Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2

The design of highly stable, selective and efficient electrocatalysts for CO 2 reduction reaction is desirable while largely unmet. In this work, a series of precisely designed polyoxometalate-metalloporphyrin organic frameworks are developed. Noted that the integration of {ε-PMo 8 V Mo 4 VI O 40 Zn...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 1 - 8
Main Authors Wang, Yi-Rong, Huang, Qing, He, Chun-Ting, Chen, Yifa, Liu, Jiang, Shen, Feng-Cui, Lan, Ya-Qian
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 26.10.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-018-06938-z

Cover

Loading…
Abstract The design of highly stable, selective and efficient electrocatalysts for CO 2 reduction reaction is desirable while largely unmet. In this work, a series of precisely designed polyoxometalate-metalloporphyrin organic frameworks are developed. Noted that the integration of {ε-PMo 8 V Mo 4 VI O 40 Zn 4 } cluster and metalloporphyrin endows these polyoxometalate-metalloporphyrin organic frameworks greatly advantages in terms of electron collecting and donating, electron migration and electrocatalytic active component in the CO 2 reduction reaction. Thus-obtained catalysts finally present excellent performances and the mechanisms of catalysis processes are discussed and revealed by density functional theory calculations. Most importantly, Co-PMOF exhibits remarkable faradaic efficiency ( > 94%) over a wide potential range (−0.8 to −1.0 V). Its best faradaic efficiency can reach up to 99% (highest in reported metal-organic frameworks) and it exhibits a high turnover frequency of 1656 h −1 and excellent catalysis stability ( > 36 h). While CO2 reduction provides a way to remove carbon from the atmosphere, it is challenging to design effective, selective materials for this process. Here, authors construct metal-organic frameworks from polyoxometalates and porphryins to direct electron flow and improve CO2 reduction efficiencies.
AbstractList While CO2 reduction provides a way to remove carbon from the atmosphere, it is challenging to design effective, selective materials for this process. Here, authors construct metal-organic frameworks from polyoxometalates and porphryins to direct electron flow and improve CO2 reduction efficiencies.
The design of highly stable, selective and efficient electrocatalysts for CO2 reduction reaction is desirable while largely unmet. In this work, a series of precisely designed polyoxometalate-metalloporphyrin organic frameworks are developed. Noted that the integration of {ε-PMo8VMo4VIO40Zn4} cluster and metalloporphyrin endows these polyoxometalate-metalloporphyrin organic frameworks greatly advantages in terms of electron collecting and donating, electron migration and electrocatalytic active component in the CO2 reduction reaction. Thus-obtained catalysts finally present excellent performances and the mechanisms of catalysis processes are discussed and revealed by density functional theory calculations. Most importantly, Co-PMOF exhibits remarkable faradaic efficiency ( > 94%) over a wide potential range (−0.8 to −1.0 V). Its best faradaic efficiency can reach up to 99% (highest in reported metal-organic frameworks) and it exhibits a high turnover frequency of 1656 h−1 and excellent catalysis stability ( > 36 h).
The design of highly stable, selective and efficient electrocatalysts for CO 2 reduction reaction is desirable while largely unmet. In this work, a series of precisely designed polyoxometalate-metalloporphyrin organic frameworks are developed. Noted that the integration of {ε-PMo 8 V Mo 4 VI O 40 Zn 4 } cluster and metalloporphyrin endows these polyoxometalate-metalloporphyrin organic frameworks greatly advantages in terms of electron collecting and donating, electron migration and electrocatalytic active component in the CO 2 reduction reaction. Thus-obtained catalysts finally present excellent performances and the mechanisms of catalysis processes are discussed and revealed by density functional theory calculations. Most importantly, Co-PMOF exhibits remarkable faradaic efficiency ( > 94%) over a wide potential range (−0.8 to −1.0 V). Its best faradaic efficiency can reach up to 99% (highest in reported metal-organic frameworks) and it exhibits a high turnover frequency of 1656 h −1 and excellent catalysis stability ( > 36 h). While CO2 reduction provides a way to remove carbon from the atmosphere, it is challenging to design effective, selective materials for this process. Here, authors construct metal-organic frameworks from polyoxometalates and porphryins to direct electron flow and improve CO2 reduction efficiencies.
The design of highly stable, selective and efficient electrocatalysts for CO2 reduction reaction is desirable while largely unmet. In this work, a series of precisely designed polyoxometalate-metalloporphyrin organic frameworks are developed. Noted that the integration of {ε-PMo8VMo4VIO40Zn4} cluster and metalloporphyrin endows these polyoxometalate-metalloporphyrin organic frameworks greatly advantages in terms of electron collecting and donating, electron migration and electrocatalytic active component in the CO2 reduction reaction. Thus-obtained catalysts finally present excellent performances and the mechanisms of catalysis processes are discussed and revealed by density functional theory calculations. Most importantly, Co-PMOF exhibits remarkable faradaic efficiency ( > 94%) over a wide potential range (-0.8 to -1.0 V). Its best faradaic efficiency can reach up to 99% (highest in reported metal-organic frameworks) and it exhibits a high turnover frequency of 1656 h-1 and excellent catalysis stability ( > 36 h).The design of highly stable, selective and efficient electrocatalysts for CO2 reduction reaction is desirable while largely unmet. In this work, a series of precisely designed polyoxometalate-metalloporphyrin organic frameworks are developed. Noted that the integration of {ε-PMo8VMo4VIO40Zn4} cluster and metalloporphyrin endows these polyoxometalate-metalloporphyrin organic frameworks greatly advantages in terms of electron collecting and donating, electron migration and electrocatalytic active component in the CO2 reduction reaction. Thus-obtained catalysts finally present excellent performances and the mechanisms of catalysis processes are discussed and revealed by density functional theory calculations. Most importantly, Co-PMOF exhibits remarkable faradaic efficiency ( > 94%) over a wide potential range (-0.8 to -1.0 V). Its best faradaic efficiency can reach up to 99% (highest in reported metal-organic frameworks) and it exhibits a high turnover frequency of 1656 h-1 and excellent catalysis stability ( > 36 h).
The design of highly stable, selective and efficient electrocatalysts for CO 2 reduction reaction is desirable while largely unmet. In this work, a series of precisely designed polyoxometalate-metalloporphyrin organic frameworks are developed. Noted that the integration of {ε-PMo 8 V Mo 4 VI O 40 Zn 4 } cluster and metalloporphyrin endows these polyoxometalate-metalloporphyrin organic frameworks greatly advantages in terms of electron collecting and donating, electron migration and electrocatalytic active component in the CO 2 reduction reaction. Thus-obtained catalysts finally present excellent performances and the mechanisms of catalysis processes are discussed and revealed by density functional theory calculations. Most importantly, Co-PMOF exhibits remarkable faradaic efficiency ( > 94%) over a wide potential range (−0.8 to −1.0 V). Its best faradaic efficiency can reach up to 99% (highest in reported metal-organic frameworks) and it exhibits a high turnover frequency of 1656 h −1 and excellent catalysis stability ( > 36 h).
ArticleNumber 4466
Author Huang, Qing
Lan, Ya-Qian
Chen, Yifa
Wang, Yi-Rong
Liu, Jiang
He, Chun-Ting
Shen, Feng-Cui
Author_xml – sequence: 1
  givenname: Yi-Rong
  surname: Wang
  fullname: Wang, Yi-Rong
  organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University
– sequence: 2
  givenname: Qing
  surname: Huang
  fullname: Huang, Qing
  organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University
– sequence: 3
  givenname: Chun-Ting
  surname: He
  fullname: He, Chun-Ting
  organization: MOE Key Laboratory of Functional Small Organic Molecule College of Chemistry and Chemical Engineering, Jiangxi Normal University
– sequence: 4
  givenname: Yifa
  surname: Chen
  fullname: Chen, Yifa
  organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University
– sequence: 5
  givenname: Jiang
  surname: Liu
  fullname: Liu, Jiang
  organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University
– sequence: 6
  givenname: Feng-Cui
  surname: Shen
  fullname: Shen, Feng-Cui
  organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University
– sequence: 7
  givenname: Ya-Qian
  orcidid: 0000-0002-2140-7980
  surname: Lan
  fullname: Lan, Ya-Qian
  email: yqlan@njnu.edu.cn
  organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University
BookMark eNp9Uk1v1DAQjVARLaV_gFMkLlwC_sqHL0hoBW2lSnuBs-U4k10vjh3spLC98c-Z3bSC9lAf7Bn7vTeep3mdnfjgIcveUvKBEt58TIKKqi4IbQpSSd4Udy-yM0YELWjN-Ml_8Wl2kdKO4OKSNkK8yk454VWN6Vn2Zx0t-Am6HByYKQafT1H7NNiULCbW52Nw-_A7DDBppycojoELY4jjdh8REOJGe2vyPuoBfoX4I-9DzLd2s3X7PB117S08FIjQzXiB2qHPV2v2JnvZa5fg4v48z75__fJtdVXcrC-vV59vClM2fCpYxYXWLes7XeLO6lIC5aQWkhNGTCuYACCsh7YmneR9JSmYnkopeGsaw_l5dr3odkHv1BjtoONeBW3V8QKbUDpO1jhQtJJGVq3h0BDB-lKXknWy5pRRLM8Ian1atMa5HaAz6GDU7pHo4xdvt2oTblWF5LqsUOD9vUAMP2dIk0LDDTinPYQ5KUYZNlBLWiL03RPoLszRo1UHVFmJhjGBqGZBmRhSitArYyd9sBnrW6coUYexUcvYKBwbdRwbdYdU9oT60MezJL6QEoL9BuK_Xz3D-guaP9nZ
CitedBy_id crossref_primary_10_1016_j_electacta_2024_145389
crossref_primary_10_1039_D3NJ05424A
crossref_primary_10_1002_ange_202206399
crossref_primary_10_1021_acsami_0c11186
crossref_primary_10_1039_D1TA11052G
crossref_primary_10_1002_anie_202421132
crossref_primary_10_1039_D1CS00120E
crossref_primary_10_1021_acsami_2c20402
crossref_primary_10_1002_cctc_202201045
crossref_primary_10_1016_j_jcat_2020_12_004
crossref_primary_10_1063_5_0090147
crossref_primary_10_1016_j_mtphys_2023_101250
crossref_primary_10_1016_j_ccr_2022_214969
crossref_primary_10_1039_D3GC03778A
crossref_primary_10_1016_j_cej_2022_135622
crossref_primary_10_1016_j_checat_2021_09_003
crossref_primary_10_1039_C8CS00829A
crossref_primary_10_1039_C9DT03911B
crossref_primary_10_1039_D1TA10440C
crossref_primary_10_1016_j_carbon_2020_10_044
crossref_primary_10_1002_ange_202011068
crossref_primary_10_1002_smtd_202400432
crossref_primary_10_1039_C9NR08726E
crossref_primary_10_1002_anie_202111265
crossref_primary_10_1002_smll_202301818
crossref_primary_10_1016_j_isci_2024_109658
crossref_primary_10_1039_D5DT00252D
crossref_primary_10_1016_j_matt_2021_02_021
crossref_primary_10_1002_smll_202004933
crossref_primary_10_1016_j_apsusc_2025_162670
crossref_primary_10_1016_j_ccr_2020_213507
crossref_primary_10_1002_anie_202112915
crossref_primary_10_1002_smll_202301824
crossref_primary_10_1021_acscentsci_0c01390
crossref_primary_10_1039_D3DT01535A
crossref_primary_10_1039_D1QM01246K
crossref_primary_10_1016_j_inoche_2024_112223
crossref_primary_10_1038_s41467_024_48613_6
crossref_primary_10_1021_acscatal_2c02715
crossref_primary_10_1002_anie_201907399
crossref_primary_10_1080_00958972_2020_1825698
crossref_primary_10_1021_acs_inorgchem_1c02294
crossref_primary_10_1016_j_ccr_2024_215726
crossref_primary_10_1007_s43979_024_00110_x
crossref_primary_10_1016_j_apsusc_2020_148306
crossref_primary_10_1002_adfm_202214495
crossref_primary_10_1002_aenm_202102152
crossref_primary_10_1002_smtd_202100102
crossref_primary_10_1021_acs_inorgchem_9b02858
crossref_primary_10_1002_anie_202404015
crossref_primary_10_1021_acssuschemeng_4c06676
crossref_primary_10_1016_j_jece_2022_108056
crossref_primary_10_1021_acs_inorgchem_9b02189
crossref_primary_10_3390_molecules28010150
crossref_primary_10_1002_ange_202110387
crossref_primary_10_1002_anie_202504630
crossref_primary_10_1038_s41598_024_79563_0
crossref_primary_10_3390_catal10111293
crossref_primary_10_1016_j_cclet_2022_06_056
crossref_primary_10_1021_acs_chemrev_2c00587
crossref_primary_10_1002_smll_202301379
crossref_primary_10_1021_acs_inorgchem_0c02404
crossref_primary_10_1021_jacs_0c11400
crossref_primary_10_1002_anie_202311999
crossref_primary_10_1002_adfm_202000407
crossref_primary_10_1002_aenm_202304239
crossref_primary_10_1016_j_apsusc_2023_156664
crossref_primary_10_1016_j_seppur_2022_122971
crossref_primary_10_1016_j_cclet_2021_08_045
crossref_primary_10_1039_D3NJ04078J
crossref_primary_10_1002_anie_202417548
crossref_primary_10_1021_acs_energyfuels_0c03482
crossref_primary_10_1021_acs_energyfuels_3c01657
crossref_primary_10_1002_adfm_202301334
crossref_primary_10_1016_j_electacta_2023_141896
crossref_primary_10_1039_D2CE00397J
crossref_primary_10_1002_ejic_202400485
crossref_primary_10_1038_s41467_019_14237_4
crossref_primary_10_1039_D0NJ03507F
crossref_primary_10_1021_acsnano_2c09796
crossref_primary_10_1515_psr_2019_0054
crossref_primary_10_1002_ange_202105343
crossref_primary_10_1002_smtd_202000085
crossref_primary_10_1039_D2NR01921C
crossref_primary_10_3390_molecules24112069
crossref_primary_10_1016_j_matt_2019_07_003
crossref_primary_10_1021_jacs_9b02541
crossref_primary_10_1021_acscatal_2c01847
crossref_primary_10_1002_adfm_202112159
crossref_primary_10_1007_s11426_022_1217_7
crossref_primary_10_1039_C9TA07967J
crossref_primary_10_1002_ange_202504630
crossref_primary_10_1016_j_coelec_2019_05_006
crossref_primary_10_1021_acs_inorgchem_4c00840
crossref_primary_10_1002_ange_202010601
crossref_primary_10_1002_anie_202110387
crossref_primary_10_1016_j_jcou_2019_05_025
crossref_primary_10_1016_j_trechm_2020_01_003
crossref_primary_10_1016_j_ccr_2020_213564
crossref_primary_10_1016_j_jcis_2023_06_167
crossref_primary_10_1021_acs_inorgchem_3c03584
crossref_primary_10_1002_anie_202011068
crossref_primary_10_1039_D4TA00737A
crossref_primary_10_1021_acsanm_9b00409
crossref_primary_10_1016_j_enchem_2020_100033
crossref_primary_10_1039_D2TA04164B
crossref_primary_10_1016_j_cclet_2019_01_024
crossref_primary_10_1016_j_cclet_2023_108324
crossref_primary_10_1021_acscentsci_0c01088
crossref_primary_10_1021_acsnano_2c09168
crossref_primary_10_1002_anie_202105343
crossref_primary_10_1021_acsenergylett_9b02585
crossref_primary_10_1016_j_cclet_2019_12_009
crossref_primary_10_3762_bjnano_14_74
crossref_primary_10_1002_anie_202212329
crossref_primary_10_1039_D0CS01482F
crossref_primary_10_1021_acs_chemrev_9b00685
crossref_primary_10_1021_acsmaterialslett_0c00229
crossref_primary_10_1016_j_ccr_2024_216304
crossref_primary_10_1039_D3CC00248A
crossref_primary_10_1016_j_jcis_2024_08_069
crossref_primary_10_1039_D4CC02635G
crossref_primary_10_1007_s40843_020_1396_7
crossref_primary_10_1021_acs_nanolett_3c04092
crossref_primary_10_1002_adfm_202419499
crossref_primary_10_1039_C8QI01340C
crossref_primary_10_1016_j_ccr_2020_213435
crossref_primary_10_1021_acs_inorgchem_9b01557
crossref_primary_10_1016_j_jechem_2019_04_013
crossref_primary_10_1002_anie_201900106
crossref_primary_10_1039_D0EE03731A
crossref_primary_10_1002_adsu_202400284
crossref_primary_10_1016_j_apcatb_2020_119173
crossref_primary_10_1093_nsr_nwaa195
crossref_primary_10_1016_j_microc_2023_109505
crossref_primary_10_1002_ange_202417548
crossref_primary_10_1039_C9CC02393C
crossref_primary_10_1002_cssc_201903427
crossref_primary_10_1002_anie_202011722
crossref_primary_10_1039_D1CE00332A
crossref_primary_10_1039_D4TA03502J
crossref_primary_10_1002_anie_202114648
crossref_primary_10_1002_admi_202101505
crossref_primary_10_1007_s12274_021_3984_9
crossref_primary_10_1002_tcr_202300317
crossref_primary_10_1021_acsami_9b14928
crossref_primary_10_1021_acssuschemeng_9b02699
crossref_primary_10_1039_D1RA08861K
crossref_primary_10_1038_s41467_024_51525_0
crossref_primary_10_1002_ange_201900106
crossref_primary_10_1039_D3QM00844D
crossref_primary_10_1021_acs_langmuir_9b03965
crossref_primary_10_1021_acs_chemrev_9b00223
crossref_primary_10_1038_s41467_021_27169_9
crossref_primary_10_1002_cnma_202400049
crossref_primary_10_1016_j_apcatb_2023_123650
crossref_primary_10_1016_j_coelec_2020_07_001
crossref_primary_10_1016_j_jcat_2020_07_021
crossref_primary_10_1039_D0TA04993J
crossref_primary_10_1039_D4NJ02713B
crossref_primary_10_1007_s10853_020_04404_0
crossref_primary_10_1002_ange_202011722
crossref_primary_10_1007_s12598_023_02567_8
crossref_primary_10_1002_sstr_202100090
crossref_primary_10_1002_adma_202001848
crossref_primary_10_1002_aoc_6810
crossref_primary_10_1016_j_apcatb_2020_119750
crossref_primary_10_1021_acsami_1c15187
crossref_primary_10_1002_ange_202112915
crossref_primary_10_1002_ange_202114648
crossref_primary_10_1016_j_mtadv_2019_100038
crossref_primary_10_1016_j_molstruc_2021_130804
crossref_primary_10_1021_acs_jpclett_9b02132
crossref_primary_10_1002_advs_202301261
crossref_primary_10_1016_j_snb_2020_129388
crossref_primary_10_1016_j_progsolidstchem_2023_100430
crossref_primary_10_1016_j_tet_2023_133690
crossref_primary_10_1002_anie_202209396
crossref_primary_10_1021_acsami_1c02558
crossref_primary_10_1039_D1NJ04689F
crossref_primary_10_1039_D2CE00815G
crossref_primary_10_1016_j_apsusc_2021_150839
crossref_primary_10_1002_ange_202111265
crossref_primary_10_1007_s10008_023_05616_5
crossref_primary_10_1002_ange_202212329
crossref_primary_10_1039_C9TA03892B
crossref_primary_10_1016_j_cattod_2022_04_021
crossref_primary_10_1002_smll_202006260
crossref_primary_10_1016_j_checat_2023_100848
crossref_primary_10_1016_j_cej_2023_145662
crossref_primary_10_1021_acsenergylett_1c01681
crossref_primary_10_1002_ange_202311999
crossref_primary_10_3389_fenrg_2022_1016406
crossref_primary_10_1002_smll_202100323
crossref_primary_10_1002_anie_202108388
crossref_primary_10_1002_aenm_202402278
crossref_primary_10_1021_acs_inorgchem_2c03734
crossref_primary_10_1039_D0DT00159G
crossref_primary_10_1002_smsc_202100043
crossref_primary_10_3390_molecules27134295
crossref_primary_10_1016_j_ccr_2020_213483
crossref_primary_10_1039_D1SC06779F
crossref_primary_10_1021_acsanm_4c05280
crossref_primary_10_20517_energymater_2024_215
crossref_primary_10_1039_D2TA08092C
crossref_primary_10_1002_aenm_202100346
crossref_primary_10_1002_ange_202209396
crossref_primary_10_1002_ange_202414506
crossref_primary_10_1002_cssc_201901794
crossref_primary_10_1002_cssc_202000328
crossref_primary_10_1002_smll_202301319
crossref_primary_10_1039_C9TC02778E
crossref_primary_10_1002_ange_202006899
crossref_primary_10_1038_s41467_020_16715_6
crossref_primary_10_1016_j_apcatb_2021_120128
crossref_primary_10_1002_adbi_201900281
crossref_primary_10_1021_acs_nanolett_2c00547
crossref_primary_10_1039_C9NR10573E
crossref_primary_10_26599_POM_2022_9140006
crossref_primary_10_1002_anie_202010601
crossref_primary_10_1021_acs_inorgchem_3c00565
crossref_primary_10_3390_en15010063
crossref_primary_10_1016_j_cej_2023_142267
crossref_primary_10_1021_acscatal_4c02524
crossref_primary_10_1016_S1872_2067_21_63980_3
crossref_primary_10_1149_1945_7111_abfcda
crossref_primary_10_1007_s12209_022_00324_z
crossref_primary_10_1016_j_ccr_2023_215273
crossref_primary_10_1039_D3TA06964H
crossref_primary_10_1021_acssuschemeng_1c06433
crossref_primary_10_1021_jacs_0c02973
crossref_primary_10_1039_D2CS00843B
crossref_primary_10_1039_D3TA00336A
crossref_primary_10_1039_D1TA07148C
crossref_primary_10_1002_adma_202310283
crossref_primary_10_1002_celc_202100492
crossref_primary_10_1021_acs_inorgchem_9b03540
crossref_primary_10_1021_acs_inorgchem_0c01245
crossref_primary_10_1002_ange_202301957
crossref_primary_10_1021_jacs_0c05913
crossref_primary_10_3390_molecules25163653
crossref_primary_10_1016_j_apcatb_2025_125027
crossref_primary_10_1021_jacs_9b11790
crossref_primary_10_1039_D4DT00189C
crossref_primary_10_1007_s12274_021_3827_8
crossref_primary_10_1021_acs_chemrev_9b00757
crossref_primary_10_1002_aesr_202100033
crossref_primary_10_1039_D3QM01000G
crossref_primary_10_1007_s10563_023_09408_9
crossref_primary_10_1016_j_cej_2025_160154
crossref_primary_10_1016_j_apsusc_2021_152359
crossref_primary_10_1016_j_cclet_2022_04_057
crossref_primary_10_1016_j_ccr_2020_213260
crossref_primary_10_1016_j_nanoen_2019_104233
crossref_primary_10_1002_anie_202306193
crossref_primary_10_1063_5_0173239
crossref_primary_10_1021_acs_inorgchem_2c01539
crossref_primary_10_1021_jacs_0c10719
crossref_primary_10_1039_D2CC02445D
crossref_primary_10_1016_j_decarb_2023_100018
crossref_primary_10_1016_j_fuel_2022_124339
crossref_primary_10_1002_aenm_202001142
crossref_primary_10_1016_j_jssc_2022_123070
crossref_primary_10_1002_adma_201903796
crossref_primary_10_1002_smll_202102957
crossref_primary_10_1016_j_ccr_2023_215257
crossref_primary_10_1016_j_jechem_2023_09_018
crossref_primary_10_1134_S2075113323020454
crossref_primary_10_1016_j_jechem_2021_04_059
crossref_primary_10_1002_ange_202306193
crossref_primary_10_1016_j_apcatb_2019_118530
crossref_primary_10_1039_C9CC05899K
crossref_primary_10_1016_j_ccr_2024_216086
crossref_primary_10_1039_D3EY00063J
crossref_primary_10_1002_ange_202421132
crossref_primary_10_1016_j_fuel_2021_121341
crossref_primary_10_1039_D1TA09921C
crossref_primary_10_1002_ange_202404015
crossref_primary_10_1002_metm_28
crossref_primary_10_1039_D4DT00187G
crossref_primary_10_1063_5_0031374
crossref_primary_10_1039_D0TA10875H
crossref_primary_10_1016_j_scib_2020_05_010
crossref_primary_10_1021_acs_chemmater_4c01137
crossref_primary_10_1016_j_enchem_2019_100021
crossref_primary_10_1021_jacs_0c07041
crossref_primary_10_1002_smll_202100762
crossref_primary_10_1002_smll_202001847
crossref_primary_10_1002_EXP_20240014
crossref_primary_10_1007_s12598_020_01440_2
crossref_primary_10_1016_j_inoche_2022_110070
crossref_primary_10_1002_anie_201907136
crossref_primary_10_1002_anie_202301957
crossref_primary_10_1039_D4EE00720D
crossref_primary_10_1002_adfm_202111193
crossref_primary_10_1002_ange_202104564
crossref_primary_10_1016_j_apcatb_2022_121812
crossref_primary_10_1021_acscatal_9b03814
crossref_primary_10_1039_D0QI01407A
crossref_primary_10_1002_aenm_202201093
crossref_primary_10_3390_catal12121582
crossref_primary_10_59717_j_xinn_mater_2023_100014
crossref_primary_10_1016_j_comptc_2024_114743
crossref_primary_10_1021_acs_inorgchem_9b00182
crossref_primary_10_1039_C9CC09008H
crossref_primary_10_1016_j_jmst_2023_08_002
crossref_primary_10_1016_j_jssc_2023_124539
crossref_primary_10_1021_jacs_2c10801
crossref_primary_10_1039_D4CC02651A
crossref_primary_10_1016_j_ccr_2024_216265
crossref_primary_10_1002_ange_201907399
crossref_primary_10_1039_D5DT00284B
crossref_primary_10_1002_aenm_201902625
crossref_primary_10_1021_acs_chemrev_4c00664
crossref_primary_10_1021_acs_inorgchem_0c03741
crossref_primary_10_1016_j_cej_2021_133357
crossref_primary_10_1016_j_cclet_2022_108052
crossref_primary_10_1002_cssc_202100431
crossref_primary_10_1039_D3CY00373F
crossref_primary_10_1039_D3EY00018D
crossref_primary_10_1021_jacs_4c10412
crossref_primary_10_1002_anie_202008054
crossref_primary_10_1016_j_cclet_2022_04_012
crossref_primary_10_1016_j_fuproc_2022_107315
crossref_primary_10_1021_acsami_0c00521
crossref_primary_10_1016_j_ccr_2024_215764
crossref_primary_10_1002_adma_202110496
crossref_primary_10_1016_j_ensm_2025_104047
crossref_primary_10_1039_C9CC02156F
crossref_primary_10_1039_D1TA09069K
crossref_primary_10_1002_anie_202006899
crossref_primary_10_1039_D1NJ01214B
crossref_primary_10_1039_D1SC00997D
crossref_primary_10_1039_C9EE03660A
crossref_primary_10_1002_anie_202414506
crossref_primary_10_1039_D0DT02683B
crossref_primary_10_1002_smll_202300916
crossref_primary_10_1002_adma_202202830
crossref_primary_10_1039_C9SC05392A
crossref_primary_10_1039_D2NR07301C
crossref_primary_10_1002_adma_202500399
crossref_primary_10_1007_s12274_021_3756_6
crossref_primary_10_1039_D0NJ01539C
crossref_primary_10_1039_D0SC06133F
crossref_primary_10_1002_advs_202206239
crossref_primary_10_1039_D3DT01879B
crossref_primary_10_1002_ange_202108388
crossref_primary_10_1039_D2QM01324J
crossref_primary_10_1021_acs_inorgchem_4c04359
crossref_primary_10_1002_adma_202302122
crossref_primary_10_1002_adfm_201910408
crossref_primary_10_1039_D4DT00320A
crossref_primary_10_1039_D0CS00835D
crossref_primary_10_3390_molecules28020664
crossref_primary_10_1002_ange_202008054
crossref_primary_10_1021_acs_cgd_0c01691
crossref_primary_10_1021_jacs_0c11450
crossref_primary_10_1002_sstr_202100012
crossref_primary_10_1016_j_chemosphere_2024_143312
crossref_primary_10_1039_D4DT01894J
crossref_primary_10_1002_anie_202212162
crossref_primary_10_1002_ange_201907136
crossref_primary_10_1016_j_ccr_2019_07_005
crossref_primary_10_1002_anie_202206399
crossref_primary_10_1039_D3SC03713D
crossref_primary_10_1039_C9CE01107B
crossref_primary_10_1002_ange_202212162
crossref_primary_10_1016_j_nanoen_2019_103917
crossref_primary_10_1002_anie_202104564
crossref_primary_10_1016_j_inoche_2021_109106
crossref_primary_10_1093_nsr_nwz096
crossref_primary_10_1002_ejic_202000066
crossref_primary_10_1039_D0CY01757D
crossref_primary_10_1002_smm2_1102
crossref_primary_10_1016_j_ccst_2025_100405
crossref_primary_10_1016_j_nanoen_2022_107277
crossref_primary_10_1016_j_seppur_2023_123404
Cites_doi 10.1021/jacs.8b00814
10.1126/science.aaf4767
10.1021/acsenergylett.7b00621
10.1021/jacs.7b00261
10.1039/C6TA04801C
10.1038/nature16455
10.1002/anie.201712451
10.1021/jacs.5b08212
10.1002/anie.201204475
10.1021/ja201165c
10.1021/ic300825s
10.1021/jacs.7b11940
10.1021/jacs.5b01889
10.1149/2.001204eel
10.1021/ic00116a028
10.1039/c1cc10461f
10.1016/j.elecom.2012.09.018
10.1002/advs.201700194
10.1021/ja209196t
10.1021/jacs.7b09074
10.1039/C5SC03291A
10.1038/ncomms14675
10.1126/science.aad4998
10.1016/j.chempr.2017.09.009
10.1002/advs.201700275
10.1038/s41929-017-0018-9
10.1021/jacs.7b10817
10.1002/adma.201701784
10.1038/ncomms12697
10.1016/j.ccr.2017.09.001
10.1002/adma.201504766
10.1021/jacs.5b12652
10.1039/C7TA00900C
10.1002/adma.201702891
10.1016/j.chempr.2017.08.002
10.1021/jacs.6b04746
10.1126/science.aac8343
10.1038/nature10915
10.1039/C3CS60404G
10.1038/s41467-017-01893-7
10.1002/anie.201612214
10.1038/nature23016
10.1021/jacs.5b02688
10.1038/s41929-017-0005-1
10.1038/s41467-018-02819-7
10.1021/acscatal.5b01767
10.1021/ja905009e
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-018-06938-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (Proquest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_169c96bc3e8042f5a592d973121fda20
PMC6203756
10_1038_s41467_018_06938_z
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c583t-2634aab2fda5b2f2759e1307493020cb424ee02feb70d93f691ecf19943bc8c33
IEDL.DBID DOA
ISSN 2041-1723
IngestDate Wed Aug 27 01:24:46 EDT 2025
Thu Aug 21 18:43:10 EDT 2025
Sun Aug 24 03:26:46 EDT 2025
Wed Aug 13 05:30:04 EDT 2025
Thu Apr 24 23:10:59 EDT 2025
Tue Jul 01 02:21:18 EDT 2025
Fri Feb 21 02:39:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-2634aab2fda5b2f2759e1307493020cb424ee02feb70d93f691ecf19943bc8c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2140-7980
OpenAccessLink https://doaj.org/article/169c96bc3e8042f5a592d973121fda20
PMID 30367039
PQID 2125648224
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_169c96bc3e8042f5a592d973121fda20
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6203756
proquest_miscellaneous_2126917915
proquest_journals_2125648224
crossref_citationtrail_10_1038_s41467_018_06938_z
crossref_primary_10_1038_s41467_018_06938_z
springer_journals_10_1038_s41467_018_06938_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-26
PublicationDateYYYYMMDD 2018-10-26
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-26
  day: 26
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Haas (CR4) 2018; 1
Kornienko (CR29) 2015; 137
De Luna (CR3) 2018; 1
Vasilopoulou (CR36) 2015; 137
Qin (CR32) 2015; 137
Ye (CR43) 2016; 4
Rao, Schmidt, Bonin, Robert (CR2) 2017; 548
Duan (CR13) 2017; 29
Han (CR37) 2017; 3
Zou (CR40) 2012; 134
Zhang (CR7) 2017; 8
Hinogami (CR22) 2012; 1
Seh (CR12) 2017; 355
Shakun (CR1) 2012; 484
Guo (CR27) 2017; 8
Morris (CR47) 2012; 51
Hod (CR30) 2015; 5
Albo (CR41) 2016; 10
Nohra (CR35) 2011; 133
Sun (CR14) 2017; 3
Diercks (CR6) 2018; 140
Huang (CR46) 2017; 5
Sende (CR48) 1995; 34
Liao, Shen, Zhang (CR19) 2017; 373
Li (CR25) 2017; 139
Yang (CR38) 2012; 43
Li (CR8) 2017; 139
Pan (CR44) 2018; 140
Weng (CR20) 2016; 138
Feng (CR49) 2012; 51
Wang (CR26) 2018; 57
Lin (CR11) 2015; 349
Zhang (CR15) 2018; 5
Marleny Rodriguez-Albelo (CR34) 2009; 131
Maurin, Robert (CR21) 2016; 138
Gao (CR9) 2016; 529
Zhang, Zhao, Gong (CR16) 2017; 56
Xie, Yang, Wu (CR39) 2011; 47
Kumar, Kumar, Kulandainathan (CR23) 2012; 25
Asadi (CR17) 2016; 353
Kung (CR31) 2017; 2
Wu, Huang, Ye, Li (CR5) 2017; 4
Kang (CR42) 2015; 7
Du (CR33) 2014; 43
Lei (CR45) 2016; 7
Liang (CR28) 2017; 30
Zhu, Liu, Qiao (CR18) 2016; 28
Jiao (CR10) 2017; 139
Weng (CR24) 2018; 9
L Ye (6938_CR43) 2016; 4
Y Pan (6938_CR44) 2018; 140
CW Kung (6938_CR31) 2017; 2
JS Qin (6938_CR32) 2015; 137
SJ Guo (6938_CR27) 2017; 8
Z Weng (6938_CR24) 2018; 9
ZW Seh (6938_CR12) 2017; 355
M Vasilopoulou (6938_CR36) 2015; 137
JH Wu (6938_CR5) 2017; 4
ZY Sun (6938_CR14) 2017; 3
MH Xie (6938_CR39) 2011; 47
WJ Zhang (6938_CR15) 2018; 5
Y Jiao (6938_CR10) 2017; 139
M Asadi (6938_CR17) 2016; 353
XL Yang (6938_CR38) 2012; 43
P De Luna (6938_CR3) 2018; 1
W Morris (6938_CR47) 2012; 51
Q Huang (6938_CR46) 2017; 5
DD Zhu (6938_CR18) 2016; 28
Z Weng (6938_CR20) 2016; 138
H Rao (6938_CR2) 2017; 548
C Zou (6938_CR40) 2012; 134
F Lei (6938_CR45) 2016; 7
JAR Sende (6938_CR48) 1995; 34
JD Shakun (6938_CR1) 2012; 484
L Marleny Rodriguez-Albelo (6938_CR34) 2009; 131
T Haas (6938_CR4) 2018; 1
B Nohra (6938_CR35) 2011; 133
X Kang (6938_CR42) 2015; 7
L Zhang (6938_CR16) 2017; 56
S Gao (6938_CR9) 2016; 529
N Kornienko (6938_CR29) 2015; 137
J Albo (6938_CR41) 2016; 10
R Hinogami (6938_CR22) 2012; 1
Z Liang (6938_CR28) 2017; 30
A Maurin (6938_CR21) 2016; 138
XQ Wang (6938_CR26) 2018; 57
DY Du (6938_CR33) 2014; 43
I Hod (6938_CR30) 2015; 5
XC Duan (6938_CR13) 2017; 29
S Lin (6938_CR11) 2015; 349
CS Diercks (6938_CR6) 2018; 140
N Han (6938_CR37) 2017; 3
DW Feng (6938_CR49) 2012; 51
X Li (6938_CR25) 2017; 139
X Zhang (6938_CR7) 2017; 8
Q Li (6938_CR8) 2017; 139
RS Kumar (6938_CR23) 2012; 25
PQ Liao (6938_CR19) 2017; 373
References_xml – volume: 140
  start-page: 4218
  year: 2018
  end-page: 4221
  ident: CR44
  article-title: Design of single-atom Co-N catalytic site: a robust electrocatalyst for CO reduction with nearly 100% CO selectivity and remarkable stability
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00814
– volume: 353
  start-page: 467
  year: 2016
  end-page: 470
  ident: CR17
  article-title: Nanostructured transition metal dichalcogenide electrocatalysts for CO reduction in ionic liquid
  publication-title: Science
  doi: 10.1126/science.aaf4767
– volume: 2
  start-page: 2394
  year: 2017
  end-page: 2401
  ident: CR31
  article-title: Copper nanoparticles installed in metal-organic framework thin films are electrocatalytically competent for CO reduction
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00621
– volume: 139
  start-page: 4290
  year: 2017
  end-page: 4293
  ident: CR8
  article-title: Tuning Sn-catalysis for electrochemical reduction of CO to CO via the core/shell Cu/SnO structure
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00261
– volume: 4
  start-page: 15320
  year: 2016
  end-page: 15326
  ident: CR43
  article-title: Highly oriented MOF thin film-based electrocatalytic device for the reduction of CO to CO exhibiting high faradic efficiency
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04801C
– volume: 529
  start-page: 68
  year: 2016
  end-page: 71
  ident: CR9
  article-title: Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel
  publication-title: Nature
  doi: 10.1038/nature16455
– volume: 57
  start-page: 1944
  year: 2018
  end-page: 1948
  ident: CR26
  article-title: Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201712451
– volume: 137
  start-page: 14129
  year: 2015
  end-page: 14135
  ident: CR29
  article-title: Metal-organic frameworks for electrocatalytic reduction of carbon dioxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08212
– volume: 10
  start-page: 1
  year: 2016
  end-page: 11
  ident: CR41
  article-title: Copper-based metal-organic porous materials for CO electrocatalytic reduction to alcohols
  publication-title: ChemSusChem
– volume: 51
  start-page: 10307
  year: 2012
  end-page: 10310
  ident: CR49
  article-title: Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201204475
– volume: 133
  start-page: 13363
  year: 2011
  end-page: 13374
  ident: CR35
  article-title: Polyoxometalate-based metal organic frameworks (POMOFs): structural trends, energetics, and high electrocatalytic efficiency for hydrogen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201165c
– volume: 51
  start-page: 6443
  year: 2012
  end-page: 6445
  ident: CR47
  article-title: Synthesis, structure, and metalation of two new highly porous zirconium metal–organic frameworks
  publication-title: Inorg. Chem.
  doi: 10.1021/ic300825s
– volume: 140
  start-page: 1116
  year: 2018
  end-page: 1122
  ident: CR6
  article-title: Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11940
– volume: 137
  start-page: 6844
  year: 2015
  end-page: 6856
  ident: CR36
  article-title: Old metal oxide clusters in new applications: spontaneous reduction of Keggin and Dawson polyoxometalate layers by a metallic electrode for improving efficiency in organic optoelectronics
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b01889
– volume: 1
  start-page: H17
  year: 2012
  end-page: H19
  ident: CR22
  article-title: Electrochemical reduction of carbon dioxide using a copper rubeanate metal organic framework
  publication-title: ECS Electrochem. Lett.
  doi: 10.1149/2.001204eel
– volume: 34
  start-page: 3339
  year: 1995
  end-page: 3348
  ident: CR48
  article-title: Electrocatalysis of CO reduction in aqueous media at electrodes modified with electropolymerized films of vinylterpyridine complexes of transition metals
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00116a028
– volume: 47
  start-page: 5521
  year: 2011
  end-page: 5523
  ident: CR39
  article-title: A metalloporphyrin functionalized metal-organic framework for selective oxidization of styrene
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc10461f
– volume: 25
  start-page: 70
  year: 2012
  end-page: 73
  ident: CR23
  article-title: Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2012.09.018
– volume: 4
  start-page: 1700194
  year: 2017
  ident: CR5
  article-title: CO reduction: from the electrochemical to photochemical approach
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700194
– volume: 134
  start-page: 87
  year: 2012
  end-page: 90
  ident: CR40
  article-title: A multifunctional organic-inorganic hybrid structure based on Mn(III)-porphyrin and polyoxometalate as a highly effective dye scavenger and heterogenous catalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja209196t
– volume: 139
  start-page: 14889
  year: 2017
  end-page: 14892
  ident: CR25
  article-title: Exclusive Ni-N sites realize near-unity CO selectivity for electrochemical CO reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09074
– volume: 7
  start-page: 266
  year: 2015
  end-page: 273
  ident: CR42
  article-title: Highly efficient electrochemical reduction of CO to CH in ionic liquid using metal-organic framework cathode
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC03291A
– volume: 8
  year: 2017
  ident: CR7
  article-title: Highly selective and active CO reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14675
– volume: 43
  start-page: 10638
  year: 2012
  end-page: 10645
  ident: CR38
  article-title: Porous metalloporphyrinic frameworks constructed from metal 5,10,15,20-tetrakis(3,5-biscarboxylphenyl)porphyrin for highly efficient and selective catalytic oxidation of alkylbenzenes
  publication-title: Cheminform
– volume: 355
  start-page: 146
  year: 2017
  ident: CR12
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 3
  start-page: 560
  year: 2017
  end-page: 587
  ident: CR14
  article-title: Fundamentals and challenges of electrochemical CO reduction using two-dimensional materials
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.09.009
– volume: 5
  start-page: 1700275
  year: 2018
  ident: CR15
  article-title: Progress and perspective of electrocatalytic CO reduction for renewable carbonaceous fuels and chemicals
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700275
– volume: 1
  start-page: 103
  year: 2018
  end-page: 110
  ident: CR3
  article-title: Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0018-9
– volume: 139
  start-page: 18093
  year: 2017
  end-page: 18100
  ident: CR10
  article-title: Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO reduction to hydrocarbon/alcohol
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10817
– volume: 29
  start-page: 1701784
  year: 2017
  ident: CR13
  article-title: Metal-free carbon materials for CO electrochemical reduction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701784
– volume: 7
  year: 2016
  ident: CR45
  article-title: Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12697
– volume: 373
  start-page: 22
  year: 2017
  end-page: 48
  ident: CR19
  article-title: Metal-organic frameworks for electrocatalysis
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.09.001
– volume: 28
  start-page: 3423
  year: 2016
  end-page: 3452
  ident: CR18
  article-title: Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504766
– volume: 138
  start-page: 2492
  year: 2016
  end-page: 2495
  ident: CR21
  article-title: Noncovalent immobilization of a molecular iron-based electrocatalyst on carbon electrodes for selective, efficient CO -to-CO conversion in water
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b12652
– volume: 5
  start-page: 8477
  year: 2017
  end-page: 8483
  ident: CR46
  article-title: A highly stable polyoxometalate-based metal-organic framework with π-π stacking for enhancing lithium ion battery performance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00900C
– volume: 30
  start-page: 1702891
  year: 2017
  ident: CR28
  article-title: Pristine metal-organic frameworks and their composites for energy storage and conversion
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702891
– volume: 3
  start-page: 652
  year: 2017
  end-page: 664
  ident: CR37
  article-title: Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO reduction
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.08.002
– volume: 138
  start-page: 8076
  year: 2016
  end-page: 8079
  ident: CR20
  article-title: Electrochemical CO reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04746
– volume: 349
  start-page: 1208
  year: 2015
  end-page: 1213
  ident: CR11
  article-title: Covalent organic frameworks comprising cobalt porphyrins for catalytic CO reduction in water
  publication-title: Science
  doi: 10.1126/science.aac8343
– volume: 484
  start-page: 49
  year: 2012
  end-page: 54
  ident: CR1
  article-title: Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation
  publication-title: Nature
  doi: 10.1038/nature10915
– volume: 43
  start-page: 4615
  year: 2014
  end-page: 4632
  ident: CR33
  article-title: Recent advances in porous polyoxometalate-based metal-organic framework materials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60404G
– volume: 8
  year: 2017
  ident: CR27
  article-title: A Co O -CDots-C N three component electrocatalyst design concept for efficient and tunable CO reduction to syngas
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01893-7
– volume: 56
  start-page: 11326
  year: 2017
  end-page: 11353
  ident: CR16
  article-title: Nanostructured materials for heterogeneous electrocatalytic CO reduction and their related reaction mechanisms
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201612214
– volume: 548
  start-page: 74
  year: 2017
  end-page: 77
  ident: CR2
  article-title: Visible-light-driven methane formation from CO with a molecular iron catalyst
  publication-title: Nature
  doi: 10.1038/nature23016
– volume: 137
  start-page: 7169
  year: 2015
  end-page: 7177
  ident: CR32
  article-title: Ultrastable polymolybdate-based metal organic frameworks as highly active electrocatalysts for hydrogen generation from water
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b02688
– volume: 1
  start-page: 32
  year: 2018
  end-page: 39
  ident: CR4
  article-title: Technical photosynthesis involving CO electrolysis and fermentation
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0005-1
– volume: 9
  year: 2018
  ident: CR24
  article-title: Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02819-7
– volume: 5
  start-page: 6302
  year: 2015
  end-page: 6309
  ident: CR30
  article-title: Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01767
– volume: 131
  start-page: 16078
  year: 2009
  end-page: 16087
  ident: CR34
  article-title: Zeolitic polyoxometalate-based metal-organic frameworks (Z-POMOFs): computational evaluation of hypothetical polymorphs and the successful targeted synthesis of the redox-active Z-POMOF1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja905009e
– volume: 7
  start-page: 266
  year: 2015
  ident: 6938_CR42
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC03291A
– volume: 353
  start-page: 467
  year: 2016
  ident: 6938_CR17
  publication-title: Science
  doi: 10.1126/science.aaf4767
– volume: 1
  start-page: H17
  year: 2012
  ident: 6938_CR22
  publication-title: ECS Electrochem. Lett.
  doi: 10.1149/2.001204eel
– volume: 8
  year: 2017
  ident: 6938_CR27
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01893-7
– volume: 2
  start-page: 2394
  year: 2017
  ident: 6938_CR31
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00621
– volume: 137
  start-page: 7169
  year: 2015
  ident: 6938_CR32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b02688
– volume: 3
  start-page: 560
  year: 2017
  ident: 6938_CR14
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.09.009
– volume: 4
  start-page: 1700194
  year: 2017
  ident: 6938_CR5
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700194
– volume: 355
  start-page: 146
  year: 2017
  ident: 6938_CR12
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 5
  start-page: 6302
  year: 2015
  ident: 6938_CR30
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01767
– volume: 10
  start-page: 1
  year: 2016
  ident: 6938_CR41
  publication-title: ChemSusChem
– volume: 484
  start-page: 49
  year: 2012
  ident: 6938_CR1
  publication-title: Nature
  doi: 10.1038/nature10915
– volume: 349
  start-page: 1208
  year: 2015
  ident: 6938_CR11
  publication-title: Science
  doi: 10.1126/science.aac8343
– volume: 133
  start-page: 13363
  year: 2011
  ident: 6938_CR35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201165c
– volume: 139
  start-page: 4290
  year: 2017
  ident: 6938_CR8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00261
– volume: 51
  start-page: 6443
  year: 2012
  ident: 6938_CR47
  publication-title: Inorg. Chem.
  doi: 10.1021/ic300825s
– volume: 8
  year: 2017
  ident: 6938_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14675
– volume: 134
  start-page: 87
  year: 2012
  ident: 6938_CR40
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja209196t
– volume: 7
  year: 2016
  ident: 6938_CR45
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12697
– volume: 5
  start-page: 1700275
  year: 2018
  ident: 6938_CR15
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700275
– volume: 4
  start-page: 15320
  year: 2016
  ident: 6938_CR43
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04801C
– volume: 9
  year: 2018
  ident: 6938_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02819-7
– volume: 529
  start-page: 68
  year: 2016
  ident: 6938_CR9
  publication-title: Nature
  doi: 10.1038/nature16455
– volume: 1
  start-page: 103
  year: 2018
  ident: 6938_CR3
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0018-9
– volume: 28
  start-page: 3423
  year: 2016
  ident: 6938_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504766
– volume: 51
  start-page: 10307
  year: 2012
  ident: 6938_CR49
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201204475
– volume: 373
  start-page: 22
  year: 2017
  ident: 6938_CR19
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.09.001
– volume: 137
  start-page: 14129
  year: 2015
  ident: 6938_CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08212
– volume: 138
  start-page: 8076
  year: 2016
  ident: 6938_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04746
– volume: 137
  start-page: 6844
  year: 2015
  ident: 6938_CR36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b01889
– volume: 30
  start-page: 1702891
  year: 2017
  ident: 6938_CR28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702891
– volume: 131
  start-page: 16078
  year: 2009
  ident: 6938_CR34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja905009e
– volume: 140
  start-page: 4218
  year: 2018
  ident: 6938_CR44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00814
– volume: 140
  start-page: 1116
  year: 2018
  ident: 6938_CR6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11940
– volume: 548
  start-page: 74
  year: 2017
  ident: 6938_CR2
  publication-title: Nature
  doi: 10.1038/nature23016
– volume: 56
  start-page: 11326
  year: 2017
  ident: 6938_CR16
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201612214
– volume: 47
  start-page: 5521
  year: 2011
  ident: 6938_CR39
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc10461f
– volume: 139
  start-page: 14889
  year: 2017
  ident: 6938_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09074
– volume: 43
  start-page: 10638
  year: 2012
  ident: 6938_CR38
  publication-title: Cheminform
– volume: 138
  start-page: 2492
  year: 2016
  ident: 6938_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b12652
– volume: 3
  start-page: 652
  year: 2017
  ident: 6938_CR37
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.08.002
– volume: 34
  start-page: 3339
  year: 1995
  ident: 6938_CR48
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00116a028
– volume: 25
  start-page: 70
  year: 2012
  ident: 6938_CR23
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2012.09.018
– volume: 57
  start-page: 1944
  year: 2018
  ident: 6938_CR26
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201712451
– volume: 1
  start-page: 32
  year: 2018
  ident: 6938_CR4
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0005-1
– volume: 139
  start-page: 18093
  year: 2017
  ident: 6938_CR10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10817
– volume: 29
  start-page: 1701784
  year: 2017
  ident: 6938_CR13
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701784
– volume: 43
  start-page: 4615
  year: 2014
  ident: 6938_CR33
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60404G
– volume: 5
  start-page: 8477
  year: 2017
  ident: 6938_CR46
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00900C
SSID ssj0000391844
Score 2.6702082
Snippet The design of highly stable, selective and efficient electrocatalysts for CO 2 reduction reaction is desirable while largely unmet. In this work, a series of...
The design of highly stable, selective and efficient electrocatalysts for CO2 reduction reaction is desirable while largely unmet. In this work, a series of...
While CO2 reduction provides a way to remove carbon from the atmosphere, it is challenging to design effective, selective materials for this process. Here,...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 639/301/299/921
639/638/161/886
639/638/77/887
639/925/357/404
Carbon dioxide
Catalysis
Catalysts
Chemical reduction
Density functional theory
Electrocatalysts
Electrons
Humanities and Social Sciences
Metal-organic frameworks
Migration
multidisciplinary
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgCIkXxE8RGMhIvEG0xL9iPyGYKBMS7IVJe7NsxxaTuqSsnUT3xn_OnZN0yiT2UlWNW6d357uv9vX7CHkXPMBcjT9LvHalSJKXvo5t6XlUDkp2Ullj6fsPdXQivp3K03HDbT22VU45MSfqtg-4R34AKVYqgT2PH1e_S1SNwtPVUULjLrlXQ6XBCNeLr7s9FmQ_10KM_5WpuD5Yi5wZqlqXlTKw1q9m9SjT9s-w5s1OyRvHpbkKLR6RhyN8pJ8Gfz8md2L3hNwfBCW3T8nfY6QtBhBJJ3kbusFiBM7EXTF61tFVv9z2f_rzCKgbcGaZnyx7gOFgcJiUDjpPgaapbYsCrqVIa7zc0nX-XMiQ0wQXSP2KzqV9oofH7Bk5WXz5eXhUjiILZZCab0qmuHDOs9Q6CY-skSZCXWuE4YAkgxdMxFixFH1TtYYnZeoYEjIKcx904Pw52ev6Lr7ALimwLvINeiFFcI0WbeTSOVG1TmlXF6SeTG3DyECOQhhLm0_CubaDeyy4x2b32KuCvN-9ZzXwb9w6-jN6cDcSubPzC2A6Oy5FWysTjPKBRw0ZK0knDWtRwYvVYARWFWR_8r8dF_TaXodfQd7uLoP38HzFdbG_zGPAOo2pZUGaWdzMbmh-pTv7lUm9FUM1YlWQD1OEXU_-_y_88vZ7fUUeMIx1qLVM7ZO9zcVlfA0gauPf5JXyD6nTHd0
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9UwFA5zIvgi_sTqlAi-abXNryYPIjocQ5h78cLeQpKmOOjaee8d7O7N_9xz0vZKx_TJl1LatGnPl5Nz0qTfR8jr4CHN1Tgs8drlopE892Wsc8-jchCyG5U0lo6-qcOF-HoiT3bIJHc0GnB149AO9aQWy_bd5c_NR3D4D8Mv4_r9SiR3L0qdF8qAA1_dIrchMlUo5XA0pvupZ-YGBjRi_Hfm5ktn8SnR-M9yz-srJ69Nn6aodHCf3BvTSfppwP8B2YndQ3JnEJjcPCK_jpHGGJJKOsnd0DUGJwAXv5LR046e9-2mv-zPIhgA8s487bQ9WAQAgErpoPsUaDMt46KQ51KkOW43dJXuCz3mVMESqWARbNo3dP-YPSaLgy_f9w_zUXQhD1Lzdc4UF8551tROwpZV0kSIc5UwHDLL4AUTMRasib4qasMbZcoYGmQY5j7owPkTstv1XXyKq6bAusg_6IUUwVVa1JFL50RRO6VdmZFyMrUNIyM5CmO0Ns2Mc20HeCzAYxM89iojb7bXnA98HP8s_RkR3JZELu10AExnR9e0pTLBKB941NCDNdJJw2pU9GIlGIEVGdmb8LdT-7QQ8aUSuAQ3I6-2pwE9nG9xXewvUhmwTmVKmZFq1m5mDzQ_053-SCTfiqE6scrI26mF_an87y_87H-88HNyl6FHQIRmao_srpcX8QWkXmv_MvnTb2rcLhM
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA9zIvgynB9YNyWCb1ps89XkUS-OIeheHOwtJGmCg2s7du_Au7f95zsnba90qLCXUpqkSc9Jcn5NTn6HkHfBA8zV-FvitStFkrz0dWxLz6NyYLKTyjGWvn1Xx6fi65k82yFsOguTnfYzpWWepifvsI8rkYd0VeuyUgYG6fUD8hCp29GNb6EW23UVZDzXQoznYyqu_1J0ZoMyVf8MX971jryzRZotz9ETsjdCRvppaOQ-2YndU_JoCCK5eUZuTpCqGIAjnULa0DUaIFAgroTR845e9MtN_7v_FQFpA7Ys882yB-gNQoZK6RDbKdA0uWpRwLIUqYyXG7rK74VZcargEuleUaG0T3Rxwp6T06MvPxbH5RhYoQxS83XJFBfOeZZaJ-HKGmki2LJGGA7oMXjBRIwVS9E3VWt4UqaOISGLMPdBB85fkN2u7-JL9IwC6SLHoBdSBNdo0UYunRNV65R2dUHqSdQ2jKzjGPxiafPuN9d2UI8F9disHntdkPfbMhcD58Z_c39GDW5zIl92fgCis2P_sbUywSgfeNQwSyXppGEtRu1iNQiBVQU5nPRvx0G8smDVpRLoZluQt9tk0B7uqbgu9lc5D0inMbUsSDPrN7MGzVO685-ZyFsxjECsCvJh6mF_Kv_3B7-6X_YD8phh3wd7y9Qh2V1fXsXXAKTW_k0eObdg3RxT
  priority: 102
  providerName: Springer Nature
Title Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2
URI https://link.springer.com/article/10.1038/s41467-018-06938-z
https://www.proquest.com/docview/2125648224
https://www.proquest.com/docview/2126917915
https://pubmed.ncbi.nlm.nih.gov/PMC6203756
https://doaj.org/article/169c96bc3e8042f5a592d973121fda20
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtSqGX0vRB3aSLCr21JrZelo6bJZuwkKS0DexNSLJMAxs7ZDeQza3_vCPZ3sSBtJdeZGPLlj0z0nyyxt8g9NlZgLkyTEusNCmrOE1t7svUUi8MuOxKxBxLxyfi6IzN5nx-L9VXiAlr6YFbwe3lQjklrKNegn1V3HBFypBvieRVaUicrYPPuzeZimMwVTB1Yd1fMhmVe0sWx4Qsl2kmFPTy24EnioT9A5T5MEbywUJp9D_TV-hlBxzxuH3gbfTE16_R8zaV5PoN-n0aCIsBPuI-sQ1eBTcEagzfw_B5jS-bxbq5aS484G1AmGncWTQAwEHU0ChuMzw5XPUBWxgQLQ6Exos1Xsb7wtjYN3AVSF-DWnFT4ckpeYvOpgc_J0dpl14hdVzSVUoEZcZYAmLkUJKCKw8erWCKAoZ0lhHmfUYqb4usVLQSKveuClzC1DrpKH2Htuqm9u9DfBRINzANWsaZM4VkpafcGJaVRkiTJyjvRa1dxz0eUmAsdFwDp1K36tGgHh3Vo28T9GVzzWXLvPHX2vtBg5uagTU7HgDR6c6W9L9sKUG7vf5115WXGnw7FywE2ybo0-Y0aC-srJjaN9exDkinUDlPUDGwm8EDDc_U578inbcgIQ-xSNDX3sLuGn_8hT_8jxfeQS9I6BHgi4nYRVurq2v_EUDWyo7Q02JeQCmnhyP0bDye_ZjBdv_g5Nt3ODoRk1HscVAeM_kHAgosaw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRQguiKcwFFgkOIFVe19eHxCCQpXS16WVclt212u1UrBDkwrSG3-I38jM2k6VSvTWSxTFm6wzM_7m8-54PkLeeAc0V-NtidM2FbXkqctDlToelIWUXauosbR_oEbH4ttYjtfI3-FZGCyrHDAxAnXVelwj3wSIlUpgzePH6c8UVaNwd3WQ0OjCYjcsfsEt2-zDzhfw71vGtr8ebY3SXlUg9VLzecoUF9Y6VldWwisrZBkAyAtRcqBO3gkmQshYHVyRVSWvVZkHX2MLXe689rgACpB_CxJvhiWExbhYrulgt3UtRP9sTsb15kxEJMpynWaqBGy5WMl_USZghdtercy8sj0bs972fXKvp6v0UxdfD8haaB6S252A5eIR-XOIbZKBtNJBTofOMflB8OAqHD1t6LSdLNrf7Y8ALB94bRrfTFqg_eBgmJR2ulKe1kOZGAUeTbGN8mRBZ_F3AZGHCc6w1SwGE21runXIHpPjGzH_E7LetE14ilVZYF3sb-iEFN4WWlSBS2tFVlmlbZ6QfDC18X3HcxTemJi488616dxjwD0musdcJOTd8jvTrt_HtaM_oweXI7FXd_wATGf6S9_kqvSlcp4HDQhZSytLVqFiGMvBCCxLyMbgf9MDyMxchntCXi8Pg_dwP8c2oT2PY8A6RZnLhBQrcbNyQqtHmtOT2ERcMVQ_Vgl5P0TY5eT__8PPrj_XV-TO6Gh_z-ztHOw-J3cZxj3keaY2yPr87Dy8AAI3dy_jVUPJ95u-TP8BFqBabg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhAXxFMEChgJThBt4lecA0LQsmoptByotDdjO46otCRLdyvY3vhb_DpmnGSrrURvvayijRMnM-NvxvZkPkJeeAdhrsZpidM2FbXkqctDlToelAWXXavIsfT5QO0eiY8TOdkgf4dvYTCtcsDECNRV63GNfAQQK5XAnMdR3adFfNkZv539TJFBCndaBzqNzkT2w_IXTN_mb_Z2QNcvGRt_-Lq9m_YMA6mXmi9Spriw1rG6shJ-WSHLAKBeiJJDGOWdYCKEjNXBFVlV8lqVefA1ltPlzmuPi6EA_9cKDm4TxlIxKVbrO1h5XQvRf6eTcT2ai4hKWa7TTJWAM2drvjBSBqzFuRezNC9s1UYPOL5NbvWhK33X2dodshGau-R6R2a5vEf-HGLJZAhg6UCtQxfoCMGQcEWOHjd01k6X7e_2R4CIH2LcNB5MW5gCgLKhU9pxTHlaDyljFGJqiiWVp0s6j_cFdB46OMGys2hYtK3p9iG7T46uRPwPyGbTNuEhZmiBdLHWoRNSeFtoUQUurRVZZZW2eULyQdTG99XPkYRjauIuPNemU48B9ZioHnOWkFera2Zd7Y9LW79HDa5aYt3u-AeIzvQwYHJV-lI5z4MGtKyllSWrkD2M5SAEliVka9C_6cFkbs5NPyHPV6dBe7i3Y5vQnsY2IJ2izGVCijW7WXug9TPN8fdYUFwxZEJWCXk9WNh55_9_4UeXP-szcgMGqPm0d7D_mNxkaPbg8pnaIpuLk9PwBGK5hXsaBw0l3656lP4DHDhepA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oriented+electron+transmission+in+polyoxometalate-metalloporphyrin+organic+framework+for+highly+selective+electroreduction+of+CO2&rft.jtitle=Nature+communications&rft.au=Yi-Rong+Wang&rft.au=Qing+Huang&rft.au=Chun-Ting+He&rft.au=Yifa+Chen&rft.date=2018-10-26&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41467-018-06938-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_169c96bc3e8042f5a592d973121fda20
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon