Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell

Development of lead-free inorganic perovskite material, such as Cs 2 AgBiBr 6 , is of great importance to solve the toxicity and stability issues of traditional lead halide perovskite solar cells. However, due to a wide bandgap of Cs 2 AgBiBr 6 film, its light absorption ability is largely limited a...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 3397 - 12
Main Authors Zhang, Zeyu, Sun, Qingde, Lu, Yue, Lu, Feng, Mu, Xulin, Wei, Su-Huai, Sui, Manling
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.06.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Development of lead-free inorganic perovskite material, such as Cs 2 AgBiBr 6 , is of great importance to solve the toxicity and stability issues of traditional lead halide perovskite solar cells. However, due to a wide bandgap of Cs 2 AgBiBr 6 film, its light absorption ability is largely limited and the photoelectronic conversion efficiency is normally lower than 4.23%. In this text, by using a hydrogenation method, the bandgap of Cs 2 AgBiBr 6 films could be tunable from 2.18 eV to 1.64 eV. At the same time, the highest photoelectric conversion efficiency of hydrogenated Cs 2 AgBiBr 6 perovskite solar cell has been improved up to 6.37% with good environmental stability. Further investigations confirmed that the interstitial doping of atomic hydrogen in Cs 2 AgBiBr 6 lattice could not only adjust its valence and conduction band energy levels, but also optimize the carrier mobility and carrier lifetime. All these works provide an insightful strategy to fabricate high performance lead-free inorganic perovskite solar cells. Though inorganic perovskites are an attractive, non-toxic and stable alternative to organic-inorganic halide perovskite solar cells, realizing efficient devices remains a challenge. Here, the authors report hydrogenated lead-free inorganic perovskite solar cells with enhanced power conversion efficiency.
AbstractList Development of lead-free inorganic perovskite material, such as Cs2AgBiBr6, is of great importance to solve the toxicity and stability issues of traditional lead halide perovskite solar cells. However, due to a wide bandgap of Cs2AgBiBr6 film, its light absorption ability is largely limited and the photoelectronic conversion efficiency is normally lower than 4.23%. In this text, by using a hydrogenation method, the bandgap of Cs2AgBiBr6 films could be tunable from 2.18 eV to 1.64 eV. At the same time, the highest photoelectric conversion efficiency of hydrogenated Cs2AgBiBr6 perovskite solar cell has been improved up to 6.37% with good environmental stability. Further investigations confirmed that the interstitial doping of atomic hydrogen in Cs2AgBiBr6 lattice could not only adjust its valence and conduction band energy levels, but also optimize the carrier mobility and carrier lifetime. All these works provide an insightful strategy to fabricate high performance lead-free inorganic perovskite solar cells.Development of lead-free inorganic perovskite material, such as Cs2AgBiBr6, is of great importance to solve the toxicity and stability issues of traditional lead halide perovskite solar cells. However, due to a wide bandgap of Cs2AgBiBr6 film, its light absorption ability is largely limited and the photoelectronic conversion efficiency is normally lower than 4.23%. In this text, by using a hydrogenation method, the bandgap of Cs2AgBiBr6 films could be tunable from 2.18 eV to 1.64 eV. At the same time, the highest photoelectric conversion efficiency of hydrogenated Cs2AgBiBr6 perovskite solar cell has been improved up to 6.37% with good environmental stability. Further investigations confirmed that the interstitial doping of atomic hydrogen in Cs2AgBiBr6 lattice could not only adjust its valence and conduction band energy levels, but also optimize the carrier mobility and carrier lifetime. All these works provide an insightful strategy to fabricate high performance lead-free inorganic perovskite solar cells.
Development of lead-free inorganic perovskite material, such as Cs 2 AgBiBr 6 , is of great importance to solve the toxicity and stability issues of traditional lead halide perovskite solar cells. However, due to a wide bandgap of Cs 2 AgBiBr 6 film, its light absorption ability is largely limited and the photoelectronic conversion efficiency is normally lower than 4.23%. In this text, by using a hydrogenation method, the bandgap of Cs 2 AgBiBr 6 films could be tunable from 2.18 eV to 1.64 eV. At the same time, the highest photoelectric conversion efficiency of hydrogenated Cs 2 AgBiBr 6 perovskite solar cell has been improved up to 6.37% with good environmental stability. Further investigations confirmed that the interstitial doping of atomic hydrogen in Cs 2 AgBiBr 6 lattice could not only adjust its valence and conduction band energy levels, but also optimize the carrier mobility and carrier lifetime. All these works provide an insightful strategy to fabricate high performance lead-free inorganic perovskite solar cells. Though inorganic perovskites are an attractive, non-toxic and stable alternative to organic-inorganic halide perovskite solar cells, realizing efficient devices remains a challenge. Here, the authors report hydrogenated lead-free inorganic perovskite solar cells with enhanced power conversion efficiency.
Though inorganic perovskites are an attractive, non-toxic and stable alternative to organic-inorganic halide perovskite solar cells, realizing efficient devices remains a challenge. Here, the authors report hydrogenated lead-free inorganic perovskite solar cells with enhanced power conversion efficiency.
Development of lead-free inorganic perovskite material, such as Cs 2 AgBiBr 6 , is of great importance to solve the toxicity and stability issues of traditional lead halide perovskite solar cells. However, due to a wide bandgap of Cs 2 AgBiBr 6 film, its light absorption ability is largely limited and the photoelectronic conversion efficiency is normally lower than 4.23%. In this text, by using a hydrogenation method, the bandgap of Cs 2 AgBiBr 6 films could be tunable from 2.18 eV to 1.64 eV. At the same time, the highest photoelectric conversion efficiency of hydrogenated Cs 2 AgBiBr 6 perovskite solar cell has been improved up to 6.37% with good environmental stability. Further investigations confirmed that the interstitial doping of atomic hydrogen in Cs 2 AgBiBr 6 lattice could not only adjust its valence and conduction band energy levels, but also optimize the carrier mobility and carrier lifetime. All these works provide an insightful strategy to fabricate high performance lead-free inorganic perovskite solar cells.
Development of lead-free inorganic perovskite material, such as Cs2AgBiBr6, is of great importance to solve the toxicity and stability issues of traditional lead halide perovskite solar cells. However, due to a wide bandgap of Cs2AgBiBr6 film, its light absorption ability is largely limited and the photoelectronic conversion efficiency is normally lower than 4.23%. In this text, by using a hydrogenation method, the bandgap of Cs2AgBiBr6 films could be tunable from 2.18 eV to 1.64 eV. At the same time, the highest photoelectric conversion efficiency of hydrogenated Cs2AgBiBr6 perovskite solar cell has been improved up to 6.37% with good environmental stability. Further investigations confirmed that the interstitial doping of atomic hydrogen in Cs2AgBiBr6 lattice could not only adjust its valence and conduction band energy levels, but also optimize the carrier mobility and carrier lifetime. All these works provide an insightful strategy to fabricate high performance lead-free inorganic perovskite solar cells.Though inorganic perovskites are an attractive, non-toxic and stable alternative to organic-inorganic halide perovskite solar cells, realizing efficient devices remains a challenge. Here, the authors report hydrogenated lead-free inorganic perovskite solar cells with enhanced power conversion efficiency.
ArticleNumber 3397
Author Lu, Yue
Mu, Xulin
Zhang, Zeyu
Sui, Manling
Wei, Su-Huai
Lu, Feng
Sun, Qingde
Author_xml – sequence: 1
  givenname: Zeyu
  surname: Zhang
  fullname: Zhang, Zeyu
  organization: Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology
– sequence: 2
  givenname: Qingde
  surname: Sun
  fullname: Sun, Qingde
  organization: Beijing Computational Science Research Center
– sequence: 3
  givenname: Yue
  orcidid: 0000-0001-9800-3792
  surname: Lu
  fullname: Lu, Yue
  email: luyue@bjut.edu.cn
  organization: Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology
– sequence: 4
  givenname: Feng
  surname: Lu
  fullname: Lu, Feng
  organization: Department of Electronic Science and Engineering, and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University
– sequence: 5
  givenname: Xulin
  surname: Mu
  fullname: Mu, Xulin
  organization: Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology
– sequence: 6
  givenname: Su-Huai
  orcidid: 0000-0003-1563-4738
  surname: Wei
  fullname: Wei, Su-Huai
  email: suhuaiwei@csrc.ac.cn
  organization: Beijing Computational Science Research Center
– sequence: 7
  givenname: Manling
  orcidid: 0000-0002-0415-5881
  surname: Sui
  fullname: Sui, Manling
  email: mlsui@bjut.edu.cn
  organization: Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology
BookMark eNp9Uk1v1DAUjFARLaV_gJMlLlwC_o5zQWpXQCtV4gJny3GegxevvbWzrfbf19tUQHuoL896nhmPRvO2OYopQtO8J_gTwUx9Lpxw2bWY0pYRTGR796o5oZiTlnSUHf13P27OSlnjelhPFOdvmmMmZN91mJw0N5f7MacJoplhRKtCz6cLf5Elcimj4qfonbcmzmGP_Gab021Fgas7D9HuUXIogBlblwGQjylPJnqLxrQbAqAtVEL542dAJQWTkYUQ3jWvnQkFzh7nafPr29efq8v2-sf3q9X5dWuFYnNLSd-JnsuRjICJwlQxRgRXsh8H6wSVinRW0q4XtqdMqMESR4zrHeuUsmpkp83Vojsms9bb7Dcm73UyXj8sqlVt8uxtAF0D5FgSMQClNVQ68DrUQAYpJDMcqtaXRWu7GzYwWohzNuGJ6NOX6H_rKd3qnvRUYlIFPj4K5HSzgzLrjS-HNEyEtCuayk4KwRjHFfrhGXSddjnWqA6omg1mTFYUXVA2p1IyuL9mCNaHguilILoWRD8URN9VknpGsn42s08H0z68TGULtdR_4gT5n6sXWPeAU8_T
CitedBy_id crossref_primary_10_1007_s10853_024_09687_1
crossref_primary_10_1007_s12596_025_02456_6
crossref_primary_10_1021_acsanm_3c04385
crossref_primary_10_1109_JEDS_2024_3358087
crossref_primary_10_1088_1402_4896_ad9b59
crossref_primary_10_1039_D4TA00676C
crossref_primary_10_1039_D3TC02750C
crossref_primary_10_1039_D4TC02069C
crossref_primary_10_1021_acs_inorgchem_4c01299
crossref_primary_10_1088_1402_4896_ad4f2a
crossref_primary_10_1016_j_trechm_2022_10_008
crossref_primary_10_1021_acsami_3c06149
crossref_primary_10_1002_ange_202424395
crossref_primary_10_1016_j_solener_2024_113087
crossref_primary_10_1016_j_surfin_2023_103649
crossref_primary_10_1039_D4TC00585F
crossref_primary_10_1007_s12596_025_02539_4
crossref_primary_10_1021_acs_jpcc_4c05773
crossref_primary_10_1021_acsenergylett_3c02270
crossref_primary_10_1021_acs_jpcc_3c07468
crossref_primary_10_1002_adpr_202300269
crossref_primary_10_1016_j_ceramint_2024_02_002
crossref_primary_10_1002_adpr_202300300
crossref_primary_10_3390_ma18061197
crossref_primary_10_1016_j_jallcom_2023_173320
crossref_primary_10_1016_j_jpcs_2025_112662
crossref_primary_10_1021_acs_jpclett_4c02946
crossref_primary_10_1016_j_nanoen_2024_110347
crossref_primary_10_1039_D4TC02339K
crossref_primary_10_1002_ente_202300407
crossref_primary_10_1002_smtd_202300421
crossref_primary_10_1016_j_hybadv_2024_100174
crossref_primary_10_1039_D4CC05961A
crossref_primary_10_1039_D4QI00816B
crossref_primary_10_1063_5_0144708
crossref_primary_10_1021_acsami_4c22290
crossref_primary_10_1021_acs_jpcc_4c04453
crossref_primary_10_1002_adfm_202205829
crossref_primary_10_1016_j_molstruc_2024_138883
crossref_primary_10_3390_coatings12070952
crossref_primary_10_1016_j_solmat_2023_112630
crossref_primary_10_1155_2024_9990559
crossref_primary_10_1088_1402_4896_ad32b3
crossref_primary_10_1007_s11426_022_1445_2
crossref_primary_10_1016_j_apsusc_2022_155446
crossref_primary_10_1016_j_jallcom_2024_177354
crossref_primary_10_1039_D2NH00499B
crossref_primary_10_1039_D4TC00219A
crossref_primary_10_1039_D3CP05444F
crossref_primary_10_1021_acs_jpclett_3c02663
crossref_primary_10_1016_j_cej_2023_147945
crossref_primary_10_1063_5_0137866
crossref_primary_10_1016_j_ssc_2025_115832
crossref_primary_10_1007_s11356_023_30732_0
crossref_primary_10_1039_D4SE00958D
crossref_primary_10_1117_1_JPE_15_024501
crossref_primary_10_3390_molecules28186601
crossref_primary_10_1016_j_mssp_2025_109269
crossref_primary_10_1039_D4TC03715D
crossref_primary_10_7498_aps_73_20231919
crossref_primary_10_1002_adts_202401064
crossref_primary_10_1007_s40820_023_01033_5
crossref_primary_10_1021_acssuschemeng_4c09706
crossref_primary_10_1016_j_physb_2024_416801
crossref_primary_10_1039_D4TC01556H
crossref_primary_10_1016_j_jechem_2023_05_037
crossref_primary_10_1002_aenm_202204144
crossref_primary_10_1007_s11595_023_2727_z
crossref_primary_10_1016_j_optmat_2024_115896
crossref_primary_10_1016_j_mtener_2024_101725
crossref_primary_10_1016_j_jcis_2023_07_194
crossref_primary_10_1021_acs_energyfuels_3c03730
crossref_primary_10_1002_sstr_202300524
crossref_primary_10_3390_inorganics12070182
crossref_primary_10_1002_solr_202400028
crossref_primary_10_1063_5_0161023
crossref_primary_10_1016_j_jpcs_2024_112260
crossref_primary_10_3390_nano14010048
crossref_primary_10_1021_acsaem_4c02047
crossref_primary_10_1016_j_mtener_2024_101729
crossref_primary_10_1007_s12596_024_02270_6
crossref_primary_10_1039_D4RA08515A
crossref_primary_10_1088_1361_6528_ad40b3
crossref_primary_10_1021_acs_jpcc_4c01871
crossref_primary_10_3390_mi15020192
crossref_primary_10_1002_adfm_202307441
crossref_primary_10_1063_5_0175005
crossref_primary_10_1021_acs_jpcc_3c04362
crossref_primary_10_1002_inf2_12400
crossref_primary_10_1016_j_jallcom_2024_176968
crossref_primary_10_1039_D2CP04213D
crossref_primary_10_1680_jnaen_23_00001
crossref_primary_10_1016_j_jlumin_2023_120144
crossref_primary_10_1016_j_rineng_2025_104044
crossref_primary_10_1016_j_solmat_2024_112873
crossref_primary_10_1002_adfm_202306106
crossref_primary_10_1016_j_solener_2023_02_027
crossref_primary_10_1016_j_solener_2024_112843
crossref_primary_10_1063_5_0208324
crossref_primary_10_1021_acsami_3c12889
crossref_primary_10_1016_j_cej_2022_138926
crossref_primary_10_1016_j_ijleo_2024_171841
crossref_primary_10_1016_j_jcis_2022_07_165
crossref_primary_10_1016_j_jre_2025_02_010
crossref_primary_10_1680_jnaen_23_00004
crossref_primary_10_1016_j_surfin_2022_102470
crossref_primary_10_1016_j_nxener_2023_100011
crossref_primary_10_1021_acsami_3c00369
crossref_primary_10_1021_acsaom_4c00524
crossref_primary_10_1021_acs_chemmater_3c01048
crossref_primary_10_1021_acs_jpclett_3c02249
crossref_primary_10_1021_acs_jpclett_3c02403
crossref_primary_10_1021_acsami_3c11658
crossref_primary_10_1039_D3TC03314G
crossref_primary_10_1016_j_cjsc_2024_100272
crossref_primary_10_1021_acs_jpclett_3c00900
crossref_primary_10_1088_1402_4896_ad8816
crossref_primary_10_1039_D4MH00526K
crossref_primary_10_1002_smll_202404188
crossref_primary_10_1039_D2TC02643K
crossref_primary_10_1016_j_mtcomm_2023_106751
crossref_primary_10_1016_j_solener_2024_113205
crossref_primary_10_1016_j_mtchem_2023_101459
crossref_primary_10_1016_j_apsusc_2023_158807
crossref_primary_10_1039_D3CP02025H
crossref_primary_10_1039_D3CP03639A
crossref_primary_10_1039_D2TA07687J
crossref_primary_10_3934_matersci_2024036
crossref_primary_10_1016_j_mssp_2023_107652
crossref_primary_10_1016_j_jallcom_2024_177394
crossref_primary_10_1039_D3TC01031G
crossref_primary_10_1016_j_jpcs_2024_112243
crossref_primary_10_1016_j_mseb_2024_117710
crossref_primary_10_1002_admt_202300703
crossref_primary_10_1002_aenm_202202987
crossref_primary_10_1021_acsami_4c09281
crossref_primary_10_1016_j_solener_2024_112982
crossref_primary_10_1039_D3CS00728F
crossref_primary_10_1016_j_jpcs_2023_111815
crossref_primary_10_1016_j_cocom_2024_e00885
crossref_primary_10_1002_adfm_202307896
crossref_primary_10_3390_nano14040332
crossref_primary_10_1002_ente_202201078
crossref_primary_10_1002_lpor_202300952
crossref_primary_10_1021_acsaem_3c00223
crossref_primary_10_1088_1402_4896_ad1230
crossref_primary_10_1002_adom_202402650
crossref_primary_10_1002_aelm_202300751
crossref_primary_10_1016_j_jpcs_2023_111415
crossref_primary_10_1016_j_rser_2023_114187
crossref_primary_10_1002_solr_202400353
crossref_primary_10_1016_j_mssp_2024_109029
crossref_primary_10_1002_solr_202201112
crossref_primary_10_1002_solr_202300984
crossref_primary_10_1016_j_solener_2025_113347
crossref_primary_10_1016_j_susmat_2025_e01283
crossref_primary_10_1039_D4TC05218H
crossref_primary_10_1088_1402_4896_aca56b
crossref_primary_10_1002_anie_202424395
crossref_primary_10_1002_solr_202200932
crossref_primary_10_1016_j_ijleo_2023_170820
crossref_primary_10_1021_acsaem_2c02724
crossref_primary_10_1038_s41598_025_85326_2
crossref_primary_10_1002_adfm_202315428
crossref_primary_10_1039_D3RA07518D
crossref_primary_10_1021_acs_energyfuels_2c03429
crossref_primary_10_1109_ACCESS_2025_3543244
crossref_primary_10_1002_aenm_202300537
crossref_primary_10_1039_D5MA00010F
crossref_primary_10_1088_1361_6528_ad2158
crossref_primary_10_1021_acs_jpclett_3c02750
crossref_primary_10_1088_1361_6641_ada9cf
crossref_primary_10_1021_acs_energyfuels_4c00999
crossref_primary_10_1002_pssa_202200425
crossref_primary_10_1002_smtd_202300207
crossref_primary_10_1016_j_nanoen_2022_108088
crossref_primary_10_1002_smll_202402759
crossref_primary_10_1007_s12274_022_5232_3
crossref_primary_10_1021_acsphotonics_4c00628
crossref_primary_10_1021_acsenergylett_4c02439
crossref_primary_10_1021_acs_jpclett_4c01079
crossref_primary_10_1002_solr_202300754
crossref_primary_10_1002_aenm_202402087
crossref_primary_10_1063_5_0152473
crossref_primary_10_1016_j_chemphys_2024_112578
crossref_primary_10_1021_acsami_4c10378
crossref_primary_10_1016_j_mtcomm_2023_105431
crossref_primary_10_1016_j_mtcomm_2023_106761
crossref_primary_10_1021_acs_jctc_4c01115
crossref_primary_10_1007_s12598_023_02320_1
crossref_primary_10_15541_jim20230049
Cites_doi 10.1002/advs.201500324
10.1021/jacs.1c07200
10.1021/jacs.5b13294
10.1088/0256-307X/35/3/036104
10.1103/PhysRevB.54.11169
10.1126/sciadv.1501170
10.1126/science.aam6323
10.1016/j.ijhydene.2012.05.005
10.1201/9781420007282
10.1016/j.ijhydene.2020.02.012
10.1002/aenm.201500963
10.1039/C7TA06816F
10.1021/ja301539s
10.1002/pssb.201552007
10.1021/acsenergylett.9b00543
10.1002/solr.201900306
10.1002/adfm.201502340
10.1103/PhysRevLett.77.3865
10.1126/science.aan2301
10.1021/acs.chemmater.5b04231
10.1063/1.1564060
10.1021/acs.jpcc.8b00572
10.1021/acs.jpclett.7b02992
10.1002/pssa.200306618
10.1002/solr.201800217
10.1021/jacs.7b01629
10.1063/1.5123163
10.1007/978-3-540-71488-0
10.1039/C5EE02733K
10.1038/nature14133
10.5796/electrochemistry.85.222
10.1039/D0TA07145E
10.3390/plasma4020022
10.1557/PROC-513-177
10.1080/14786437008221061
10.1109/NANO.2016.7751511
10.1002/aenm.202103215
10.1246/cl.170345
10.3390/nano9121760
10.1103/PhysRevB.59.1758
10.1149/1.2050076
10.1021/jacs.7b11125
10.1021/acsenergylett.8b00085
10.1140/epjd/e2016-70474-0
10.1038/s41566-017-0012-4
10.1021/jacs.0c12786
10.1039/C9SC02581B
10.1016/0927-0256(96)00008-0
10.1002/adma.201706246
10.1038/nmat4572
10.1021/acsenergylett.6b00471
10.1002/cphc.201800346
10.1021/acs.jpcc.9b06396
10.1002/maco.201911322
10.1126/science.aaa0472
10.1002/adfm.202109891
10.1002/adma.201605005
10.1002/anie.201708684
10.1590/1980-5373-mr-2017-0448
10.1002/ange.202005568
10.1002/adfm.202005521
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-31016-w
DatabaseName Springer Nature OA/Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_31040615be224672b42468b1b6563a4e
PMC9192601
10_1038_s41467_022_31016_w
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 12074016
  funderid: https://doi.org/10.13039/501100001809
– fundername: ;
  grantid: 12074016
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c583t-21975946d1de01802833154869dbcf526817c62795c92358bc1f1af9f3788c8d3
IEDL.DBID C6C
ISSN 2041-1723
IngestDate Wed Aug 27 01:27:05 EDT 2025
Thu Aug 21 14:09:57 EDT 2025
Thu Jul 10 18:14:24 EDT 2025
Wed Aug 13 06:44:01 EDT 2025
Tue Jul 01 00:58:15 EDT 2025
Thu Apr 24 22:54:03 EDT 2025
Fri Feb 21 02:38:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-21975946d1de01802833154869dbcf526817c62795c92358bc1f1af9f3788c8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1563-4738
0000-0001-9800-3792
0000-0002-0415-5881
OpenAccessLink https://www.nature.com/articles/s41467-022-31016-w
PMID 35697701
PQID 2675830336
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_31040615be224672b42468b1b6563a4e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9192601
proquest_miscellaneous_2676553340
proquest_journals_2675830336
crossref_primary_10_1038_s41467_022_31016_w
crossref_citationtrail_10_1038_s41467_022_31016_w
springer_journals_10_1038_s41467_022_31016_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-13
PublicationDateYYYYMMDD 2022-06-13
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References ZhangCGaoLHayaseSMaTCurrent advancements in material research and techniques focusing on lead-free perovskite solar cellsChem. Lett.201746127612841:CAS:528:DC%2BC2sXhs1Ogt7nM10.1246/cl.170345
RanCBilateral interface engineering toward efficient 2D–3D bulk heterojunction tin halide lead-free perovskite solar cellsACS Energy Lett.201837137211:CAS:528:DC%2BC1cXivFKksLg%3D10.1021/acsenergylett.8b00085
NayakPKImpact of Bi3+ heterovalent doping in organic-inorganic metal halide perovskite crystalsJ. Am. Chem. Soc.20181405745771:CAS:528:DC%2BC2sXitValu7jE2926693410.1021/jacs.7b11125
JeonNJCompositional engineering of perovskite materials for high-performance solar cellsNature20155174764802015Natur.517..476J1:CAS:528:DC%2BC2MXivF2msg%3D%3D2556117710.1038/nature14133
MartinsTRDBAzambujaVMSantosDSDTavaresSSMInfluence of nanoxides on diffusivity and solubility of hydrogen in Pd-based alloysMater. Res.20172011111610.1590/1980-5373-mr-2017-0448
SlavneyAHHuTLindenbergAMKarunadasaHIA bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applicationsJ. Am. Chem. Soc.2016138213821411:CAS:528:DC%2BC28Xit1Kru7o%3D2685337910.1021/jacs.5b13294
LindquistKPTuning the bandgap of Cs2AgBiBr6 through dilute tin alloyingChem. Sci.20191010620106281:CAS:528:DC%2BC1MXhvVOhs7jL32110348702078610.1039/C9SC02581B
SlavneyAHDefect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorptionJ. Am. Chem. Soc.2017139501550181:CAS:528:DC%2BC2sXlt1yqsro%3D2835334510.1021/jacs.7b01629
DavisEAMottNFConduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductorsPhilos. Mag.197022090309221970PMag...22..903D1:CAS:528:DyaE3cXltlGhsrc%3D10.1080/14786437008221061
ViezbickeBDPatelSDavisBEBirnieDPIIIEvaluation of the tauc method for optical absorption edge determination: ZnO thin films as a model systemPhys. Status Solidi B.2015252170017102015PSSBR.252.1700V1:CAS:528:DC%2BC2MXksV2gtLg%3D10.1002/pssb.201552007
Correa-BaenaJPPromises and challenges of perovskite solar cellsScience20173587397442017Sci...358..739C1:CAS:528:DC%2BC2sXhslOnsLzO2912306010.1126/science.aam6323
ZhangYYIntrinsic instability of the hybrid halide perovskite semiconductor CH3NH3PbI3Chin. Phys. Lett.2018350361042018ChPhL..35c6104Z10.1088/0256-307X/35/3/036104
SavoryCNWalshAScanlonDOCan Pb-free halide double perovskites support high-efficiency solar cells?ACS Energy Lett.201619499551:CAS:528:DC%2BC28Xhs1Kku7fP28066823521027010.1021/acsenergylett.6b00471
MeteEDouble perovskite structure induced by Co addition to PbTiO3: Insights from DFT and experimental solid-state NMR spectroscopyJ. Phys. Chem. C.201912327132271391:CAS:528:DC%2BC1MXhvFektb3J10.1021/acs.jpcc.9b06396
ZhengGPopovBNWhiteREElectrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solutionJ. Electrochem. Soc.199514226951995JElS..142.2695Z1:CAS:528:DyaK2MXnsVCktro%3D10.1149/1.2050076
WangMHigh-Quality sequential-vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cellsSol. Rrl.20182180021710.1002/solr.2018002171:CAS:528:DC%2BC1cXisVSqtL7E
YuGCA comparison between proton and hydrogen chemical diffusion coefficients of titanium oxide filmsPhys. Stat. Sol. (a).20031983023112003PSSAR.198..302Y1:CAS:528:DC%2BD3sXnt1Wmtbw%3D10.1002/pssa.200306618
HayaseSResearch following Pb perovskite solar cellsElectrochemistry2017852222251:CAS:528:DC%2BC2sXnvVyjsrc%3D10.5796/electrochemistry.85.222
FanPSingle-source vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cellsNanomaterials2019917601:CAS:528:DC%2BB3cXosFOmtA%3D%3D695627610.3390/nano9121760
LiuGHExtending absorption of Cs2AgBiBr6 to near-infrared region (≈1350 nm) with intermediate bandAdv. Funct. Mater.202132210989110.1002/adfm.2021098911:CAS:528:DC%2BB3MXislOgsLzO
MilotRLEperonGESnaithHJJohnstonMBHerzLMTemperature dependent charge‐carrier dynamics in CH3NH3PbI3 perovskite thin filmsAdv. Funct. Mater.201525621862271:CAS:528:DC%2BC2MXhsFWku7vP10.1002/adfm.201502340
BerheTAOrganometal halide perovskite solar cells: degradation and stabilityEnergy Environ. Sci.201693233561:CAS:528:DC%2BC2MXhs1yjtL7L10.1039/C5EE02733K
LeeJParkCParkHKangNEffective hydrogen diffusion coefficient for CoCrFeMnNi high-entropy alloy and microstructural behaviors after hydrogen permeationInt. J. Hydrog. Energy20204510227102321:CAS:528:DC%2BB3cXjtlalsrg%3D10.1016/j.ijhydene.2020.02.012
ShiZLead-Free organic-inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectivesAdv. Mater.201729160500510.1002/adma.2016050051:CAS:528:DC%2BC2sXitVOjtLY%3D
YangWSIodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cellsScience2017356137613792017Sci...356.1376Y1:CAS:528:DC%2BC2sXhtVKgsLfP2866349810.1126/science.aan2301
SpencerMGAlamTHigh power direct energy conversion by nuclear batteriesAppl. Phys. Rev.201960313052019ApPRv...6c1305S10.1063/1.51231631:CAS:528:DC%2BC1MXhvVWksLrF
KresseGFurthmüllerJEfficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setComput. Mater. Sci.1996615501:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0
KresseGJoubertDFrom ultrasoft pseudopotentials to the projector augmented-wave methodPhys. Rev. B.199959175817751999PhRvB..59.1758K1:CAS:528:DyaK1MXkt12nug%3D%3D10.1103/PhysRevB.59.1758
BartesaghiDCharge carrier dynamics in Cs2AgBiBr6 double perovskiteJ. Phys. Chem. C.2018122480948161:CAS:528:DC%2BC1cXit1Wht7o%3D10.1021/acs.jpcc.8b00572
National Renewable Energy Laboratory. Best Research-Cell Efficiency chart, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220126.pdf (2022).
LeijtensTStability of metal halide perovskite solar cellsAdv. Energy Mater.20155150096310.1002/aenm.2015009631:CAS:528:DC%2BC2MXhsFKhu77J
KürtenDKhaderIKailerADetermining the effective hydrogen diffusion coefficient in 100Cr6Mater. Corros.20207191892310.1002/maco.2019113221:CAS:528:DC%2BB3cXjs1ans7k%3D
NingWHLong electron-hole diffusion length in high-quality lead-free double perovskite filmsAdv. Mater.201830170624610.1002/adma.2017062461:CAS:528:DC%2BC1cXmvVehtbk%3D
WangBNOrganic dye/Cs2AgBiBr6 double perovskite heterojunction solar cellsJ. Am. Chem. Soc.202114314877148831:CAS:528:DC%2BB3MXhvFWjs7nP3446776010.1021/jacs.1c07200
ChungICsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitionsJ. Am. Chem. Soc.2012134857985871:CAS:528:DC%2BC38XmvV2gtLY%3D2257807210.1021/ja301539s
JinQYRF and microwave ion sources study at institute of modern physicsPlasma202143323441:CAS:528:DC%2BB3MXhvFalurnI10.3390/plasma4020022
WangBNChlorophyll derivative-sensitized TiO2 electron transport layer for record efficiency of Cs2AgBiBr6 double perovskite solar cellsJ. Am. Chem. Soc.2021143220722111:CAS:528:DC%2BB3MXisVWgurk%3D3352280310.1021/jacs.0c12786
McClureETBallMRWindlWWoodwardPMCs2AgBiX6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductorsChem. Mater.201628134813541:CAS:528:DC%2BC28Xitleqtb8%3D10.1021/acs.chemmater.5b04231
BabayigitAEthirajanAMullerMConingsBToxicity of organometal halide perovskite solar cellsNat. Mater.2016152472512016NatMa..15..247B1:CAS:528:DC%2BC28Xjt1entro%3D2690695510.1038/nmat4572
OldenVAlvaroAAkselsenOMHydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint-experiments and FE simulationsInt. J. Hydrog. Energy20123711474114861:CAS:528:DC%2BC38XotlOgtbw%3D10.1016/j.ijhydene.2012.05.005
KungPKLead free double perovskites for perovskite solar cellsSol. Rrl.20194190030610.1002/solr.2019003061:CAS:528:DC%2BB3cXisVSms7w%3D
LiZWBandgap lowering in mixed alloys of Cs2Ag(SbxBi1−x)Br6 double perovskite thin filmsJ. Mater. Chem. A.2020821780217881:CAS:528:DC%2BB3cXitVWisbjO10.1039/D0TA07145E
ZuoCAdvances in perovskite solar cellsAdv. Sci.20163150032410.1002/advs.2015003241:CAS:528:DC%2BC28XhtFOjtrbE
YangJXZhangPWeiSHBand structure engineering of Cs2AgBiBr6 perovskite through order-disordered transition: a first-principle studyJ. Phys. Chem. Lett.2018931351:CAS:528:DC%2BC2sXhvFOiurvJ2923294410.1021/acs.jpclett.7b02992
GreulEPetrusMLBinekADocampoPBeinTHighly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applicationsJ. Mater. Chem. A.2017519972199811:CAS:528:DC%2BC2sXhsVKlsrbN10.1039/C7TA06816F
Sheikholeslam, S. A. et al. Hydrogen diffusion characterization of amorphous yttrium stabilized zirconia dielectrics. 2016 IEEE 16th Int. Conf. Nanotechnol. IEEE. 164–166 (2016).
ChenJTin(IV)-tolerant vapor phase growth and photophysical properties of aligned cesium tin halide perovskite (CsSnX3, X=Br, I) nanowiresACS Energy Lett.20194104510521:CAS:528:DC%2BC1MXntlGlsL0%3D10.1021/acsenergylett.9b00543
TaccognaFDilecceGNon-equilibrium in low-temperature plasmasEur. Phys. J. D.2016701371:CAS:528:DC%2BC28XhvFCns73K10.1140/epjd/e2016-70474-0
PanWCCs2AgBiBr6 single-crystal X-ray detectors with a low detection limitNat. Photon.2017117267322017NaPho..11..726P1:CAS:528:DC%2BC2sXhvVygtbfN10.1038/s41566-017-0012-4
KresseGFurthmüllerJEfficient iterative schemes for Ab initio total energy calculations using a plane-wave basis setPhys. Rev. B.19965411169111861996PhRvB..5411169K1:CAS:528:DyaK28Xms1Whu7Y%3D10.1103/PhysRevB.54.11169
BiDEfficient luminescent solar cells based on tailored mixed-cation perovskitesSci. Adv.20162e15011702016SciA....2E1170B26767196470504010.1126/sciadv.1501170
Mehrer, H. Diffusion in Solids: fundamentals, methods, materials, diffusion-controlled processes. 42 (Springer-Verlag Berlin Heidelberg, 2007).
Weidinger, A. et al. Hydrogen diffusion in chalcopyrite solar cell materials. MRS. O. P. L. 513, 177–181 (1998).
NieWYHigh-efficiency solution-processed perovskite solar cells with millimeter-scale grainsScience20153475225252015Sci...347..522N1:CAS:528:DC%2BC2MXhsV2nsrg%3D2563509310.1126
BD Viezbicke (31016_CR40) 2015; 252
J Heyd (31016_CR62) 2003; 118
M Wang (31016_CR18) 2018; 2
P Fan (31016_CR30) 2019; 9
MT Sirtl (31016_CR21) 2022; 12
WS Yang (31016_CR4) 2017; 356
F Taccogna (31016_CR55) 2016; 70
ZW Li (31016_CR34) 2020; 8
E Mete (31016_CR32) 2019; 123
J Lee (31016_CR47) 2020; 45
E Greul (31016_CR20) 2017; 5
GC Yu (31016_CR51) 2003; 198
A Babayigit (31016_CR6) 2016; 15
V Olden (31016_CR45) 2012; 37
WY Nie (31016_CR53) 2015; 347
JP Perdew (31016_CR61) 1996; 77
D Bartesaghi (31016_CR27) 2018; 122
D Bi (31016_CR3) 2016; 2
AH Slavney (31016_CR33) 2017; 139
G Kresse (31016_CR58) 1996; 54
QY Jin (31016_CR54) 2021; 4
31016_CR1
31016_CR44
Z Shi (31016_CR9) 2017; 29
MG Spencer (31016_CR56) 2019; 6
WH Ning (31016_CR29) 2018; 30
G Kresse (31016_CR60) 1999; 59
C Ran (31016_CR13) 2018; 3
CN Savory (31016_CR17) 2016; 1
TRDB Martins (31016_CR46) 2017; 20
EA Davis (31016_CR39) 1970; 22
J Chen (31016_CR16) 2019; 4
W Gao (31016_CR19) 2018; 19
ET McClure (31016_CR25) 2016; 28
JX Yang (31016_CR38) 2018; 9
G Zheng (31016_CR49) 1995; 142
WC Pan (31016_CR26) 2017; 11
31016_CR52
FX Ji (31016_CR37) 2020; 132
31016_CR50
C Zhang (31016_CR11) 2017; 46
I Chung (31016_CR15) 2012; 134
T Leijtens (31016_CR7) 2015; 5
S Hayase (31016_CR10) 2017; 85
PK Kung (31016_CR31) 2019; 4
31016_CR57
G Kresse (31016_CR59) 1996; 6
PK Nayak (31016_CR42) 2018; 140
KP Lindquist (31016_CR35) 2019; 10
D Kürten (31016_CR48) 2020; 71
RL Milot (31016_CR28) 2015; 25
TA Berhe (31016_CR8) 2016; 9
C Zuo (31016_CR12) 2016; 3
BN Wang (31016_CR22) 2021; 143
Q Li (31016_CR36) 2017; 56
GH Liu (31016_CR43) 2021; 32
AH Slavney (31016_CR24) 2016; 138
JP Correa-Baena (31016_CR5) 2017; 358
YY Zhang (31016_CR14) 2018; 35
FX Ji (31016_CR41) 2020; 30
NJ Jeon (31016_CR2) 2015; 517
BN Wang (31016_CR23) 2021; 143
References_xml – reference: JeonNJCompositional engineering of perovskite materials for high-performance solar cellsNature20155174764802015Natur.517..476J1:CAS:528:DC%2BC2MXivF2msg%3D%3D2556117710.1038/nature14133
– reference: FanPSingle-source vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cellsNanomaterials2019917601:CAS:528:DC%2BB3cXosFOmtA%3D%3D695627610.3390/nano9121760
– reference: WangMHigh-Quality sequential-vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cellsSol. Rrl.20182180021710.1002/solr.2018002171:CAS:528:DC%2BC1cXisVSqtL7E
– reference: ZhengGPopovBNWhiteREElectrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solutionJ. Electrochem. Soc.199514226951995JElS..142.2695Z1:CAS:528:DyaK2MXnsVCktro%3D10.1149/1.2050076
– reference: LiuGHExtending absorption of Cs2AgBiBr6 to near-infrared region (≈1350 nm) with intermediate bandAdv. Funct. Mater.202132210989110.1002/adfm.2021098911:CAS:528:DC%2BB3MXislOgsLzO
– reference: Weidinger, A. et al. Hydrogen diffusion in chalcopyrite solar cell materials. MRS. O. P. L. 513, 177–181 (1998).
– reference: MilotRLEperonGESnaithHJJohnstonMBHerzLMTemperature dependent charge‐carrier dynamics in CH3NH3PbI3 perovskite thin filmsAdv. Funct. Mater.201525621862271:CAS:528:DC%2BC2MXhsFWku7vP10.1002/adfm.201502340
– reference: Luo, Y. R. Comprehensive handbook of chemical bond energies.1399 (CRC Press, 2007).
– reference: SpencerMGAlamTHigh power direct energy conversion by nuclear batteriesAppl. Phys. Rev.201960313052019ApPRv...6c1305S10.1063/1.51231631:CAS:528:DC%2BC1MXhvVWksLrF
– reference: YangJXZhangPWeiSHBand structure engineering of Cs2AgBiBr6 perovskite through order-disordered transition: a first-principle studyJ. Phys. Chem. Lett.2018931351:CAS:528:DC%2BC2sXhvFOiurvJ2923294410.1021/acs.jpclett.7b02992
– reference: ChenJTin(IV)-tolerant vapor phase growth and photophysical properties of aligned cesium tin halide perovskite (CsSnX3, X=Br, I) nanowiresACS Energy Lett.20194104510521:CAS:528:DC%2BC1MXntlGlsL0%3D10.1021/acsenergylett.9b00543
– reference: Correa-BaenaJPPromises and challenges of perovskite solar cellsScience20173587397442017Sci...358..739C1:CAS:528:DC%2BC2sXhslOnsLzO2912306010.1126/science.aam6323
– reference: MartinsTRDBAzambujaVMSantosDSDTavaresSSMInfluence of nanoxides on diffusivity and solubility of hydrogen in Pd-based alloysMater. Res.20172011111610.1590/1980-5373-mr-2017-0448
– reference: KürtenDKhaderIKailerADetermining the effective hydrogen diffusion coefficient in 100Cr6Mater. Corros.20207191892310.1002/maco.2019113221:CAS:528:DC%2BB3cXjs1ans7k%3D
– reference: GreulEPetrusMLBinekADocampoPBeinTHighly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applicationsJ. Mater. Chem. A.2017519972199811:CAS:528:DC%2BC2sXhsVKlsrbN10.1039/C7TA06816F
– reference: ZhangYYIntrinsic instability of the hybrid halide perovskite semiconductor CH3NH3PbI3Chin. Phys. Lett.2018350361042018ChPhL..35c6104Z10.1088/0256-307X/35/3/036104
– reference: SavoryCNWalshAScanlonDOCan Pb-free halide double perovskites support high-efficiency solar cells?ACS Energy Lett.201619499551:CAS:528:DC%2BC28Xhs1Kku7fP28066823521027010.1021/acsenergylett.6b00471
– reference: ChungICsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitionsJ. Am. Chem. Soc.2012134857985871:CAS:528:DC%2BC38XmvV2gtLY%3D2257807210.1021/ja301539s
– reference: Sheikholeslam, S. A. et al. Hydrogen diffusion characterization of amorphous yttrium stabilized zirconia dielectrics. 2016 IEEE 16th Int. Conf. Nanotechnol. IEEE. 164–166 (2016).
– reference: LiZWBandgap lowering in mixed alloys of Cs2Ag(SbxBi1−x)Br6 double perovskite thin filmsJ. Mater. Chem. A.2020821780217881:CAS:528:DC%2BB3cXitVWisbjO10.1039/D0TA07145E
– reference: JiFXNear‐infrared light‐responsive Cu‐doped Cs2AgBiBr6Adv. Funct. Mater.20203020055211:CAS:528:DC%2BB3cXhvVKgtrvN10.1002/adfm.202005521
– reference: KungPKLead free double perovskites for perovskite solar cellsSol. Rrl.20194190030610.1002/solr.2019003061:CAS:528:DC%2BB3cXisVSms7w%3D
– reference: GaoWHigh-quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2% efficiencyChem. Phys. Chem.201819169617001:CAS:528:DC%2BC1cXos1OlsLc%3D2966728710.1002/cphc.201800346
– reference: YangWSIodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cellsScience2017356137613792017Sci...356.1376Y1:CAS:528:DC%2BC2sXhtVKgsLfP2866349810.1126/science.aan2301
– reference: BartesaghiDCharge carrier dynamics in Cs2AgBiBr6 double perovskiteJ. Phys. Chem. C.2018122480948161:CAS:528:DC%2BC1cXit1Wht7o%3D10.1021/acs.jpcc.8b00572
– reference: ViezbickeBDPatelSDavisBEBirnieDPIIIEvaluation of the tauc method for optical absorption edge determination: ZnO thin films as a model systemPhys. Status Solidi B.2015252170017102015PSSBR.252.1700V1:CAS:528:DC%2BC2MXksV2gtLg%3D10.1002/pssb.201552007
– reference: SlavneyAHDefect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorptionJ. Am. Chem. Soc.2017139501550181:CAS:528:DC%2BC2sXlt1yqsro%3D2835334510.1021/jacs.7b01629
– reference: PanWCCs2AgBiBr6 single-crystal X-ray detectors with a low detection limitNat. Photon.2017117267322017NaPho..11..726P1:CAS:528:DC%2BC2sXhvVygtbfN10.1038/s41566-017-0012-4
– reference: HayaseSResearch following Pb perovskite solar cellsElectrochemistry2017852222251:CAS:528:DC%2BC2sXnvVyjsrc%3D10.5796/electrochemistry.85.222
– reference: SirtlMT2D/3D Hybrid Cs2AgBiBr6 double perovskite solar cells: Improved energy level alignment for higher contact-selectively and large open circuit voltageAdv. Energy Mater.20221221032151:CAS:528:DC%2BB38Xnt12mtA%3D%3D10.1002/aenm.202103215
– reference: McClureETBallMRWindlWWoodwardPMCs2AgBiX6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductorsChem. Mater.201628134813541:CAS:528:DC%2BC28Xitleqtb8%3D10.1021/acs.chemmater.5b04231
– reference: JinQYRF and microwave ion sources study at institute of modern physicsPlasma202143323441:CAS:528:DC%2BB3MXhvFalurnI10.3390/plasma4020022
– reference: KresseGJoubertDFrom ultrasoft pseudopotentials to the projector augmented-wave methodPhys. Rev. B.199959175817751999PhRvB..59.1758K1:CAS:528:DyaK1MXkt12nug%3D%3D10.1103/PhysRevB.59.1758
– reference: PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.199677386538681996PhRvL..77.3865P1:CAS:528:DyaK28XmsVCgsbs%3D1006232810.1103/PhysRevLett.77.3865
– reference: LiQHigh-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskiteAngew. Chem. Int. Ed.20175615969159731:CAS:528:DC%2BC2sXhvVWqu77I10.1002/anie.201708684
– reference: BabayigitAEthirajanAMullerMConingsBToxicity of organometal halide perovskite solar cellsNat. Mater.2016152472512016NatMa..15..247B1:CAS:528:DC%2BC28Xjt1entro%3D2690695510.1038/nmat4572
– reference: OldenVAlvaroAAkselsenOMHydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint-experiments and FE simulationsInt. J. Hydrog. Energy20123711474114861:CAS:528:DC%2BC38XotlOgtbw%3D10.1016/j.ijhydene.2012.05.005
– reference: RanCBilateral interface engineering toward efficient 2D–3D bulk heterojunction tin halide lead-free perovskite solar cellsACS Energy Lett.201837137211:CAS:528:DC%2BC1cXivFKksLg%3D10.1021/acsenergylett.8b00085
– reference: NingWHLong electron-hole diffusion length in high-quality lead-free double perovskite filmsAdv. Mater.201830170624610.1002/adma.2017062461:CAS:528:DC%2BC1cXmvVehtbk%3D
– reference: Mehrer, H. Diffusion in Solids: fundamentals, methods, materials, diffusion-controlled processes. 42 (Springer-Verlag Berlin Heidelberg, 2007).
– reference: MeteEDouble perovskite structure induced by Co addition to PbTiO3: Insights from DFT and experimental solid-state NMR spectroscopyJ. Phys. Chem. C.201912327132271391:CAS:528:DC%2BC1MXhvFektb3J10.1021/acs.jpcc.9b06396
– reference: NayakPKImpact of Bi3+ heterovalent doping in organic-inorganic metal halide perovskite crystalsJ. Am. Chem. Soc.20181405745771:CAS:528:DC%2BC2sXitValu7jE2926693410.1021/jacs.7b11125
– reference: TaccognaFDilecceGNon-equilibrium in low-temperature plasmasEur. Phys. J. D.2016701371:CAS:528:DC%2BC28XhvFCns73K10.1140/epjd/e2016-70474-0
– reference: WangBNOrganic dye/Cs2AgBiBr6 double perovskite heterojunction solar cellsJ. Am. Chem. Soc.202114314877148831:CAS:528:DC%2BB3MXhvFWjs7nP3446776010.1021/jacs.1c07200
– reference: LeeJParkCParkHKangNEffective hydrogen diffusion coefficient for CoCrFeMnNi high-entropy alloy and microstructural behaviors after hydrogen permeationInt. J. Hydrog. Energy20204510227102321:CAS:528:DC%2BB3cXjtlalsrg%3D10.1016/j.ijhydene.2020.02.012
– reference: KresseGFurthmüllerJEfficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis setComput. Mater. Sci.1996615501:CAS:528:DyaK28XmtFWgsrk%3D10.1016/0927-0256(96)00008-0
– reference: BerheTAOrganometal halide perovskite solar cells: degradation and stabilityEnergy Environ. Sci.201693233561:CAS:528:DC%2BC2MXhs1yjtL7L10.1039/C5EE02733K
– reference: ZhangCGaoLHayaseSMaTCurrent advancements in material research and techniques focusing on lead-free perovskite solar cellsChem. Lett.201746127612841:CAS:528:DC%2BC2sXhs1Ogt7nM10.1246/cl.170345
– reference: ZuoCAdvances in perovskite solar cellsAdv. Sci.20163150032410.1002/advs.2015003241:CAS:528:DC%2BC28XhtFOjtrbE
– reference: BiDEfficient luminescent solar cells based on tailored mixed-cation perovskitesSci. Adv.20162e15011702016SciA....2E1170B26767196470504010.1126/sciadv.1501170
– reference: National Renewable Energy Laboratory. Best Research-Cell Efficiency chart, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev220126.pdf (2022).
– reference: KresseGFurthmüllerJEfficient iterative schemes for Ab initio total energy calculations using a plane-wave basis setPhys. Rev. B.19965411169111861996PhRvB..5411169K1:CAS:528:DyaK28Xms1Whu7Y%3D10.1103/PhysRevB.54.11169
– reference: JiFXLead-free halide double perovskite Cs2AgBiBr6 with decreased band gapAngew. Chem. Int. Ed.202013215303153062020AngCh.13215303J10.1002/ange.202005568
– reference: WangBNChlorophyll derivative-sensitized TiO2 electron transport layer for record efficiency of Cs2AgBiBr6 double perovskite solar cellsJ. Am. Chem. Soc.2021143220722111:CAS:528:DC%2BB3MXisVWgurk%3D3352280310.1021/jacs.0c12786
– reference: LeijtensTStability of metal halide perovskite solar cellsAdv. Energy Mater.20155150096310.1002/aenm.2015009631:CAS:528:DC%2BC2MXhsFKhu77J
– reference: NieWYHigh-efficiency solution-processed perovskite solar cells with millimeter-scale grainsScience20153475225252015Sci...347..522N1:CAS:528:DC%2BC2MXhsV2nsrg%3D2563509310.1126/science.aaa0472
– reference: YuGCA comparison between proton and hydrogen chemical diffusion coefficients of titanium oxide filmsPhys. Stat. Sol. (a).20031983023112003PSSAR.198..302Y1:CAS:528:DC%2BD3sXnt1Wmtbw%3D10.1002/pssa.200306618
– reference: HeydJScuseriaGEHybrid functionals based on a screened coulomb potentialJ. Chem. Phys.2003118820782152003JChPh.118.8207H1:CAS:528:DC%2BD3sXjtlSisLw%3D10.1063/1.1564060
– reference: ShiZLead-Free organic-inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectivesAdv. Mater.201729160500510.1002/adma.2016050051:CAS:528:DC%2BC2sXitVOjtLY%3D
– reference: LindquistKPTuning the bandgap of Cs2AgBiBr6 through dilute tin alloyingChem. Sci.20191010620106281:CAS:528:DC%2BC1MXhvVOhs7jL32110348702078610.1039/C9SC02581B
– reference: SlavneyAHHuTLindenbergAMKarunadasaHIA bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applicationsJ. Am. Chem. Soc.2016138213821411:CAS:528:DC%2BC28Xit1Kru7o%3D2685337910.1021/jacs.5b13294
– reference: DavisEAMottNFConduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductorsPhilos. Mag.197022090309221970PMag...22..903D1:CAS:528:DyaE3cXltlGhsrc%3D10.1080/14786437008221061
– volume: 3
  start-page: 1500324
  year: 2016
  ident: 31016_CR12
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500324
– volume: 143
  start-page: 14877
  year: 2021
  ident: 31016_CR23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c07200
– volume: 138
  start-page: 2138
  year: 2016
  ident: 31016_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13294
– volume: 35
  start-page: 036104
  year: 2018
  ident: 31016_CR14
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/35/3/036104
– volume: 54
  start-page: 11169
  year: 1996
  ident: 31016_CR58
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.54.11169
– volume: 2
  start-page: e1501170
  year: 2016
  ident: 31016_CR3
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501170
– volume: 358
  start-page: 739
  year: 2017
  ident: 31016_CR5
  publication-title: Science
  doi: 10.1126/science.aam6323
– volume: 37
  start-page: 11474
  year: 2012
  ident: 31016_CR45
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2012.05.005
– ident: 31016_CR57
  doi: 10.1201/9781420007282
– volume: 45
  start-page: 10227
  year: 2020
  ident: 31016_CR47
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2020.02.012
– volume: 5
  start-page: 1500963
  year: 2015
  ident: 31016_CR7
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500963
– volume: 5
  start-page: 19972
  year: 2017
  ident: 31016_CR20
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C7TA06816F
– volume: 134
  start-page: 8579
  year: 2012
  ident: 31016_CR15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja301539s
– volume: 252
  start-page: 1700
  year: 2015
  ident: 31016_CR40
  publication-title: Phys. Status Solidi B.
  doi: 10.1002/pssb.201552007
– volume: 4
  start-page: 1045
  year: 2019
  ident: 31016_CR16
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00543
– volume: 4
  start-page: 1900306
  year: 2019
  ident: 31016_CR31
  publication-title: Sol. Rrl.
  doi: 10.1002/solr.201900306
– volume: 25
  start-page: 6218
  year: 2015
  ident: 31016_CR28
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502340
– volume: 77
  start-page: 3865
  year: 1996
  ident: 31016_CR61
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 356
  start-page: 1376
  year: 2017
  ident: 31016_CR4
  publication-title: Science
  doi: 10.1126/science.aan2301
– volume: 28
  start-page: 1348
  year: 2016
  ident: 31016_CR25
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04231
– volume: 118
  start-page: 8207
  year: 2003
  ident: 31016_CR62
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1564060
– volume: 122
  start-page: 4809
  year: 2018
  ident: 31016_CR27
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.8b00572
– volume: 9
  start-page: 31
  year: 2018
  ident: 31016_CR38
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b02992
– volume: 198
  start-page: 302
  year: 2003
  ident: 31016_CR51
  publication-title: Phys. Stat. Sol. (a).
  doi: 10.1002/pssa.200306618
– volume: 2
  start-page: 1800217
  year: 2018
  ident: 31016_CR18
  publication-title: Sol. Rrl.
  doi: 10.1002/solr.201800217
– volume: 139
  start-page: 5015
  year: 2017
  ident: 31016_CR33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01629
– volume: 6
  start-page: 031305
  year: 2019
  ident: 31016_CR56
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5123163
– ident: 31016_CR44
  doi: 10.1007/978-3-540-71488-0
– volume: 9
  start-page: 323
  year: 2016
  ident: 31016_CR8
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02733K
– volume: 517
  start-page: 476
  year: 2015
  ident: 31016_CR2
  publication-title: Nature
  doi: 10.1038/nature14133
– volume: 85
  start-page: 222
  year: 2017
  ident: 31016_CR10
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.85.222
– volume: 8
  start-page: 21780
  year: 2020
  ident: 31016_CR34
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D0TA07145E
– volume: 4
  start-page: 332
  year: 2021
  ident: 31016_CR54
  publication-title: Plasma
  doi: 10.3390/plasma4020022
– ident: 31016_CR52
  doi: 10.1557/PROC-513-177
– volume: 22
  start-page: 0903
  year: 1970
  ident: 31016_CR39
  publication-title: Philos. Mag.
  doi: 10.1080/14786437008221061
– ident: 31016_CR50
  doi: 10.1109/NANO.2016.7751511
– volume: 12
  start-page: 2103215
  year: 2022
  ident: 31016_CR21
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202103215
– volume: 46
  start-page: 1276
  year: 2017
  ident: 31016_CR11
  publication-title: Chem. Lett.
  doi: 10.1246/cl.170345
– volume: 9
  start-page: 1760
  year: 2019
  ident: 31016_CR30
  publication-title: Nanomaterials
  doi: 10.3390/nano9121760
– volume: 59
  start-page: 1758
  year: 1999
  ident: 31016_CR60
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.59.1758
– volume: 142
  start-page: 2695
  year: 1995
  ident: 31016_CR49
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2050076
– volume: 140
  start-page: 574
  year: 2018
  ident: 31016_CR42
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11125
– volume: 3
  start-page: 713
  year: 2018
  ident: 31016_CR13
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00085
– volume: 70
  start-page: 1
  year: 2016
  ident: 31016_CR55
  publication-title: Eur. Phys. J. D.
  doi: 10.1140/epjd/e2016-70474-0
– volume: 11
  start-page: 726
  year: 2017
  ident: 31016_CR26
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-017-0012-4
– volume: 143
  start-page: 2207
  year: 2021
  ident: 31016_CR22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c12786
– volume: 10
  start-page: 10620
  year: 2019
  ident: 31016_CR35
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC02581B
– volume: 6
  start-page: 15
  year: 1996
  ident: 31016_CR59
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 30
  start-page: 1706246
  year: 2018
  ident: 31016_CR29
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706246
– volume: 15
  start-page: 247
  year: 2016
  ident: 31016_CR6
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4572
– volume: 1
  start-page: 949
  year: 2016
  ident: 31016_CR17
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00471
– volume: 19
  start-page: 1696
  year: 2018
  ident: 31016_CR19
  publication-title: Chem. Phys. Chem.
  doi: 10.1002/cphc.201800346
– volume: 123
  start-page: 27132
  year: 2019
  ident: 31016_CR32
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.9b06396
– volume: 71
  start-page: 918
  year: 2020
  ident: 31016_CR48
  publication-title: Mater. Corros.
  doi: 10.1002/maco.201911322
– volume: 347
  start-page: 522
  year: 2015
  ident: 31016_CR53
  publication-title: Science
  doi: 10.1126/science.aaa0472
– volume: 32
  start-page: 2109891
  year: 2021
  ident: 31016_CR43
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202109891
– volume: 29
  start-page: 1605005
  year: 2017
  ident: 31016_CR9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605005
– ident: 31016_CR1
– volume: 56
  start-page: 15969
  year: 2017
  ident: 31016_CR36
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201708684
– volume: 20
  start-page: 111
  year: 2017
  ident: 31016_CR46
  publication-title: Mater. Res.
  doi: 10.1590/1980-5373-mr-2017-0448
– volume: 132
  start-page: 15303
  year: 2020
  ident: 31016_CR37
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202005568
– volume: 30
  start-page: 2005521
  year: 2020
  ident: 31016_CR41
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202005521
SSID ssj0000391844
Score 2.7036982
Snippet Development of lead-free inorganic perovskite material, such as Cs 2 AgBiBr 6 , is of great importance to solve the toxicity and stability issues of...
Development of lead-free inorganic perovskite material, such as Cs2AgBiBr6, is of great importance to solve the toxicity and stability issues of traditional...
Though inorganic perovskites are an attractive, non-toxic and stable alternative to organic-inorganic halide perovskite solar cells, realizing efficient...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3397
SubjectTerms 140/146
147/135
147/143
639/301/299/946
639/4077/909/4101/4096/946
Carrier lifetime
Carrier mobility
Conduction bands
Efficiency
Electromagnetic absorption
Energy conversion efficiency
Energy gap
Energy levels
Humanities and Social Sciences
Hydrogenation
Lead compounds
Lead free
Metal halides
multidisciplinary
Perovskites
Photoelectricity
Photovoltaic cells
Science
Science (multidisciplinary)
Solar cells
Stability
Toxicity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEF5CoJBLadqEqknKFnpLllj7knSMQ4MptKcGclu02lFrMFJr2Qn-95lZyW4UaHvpyWCtsTSPnW9WM98w9jGj5kkPWoBRWuhgpSi9tCJHrFHIIMFIak7-8tXObvXnO3P3ZNQX1YT19MC94C4RflDMMR6I-iyTXuNH7lOPQESVGmj3xZj3JJmKe7AqMHXRQ5fMROWXnY57Qixep4xVPIwiUSTsH6HM5zWSz16Uxvhz84q9HIAjv-pv-JDtQfOavehHSW7esF-zTVi2aA2IHQO_7uTV9-l8urQcQSmnIg0qCUIpLjZ8Hs8RcBVE-gjqveRtzReobVEvAfi86Wc9VTy0a78ATmTi9x2d8_KOUmFOx_1H7Pbm07frmRjGKYjK5GolcG_KTKFtSAMQbRcCC0UJiy2Cr2qifUmzysqsMFVBDbS-Suu0rIuaKOerPKhjtt-0Dbxl3FgoibioRIfHBLT0fgKY95SgQKbWmoSlW9G6auAap5EXCxffeavc9epwqA4X1eEeEna--83Pnmnjr6unpLHdSmLJjl-ggNxgO-5ftpOw062-3eC6nZOUQmFgVzZhH3aX0elItGUD7TqusYaamCcJy0Z2Mrqh8ZVm_iPSdxcIqjENTtjF1qJ-__mfH_jd_3jgE3YgyQNo9pI6Zfur5RrOEFSt_PvoP48oaxnx
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEF7alEIvoemDqknDFnprl1j7knQKcWgwhfbUgG-L9qHWYKTEshv87zOzWjso0JwM1hhLOzujb2ZnviHkS4HNkzZIFpSQTHrNWW25ZiVgjYp7HhTH5uSfv_TsWv6Yq3lKuPWprHLnE6Oj9p3DHPkZR2QL_lbo85tbhlOj8HQ1jdB4Tl4gdRmWdBXzYp9jQfbzUsrUKzMR5Vkvo2eIJewYt7K70fso0vaPsObjSslHx6XxLXT1mhwm-EgvBn0fkWehfUNeDgMlt2_J7WzrVx3sCUCQnl72_OLPdDFdaQrQlGKpBhYGwVout3QRswkgFSKJBHZg0q6hS9A5a1Yh0EU7THxy1HcbuwwUKcX_9ZjtpT0GxBST_u_I9dX335czloYqMAfrt2bgoQpVSe1zH5C8C-CFwLBFV966Bslf8sJpXlTKVdhGa13e5HVTNUg870ov3pODtmvDB0KVDjXSF9Vg9hCG1tZOAkQ_dRCB51qrjOS7pTUuMY7j4IuliSffojSDOgyow0R1mLuMfN3_5mbg23hSeooa20siV3b8AhbIJNNDWUQtygYkzyu4lfBR2twClBW1DBk52enbJAPuzcN2y8jn_WUwPVzaug3dJspoha3Mk4wUo30yuqHxlXbxN5J4VwCtIRjOyLfdjnr48_8_8Men7_WYvOK4t3G2kjghB-vVJnwC0LS2p9Ey7gHstxNk
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qRfBF_MRolRV802izX0keRHrFcgj1yYO-LdnsRg9CYpM76_33zmySk5Qq-BRIJiSZj93fZHd-A_A6peJJ62XslZCxdJrHheU6zhBr5NxxrzgVJ59_0cuV_HyhLg5ganc0KrC_MbWjflKrrn7363L3EQP-w1Aynr3vZQj3sC-dktH46hbcxpkppUA9H-F-GJlFjgmNHGtnbr51Nj8FGv8Z9ry-c_La8mmYlc7uw70RTrKTwf4P4MA3D-HO0GBy9wgulzvXtegjiCgdO-35ybfFetFphlCV0dYN2iiEuq13bB3-LqCUD6QSVJHJ2orV6ANx1XnP1s3QAapkrt3a2jOiGP_Z099f1pMWGS0CPIbV2aevp8t4bLIQlyoTmxhHrFTlUrvEeSLzQrghKI3RubNlRWQwSVpqnuaqzKms1pZJlRRVXhERfZk58QQOm7bxT4Ep7QuiMypwGMC0tLD22GM2VHjheaK1iiCZVGvKkYGcGmHUJqyEi8wM5jBoDhPMYa4ieLO_58fAv_FP6QVZbC9J3NnhBCrIjKFIsoRilPVEppdyK_GQ2cQitBWF9BEcTfY2kz8aTokVTvdCR_BqfxlDkVRbNL7dBhmtqLT5OIJ05iezF5pfadbfA6l3jlAbk-MI3k4e9efhf__gZ_8n_hzucvJ16r0kjuBw0239CwRVG_syRMpv8xUbOA
  priority: 102
  providerName: Scholars Portal
Title Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell
URI https://link.springer.com/article/10.1038/s41467-022-31016-w
https://www.proquest.com/docview/2675830336
https://www.proquest.com/docview/2676553340
https://pubmed.ncbi.nlm.nih.gov/PMC9192601
https://doaj.org/article/31040615be224672b42468b1b6563a4e
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9NAEB_uA8EX8ROjZ1nBN11s9ivJY1uulsIdoh70LWSTjRZKok3r0f_emU1SyaGCLwkkE5LszGR_s5n5DcCbiIonrVPcaam4KozgmRWGx4g1ElEIpwUVJ19dm8WNWq706gREXwvjk_Y9paX_TPfZYe8b5V3a555TwMlvT-GcqNvJqmdmdlxXIcbzWKmuPmYs4z9cOpiDPFX_AF_ezY6884vUzzzzh_Cgg4xs0j7kIzhx1WO41zaRPDyBH4tDsa3RDhA1FmzWiMnX6Xq6NQzhKKP0DEoGwvHbHNjaryCglPPEEVR1yeqSbVDPvNw6x9ZV2-UpZ0W9txvHiEb8Z0MrvKyhIJjRQv9TuJlffpkteNdIgec6ljuOX6VIJ8oUYeGIsAshhaRQxSSFzUsifAmj3Igo0XlCpbM2D8swK5OSyObzuJDP4KyqK_ccmDYuI8qiDF0dQ8_M2rHDiCdz0onQGB1A2A9tmncs49TsYpP6v90yTlt1pKiO1KsjvQ3g7fGa7y3Hxj-lp6SxoyTxY_sDOEBpZy8kS0hFW0eEeZGwCnexDS3CV5kpF8BFr--0c9omFRQ84ZQuTQCvj6fR3Whos8rVey9jNJUvjwOIBnYyeKDhmWr9zRN3JwinMQAO4F1vUb9v_vcXfvF_4i_hviBbp_5K8gLOdtu9e4XAaWdHcBqtItzG8w8jOJ9Mlp-XuJ9eXn_8NPJeNPJLEri9UvEvPFEYXA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQQviE8tMMBI8ATWGsdxkgeE1sHUsY-nTeqbiWMHKlXJ1rRU_af4G7lzkk6dxN72VKlx08T34d_Zd78D-JBQ8aRxkrs4klxaJXhuhOIpYo1MWOFiQcXJp2dqdCF_jOPxFvzta2EorbL3id5R27qgPfI9QcgW_W2kvl5eceoaRaerfQuNVi2O3WqJIVvz5egbyvejEIffzw9GvOsqwAu8wZyjiSZxJpUNrSP2KlxfI8LtKrOmKIn9JEwKJZIsLjKqIzVFWIZ5mZXEvF6kNsL73oP7uPAOyKKScbLe0yG29VTKrjZnEKV7jfSeyKfMU5zMlxvrn28TsIFtb2Zm3jie9ave4RN43MFVtt_q11PYctUzeNA2sFw9h6vRys5q1EFErJYdNGL_13AynCmGUJhRagglIqHspis28bsXOMp50gqq-GR1yaaoY7ycOccmVdthqmC2XpipY0Rh_qeh3WXWUADO6JDhBVzcyXS_hO2qrtwOsFi5nOiScnQzGPbmxgwcRlu5i5wIlYoDCPup1UXHcE6NNqban7RHqW7FoVEc2otDLwP4tP7NZcvvcevoIUlsPZK4uf0XOEG6M3UaSygpNo7I-hJhJH6kJjQInaNcugB2e3nrzmE0-lq9A3i_voymTlObV65e-DEqptLpQQDJhp5sPNDmlWry25OGZwjlMfgO4HOvUdd__v8XfnX7s76Dh6Pz0xN9cnR2_BoeCdJz6usU7cL2fLZwbxCwzc1bbyUMft61Wf4DEaNNsw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRAviE-RbYCR4AmsNnbiJA8IrRtVx2DigUl9C3HsQKUq2ZqWqv8afx13TtIpk9jbnio1bpr4Pvw7--53AG8jKp7UNuA2lAEPjBI800LxGLFGIoywoaDi5G9nanIefJmG0x3429XCUFpl5xOdozZVTnvkA0HIFv2tVIOiTYv4fjz-dHHJqYMUnbR27TQaFTm1mzWGb_XHk2OU9Tshxp9_HE1422GA53izJUdzjcIkUMY3lpiscK2VhOFVYnReEBOKH-VKREmYJ1RTqnO_8LMiKYiFPY-NxPvegbuRDH2ysWgabfd3iHk9DoK2Tmco40EdOK_k0ucpZubr3lroWgb0cO71LM1rR7VuBRw_goctdGWHja49hh1bPoF7TTPLzVO4nGzMokJ9RPRq2FEtDn-NZqOFYgiLGaWJUFISynG-YTO3k4GjrCOwoOpPVhVsjvrGi4W1bFY23aZyZqqVnltGdOZ_atppZjUF44wOHJ7B-a1M93PYLavSvgAWKpsRdVKGLgdD4EzrocXIK7PSCl-p0AO_m9o0b9nOqenGPHWn7jJOG3GkKI7UiSNde_B--5uLhuvjxtEjkth2JPF0uy9wgtLW7GksIaZQWyLui4QO8CPWvkYYLbPAenDQyTttnUedXqm6B2-2l9HsaWqz0lYrN0aFVEY99CDq6UnvgfpXytlvRyCeIKzHQNyDD51GXf35_1947-ZnfQ330SDTrydnp_vwQJCaU4sneQC7y8XKvkTsttSvnJEw-HnbVvkP0-xR6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogenated+Cs2AgBiBr6+for+significantly+improved+efficiency+of+lead-free+inorganic+double+perovskite+solar+cell&rft.jtitle=Nature+communications&rft.au=Zhang%2C+Zeyu&rft.au=Sun%2C+Qingde&rft.au=Lu%2C+Yue&rft.au=Lu%2C+Feng&rft.date=2022-06-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-31016-w&rft.externalDocID=10_1038_s41467_022_31016_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon