Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops

The HIV-1 envelope (Env) spike (gp1203/gp413) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, howeve...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 15; pp. 5663 - 5668
Main Authors Kwon, Young Do, Finzi, Andrés, Wu, Xueling, Dogo-Isonagie, Cajetan, Lee, Lawrence K, Moore, Lucas R, Schmidt, Stephen D, Stuckey, Jonathan, Yang, Yongping, Zhou, Tongqing, Zhu, Jiang, Vicic, David A, Debnath, Asim K, Shapiro, Lawrence, Bewley, Carole A, Mascola, John R, Sodroski, Joseph G, Kwong, Peter D
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 10.04.2012
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The HIV-1 envelope (Env) spike (gp1203/gp413) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a "ground state" for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from "snapping" into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry.
AbstractList The HIV-1 envelope (Env) spike (gp120 3 /gp41 3 ) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a “ground state” for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from “snapping” into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry.
The HIV-1 envelope (Env) spike (gp1203/gp413) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a "ground state" for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from "snapping" into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry.
The HIV-1 envelope (Env) spike (gp120 3 /gp41 3 ) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a “ground state” for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from “snapping” into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry.
The HIV-1 envelope (Env) spike (gp1203/gp413) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a "ground state" for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from "snapping" into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry. [PUBLICATION ABSTRACT]
The HIV-1 envelope (Env) spike (gp120(3)/gp41(3)) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a "ground state" for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from "snapping" into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry.The HIV-1 envelope (Env) spike (gp120(3)/gp41(3)) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a "ground state" for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from "snapping" into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry.
The HIV-1 envelope (Env) spike (gp120{sub 3}/gp41{sub 3}) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a 'ground state' for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from 'snapping' into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry.
The HIV-1 envelope (Env) spike (gp120₃/gp41₃) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2-and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a "ground state" for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from "snapping" into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry.
Author Kwong, Peter D
Sodroski, Joseph G
Mascola, John R
Kwon, Young Do
Moore, Lucas R
Yang, Yongping
Schmidt, Stephen D
Wu, Xueling
Dogo-Isonagie, Cajetan
Debnath, Asim K
Zhou, Tongqing
Finzi, Andrés
Stuckey, Jonathan
Zhu, Jiang
Vicic, David A
Shapiro, Lawrence
Lee, Lawrence K
Bewley, Carole A
Author_xml – sequence: 1
  fullname: Kwon, Young Do
– sequence: 2
  fullname: Finzi, Andrés
– sequence: 3
  fullname: Wu, Xueling
– sequence: 4
  fullname: Dogo-Isonagie, Cajetan
– sequence: 5
  fullname: Lee, Lawrence K
– sequence: 6
  fullname: Moore, Lucas R
– sequence: 7
  fullname: Schmidt, Stephen D
– sequence: 8
  fullname: Stuckey, Jonathan
– sequence: 9
  fullname: Yang, Yongping
– sequence: 10
  fullname: Zhou, Tongqing
– sequence: 11
  fullname: Zhu, Jiang
– sequence: 12
  fullname: Vicic, David A
– sequence: 13
  fullname: Debnath, Asim K
– sequence: 14
  fullname: Shapiro, Lawrence
– sequence: 15
  fullname: Bewley, Carole A
– sequence: 16
  fullname: Mascola, John R
– sequence: 17
  fullname: Sodroski, Joseph G
– sequence: 18
  fullname: Kwong, Peter D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22451932$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1041327$$D View this record in Osti.gov
BookMark eNqNkktvEzEUhUeoiD5gzQqwWLGZ1s_xeIOEwqOVKrGAsLU8zp3E0cRObU9R_wC_G6dJE0BCsJmH7nfPvT4-p9WRDx6q6jnB5wRLdrH2Jp0TQihThGD1qDopT1I3XOGj6gRjKuuWU35cnaa0xBgr0eIn1TGlXBDF6En1Y-oHNzd-BjN0efWtJmi-JhQjGyKglONo8xghIZPSuAKUF4Am73ndhdHPCuT7EFcmu-DRd5cXKMJ8HLb_3R26GU2G6E28Q86XL2M3lSJWem9NdKYbAA0hrNPT6nFvhgTPdu-zavrxw9fJZX39-dPV5N11bUXLck2hB9U3s3J0YTGxuAMisRSNsrbprZJtYwzD1lgqLFMGjOTAmZxZ2nSCSnZWvd3qrsduBTMLPkcz6HV0q7KlDsbp3yveLfQ83GrGaDFVFYHXW4GQstPJugx2UXzwYLMmmBN2P-XNbkoMNyOkrFcuWRgG4yGMSRPBFBdCUvZvFBOpJJEU_weKMcfFJ3LYco8uw1guYkhaqZIN2pC2QC9_9WJvwkM4CiC2gI0hpQi9Lse9v9xijRvKQL0Jod6EUB9CWPou_uh7kP57x6vdKpvCgVbFKi2aZuPTiy2xTDnEPcKJaFtK6UGhN0GbeXRJT79QTHgxpVENFuwnBA_8FQ
CitedBy_id crossref_primary_10_1097_COH_0000000000000551
crossref_primary_10_1021_ml300407y
crossref_primary_10_1128_JVI_02151_16
crossref_primary_10_3390_v13050913
crossref_primary_10_2174_1568026619666190717163959
crossref_primary_10_1002_rmv_1853
crossref_primary_10_1007_s00894_016_3189_4
crossref_primary_10_1016_j_bmcl_2014_02_038
crossref_primary_10_3390_v15051185
crossref_primary_10_1128_JVI_02213_14
crossref_primary_10_1093_bioinformatics_bty274
crossref_primary_10_1128_JVI_02678_15
crossref_primary_10_1128_mbio_02752_21
crossref_primary_10_1128_JVI_01352_12
crossref_primary_10_1002_prot_24726
crossref_primary_10_1371_journal_pone_0085940
crossref_primary_10_1016_j_tim_2019_06_002
crossref_primary_10_1038_nature12053
crossref_primary_10_1016_j_chom_2013_10_006
crossref_primary_10_1021_jm4002988
crossref_primary_10_1128_MMBR_00065_15
crossref_primary_10_1371_journal_pone_0143245
crossref_primary_10_1186_1742_4690_11_41
crossref_primary_10_1128_JVI_03447_13
crossref_primary_10_1016_j_str_2016_03_005
crossref_primary_10_1016_j_bmcl_2015_11_103
crossref_primary_10_1128_JVI_01834_12
crossref_primary_10_1128_mBio_01598_16
crossref_primary_10_1016_j_ejmech_2018_04_062
crossref_primary_10_1039_C9CP04613E
crossref_primary_10_1128_mbio_01827_24
crossref_primary_10_1016_j_bmc_2022_117083
crossref_primary_10_1371_journal_ppat_1005537
crossref_primary_10_1016_j_cell_2015_05_007
crossref_primary_10_3109_10799893_2015_1056307
crossref_primary_10_1002_prot_24184
crossref_primary_10_1038_nchembio_1623
crossref_primary_10_1039_C5RA04299B
crossref_primary_10_1128_JVI_02219_16
crossref_primary_10_1093_nar_gku318
crossref_primary_10_1016_j_chembiol_2022_03_009
crossref_primary_10_1021_acs_jmedchem_7b00179
crossref_primary_10_1038_nsmb_3051
crossref_primary_10_1021_acs_jmedchem_1c01104
crossref_primary_10_1039_C9CP06706J
crossref_primary_10_1016_j_bmcl_2014_10_027
crossref_primary_10_1371_journal_ppat_1003342
crossref_primary_10_1038_s41467_019_09451_z
crossref_primary_10_1097_QAD_0000000000002011
crossref_primary_10_1371_journal_pone_0037530
crossref_primary_10_1128_JVI_00152_13
crossref_primary_10_1038_s41467_024_53120_9
crossref_primary_10_1016_j_cell_2015_08_035
crossref_primary_10_1021_acs_jproteome_9b00620
crossref_primary_10_1021_bi400166b
crossref_primary_10_1128_JVI_07224_11
crossref_primary_10_1016_j_isci_2022_104449
crossref_primary_10_1111_febs_14673
crossref_primary_10_3390_v11080746
crossref_primary_10_1128_AAC_02739_13
crossref_primary_10_1128_JVI_00134_17
crossref_primary_10_1038_srep07025
crossref_primary_10_7554_eLife_37688
crossref_primary_10_1128_JVI_02680_14
crossref_primary_10_1016_j_jim_2013_09_002
crossref_primary_10_1016_j_provac_2015_05_002
crossref_primary_10_1002_cmdc_201500590
crossref_primary_10_1021_acs_jafc_6b01067
crossref_primary_10_1186_s12977_014_0075_y
crossref_primary_10_1128_JVI_01254_13
crossref_primary_10_1016_j_talanta_2018_12_062
crossref_primary_10_1128_JVI_01145_13
crossref_primary_10_3390_ijms232415999
crossref_primary_10_3389_fphar_2020_613361
crossref_primary_10_1128_JVI_03104_12
crossref_primary_10_1073_pnas_2222073120
crossref_primary_10_1073_pnas_1314718111
crossref_primary_10_1021_acs_jmedchem_5b00709
crossref_primary_10_1074_jbc_M112_437483
crossref_primary_10_1128_mBio_00280_20
crossref_primary_10_1128_JVI_01068_16
crossref_primary_10_1128_JVI_01215_16
crossref_primary_10_1371_journal_pone_0058804
crossref_primary_10_1016_j_str_2022_03_012
crossref_primary_10_1021_acs_jmedchem_0c01153
crossref_primary_10_1080_19420862_2023_2223350
crossref_primary_10_1038_s41594_023_01062_z
crossref_primary_10_1128_JVI_01535_13
crossref_primary_10_2174_1570162X16666171222110025
crossref_primary_10_1016_j_antiviral_2013_03_017
crossref_primary_10_1016_j_bmc_2016_09_057
crossref_primary_10_1111_imr_12507
crossref_primary_10_1073_pnas_1615939113
crossref_primary_10_1007_s11427_014_4617_2
crossref_primary_10_1038_s41467_021_21816_x
crossref_primary_10_1007_s00705_021_04984_5
crossref_primary_10_1016_j_vaccine_2017_04_054
crossref_primary_10_1099_vir_0_046508_0
crossref_primary_10_1016_j_chom_2018_09_003
crossref_primary_10_1038_icb_2015_15
crossref_primary_10_1126_science_1225416
crossref_primary_10_1007_s12551_022_00999_7
crossref_primary_10_1128_JVI_01332_13
crossref_primary_10_1128_JVI_01596_14
crossref_primary_10_1097_COH_0b013e328363a90e
crossref_primary_10_1007_s00894_012_1619_5
crossref_primary_10_2174_1568026619666190712204050
crossref_primary_10_1371_journal_pone_0076139
crossref_primary_10_1021_jm3002247
crossref_primary_10_1186_1742_4690_10_147
crossref_primary_10_1016_j_bmc_2013_02_041
crossref_primary_10_1038_s41467_023_40918_2
crossref_primary_10_1016_j_ejmech_2021_114078
crossref_primary_10_1371_journal_ppat_1009624
crossref_primary_10_1002_cmdc_201700728
crossref_primary_10_1016_j_bmcl_2019_01_011
crossref_primary_10_1128_JVI_02194_14
crossref_primary_10_1038_s41467_017_01119_w
crossref_primary_10_1371_journal_pcbi_1003046
crossref_primary_10_1021_acs_jmedchem_9b02149
crossref_primary_10_1128_jvi_01635_22
crossref_primary_10_1371_journal_pone_0052170
crossref_primary_10_1074_jbc_R112_406272
crossref_primary_10_1021_bi300878d
crossref_primary_10_1016_j_sbi_2013_03_007
crossref_primary_10_1371_journal_ppat_1007432
crossref_primary_10_1038_nsmb_2351
crossref_primary_10_1111_febs_12839
crossref_primary_10_4049_jimmunol_1901051
crossref_primary_10_1371_journal_pone_0104714
crossref_primary_10_3390_v14102268
crossref_primary_10_3390_app14188271
crossref_primary_10_1155_2014_157895
crossref_primary_10_1016_j_crmicr_2024_100260
crossref_primary_10_1038_emi_2015_44
crossref_primary_10_1089_aid_2018_0102
crossref_primary_10_1016_j_celrep_2013_09_028
crossref_primary_10_1128_JVI_00494_14
crossref_primary_10_3390_v13050843
crossref_primary_10_1128_JVI_00540_14
crossref_primary_10_1128_AAC_03339_14
crossref_primary_10_1016_j_bmc_2021_116000
crossref_primary_10_1021_acsmedchemlett_5b00471
crossref_primary_10_1128_JVI_01076_12
crossref_primary_10_1371_journal_pone_0190658
crossref_primary_10_1128_JVI_01823_18
crossref_primary_10_1016_j_bmc_2018_10_011
crossref_primary_10_1016_j_tibs_2014_12_006
crossref_primary_10_1016_j_tim_2017_10_007
crossref_primary_10_1128_mbio_01825_21
crossref_primary_10_1128_JVI_03211_15
crossref_primary_10_1371_journal_pone_0069406
crossref_primary_10_1073_pnas_1606636113
crossref_primary_10_1126_science_1245625
crossref_primary_10_1126_science_1245627
crossref_primary_10_1128_JVI_01681_13
crossref_primary_10_1128_JVI_02868_14
crossref_primary_10_1038_srep46733
crossref_primary_10_1021_acs_molpharmaceut_7b00505
crossref_primary_10_1128_JVI_01543_12
crossref_primary_10_1016_j_str_2014_05_001
crossref_primary_10_1074_jbc_RA119_009481
crossref_primary_10_1186_s12977_017_0369_y
crossref_primary_10_1016_j_ebiom_2016_06_037
crossref_primary_10_1021_bi500136f
crossref_primary_10_1080_07391102_2015_1032826
crossref_primary_10_1073_pnas_1507793112
crossref_primary_10_1128_JVI_02851_15
crossref_primary_10_1186_1742_4690_10_33
crossref_primary_10_1111_febs_16328
crossref_primary_10_1016_j_bbrc_2016_05_051
crossref_primary_10_1021_acs_jmedchem_3c01543
crossref_primary_10_1021_acs_jcim_6b00393
crossref_primary_10_1002_cmdc_201200584
crossref_primary_10_1080_07391102_2013_770372
crossref_primary_10_1186_1742_4690_10_114
crossref_primary_10_1021_jm300265j
crossref_primary_10_1093_jac_dkt412
crossref_primary_10_1016_j_coph_2014_06_005
crossref_primary_10_1371_journal_pone_0174550
crossref_primary_10_3389_fmicb_2016_00110
crossref_primary_10_3390_ijms20020260
crossref_primary_10_3390_microorganisms8050710
crossref_primary_10_1111_imr_12005
crossref_primary_10_1371_journal_pone_0122111
crossref_primary_10_1371_journal_pone_0075665
crossref_primary_10_3390_v4123859
crossref_primary_10_1016_j_bmc_2022_116616
crossref_primary_10_1128_JVI_03124_12
crossref_primary_10_1016_j_str_2013_04_015
crossref_primary_10_1016_j_virol_2017_12_002
crossref_primary_10_1007_s10059_012_0104_4
crossref_primary_10_1128_JVI_02614_14
crossref_primary_10_1021_acs_biochem_5b01354
crossref_primary_10_1038_nsmb_2711
crossref_primary_10_1021_ar4002735
crossref_primary_10_1128_JVI_03206_15
crossref_primary_10_1016_j_jviromet_2016_07_019
crossref_primary_10_1080_07391102_2019_1635916
crossref_primary_10_1016_j_sbi_2013_04_003
crossref_primary_10_1073_pnas_1307382110
Cites_doi 10.1016/S0092-8674(00)81393-8
10.1128/JVI.01612-10
10.1074/jbc.274.7.4115
10.1128/jvi.67.8.4557-4565.1993
10.1038/nature07159
10.1073/pnas.1007227107
10.1016/S0969-2126(98)00096-3
10.1128/JVI.72.8.6332-6338.1998
10.1128/JVI.00790-10
10.1038/nature05580
10.1128/JVI.76.19.9888-9899.2002
10.1073/pnas.0911004107
10.1073/pnas.97.16.9026
10.1016/j.virol.2005.06.008
10.1371/journal.ppat.1000445
10.1128/JVI.75.5.2041-2050.2001
10.1126/science.280.5371.1884
10.1126/science.1192819
10.1128/JVI.00688-10
10.1128/JVI.00118-06
10.1126/science.1145373
10.1128/JVI.02108-09
10.1038/31405
10.1371/journal.ppat.1001249
10.1126/science.1118398
10.1038/nature03327
10.1146/annurev.immunol.17.1.657
10.1021/bi061193r
10.1128/JVI.00594-09
10.1038/387426a0
10.1126/science.1175868
10.1016/S0969-2126(00)00547-5
10.1126/science.1187659
10.1126/science.1178746
10.1128/jvi.71.12.9808-9812.1997
10.1128/JVI.02587-09
10.1146/annurev.biochem.70.1.777
10.1016/j.str.2004.12.004
10.1016/S0092-8674(00)80205-6
10.1128/JVI.02187-10
10.1128/JVI.80.6.3088-3091.2006
10.1038/nature01188
10.1016/j.str.2008.09.005
10.1038/nrm1076
10.1016/S0076-6879(97)76066-X
10.1107/S0909049503024130
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Apr 10, 2012
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Apr 10, 2012
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
OTOTI
5PM
DOI 10.1073/pnas.1112391109
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
AGRICOLA

CrossRef
Virology and AIDS Abstracts

MEDLINE - Academic


AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Chemistry
EISSN 1091-6490
EndPage 5668
ExternalDocumentID PMC3326499
1041327
2632880041
22451932
10_1073_pnas_1112391109
109_15_5663
41588222
US201400069605
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R37 AI024755
– fundername: Intramural NIH HHS
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
OTOTI
5PM
ID FETCH-LOGICAL-c583t-2efe9f6d0735c01c0be1707569cc6fc9786aa30cac25c39aea74e437dc26b5273
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:42:25 EDT 2025
Thu May 18 18:20:22 EDT 2023
Fri Jul 11 07:28:21 EDT 2025
Fri Jul 11 11:03:29 EDT 2025
Fri Jul 11 09:40:11 EDT 2025
Mon Jun 30 08:39:23 EDT 2025
Wed Feb 19 02:36:32 EST 2025
Thu Apr 24 23:03:51 EDT 2025
Tue Jul 01 03:39:14 EDT 2025
Wed Nov 11 00:30:38 EST 2020
Thu May 29 08:40:37 EDT 2025
Wed Dec 27 19:16:03 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c583t-2efe9f6d0735c01c0be1707569cc6fc9786aa30cac25c39aea74e437dc26b5273
Notes http://dx.doi.org/10.1073/pnas.1112391109
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
National Institutes of Health (NIH)
Author contributions: Y.D.K., A.F., X.W., J.R.M., J.G.S., and P.D.K. designed research; Y.D.K., A.F., C.D.-I., L.K.L., S.D.S., J.S., and Y.Y. performed research; Y.D.K., C.D.-I., L.R.M., T.Z., D.A.V., A.K.D., C.A.B., and P.D.K. contributed new reagents/analytic tools; Y.D.K., A.F., X.W., J.Z., L.S., J.R.M., J.G.S., and P.D.K. analyzed data; and Y.D.K., L.S., J.G.S., and P.D.K. wrote the paper.
Edited* by Wayne A Hendrickson, Columbia University, New York, NY, and approved February 21, 2012 (received for review August 1, 2011)
OpenAccessLink https://www.pnas.org/content/pnas/109/15/5663.full.pdf
PMID 22451932
PQID 994902618
PQPubID 42026
PageCount 6
ParticipantIDs crossref_primary_10_1073_pnas_1112391109
jstor_primary_41588222
pnas_primary_109_15_5663
proquest_miscellaneous_1000405831
osti_scitechconnect_1041327
crossref_citationtrail_10_1073_pnas_1112391109
pubmed_primary_22451932
proquest_miscellaneous_1539455723
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3326499
proquest_journals_994902618
fao_agris_US201400069605
proquest_miscellaneous_1017971720
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-04-10
PublicationDateYYYYMMDD 2012-04-10
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References Kolchinsky P (e_1_3_4_34_2) 2001; 75
Kwong PD (e_1_3_4_18_2) 1999; 274
Kwong PD (e_1_3_4_28_2) 2002; 420
Berger EA (e_1_3_4_5_2) 1999; 17
Sattentau QJ (e_1_3_4_4_2) 1998; 6
Colman PM (e_1_3_4_2_2) 2003; 4
Pancera M (e_1_3_4_16_2) 2010; 107
Zhou T (e_1_3_4_19_2) 2007; 445
Wyatt R (e_1_3_4_35_2) 1993; 67
Eckert DM (e_1_3_4_1_2) 2001; 70
Liu J (e_1_3_4_6_2) 2008; 455
Seaman MS (e_1_3_4_46_2) 2010; 84
Zhao Q (e_1_3_4_31_2) 2005; 339
Xiang SH (e_1_3_4_38_2) 2010; 84
Myszka DG (e_1_3_4_22_2) 2000; 97
Schön A (e_1_3_4_33_2) 2006; 45
Kwong PD (e_1_3_4_13_2) 2000; 8
Kwong PD (e_1_3_4_12_2) 1998; 393
Chen B (e_1_3_4_17_2) 2005; 433
Adams PD (e_1_3_4_45_2) 2004; 11
Hu G (e_1_3_4_9_2) 2011; 85
Kong L (e_1_3_4_27_2) 2010; 84
Weissenhorn W (e_1_3_4_11_2) 1997; 387
Huang CC (e_1_3_4_15_2) 2007; 317
Xiang SH (e_1_3_4_30_2) 2002; 76
Cao J (e_1_3_4_36_2) 1997; 71
Dey B (e_1_3_4_24_2) 2009; 5
Kassa A (e_1_3_4_37_2) 2009; 83
Wu SR (e_1_3_4_7_2) 2010; 107
Chan DC (e_1_3_4_10_2) 1997; 89
Sullivan N (e_1_3_4_39_2) 1998; 72
de Parseval A (e_1_3_4_42_2) 2006; 80
O'Rourke SM (e_1_3_4_40_2) 2010; 84
Wyatt R (e_1_3_4_3_2) 1998; 280
Zhou T (e_1_3_4_21_2) 2010; 329
Yuan W (e_1_3_4_26_2) 2006; 80
Wu X (e_1_3_4_29_2) 2010; 329
Huang CC (e_1_3_4_14_2) 2005; 310
Walker LM (e_1_3_4_23_2) 2009; 326
Musich T (e_1_3_4_41_2) 2011; 85
Chen L (e_1_3_4_20_2) 2009; 326
Madani N (e_1_3_4_32_2) 2008; 16
Chen B (e_1_3_4_25_2) 2005; 13
Endres MJ (e_1_3_4_43_2) 1996; 87
Otwinowski Z (e_1_3_4_44_2) 1997; 276
White TA (e_1_3_4_8_2) 2010; 6
References_xml – volume: 87
  start-page: 745
  year: 1996
  ident: e_1_3_4_43_2
  article-title: CD4-independent infection by HIV-2 is mediated by fusin/CXCR4
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81393-8
– volume: 85
  start-page: 2741
  year: 2011
  ident: e_1_3_4_9_2
  article-title: Structural comparison of HIV-1 envelope spikes with and without the V1/V2 loop
  publication-title: J Virol
  doi: 10.1128/JVI.01612-10
– volume: 274
  start-page: 4115
  year: 1999
  ident: e_1_3_4_18_2
  article-title: Probability analysis of variational crystallization and its application to gp120, the exterior envelope glycoprotein of type 1 human immunodeficiency virus (HIV-1)
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.7.4115
– volume: 67
  start-page: 4557
  year: 1993
  ident: e_1_3_4_35_2
  article-title: Functional and immunologic characterization of human immunodeficiency virus type 1 envelope glycoproteins containing deletions of the major variable regions
  publication-title: J Virol
  doi: 10.1128/jvi.67.8.4557-4565.1993
– volume: 455
  start-page: 109
  year: 2008
  ident: e_1_3_4_6_2
  article-title: Molecular architecture of native HIV-1 gp120 trimers
  publication-title: Nature
  doi: 10.1038/nature07159
– volume: 107
  start-page: 18844
  year: 2010
  ident: e_1_3_4_7_2
  article-title: Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1007227107
– volume: 6
  start-page: 945
  year: 1998
  ident: e_1_3_4_4_2
  article-title: HIV gp120: Double lock strategy foils host defences
  publication-title: Structure
  doi: 10.1016/S0969-2126(98)00096-3
– volume: 72
  start-page: 6332
  year: 1998
  ident: e_1_3_4_39_2
  article-title: Determinants of human immunodeficiency virus type 1 envelope glycoprotein activation by soluble CD4 and monoclonal antibodies
  publication-title: J Virol
  doi: 10.1128/JVI.72.8.6332-6338.1998
– volume: 84
  start-page: 11200
  year: 2010
  ident: e_1_3_4_40_2
  article-title: Mutation at a single position in the V2 domain of the HIV-1 envelope protein confers neutralization sensitivity to a highly neutralization-resistant virus
  publication-title: J Virol
  doi: 10.1128/JVI.00790-10
– volume: 445
  start-page: 732
  year: 2007
  ident: e_1_3_4_19_2
  article-title: Structural definition of a conserved neutralization epitope on HIV-1 gp120
  publication-title: Nature
  doi: 10.1038/nature05580
– volume: 76
  start-page: 9888
  year: 2002
  ident: e_1_3_4_30_2
  article-title: Mutagenic stabilization and/or disruption of a CD4-bound state reveals distinct conformations of the human immunodeficiency virus type 1 gp120 envelope glycoprotein
  publication-title: J Virol
  doi: 10.1128/JVI.76.19.9888-9899.2002
– volume: 107
  start-page: 1166
  year: 2010
  ident: e_1_3_4_16_2
  article-title: Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0911004107
– volume: 97
  start-page: 9026
  year: 2000
  ident: e_1_3_4_22_2
  article-title: Energetics of the HIV gp120-CD4 binding reaction
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.16.9026
– volume: 339
  start-page: 213
  year: 2005
  ident: e_1_3_4_31_2
  article-title: Identification of N-phenyl-N′-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4
  publication-title: Virology
  doi: 10.1016/j.virol.2005.06.008
– volume: 5
  start-page: e1000445
  year: 2009
  ident: e_1_3_4_24_2
  article-title: Structure-based stabilization of HIV-1 gp120 enhances humoral immune responses to the induced co-receptor binding site
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000445
– volume: 75
  start-page: 2041
  year: 2001
  ident: e_1_3_4_34_2
  article-title: Increased neutralization sensitivity of CD4-independent human immunodeficiency virus variants
  publication-title: J Virol
  doi: 10.1128/JVI.75.5.2041-2050.2001
– volume: 280
  start-page: 1884
  year: 1998
  ident: e_1_3_4_3_2
  article-title: The HIV-1 envelope glycoproteins: Fusogens, antigens, and immunogens
  publication-title: Science
  doi: 10.1126/science.280.5371.1884
– volume: 329
  start-page: 811
  year: 2010
  ident: e_1_3_4_21_2
  article-title: Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01
  publication-title: Science
  doi: 10.1126/science.1192819
– volume: 84
  start-page: 10311
  year: 2010
  ident: e_1_3_4_27_2
  article-title: Local conformational stability of HIV-1 gp120 in unliganded and CD4-bound states as defined by amide hydrogen/deuterium exchange
  publication-title: J Virol
  doi: 10.1128/JVI.00688-10
– volume: 80
  start-page: 6725
  year: 2006
  ident: e_1_3_4_26_2
  article-title: Characterization of the multiple conformational states of free monomeric and trimeric human immunodeficiency virus envelope glycoproteins after fixation by cross-linker
  publication-title: J Virol
  doi: 10.1128/JVI.00118-06
– volume: 317
  start-page: 1930
  year: 2007
  ident: e_1_3_4_15_2
  article-title: Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4
  publication-title: Science
  doi: 10.1126/science.1145373
– volume: 84
  start-page: 1439
  year: 2010
  ident: e_1_3_4_46_2
  article-title: Tiered categorization of a diverse panel of HIV-1 Env pseudoviruses for assessment of neutralizing antibodies
  publication-title: J Virol
  doi: 10.1128/JVI.02108-09
– volume: 393
  start-page: 648
  year: 1998
  ident: e_1_3_4_12_2
  article-title: Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody
  publication-title: Nature
  doi: 10.1038/31405
– volume: 6
  start-page: e1001249
  year: 2010
  ident: e_1_3_4_8_2
  article-title: Molecular architectures of trimeric SIV and HIV-1 envelope glycoproteins on intact viruses: Strain-dependent variation in quaternary structure
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1001249
– volume: 310
  start-page: 1025
  year: 2005
  ident: e_1_3_4_14_2
  article-title: Structure of a V3-containing HIV-1 gp120 core
  publication-title: Science
  doi: 10.1126/science.1118398
– volume: 433
  start-page: 834
  year: 2005
  ident: e_1_3_4_17_2
  article-title: Structure of an unliganded simian immunodeficiency virus gp120 core
  publication-title: Nature
  doi: 10.1038/nature03327
– volume: 17
  start-page: 657
  year: 1999
  ident: e_1_3_4_5_2
  article-title: Chemokine receptors as HIV-1 coreceptors: Roles in viral entry, tropism, and disease
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.17.1.657
– volume: 45
  start-page: 10973
  year: 2006
  ident: e_1_3_4_33_2
  article-title: Thermodynamics of binding of a low-molecular-weight CD4 mimetic to HIV-1 gp120
  publication-title: Biochemistry
  doi: 10.1021/bi061193r
– volume: 83
  start-page: 8364
  year: 2009
  ident: e_1_3_4_37_2
  article-title: Transitions to and from the CD4-bound conformation are modulated by a single-residue change in the human immunodeficiency virus type 1 gp120 inner domain
  publication-title: J Virol
  doi: 10.1128/JVI.00594-09
– volume: 387
  start-page: 426
  year: 1997
  ident: e_1_3_4_11_2
  article-title: Atomic structure of the ectodomain from HIV-1 gp41
  publication-title: Nature
  doi: 10.1038/387426a0
– volume: 326
  start-page: 1123
  year: 2009
  ident: e_1_3_4_20_2
  article-title: Structural basis of immune evasion at the site of CD4 attachment on HIV-1 gp120
  publication-title: Science
  doi: 10.1126/science.1175868
– volume: 8
  start-page: 1329
  year: 2000
  ident: e_1_3_4_13_2
  article-title: Structures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and primary isolates
  publication-title: Structure
  doi: 10.1016/S0969-2126(00)00547-5
– volume: 329
  start-page: 856
  year: 2010
  ident: e_1_3_4_29_2
  article-title: Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1
  publication-title: Science
  doi: 10.1126/science.1187659
– volume: 326
  start-page: 285
  year: 2009
  ident: e_1_3_4_23_2
  article-title: Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target
  publication-title: Science
  doi: 10.1126/science.1178746
– volume: 71
  start-page: 9808
  year: 1997
  ident: e_1_3_4_36_2
  article-title: Replication and neutralization of human immunodeficiency virus type 1 lacking the V1 and V2 variable loops of the gp120 envelope glycoprotein
  publication-title: J Virol
  doi: 10.1128/jvi.71.12.9808-9812.1997
– volume: 84
  start-page: 3147
  year: 2010
  ident: e_1_3_4_38_2
  article-title: A V3 loop-dependent gp120 element disrupted by CD4 binding stabilizes the human immunodeficiency virus envelope glycoprotein trimer
  publication-title: J Virol
  doi: 10.1128/JVI.02587-09
– volume: 70
  start-page: 777
  year: 2001
  ident: e_1_3_4_1_2
  article-title: Mechanisms of viral membrane fusion and its inhibition
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.70.1.777
– volume: 13
  start-page: 197
  year: 2005
  ident: e_1_3_4_25_2
  article-title: Determining the structure of an unliganded and fully glycosylated SIV gp120 envelope glycoprotein
  publication-title: Structure
  doi: 10.1016/j.str.2004.12.004
– volume: 89
  start-page: 263
  year: 1997
  ident: e_1_3_4_10_2
  article-title: Core structure of gp41 from the HIV envelope glycoprotein
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80205-6
– volume: 85
  start-page: 2397
  year: 2011
  ident: e_1_3_4_41_2
  article-title: A conserved determinant in the V1 loop of HIV-1 modulates the V3 loop to prime low CD4 use and macrophage infection
  publication-title: J Virol
  doi: 10.1128/JVI.02187-10
– volume: 80
  start-page: 3088
  year: 2006
  ident: e_1_3_4_42_2
  article-title: Sequential CD134-CXCR4 interactions in feline immunodeficiency virus (FIV): Soluble CD134 activates FIV Env for CXCR4-dependent entry and reveals a cryptic neutralization epitope
  publication-title: J Virol
  doi: 10.1128/JVI.80.6.3088-3091.2006
– volume: 420
  start-page: 678
  year: 2002
  ident: e_1_3_4_28_2
  article-title: HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites
  publication-title: Nature
  doi: 10.1038/nature01188
– volume: 16
  start-page: 1689
  year: 2008
  ident: e_1_3_4_32_2
  article-title: Small-molecule CD4 mimics interact with a highly conserved pocket on HIV-1 gp120
  publication-title: Structure
  doi: 10.1016/j.str.2008.09.005
– volume: 4
  start-page: 309
  year: 2003
  ident: e_1_3_4_2_2
  article-title: The structural biology of type I viral membrane fusion
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm1076
– volume: 276
  start-page: 307
  year: 1997
  ident: e_1_3_4_44_2
  article-title: Processing of X-ray diffraction data collected in oscillation mode
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(97)76066-X
– volume: 11
  start-page: 53
  year: 2004
  ident: e_1_3_4_45_2
  article-title: Recent developments in the PHENIX software for automated crystallographic structure determination
  publication-title: J Synchrotron Radiat
  doi: 10.1107/S0909049503024130
SSID ssj0009580
Score 2.494109
Snippet The HIV-1 envelope (Env) spike (gp1203/gp413) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune...
The HIV-1 envelope (Env) spike (gp120₃/gp41₃) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune...
The HIV-1 envelope (Env) spike (gp120 3 /gp41 3 ) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host...
The HIV-1 envelope (Env) spike (gp120 3 /gp41 3 ) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host...
The HIV-1 envelope (Env) spike (gp120(3)/gp41(3)) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host...
The HIV-1 envelope (Env) spike (gp120{sub 3}/gp41{sub 3}) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5663
SubjectTerms 60 APPLIED LIFE SCIENCES
ANTIBODIES
Biochemistry
Biological Sciences
CAPACITY
CD4 antigen
CD4 Antigens
CD4 Antigens - metabolism
Cells
chemistry
Conformation
CRYSTAL STRUCTURE
CRYSTALLOGRAPHY
Deformation
Envelopes
Glycoprotein gp120
Glycoproteins
HEK293 Cells
HIV
HIV 1
HIV Envelope Protein gp120
HIV Envelope Protein gp120 - chemistry
HIV Envelope Protein gp120 - metabolism
Human immunodeficiency virus
Human immunodeficiency virus 1
Humans
Immune response
INACTIVATION
Ligands
metabolism
Models, Molecular
Molecular structure
Neutralization
Protein Binding
Protein Structure, Quaternary
Protein Structure, Secondary
Protein Structure, Tertiary
Receptors
REGULATIONS
RESTRAINTS
Solutions
Structure-Activity Relationship
THERMODYNAMICS
Viral morphology
Viruses
Title Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops
URI https://www.jstor.org/stable/41588222
http://www.pnas.org/content/109/15/5663.abstract
https://www.ncbi.nlm.nih.gov/pubmed/22451932
https://www.proquest.com/docview/994902618
https://www.proquest.com/docview/1000405831
https://www.proquest.com/docview/1017971720
https://www.proquest.com/docview/1539455723
https://www.osti.gov/biblio/1041327
https://pubmed.ncbi.nlm.nih.gov/PMC3326499
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa68cILYsBYGSAj8TAUZeSHEyePUwF1oE2TWGFvUeI6pWgkZW1B2x_Avw13tuOkU5lgL9Xa_HDXu-_8nXP3mZCXXHAg9SE--o9zl4mYuSnEYldKVoZCSODQ2I18dBwPR-z9WXTW6_3uVC0tF8W-uFrbV3Ibq8JnYFfskv0Py9qbwgfwN9gXXsHC8PpPNh5V59MJrgKPneHhJ9d3JjM_8BxUpnS0MOwSsmkH-DFEIEUxB2-YW-BOSlhubhsX9Wrshd6WHt8DJ_2-zNVa4cWlkpS40A0QWtH5ByTYquXqvK5n8y6_PbHz4bypPjhulhsP2uYVE1HmjuucHLdbIX_4qWsAVAgCbm-da1pdTZvyS_1o36YCn5d44Gyp-uotLa8ntXuIWYbZSXqQf5ULAwSzxoHFIsw11a4difC1X7Qb3AOYcJluyd6XOp4DHXJjpncktQHfS7ueHXXiN5DbsMMF4G2ydp6BwIibI1f5HOecIEx9c9OO182-KbcDjqRYcjvh2jLIk6NBCPQZks4NcieAPEdVpg67qtGJ7qEy_1mjTcXD19fGRlFrM9AKw9oo87optQXWUcO8gTK-cPG6lOp6ZXCHap3eJ_dMjkQPtMNvkZ6sHpCtxhR0z0ilv3pIfrUIoAoBVCGAIgJoiwCqEUDBHalFAO0igCICaIsAWlzSFgG0iwAKw9EGAVQh4BEZvXt7Ohi6ZmcRV0RJuHADWcq0jMfwQ0bC84VXSJ8DeY5TIeJSpDyJ8zz0RC6CSIRpLnPOJAv5WEDoQsnCbbJZ1ZXcIdSTcYSVFEWUMybHSVqwgpdliWVPkvOoT_Yba2TCyO7j7i_nmSr_4GGGxshaS_bJnr1gphVn_n7qDpg3yyfAB7LRxwBXS1B6PPZg2G1lc3sLIOoJJgN9sotOkAHBRpVogeV0YgG3BzYbcLijGqMdOM38KENYwIWNv2QmBs6zNAVsBbGf9MkLexQmKHzqmFeyXs5RFB2IAvzs_k3nAC_gkEt5N5wThSmLIgBJnzzWXmq_ZuP6fcJX_NeegCL6q0eq6Rclpm8A-OTWV-6Su23Ieko2wbflM0hUFsVzBeY_OLA-EA
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unliganded+HIV-1+gp120+core+structures+assume+the+CD4-bound+conformation+with+regulation+by+quaternary+interactions+and+variable+loops&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kwon%2C+Young+Do&rft.au=Finzi%2C+Andr%C3%A9s&rft.au=Wu%2C+Xueling&rft.au=Dogo-Isonagie%2C+Cajetan&rft.date=2012-04-10&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=15&rft.spage=5663&rft.epage=5668&rft_id=info:doi/10.1073%2Fpnas.1112391109&rft_id=info%3Apmid%2F22451932&rft.externalDocID=PMC3326499
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F15.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F15.cover.gif