Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops
The HIV-1 envelope (Env) spike (gp1203/gp413) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, howeve...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 15; pp. 5663 - 5668 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
10.04.2012
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The HIV-1 envelope (Env) spike (gp1203/gp413) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a "ground state" for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from "snapping" into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry. |
---|---|
AbstractList | The HIV-1 envelope (Env) spike (gp120 3 /gp41 3 ) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a “ground state” for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from “snapping” into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry. The HIV-1 envelope (Env) spike (gp1203/gp413) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a "ground state" for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from "snapping" into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry. The HIV-1 envelope (Env) spike (gp120 3 /gp41 3 ) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a “ground state” for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from “snapping” into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry. The HIV-1 envelope (Env) spike (gp1203/gp413) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a "ground state" for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from "snapping" into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry. [PUBLICATION ABSTRACT] The HIV-1 envelope (Env) spike (gp120(3)/gp41(3)) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a "ground state" for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from "snapping" into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry.The HIV-1 envelope (Env) spike (gp120(3)/gp41(3)) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a "ground state" for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from "snapping" into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry. The HIV-1 envelope (Env) spike (gp120{sub 3}/gp41{sub 3}) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a 'ground state' for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from 'snapping' into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry. The HIV-1 envelope (Env) spike (gp120₃/gp41₃) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2-and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a "ground state" for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from "snapping" into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry. |
Author | Kwong, Peter D Sodroski, Joseph G Mascola, John R Kwon, Young Do Moore, Lucas R Yang, Yongping Schmidt, Stephen D Wu, Xueling Dogo-Isonagie, Cajetan Debnath, Asim K Zhou, Tongqing Finzi, Andrés Stuckey, Jonathan Zhu, Jiang Vicic, David A Shapiro, Lawrence Lee, Lawrence K Bewley, Carole A |
Author_xml | – sequence: 1 fullname: Kwon, Young Do – sequence: 2 fullname: Finzi, Andrés – sequence: 3 fullname: Wu, Xueling – sequence: 4 fullname: Dogo-Isonagie, Cajetan – sequence: 5 fullname: Lee, Lawrence K – sequence: 6 fullname: Moore, Lucas R – sequence: 7 fullname: Schmidt, Stephen D – sequence: 8 fullname: Stuckey, Jonathan – sequence: 9 fullname: Yang, Yongping – sequence: 10 fullname: Zhou, Tongqing – sequence: 11 fullname: Zhu, Jiang – sequence: 12 fullname: Vicic, David A – sequence: 13 fullname: Debnath, Asim K – sequence: 14 fullname: Shapiro, Lawrence – sequence: 15 fullname: Bewley, Carole A – sequence: 16 fullname: Mascola, John R – sequence: 17 fullname: Sodroski, Joseph G – sequence: 18 fullname: Kwong, Peter D |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22451932$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1041327$$D View this record in Osti.gov |
BookMark | eNqNkktvEzEUhUeoiD5gzQqwWLGZ1s_xeIOEwqOVKrGAsLU8zp3E0cRObU9R_wC_G6dJE0BCsJmH7nfPvT4-p9WRDx6q6jnB5wRLdrH2Jp0TQihThGD1qDopT1I3XOGj6gRjKuuWU35cnaa0xBgr0eIn1TGlXBDF6En1Y-oHNzd-BjN0efWtJmi-JhQjGyKglONo8xghIZPSuAKUF4Am73ndhdHPCuT7EFcmu-DRd5cXKMJ8HLb_3R26GU2G6E28Q86XL2M3lSJWem9NdKYbAA0hrNPT6nFvhgTPdu-zavrxw9fJZX39-dPV5N11bUXLck2hB9U3s3J0YTGxuAMisRSNsrbprZJtYwzD1lgqLFMGjOTAmZxZ2nSCSnZWvd3qrsduBTMLPkcz6HV0q7KlDsbp3yveLfQ83GrGaDFVFYHXW4GQstPJugx2UXzwYLMmmBN2P-XNbkoMNyOkrFcuWRgG4yGMSRPBFBdCUvZvFBOpJJEU_weKMcfFJ3LYco8uw1guYkhaqZIN2pC2QC9_9WJvwkM4CiC2gI0hpQi9Lse9v9xijRvKQL0Jod6EUB9CWPou_uh7kP57x6vdKpvCgVbFKi2aZuPTiy2xTDnEPcKJaFtK6UGhN0GbeXRJT79QTHgxpVENFuwnBA_8FQ |
CitedBy_id | crossref_primary_10_1097_COH_0000000000000551 crossref_primary_10_1021_ml300407y crossref_primary_10_1128_JVI_02151_16 crossref_primary_10_3390_v13050913 crossref_primary_10_2174_1568026619666190717163959 crossref_primary_10_1002_rmv_1853 crossref_primary_10_1007_s00894_016_3189_4 crossref_primary_10_1016_j_bmcl_2014_02_038 crossref_primary_10_3390_v15051185 crossref_primary_10_1128_JVI_02213_14 crossref_primary_10_1093_bioinformatics_bty274 crossref_primary_10_1128_JVI_02678_15 crossref_primary_10_1128_mbio_02752_21 crossref_primary_10_1128_JVI_01352_12 crossref_primary_10_1002_prot_24726 crossref_primary_10_1371_journal_pone_0085940 crossref_primary_10_1016_j_tim_2019_06_002 crossref_primary_10_1038_nature12053 crossref_primary_10_1016_j_chom_2013_10_006 crossref_primary_10_1021_jm4002988 crossref_primary_10_1128_MMBR_00065_15 crossref_primary_10_1371_journal_pone_0143245 crossref_primary_10_1186_1742_4690_11_41 crossref_primary_10_1128_JVI_03447_13 crossref_primary_10_1016_j_str_2016_03_005 crossref_primary_10_1016_j_bmcl_2015_11_103 crossref_primary_10_1128_JVI_01834_12 crossref_primary_10_1128_mBio_01598_16 crossref_primary_10_1016_j_ejmech_2018_04_062 crossref_primary_10_1039_C9CP04613E crossref_primary_10_1128_mbio_01827_24 crossref_primary_10_1016_j_bmc_2022_117083 crossref_primary_10_1371_journal_ppat_1005537 crossref_primary_10_1016_j_cell_2015_05_007 crossref_primary_10_3109_10799893_2015_1056307 crossref_primary_10_1002_prot_24184 crossref_primary_10_1038_nchembio_1623 crossref_primary_10_1039_C5RA04299B crossref_primary_10_1128_JVI_02219_16 crossref_primary_10_1093_nar_gku318 crossref_primary_10_1016_j_chembiol_2022_03_009 crossref_primary_10_1021_acs_jmedchem_7b00179 crossref_primary_10_1038_nsmb_3051 crossref_primary_10_1021_acs_jmedchem_1c01104 crossref_primary_10_1039_C9CP06706J crossref_primary_10_1016_j_bmcl_2014_10_027 crossref_primary_10_1371_journal_ppat_1003342 crossref_primary_10_1038_s41467_019_09451_z crossref_primary_10_1097_QAD_0000000000002011 crossref_primary_10_1371_journal_pone_0037530 crossref_primary_10_1128_JVI_00152_13 crossref_primary_10_1038_s41467_024_53120_9 crossref_primary_10_1016_j_cell_2015_08_035 crossref_primary_10_1021_acs_jproteome_9b00620 crossref_primary_10_1021_bi400166b crossref_primary_10_1128_JVI_07224_11 crossref_primary_10_1016_j_isci_2022_104449 crossref_primary_10_1111_febs_14673 crossref_primary_10_3390_v11080746 crossref_primary_10_1128_AAC_02739_13 crossref_primary_10_1128_JVI_00134_17 crossref_primary_10_1038_srep07025 crossref_primary_10_7554_eLife_37688 crossref_primary_10_1128_JVI_02680_14 crossref_primary_10_1016_j_jim_2013_09_002 crossref_primary_10_1016_j_provac_2015_05_002 crossref_primary_10_1002_cmdc_201500590 crossref_primary_10_1021_acs_jafc_6b01067 crossref_primary_10_1186_s12977_014_0075_y crossref_primary_10_1128_JVI_01254_13 crossref_primary_10_1016_j_talanta_2018_12_062 crossref_primary_10_1128_JVI_01145_13 crossref_primary_10_3390_ijms232415999 crossref_primary_10_3389_fphar_2020_613361 crossref_primary_10_1128_JVI_03104_12 crossref_primary_10_1073_pnas_2222073120 crossref_primary_10_1073_pnas_1314718111 crossref_primary_10_1021_acs_jmedchem_5b00709 crossref_primary_10_1074_jbc_M112_437483 crossref_primary_10_1128_mBio_00280_20 crossref_primary_10_1128_JVI_01068_16 crossref_primary_10_1128_JVI_01215_16 crossref_primary_10_1371_journal_pone_0058804 crossref_primary_10_1016_j_str_2022_03_012 crossref_primary_10_1021_acs_jmedchem_0c01153 crossref_primary_10_1080_19420862_2023_2223350 crossref_primary_10_1038_s41594_023_01062_z crossref_primary_10_1128_JVI_01535_13 crossref_primary_10_2174_1570162X16666171222110025 crossref_primary_10_1016_j_antiviral_2013_03_017 crossref_primary_10_1016_j_bmc_2016_09_057 crossref_primary_10_1111_imr_12507 crossref_primary_10_1073_pnas_1615939113 crossref_primary_10_1007_s11427_014_4617_2 crossref_primary_10_1038_s41467_021_21816_x crossref_primary_10_1007_s00705_021_04984_5 crossref_primary_10_1016_j_vaccine_2017_04_054 crossref_primary_10_1099_vir_0_046508_0 crossref_primary_10_1016_j_chom_2018_09_003 crossref_primary_10_1038_icb_2015_15 crossref_primary_10_1126_science_1225416 crossref_primary_10_1007_s12551_022_00999_7 crossref_primary_10_1128_JVI_01332_13 crossref_primary_10_1128_JVI_01596_14 crossref_primary_10_1097_COH_0b013e328363a90e crossref_primary_10_1007_s00894_012_1619_5 crossref_primary_10_2174_1568026619666190712204050 crossref_primary_10_1371_journal_pone_0076139 crossref_primary_10_1021_jm3002247 crossref_primary_10_1186_1742_4690_10_147 crossref_primary_10_1016_j_bmc_2013_02_041 crossref_primary_10_1038_s41467_023_40918_2 crossref_primary_10_1016_j_ejmech_2021_114078 crossref_primary_10_1371_journal_ppat_1009624 crossref_primary_10_1002_cmdc_201700728 crossref_primary_10_1016_j_bmcl_2019_01_011 crossref_primary_10_1128_JVI_02194_14 crossref_primary_10_1038_s41467_017_01119_w crossref_primary_10_1371_journal_pcbi_1003046 crossref_primary_10_1021_acs_jmedchem_9b02149 crossref_primary_10_1128_jvi_01635_22 crossref_primary_10_1371_journal_pone_0052170 crossref_primary_10_1074_jbc_R112_406272 crossref_primary_10_1021_bi300878d crossref_primary_10_1016_j_sbi_2013_03_007 crossref_primary_10_1371_journal_ppat_1007432 crossref_primary_10_1038_nsmb_2351 crossref_primary_10_1111_febs_12839 crossref_primary_10_4049_jimmunol_1901051 crossref_primary_10_1371_journal_pone_0104714 crossref_primary_10_3390_v14102268 crossref_primary_10_3390_app14188271 crossref_primary_10_1155_2014_157895 crossref_primary_10_1016_j_crmicr_2024_100260 crossref_primary_10_1038_emi_2015_44 crossref_primary_10_1089_aid_2018_0102 crossref_primary_10_1016_j_celrep_2013_09_028 crossref_primary_10_1128_JVI_00494_14 crossref_primary_10_3390_v13050843 crossref_primary_10_1128_JVI_00540_14 crossref_primary_10_1128_AAC_03339_14 crossref_primary_10_1016_j_bmc_2021_116000 crossref_primary_10_1021_acsmedchemlett_5b00471 crossref_primary_10_1128_JVI_01076_12 crossref_primary_10_1371_journal_pone_0190658 crossref_primary_10_1128_JVI_01823_18 crossref_primary_10_1016_j_bmc_2018_10_011 crossref_primary_10_1016_j_tibs_2014_12_006 crossref_primary_10_1016_j_tim_2017_10_007 crossref_primary_10_1128_mbio_01825_21 crossref_primary_10_1128_JVI_03211_15 crossref_primary_10_1371_journal_pone_0069406 crossref_primary_10_1073_pnas_1606636113 crossref_primary_10_1126_science_1245625 crossref_primary_10_1126_science_1245627 crossref_primary_10_1128_JVI_01681_13 crossref_primary_10_1128_JVI_02868_14 crossref_primary_10_1038_srep46733 crossref_primary_10_1021_acs_molpharmaceut_7b00505 crossref_primary_10_1128_JVI_01543_12 crossref_primary_10_1016_j_str_2014_05_001 crossref_primary_10_1074_jbc_RA119_009481 crossref_primary_10_1186_s12977_017_0369_y crossref_primary_10_1016_j_ebiom_2016_06_037 crossref_primary_10_1021_bi500136f crossref_primary_10_1080_07391102_2015_1032826 crossref_primary_10_1073_pnas_1507793112 crossref_primary_10_1128_JVI_02851_15 crossref_primary_10_1186_1742_4690_10_33 crossref_primary_10_1111_febs_16328 crossref_primary_10_1016_j_bbrc_2016_05_051 crossref_primary_10_1021_acs_jmedchem_3c01543 crossref_primary_10_1021_acs_jcim_6b00393 crossref_primary_10_1002_cmdc_201200584 crossref_primary_10_1080_07391102_2013_770372 crossref_primary_10_1186_1742_4690_10_114 crossref_primary_10_1021_jm300265j crossref_primary_10_1093_jac_dkt412 crossref_primary_10_1016_j_coph_2014_06_005 crossref_primary_10_1371_journal_pone_0174550 crossref_primary_10_3389_fmicb_2016_00110 crossref_primary_10_3390_ijms20020260 crossref_primary_10_3390_microorganisms8050710 crossref_primary_10_1111_imr_12005 crossref_primary_10_1371_journal_pone_0122111 crossref_primary_10_1371_journal_pone_0075665 crossref_primary_10_3390_v4123859 crossref_primary_10_1016_j_bmc_2022_116616 crossref_primary_10_1128_JVI_03124_12 crossref_primary_10_1016_j_str_2013_04_015 crossref_primary_10_1016_j_virol_2017_12_002 crossref_primary_10_1007_s10059_012_0104_4 crossref_primary_10_1128_JVI_02614_14 crossref_primary_10_1021_acs_biochem_5b01354 crossref_primary_10_1038_nsmb_2711 crossref_primary_10_1021_ar4002735 crossref_primary_10_1128_JVI_03206_15 crossref_primary_10_1016_j_jviromet_2016_07_019 crossref_primary_10_1080_07391102_2019_1635916 crossref_primary_10_1016_j_sbi_2013_04_003 crossref_primary_10_1073_pnas_1307382110 |
Cites_doi | 10.1016/S0092-8674(00)81393-8 10.1128/JVI.01612-10 10.1074/jbc.274.7.4115 10.1128/jvi.67.8.4557-4565.1993 10.1038/nature07159 10.1073/pnas.1007227107 10.1016/S0969-2126(98)00096-3 10.1128/JVI.72.8.6332-6338.1998 10.1128/JVI.00790-10 10.1038/nature05580 10.1128/JVI.76.19.9888-9899.2002 10.1073/pnas.0911004107 10.1073/pnas.97.16.9026 10.1016/j.virol.2005.06.008 10.1371/journal.ppat.1000445 10.1128/JVI.75.5.2041-2050.2001 10.1126/science.280.5371.1884 10.1126/science.1192819 10.1128/JVI.00688-10 10.1128/JVI.00118-06 10.1126/science.1145373 10.1128/JVI.02108-09 10.1038/31405 10.1371/journal.ppat.1001249 10.1126/science.1118398 10.1038/nature03327 10.1146/annurev.immunol.17.1.657 10.1021/bi061193r 10.1128/JVI.00594-09 10.1038/387426a0 10.1126/science.1175868 10.1016/S0969-2126(00)00547-5 10.1126/science.1187659 10.1126/science.1178746 10.1128/jvi.71.12.9808-9812.1997 10.1128/JVI.02587-09 10.1146/annurev.biochem.70.1.777 10.1016/j.str.2004.12.004 10.1016/S0092-8674(00)80205-6 10.1128/JVI.02187-10 10.1128/JVI.80.6.3088-3091.2006 10.1038/nature01188 10.1016/j.str.2008.09.005 10.1038/nrm1076 10.1016/S0076-6879(97)76066-X 10.1107/S0909049503024130 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Apr 10, 2012 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Apr 10, 2012 |
CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 OTOTI 5PM |
DOI | 10.1073/pnas.1112391109 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA CrossRef Virology and AIDS Abstracts MEDLINE - Academic AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Chemistry |
EISSN | 1091-6490 |
EndPage | 5668 |
ExternalDocumentID | PMC3326499 1041327 2632880041 22451932 10_1073_pnas_1112391109 109_15_5663 41588222 US201400069605 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R37 AI024755 – fundername: Intramural NIH HHS |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 OTOTI 5PM |
ID | FETCH-LOGICAL-c583t-2efe9f6d0735c01c0be1707569cc6fc9786aa30cac25c39aea74e437dc26b5273 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:42:25 EDT 2025 Thu May 18 18:20:22 EDT 2023 Fri Jul 11 07:28:21 EDT 2025 Fri Jul 11 11:03:29 EDT 2025 Fri Jul 11 09:40:11 EDT 2025 Mon Jun 30 08:39:23 EDT 2025 Wed Feb 19 02:36:32 EST 2025 Thu Apr 24 23:03:51 EDT 2025 Tue Jul 01 03:39:14 EDT 2025 Wed Nov 11 00:30:38 EST 2020 Thu May 29 08:40:37 EDT 2025 Wed Dec 27 19:16:03 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c583t-2efe9f6d0735c01c0be1707569cc6fc9786aa30cac25c39aea74e437dc26b5273 |
Notes | http://dx.doi.org/10.1073/pnas.1112391109 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 National Institutes of Health (NIH) Author contributions: Y.D.K., A.F., X.W., J.R.M., J.G.S., and P.D.K. designed research; Y.D.K., A.F., C.D.-I., L.K.L., S.D.S., J.S., and Y.Y. performed research; Y.D.K., C.D.-I., L.R.M., T.Z., D.A.V., A.K.D., C.A.B., and P.D.K. contributed new reagents/analytic tools; Y.D.K., A.F., X.W., J.Z., L.S., J.R.M., J.G.S., and P.D.K. analyzed data; and Y.D.K., L.S., J.G.S., and P.D.K. wrote the paper. Edited* by Wayne A Hendrickson, Columbia University, New York, NY, and approved February 21, 2012 (received for review August 1, 2011) |
OpenAccessLink | https://www.pnas.org/content/pnas/109/15/5663.full.pdf |
PMID | 22451932 |
PQID | 994902618 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1073_pnas_1112391109 jstor_primary_41588222 pnas_primary_109_15_5663 proquest_miscellaneous_1000405831 osti_scitechconnect_1041327 crossref_citationtrail_10_1073_pnas_1112391109 pubmed_primary_22451932 proquest_miscellaneous_1539455723 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3326499 proquest_journals_994902618 fao_agris_US201400069605 proquest_miscellaneous_1017971720 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-04-10 |
PublicationDateYYYYMMDD | 2012-04-10 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2012 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | Kolchinsky P (e_1_3_4_34_2) 2001; 75 Kwong PD (e_1_3_4_18_2) 1999; 274 Kwong PD (e_1_3_4_28_2) 2002; 420 Berger EA (e_1_3_4_5_2) 1999; 17 Sattentau QJ (e_1_3_4_4_2) 1998; 6 Colman PM (e_1_3_4_2_2) 2003; 4 Pancera M (e_1_3_4_16_2) 2010; 107 Zhou T (e_1_3_4_19_2) 2007; 445 Wyatt R (e_1_3_4_35_2) 1993; 67 Eckert DM (e_1_3_4_1_2) 2001; 70 Liu J (e_1_3_4_6_2) 2008; 455 Seaman MS (e_1_3_4_46_2) 2010; 84 Zhao Q (e_1_3_4_31_2) 2005; 339 Xiang SH (e_1_3_4_38_2) 2010; 84 Myszka DG (e_1_3_4_22_2) 2000; 97 Schön A (e_1_3_4_33_2) 2006; 45 Kwong PD (e_1_3_4_13_2) 2000; 8 Kwong PD (e_1_3_4_12_2) 1998; 393 Chen B (e_1_3_4_17_2) 2005; 433 Adams PD (e_1_3_4_45_2) 2004; 11 Hu G (e_1_3_4_9_2) 2011; 85 Kong L (e_1_3_4_27_2) 2010; 84 Weissenhorn W (e_1_3_4_11_2) 1997; 387 Huang CC (e_1_3_4_15_2) 2007; 317 Xiang SH (e_1_3_4_30_2) 2002; 76 Cao J (e_1_3_4_36_2) 1997; 71 Dey B (e_1_3_4_24_2) 2009; 5 Kassa A (e_1_3_4_37_2) 2009; 83 Wu SR (e_1_3_4_7_2) 2010; 107 Chan DC (e_1_3_4_10_2) 1997; 89 Sullivan N (e_1_3_4_39_2) 1998; 72 de Parseval A (e_1_3_4_42_2) 2006; 80 O'Rourke SM (e_1_3_4_40_2) 2010; 84 Wyatt R (e_1_3_4_3_2) 1998; 280 Zhou T (e_1_3_4_21_2) 2010; 329 Yuan W (e_1_3_4_26_2) 2006; 80 Wu X (e_1_3_4_29_2) 2010; 329 Huang CC (e_1_3_4_14_2) 2005; 310 Walker LM (e_1_3_4_23_2) 2009; 326 Musich T (e_1_3_4_41_2) 2011; 85 Chen L (e_1_3_4_20_2) 2009; 326 Madani N (e_1_3_4_32_2) 2008; 16 Chen B (e_1_3_4_25_2) 2005; 13 Endres MJ (e_1_3_4_43_2) 1996; 87 Otwinowski Z (e_1_3_4_44_2) 1997; 276 White TA (e_1_3_4_8_2) 2010; 6 |
References_xml | – volume: 87 start-page: 745 year: 1996 ident: e_1_3_4_43_2 article-title: CD4-independent infection by HIV-2 is mediated by fusin/CXCR4 publication-title: Cell doi: 10.1016/S0092-8674(00)81393-8 – volume: 85 start-page: 2741 year: 2011 ident: e_1_3_4_9_2 article-title: Structural comparison of HIV-1 envelope spikes with and without the V1/V2 loop publication-title: J Virol doi: 10.1128/JVI.01612-10 – volume: 274 start-page: 4115 year: 1999 ident: e_1_3_4_18_2 article-title: Probability analysis of variational crystallization and its application to gp120, the exterior envelope glycoprotein of type 1 human immunodeficiency virus (HIV-1) publication-title: J Biol Chem doi: 10.1074/jbc.274.7.4115 – volume: 67 start-page: 4557 year: 1993 ident: e_1_3_4_35_2 article-title: Functional and immunologic characterization of human immunodeficiency virus type 1 envelope glycoproteins containing deletions of the major variable regions publication-title: J Virol doi: 10.1128/jvi.67.8.4557-4565.1993 – volume: 455 start-page: 109 year: 2008 ident: e_1_3_4_6_2 article-title: Molecular architecture of native HIV-1 gp120 trimers publication-title: Nature doi: 10.1038/nature07159 – volume: 107 start-page: 18844 year: 2010 ident: e_1_3_4_7_2 article-title: Single-particle cryoelectron microscopy analysis reveals the HIV-1 spike as a tripod structure publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1007227107 – volume: 6 start-page: 945 year: 1998 ident: e_1_3_4_4_2 article-title: HIV gp120: Double lock strategy foils host defences publication-title: Structure doi: 10.1016/S0969-2126(98)00096-3 – volume: 72 start-page: 6332 year: 1998 ident: e_1_3_4_39_2 article-title: Determinants of human immunodeficiency virus type 1 envelope glycoprotein activation by soluble CD4 and monoclonal antibodies publication-title: J Virol doi: 10.1128/JVI.72.8.6332-6338.1998 – volume: 84 start-page: 11200 year: 2010 ident: e_1_3_4_40_2 article-title: Mutation at a single position in the V2 domain of the HIV-1 envelope protein confers neutralization sensitivity to a highly neutralization-resistant virus publication-title: J Virol doi: 10.1128/JVI.00790-10 – volume: 445 start-page: 732 year: 2007 ident: e_1_3_4_19_2 article-title: Structural definition of a conserved neutralization epitope on HIV-1 gp120 publication-title: Nature doi: 10.1038/nature05580 – volume: 76 start-page: 9888 year: 2002 ident: e_1_3_4_30_2 article-title: Mutagenic stabilization and/or disruption of a CD4-bound state reveals distinct conformations of the human immunodeficiency virus type 1 gp120 envelope glycoprotein publication-title: J Virol doi: 10.1128/JVI.76.19.9888-9899.2002 – volume: 107 start-page: 1166 year: 2010 ident: e_1_3_4_16_2 article-title: Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0911004107 – volume: 97 start-page: 9026 year: 2000 ident: e_1_3_4_22_2 article-title: Energetics of the HIV gp120-CD4 binding reaction publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.16.9026 – volume: 339 start-page: 213 year: 2005 ident: e_1_3_4_31_2 article-title: Identification of N-phenyl-N′-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4 publication-title: Virology doi: 10.1016/j.virol.2005.06.008 – volume: 5 start-page: e1000445 year: 2009 ident: e_1_3_4_24_2 article-title: Structure-based stabilization of HIV-1 gp120 enhances humoral immune responses to the induced co-receptor binding site publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000445 – volume: 75 start-page: 2041 year: 2001 ident: e_1_3_4_34_2 article-title: Increased neutralization sensitivity of CD4-independent human immunodeficiency virus variants publication-title: J Virol doi: 10.1128/JVI.75.5.2041-2050.2001 – volume: 280 start-page: 1884 year: 1998 ident: e_1_3_4_3_2 article-title: The HIV-1 envelope glycoproteins: Fusogens, antigens, and immunogens publication-title: Science doi: 10.1126/science.280.5371.1884 – volume: 329 start-page: 811 year: 2010 ident: e_1_3_4_21_2 article-title: Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01 publication-title: Science doi: 10.1126/science.1192819 – volume: 84 start-page: 10311 year: 2010 ident: e_1_3_4_27_2 article-title: Local conformational stability of HIV-1 gp120 in unliganded and CD4-bound states as defined by amide hydrogen/deuterium exchange publication-title: J Virol doi: 10.1128/JVI.00688-10 – volume: 80 start-page: 6725 year: 2006 ident: e_1_3_4_26_2 article-title: Characterization of the multiple conformational states of free monomeric and trimeric human immunodeficiency virus envelope glycoproteins after fixation by cross-linker publication-title: J Virol doi: 10.1128/JVI.00118-06 – volume: 317 start-page: 1930 year: 2007 ident: e_1_3_4_15_2 article-title: Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4 publication-title: Science doi: 10.1126/science.1145373 – volume: 84 start-page: 1439 year: 2010 ident: e_1_3_4_46_2 article-title: Tiered categorization of a diverse panel of HIV-1 Env pseudoviruses for assessment of neutralizing antibodies publication-title: J Virol doi: 10.1128/JVI.02108-09 – volume: 393 start-page: 648 year: 1998 ident: e_1_3_4_12_2 article-title: Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody publication-title: Nature doi: 10.1038/31405 – volume: 6 start-page: e1001249 year: 2010 ident: e_1_3_4_8_2 article-title: Molecular architectures of trimeric SIV and HIV-1 envelope glycoproteins on intact viruses: Strain-dependent variation in quaternary structure publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1001249 – volume: 310 start-page: 1025 year: 2005 ident: e_1_3_4_14_2 article-title: Structure of a V3-containing HIV-1 gp120 core publication-title: Science doi: 10.1126/science.1118398 – volume: 433 start-page: 834 year: 2005 ident: e_1_3_4_17_2 article-title: Structure of an unliganded simian immunodeficiency virus gp120 core publication-title: Nature doi: 10.1038/nature03327 – volume: 17 start-page: 657 year: 1999 ident: e_1_3_4_5_2 article-title: Chemokine receptors as HIV-1 coreceptors: Roles in viral entry, tropism, and disease publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.17.1.657 – volume: 45 start-page: 10973 year: 2006 ident: e_1_3_4_33_2 article-title: Thermodynamics of binding of a low-molecular-weight CD4 mimetic to HIV-1 gp120 publication-title: Biochemistry doi: 10.1021/bi061193r – volume: 83 start-page: 8364 year: 2009 ident: e_1_3_4_37_2 article-title: Transitions to and from the CD4-bound conformation are modulated by a single-residue change in the human immunodeficiency virus type 1 gp120 inner domain publication-title: J Virol doi: 10.1128/JVI.00594-09 – volume: 387 start-page: 426 year: 1997 ident: e_1_3_4_11_2 article-title: Atomic structure of the ectodomain from HIV-1 gp41 publication-title: Nature doi: 10.1038/387426a0 – volume: 326 start-page: 1123 year: 2009 ident: e_1_3_4_20_2 article-title: Structural basis of immune evasion at the site of CD4 attachment on HIV-1 gp120 publication-title: Science doi: 10.1126/science.1175868 – volume: 8 start-page: 1329 year: 2000 ident: e_1_3_4_13_2 article-title: Structures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and primary isolates publication-title: Structure doi: 10.1016/S0969-2126(00)00547-5 – volume: 329 start-page: 856 year: 2010 ident: e_1_3_4_29_2 article-title: Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1 publication-title: Science doi: 10.1126/science.1187659 – volume: 326 start-page: 285 year: 2009 ident: e_1_3_4_23_2 article-title: Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target publication-title: Science doi: 10.1126/science.1178746 – volume: 71 start-page: 9808 year: 1997 ident: e_1_3_4_36_2 article-title: Replication and neutralization of human immunodeficiency virus type 1 lacking the V1 and V2 variable loops of the gp120 envelope glycoprotein publication-title: J Virol doi: 10.1128/jvi.71.12.9808-9812.1997 – volume: 84 start-page: 3147 year: 2010 ident: e_1_3_4_38_2 article-title: A V3 loop-dependent gp120 element disrupted by CD4 binding stabilizes the human immunodeficiency virus envelope glycoprotein trimer publication-title: J Virol doi: 10.1128/JVI.02587-09 – volume: 70 start-page: 777 year: 2001 ident: e_1_3_4_1_2 article-title: Mechanisms of viral membrane fusion and its inhibition publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.70.1.777 – volume: 13 start-page: 197 year: 2005 ident: e_1_3_4_25_2 article-title: Determining the structure of an unliganded and fully glycosylated SIV gp120 envelope glycoprotein publication-title: Structure doi: 10.1016/j.str.2004.12.004 – volume: 89 start-page: 263 year: 1997 ident: e_1_3_4_10_2 article-title: Core structure of gp41 from the HIV envelope glycoprotein publication-title: Cell doi: 10.1016/S0092-8674(00)80205-6 – volume: 85 start-page: 2397 year: 2011 ident: e_1_3_4_41_2 article-title: A conserved determinant in the V1 loop of HIV-1 modulates the V3 loop to prime low CD4 use and macrophage infection publication-title: J Virol doi: 10.1128/JVI.02187-10 – volume: 80 start-page: 3088 year: 2006 ident: e_1_3_4_42_2 article-title: Sequential CD134-CXCR4 interactions in feline immunodeficiency virus (FIV): Soluble CD134 activates FIV Env for CXCR4-dependent entry and reveals a cryptic neutralization epitope publication-title: J Virol doi: 10.1128/JVI.80.6.3088-3091.2006 – volume: 420 start-page: 678 year: 2002 ident: e_1_3_4_28_2 article-title: HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites publication-title: Nature doi: 10.1038/nature01188 – volume: 16 start-page: 1689 year: 2008 ident: e_1_3_4_32_2 article-title: Small-molecule CD4 mimics interact with a highly conserved pocket on HIV-1 gp120 publication-title: Structure doi: 10.1016/j.str.2008.09.005 – volume: 4 start-page: 309 year: 2003 ident: e_1_3_4_2_2 article-title: The structural biology of type I viral membrane fusion publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1076 – volume: 276 start-page: 307 year: 1997 ident: e_1_3_4_44_2 article-title: Processing of X-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol doi: 10.1016/S0076-6879(97)76066-X – volume: 11 start-page: 53 year: 2004 ident: e_1_3_4_45_2 article-title: Recent developments in the PHENIX software for automated crystallographic structure determination publication-title: J Synchrotron Radiat doi: 10.1107/S0909049503024130 |
SSID | ssj0009580 |
Score | 2.494109 |
Snippet | The HIV-1 envelope (Env) spike (gp1203/gp413) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune... The HIV-1 envelope (Env) spike (gp120₃/gp41₃) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune... The HIV-1 envelope (Env) spike (gp120 3 /gp41 3 ) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host... The HIV-1 envelope (Env) spike (gp120 3 /gp41 3 ) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host... The HIV-1 envelope (Env) spike (gp120(3)/gp41(3)) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host... The HIV-1 envelope (Env) spike (gp120{sub 3}/gp41{sub 3}) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the... |
SourceID | pubmedcentral osti proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5663 |
SubjectTerms | 60 APPLIED LIFE SCIENCES ANTIBODIES Biochemistry Biological Sciences CAPACITY CD4 antigen CD4 Antigens CD4 Antigens - metabolism Cells chemistry Conformation CRYSTAL STRUCTURE CRYSTALLOGRAPHY Deformation Envelopes Glycoprotein gp120 Glycoproteins HEK293 Cells HIV HIV 1 HIV Envelope Protein gp120 HIV Envelope Protein gp120 - chemistry HIV Envelope Protein gp120 - metabolism Human immunodeficiency virus Human immunodeficiency virus 1 Humans Immune response INACTIVATION Ligands metabolism Models, Molecular Molecular structure Neutralization Protein Binding Protein Structure, Quaternary Protein Structure, Secondary Protein Structure, Tertiary Receptors REGULATIONS RESTRAINTS Solutions Structure-Activity Relationship THERMODYNAMICS Viral morphology Viruses |
Title | Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops |
URI | https://www.jstor.org/stable/41588222 http://www.pnas.org/content/109/15/5663.abstract https://www.ncbi.nlm.nih.gov/pubmed/22451932 https://www.proquest.com/docview/994902618 https://www.proquest.com/docview/1000405831 https://www.proquest.com/docview/1017971720 https://www.proquest.com/docview/1539455723 https://www.osti.gov/biblio/1041327 https://pubmed.ncbi.nlm.nih.gov/PMC3326499 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa68cILYsBYGSAj8TAUZeSHEyePUwF1oE2TWGFvUeI6pWgkZW1B2x_Avw13tuOkU5lgL9Xa_HDXu-_8nXP3mZCXXHAg9SE--o9zl4mYuSnEYldKVoZCSODQ2I18dBwPR-z9WXTW6_3uVC0tF8W-uFrbV3Ibq8JnYFfskv0Py9qbwgfwN9gXXsHC8PpPNh5V59MJrgKPneHhJ9d3JjM_8BxUpnS0MOwSsmkH-DFEIEUxB2-YW-BOSlhubhsX9Wrshd6WHt8DJ_2-zNVa4cWlkpS40A0QWtH5ByTYquXqvK5n8y6_PbHz4bypPjhulhsP2uYVE1HmjuucHLdbIX_4qWsAVAgCbm-da1pdTZvyS_1o36YCn5d44Gyp-uotLa8ntXuIWYbZSXqQf5ULAwSzxoHFIsw11a4difC1X7Qb3AOYcJluyd6XOp4DHXJjpncktQHfS7ueHXXiN5DbsMMF4G2ydp6BwIibI1f5HOecIEx9c9OO182-KbcDjqRYcjvh2jLIk6NBCPQZks4NcieAPEdVpg67qtGJ7qEy_1mjTcXD19fGRlFrM9AKw9oo87optQXWUcO8gTK-cPG6lOp6ZXCHap3eJ_dMjkQPtMNvkZ6sHpCtxhR0z0ilv3pIfrUIoAoBVCGAIgJoiwCqEUDBHalFAO0igCICaIsAWlzSFgG0iwAKw9EGAVQh4BEZvXt7Ohi6ZmcRV0RJuHADWcq0jMfwQ0bC84VXSJ8DeY5TIeJSpDyJ8zz0RC6CSIRpLnPOJAv5WEDoQsnCbbJZ1ZXcIdSTcYSVFEWUMybHSVqwgpdliWVPkvOoT_Yba2TCyO7j7i_nmSr_4GGGxshaS_bJnr1gphVn_n7qDpg3yyfAB7LRxwBXS1B6PPZg2G1lc3sLIOoJJgN9sotOkAHBRpVogeV0YgG3BzYbcLijGqMdOM38KENYwIWNv2QmBs6zNAVsBbGf9MkLexQmKHzqmFeyXs5RFB2IAvzs_k3nAC_gkEt5N5wThSmLIgBJnzzWXmq_ZuP6fcJX_NeegCL6q0eq6Rclpm8A-OTWV-6Su23Ieko2wbflM0hUFsVzBeY_OLA-EA |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unliganded+HIV-1+gp120+core+structures+assume+the+CD4-bound+conformation+with+regulation+by+quaternary+interactions+and+variable+loops&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kwon%2C+Young+Do&rft.au=Finzi%2C+Andr%C3%A9s&rft.au=Wu%2C+Xueling&rft.au=Dogo-Isonagie%2C+Cajetan&rft.date=2012-04-10&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=15&rft.spage=5663&rft.epage=5668&rft_id=info:doi/10.1073%2Fpnas.1112391109&rft_id=info%3Apmid%2F22451932&rft.externalDocID=PMC3326499 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F15.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F15.cover.gif |