Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell
Development of lead-free inorganic perovskite material, such as Cs 2 AgBiBr 6 , is of great importance to solve the toxicity and stability issues of traditional lead halide perovskite solar cells. However, due to a wide bandgap of Cs 2 AgBiBr 6 film, its light absorption ability is largely limited a...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 3397 - 12 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.06.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Development of lead-free inorganic perovskite material, such as Cs
2
AgBiBr
6
, is of great importance to solve the toxicity and stability issues of traditional lead halide perovskite solar cells. However, due to a wide bandgap of Cs
2
AgBiBr
6
film, its light absorption ability is largely limited and the photoelectronic conversion efficiency is normally lower than 4.23%. In this text, by using a hydrogenation method, the bandgap of Cs
2
AgBiBr
6
films could be tunable from 2.18 eV to 1.64 eV. At the same time, the highest photoelectric conversion efficiency of hydrogenated Cs
2
AgBiBr
6
perovskite solar cell has been improved up to 6.37% with good environmental stability. Further investigations confirmed that the interstitial doping of atomic hydrogen in Cs
2
AgBiBr
6
lattice could not only adjust its valence and conduction band energy levels, but also optimize the carrier mobility and carrier lifetime. All these works provide an insightful strategy to fabricate high performance lead-free inorganic perovskite solar cells.
Though inorganic perovskites are an attractive, non-toxic and stable alternative to organic-inorganic halide perovskite solar cells, realizing efficient devices remains a challenge. Here, the authors report hydrogenated lead-free inorganic perovskite solar cells with enhanced power conversion efficiency. |
---|---|
AbstractList | Development of lead-free inorganic perovskite material, such as Cs2AgBiBr6, is of great importance to solve the toxicity and stability issues of traditional lead halide perovskite solar cells. However, due to a wide bandgap of Cs2AgBiBr6 film, its light absorption ability is largely limited and the photoelectronic conversion efficiency is normally lower than 4.23%. In this text, by using a hydrogenation method, the bandgap of Cs2AgBiBr6 films could be tunable from 2.18 eV to 1.64 eV. At the same time, the highest photoelectric conversion efficiency of hydrogenated Cs2AgBiBr6 perovskite solar cell has been improved up to 6.37% with good environmental stability. Further investigations confirmed that the interstitial doping of atomic hydrogen in Cs2AgBiBr6 lattice could not only adjust its valence and conduction band energy levels, but also optimize the carrier mobility and carrier lifetime. All these works provide an insightful strategy to fabricate high performance lead-free inorganic perovskite solar cells.Development of lead-free inorganic perovskite material, such as Cs2AgBiBr6, is of great importance to solve the toxicity and stability issues of traditional lead halide perovskite solar cells. However, due to a wide bandgap of Cs2AgBiBr6 film, its light absorption ability is largely limited and the photoelectronic conversion efficiency is normally lower than 4.23%. In this text, by using a hydrogenation method, the bandgap of Cs2AgBiBr6 films could be tunable from 2.18 eV to 1.64 eV. At the same time, the highest photoelectric conversion efficiency of hydrogenated Cs2AgBiBr6 perovskite solar cell has been improved up to 6.37% with good environmental stability. Further investigations confirmed that the interstitial doping of atomic hydrogen in Cs2AgBiBr6 lattice could not only adjust its valence and conduction band energy levels, but also optimize the carrier mobility and carrier lifetime. All these works provide an insightful strategy to fabricate high performance lead-free inorganic perovskite solar cells. Development of lead-free inorganic perovskite material, such as Cs 2 AgBiBr 6 , is of great importance to solve the toxicity and stability issues of traditional lead halide perovskite solar cells. However, due to a wide bandgap of Cs 2 AgBiBr 6 film, its light absorption ability is largely limited and the photoelectronic conversion efficiency is normally lower than 4.23%. In this text, by using a hydrogenation method, the bandgap of Cs 2 AgBiBr 6 films could be tunable from 2.18 eV to 1.64 eV. At the same time, the highest photoelectric conversion efficiency of hydrogenated Cs 2 AgBiBr 6 perovskite solar cell has been improved up to 6.37% with good environmental stability. Further investigations confirmed that the interstitial doping of atomic hydrogen in Cs 2 AgBiBr 6 lattice could not only adjust its valence and conduction band energy levels, but also optimize the carrier mobility and carrier lifetime. All these works provide an insightful strategy to fabricate high performance lead-free inorganic perovskite solar cells. Though inorganic perovskites are an attractive, non-toxic and stable alternative to organic-inorganic halide perovskite solar cells, realizing efficient devices remains a challenge. Here, the authors report hydrogenated lead-free inorganic perovskite solar cells with enhanced power conversion efficiency. Though inorganic perovskites are an attractive, non-toxic and stable alternative to organic-inorganic halide perovskite solar cells, realizing efficient devices remains a challenge. Here, the authors report hydrogenated lead-free inorganic perovskite solar cells with enhanced power conversion efficiency. Development of lead-free inorganic perovskite material, such as Cs 2 AgBiBr 6 , is of great importance to solve the toxicity and stability issues of traditional lead halide perovskite solar cells. However, due to a wide bandgap of Cs 2 AgBiBr 6 film, its light absorption ability is largely limited and the photoelectronic conversion efficiency is normally lower than 4.23%. In this text, by using a hydrogenation method, the bandgap of Cs 2 AgBiBr 6 films could be tunable from 2.18 eV to 1.64 eV. At the same time, the highest photoelectric conversion efficiency of hydrogenated Cs 2 AgBiBr 6 perovskite solar cell has been improved up to 6.37% with good environmental stability. Further investigations confirmed that the interstitial doping of atomic hydrogen in Cs 2 AgBiBr 6 lattice could not only adjust its valence and conduction band energy levels, but also optimize the carrier mobility and carrier lifetime. All these works provide an insightful strategy to fabricate high performance lead-free inorganic perovskite solar cells. Development of lead-free inorganic perovskite material, such as Cs2AgBiBr6, is of great importance to solve the toxicity and stability issues of traditional lead halide perovskite solar cells. However, due to a wide bandgap of Cs2AgBiBr6 film, its light absorption ability is largely limited and the photoelectronic conversion efficiency is normally lower than 4.23%. In this text, by using a hydrogenation method, the bandgap of Cs2AgBiBr6 films could be tunable from 2.18 eV to 1.64 eV. At the same time, the highest photoelectric conversion efficiency of hydrogenated Cs2AgBiBr6 perovskite solar cell has been improved up to 6.37% with good environmental stability. Further investigations confirmed that the interstitial doping of atomic hydrogen in Cs2AgBiBr6 lattice could not only adjust its valence and conduction band energy levels, but also optimize the carrier mobility and carrier lifetime. All these works provide an insightful strategy to fabricate high performance lead-free inorganic perovskite solar cells.Though inorganic perovskites are an attractive, non-toxic and stable alternative to organic-inorganic halide perovskite solar cells, realizing efficient devices remains a challenge. Here, the authors report hydrogenated lead-free inorganic perovskite solar cells with enhanced power conversion efficiency. |
ArticleNumber | 3397 |
Author | Lu, Yue Mu, Xulin Zhang, Zeyu Sui, Manling Wei, Su-Huai Lu, Feng Sun, Qingde |
Author_xml | – sequence: 1 givenname: Zeyu surname: Zhang fullname: Zhang, Zeyu organization: Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology – sequence: 2 givenname: Qingde surname: Sun fullname: Sun, Qingde organization: Beijing Computational Science Research Center – sequence: 3 givenname: Yue orcidid: 0000-0001-9800-3792 surname: Lu fullname: Lu, Yue email: luyue@bjut.edu.cn organization: Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology – sequence: 4 givenname: Feng surname: Lu fullname: Lu, Feng organization: Department of Electronic Science and Engineering, and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University – sequence: 5 givenname: Xulin surname: Mu fullname: Mu, Xulin organization: Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology – sequence: 6 givenname: Su-Huai orcidid: 0000-0003-1563-4738 surname: Wei fullname: Wei, Su-Huai email: suhuaiwei@csrc.ac.cn organization: Beijing Computational Science Research Center – sequence: 7 givenname: Manling orcidid: 0000-0002-0415-5881 surname: Sui fullname: Sui, Manling email: mlsui@bjut.edu.cn organization: Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology |
BookMark | eNp9Uk1v1DAUjFARLaV_gJMlLlwC_o5zQWpXQCtV4gJny3GegxevvbWzrfbf19tUQHuoL896nhmPRvO2OYopQtO8J_gTwUx9Lpxw2bWY0pYRTGR796o5oZiTlnSUHf13P27OSlnjelhPFOdvmmMmZN91mJw0N5f7MacJoplhRKtCz6cLf5Elcimj4qfonbcmzmGP_Gab021Fgas7D9HuUXIogBlblwGQjylPJnqLxrQbAqAtVEL542dAJQWTkYUQ3jWvnQkFzh7nafPr29efq8v2-sf3q9X5dWuFYnNLSd-JnsuRjICJwlQxRgRXsh8H6wSVinRW0q4XtqdMqMESR4zrHeuUsmpkp83Vojsms9bb7Dcm73UyXj8sqlVt8uxtAF0D5FgSMQClNVQ68DrUQAYpJDMcqtaXRWu7GzYwWohzNuGJ6NOX6H_rKd3qnvRUYlIFPj4K5HSzgzLrjS-HNEyEtCuayk4KwRjHFfrhGXSddjnWqA6omg1mTFYUXVA2p1IyuL9mCNaHguilILoWRD8URN9VknpGsn42s08H0z68TGULtdR_4gT5n6sXWPeAU8_T |
CitedBy_id | crossref_primary_10_1007_s10853_024_09687_1 crossref_primary_10_1007_s12596_025_02456_6 crossref_primary_10_1021_acsanm_3c04385 crossref_primary_10_1109_JEDS_2024_3358087 crossref_primary_10_1088_1402_4896_ad9b59 crossref_primary_10_1039_D4TA00676C crossref_primary_10_1039_D3TC02750C crossref_primary_10_1039_D4TC02069C crossref_primary_10_1021_acs_inorgchem_4c01299 crossref_primary_10_1088_1402_4896_ad4f2a crossref_primary_10_1016_j_trechm_2022_10_008 crossref_primary_10_1021_acsami_3c06149 crossref_primary_10_1002_ange_202424395 crossref_primary_10_1016_j_solener_2024_113087 crossref_primary_10_1016_j_surfin_2023_103649 crossref_primary_10_1039_D4TC00585F crossref_primary_10_1007_s12596_025_02539_4 crossref_primary_10_1021_acs_jpcc_4c05773 crossref_primary_10_1021_acsenergylett_3c02270 crossref_primary_10_1021_acs_jpcc_3c07468 crossref_primary_10_1002_adpr_202300269 crossref_primary_10_1016_j_ceramint_2024_02_002 crossref_primary_10_1002_adpr_202300300 crossref_primary_10_3390_ma18061197 crossref_primary_10_1016_j_jallcom_2023_173320 crossref_primary_10_1016_j_jpcs_2025_112662 crossref_primary_10_1021_acs_jpclett_4c02946 crossref_primary_10_1016_j_nanoen_2024_110347 crossref_primary_10_1039_D4TC02339K crossref_primary_10_1002_ente_202300407 crossref_primary_10_1002_smtd_202300421 crossref_primary_10_1016_j_hybadv_2024_100174 crossref_primary_10_1039_D4CC05961A crossref_primary_10_1039_D4QI00816B crossref_primary_10_1063_5_0144708 crossref_primary_10_1021_acsami_4c22290 crossref_primary_10_1021_acs_jpcc_4c04453 crossref_primary_10_1002_adfm_202205829 crossref_primary_10_1016_j_molstruc_2024_138883 crossref_primary_10_3390_coatings12070952 crossref_primary_10_1016_j_solmat_2023_112630 crossref_primary_10_1155_2024_9990559 crossref_primary_10_1088_1402_4896_ad32b3 crossref_primary_10_1007_s11426_022_1445_2 crossref_primary_10_1016_j_apsusc_2022_155446 crossref_primary_10_1016_j_jallcom_2024_177354 crossref_primary_10_1039_D2NH00499B crossref_primary_10_1039_D4TC00219A crossref_primary_10_1039_D3CP05444F crossref_primary_10_1021_acs_jpclett_3c02663 crossref_primary_10_1016_j_cej_2023_147945 crossref_primary_10_1063_5_0137866 crossref_primary_10_1016_j_ssc_2025_115832 crossref_primary_10_1007_s11356_023_30732_0 crossref_primary_10_1039_D4SE00958D crossref_primary_10_1117_1_JPE_15_024501 crossref_primary_10_3390_molecules28186601 crossref_primary_10_1016_j_mssp_2025_109269 crossref_primary_10_1039_D4TC03715D crossref_primary_10_7498_aps_73_20231919 crossref_primary_10_1002_adts_202401064 crossref_primary_10_1007_s40820_023_01033_5 crossref_primary_10_1021_acssuschemeng_4c09706 crossref_primary_10_1016_j_physb_2024_416801 crossref_primary_10_1039_D4TC01556H crossref_primary_10_1016_j_jechem_2023_05_037 crossref_primary_10_1002_aenm_202204144 crossref_primary_10_1007_s11595_023_2727_z crossref_primary_10_1016_j_optmat_2024_115896 crossref_primary_10_1016_j_mtener_2024_101725 crossref_primary_10_1016_j_jcis_2023_07_194 crossref_primary_10_1021_acs_energyfuels_3c03730 crossref_primary_10_1002_sstr_202300524 crossref_primary_10_3390_inorganics12070182 crossref_primary_10_1002_solr_202400028 crossref_primary_10_1063_5_0161023 crossref_primary_10_1016_j_jpcs_2024_112260 crossref_primary_10_3390_nano14010048 crossref_primary_10_1021_acsaem_4c02047 crossref_primary_10_1016_j_mtener_2024_101729 crossref_primary_10_1007_s12596_024_02270_6 crossref_primary_10_1039_D4RA08515A crossref_primary_10_1088_1361_6528_ad40b3 crossref_primary_10_1021_acs_jpcc_4c01871 crossref_primary_10_3390_mi15020192 crossref_primary_10_1002_adfm_202307441 crossref_primary_10_1063_5_0175005 crossref_primary_10_1021_acs_jpcc_3c04362 crossref_primary_10_1002_inf2_12400 crossref_primary_10_1016_j_jallcom_2024_176968 crossref_primary_10_1039_D2CP04213D crossref_primary_10_1680_jnaen_23_00001 crossref_primary_10_1016_j_jlumin_2023_120144 crossref_primary_10_1016_j_rineng_2025_104044 crossref_primary_10_1016_j_solmat_2024_112873 crossref_primary_10_1002_adfm_202306106 crossref_primary_10_1016_j_solener_2023_02_027 crossref_primary_10_1016_j_solener_2024_112843 crossref_primary_10_1063_5_0208324 crossref_primary_10_1021_acsami_3c12889 crossref_primary_10_1016_j_cej_2022_138926 crossref_primary_10_1016_j_ijleo_2024_171841 crossref_primary_10_1016_j_jcis_2022_07_165 crossref_primary_10_1016_j_jre_2025_02_010 crossref_primary_10_1680_jnaen_23_00004 crossref_primary_10_1016_j_surfin_2022_102470 crossref_primary_10_1016_j_nxener_2023_100011 crossref_primary_10_1021_acsami_3c00369 crossref_primary_10_1021_acsaom_4c00524 crossref_primary_10_1021_acs_chemmater_3c01048 crossref_primary_10_1021_acs_jpclett_3c02249 crossref_primary_10_1021_acs_jpclett_3c02403 crossref_primary_10_1021_acsami_3c11658 crossref_primary_10_1039_D3TC03314G crossref_primary_10_1016_j_cjsc_2024_100272 crossref_primary_10_1021_acs_jpclett_3c00900 crossref_primary_10_1088_1402_4896_ad8816 crossref_primary_10_1039_D4MH00526K crossref_primary_10_1002_smll_202404188 crossref_primary_10_1039_D2TC02643K crossref_primary_10_1016_j_mtcomm_2023_106751 crossref_primary_10_1016_j_solener_2024_113205 crossref_primary_10_1016_j_mtchem_2023_101459 crossref_primary_10_1016_j_apsusc_2023_158807 crossref_primary_10_1039_D3CP02025H crossref_primary_10_1039_D3CP03639A crossref_primary_10_1039_D2TA07687J crossref_primary_10_3934_matersci_2024036 crossref_primary_10_1016_j_mssp_2023_107652 crossref_primary_10_1016_j_jallcom_2024_177394 crossref_primary_10_1039_D3TC01031G crossref_primary_10_1016_j_jpcs_2024_112243 crossref_primary_10_1016_j_mseb_2024_117710 crossref_primary_10_1002_admt_202300703 crossref_primary_10_1002_aenm_202202987 crossref_primary_10_1021_acsami_4c09281 crossref_primary_10_1016_j_solener_2024_112982 crossref_primary_10_1039_D3CS00728F crossref_primary_10_1016_j_jpcs_2023_111815 crossref_primary_10_1016_j_cocom_2024_e00885 crossref_primary_10_1002_adfm_202307896 crossref_primary_10_3390_nano14040332 crossref_primary_10_1002_ente_202201078 crossref_primary_10_1002_lpor_202300952 crossref_primary_10_1021_acsaem_3c00223 crossref_primary_10_1088_1402_4896_ad1230 crossref_primary_10_1002_adom_202402650 crossref_primary_10_1002_aelm_202300751 crossref_primary_10_1016_j_jpcs_2023_111415 crossref_primary_10_1016_j_rser_2023_114187 crossref_primary_10_1002_solr_202400353 crossref_primary_10_1016_j_mssp_2024_109029 crossref_primary_10_1002_solr_202201112 crossref_primary_10_1002_solr_202300984 crossref_primary_10_1016_j_solener_2025_113347 crossref_primary_10_1016_j_susmat_2025_e01283 crossref_primary_10_1039_D4TC05218H crossref_primary_10_1088_1402_4896_aca56b crossref_primary_10_1002_anie_202424395 crossref_primary_10_1002_solr_202200932 crossref_primary_10_1016_j_ijleo_2023_170820 crossref_primary_10_1021_acsaem_2c02724 crossref_primary_10_1038_s41598_025_85326_2 crossref_primary_10_1002_adfm_202315428 crossref_primary_10_1039_D3RA07518D crossref_primary_10_1021_acs_energyfuels_2c03429 crossref_primary_10_1109_ACCESS_2025_3543244 crossref_primary_10_1002_aenm_202300537 crossref_primary_10_1039_D5MA00010F crossref_primary_10_1088_1361_6528_ad2158 crossref_primary_10_1021_acs_jpclett_3c02750 crossref_primary_10_1088_1361_6641_ada9cf crossref_primary_10_1021_acs_energyfuels_4c00999 crossref_primary_10_1002_pssa_202200425 crossref_primary_10_1002_smtd_202300207 crossref_primary_10_1016_j_nanoen_2022_108088 crossref_primary_10_1002_smll_202402759 crossref_primary_10_1007_s12274_022_5232_3 crossref_primary_10_1021_acsphotonics_4c00628 crossref_primary_10_1021_acsenergylett_4c02439 crossref_primary_10_1021_acs_jpclett_4c01079 crossref_primary_10_1002_solr_202300754 crossref_primary_10_1002_aenm_202402087 crossref_primary_10_1063_5_0152473 crossref_primary_10_1016_j_chemphys_2024_112578 crossref_primary_10_1021_acsami_4c10378 crossref_primary_10_1016_j_mtcomm_2023_105431 crossref_primary_10_1016_j_mtcomm_2023_106761 crossref_primary_10_1021_acs_jctc_4c01115 crossref_primary_10_1007_s12598_023_02320_1 crossref_primary_10_15541_jim20230049 |
Cites_doi | 10.1002/advs.201500324 10.1021/jacs.1c07200 10.1021/jacs.5b13294 10.1088/0256-307X/35/3/036104 10.1103/PhysRevB.54.11169 10.1126/sciadv.1501170 10.1126/science.aam6323 10.1016/j.ijhydene.2012.05.005 10.1201/9781420007282 10.1016/j.ijhydene.2020.02.012 10.1002/aenm.201500963 10.1039/C7TA06816F 10.1021/ja301539s 10.1002/pssb.201552007 10.1021/acsenergylett.9b00543 10.1002/solr.201900306 10.1002/adfm.201502340 10.1103/PhysRevLett.77.3865 10.1126/science.aan2301 10.1021/acs.chemmater.5b04231 10.1063/1.1564060 10.1021/acs.jpcc.8b00572 10.1021/acs.jpclett.7b02992 10.1002/pssa.200306618 10.1002/solr.201800217 10.1021/jacs.7b01629 10.1063/1.5123163 10.1007/978-3-540-71488-0 10.1039/C5EE02733K 10.1038/nature14133 10.5796/electrochemistry.85.222 10.1039/D0TA07145E 10.3390/plasma4020022 10.1557/PROC-513-177 10.1080/14786437008221061 10.1109/NANO.2016.7751511 10.1002/aenm.202103215 10.1246/cl.170345 10.3390/nano9121760 10.1103/PhysRevB.59.1758 10.1149/1.2050076 10.1021/jacs.7b11125 10.1021/acsenergylett.8b00085 10.1140/epjd/e2016-70474-0 10.1038/s41566-017-0012-4 10.1021/jacs.0c12786 10.1039/C9SC02581B 10.1016/0927-0256(96)00008-0 10.1002/adma.201706246 10.1038/nmat4572 10.1021/acsenergylett.6b00471 10.1002/cphc.201800346 10.1021/acs.jpcc.9b06396 10.1002/maco.201911322 10.1126/science.aaa0472 10.1002/adfm.202109891 10.1002/adma.201605005 10.1002/anie.201708684 10.1590/1980-5373-mr-2017-0448 10.1002/ange.202005568 10.1002/adfm.202005521 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-31016-w |
DatabaseName | Springer Nature OA/Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_31040615be224672b42468b1b6563a4e PMC9192601 10_1038_s41467_022_31016_w |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 12074016 funderid: https://doi.org/10.13039/501100001809 – fundername: ; grantid: 12074016 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c583t-21975946d1de01802833154869dbcf526817c62795c92358bc1f1af9f3788c8d3 |
IEDL.DBID | C6C |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:27:05 EDT 2025 Thu Aug 21 14:09:57 EDT 2025 Thu Jul 10 18:14:24 EDT 2025 Wed Aug 13 06:44:01 EDT 2025 Tue Jul 01 00:58:15 EDT 2025 Thu Apr 24 22:54:03 EDT 2025 Fri Feb 21 02:38:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-21975946d1de01802833154869dbcf526817c62795c92358bc1f1af9f3788c8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1563-4738 0000-0001-9800-3792 0000-0002-0415-5881 |
OpenAccessLink | https://www.nature.com/articles/s41467-022-31016-w |
PMID | 35697701 |
PQID | 2675830336 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_31040615be224672b42468b1b6563a4e pubmedcentral_primary_oai_pubmedcentral_nih_gov_9192601 proquest_miscellaneous_2676553340 proquest_journals_2675830336 crossref_primary_10_1038_s41467_022_31016_w crossref_citationtrail_10_1038_s41467_022_31016_w springer_journals_10_1038_s41467_022_31016_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-13 |
PublicationDateYYYYMMDD | 2022-06-13 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | ZhangCGaoLHayaseSMaTCurrent advancements in material research and techniques focusing on lead-free perovskite solar cellsChem. Lett.201746127612841:CAS:528:DC%2BC2sXhs1Ogt7nM10.1246/cl.170345 RanCBilateral interface engineering toward efficient 2D–3D bulk heterojunction tin halide lead-free perovskite solar cellsACS Energy Lett.201837137211:CAS:528:DC%2BC1cXivFKksLg%3D10.1021/acsenergylett.8b00085 NayakPKImpact of Bi3+ heterovalent doping in organic-inorganic metal halide perovskite crystalsJ. Am. Chem. Soc.20181405745771:CAS:528:DC%2BC2sXitValu7jE2926693410.1021/jacs.7b11125 JeonNJCompositional engineering of perovskite materials for high-performance solar cellsNature20155174764802015Natur.517..476J1:CAS:528:DC%2BC2MXivF2msg%3D%3D2556117710.1038/nature14133 MartinsTRDBAzambujaVMSantosDSDTavaresSSMInfluence of nanoxides on diffusivity and solubility of hydrogen in Pd-based alloysMater. Res.20172011111610.1590/1980-5373-mr-2017-0448 SlavneyAHHuTLindenbergAMKarunadasaHIA bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applicationsJ. Am. Chem. Soc.2016138213821411:CAS:528:DC%2BC28Xit1Kru7o%3D2685337910.1021/jacs.5b13294 LindquistKPTuning the bandgap of Cs2AgBiBr6 through dilute tin alloyingChem. Sci.20191010620106281:CAS:528:DC%2BC1MXhvVOhs7jL32110348702078610.1039/C9SC02581B SlavneyAHDefect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorptionJ. Am. Chem. Soc.2017139501550181:CAS:528:DC%2BC2sXlt1yqsro%3D2835334510.1021/jacs.7b01629 DavisEAMottNFConduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductorsPhilos. Mag.197022090309221970PMag...22..903D1:CAS:528:DyaE3cXltlGhsrc%3D10.1080/14786437008221061 ViezbickeBDPatelSDavisBEBirnieDPIIIEvaluation of the tauc method for optical absorption edge determination: ZnO thin films as a model systemPhys. Status Solidi B.2015252170017102015PSSBR.252.1700V1:CAS:528:DC%2BC2MXksV2gtLg%3D10.1002/pssb.201552007 Correa-BaenaJPPromises and challenges of perovskite solar cellsScience20173587397442017Sci...358..739C1:CAS:528:DC%2BC2sXhslOnsLzO2912306010.1126/science.aam6323 ZhangYYIntrinsic instability of the hybrid halide perovskite semiconductor CH3NH3PbI3Chin. Phys. Lett.2018350361042018ChPhL..35c6104Z10.1088/0256-307X/35/3/036104 SavoryCNWalshAScanlonDOCan Pb-free halide double perovskites support high-efficiency solar cells?ACS Energy Lett.201619499551:CAS:528:DC%2BC28Xhs1Kku7fP28066823521027010.1021/acsenergylett.6b00471 MeteEDouble perovskite structure induced by Co addition to PbTiO3: Insights from DFT and experimental solid-state NMR spectroscopyJ. Phys. Chem. C.201912327132271391:CAS:528:DC%2BC1MXhvFektb3J10.1021/acs.jpcc.9b06396 ZhengGPopovBNWhiteREElectrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solutionJ. Electrochem. Soc.199514226951995JElS..142.2695Z1:CAS:528:DyaK2MXnsVCktro%3D10.1149/1.2050076 WangMHigh-Quality sequential-vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cellsSol. Rrl.20182180021710.1002/solr.2018002171:CAS:528:DC%2BC1cXisVSqtL7E YuGCA comparison between proton and hydrogen chemical diffusion coefficients of titanium oxide filmsPhys. Stat. Sol. (a).20031983023112003PSSAR.198..302Y1:CAS:528:DC%2BD3sXnt1Wmtbw%3D10.1002/pssa.200306618 HayaseSResearch following Pb perovskite solar cellsElectrochemistry2017852222251:CAS:528:DC%2BC2sXnvVyjsrc%3D10.5796/electrochemistry.85.222 FanPSingle-source vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cellsNanomaterials2019917601:CAS:528:DC%2BB3cXosFOmtA%3D%3D695627610.3390/nano9121760 LiuGHExtending absorption of Cs2AgBiBr6 to near-infrared region (≈1350 nm) with intermediate bandAdv. Funct. Mater.202132210989110.1002/adfm.2021098911:CAS:528:DC%2BB3MXislOgsLzO MilotRLEperonGESnaithHJJohnstonMBHerzLMTemperature dependent charge‐carrier dynamics in CH3NH3PbI3 perovskite thin filmsAdv. Funct. Mater.201525621862271:CAS:528:DC%2BC2MXhsFWku7vP10.1002/adfm.201502340 BerheTAOrganometal halide perovskite solar cells: degradation and stabilityEnergy Environ. Sci.201693233561:CAS:528:DC%2BC2MXhs1yjtL7L10.1039/C5EE02733K LeeJParkCParkHKangNEffective hydrogen diffusion coefficient for CoCrFeMnNi high-entropy alloy and microstructural behaviors after hydrogen permeationInt. J. Hydrog. Energy20204510227102321:CAS:528:DC%2BB3cXjtlalsrg%3D10.1016/j.ijhydene.2020.02.012 ShiZLead-Free organic-inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectivesAdv. Mater.201729160500510.1002/adma.2016050051:CAS:528:DC%2BC2sXitVOjtLY%3D YangWSIodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cellsScience2017356137613792017Sci...356.1376Y1:CAS:528:DC%2BC2sXhtVKgsLfP2866349810.1126/science.aan2301 SpencerMGAlamTHigh power direct energy conversion by nuclear batteriesAppl. Phys. Rev.201960313052019ApPRv...6c1305S10.1063/1.51231631:CAS:528:DC%2BC1MXhvVWksLrF KresseGFurthmüllerJEfficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setComput. Mater. Sci.1996615501:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0 KresseGJoubertDFrom ultrasoft pseudopotentials to the projector augmented-wave methodPhys. Rev. B.199959175817751999PhRvB..59.1758K1:CAS:528:DyaK1MXkt12nug%3D%3D10.1103/PhysRevB.59.1758 BartesaghiDCharge carrier dynamics in Cs2AgBiBr6 double perovskiteJ. Phys. Chem. C.2018122480948161:CAS:528:DC%2BC1cXit1Wht7o%3D10.1021/acs.jpcc.8b00572 National Renewable Energy Laboratory. Best Research-Cell Efficiency chart, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220126.pdf (2022). LeijtensTStability of metal halide perovskite solar cellsAdv. Energy Mater.20155150096310.1002/aenm.2015009631:CAS:528:DC%2BC2MXhsFKhu77J KürtenDKhaderIKailerADetermining the effective hydrogen diffusion coefficient in 100Cr6Mater. Corros.20207191892310.1002/maco.2019113221:CAS:528:DC%2BB3cXjs1ans7k%3D NingWHLong electron-hole diffusion length in high-quality lead-free double perovskite filmsAdv. Mater.201830170624610.1002/adma.2017062461:CAS:528:DC%2BC1cXmvVehtbk%3D WangBNOrganic dye/Cs2AgBiBr6 double perovskite heterojunction solar cellsJ. Am. Chem. Soc.202114314877148831:CAS:528:DC%2BB3MXhvFWjs7nP3446776010.1021/jacs.1c07200 ChungICsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitionsJ. Am. Chem. Soc.2012134857985871:CAS:528:DC%2BC38XmvV2gtLY%3D2257807210.1021/ja301539s JinQYRF and microwave ion sources study at institute of modern physicsPlasma202143323441:CAS:528:DC%2BB3MXhvFalurnI10.3390/plasma4020022 WangBNChlorophyll derivative-sensitized TiO2 electron transport layer for record efficiency of Cs2AgBiBr6 double perovskite solar cellsJ. Am. Chem. Soc.2021143220722111:CAS:528:DC%2BB3MXisVWgurk%3D3352280310.1021/jacs.0c12786 McClureETBallMRWindlWWoodwardPMCs2AgBiX6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductorsChem. Mater.201628134813541:CAS:528:DC%2BC28Xitleqtb8%3D10.1021/acs.chemmater.5b04231 BabayigitAEthirajanAMullerMConingsBToxicity of organometal halide perovskite solar cellsNat. Mater.2016152472512016NatMa..15..247B1:CAS:528:DC%2BC28Xjt1entro%3D2690695510.1038/nmat4572 OldenVAlvaroAAkselsenOMHydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint-experiments and FE simulationsInt. J. Hydrog. Energy20123711474114861:CAS:528:DC%2BC38XotlOgtbw%3D10.1016/j.ijhydene.2012.05.005 KungPKLead free double perovskites for perovskite solar cellsSol. Rrl.20194190030610.1002/solr.2019003061:CAS:528:DC%2BB3cXisVSms7w%3D LiZWBandgap lowering in mixed alloys of Cs2Ag(SbxBi1−x)Br6 double perovskite thin filmsJ. Mater. Chem. A.2020821780217881:CAS:528:DC%2BB3cXitVWisbjO10.1039/D0TA07145E ZuoCAdvances in perovskite solar cellsAdv. Sci.20163150032410.1002/advs.2015003241:CAS:528:DC%2BC28XhtFOjtrbE YangJXZhangPWeiSHBand structure engineering of Cs2AgBiBr6 perovskite through order-disordered transition: a first-principle studyJ. Phys. Chem. Lett.2018931351:CAS:528:DC%2BC2sXhvFOiurvJ2923294410.1021/acs.jpclett.7b02992 GreulEPetrusMLBinekADocampoPBeinTHighly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applicationsJ. Mater. Chem. A.2017519972199811:CAS:528:DC%2BC2sXhsVKlsrbN10.1039/C7TA06816F Sheikholeslam, S. A. et al. Hydrogen diffusion characterization of amorphous yttrium stabilized zirconia dielectrics. 2016 IEEE 16th Int. Conf. Nanotechnol. IEEE. 164–166 (2016). ChenJTin(IV)-tolerant vapor phase growth and photophysical properties of aligned cesium tin halide perovskite (CsSnX3, X=Br, I) nanowiresACS Energy Lett.20194104510521:CAS:528:DC%2BC1MXntlGlsL0%3D10.1021/acsenergylett.9b00543 TaccognaFDilecceGNon-equilibrium in low-temperature plasmasEur. Phys. J. D.2016701371:CAS:528:DC%2BC28XhvFCns73K10.1140/epjd/e2016-70474-0 PanWCCs2AgBiBr6 single-crystal X-ray detectors with a low detection limitNat. Photon.2017117267322017NaPho..11..726P1:CAS:528:DC%2BC2sXhvVygtbfN10.1038/s41566-017-0012-4 KresseGFurthmüllerJEfficient iterative schemes for Ab initio total energy calculations using a plane-wave basis setPhys. Rev. B.19965411169111861996PhRvB..5411169K1:CAS:528:DyaK28Xms1Whu7Y%3D10.1103/PhysRevB.54.11169 BiDEfficient luminescent solar cells based on tailored mixed-cation perovskitesSci. Adv.20162e15011702016SciA....2E1170B26767196470504010.1126/sciadv.1501170 Mehrer, H. Diffusion in Solids: fundamentals, methods, materials, diffusion-controlled processes. 42 (Springer-Verlag Berlin Heidelberg, 2007). Weidinger, A. et al. Hydrogen diffusion in chalcopyrite solar cell materials. MRS. O. P. L. 513, 177–181 (1998). NieWYHigh-efficiency solution-processed perovskite solar cells with millimeter-scale grainsScience20153475225252015Sci...347..522N1:CAS:528:DC%2BC2MXhsV2nsrg%3D2563509310.1126 BD Viezbicke (31016_CR40) 2015; 252 J Heyd (31016_CR62) 2003; 118 M Wang (31016_CR18) 2018; 2 P Fan (31016_CR30) 2019; 9 MT Sirtl (31016_CR21) 2022; 12 WS Yang (31016_CR4) 2017; 356 F Taccogna (31016_CR55) 2016; 70 ZW Li (31016_CR34) 2020; 8 E Mete (31016_CR32) 2019; 123 J Lee (31016_CR47) 2020; 45 E Greul (31016_CR20) 2017; 5 GC Yu (31016_CR51) 2003; 198 A Babayigit (31016_CR6) 2016; 15 V Olden (31016_CR45) 2012; 37 WY Nie (31016_CR53) 2015; 347 JP Perdew (31016_CR61) 1996; 77 D Bartesaghi (31016_CR27) 2018; 122 D Bi (31016_CR3) 2016; 2 AH Slavney (31016_CR33) 2017; 139 G Kresse (31016_CR58) 1996; 54 QY Jin (31016_CR54) 2021; 4 31016_CR1 31016_CR44 Z Shi (31016_CR9) 2017; 29 MG Spencer (31016_CR56) 2019; 6 WH Ning (31016_CR29) 2018; 30 G Kresse (31016_CR60) 1999; 59 C Ran (31016_CR13) 2018; 3 CN Savory (31016_CR17) 2016; 1 TRDB Martins (31016_CR46) 2017; 20 EA Davis (31016_CR39) 1970; 22 J Chen (31016_CR16) 2019; 4 W Gao (31016_CR19) 2018; 19 ET McClure (31016_CR25) 2016; 28 JX Yang (31016_CR38) 2018; 9 G Zheng (31016_CR49) 1995; 142 WC Pan (31016_CR26) 2017; 11 31016_CR52 FX Ji (31016_CR37) 2020; 132 31016_CR50 C Zhang (31016_CR11) 2017; 46 I Chung (31016_CR15) 2012; 134 T Leijtens (31016_CR7) 2015; 5 S Hayase (31016_CR10) 2017; 85 PK Kung (31016_CR31) 2019; 4 31016_CR57 G Kresse (31016_CR59) 1996; 6 PK Nayak (31016_CR42) 2018; 140 KP Lindquist (31016_CR35) 2019; 10 D Kürten (31016_CR48) 2020; 71 RL Milot (31016_CR28) 2015; 25 TA Berhe (31016_CR8) 2016; 9 C Zuo (31016_CR12) 2016; 3 BN Wang (31016_CR22) 2021; 143 Q Li (31016_CR36) 2017; 56 GH Liu (31016_CR43) 2021; 32 AH Slavney (31016_CR24) 2016; 138 JP Correa-Baena (31016_CR5) 2017; 358 YY Zhang (31016_CR14) 2018; 35 FX Ji (31016_CR41) 2020; 30 NJ Jeon (31016_CR2) 2015; 517 BN Wang (31016_CR23) 2021; 143 |
References_xml | – reference: JeonNJCompositional engineering of perovskite materials for high-performance solar cellsNature20155174764802015Natur.517..476J1:CAS:528:DC%2BC2MXivF2msg%3D%3D2556117710.1038/nature14133 – reference: FanPSingle-source vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cellsNanomaterials2019917601:CAS:528:DC%2BB3cXosFOmtA%3D%3D695627610.3390/nano9121760 – reference: WangMHigh-Quality sequential-vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cellsSol. Rrl.20182180021710.1002/solr.2018002171:CAS:528:DC%2BC1cXisVSqtL7E – reference: ZhengGPopovBNWhiteREElectrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solutionJ. Electrochem. Soc.199514226951995JElS..142.2695Z1:CAS:528:DyaK2MXnsVCktro%3D10.1149/1.2050076 – reference: LiuGHExtending absorption of Cs2AgBiBr6 to near-infrared region (≈1350 nm) with intermediate bandAdv. Funct. Mater.202132210989110.1002/adfm.2021098911:CAS:528:DC%2BB3MXislOgsLzO – reference: Weidinger, A. et al. Hydrogen diffusion in chalcopyrite solar cell materials. MRS. O. P. L. 513, 177–181 (1998). – reference: MilotRLEperonGESnaithHJJohnstonMBHerzLMTemperature dependent charge‐carrier dynamics in CH3NH3PbI3 perovskite thin filmsAdv. Funct. Mater.201525621862271:CAS:528:DC%2BC2MXhsFWku7vP10.1002/adfm.201502340 – reference: Luo, Y. R. Comprehensive handbook of chemical bond energies.1399 (CRC Press, 2007). – reference: SpencerMGAlamTHigh power direct energy conversion by nuclear batteriesAppl. Phys. Rev.201960313052019ApPRv...6c1305S10.1063/1.51231631:CAS:528:DC%2BC1MXhvVWksLrF – reference: YangJXZhangPWeiSHBand structure engineering of Cs2AgBiBr6 perovskite through order-disordered transition: a first-principle studyJ. Phys. Chem. Lett.2018931351:CAS:528:DC%2BC2sXhvFOiurvJ2923294410.1021/acs.jpclett.7b02992 – reference: ChenJTin(IV)-tolerant vapor phase growth and photophysical properties of aligned cesium tin halide perovskite (CsSnX3, X=Br, I) nanowiresACS Energy Lett.20194104510521:CAS:528:DC%2BC1MXntlGlsL0%3D10.1021/acsenergylett.9b00543 – reference: Correa-BaenaJPPromises and challenges of perovskite solar cellsScience20173587397442017Sci...358..739C1:CAS:528:DC%2BC2sXhslOnsLzO2912306010.1126/science.aam6323 – reference: MartinsTRDBAzambujaVMSantosDSDTavaresSSMInfluence of nanoxides on diffusivity and solubility of hydrogen in Pd-based alloysMater. Res.20172011111610.1590/1980-5373-mr-2017-0448 – reference: KürtenDKhaderIKailerADetermining the effective hydrogen diffusion coefficient in 100Cr6Mater. Corros.20207191892310.1002/maco.2019113221:CAS:528:DC%2BB3cXjs1ans7k%3D – reference: GreulEPetrusMLBinekADocampoPBeinTHighly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applicationsJ. Mater. Chem. A.2017519972199811:CAS:528:DC%2BC2sXhsVKlsrbN10.1039/C7TA06816F – reference: ZhangYYIntrinsic instability of the hybrid halide perovskite semiconductor CH3NH3PbI3Chin. Phys. Lett.2018350361042018ChPhL..35c6104Z10.1088/0256-307X/35/3/036104 – reference: SavoryCNWalshAScanlonDOCan Pb-free halide double perovskites support high-efficiency solar cells?ACS Energy Lett.201619499551:CAS:528:DC%2BC28Xhs1Kku7fP28066823521027010.1021/acsenergylett.6b00471 – reference: ChungICsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitionsJ. Am. Chem. Soc.2012134857985871:CAS:528:DC%2BC38XmvV2gtLY%3D2257807210.1021/ja301539s – reference: Sheikholeslam, S. A. et al. Hydrogen diffusion characterization of amorphous yttrium stabilized zirconia dielectrics. 2016 IEEE 16th Int. Conf. Nanotechnol. IEEE. 164–166 (2016). – reference: LiZWBandgap lowering in mixed alloys of Cs2Ag(SbxBi1−x)Br6 double perovskite thin filmsJ. Mater. Chem. A.2020821780217881:CAS:528:DC%2BB3cXitVWisbjO10.1039/D0TA07145E – reference: JiFXNear‐infrared light‐responsive Cu‐doped Cs2AgBiBr6Adv. Funct. Mater.20203020055211:CAS:528:DC%2BB3cXhvVKgtrvN10.1002/adfm.202005521 – reference: KungPKLead free double perovskites for perovskite solar cellsSol. Rrl.20194190030610.1002/solr.2019003061:CAS:528:DC%2BB3cXisVSms7w%3D – reference: GaoWHigh-quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2% efficiencyChem. Phys. Chem.201819169617001:CAS:528:DC%2BC1cXos1OlsLc%3D2966728710.1002/cphc.201800346 – reference: YangWSIodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cellsScience2017356137613792017Sci...356.1376Y1:CAS:528:DC%2BC2sXhtVKgsLfP2866349810.1126/science.aan2301 – reference: BartesaghiDCharge carrier dynamics in Cs2AgBiBr6 double perovskiteJ. Phys. Chem. C.2018122480948161:CAS:528:DC%2BC1cXit1Wht7o%3D10.1021/acs.jpcc.8b00572 – reference: ViezbickeBDPatelSDavisBEBirnieDPIIIEvaluation of the tauc method for optical absorption edge determination: ZnO thin films as a model systemPhys. Status Solidi B.2015252170017102015PSSBR.252.1700V1:CAS:528:DC%2BC2MXksV2gtLg%3D10.1002/pssb.201552007 – reference: SlavneyAHDefect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorptionJ. Am. Chem. Soc.2017139501550181:CAS:528:DC%2BC2sXlt1yqsro%3D2835334510.1021/jacs.7b01629 – reference: PanWCCs2AgBiBr6 single-crystal X-ray detectors with a low detection limitNat. Photon.2017117267322017NaPho..11..726P1:CAS:528:DC%2BC2sXhvVygtbfN10.1038/s41566-017-0012-4 – reference: HayaseSResearch following Pb perovskite solar cellsElectrochemistry2017852222251:CAS:528:DC%2BC2sXnvVyjsrc%3D10.5796/electrochemistry.85.222 – reference: SirtlMT2D/3D Hybrid Cs2AgBiBr6 double perovskite solar cells: Improved energy level alignment for higher contact-selectively and large open circuit voltageAdv. Energy Mater.20221221032151:CAS:528:DC%2BB38Xnt12mtA%3D%3D10.1002/aenm.202103215 – reference: McClureETBallMRWindlWWoodwardPMCs2AgBiX6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductorsChem. Mater.201628134813541:CAS:528:DC%2BC28Xitleqtb8%3D10.1021/acs.chemmater.5b04231 – reference: JinQYRF and microwave ion sources study at institute of modern physicsPlasma202143323441:CAS:528:DC%2BB3MXhvFalurnI10.3390/plasma4020022 – reference: KresseGJoubertDFrom ultrasoft pseudopotentials to the projector augmented-wave methodPhys. Rev. B.199959175817751999PhRvB..59.1758K1:CAS:528:DyaK1MXkt12nug%3D%3D10.1103/PhysRevB.59.1758 – reference: PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.199677386538681996PhRvL..77.3865P1:CAS:528:DyaK28XmsVCgsbs%3D1006232810.1103/PhysRevLett.77.3865 – reference: LiQHigh-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskiteAngew. Chem. Int. Ed.20175615969159731:CAS:528:DC%2BC2sXhvVWqu77I10.1002/anie.201708684 – reference: BabayigitAEthirajanAMullerMConingsBToxicity of organometal halide perovskite solar cellsNat. Mater.2016152472512016NatMa..15..247B1:CAS:528:DC%2BC28Xjt1entro%3D2690695510.1038/nmat4572 – reference: OldenVAlvaroAAkselsenOMHydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint-experiments and FE simulationsInt. J. Hydrog. Energy20123711474114861:CAS:528:DC%2BC38XotlOgtbw%3D10.1016/j.ijhydene.2012.05.005 – reference: RanCBilateral interface engineering toward efficient 2D–3D bulk heterojunction tin halide lead-free perovskite solar cellsACS Energy Lett.201837137211:CAS:528:DC%2BC1cXivFKksLg%3D10.1021/acsenergylett.8b00085 – reference: NingWHLong electron-hole diffusion length in high-quality lead-free double perovskite filmsAdv. Mater.201830170624610.1002/adma.2017062461:CAS:528:DC%2BC1cXmvVehtbk%3D – reference: Mehrer, H. Diffusion in Solids: fundamentals, methods, materials, diffusion-controlled processes. 42 (Springer-Verlag Berlin Heidelberg, 2007). – reference: MeteEDouble perovskite structure induced by Co addition to PbTiO3: Insights from DFT and experimental solid-state NMR spectroscopyJ. Phys. Chem. C.201912327132271391:CAS:528:DC%2BC1MXhvFektb3J10.1021/acs.jpcc.9b06396 – reference: NayakPKImpact of Bi3+ heterovalent doping in organic-inorganic metal halide perovskite crystalsJ. Am. Chem. Soc.20181405745771:CAS:528:DC%2BC2sXitValu7jE2926693410.1021/jacs.7b11125 – reference: TaccognaFDilecceGNon-equilibrium in low-temperature plasmasEur. Phys. J. D.2016701371:CAS:528:DC%2BC28XhvFCns73K10.1140/epjd/e2016-70474-0 – reference: WangBNOrganic dye/Cs2AgBiBr6 double perovskite heterojunction solar cellsJ. Am. Chem. Soc.202114314877148831:CAS:528:DC%2BB3MXhvFWjs7nP3446776010.1021/jacs.1c07200 – reference: LeeJParkCParkHKangNEffective hydrogen diffusion coefficient for CoCrFeMnNi high-entropy alloy and microstructural behaviors after hydrogen permeationInt. J. Hydrog. Energy20204510227102321:CAS:528:DC%2BB3cXjtlalsrg%3D10.1016/j.ijhydene.2020.02.012 – reference: KresseGFurthmüllerJEfficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setComput. Mater. Sci.1996615501:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0 – reference: BerheTAOrganometal halide perovskite solar cells: degradation and stabilityEnergy Environ. Sci.201693233561:CAS:528:DC%2BC2MXhs1yjtL7L10.1039/C5EE02733K – reference: ZhangCGaoLHayaseSMaTCurrent advancements in material research and techniques focusing on lead-free perovskite solar cellsChem. Lett.201746127612841:CAS:528:DC%2BC2sXhs1Ogt7nM10.1246/cl.170345 – reference: ZuoCAdvances in perovskite solar cellsAdv. Sci.20163150032410.1002/advs.2015003241:CAS:528:DC%2BC28XhtFOjtrbE – reference: BiDEfficient luminescent solar cells based on tailored mixed-cation perovskitesSci. Adv.20162e15011702016SciA....2E1170B26767196470504010.1126/sciadv.1501170 – reference: National Renewable Energy Laboratory. Best Research-Cell Efficiency chart, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220126.pdf (2022). – reference: KresseGFurthmüllerJEfficient iterative schemes for Ab initio total energy calculations using a plane-wave basis setPhys. Rev. B.19965411169111861996PhRvB..5411169K1:CAS:528:DyaK28Xms1Whu7Y%3D10.1103/PhysRevB.54.11169 – reference: JiFXLead-free halide double perovskite Cs2AgBiBr6 with decreased band gapAngew. Chem. Int. Ed.202013215303153062020AngCh.13215303J10.1002/ange.202005568 – reference: WangBNChlorophyll derivative-sensitized TiO2 electron transport layer for record efficiency of Cs2AgBiBr6 double perovskite solar cellsJ. Am. Chem. Soc.2021143220722111:CAS:528:DC%2BB3MXisVWgurk%3D3352280310.1021/jacs.0c12786 – reference: LeijtensTStability of metal halide perovskite solar cellsAdv. Energy Mater.20155150096310.1002/aenm.2015009631:CAS:528:DC%2BC2MXhsFKhu77J – reference: NieWYHigh-efficiency solution-processed perovskite solar cells with millimeter-scale grainsScience20153475225252015Sci...347..522N1:CAS:528:DC%2BC2MXhsV2nsrg%3D2563509310.1126/science.aaa0472 – reference: YuGCA comparison between proton and hydrogen chemical diffusion coefficients of titanium oxide filmsPhys. Stat. Sol. (a).20031983023112003PSSAR.198..302Y1:CAS:528:DC%2BD3sXnt1Wmtbw%3D10.1002/pssa.200306618 – reference: HeydJScuseriaGEHybrid functionals based on a screened coulomb potentialJ. Chem. Phys.2003118820782152003JChPh.118.8207H1:CAS:528:DC%2BD3sXjtlSisLw%3D10.1063/1.1564060 – reference: ShiZLead-Free organic-inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectivesAdv. Mater.201729160500510.1002/adma.2016050051:CAS:528:DC%2BC2sXitVOjtLY%3D – reference: LindquistKPTuning the bandgap of Cs2AgBiBr6 through dilute tin alloyingChem. Sci.20191010620106281:CAS:528:DC%2BC1MXhvVOhs7jL32110348702078610.1039/C9SC02581B – reference: SlavneyAHHuTLindenbergAMKarunadasaHIA bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applicationsJ. Am. Chem. Soc.2016138213821411:CAS:528:DC%2BC28Xit1Kru7o%3D2685337910.1021/jacs.5b13294 – reference: DavisEAMottNFConduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductorsPhilos. Mag.197022090309221970PMag...22..903D1:CAS:528:DyaE3cXltlGhsrc%3D10.1080/14786437008221061 – volume: 3 start-page: 1500324 year: 2016 ident: 31016_CR12 publication-title: Adv. Sci. doi: 10.1002/advs.201500324 – volume: 143 start-page: 14877 year: 2021 ident: 31016_CR23 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c07200 – volume: 138 start-page: 2138 year: 2016 ident: 31016_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13294 – volume: 35 start-page: 036104 year: 2018 ident: 31016_CR14 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/35/3/036104 – volume: 54 start-page: 11169 year: 1996 ident: 31016_CR58 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.54.11169 – volume: 2 start-page: e1501170 year: 2016 ident: 31016_CR3 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501170 – volume: 358 start-page: 739 year: 2017 ident: 31016_CR5 publication-title: Science doi: 10.1126/science.aam6323 – volume: 37 start-page: 11474 year: 2012 ident: 31016_CR45 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2012.05.005 – ident: 31016_CR57 doi: 10.1201/9781420007282 – volume: 45 start-page: 10227 year: 2020 ident: 31016_CR47 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.02.012 – volume: 5 start-page: 1500963 year: 2015 ident: 31016_CR7 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500963 – volume: 5 start-page: 19972 year: 2017 ident: 31016_CR20 publication-title: J. Mater. Chem. A. doi: 10.1039/C7TA06816F – volume: 134 start-page: 8579 year: 2012 ident: 31016_CR15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja301539s – volume: 252 start-page: 1700 year: 2015 ident: 31016_CR40 publication-title: Phys. Status Solidi B. doi: 10.1002/pssb.201552007 – volume: 4 start-page: 1045 year: 2019 ident: 31016_CR16 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00543 – volume: 4 start-page: 1900306 year: 2019 ident: 31016_CR31 publication-title: Sol. Rrl. doi: 10.1002/solr.201900306 – volume: 25 start-page: 6218 year: 2015 ident: 31016_CR28 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502340 – volume: 77 start-page: 3865 year: 1996 ident: 31016_CR61 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 356 start-page: 1376 year: 2017 ident: 31016_CR4 publication-title: Science doi: 10.1126/science.aan2301 – volume: 28 start-page: 1348 year: 2016 ident: 31016_CR25 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04231 – volume: 118 start-page: 8207 year: 2003 ident: 31016_CR62 publication-title: J. Chem. Phys. doi: 10.1063/1.1564060 – volume: 122 start-page: 4809 year: 2018 ident: 31016_CR27 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.8b00572 – volume: 9 start-page: 31 year: 2018 ident: 31016_CR38 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b02992 – volume: 198 start-page: 302 year: 2003 ident: 31016_CR51 publication-title: Phys. Stat. Sol. (a). doi: 10.1002/pssa.200306618 – volume: 2 start-page: 1800217 year: 2018 ident: 31016_CR18 publication-title: Sol. Rrl. doi: 10.1002/solr.201800217 – volume: 139 start-page: 5015 year: 2017 ident: 31016_CR33 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01629 – volume: 6 start-page: 031305 year: 2019 ident: 31016_CR56 publication-title: Appl. Phys. Rev. doi: 10.1063/1.5123163 – ident: 31016_CR44 doi: 10.1007/978-3-540-71488-0 – volume: 9 start-page: 323 year: 2016 ident: 31016_CR8 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02733K – volume: 517 start-page: 476 year: 2015 ident: 31016_CR2 publication-title: Nature doi: 10.1038/nature14133 – volume: 85 start-page: 222 year: 2017 ident: 31016_CR10 publication-title: Electrochemistry doi: 10.5796/electrochemistry.85.222 – volume: 8 start-page: 21780 year: 2020 ident: 31016_CR34 publication-title: J. Mater. Chem. A. doi: 10.1039/D0TA07145E – volume: 4 start-page: 332 year: 2021 ident: 31016_CR54 publication-title: Plasma doi: 10.3390/plasma4020022 – ident: 31016_CR52 doi: 10.1557/PROC-513-177 – volume: 22 start-page: 0903 year: 1970 ident: 31016_CR39 publication-title: Philos. Mag. doi: 10.1080/14786437008221061 – ident: 31016_CR50 doi: 10.1109/NANO.2016.7751511 – volume: 12 start-page: 2103215 year: 2022 ident: 31016_CR21 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103215 – volume: 46 start-page: 1276 year: 2017 ident: 31016_CR11 publication-title: Chem. Lett. doi: 10.1246/cl.170345 – volume: 9 start-page: 1760 year: 2019 ident: 31016_CR30 publication-title: Nanomaterials doi: 10.3390/nano9121760 – volume: 59 start-page: 1758 year: 1999 ident: 31016_CR60 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.59.1758 – volume: 142 start-page: 2695 year: 1995 ident: 31016_CR49 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2050076 – volume: 140 start-page: 574 year: 2018 ident: 31016_CR42 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11125 – volume: 3 start-page: 713 year: 2018 ident: 31016_CR13 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00085 – volume: 70 start-page: 1 year: 2016 ident: 31016_CR55 publication-title: Eur. Phys. J. D. doi: 10.1140/epjd/e2016-70474-0 – volume: 11 start-page: 726 year: 2017 ident: 31016_CR26 publication-title: Nat. Photon. doi: 10.1038/s41566-017-0012-4 – volume: 143 start-page: 2207 year: 2021 ident: 31016_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c12786 – volume: 10 start-page: 10620 year: 2019 ident: 31016_CR35 publication-title: Chem. Sci. doi: 10.1039/C9SC02581B – volume: 6 start-page: 15 year: 1996 ident: 31016_CR59 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 30 start-page: 1706246 year: 2018 ident: 31016_CR29 publication-title: Adv. Mater. doi: 10.1002/adma.201706246 – volume: 15 start-page: 247 year: 2016 ident: 31016_CR6 publication-title: Nat. Mater. doi: 10.1038/nmat4572 – volume: 1 start-page: 949 year: 2016 ident: 31016_CR17 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00471 – volume: 19 start-page: 1696 year: 2018 ident: 31016_CR19 publication-title: Chem. Phys. Chem. doi: 10.1002/cphc.201800346 – volume: 123 start-page: 27132 year: 2019 ident: 31016_CR32 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.9b06396 – volume: 71 start-page: 918 year: 2020 ident: 31016_CR48 publication-title: Mater. Corros. doi: 10.1002/maco.201911322 – volume: 347 start-page: 522 year: 2015 ident: 31016_CR53 publication-title: Science doi: 10.1126/science.aaa0472 – volume: 32 start-page: 2109891 year: 2021 ident: 31016_CR43 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202109891 – volume: 29 start-page: 1605005 year: 2017 ident: 31016_CR9 publication-title: Adv. Mater. doi: 10.1002/adma.201605005 – ident: 31016_CR1 – volume: 56 start-page: 15969 year: 2017 ident: 31016_CR36 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201708684 – volume: 20 start-page: 111 year: 2017 ident: 31016_CR46 publication-title: Mater. Res. doi: 10.1590/1980-5373-mr-2017-0448 – volume: 132 start-page: 15303 year: 2020 ident: 31016_CR37 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202005568 – volume: 30 start-page: 2005521 year: 2020 ident: 31016_CR41 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202005521 |
SSID | ssj0000391844 |
Score | 2.7036982 |
Snippet | Development of lead-free inorganic perovskite material, such as Cs
2
AgBiBr
6
, is of great importance to solve the toxicity and stability issues of... Development of lead-free inorganic perovskite material, such as Cs2AgBiBr6, is of great importance to solve the toxicity and stability issues of traditional... Though inorganic perovskites are an attractive, non-toxic and stable alternative to organic-inorganic halide perovskite solar cells, realizing efficient... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3397 |
SubjectTerms | 140/146 147/135 147/143 639/301/299/946 639/4077/909/4101/4096/946 Carrier lifetime Carrier mobility Conduction bands Efficiency Electromagnetic absorption Energy conversion efficiency Energy gap Energy levels Humanities and Social Sciences Hydrogenation Lead compounds Lead free Metal halides multidisciplinary Perovskites Photoelectricity Photovoltaic cells Science Science (multidisciplinary) Solar cells Stability Toxicity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF5CoJBLadqEqknKFnpLllj7knSMQ4MptKcGclu02lFrMFJr2Qn-95lZyW4UaHvpyWCtsTSPnW9WM98w9jGj5kkPWoBRWuhgpSi9tCJHrFHIIMFIak7-8tXObvXnO3P3ZNQX1YT19MC94C4RflDMMR6I-iyTXuNH7lOPQESVGmj3xZj3JJmKe7AqMHXRQ5fMROWXnY57Qixep4xVPIwiUSTsH6HM5zWSz16Uxvhz84q9HIAjv-pv-JDtQfOavehHSW7esF-zTVi2aA2IHQO_7uTV9-l8urQcQSmnIg0qCUIpLjZ8Hs8RcBVE-gjqveRtzReobVEvAfi86Wc9VTy0a78ATmTi9x2d8_KOUmFOx_1H7Pbm07frmRjGKYjK5GolcG_KTKFtSAMQbRcCC0UJiy2Cr2qifUmzysqsMFVBDbS-Suu0rIuaKOerPKhjtt-0Dbxl3FgoibioRIfHBLT0fgKY95SgQKbWmoSlW9G6auAap5EXCxffeavc9epwqA4X1eEeEna--83Pnmnjr6unpLHdSmLJjl-ggNxgO-5ftpOw062-3eC6nZOUQmFgVzZhH3aX0elItGUD7TqusYaamCcJy0Z2Mrqh8ZVm_iPSdxcIqjENTtjF1qJ-__mfH_jd_3jgE3YgyQNo9pI6Zfur5RrOEFSt_PvoP48oaxnx priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEF7alEIvoemDqknDFnprl1j7knQKcWgwhfbUgG-L9qHWYKTEshv87zOzWjso0JwM1hhLOzujb2ZnviHkS4HNkzZIFpSQTHrNWW25ZiVgjYp7HhTH5uSfv_TsWv6Yq3lKuPWprHLnE6Oj9p3DHPkZR2QL_lbo85tbhlOj8HQ1jdB4Tl4gdRmWdBXzYp9jQfbzUsrUKzMR5Vkvo2eIJewYt7K70fso0vaPsObjSslHx6XxLXT1mhwm-EgvBn0fkWehfUNeDgMlt2_J7WzrVx3sCUCQnl72_OLPdDFdaQrQlGKpBhYGwVout3QRswkgFSKJBHZg0q6hS9A5a1Yh0EU7THxy1HcbuwwUKcX_9ZjtpT0GxBST_u_I9dX335czloYqMAfrt2bgoQpVSe1zH5C8C-CFwLBFV966Bslf8sJpXlTKVdhGa13e5HVTNUg870ov3pODtmvDB0KVDjXSF9Vg9hCG1tZOAkQ_dRCB51qrjOS7pTUuMY7j4IuliSffojSDOgyow0R1mLuMfN3_5mbg23hSeooa20siV3b8AhbIJNNDWUQtygYkzyu4lfBR2twClBW1DBk52enbJAPuzcN2y8jn_WUwPVzaug3dJspoha3Mk4wUo30yuqHxlXbxN5J4VwCtIRjOyLfdjnr48_8_8Men7_WYvOK4t3G2kjghB-vVJnwC0LS2p9Ey7gHstxNk priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qRfBF_MRolRV802izX0keRHrFcgj1yYO-LdnsRg9CYpM76_33zmySk5Qq-BRIJiSZj93fZHd-A_A6peJJ62XslZCxdJrHheU6zhBr5NxxrzgVJ59_0cuV_HyhLg5ganc0KrC_MbWjflKrrn7363L3EQP-w1Aynr3vZQj3sC-dktH46hbcxpkppUA9H-F-GJlFjgmNHGtnbr51Nj8FGv8Z9ry-c_La8mmYlc7uw70RTrKTwf4P4MA3D-HO0GBy9wgulzvXtegjiCgdO-35ybfFetFphlCV0dYN2iiEuq13bB3-LqCUD6QSVJHJ2orV6ANx1XnP1s3QAapkrt3a2jOiGP_Z099f1pMWGS0CPIbV2aevp8t4bLIQlyoTmxhHrFTlUrvEeSLzQrghKI3RubNlRWQwSVpqnuaqzKms1pZJlRRVXhERfZk58QQOm7bxT4Ep7QuiMypwGMC0tLD22GM2VHjheaK1iiCZVGvKkYGcGmHUJqyEi8wM5jBoDhPMYa4ieLO_58fAv_FP6QVZbC9J3NnhBCrIjKFIsoRilPVEppdyK_GQ2cQitBWF9BEcTfY2kz8aTokVTvdCR_BqfxlDkVRbNL7dBhmtqLT5OIJ05iezF5pfadbfA6l3jlAbk-MI3k4e9efhf__gZ_8n_hzucvJ16r0kjuBw0239CwRVG_syRMpv8xUbOA priority: 102 providerName: Scholars Portal |
Title | Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell |
URI | https://link.springer.com/article/10.1038/s41467-022-31016-w https://www.proquest.com/docview/2675830336 https://www.proquest.com/docview/2676553340 https://pubmed.ncbi.nlm.nih.gov/PMC9192601 https://doaj.org/article/31040615be224672b42468b1b6563a4e |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9NAEB_uA8EX8ROjZ1nBN11s9ivJY1uulsIdoh70LWSTjRZKok3r0f_emU1SyaGCLwkkE5LszGR_s5n5DcCbiIonrVPcaam4KozgmRWGx4g1ElEIpwUVJ19dm8WNWq706gREXwvjk_Y9paX_TPfZYe8b5V3a555TwMlvT-GcqNvJqmdmdlxXIcbzWKmuPmYs4z9cOpiDPFX_AF_ezY6884vUzzzzh_Cgg4xs0j7kIzhx1WO41zaRPDyBH4tDsa3RDhA1FmzWiMnX6Xq6NQzhKKP0DEoGwvHbHNjaryCglPPEEVR1yeqSbVDPvNw6x9ZV2-UpZ0W9txvHiEb8Z0MrvKyhIJjRQv9TuJlffpkteNdIgec6ljuOX6VIJ8oUYeGIsAshhaRQxSSFzUsifAmj3Igo0XlCpbM2D8swK5OSyObzuJDP4KyqK_ccmDYuI8qiDF0dQ8_M2rHDiCdz0onQGB1A2A9tmncs49TsYpP6v90yTlt1pKiO1KsjvQ3g7fGa7y3Hxj-lp6SxoyTxY_sDOEBpZy8kS0hFW0eEeZGwCnexDS3CV5kpF8BFr--0c9omFRQ84ZQuTQCvj6fR3Whos8rVey9jNJUvjwOIBnYyeKDhmWr9zRN3JwinMQAO4F1vUb9v_vcXfvF_4i_hviBbp_5K8gLOdtu9e4XAaWdHcBqtItzG8w8jOJ9Mlp-XuJ9eXn_8NPJeNPJLEri9UvEvPFEYXA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQQviE8tMMBI8ATWGsdxkgeE1sHUsY-nTeqbiWMHKlXJ1rRU_af4G7lzkk6dxN72VKlx08T34d_Zd78D-JBQ8aRxkrs4klxaJXhuhOIpYo1MWOFiQcXJp2dqdCF_jOPxFvzta2EorbL3id5R27qgPfI9QcgW_W2kvl5eceoaRaerfQuNVi2O3WqJIVvz5egbyvejEIffzw9GvOsqwAu8wZyjiSZxJpUNrSP2KlxfI8LtKrOmKIn9JEwKJZIsLjKqIzVFWIZ5mZXEvF6kNsL73oP7uPAOyKKScbLe0yG29VTKrjZnEKV7jfSeyKfMU5zMlxvrn28TsIFtb2Zm3jie9ave4RN43MFVtt_q11PYctUzeNA2sFw9h6vRys5q1EFErJYdNGL_13AynCmGUJhRagglIqHspis28bsXOMp50gqq-GR1yaaoY7ycOccmVdthqmC2XpipY0Rh_qeh3WXWUADO6JDhBVzcyXS_hO2qrtwOsFi5nOiScnQzGPbmxgwcRlu5i5wIlYoDCPup1UXHcE6NNqban7RHqW7FoVEc2otDLwP4tP7NZcvvcevoIUlsPZK4uf0XOEG6M3UaSygpNo7I-hJhJH6kJjQInaNcugB2e3nrzmE0-lq9A3i_voymTlObV65e-DEqptLpQQDJhp5sPNDmlWry25OGZwjlMfgO4HOvUdd__v8XfnX7s76Dh6Pz0xN9cnR2_BoeCdJz6usU7cL2fLZwbxCwzc1bbyUMft61Wf4DEaNNsw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRAviE-RbYCR4AmsNnbiJA8IrRtVx2DigUl9C3HsQKUq2ZqWqv8afx13TtIpk9jbnio1bpr4Pvw7--53AG8jKp7UNuA2lAEPjBI800LxGLFGIoywoaDi5G9nanIefJmG0x3429XCUFpl5xOdozZVTnvkA0HIFv2tVIOiTYv4fjz-dHHJqYMUnbR27TQaFTm1mzWGb_XHk2OU9Tshxp9_HE1422GA53izJUdzjcIkUMY3lpiscK2VhOFVYnReEBOKH-VKREmYJ1RTqnO_8LMiKYiFPY-NxPvegbuRDH2ysWgabfd3iHk9DoK2Tmco40EdOK_k0ucpZubr3lroWgb0cO71LM1rR7VuBRw_goctdGWHja49hh1bPoF7TTPLzVO4nGzMokJ9RPRq2FEtDn-NZqOFYgiLGaWJUFISynG-YTO3k4GjrCOwoOpPVhVsjvrGi4W1bFY23aZyZqqVnltGdOZ_atppZjUF44wOHJ7B-a1M93PYLavSvgAWKpsRdVKGLgdD4EzrocXIK7PSCl-p0AO_m9o0b9nOqenGPHWn7jJOG3GkKI7UiSNde_B--5uLhuvjxtEjkth2JPF0uy9wgtLW7GksIaZQWyLui4QO8CPWvkYYLbPAenDQyTttnUedXqm6B2-2l9HsaWqz0lYrN0aFVEY99CDq6UnvgfpXytlvRyCeIKzHQNyDD51GXf35_1947-ZnfQ330SDTrydnp_vwQJCaU4sneQC7y8XKvkTsttSvnJEw-HnbVvkP0-xR6Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogenated+Cs2AgBiBr6+for+significantly+improved+efficiency+of+lead-free+inorganic+double+perovskite+solar+cell&rft.jtitle=Nature+communications&rft.au=Zhang%2C+Zeyu&rft.au=Sun%2C+Qingde&rft.au=Lu%2C+Yue&rft.au=Lu%2C+Feng&rft.date=2022-06-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-31016-w&rft.externalDocID=10_1038_s41467_022_31016_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |