Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2
The design of highly stable, selective and efficient electrocatalysts for CO 2 reduction reaction is desirable while largely unmet. In this work, a series of precisely designed polyoxometalate-metalloporphyrin organic frameworks are developed. Noted that the integration of {ε-PMo 8 V Mo 4 VI O 40 Zn...
Saved in:
Published in | Nature communications Vol. 9; no. 1; pp. 1 - 8 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
26.10.2018
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-018-06938-z |
Cover
Loading…
Abstract | The design of highly stable, selective and efficient electrocatalysts for CO
2
reduction reaction is desirable while largely unmet. In this work, a series of precisely designed polyoxometalate-metalloporphyrin organic frameworks are developed. Noted that the integration of {ε-PMo
8
V
Mo
4
VI
O
40
Zn
4
} cluster and metalloporphyrin endows these polyoxometalate-metalloporphyrin organic frameworks greatly advantages in terms of electron collecting and donating, electron migration and electrocatalytic active component in the CO
2
reduction reaction. Thus-obtained catalysts finally present excellent performances and the mechanisms of catalysis processes are discussed and revealed by density functional theory calculations. Most importantly, Co-PMOF exhibits remarkable faradaic efficiency ( > 94%) over a wide potential range (−0.8 to −1.0 V). Its best faradaic efficiency can reach up to 99% (highest in reported metal-organic frameworks) and it exhibits a high turnover frequency of 1656 h
−1
and excellent catalysis stability ( > 36 h).
While CO2 reduction provides a way to remove carbon from the atmosphere, it is challenging to design effective, selective materials for this process. Here, authors construct metal-organic frameworks from polyoxometalates and porphryins to direct electron flow and improve CO2 reduction efficiencies. |
---|---|
AbstractList | While CO2 reduction provides a way to remove carbon from the atmosphere, it is challenging to design effective, selective materials for this process. Here, authors construct metal-organic frameworks from polyoxometalates and porphryins to direct electron flow and improve CO2 reduction efficiencies. The design of highly stable, selective and efficient electrocatalysts for CO2 reduction reaction is desirable while largely unmet. In this work, a series of precisely designed polyoxometalate-metalloporphyrin organic frameworks are developed. Noted that the integration of {ε-PMo8VMo4VIO40Zn4} cluster and metalloporphyrin endows these polyoxometalate-metalloporphyrin organic frameworks greatly advantages in terms of electron collecting and donating, electron migration and electrocatalytic active component in the CO2 reduction reaction. Thus-obtained catalysts finally present excellent performances and the mechanisms of catalysis processes are discussed and revealed by density functional theory calculations. Most importantly, Co-PMOF exhibits remarkable faradaic efficiency ( > 94%) over a wide potential range (−0.8 to −1.0 V). Its best faradaic efficiency can reach up to 99% (highest in reported metal-organic frameworks) and it exhibits a high turnover frequency of 1656 h−1 and excellent catalysis stability ( > 36 h). The design of highly stable, selective and efficient electrocatalysts for CO 2 reduction reaction is desirable while largely unmet. In this work, a series of precisely designed polyoxometalate-metalloporphyrin organic frameworks are developed. Noted that the integration of {ε-PMo 8 V Mo 4 VI O 40 Zn 4 } cluster and metalloporphyrin endows these polyoxometalate-metalloporphyrin organic frameworks greatly advantages in terms of electron collecting and donating, electron migration and electrocatalytic active component in the CO 2 reduction reaction. Thus-obtained catalysts finally present excellent performances and the mechanisms of catalysis processes are discussed and revealed by density functional theory calculations. Most importantly, Co-PMOF exhibits remarkable faradaic efficiency ( > 94%) over a wide potential range (−0.8 to −1.0 V). Its best faradaic efficiency can reach up to 99% (highest in reported metal-organic frameworks) and it exhibits a high turnover frequency of 1656 h −1 and excellent catalysis stability ( > 36 h). While CO2 reduction provides a way to remove carbon from the atmosphere, it is challenging to design effective, selective materials for this process. Here, authors construct metal-organic frameworks from polyoxometalates and porphryins to direct electron flow and improve CO2 reduction efficiencies. The design of highly stable, selective and efficient electrocatalysts for CO2 reduction reaction is desirable while largely unmet. In this work, a series of precisely designed polyoxometalate-metalloporphyrin organic frameworks are developed. Noted that the integration of {ε-PMo8VMo4VIO40Zn4} cluster and metalloporphyrin endows these polyoxometalate-metalloporphyrin organic frameworks greatly advantages in terms of electron collecting and donating, electron migration and electrocatalytic active component in the CO2 reduction reaction. Thus-obtained catalysts finally present excellent performances and the mechanisms of catalysis processes are discussed and revealed by density functional theory calculations. Most importantly, Co-PMOF exhibits remarkable faradaic efficiency ( > 94%) over a wide potential range (-0.8 to -1.0 V). Its best faradaic efficiency can reach up to 99% (highest in reported metal-organic frameworks) and it exhibits a high turnover frequency of 1656 h-1 and excellent catalysis stability ( > 36 h).The design of highly stable, selective and efficient electrocatalysts for CO2 reduction reaction is desirable while largely unmet. In this work, a series of precisely designed polyoxometalate-metalloporphyrin organic frameworks are developed. Noted that the integration of {ε-PMo8VMo4VIO40Zn4} cluster and metalloporphyrin endows these polyoxometalate-metalloporphyrin organic frameworks greatly advantages in terms of electron collecting and donating, electron migration and electrocatalytic active component in the CO2 reduction reaction. Thus-obtained catalysts finally present excellent performances and the mechanisms of catalysis processes are discussed and revealed by density functional theory calculations. Most importantly, Co-PMOF exhibits remarkable faradaic efficiency ( > 94%) over a wide potential range (-0.8 to -1.0 V). Its best faradaic efficiency can reach up to 99% (highest in reported metal-organic frameworks) and it exhibits a high turnover frequency of 1656 h-1 and excellent catalysis stability ( > 36 h). The design of highly stable, selective and efficient electrocatalysts for CO 2 reduction reaction is desirable while largely unmet. In this work, a series of precisely designed polyoxometalate-metalloporphyrin organic frameworks are developed. Noted that the integration of {ε-PMo 8 V Mo 4 VI O 40 Zn 4 } cluster and metalloporphyrin endows these polyoxometalate-metalloporphyrin organic frameworks greatly advantages in terms of electron collecting and donating, electron migration and electrocatalytic active component in the CO 2 reduction reaction. Thus-obtained catalysts finally present excellent performances and the mechanisms of catalysis processes are discussed and revealed by density functional theory calculations. Most importantly, Co-PMOF exhibits remarkable faradaic efficiency ( > 94%) over a wide potential range (−0.8 to −1.0 V). Its best faradaic efficiency can reach up to 99% (highest in reported metal-organic frameworks) and it exhibits a high turnover frequency of 1656 h −1 and excellent catalysis stability ( > 36 h). |
ArticleNumber | 4466 |
Author | Huang, Qing Lan, Ya-Qian Chen, Yifa Wang, Yi-Rong Liu, Jiang He, Chun-Ting Shen, Feng-Cui |
Author_xml | – sequence: 1 givenname: Yi-Rong surname: Wang fullname: Wang, Yi-Rong organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University – sequence: 2 givenname: Qing surname: Huang fullname: Huang, Qing organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University – sequence: 3 givenname: Chun-Ting surname: He fullname: He, Chun-Ting organization: MOE Key Laboratory of Functional Small Organic Molecule College of Chemistry and Chemical Engineering, Jiangxi Normal University – sequence: 4 givenname: Yifa surname: Chen fullname: Chen, Yifa organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University – sequence: 5 givenname: Jiang surname: Liu fullname: Liu, Jiang organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University – sequence: 6 givenname: Feng-Cui surname: Shen fullname: Shen, Feng-Cui organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University – sequence: 7 givenname: Ya-Qian orcidid: 0000-0002-2140-7980 surname: Lan fullname: Lan, Ya-Qian email: yqlan@njnu.edu.cn organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University |
BookMark | eNp9Uk1v1DAQjVARLaV_gFMkLlwC_sqHL0hoBW2lSnuBs-U4k10vjh3spLC98c-Z3bSC9lAf7Bn7vTeep3mdnfjgIcveUvKBEt58TIKKqi4IbQpSSd4Udy-yM0YELWjN-Ml_8Wl2kdKO4OKSNkK8yk454VWN6Vn2Zx0t-Am6HByYKQafT1H7NNiULCbW52Nw-_A7DDBppycojoELY4jjdh8REOJGe2vyPuoBfoX4I-9DzLd2s3X7PB117S08FIjQzXiB2qHPV2v2JnvZa5fg4v48z75__fJtdVXcrC-vV59vClM2fCpYxYXWLes7XeLO6lIC5aQWkhNGTCuYACCsh7YmneR9JSmYnkopeGsaw_l5dr3odkHv1BjtoONeBW3V8QKbUDpO1jhQtJJGVq3h0BDB-lKXknWy5pRRLM8Ian1atMa5HaAz6GDU7pHo4xdvt2oTblWF5LqsUOD9vUAMP2dIk0LDDTinPYQ5KUYZNlBLWiL03RPoLszRo1UHVFmJhjGBqGZBmRhSitArYyd9sBnrW6coUYexUcvYKBwbdRwbdYdU9oT60MezJL6QEoL9BuK_Xz3D-guaP9nZ |
CitedBy_id | crossref_primary_10_1016_j_electacta_2024_145389 crossref_primary_10_1039_D3NJ05424A crossref_primary_10_1002_ange_202206399 crossref_primary_10_1021_acsami_0c11186 crossref_primary_10_1039_D1TA11052G crossref_primary_10_1002_anie_202421132 crossref_primary_10_1039_D1CS00120E crossref_primary_10_1021_acsami_2c20402 crossref_primary_10_1002_cctc_202201045 crossref_primary_10_1016_j_jcat_2020_12_004 crossref_primary_10_1063_5_0090147 crossref_primary_10_1016_j_mtphys_2023_101250 crossref_primary_10_1016_j_ccr_2022_214969 crossref_primary_10_1039_D3GC03778A crossref_primary_10_1016_j_cej_2022_135622 crossref_primary_10_1016_j_checat_2021_09_003 crossref_primary_10_1039_C8CS00829A crossref_primary_10_1039_C9DT03911B crossref_primary_10_1039_D1TA10440C crossref_primary_10_1016_j_carbon_2020_10_044 crossref_primary_10_1002_ange_202011068 crossref_primary_10_1002_smtd_202400432 crossref_primary_10_1039_C9NR08726E crossref_primary_10_1002_anie_202111265 crossref_primary_10_1002_smll_202301818 crossref_primary_10_1016_j_isci_2024_109658 crossref_primary_10_1039_D5DT00252D crossref_primary_10_1016_j_matt_2021_02_021 crossref_primary_10_1002_smll_202004933 crossref_primary_10_1016_j_apsusc_2025_162670 crossref_primary_10_1016_j_ccr_2020_213507 crossref_primary_10_1002_anie_202112915 crossref_primary_10_1002_smll_202301824 crossref_primary_10_1021_acscentsci_0c01390 crossref_primary_10_1039_D3DT01535A crossref_primary_10_1039_D1QM01246K crossref_primary_10_1016_j_inoche_2024_112223 crossref_primary_10_1038_s41467_024_48613_6 crossref_primary_10_1021_acscatal_2c02715 crossref_primary_10_1002_anie_201907399 crossref_primary_10_1080_00958972_2020_1825698 crossref_primary_10_1021_acs_inorgchem_1c02294 crossref_primary_10_1016_j_ccr_2024_215726 crossref_primary_10_1007_s43979_024_00110_x crossref_primary_10_1016_j_apsusc_2020_148306 crossref_primary_10_1002_adfm_202214495 crossref_primary_10_1002_aenm_202102152 crossref_primary_10_1002_smtd_202100102 crossref_primary_10_1021_acs_inorgchem_9b02858 crossref_primary_10_1002_anie_202404015 crossref_primary_10_1021_acssuschemeng_4c06676 crossref_primary_10_1016_j_jece_2022_108056 crossref_primary_10_1021_acs_inorgchem_9b02189 crossref_primary_10_3390_molecules28010150 crossref_primary_10_1002_ange_202110387 crossref_primary_10_1002_anie_202504630 crossref_primary_10_1038_s41598_024_79563_0 crossref_primary_10_3390_catal10111293 crossref_primary_10_1016_j_cclet_2022_06_056 crossref_primary_10_1021_acs_chemrev_2c00587 crossref_primary_10_1002_smll_202301379 crossref_primary_10_1021_acs_inorgchem_0c02404 crossref_primary_10_1021_jacs_0c11400 crossref_primary_10_1002_anie_202311999 crossref_primary_10_1002_adfm_202000407 crossref_primary_10_1002_aenm_202304239 crossref_primary_10_1016_j_apsusc_2023_156664 crossref_primary_10_1016_j_seppur_2022_122971 crossref_primary_10_1016_j_cclet_2021_08_045 crossref_primary_10_1039_D3NJ04078J crossref_primary_10_1002_anie_202417548 crossref_primary_10_1021_acs_energyfuels_0c03482 crossref_primary_10_1021_acs_energyfuels_3c01657 crossref_primary_10_1002_adfm_202301334 crossref_primary_10_1016_j_electacta_2023_141896 crossref_primary_10_1039_D2CE00397J crossref_primary_10_1002_ejic_202400485 crossref_primary_10_1038_s41467_019_14237_4 crossref_primary_10_1039_D0NJ03507F crossref_primary_10_1021_acsnano_2c09796 crossref_primary_10_1515_psr_2019_0054 crossref_primary_10_1002_ange_202105343 crossref_primary_10_1002_smtd_202000085 crossref_primary_10_1039_D2NR01921C crossref_primary_10_3390_molecules24112069 crossref_primary_10_1016_j_matt_2019_07_003 crossref_primary_10_1021_jacs_9b02541 crossref_primary_10_1021_acscatal_2c01847 crossref_primary_10_1002_adfm_202112159 crossref_primary_10_1007_s11426_022_1217_7 crossref_primary_10_1039_C9TA07967J crossref_primary_10_1002_ange_202504630 crossref_primary_10_1016_j_coelec_2019_05_006 crossref_primary_10_1021_acs_inorgchem_4c00840 crossref_primary_10_1002_ange_202010601 crossref_primary_10_1002_anie_202110387 crossref_primary_10_1016_j_jcou_2019_05_025 crossref_primary_10_1016_j_trechm_2020_01_003 crossref_primary_10_1016_j_ccr_2020_213564 crossref_primary_10_1016_j_jcis_2023_06_167 crossref_primary_10_1021_acs_inorgchem_3c03584 crossref_primary_10_1002_anie_202011068 crossref_primary_10_1039_D4TA00737A crossref_primary_10_1021_acsanm_9b00409 crossref_primary_10_1016_j_enchem_2020_100033 crossref_primary_10_1039_D2TA04164B crossref_primary_10_1016_j_cclet_2019_01_024 crossref_primary_10_1016_j_cclet_2023_108324 crossref_primary_10_1021_acscentsci_0c01088 crossref_primary_10_1021_acsnano_2c09168 crossref_primary_10_1002_anie_202105343 crossref_primary_10_1021_acsenergylett_9b02585 crossref_primary_10_1016_j_cclet_2019_12_009 crossref_primary_10_3762_bjnano_14_74 crossref_primary_10_1002_anie_202212329 crossref_primary_10_1039_D0CS01482F crossref_primary_10_1021_acs_chemrev_9b00685 crossref_primary_10_1021_acsmaterialslett_0c00229 crossref_primary_10_1016_j_ccr_2024_216304 crossref_primary_10_1039_D3CC00248A crossref_primary_10_1016_j_jcis_2024_08_069 crossref_primary_10_1039_D4CC02635G crossref_primary_10_1007_s40843_020_1396_7 crossref_primary_10_1021_acs_nanolett_3c04092 crossref_primary_10_1002_adfm_202419499 crossref_primary_10_1039_C8QI01340C crossref_primary_10_1016_j_ccr_2020_213435 crossref_primary_10_1021_acs_inorgchem_9b01557 crossref_primary_10_1016_j_jechem_2019_04_013 crossref_primary_10_1002_anie_201900106 crossref_primary_10_1039_D0EE03731A crossref_primary_10_1002_adsu_202400284 crossref_primary_10_1016_j_apcatb_2020_119173 crossref_primary_10_1093_nsr_nwaa195 crossref_primary_10_1016_j_microc_2023_109505 crossref_primary_10_1002_ange_202417548 crossref_primary_10_1039_C9CC02393C crossref_primary_10_1002_cssc_201903427 crossref_primary_10_1002_anie_202011722 crossref_primary_10_1039_D1CE00332A crossref_primary_10_1039_D4TA03502J crossref_primary_10_1002_anie_202114648 crossref_primary_10_1002_admi_202101505 crossref_primary_10_1007_s12274_021_3984_9 crossref_primary_10_1002_tcr_202300317 crossref_primary_10_1021_acsami_9b14928 crossref_primary_10_1021_acssuschemeng_9b02699 crossref_primary_10_1039_D1RA08861K crossref_primary_10_1038_s41467_024_51525_0 crossref_primary_10_1002_ange_201900106 crossref_primary_10_1039_D3QM00844D crossref_primary_10_1021_acs_langmuir_9b03965 crossref_primary_10_1021_acs_chemrev_9b00223 crossref_primary_10_1038_s41467_021_27169_9 crossref_primary_10_1002_cnma_202400049 crossref_primary_10_1016_j_apcatb_2023_123650 crossref_primary_10_1016_j_coelec_2020_07_001 crossref_primary_10_1016_j_jcat_2020_07_021 crossref_primary_10_1039_D0TA04993J crossref_primary_10_1039_D4NJ02713B crossref_primary_10_1007_s10853_020_04404_0 crossref_primary_10_1002_ange_202011722 crossref_primary_10_1007_s12598_023_02567_8 crossref_primary_10_1002_sstr_202100090 crossref_primary_10_1002_adma_202001848 crossref_primary_10_1002_aoc_6810 crossref_primary_10_1016_j_apcatb_2020_119750 crossref_primary_10_1021_acsami_1c15187 crossref_primary_10_1002_ange_202112915 crossref_primary_10_1002_ange_202114648 crossref_primary_10_1016_j_mtadv_2019_100038 crossref_primary_10_1016_j_molstruc_2021_130804 crossref_primary_10_1021_acs_jpclett_9b02132 crossref_primary_10_1002_advs_202301261 crossref_primary_10_1016_j_snb_2020_129388 crossref_primary_10_1016_j_progsolidstchem_2023_100430 crossref_primary_10_1016_j_tet_2023_133690 crossref_primary_10_1002_anie_202209396 crossref_primary_10_1021_acsami_1c02558 crossref_primary_10_1039_D1NJ04689F crossref_primary_10_1039_D2CE00815G crossref_primary_10_1016_j_apsusc_2021_150839 crossref_primary_10_1002_ange_202111265 crossref_primary_10_1007_s10008_023_05616_5 crossref_primary_10_1002_ange_202212329 crossref_primary_10_1039_C9TA03892B crossref_primary_10_1016_j_cattod_2022_04_021 crossref_primary_10_1002_smll_202006260 crossref_primary_10_1016_j_checat_2023_100848 crossref_primary_10_1016_j_cej_2023_145662 crossref_primary_10_1021_acsenergylett_1c01681 crossref_primary_10_1002_ange_202311999 crossref_primary_10_3389_fenrg_2022_1016406 crossref_primary_10_1002_smll_202100323 crossref_primary_10_1002_anie_202108388 crossref_primary_10_1002_aenm_202402278 crossref_primary_10_1021_acs_inorgchem_2c03734 crossref_primary_10_1039_D0DT00159G crossref_primary_10_1002_smsc_202100043 crossref_primary_10_3390_molecules27134295 crossref_primary_10_1016_j_ccr_2020_213483 crossref_primary_10_1039_D1SC06779F crossref_primary_10_1021_acsanm_4c05280 crossref_primary_10_20517_energymater_2024_215 crossref_primary_10_1039_D2TA08092C crossref_primary_10_1002_aenm_202100346 crossref_primary_10_1002_ange_202209396 crossref_primary_10_1002_ange_202414506 crossref_primary_10_1002_cssc_201901794 crossref_primary_10_1002_cssc_202000328 crossref_primary_10_1002_smll_202301319 crossref_primary_10_1039_C9TC02778E crossref_primary_10_1002_ange_202006899 crossref_primary_10_1038_s41467_020_16715_6 crossref_primary_10_1016_j_apcatb_2021_120128 crossref_primary_10_1002_adbi_201900281 crossref_primary_10_1021_acs_nanolett_2c00547 crossref_primary_10_1039_C9NR10573E crossref_primary_10_26599_POM_2022_9140006 crossref_primary_10_1002_anie_202010601 crossref_primary_10_1021_acs_inorgchem_3c00565 crossref_primary_10_3390_en15010063 crossref_primary_10_1016_j_cej_2023_142267 crossref_primary_10_1021_acscatal_4c02524 crossref_primary_10_1016_S1872_2067_21_63980_3 crossref_primary_10_1149_1945_7111_abfcda crossref_primary_10_1007_s12209_022_00324_z crossref_primary_10_1016_j_ccr_2023_215273 crossref_primary_10_1039_D3TA06964H crossref_primary_10_1021_acssuschemeng_1c06433 crossref_primary_10_1021_jacs_0c02973 crossref_primary_10_1039_D2CS00843B crossref_primary_10_1039_D3TA00336A crossref_primary_10_1039_D1TA07148C crossref_primary_10_1002_adma_202310283 crossref_primary_10_1002_celc_202100492 crossref_primary_10_1021_acs_inorgchem_9b03540 crossref_primary_10_1021_acs_inorgchem_0c01245 crossref_primary_10_1002_ange_202301957 crossref_primary_10_1021_jacs_0c05913 crossref_primary_10_3390_molecules25163653 crossref_primary_10_1016_j_apcatb_2025_125027 crossref_primary_10_1021_jacs_9b11790 crossref_primary_10_1039_D4DT00189C crossref_primary_10_1007_s12274_021_3827_8 crossref_primary_10_1021_acs_chemrev_9b00757 crossref_primary_10_1002_aesr_202100033 crossref_primary_10_1039_D3QM01000G crossref_primary_10_1007_s10563_023_09408_9 crossref_primary_10_1016_j_cej_2025_160154 crossref_primary_10_1016_j_apsusc_2021_152359 crossref_primary_10_1016_j_cclet_2022_04_057 crossref_primary_10_1016_j_ccr_2020_213260 crossref_primary_10_1016_j_nanoen_2019_104233 crossref_primary_10_1002_anie_202306193 crossref_primary_10_1063_5_0173239 crossref_primary_10_1021_acs_inorgchem_2c01539 crossref_primary_10_1021_jacs_0c10719 crossref_primary_10_1039_D2CC02445D crossref_primary_10_1016_j_decarb_2023_100018 crossref_primary_10_1016_j_fuel_2022_124339 crossref_primary_10_1002_aenm_202001142 crossref_primary_10_1016_j_jssc_2022_123070 crossref_primary_10_1002_adma_201903796 crossref_primary_10_1002_smll_202102957 crossref_primary_10_1016_j_ccr_2023_215257 crossref_primary_10_1016_j_jechem_2023_09_018 crossref_primary_10_1134_S2075113323020454 crossref_primary_10_1016_j_jechem_2021_04_059 crossref_primary_10_1002_ange_202306193 crossref_primary_10_1016_j_apcatb_2019_118530 crossref_primary_10_1039_C9CC05899K crossref_primary_10_1016_j_ccr_2024_216086 crossref_primary_10_1039_D3EY00063J crossref_primary_10_1002_ange_202421132 crossref_primary_10_1016_j_fuel_2021_121341 crossref_primary_10_1039_D1TA09921C crossref_primary_10_1002_ange_202404015 crossref_primary_10_1002_metm_28 crossref_primary_10_1039_D4DT00187G crossref_primary_10_1063_5_0031374 crossref_primary_10_1039_D0TA10875H crossref_primary_10_1016_j_scib_2020_05_010 crossref_primary_10_1021_acs_chemmater_4c01137 crossref_primary_10_1016_j_enchem_2019_100021 crossref_primary_10_1021_jacs_0c07041 crossref_primary_10_1002_smll_202100762 crossref_primary_10_1002_smll_202001847 crossref_primary_10_1002_EXP_20240014 crossref_primary_10_1007_s12598_020_01440_2 crossref_primary_10_1016_j_inoche_2022_110070 crossref_primary_10_1002_anie_201907136 crossref_primary_10_1002_anie_202301957 crossref_primary_10_1039_D4EE00720D crossref_primary_10_1002_adfm_202111193 crossref_primary_10_1002_ange_202104564 crossref_primary_10_1016_j_apcatb_2022_121812 crossref_primary_10_1021_acscatal_9b03814 crossref_primary_10_1039_D0QI01407A crossref_primary_10_1002_aenm_202201093 crossref_primary_10_3390_catal12121582 crossref_primary_10_59717_j_xinn_mater_2023_100014 crossref_primary_10_1016_j_comptc_2024_114743 crossref_primary_10_1021_acs_inorgchem_9b00182 crossref_primary_10_1039_C9CC09008H crossref_primary_10_1016_j_jmst_2023_08_002 crossref_primary_10_1016_j_jssc_2023_124539 crossref_primary_10_1021_jacs_2c10801 crossref_primary_10_1039_D4CC02651A crossref_primary_10_1016_j_ccr_2024_216265 crossref_primary_10_1002_ange_201907399 crossref_primary_10_1039_D5DT00284B crossref_primary_10_1002_aenm_201902625 crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_1021_acs_inorgchem_0c03741 crossref_primary_10_1016_j_cej_2021_133357 crossref_primary_10_1016_j_cclet_2022_108052 crossref_primary_10_1002_cssc_202100431 crossref_primary_10_1039_D3CY00373F crossref_primary_10_1039_D3EY00018D crossref_primary_10_1021_jacs_4c10412 crossref_primary_10_1002_anie_202008054 crossref_primary_10_1016_j_cclet_2022_04_012 crossref_primary_10_1016_j_fuproc_2022_107315 crossref_primary_10_1021_acsami_0c00521 crossref_primary_10_1016_j_ccr_2024_215764 crossref_primary_10_1002_adma_202110496 crossref_primary_10_1016_j_ensm_2025_104047 crossref_primary_10_1039_C9CC02156F crossref_primary_10_1039_D1TA09069K crossref_primary_10_1002_anie_202006899 crossref_primary_10_1039_D1NJ01214B crossref_primary_10_1039_D1SC00997D crossref_primary_10_1039_C9EE03660A crossref_primary_10_1002_anie_202414506 crossref_primary_10_1039_D0DT02683B crossref_primary_10_1002_smll_202300916 crossref_primary_10_1002_adma_202202830 crossref_primary_10_1039_C9SC05392A crossref_primary_10_1039_D2NR07301C crossref_primary_10_1002_adma_202500399 crossref_primary_10_1007_s12274_021_3756_6 crossref_primary_10_1039_D0NJ01539C crossref_primary_10_1039_D0SC06133F crossref_primary_10_1002_advs_202206239 crossref_primary_10_1039_D3DT01879B crossref_primary_10_1002_ange_202108388 crossref_primary_10_1039_D2QM01324J crossref_primary_10_1021_acs_inorgchem_4c04359 crossref_primary_10_1002_adma_202302122 crossref_primary_10_1002_adfm_201910408 crossref_primary_10_1039_D4DT00320A crossref_primary_10_1039_D0CS00835D crossref_primary_10_3390_molecules28020664 crossref_primary_10_1002_ange_202008054 crossref_primary_10_1021_acs_cgd_0c01691 crossref_primary_10_1021_jacs_0c11450 crossref_primary_10_1002_sstr_202100012 crossref_primary_10_1016_j_chemosphere_2024_143312 crossref_primary_10_1039_D4DT01894J crossref_primary_10_1002_anie_202212162 crossref_primary_10_1002_ange_201907136 crossref_primary_10_1016_j_ccr_2019_07_005 crossref_primary_10_1002_anie_202206399 crossref_primary_10_1039_D3SC03713D crossref_primary_10_1039_C9CE01107B crossref_primary_10_1002_ange_202212162 crossref_primary_10_1016_j_nanoen_2019_103917 crossref_primary_10_1002_anie_202104564 crossref_primary_10_1016_j_inoche_2021_109106 crossref_primary_10_1093_nsr_nwz096 crossref_primary_10_1002_ejic_202000066 crossref_primary_10_1039_D0CY01757D crossref_primary_10_1002_smm2_1102 crossref_primary_10_1016_j_ccst_2025_100405 crossref_primary_10_1016_j_nanoen_2022_107277 crossref_primary_10_1016_j_seppur_2023_123404 |
Cites_doi | 10.1021/jacs.8b00814 10.1126/science.aaf4767 10.1021/acsenergylett.7b00621 10.1021/jacs.7b00261 10.1039/C6TA04801C 10.1038/nature16455 10.1002/anie.201712451 10.1021/jacs.5b08212 10.1002/anie.201204475 10.1021/ja201165c 10.1021/ic300825s 10.1021/jacs.7b11940 10.1021/jacs.5b01889 10.1149/2.001204eel 10.1021/ic00116a028 10.1039/c1cc10461f 10.1016/j.elecom.2012.09.018 10.1002/advs.201700194 10.1021/ja209196t 10.1021/jacs.7b09074 10.1039/C5SC03291A 10.1038/ncomms14675 10.1126/science.aad4998 10.1016/j.chempr.2017.09.009 10.1002/advs.201700275 10.1038/s41929-017-0018-9 10.1021/jacs.7b10817 10.1002/adma.201701784 10.1038/ncomms12697 10.1016/j.ccr.2017.09.001 10.1002/adma.201504766 10.1021/jacs.5b12652 10.1039/C7TA00900C 10.1002/adma.201702891 10.1016/j.chempr.2017.08.002 10.1021/jacs.6b04746 10.1126/science.aac8343 10.1038/nature10915 10.1039/C3CS60404G 10.1038/s41467-017-01893-7 10.1002/anie.201612214 10.1038/nature23016 10.1021/jacs.5b02688 10.1038/s41929-017-0005-1 10.1038/s41467-018-02819-7 10.1021/acscatal.5b01767 10.1021/ja905009e |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-018-06938-z |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (Proquest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_169c96bc3e8042f5a592d973121fda20 PMC6203756 10_1038_s41467_018_06938_z |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c583t-2634aab2fda5b2f2759e1307493020cb424ee02feb70d93f691ecf19943bc8c33 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:24:46 EDT 2025 Thu Aug 21 18:43:10 EDT 2025 Sun Aug 24 03:26:46 EDT 2025 Wed Aug 13 05:30:04 EDT 2025 Thu Apr 24 23:10:59 EDT 2025 Tue Jul 01 02:21:18 EDT 2025 Fri Feb 21 02:39:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-2634aab2fda5b2f2759e1307493020cb424ee02feb70d93f691ecf19943bc8c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2140-7980 |
OpenAccessLink | https://doaj.org/article/169c96bc3e8042f5a592d973121fda20 |
PMID | 30367039 |
PQID | 2125648224 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_169c96bc3e8042f5a592d973121fda20 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6203756 proquest_miscellaneous_2126917915 proquest_journals_2125648224 crossref_citationtrail_10_1038_s41467_018_06938_z crossref_primary_10_1038_s41467_018_06938_z springer_journals_10_1038_s41467_018_06938_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-26 |
PublicationDateYYYYMMDD | 2018-10-26 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Haas (CR4) 2018; 1 Kornienko (CR29) 2015; 137 De Luna (CR3) 2018; 1 Vasilopoulou (CR36) 2015; 137 Qin (CR32) 2015; 137 Ye (CR43) 2016; 4 Rao, Schmidt, Bonin, Robert (CR2) 2017; 548 Duan (CR13) 2017; 29 Han (CR37) 2017; 3 Zou (CR40) 2012; 134 Zhang (CR7) 2017; 8 Hinogami (CR22) 2012; 1 Seh (CR12) 2017; 355 Shakun (CR1) 2012; 484 Guo (CR27) 2017; 8 Morris (CR47) 2012; 51 Hod (CR30) 2015; 5 Albo (CR41) 2016; 10 Nohra (CR35) 2011; 133 Sun (CR14) 2017; 3 Diercks (CR6) 2018; 140 Huang (CR46) 2017; 5 Sende (CR48) 1995; 34 Liao, Shen, Zhang (CR19) 2017; 373 Li (CR25) 2017; 139 Yang (CR38) 2012; 43 Li (CR8) 2017; 139 Pan (CR44) 2018; 140 Weng (CR20) 2016; 138 Feng (CR49) 2012; 51 Wang (CR26) 2018; 57 Lin (CR11) 2015; 349 Zhang (CR15) 2018; 5 Marleny Rodriguez-Albelo (CR34) 2009; 131 Maurin, Robert (CR21) 2016; 138 Gao (CR9) 2016; 529 Zhang, Zhao, Gong (CR16) 2017; 56 Xie, Yang, Wu (CR39) 2011; 47 Kumar, Kumar, Kulandainathan (CR23) 2012; 25 Asadi (CR17) 2016; 353 Kung (CR31) 2017; 2 Wu, Huang, Ye, Li (CR5) 2017; 4 Kang (CR42) 2015; 7 Du (CR33) 2014; 43 Lei (CR45) 2016; 7 Liang (CR28) 2017; 30 Zhu, Liu, Qiao (CR18) 2016; 28 Jiao (CR10) 2017; 139 Weng (CR24) 2018; 9 L Ye (6938_CR43) 2016; 4 Y Pan (6938_CR44) 2018; 140 CW Kung (6938_CR31) 2017; 2 JS Qin (6938_CR32) 2015; 137 SJ Guo (6938_CR27) 2017; 8 Z Weng (6938_CR24) 2018; 9 ZW Seh (6938_CR12) 2017; 355 M Vasilopoulou (6938_CR36) 2015; 137 JH Wu (6938_CR5) 2017; 4 ZY Sun (6938_CR14) 2017; 3 MH Xie (6938_CR39) 2011; 47 WJ Zhang (6938_CR15) 2018; 5 Y Jiao (6938_CR10) 2017; 139 M Asadi (6938_CR17) 2016; 353 XL Yang (6938_CR38) 2012; 43 P De Luna (6938_CR3) 2018; 1 W Morris (6938_CR47) 2012; 51 Q Huang (6938_CR46) 2017; 5 DD Zhu (6938_CR18) 2016; 28 Z Weng (6938_CR20) 2016; 138 H Rao (6938_CR2) 2017; 548 C Zou (6938_CR40) 2012; 134 F Lei (6938_CR45) 2016; 7 JAR Sende (6938_CR48) 1995; 34 JD Shakun (6938_CR1) 2012; 484 L Marleny Rodriguez-Albelo (6938_CR34) 2009; 131 T Haas (6938_CR4) 2018; 1 B Nohra (6938_CR35) 2011; 133 X Kang (6938_CR42) 2015; 7 L Zhang (6938_CR16) 2017; 56 S Gao (6938_CR9) 2016; 529 N Kornienko (6938_CR29) 2015; 137 J Albo (6938_CR41) 2016; 10 R Hinogami (6938_CR22) 2012; 1 Z Liang (6938_CR28) 2017; 30 A Maurin (6938_CR21) 2016; 138 XQ Wang (6938_CR26) 2018; 57 DY Du (6938_CR33) 2014; 43 I Hod (6938_CR30) 2015; 5 XC Duan (6938_CR13) 2017; 29 S Lin (6938_CR11) 2015; 349 CS Diercks (6938_CR6) 2018; 140 N Han (6938_CR37) 2017; 3 DW Feng (6938_CR49) 2012; 51 X Li (6938_CR25) 2017; 139 X Zhang (6938_CR7) 2017; 8 Q Li (6938_CR8) 2017; 139 RS Kumar (6938_CR23) 2012; 25 PQ Liao (6938_CR19) 2017; 373 |
References_xml | – volume: 140 start-page: 4218 year: 2018 end-page: 4221 ident: CR44 article-title: Design of single-atom Co-N catalytic site: a robust electrocatalyst for CO reduction with nearly 100% CO selectivity and remarkable stability publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00814 – volume: 353 start-page: 467 year: 2016 end-page: 470 ident: CR17 article-title: Nanostructured transition metal dichalcogenide electrocatalysts for CO reduction in ionic liquid publication-title: Science doi: 10.1126/science.aaf4767 – volume: 2 start-page: 2394 year: 2017 end-page: 2401 ident: CR31 article-title: Copper nanoparticles installed in metal-organic framework thin films are electrocatalytically competent for CO reduction publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00621 – volume: 139 start-page: 4290 year: 2017 end-page: 4293 ident: CR8 article-title: Tuning Sn-catalysis for electrochemical reduction of CO to CO via the core/shell Cu/SnO structure publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00261 – volume: 4 start-page: 15320 year: 2016 end-page: 15326 ident: CR43 article-title: Highly oriented MOF thin film-based electrocatalytic device for the reduction of CO to CO exhibiting high faradic efficiency publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04801C – volume: 529 start-page: 68 year: 2016 end-page: 71 ident: CR9 article-title: Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel publication-title: Nature doi: 10.1038/nature16455 – volume: 57 start-page: 1944 year: 2018 end-page: 1948 ident: CR26 article-title: Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712451 – volume: 137 start-page: 14129 year: 2015 end-page: 14135 ident: CR29 article-title: Metal-organic frameworks for electrocatalytic reduction of carbon dioxide publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08212 – volume: 10 start-page: 1 year: 2016 end-page: 11 ident: CR41 article-title: Copper-based metal-organic porous materials for CO electrocatalytic reduction to alcohols publication-title: ChemSusChem – volume: 51 start-page: 10307 year: 2012 end-page: 10310 ident: CR49 article-title: Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204475 – volume: 133 start-page: 13363 year: 2011 end-page: 13374 ident: CR35 article-title: Polyoxometalate-based metal organic frameworks (POMOFs): structural trends, energetics, and high electrocatalytic efficiency for hydrogen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201165c – volume: 51 start-page: 6443 year: 2012 end-page: 6445 ident: CR47 article-title: Synthesis, structure, and metalation of two new highly porous zirconium metal–organic frameworks publication-title: Inorg. Chem. doi: 10.1021/ic300825s – volume: 140 start-page: 1116 year: 2018 end-page: 1122 ident: CR6 article-title: Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11940 – volume: 137 start-page: 6844 year: 2015 end-page: 6856 ident: CR36 article-title: Old metal oxide clusters in new applications: spontaneous reduction of Keggin and Dawson polyoxometalate layers by a metallic electrode for improving efficiency in organic optoelectronics publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b01889 – volume: 1 start-page: H17 year: 2012 end-page: H19 ident: CR22 article-title: Electrochemical reduction of carbon dioxide using a copper rubeanate metal organic framework publication-title: ECS Electrochem. Lett. doi: 10.1149/2.001204eel – volume: 34 start-page: 3339 year: 1995 end-page: 3348 ident: CR48 article-title: Electrocatalysis of CO reduction in aqueous media at electrodes modified with electropolymerized films of vinylterpyridine complexes of transition metals publication-title: Inorg. Chem. doi: 10.1021/ic00116a028 – volume: 47 start-page: 5521 year: 2011 end-page: 5523 ident: CR39 article-title: A metalloporphyrin functionalized metal-organic framework for selective oxidization of styrene publication-title: Chem. Commun. doi: 10.1039/c1cc10461f – volume: 25 start-page: 70 year: 2012 end-page: 73 ident: CR23 article-title: Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2012.09.018 – volume: 4 start-page: 1700194 year: 2017 ident: CR5 article-title: CO reduction: from the electrochemical to photochemical approach publication-title: Adv. Sci. doi: 10.1002/advs.201700194 – volume: 134 start-page: 87 year: 2012 end-page: 90 ident: CR40 article-title: A multifunctional organic-inorganic hybrid structure based on Mn(III)-porphyrin and polyoxometalate as a highly effective dye scavenger and heterogenous catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/ja209196t – volume: 139 start-page: 14889 year: 2017 end-page: 14892 ident: CR25 article-title: Exclusive Ni-N sites realize near-unity CO selectivity for electrochemical CO reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09074 – volume: 7 start-page: 266 year: 2015 end-page: 273 ident: CR42 article-title: Highly efficient electrochemical reduction of CO to CH in ionic liquid using metal-organic framework cathode publication-title: Chem. Sci. doi: 10.1039/C5SC03291A – volume: 8 year: 2017 ident: CR7 article-title: Highly selective and active CO reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures publication-title: Nat. Commun. doi: 10.1038/ncomms14675 – volume: 43 start-page: 10638 year: 2012 end-page: 10645 ident: CR38 article-title: Porous metalloporphyrinic frameworks constructed from metal 5,10,15,20-tetrakis(3,5-biscarboxylphenyl)porphyrin for highly efficient and selective catalytic oxidation of alkylbenzenes publication-title: Cheminform – volume: 355 start-page: 146 year: 2017 ident: CR12 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science doi: 10.1126/science.aad4998 – volume: 3 start-page: 560 year: 2017 end-page: 587 ident: CR14 article-title: Fundamentals and challenges of electrochemical CO reduction using two-dimensional materials publication-title: Chem doi: 10.1016/j.chempr.2017.09.009 – volume: 5 start-page: 1700275 year: 2018 ident: CR15 article-title: Progress and perspective of electrocatalytic CO reduction for renewable carbonaceous fuels and chemicals publication-title: Adv. Sci. doi: 10.1002/advs.201700275 – volume: 1 start-page: 103 year: 2018 end-page: 110 ident: CR3 article-title: Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction publication-title: Nat. Catal. doi: 10.1038/s41929-017-0018-9 – volume: 139 start-page: 18093 year: 2017 end-page: 18100 ident: CR10 article-title: Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO reduction to hydrocarbon/alcohol publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10817 – volume: 29 start-page: 1701784 year: 2017 ident: CR13 article-title: Metal-free carbon materials for CO electrochemical reduction publication-title: Adv. Mater. doi: 10.1002/adma.201701784 – volume: 7 year: 2016 ident: CR45 article-title: Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction publication-title: Nat. Commun. doi: 10.1038/ncomms12697 – volume: 373 start-page: 22 year: 2017 end-page: 48 ident: CR19 article-title: Metal-organic frameworks for electrocatalysis publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.09.001 – volume: 28 start-page: 3423 year: 2016 end-page: 3452 ident: CR18 article-title: Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide publication-title: Adv. Mater. doi: 10.1002/adma.201504766 – volume: 138 start-page: 2492 year: 2016 end-page: 2495 ident: CR21 article-title: Noncovalent immobilization of a molecular iron-based electrocatalyst on carbon electrodes for selective, efficient CO -to-CO conversion in water publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b12652 – volume: 5 start-page: 8477 year: 2017 end-page: 8483 ident: CR46 article-title: A highly stable polyoxometalate-based metal-organic framework with π-π stacking for enhancing lithium ion battery performance publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00900C – volume: 30 start-page: 1702891 year: 2017 ident: CR28 article-title: Pristine metal-organic frameworks and their composites for energy storage and conversion publication-title: Adv. Mater. doi: 10.1002/adma.201702891 – volume: 3 start-page: 652 year: 2017 end-page: 664 ident: CR37 article-title: Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO reduction publication-title: Chem doi: 10.1016/j.chempr.2017.08.002 – volume: 138 start-page: 8076 year: 2016 end-page: 8079 ident: CR20 article-title: Electrochemical CO reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04746 – volume: 349 start-page: 1208 year: 2015 end-page: 1213 ident: CR11 article-title: Covalent organic frameworks comprising cobalt porphyrins for catalytic CO reduction in water publication-title: Science doi: 10.1126/science.aac8343 – volume: 484 start-page: 49 year: 2012 end-page: 54 ident: CR1 article-title: Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation publication-title: Nature doi: 10.1038/nature10915 – volume: 43 start-page: 4615 year: 2014 end-page: 4632 ident: CR33 article-title: Recent advances in porous polyoxometalate-based metal-organic framework materials publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60404G – volume: 8 year: 2017 ident: CR27 article-title: A Co O -CDots-C N three component electrocatalyst design concept for efficient and tunable CO reduction to syngas publication-title: Nat. Commun. doi: 10.1038/s41467-017-01893-7 – volume: 56 start-page: 11326 year: 2017 end-page: 11353 ident: CR16 article-title: Nanostructured materials for heterogeneous electrocatalytic CO reduction and their related reaction mechanisms publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201612214 – volume: 548 start-page: 74 year: 2017 end-page: 77 ident: CR2 article-title: Visible-light-driven methane formation from CO with a molecular iron catalyst publication-title: Nature doi: 10.1038/nature23016 – volume: 137 start-page: 7169 year: 2015 end-page: 7177 ident: CR32 article-title: Ultrastable polymolybdate-based metal organic frameworks as highly active electrocatalysts for hydrogen generation from water publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b02688 – volume: 1 start-page: 32 year: 2018 end-page: 39 ident: CR4 article-title: Technical photosynthesis involving CO electrolysis and fermentation publication-title: Nat. Catal. doi: 10.1038/s41929-017-0005-1 – volume: 9 year: 2018 ident: CR24 article-title: Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction publication-title: Nat. Commun. doi: 10.1038/s41467-018-02819-7 – volume: 5 start-page: 6302 year: 2015 end-page: 6309 ident: CR30 article-title: Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO publication-title: ACS Catal. doi: 10.1021/acscatal.5b01767 – volume: 131 start-page: 16078 year: 2009 end-page: 16087 ident: CR34 article-title: Zeolitic polyoxometalate-based metal-organic frameworks (Z-POMOFs): computational evaluation of hypothetical polymorphs and the successful targeted synthesis of the redox-active Z-POMOF1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja905009e – volume: 7 start-page: 266 year: 2015 ident: 6938_CR42 publication-title: Chem. Sci. doi: 10.1039/C5SC03291A – volume: 353 start-page: 467 year: 2016 ident: 6938_CR17 publication-title: Science doi: 10.1126/science.aaf4767 – volume: 1 start-page: H17 year: 2012 ident: 6938_CR22 publication-title: ECS Electrochem. Lett. doi: 10.1149/2.001204eel – volume: 8 year: 2017 ident: 6938_CR27 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01893-7 – volume: 2 start-page: 2394 year: 2017 ident: 6938_CR31 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00621 – volume: 137 start-page: 7169 year: 2015 ident: 6938_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b02688 – volume: 3 start-page: 560 year: 2017 ident: 6938_CR14 publication-title: Chem doi: 10.1016/j.chempr.2017.09.009 – volume: 4 start-page: 1700194 year: 2017 ident: 6938_CR5 publication-title: Adv. Sci. doi: 10.1002/advs.201700194 – volume: 355 start-page: 146 year: 2017 ident: 6938_CR12 publication-title: Science doi: 10.1126/science.aad4998 – volume: 5 start-page: 6302 year: 2015 ident: 6938_CR30 publication-title: ACS Catal. doi: 10.1021/acscatal.5b01767 – volume: 10 start-page: 1 year: 2016 ident: 6938_CR41 publication-title: ChemSusChem – volume: 484 start-page: 49 year: 2012 ident: 6938_CR1 publication-title: Nature doi: 10.1038/nature10915 – volume: 349 start-page: 1208 year: 2015 ident: 6938_CR11 publication-title: Science doi: 10.1126/science.aac8343 – volume: 133 start-page: 13363 year: 2011 ident: 6938_CR35 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201165c – volume: 139 start-page: 4290 year: 2017 ident: 6938_CR8 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00261 – volume: 51 start-page: 6443 year: 2012 ident: 6938_CR47 publication-title: Inorg. Chem. doi: 10.1021/ic300825s – volume: 8 year: 2017 ident: 6938_CR7 publication-title: Nat. Commun. doi: 10.1038/ncomms14675 – volume: 134 start-page: 87 year: 2012 ident: 6938_CR40 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja209196t – volume: 7 year: 2016 ident: 6938_CR45 publication-title: Nat. Commun. doi: 10.1038/ncomms12697 – volume: 5 start-page: 1700275 year: 2018 ident: 6938_CR15 publication-title: Adv. Sci. doi: 10.1002/advs.201700275 – volume: 4 start-page: 15320 year: 2016 ident: 6938_CR43 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04801C – volume: 9 year: 2018 ident: 6938_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-018-02819-7 – volume: 529 start-page: 68 year: 2016 ident: 6938_CR9 publication-title: Nature doi: 10.1038/nature16455 – volume: 1 start-page: 103 year: 2018 ident: 6938_CR3 publication-title: Nat. Catal. doi: 10.1038/s41929-017-0018-9 – volume: 28 start-page: 3423 year: 2016 ident: 6938_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.201504766 – volume: 51 start-page: 10307 year: 2012 ident: 6938_CR49 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201204475 – volume: 373 start-page: 22 year: 2017 ident: 6938_CR19 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.09.001 – volume: 137 start-page: 14129 year: 2015 ident: 6938_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08212 – volume: 138 start-page: 8076 year: 2016 ident: 6938_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04746 – volume: 137 start-page: 6844 year: 2015 ident: 6938_CR36 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b01889 – volume: 30 start-page: 1702891 year: 2017 ident: 6938_CR28 publication-title: Adv. Mater. doi: 10.1002/adma.201702891 – volume: 131 start-page: 16078 year: 2009 ident: 6938_CR34 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja905009e – volume: 140 start-page: 4218 year: 2018 ident: 6938_CR44 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00814 – volume: 140 start-page: 1116 year: 2018 ident: 6938_CR6 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11940 – volume: 548 start-page: 74 year: 2017 ident: 6938_CR2 publication-title: Nature doi: 10.1038/nature23016 – volume: 56 start-page: 11326 year: 2017 ident: 6938_CR16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201612214 – volume: 47 start-page: 5521 year: 2011 ident: 6938_CR39 publication-title: Chem. Commun. doi: 10.1039/c1cc10461f – volume: 139 start-page: 14889 year: 2017 ident: 6938_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09074 – volume: 43 start-page: 10638 year: 2012 ident: 6938_CR38 publication-title: Cheminform – volume: 138 start-page: 2492 year: 2016 ident: 6938_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b12652 – volume: 3 start-page: 652 year: 2017 ident: 6938_CR37 publication-title: Chem doi: 10.1016/j.chempr.2017.08.002 – volume: 34 start-page: 3339 year: 1995 ident: 6938_CR48 publication-title: Inorg. Chem. doi: 10.1021/ic00116a028 – volume: 25 start-page: 70 year: 2012 ident: 6938_CR23 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2012.09.018 – volume: 57 start-page: 1944 year: 2018 ident: 6938_CR26 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712451 – volume: 1 start-page: 32 year: 2018 ident: 6938_CR4 publication-title: Nat. Catal. doi: 10.1038/s41929-017-0005-1 – volume: 139 start-page: 18093 year: 2017 ident: 6938_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10817 – volume: 29 start-page: 1701784 year: 2017 ident: 6938_CR13 publication-title: Adv. Mater. doi: 10.1002/adma.201701784 – volume: 43 start-page: 4615 year: 2014 ident: 6938_CR33 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60404G – volume: 5 start-page: 8477 year: 2017 ident: 6938_CR46 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00900C |
SSID | ssj0000391844 |
Score | 2.6702082 |
Snippet | The design of highly stable, selective and efficient electrocatalysts for CO
2
reduction reaction is desirable while largely unmet. In this work, a series of... The design of highly stable, selective and efficient electrocatalysts for CO2 reduction reaction is desirable while largely unmet. In this work, a series of... While CO2 reduction provides a way to remove carbon from the atmosphere, it is challenging to design effective, selective materials for this process. Here,... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 639/301/299/921 639/638/161/886 639/638/77/887 639/925/357/404 Carbon dioxide Catalysis Catalysts Chemical reduction Density functional theory Electrocatalysts Electrons Humanities and Social Sciences Metal-organic frameworks Migration multidisciplinary Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgCIkXxE8RGMhIvEG0xL9iPyGYKBMS7IVJe7NsxxaTuqSsnUT3xn_OnZN0yiT2UlWNW6d357uv9vX7CHkXPMBcjT9LvHalSJKXvo5t6XlUDkp2Ullj6fsPdXQivp3K03HDbT22VU45MSfqtg-4R34AKVYqgT2PH1e_S1SNwtPVUULjLrlXQ6XBCNeLr7s9FmQ_10KM_5WpuD5Yi5wZqlqXlTKw1q9m9SjT9s-w5s1OyRvHpbkKLR6RhyN8pJ8Gfz8md2L3hNwfBCW3T8nfY6QtBhBJJ3kbusFiBM7EXTF61tFVv9z2f_rzCKgbcGaZnyx7gOFgcJiUDjpPgaapbYsCrqVIa7zc0nX-XMiQ0wQXSP2KzqV9oofH7Bk5WXz5eXhUjiILZZCab0qmuHDOs9Q6CY-skSZCXWuE4YAkgxdMxFixFH1TtYYnZeoYEjIKcx904Pw52ev6Lr7ALimwLvINeiFFcI0WbeTSOVG1TmlXF6SeTG3DyECOQhhLm0_CubaDeyy4x2b32KuCvN-9ZzXwb9w6-jN6cDcSubPzC2A6Oy5FWysTjPKBRw0ZK0knDWtRwYvVYARWFWR_8r8dF_TaXodfQd7uLoP38HzFdbG_zGPAOo2pZUGaWdzMbmh-pTv7lUm9FUM1YlWQD1OEXU_-_y_88vZ7fUUeMIx1qLVM7ZO9zcVlfA0gauPf5JXyD6nTHd0 priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFA5zIvgi_sTqlAi-abXNryYPIjocQ5h78cLeQpKmOOjaee8d7O7N_9xz0vZKx_TJl1LatGnPl5Nz0qTfR8jr4CHN1Tgs8drlopE892Wsc8-jchCyG5U0lo6-qcOF-HoiT3bIJHc0GnB149AO9aQWy_bd5c_NR3D4D8Mv4_r9SiR3L0qdF8qAA1_dIrchMlUo5XA0pvupZ-YGBjRi_Hfm5ktn8SnR-M9yz-srJ69Nn6aodHCf3BvTSfppwP8B2YndQ3JnEJjcPCK_jpHGGJJKOsnd0DUGJwAXv5LR046e9-2mv-zPIhgA8s487bQ9WAQAgErpoPsUaDMt46KQ51KkOW43dJXuCz3mVMESqWARbNo3dP-YPSaLgy_f9w_zUXQhD1Lzdc4UF8551tROwpZV0kSIc5UwHDLL4AUTMRasib4qasMbZcoYGmQY5j7owPkTstv1XXyKq6bAusg_6IUUwVVa1JFL50RRO6VdmZFyMrUNIyM5CmO0Ns2Mc20HeCzAYxM89iojb7bXnA98HP8s_RkR3JZELu10AExnR9e0pTLBKB941NCDNdJJw2pU9GIlGIEVGdmb8LdT-7QQ8aUSuAQ3I6-2pwE9nG9xXewvUhmwTmVKmZFq1m5mDzQ_053-SCTfiqE6scrI26mF_an87y_87H-88HNyl6FHQIRmao_srpcX8QWkXmv_MvnTb2rcLhM priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA9zIvgynB9YNyWCb1ps89XkUS-OIeheHOwtJGmCg2s7du_Au7f95zsnba90qLCXUpqkSc9Jcn5NTn6HkHfBA8zV-FvitStFkrz0dWxLz6NyYLKTyjGWvn1Xx6fi65k82yFsOguTnfYzpWWepifvsI8rkYd0VeuyUgYG6fUD8hCp29GNb6EW23UVZDzXQoznYyqu_1J0ZoMyVf8MX971jryzRZotz9ETsjdCRvppaOQ-2YndU_JoCCK5eUZuTpCqGIAjnULa0DUaIFAgroTR845e9MtN_7v_FQFpA7Ys882yB-gNQoZK6RDbKdA0uWpRwLIUqYyXG7rK74VZcargEuleUaG0T3Rxwp6T06MvPxbH5RhYoQxS83XJFBfOeZZaJ-HKGmki2LJGGA7oMXjBRIwVS9E3VWt4UqaOISGLMPdBB85fkN2u7-JL9IwC6SLHoBdSBNdo0UYunRNV65R2dUHqSdQ2jKzjGPxiafPuN9d2UI8F9disHntdkPfbMhcD58Z_c39GDW5zIl92fgCis2P_sbUywSgfeNQwSyXppGEtRu1iNQiBVQU5nPRvx0G8smDVpRLoZluQt9tk0B7uqbgu9lc5D0inMbUsSDPrN7MGzVO685-ZyFsxjECsCvJh6mF_Kv_3B7-6X_YD8phh3wd7y9Qh2V1fXsXXAKTW_k0eObdg3RxT priority: 102 providerName: Springer Nature |
Title | Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2 |
URI | https://link.springer.com/article/10.1038/s41467-018-06938-z https://www.proquest.com/docview/2125648224 https://www.proquest.com/docview/2126917915 https://pubmed.ncbi.nlm.nih.gov/PMC6203756 https://doaj.org/article/169c96bc3e8042f5a592d973121fda20 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtSqGX0vRB3aSLCr21JrZelo6bJZuwkKS0DexNSLJMAxs7ZDeQza3_vCPZ3sSBtJdeZGPLlj0z0nyyxt8g9NlZgLkyTEusNCmrOE1t7svUUi8MuOxKxBxLxyfi6IzN5nx-L9VXiAlr6YFbwe3lQjklrKNegn1V3HBFypBvieRVaUicrYPPuzeZimMwVTB1Yd1fMhmVe0sWx4Qsl2kmFPTy24EnioT9A5T5MEbywUJp9D_TV-hlBxzxuH3gbfTE16_R8zaV5PoN-n0aCIsBPuI-sQ1eBTcEagzfw_B5jS-bxbq5aS484G1AmGncWTQAwEHU0ChuMzw5XPUBWxgQLQ6Exos1Xsb7wtjYN3AVSF-DWnFT4ckpeYvOpgc_J0dpl14hdVzSVUoEZcZYAmLkUJKCKw8erWCKAoZ0lhHmfUYqb4usVLQSKveuClzC1DrpKH2Htuqm9u9DfBRINzANWsaZM4VkpafcGJaVRkiTJyjvRa1dxz0eUmAsdFwDp1K36tGgHh3Vo28T9GVzzWXLvPHX2vtBg5uagTU7HgDR6c6W9L9sKUG7vf5115WXGnw7FywE2ybo0-Y0aC-srJjaN9exDkinUDlPUDGwm8EDDc_U578inbcgIQ-xSNDX3sLuGn_8hT_8jxfeQS9I6BHgi4nYRVurq2v_EUDWyo7Q02JeQCmnhyP0bDye_ZjBdv_g5Nt3ODoRk1HscVAeM_kHAgosaw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQguiKcwFFgkOIFVe19eHxCCQpXS16WVclt212u1UrBDkwrSG3-I38jM2k6VSvTWSxTFm6wzM_7m8-54PkLeeAc0V-NtidM2FbXkqctDlToelIWUXauosbR_oEbH4ttYjtfI3-FZGCyrHDAxAnXVelwj3wSIlUpgzePH6c8UVaNwd3WQ0OjCYjcsfsEt2-zDzhfw71vGtr8ebY3SXlUg9VLzecoUF9Y6VldWwisrZBkAyAtRcqBO3gkmQshYHVyRVSWvVZkHX2MLXe689rgACpB_CxJvhiWExbhYrulgt3UtRP9sTsb15kxEJMpynWaqBGy5WMl_USZghdtercy8sj0bs972fXKvp6v0UxdfD8haaB6S252A5eIR-XOIbZKBtNJBTofOMflB8OAqHD1t6LSdLNrf7Y8ALB94bRrfTFqg_eBgmJR2ulKe1kOZGAUeTbGN8mRBZ_F3AZGHCc6w1SwGE21runXIHpPjGzH_E7LetE14ilVZYF3sb-iEFN4WWlSBS2tFVlmlbZ6QfDC18X3HcxTemJi488616dxjwD0musdcJOTd8jvTrt_HtaM_oweXI7FXd_wATGf6S9_kqvSlcp4HDQhZSytLVqFiGMvBCCxLyMbgf9MDyMxchntCXi8Pg_dwP8c2oT2PY8A6RZnLhBQrcbNyQqtHmtOT2ERcMVQ_Vgl5P0TY5eT__8PPrj_XV-TO6Gh_z-ztHOw-J3cZxj3keaY2yPr87Dy8AAI3dy_jVUPJ95u-TP8BFqBabg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhAXxFMEChgJThBt4lecA0LQsmoptByotDdjO46otCRLdyvY3vhb_DpmnGSrrURvvayijRMnM-NvxvZkPkJeeAdhrsZpidM2FbXkqctDlToelAWXXavIsfT5QO0eiY8TOdkgf4dvYTCtcsDECNRV63GNfAQQK5XAnMdR3adFfNkZv539TJFBCndaBzqNzkT2w_IXTN_mb_Z2QNcvGRt_-Lq9m_YMA6mXmi9Spriw1rG6shJ-WSHLAKBeiJJDGOWdYCKEjNXBFVlV8lqVefA1ltPlzmuPi6EA_9cKDm4TxlIxKVbrO1h5XQvRf6eTcT2ai4hKWa7TTJWAM2drvjBSBqzFuRezNC9s1UYPOL5NbvWhK33X2dodshGau-R6R2a5vEf-HGLJZAhg6UCtQxfoCMGQcEWOHjd01k6X7e_2R4CIH2LcNB5MW5gCgLKhU9pxTHlaDyljFGJqiiWVp0s6j_cFdB46OMGys2hYtK3p9iG7T46uRPwPyGbTNuEhZmiBdLHWoRNSeFtoUQUurRVZZZW2eULyQdTG99XPkYRjauIuPNemU48B9ZioHnOWkFera2Zd7Y9LW79HDa5aYt3u-AeIzvQwYHJV-lI5z4MGtKyllSWrkD2M5SAEliVka9C_6cFkbs5NPyHPV6dBe7i3Y5vQnsY2IJ2izGVCijW7WXug9TPN8fdYUFwxZEJWCXk9WNh55_9_4UeXP-szcgMGqPm0d7D_mNxkaPbg8pnaIpuLk9PwBGK5hXsaBw0l3656lP4DHDhepA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oriented+electron+transmission+in+polyoxometalate-metalloporphyrin+organic+framework+for+highly+selective+electroreduction+of+CO2&rft.jtitle=Nature+communications&rft.au=Yi-Rong+Wang&rft.au=Qing+Huang&rft.au=Chun-Ting+He&rft.au=Yifa+Chen&rft.date=2018-10-26&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41467-018-06938-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_169c96bc3e8042f5a592d973121fda20 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |