021 end-page: 31 ident: CR42 article-title: Heterostructured materials: superior properties from hetero-zone interaction publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2020.1796836 – volume: 219 start-page: 114875 year: 2022 ident: CR54 article-title: Rapid alloy design from superior eutectic high-entropy alloys publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2022.114875 – volume: 65 start-page: 1091 year: 2015 end-page: 1099 ident: CR20 article-title: Hot deformation behavior and processing map of Al–Si–Mg alloys containing different amount of silicon based on Gleebe-3500 hot compression simulation publication-title: Mater. Des. doi: 10.1016/j.matdes.2014.08.021 – volume: 113 start-page: 100675 year: 2020 ident: CR38 article-title: An overview of tailoring strain delocalization for strength-ductility synergy publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2020.100675 – volume: 96 start-page: 399 year: 2015 end-page: 409 ident: CR51 article-title: High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.05.038 – volume: 58 start-page: 138 year: 2008 end-page: 141 ident: CR21 article-title: Effect of the deformation path on the ductility of a hypoeutectic Al–Si casting alloy subjected to equal-channel angular pressing by routes A, BA, BC and C publication-title: Scr. Materialia doi: 10.1016/j.scriptamat.2007.09.018 – ident: CR3 – volume: 182 start-page: 278 year: 2020 end-page: 286 ident: CR23 article-title: Uncovering the eutectics design by machine learning in the Al–Co–Cr–Fe–Ni high entropy system publication-title: Acta Materialia doi: 10.1016/j.actamat.2019.10.043 – volume: 45 start-page: 295 year: 1997 end-page: 308 ident: CR16 article-title: Microstructure and mechanical behavior of in-situ directional solidified NiAl/Cr(Mo) eutectic composite publication-title: Acta Materialia doi: 10.1016/S1359-6454(96)00124-3 – volume: 8 start-page: 1 year: 2019 end-page: 9 ident: CR43 article-title: Abundant polymorphic transitions in the Al0. 6CoCrFeNi high-entropy alloy publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2018.12.002 – volume: 106 start-page: 239 year: 2016 end-page: 248 ident: CR36 article-title: Anisotropic deformation characteristics of an ultrafine- and nanolamellar pearlitic steel publication-title: Acta Materialia doi: 10.1016/j.actamat.2015.12.037 – volume: 544 start-page: 460 year: 2017 end-page: 464 ident: CR12 article-title: Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation publication-title: Nature doi: 10.1038/nature22032 – ident: CR34 – volume: 46 start-page: 4005 year: 1998 end-page: 4016 ident: CR35 article-title: Flow behavior of PST and fully lamellar polycrystals of Ti–48Al in the microstrain regime publication-title: Acta Materialia doi: 10.1016/S1359-6454(98)00067-6 – volume: 147 start-page: 545 year: 2019 end-page: 557 ident: CR6 article-title: Eutectic/eutectoid multi-principle component alloys: a review publication-title: Mater. Charact. doi: 10.1016/j.matchar.2018.07.030 – volume: 147 start-page: 55 year: 1991 end-page: 65 ident: CR49 article-title: Theoretical model for the tensile work hardening behaviour of dual-phase steel publication-title: Mater. Sci. Eng.: A doi: 10.1016/0921-5093(91)90804-V – volume: 45 start-page: 323 year: 2004 end-page: 326 ident: CR18 article-title: Eutectic modification of Al-Si alloys with rare earth metals publication-title: Mater. Trans. doi: 10.2320/matertrans.45.323 – volume: 123 start-page: 100793 year: 2022 ident: CR2 article-title: Five decades of research on the development of eutectic as engineering materials publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2021.100793 – volume: 368 start-page: 1347 year: 2020 end-page: 1352 ident: CR13 article-title: Making ultrastrong steel tough by grain-boundary delamination publication-title: Science doi: 10.1126/science.aba9413 – volume: 57 start-page: 2739 year: 2009 end-page: 2747 ident: CR46 article-title: Particle effects on recrystallization in magnesium–manganese alloys: Particle-stimulated nucleation publication-title: Acta Materialia doi: 10.1016/j.actamat.2009.02.032 – ident: 32444_CR34 – ident: 32444_CR53 – volume: 342 start-page: 337 year: 2013 ident: 32444_CR11 publication-title: Science doi: 10.1126/science.1242578 – volume: 147 start-page: 545 year: 2019 ident: 32444_CR6 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2018.07.030 – volume: 219 start-page: 114875 year: 2022 ident: 32444_CR54 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2022.114875 – volume: 253 start-page: 268 year: 2019 ident: 32444_CR22 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.06.067 – ident: 32444_CR9 – volume: 45 start-page: 295 year: 1997 ident: 32444_CR16 publication-title: Acta Materialia doi: 10.1016/S1359-6454(96)00124-3 – volume: 544 start-page: 460 year: 2017 ident: 32444_CR12 publication-title: Nature doi: 10.1038/nature22032 – ident: 32444_CR47 – volume: 95 start-page: 151 year: 1987 ident: 32444_CR55 publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(87)90507-6 – volume: 128 start-page: 107024 year: 2021 ident: 32444_CR29 publication-title: Intermetallics doi: 10.1016/j.intermet.2020.107024 – ident: 32444_CR45 doi: 10.1016/B978-008044164-1/50016-5 – volume: 5 start-page: 100252 year: 2019 ident: 32444_CR37 publication-title: Materialia doi: 10.1016/j.mtla.2019.100252 – volume: 831 start-page: 142190 year: 2022 ident: 32444_CR32 publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2021.142190 – volume: 96 start-page: 399 year: 2015 ident: 32444_CR51 publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.05.038 – volume: 12 start-page: 99 year: 1963 ident: 32444_CR1 publication-title: Prog. Mater. Sci. doi: 10.1016/0079-6425(63)90037-9 – volume: 123 start-page: 100793 year: 2022 ident: 32444_CR2 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2021.100793 – volume: 113 start-page: 100675 year: 2020 ident: 32444_CR38 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2020.100675 – volume: 147 start-page: 55 year: 1991 ident: 32444_CR49 publication-title: Mater. Sci. Eng.: A doi: 10.1016/0921-5093(91)90804-V – volume: 369 start-page: 427 year: 2020 ident: 32444_CR15 publication-title: Science doi: 10.1126/science.abb6830 – volume: 34 start-page: 2901 year: 2003 ident: 32444_CR17 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-003-0190-1 – volume: 65 start-page: 1091 year: 2015 ident: 32444_CR20 publication-title: Mater. Des. doi: 10.1016/j.matdes.2014.08.021 – volume: 41 start-page: 62 year: 2020 ident: 32444_CR24 publication-title: Mater. Today doi: 10.1016/j.mattod.2020.09.029 – volume: 368 start-page: 1347 year: 2020 ident: 32444_CR13 publication-title: Science doi: 10.1126/science.aba9413 – volume: 189 start-page: 129 year: 2020 ident: 32444_CR50 publication-title: Acta Materialia doi: 10.1016/j.actamat.2020.03.001 – volume: 1 start-page: 1 year: 1952 ident: 32444_CR52 publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(52)90002-1 – volume: 57 start-page: 2739 year: 2009 ident: 32444_CR46 publication-title: Acta Materialia doi: 10.1016/j.actamat.2009.02.032 – volume: 46 start-page: 4005 year: 1998 ident: 32444_CR35 publication-title: Acta Materialia doi: 10.1016/S1359-6454(98)00067-6 – volume: 124 start-page: 143 year: 2017 ident: 32444_CR10 publication-title: Acta Materialia doi: 10.1016/j.actamat.2016.11.016 – volume: 9 start-page: 1 year: 2021 ident: 32444_CR42 publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2020.1796836 – volume: 10 year: 2019 ident: 32444_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08460-2 – volume: 106 start-page: 239 year: 2016 ident: 32444_CR36 publication-title: Acta Materialia doi: 10.1016/j.actamat.2015.12.037 – volume: 12 year: 2021 ident: 32444_CR44 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23689-6 – volume: 182 start-page: 278 year: 2020 ident: 32444_CR23 publication-title: Acta Materialia doi: 10.1016/j.actamat.2019.10.043 – volume: 95 start-page: 74 year: 2015 ident: 32444_CR19 publication-title: Acta Materialia doi: 10.1016/j.actamat.2015.05.017 – volume: 112 start-page: 14501 year: 2015 ident: 32444_CR41 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1517193112 – volume: 45 start-page: 323 year: 2004 ident: 32444_CR18 publication-title: Mater. Trans. doi: 10.2320/matertrans.45.323 – volume: 64 start-page: 325 year: 1930 ident: 32444_CR25 publication-title: Z. für. Phys. doi: 10.1007/BF01397346 – volume: 675 start-page: 99 year: 2016 ident: 32444_CR30 publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2016.08.048 – ident: 32444_CR3 doi: 10.1016/B978-0-408-70933-0.50006-2 – volume: 582 start-page: 515 year: 2020 ident: 32444_CR14 publication-title: Nature doi: 10.1038/s41586-020-2409-3 – volume: 141 start-page: 59 year: 2017 ident: 32444_CR26 publication-title: Acta Materialia doi: 10.1016/j.actamat.2017.07.041 – volume: 156 start-page: 105 year: 2018 ident: 32444_CR39 publication-title: Scr. Materialia doi: 10.1016/j.scriptamat.2018.07.022 – volume: 19 start-page: 2027 year: 1988 ident: 32444_CR48 publication-title: Metall. Trans. A doi: 10.1007/BF02645206 – volume: 216 start-page: 144 year: 2018 ident: 32444_CR27 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.01.017 – volume: 8 start-page: 1 year: 2019 ident: 32444_CR43 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2018.12.002 – volume: 10 start-page: 100639 year: 2020 ident: 32444_CR33 publication-title: Materialia doi: 10.1016/j.mtla.2020.100639 – volume: 656 start-page: 458 year: 2016 ident: 32444_CR28 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2015.09.264 – volume: 186 start-page: 336 year: 2020 ident: 32444_CR31 publication-title: Scr. Materialia doi: 10.1016/j.scriptamat.2020.04.035 – ident: 32444_CR4 doi: 10.1016/B978-008045370-5.50007-9 – volume: 65 start-page: 216 year: 2021 ident: 32444_CR40 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.04.073 – volume: 58 start-page: 138 year: 2008 ident: 32444_CR21 publication-title: Scr. Materialia doi: 10.1016/j.scriptamat.2007.09.018 – volume: 4 year: 2014 ident: 32444_CR5 publication-title: Sci. Rep. doi: 10.1038/srep06200 – volume: 373 start-page: 912 year: 2021 ident: 32444_CR8 publication-title: Science doi: 10.1126/science.abf6986 |
SSID | ssj0000391844 |
Score | 2.6776934 |
Snippet | Excellent ductility is crucial not only for shaping but also for strengthening metals and alloys. The ever most widely used eutectic alloys are suffering from... The ever most widely used eutectic alloys often suffer from limited ductility. Here the authors propose a distinctive concept of phase-selective... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4697 |
SubjectTerms | 147/135 147/143 639/301/1023/1026 639/301/1023/303 Alloys Competitiveness Ductility Elongation Eutectic alloys High entropy alloys High strength alloys Humanities and Social Sciences Metals Microstructure multidisciplinary Phases Recrystallization Science Science (multidisciplinary) Strain hardening True stress |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZpQqGX0qQpdZoGB3prRLyWViOfSlsaQg8lhAb2JqyHm9CNvVnvHvbfd0ar3eBAc_HBlrEe8_ikGX_D2KfSCQ_ClVxWdBmVwGsHioNTTSVtQ16Ksi1-qcsb-XMynqQDtz6lVW5sYjTUvnN0Rn5OAVKJAqTKL7MHTlWjKLqaSmi8YHtEXUYpXTCB7RkLsZ9rKdO_MoXQ572MliGmsKNjk1wO_FGk7R9gzaeZkk_CpdELXbxhrxN8zL-u13uf7YT2gL1cF5RcvWXXV7folXgfi9ugHcvRns1XCACn0_S_ZX5f_w19HpYUPLhzOdEVc_psN1vlFIRf9flyir3gRASLJuOQ3Vz8-P39kqeqCdyNtVhwUXiHsMuOpPMWB2kDbjg9uiE30jZYEE1ZjcHXqOoegrOqgrpwqInSSfBVEO_Ybtu14T3LFa5UrUMNViiJwExDGRqlgnK69KrWGRtt5s64RClOlS2mJoa2hTbr-TY43ybOt5EZ-7x9Z7Ym1Hi29Tdakm1LIsOON7r5H5N0ywAE5WFcIZgTuIHTlUcUgsBUWNkIC9jN482CmqShvXmUp4ydbh-jblHApG5Dt4xtcHeMW-giYzAQhEGHhk_au9vI0l0JBHeFytjZRmQeP_7_AR8939cP7FVJwhs5eY_Z7mK-DB8RFS3sSRT9f_-SCYU priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_OE8EX8RPrnVLBN43uNtlM8iCi4nEIiogL9xaaj3qHtXu33QX73ztJ25Uep0--9KFJSDKTmfkNk8wAPCsc98hdwYSOn3mBrHQoGTpZaWGraKXibYvP8ngpPp4sTvZgLHc0ELC90rWL9aSW6_rlr4vuDQn86_7JuHrViiTu6V46WSvBxDW4TpYJo6B-GuB-0sxck0MjhrczVw-d2KeUxn-CPS_fnLwUPk1W6eg23BrgZP625_8d2AvNXbjRF5js7sHXL6dkpVibit2QXstJv607AoR1Pby_zH-WP0Kbh20MJpy5PKYvZnHa1XmXx6B81-bbmlbBYmJYUiH3YXn04dv7YzZUUWBuofiG8Zl3BMPsXDhvaZM2kAPqySy5ubLBIq8KvUBfkuh7DM5KjeXMkWQKJ9DrwB_AfrNqwkPIJXGuVKFEy6UgoKawCJWUQTpVeFmqDOYj7YwbUozHShe1SaFurkxPb0P0NoneRmTwfDfmvE-w8c_e7yJLdj1jcuz0Y7X-bgZZM4hBelxoAnecHDqlPaESAqrciopbpGUejgw144EzMQAvSEHJIoOnu2aStRhAKZuw2qY-5C2TSz3LACcHYbKgaUtzdpqydmtOYG8mM3gxHpk_k_99w4_-x4YP4GYRj3jK5HsI-5v1NjwmLLWxT5KA_Ab7Zhjf priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SlEIupa9Q51FcyK0V9UpaST6mS0LooZSSQG7CergJ2XiX9e5h_31ntPYWh6TQiw-2hF7z-OQZfQI45V4ELTxnsqTHiGtWea2Y9qoupavJS1G2xQ91eS2_34xvdoD3Z2FS0n6itExmus8O-9rKpNIp9xw9kmRyF14QdTtJ9URNtv9ViPHcSNmdjymEeaLqwAclqv4BvnycHfkoRJo8z8VreNVBxvxs08k3sBObt_Byc4nk-h38-nmLnoi16UIbtF052rDFGkHfdNqdscwfqvvY5nFFAYM7nxNFMaNmZ_N1ToH3dZuvptgLRuSvaCbew_XF-dXkknU3JTA_NmLJRBE8Qi03kj44HKSLuMkM6Hr8yLjotKh5OdahQvUOOnqnSl0VHrVPeqlDGcUB7DWzJn6AXOHqVCZW2gklEYwZzWOtVFTe8KAqk8GonzvrOxpxus1ialM4Wxi7mW-L823TfFuZwedtnfmGROOfpb_RkmxLEgF2ejFb_LadQFitowp6XCKAE7hpM2VA5IFgVDhZC6exm8f9gtpOK1tLQXaJRkjxDD5tP6M-UZCkauJslcrgjhi3zUUGeiAIgw4NvzR3t4mZuxQI6AqVwZdeZP42_vyAD_-v-BHscxLmxMt7DHvLxSqeIDJauo9JFf4AmAQHYQ priority: 102 providerName: Springer Nature |
Title | Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile |
URI | https://link.springer.com/article/10.1038/s41467-022-32444-4 https://www.proquest.com/docview/2700451062 https://www.proquest.com/docview/2701072540 https://pubmed.ncbi.nlm.nih.gov/PMC9365806 https://doaj.org/article/77e6d759505349989d8181933b4f3b78 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-2jsFexroP5q0LHuxtE3UsRSc_pqFpCbSUboW8CevDtCxzSp085L_fSXayurDtpS8yWDKWTnf3u-OkO4AvueUOuc2ZKEIzzJGVFiVDK6tCmCqgVDhtcS5Pr8RsPprfK_UVzoS16YFbwh0ieulwVBBSc7LOVeEIYsjq4EZU3GC85kuYd8-ZijqYF-S6iO6WTMbVYSOiToiH1wnSBBM9JIoJ-3tW5sMzkg8CpRF_pq_gZWc4puN2wvvwxNev4XlbSnLzBi4vrgmPWBPL2pAGS0mT3W3I9FssupuW6a_yp29Svw5hgxubhkTFLPx2ebtJQ_h906TrBc2ChRSwpCzewtX0-MfklHX1EpgdKb5iPHOWDC4zFNYZWqTx5Go6AiA7VMYb5FVejNCVJOQOvTWywDKzJIPCCnSF5-9gr17W_j2kkvaoVL5Ew6Ugk0xh7ispvbQqd7JUCQy3tNO2SyYealosdAxqc6Vbemuit4701iKBr7tvbttUGv8cfRS2ZDcypMGOL4g5dMcc-n_MkcDBdkN1J5uNDqF2QapI5gl83nWTVIVQSVn75TqOIb-YnOcsAewxQm9C_Z765jrm5y44mXWZTODblmX-_PzvC_7wGAv-CC_ywOIxZ-8B7K3u1v4TWU0rM4CnOEdq1fRkAM_G49n3GT2Pjs8vLuntRE4GUYSoPRPqN-vmFvQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4qmmFAgSnMBqNvbazgEhXtWWlgqhVtqbiR-hFUuy3ewK5U_xG5lxkq1Sid562cPGu3HG38x8k7FnCHmZWuYksynlGX6MUklzKwWVVhQZNwV6KdxtcSQmJ_zLdDzdIH_7szC4rbK3icFQu8riO_JdTJByAJBI383PKXaNwuxq30KjhcWBb_5AyFa_3f8E6_sqTfc-H3-c0K6rALVjxZaUJc4CLTEjbp0BOmE8BGQOzLQdKeONZEWajaXLQRWc9NaITOaJBaRyy6XLPIP_vUFuguNNUKPkVK7f6WC1dcV5dzYnYWq35sEShS3z4Eg55QP_F9oEDLjt5Z2Zl9Kzwevt3SN3O7oav2_xdZ9s-PIBudU2sGweku_fTsEL0jo00wG7GYP9XDRAOGez7nxn_Dv_5evYrzBZcWZjLI9M8bbVvIkx6d_U8WoGs6BYeBZM1CNyci3yfEw2y6r0WyQWgIxc-VwaJjgQQSVTXwjhhVWpE7mKyKiXnbZdCXPspDHTIZXOlG7lrUHeOshb84i8Xv9m3hbwuHL0B1yS9Ugsvh2-qBY_dafLWkovnBxnQB4ZBIwqc8B6gAgzwwtmJExzp19Q3VmEWl_gNyIv1pdBlzFBk5e-WoUxEI1DyJ5ERA6AMJjQ8Ep5dhqqgmcMyGQiIvKmh8zFzf__wNtXz_U5uT05_nqoD_ePDp6QOykCOdQD3iGby8XKPwVGtjTPghrE5Md1690_NOZGbA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4ilSCgQJTmBtYju2c0AIKKuWoqpCVNqbiR-hFdtk2ewK5a_x6xg7yVapRG-95JA4iTOexzeZ8QxCr4ihVlBDMMv9ISUCF0ZwLAwvc6ZLb6V8tsUR3z9hX2bZbAv9HfbC-LTKQScGRW1r4_-RT3yAlAEDcTIp-7SI473p-8Vv7DtI-Ujr0E6jY5FD1_4B9615d7AHa_2akOnn75_2cd9hAJtM0hWmiTUAUXTKjNUALbQD58yCyjap1E4LWpI8E7YAsbDCGc1zUSQGuJYZJmzuKDz3BropaJZ6GRMzsfm_4yuvS8b6fToJlZOGBa0U0ufBqDLMRrYwtAwY4dzLWZqXQrXBAk7vobs9dI0_dLx2H2256gG61TWzbB-ib8enYBFxExrrgA6NQZcuWwCf83m_1zM-L365JnZrH7g4M7EvlYz9a-tFG_sEgLaJ13OYBfZFaEFdPUIn10LPx2i7qiv3BMUcuKSQrhCacgagUAriSs4dN5JYXsgIpQPtlOnLmfuuGnMVwupUqo7eCuitAr0Vi9CbzT2LrpjHlaM_-iXZjPSFuMOJevlT9XKthHDciiwHIEnBeZS5BQQEoJhqVlItYJq7w4KqXjs06oKXI_Rycxnk2gdrisrV6zAGPHNw35MIiREjjCY0vlKdnYYK4TkFYJnwCL0dWObi5f__4J2r5_oC3QaJU18Pjg6fojvE83EoDbyLtlfLtXsG4GylnwcpiNGP6xa7f3M_SqI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase-selective+recrystallization+makes+eutectic+high-entropy+alloys+ultra-ductile&rft.jtitle=Nature+communications&rft.au=Qingfeng+Wu&rft.au=Feng+He&rft.au=Junjie+Li&rft.au=Hyoung+Seop+Kim&rft.date=2022-08-10&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41467-022-32444-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_77e6d759505349989d8181933b4f3b78 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |