PINK1 Triggers Autocatalytic Activation of Parkin to Specify Cell Fate Decisions

The PINK1-Parkin pathway is known to play important roles in regulating mitochondria dynamics, motility, and quality control. Activation of this pathway can be triggered by a variety of cellular stress signals that cause mitochondrial damage. How this pathway senses different levels of mitochondrial...

Full description

Saved in:
Bibliographic Details
Published inCurrent biology Vol. 24; no. 16; pp. 1854 - 1865
Main Authors Zhang, Conggang, Lee, Schuyler, Peng, Yinghua, Bunker, Eric, Giaime, Emilie, Shen, Jie, Zhou, Zongyao, Liu, Xuedong
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 18.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The PINK1-Parkin pathway is known to play important roles in regulating mitochondria dynamics, motility, and quality control. Activation of this pathway can be triggered by a variety of cellular stress signals that cause mitochondrial damage. How this pathway senses different levels of mitochondrial damage and mediates cell fate decisions accordingly is incompletely understood. Here, we present evidence that PINK1-Parkin has both cytoprotective and proapoptotic functions. PINK1-Parkin operates as a molecular switch to dictate cell fate decisions in response to different cellular stressors. Cells exposed to severe and irreparable mitochondrial damage agents such as valinomycin can undergo PINK1-Parkin-dependent apoptosis. The proapoptotic response elicited by valinomycin is associated with the degradation of Mcl-1. PINK1 directly phosphorylates Parkin at Ser65 of its Ubl domain and triggers activation of its E3 ligase activity through an autocatalytic mechanism that amplifies its E3 ligase activity toward Mcl-1. Autocatalytic activation of Parkin bolsters its accumulation on mitochondria and apoptotic response to valinomycin. Our results suggest that PINK1-Parkin constitutes a damage-gated molecular switch that governs cellular-context-specific cell fate decisions in response to variable stress stimuli. [Display omitted] •PINK1-Parkin operates as a damage-gated molecular switch for cell fate decisions•Parkin catalyzes ubiquitination of selective substrates in response to specific stimuli•Parkin is the E3 ligase for Mcl-1 and mediates valinomycin-induced apoptosis•PINK1 triggers autocatalytic activation of Parkin by phosphorylating Ser65 of Parkin Zhang et al. show that the PINK1-Parkin pathway can mediate different cell fates in response to different cell stress stimuli. Exposure to mitochondrial damage reveals a proapoptotic function of PINK1 and Parkin. PINK1 directly phosphorylates Parkin, triggering its autocatalytic activation and amplifying its E3 ligase activity toward Mcl-1.
AbstractList The PINK1-Parkin pathway is known to play important roles in regulating mitochondria dynamics, motility, and quality control. Activation of this pathway can be triggered by a variety of cellular stress signals that cause mitochondrial damage. How this pathway senses different levels of mitochondrial damage and mediates cell fate decisions accordingly is incompletely understood. Here, we present evidence that PINK1-Parkin has both cytoprotective and proapoptotic functions. PINK1-Parkin operates as a molecular switch to dictate cell fate decisions in response to different cellular stressors. Cells exposed to severe and irreparable mitochondrial damage agents such as valinomycin can undergo PINK1-Parkin-dependent apoptosis. The proapoptotic response elicited by valinomycin is associated with the degradation of Mcl-1. PINK1 directly phosphorylates Parkin at Ser65 of its Ubl domain and triggers activation of its E3 ligase activity through an autocatalytic mechanism that amplifies its E3 ligase activity toward Mcl-1. Autocatalytic activation of Parkin bolsters its accumulation on mitochondria and apoptotic response to valinomycin. Our results suggest that PINK1-Parkin constitutes a damage-gated molecular switch that governs cellular-context-specific cell fate decisions in response to variable stress stimuli. [Display omitted] •PINK1-Parkin operates as a damage-gated molecular switch for cell fate decisions•Parkin catalyzes ubiquitination of selective substrates in response to specific stimuli•Parkin is the E3 ligase for Mcl-1 and mediates valinomycin-induced apoptosis•PINK1 triggers autocatalytic activation of Parkin by phosphorylating Ser65 of Parkin Zhang et al. show that the PINK1-Parkin pathway can mediate different cell fates in response to different cell stress stimuli. Exposure to mitochondrial damage reveals a proapoptotic function of PINK1 and Parkin. PINK1 directly phosphorylates Parkin, triggering its autocatalytic activation and amplifying its E3 ligase activity toward Mcl-1.
Background: The PINK1-Parkin pathway is known to play important roles in regulating mitochondria dynamics, motility, and quality control. Activation of this pathway can be triggered by a variety of cellular stress signals that cause mitochondrial damage. How this pathway senses different levels of mitochondrial damage and mediates cell fate decisions accordingly is incompletely understood. Results: Here, we present evidence that PINK1-Parkin has both cytoprotective and proapoptotic functions. PINK1-Parkin operates as a molecular switch to dictate cell fate decisions in response to different cellular stressors. Cells exposed to severe and irreparable mitochondrial damage agents such as valinomycin can undergo PINK1-Parkin-dependent apoptosis. The proapoptotic response elicited by valinomycin is associated with the degradation of Mcl-1. PINK1 directly phosphorylates Parkin at Ser65 of its Ubl domain and triggers activation of its E3 ligase activity through an autocatalytic mechanism that amplifies its E3 ligase activity toward Mcl-1. Conclusions: Autocatalytic activation of Parkin bolsters its accumulation on mitochondria and apoptotic response to valinomycin. Our results suggest that PINK1-Parkin constitutes a damage-gated molecular switch that governs cellular-context-specific cell fate decisions in response to variable stress stimuli.
The PINK1-Parkin pathway is known to play important roles in regulating mitochondria dynamics, motility, and quality control. Activation of this pathway can be triggered by a variety of cellular stress signals that cause mitochondrial damage. How this pathway senses different levels of mitochondrial damage and mediates cell fate decisions accordingly is incompletely understood.BACKGROUNDThe PINK1-Parkin pathway is known to play important roles in regulating mitochondria dynamics, motility, and quality control. Activation of this pathway can be triggered by a variety of cellular stress signals that cause mitochondrial damage. How this pathway senses different levels of mitochondrial damage and mediates cell fate decisions accordingly is incompletely understood.Here, we present evidence that PINK1-Parkin has both cytoprotective and proapoptotic functions. PINK1-Parkin operates as a molecular switch to dictate cell fate decisions in response to different cellular stressors. Cells exposed to severe and irreparable mitochondrial damage agents such as valinomycin can undergo PINK1-Parkin-dependent apoptosis. The proapoptotic response elicited by valinomycin is associated with the degradation of Mcl-1. PINK1 directly phosphorylates Parkin at Ser65 of its Ubl domain and triggers activation of its E3 ligase activity through an autocatalytic mechanism that amplifies its E3 ligase activity toward Mcl-1.RESULTSHere, we present evidence that PINK1-Parkin has both cytoprotective and proapoptotic functions. PINK1-Parkin operates as a molecular switch to dictate cell fate decisions in response to different cellular stressors. Cells exposed to severe and irreparable mitochondrial damage agents such as valinomycin can undergo PINK1-Parkin-dependent apoptosis. The proapoptotic response elicited by valinomycin is associated with the degradation of Mcl-1. PINK1 directly phosphorylates Parkin at Ser65 of its Ubl domain and triggers activation of its E3 ligase activity through an autocatalytic mechanism that amplifies its E3 ligase activity toward Mcl-1.Autocatalytic activation of Parkin bolsters its accumulation on mitochondria and apoptotic response to valinomycin. Our results suggest that PINK1-Parkin constitutes a damage-gated molecular switch that governs cellular-context-specific cell fate decisions in response to variable stress stimuli.CONCLUSIONSAutocatalytic activation of Parkin bolsters its accumulation on mitochondria and apoptotic response to valinomycin. Our results suggest that PINK1-Parkin constitutes a damage-gated molecular switch that governs cellular-context-specific cell fate decisions in response to variable stress stimuli.
The PINK1-Parkin pathway is known to play important roles in regulating mitochondria dynamics, motility, and quality control. Activation of this pathway can be triggered by a variety of cellular stress signals that cause mitochondrial damage. How this pathway senses different levels of mitochondrial damage and mediates cell fate decisions accordingly is incompletely understood. Here, we present evidence that PINK1-Parkin has both cytoprotective and proapoptotic functions. PINK1-Parkin operates as a molecular switch to dictate cell fate decisions in response to different cellular stressors. Cells exposed to severe and irreparable mitochondrial damage agents such as valinomycin can undergo PINK1-Parkin-dependent apoptosis. The proapoptotic response elicited by valinomycin is associated with the degradation of Mcl-1. PINK1 directly phosphorylates Parkin at Ser65 of its Ubl domain and triggers activation of its E3 ligase activity through an autocatalytic mechanism that amplifies its E3 ligase activity toward Mcl-1. Autocatalytic activation of Parkin bolsters its accumulation on mitochondria and apoptotic response to valinomycin. Our results suggest that PINK1-Parkin constitutes a damage-gated molecular switch that governs cellular-context-specific cell fate decisions in response to variable stress stimuli.
Author Giaime, Emilie
Peng, Yinghua
Lee, Schuyler
Zhang, Conggang
Shen, Jie
Zhou, Zongyao
Bunker, Eric
Liu, Xuedong
AuthorAffiliation 2 Center for Neurologic Diseases, Brigham and Women's Hospital, Program in Neuroscience, Harvard Medical School, New Research Building, Rm 636E 77 Avenue Louis Pasteur, Boston, MA 02115
1 Department of Chemistry and Biochemistry, 3415 Colorado Ave, JSCBB, and University of Colorado-Boulder, Boulder, Colorado 80303
AuthorAffiliation_xml – name: 1 Department of Chemistry and Biochemistry, 3415 Colorado Ave, JSCBB, and University of Colorado-Boulder, Boulder, Colorado 80303
– name: 2 Center for Neurologic Diseases, Brigham and Women's Hospital, Program in Neuroscience, Harvard Medical School, New Research Building, Rm 636E 77 Avenue Louis Pasteur, Boston, MA 02115
Author_xml – sequence: 1
  givenname: Conggang
  surname: Zhang
  fullname: Zhang, Conggang
  organization: Department of Chemistry and Biochemistry, 3415 Colorado Avenue, Jennie Smoly Caruthers Biotechnology Building, University of Colorado Boulder, Boulder, CO 80303, USA
– sequence: 2
  givenname: Schuyler
  surname: Lee
  fullname: Lee, Schuyler
  organization: Department of Chemistry and Biochemistry, 3415 Colorado Avenue, Jennie Smoly Caruthers Biotechnology Building, University of Colorado Boulder, Boulder, CO 80303, USA
– sequence: 3
  givenname: Yinghua
  surname: Peng
  fullname: Peng, Yinghua
  organization: Department of Chemistry and Biochemistry, 3415 Colorado Avenue, Jennie Smoly Caruthers Biotechnology Building, University of Colorado Boulder, Boulder, CO 80303, USA
– sequence: 4
  givenname: Eric
  surname: Bunker
  fullname: Bunker, Eric
  organization: Department of Chemistry and Biochemistry, 3415 Colorado Avenue, Jennie Smoly Caruthers Biotechnology Building, University of Colorado Boulder, Boulder, CO 80303, USA
– sequence: 5
  givenname: Emilie
  surname: Giaime
  fullname: Giaime, Emilie
  organization: Center for Neurologic Diseases, Brigham and Women’s Hospital, Program in Neuroscience, Harvard Medical School, New Research Building, Room 636E, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
– sequence: 6
  givenname: Jie
  surname: Shen
  fullname: Shen, Jie
  organization: Center for Neurologic Diseases, Brigham and Women’s Hospital, Program in Neuroscience, Harvard Medical School, New Research Building, Room 636E, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
– sequence: 7
  givenname: Zongyao
  surname: Zhou
  fullname: Zhou, Zongyao
  organization: Department of Chemistry and Biochemistry, 3415 Colorado Avenue, Jennie Smoly Caruthers Biotechnology Building, University of Colorado Boulder, Boulder, CO 80303, USA
– sequence: 8
  givenname: Xuedong
  surname: Liu
  fullname: Liu, Xuedong
  email: xuedong.liu@colorado.edu
  organization: Department of Chemistry and Biochemistry, 3415 Colorado Avenue, Jennie Smoly Caruthers Biotechnology Building, University of Colorado Boulder, Boulder, CO 80303, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25088558$$D View this record in MEDLINE/PubMed
BookMark eNqFkVFv0zAUhS00xLrBD-AF-ZGXBDuxY1tISFXZYGKCSoxny3FuiksaF9up1H8_l24I9rA9Xcn-ztG595yhk9GPgNBrSkpKaPNuXdqpLStCWUlEmcczNKNSqIIwxk_QjKiGFEpW1Sk6i3FNCK2kal6g04oTKTmXM7RcXn39QvFNcKsVhIjnU_LWJDPsk7N4bpPbmeT8iH2Plyb8ciNOHn_fgnX9Hi9gGPClSYA_5oeYufgSPe_NEOHV3TxHPy4vbhafi-tvn64W8-vCclmnosoRFQXeCVGLFkTPZQ8GVM3bjivWdIKDEoIR0reVIbJprFKqr0jb9dBIUZ-jD0ff7dRuoLMwpmAGvQ1uY8Jee-P0_z-j-6lXfqcZZXUteTZ4e2cQ_O8JYtIbF21eyIzgp6hpo5gSkmf6SZRzXmWYHVzf_Bvrb577i2dAHAEbfIwBem1d-nPinNINmhJ96Favde5WH7rVROg8spI-UN6bP6Z5f9RArmLnIOhoHYwWOhfAJt1594j6Fg3ju4Q
CitedBy_id crossref_primary_10_1007_s12576_019_00720_6
crossref_primary_10_26508_lsa_201900392
crossref_primary_10_1016_j_jbc_2024_107543
crossref_primary_10_1016_j_jep_2023_117338
crossref_primary_10_1111_iej_13055
crossref_primary_10_1002_advs_202205483
crossref_primary_10_1007_s12640_019_00060_8
crossref_primary_10_1016_j_mito_2017_11_007
crossref_primary_10_1038_leu_2016_213
crossref_primary_10_3389_fonc_2017_00204
crossref_primary_10_1016_j_celrep_2017_01_029
crossref_primary_10_1016_j_cbpc_2021_109151
crossref_primary_10_1097_YPG_0000000000000211
crossref_primary_10_1155_2022_6459585
crossref_primary_10_1515_hsz_2016_0137
crossref_primary_10_15252_embj_2019102539
crossref_primary_10_1074_jbc_M115_677815
crossref_primary_10_1016_j_bbrc_2016_10_088
crossref_primary_10_1016_j_tibs_2015_02_003
crossref_primary_10_1016_j_freeradbiomed_2017_10_009
crossref_primary_10_1038_cr_2014_159
crossref_primary_10_1080_10409238_2018_1491525
crossref_primary_10_1016_j_brainresbull_2016_12_004
crossref_primary_10_1074_jbc_RA118_006506
crossref_primary_10_1016_j_neuron_2014_12_007
crossref_primary_10_1074_jbc_M116_714923
crossref_primary_10_3389_fcell_2019_00073
crossref_primary_10_4103_NRR_NRR_D_23_01140
crossref_primary_10_1083_jcb_201410050
crossref_primary_10_2337_db22_0231
crossref_primary_10_1080_15548627_2022_2151294
crossref_primary_10_1038_s41556_024_01429_4
crossref_primary_10_3390_ijms20030748
crossref_primary_10_1016_j_mito_2021_01_001
crossref_primary_10_1016_j_celrep_2014_10_046
crossref_primary_10_1038_onc_2016_302
crossref_primary_10_1016_j_jbc_2021_101339
crossref_primary_10_1186_s12860_019_0220_5
crossref_primary_10_1016_j_cellsig_2021_109933
crossref_primary_10_1016_j_neubiorev_2022_104871
crossref_primary_10_1111_cpr_13327
crossref_primary_10_3233_JPD_160989
crossref_primary_10_1016_j_bpj_2019_06_038
crossref_primary_10_1074_jbc_M115_687319
crossref_primary_10_1016_j_jare_2024_05_012
crossref_primary_10_1038_s41418_020_00706_7
crossref_primary_10_1016_j_isci_2020_101797
crossref_primary_10_1016_j_biopha_2018_06_128
crossref_primary_10_1002_adhm_201601406
crossref_primary_10_1038_s41418_023_01251_9
crossref_primary_10_1074_jbc_M114_606798
crossref_primary_10_1242_jcs_161216
crossref_primary_10_1002_humu_22808
crossref_primary_10_1136_thoraxjnl_2019_214158
crossref_primary_10_1111_febs_13249
crossref_primary_10_15252_embj_2020107341
crossref_primary_10_15252_embr_201949097
crossref_primary_10_1016_j_molmet_2024_102042
crossref_primary_10_15252_embr_201439820
crossref_primary_10_3390_biom14030248
crossref_primary_10_1016_j_celrep_2017_07_081
crossref_primary_10_1159_000430888
crossref_primary_10_1515_hsz_2020_0231
crossref_primary_10_1007_s10565_020_09561_1
crossref_primary_10_1038_s41419_019_2132_x
crossref_primary_10_1042_BST20140321
crossref_primary_10_1016_j_bbamcr_2017_04_009
crossref_primary_10_1089_ars_2014_6206
crossref_primary_10_1016_j_brainres_2017_11_014
crossref_primary_10_1038_s41419_024_06804_5
crossref_primary_10_1186_s13024_017_0170_3
crossref_primary_10_1016_j_ejcb_2021_151185
crossref_primary_10_1016_j_neo_2016_12_006
crossref_primary_10_3390_cells11152426
crossref_primary_10_1186_s13024_017_0212_x
crossref_primary_10_1126_sciadv_adg8156
crossref_primary_10_1016_j_devcel_2020_11_007
crossref_primary_10_1016_j_molcel_2020_10_007
crossref_primary_10_1111_cns_13140
crossref_primary_10_15252_embr_201540514
crossref_primary_10_1038_s41418_019_0486_3
crossref_primary_10_1074_jbc_M117_783175
crossref_primary_10_1111_febs_16101
crossref_primary_10_15252_embj_201899916
Cites_doi 10.1038/nrm3028
10.1038/ncb2012
10.1098/rsob.110012
10.1002/mds.22798
10.1016/j.cell.2013.07.030
10.1016/j.molcel.2013.01.036
10.4161/auto.6.7.13286
10.1038/cr.2013.66
10.1371/journal.pbio.1000298
10.1126/science.1096284
10.1038/nature09966
10.1074/jbc.M110.144238
10.1074/jbc.M411103200
10.1073/pnas.0705363105
10.1146/annurev.biochem.74.082803.133400
10.1038/sj.cdd.4401751
10.1083/jcb.201007013
10.1016/j.cell.2005.06.009
10.1126/science.1237908
10.1083/jcb.200611128
10.1128/MCB.00620-06
10.1073/pnas.0802076105
10.1016/j.neuroscience.2009.12.068
10.1101/cshperspect.a011338
10.1083/jcb.200809125
10.1073/pnas.0911187107
10.1016/j.cell.2011.10.018
10.1083/jcb.201210111
10.1073/pnas.0802814105
10.1098/rsob.120080
10.1083/jcb.200910140
10.1038/nature12043
10.1016/j.tcb.2014.01.001
10.1038/nature09732
10.1038/cdd.2013.19
10.1126/science.1231031
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright © 2014 Elsevier Ltd. All rights reserved.
2014 Elsevier Inc. All rights reserved. 2014
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
– notice: 2014 Elsevier Inc. All rights reserved. 2014
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1016/j.cub.2014.07.014
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
Neurosciences Abstracts
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1879-0445
EndPage 1865
ExternalDocumentID PMC4143385
25088558
10_1016_j_cub_2014_07_014
S0960982214008409
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA107098
– fundername: NCI NIH HHS
  grantid: CA107098
– fundername: NIGMS NIH HHS
  grantid: T32 GM008759
– fundername: NCRR NIH HHS
  grantid: S10 RR026680
– fundername: NIGMS NIH HHS
  grantid: T32 GM142607
– fundername: NINDS NIH HHS
  grantid: R01 NS041779
GroupedDBID ---
--K
-DZ
-~X
0R~
1RT
1~5
2WC
4.4
457
4G.
53G
5GY
5VS
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AALRI
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGHSJ
AGKMS
AGUBO
AHHHB
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
IHE
IXB
J1W
JIG
LX5
M3Z
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SCP
SDG
SES
SSZ
TR2
WQ6
ZA5
29F
AAIKJ
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
ASPBG
AVWKF
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HVGLF
HZ~
OZT
R2-
SEW
UHS
XIH
XPP
Y6R
ZGI
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
EFKBS
ID FETCH-LOGICAL-c583t-204491e5d7737be7f58feae935bd5946d75e977400fb2a0866c999f20bdfe6873
IEDL.DBID IXB
ISSN 0960-9822
1879-0445
IngestDate Thu Aug 21 18:34:04 EDT 2025
Fri Jul 11 03:59:35 EDT 2025
Fri Jul 11 02:53:34 EDT 2025
Thu Jan 02 22:54:04 EST 2025
Thu Apr 24 22:58:52 EDT 2025
Tue Jul 01 04:08:01 EDT 2025
Fri Feb 23 02:28:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c583t-204491e5d7737be7f58feae935bd5946d75e977400fb2a0866c999f20bdfe6873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0960982214008409
PMID 25088558
PQID 1555249745
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4143385
proquest_miscellaneous_1694978543
proquest_miscellaneous_1555249745
pubmed_primary_25088558
crossref_citationtrail_10_1016_j_cub_2014_07_014
crossref_primary_10_1016_j_cub_2014_07_014
elsevier_sciencedirect_doi_10_1016_j_cub_2014_07_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-18
PublicationDateYYYYMMDD 2014-08-18
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-18
  day: 18
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current biology
PublicationTitleAlternate Curr Biol
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Matsuda, Sato, Shiba, Okatsu, Saisho, Gautier, Sou, Saiki, Kawajiri, Sato (bib13) 2010; 189
Arena, Gelmetti, Torosantucci, Vignone, Lamorte, De Rosa, Cilia, Jonas, Valente (bib29) 2013; 20
Wang, Winter, Ashrafi, Schlehe, Wong, Selkoe, Rice, Steen, LaVoie, Schwarz (bib12) 2011; 147
Haque, Thomas, D’Souza, Callaghan, Kitada, Slack, Fraser, Cookson, Tandon, Park (bib32) 2008; 105
Ding, He, Hsu, Xia, Chen, Li, Lee, Liu, Zhong, Wang, Hung (bib36) 2007; 27
Chen, Dorn (bib10) 2013; 340
Klinkenberg, Thurow, Gispert, Ricciardi, Eich, Prehn, Auburger, Kögel (bib31) 2010; 166
Trempe, Sauvé, Grenier, Seirafi, Tang, Ménade, Al-Abdul-Wahid, Krett, Wong, Kozlov (bib23) 2013; 340
Kondapalli, Kazlauskaite, Zhang, Woodroof, Campbell, Gourlay, Burchell, Walden, Macartney, Deak (bib11) 2012; 2
Valente, Abou-Sleiman, Caputo, Muqit, Harvey, Gispert, Ali, Del Turco, Bentivoglio, Healy (bib1) 2004; 304
Zhou, Huang, Shao, May, Prou, Perier, Dauer, Schon, Przedborski (bib8) 2008; 105
McLelland, Soubannier, Chen, McBride, Fon (bib24) 2014; 33
Wenzel, Lissounov, Brzovic, Klevit (bib15) 2011; 474
Cookson (bib3) 2005; 74
Geisler, Holmström, Skujat, Fiesel, Rothfuss, Kahle, Springer (bib14) 2010; 12
Ungermannova, Gao, Liu (bib37) 2005; 280
Narendra, Walker, Youle (bib6) 2012; 4
Geisler, Holmström, Treis, Skujat, Weber, Fiesel, Kahle, Springer (bib21) 2010; 6
Inuzuka, Shaik, Onoyama, Gao, Tseng, Maser, Zhai, Wan, Gutierrez, Lau (bib35) 2011; 471
Narendra, Jin, Tanaka, Suen, Gautier, Shen, Cookson, Youle (bib7) 2010; 8
Zhong, Gao, Du, Wang (bib34) 2005; 121
Winklhofer (bib5) 2014; 24
Hertz, Berthet, Sos, Thorn, Burlingame, Nakamura, Shokat (bib30) 2013; 154
Gautier, Kitada, Shen (bib27) 2008; 105
Codogno, Meijer (bib33) 2005; 12
Müller-Rischart, Pilsl, Beaudette, Patra, Hadian, Funke, Peis, Deinlein, Schweimer, Kuhn (bib25) 2013; 49
Youle, Narendra (bib4) 2011; 12
Zheng, Hunter (bib16) 2013; 23
Olzmann, Li, Chudaev, Chen, Perez, Palmiter, Chin (bib18) 2007; 178
Dawson, Dawson (bib2) 2010; 25
Woodroof, Pogson, Begley, Cantley, Deak, Campbell, van Aalten, Whitworth, Alessi, Muqit (bib28) 2011; 1
Tanaka, Cleland, Xu, Narendra, Suen, Karbowski, Youle (bib19) 2010; 191
Wang, Song, Du, Tian, Yue, Liu, Li, Wang, Zhu, Cao (bib20) 2011; 286
Vives-Bauza, Zhou, Huang, Cui, de Vries, Kim, May, Tocilescu, Liu, Ko (bib9) 2010; 107
Lazarou, Narendra, Jin, Tekle, Banerjee, Youle (bib17) 2013; 200
Sarraf, Raman, Guarani-Pereira, Sowa, Huttlin, Gygi, Harper (bib22) 2013; 496
Narendra, Tanaka, Suen, Youle (bib26) 2008; 183
Arena (10.1016/j.cub.2014.07.014_bib29) 2013; 20
Chen (10.1016/j.cub.2014.07.014_bib10) 2013; 340
Dawson (10.1016/j.cub.2014.07.014_bib2) 2010; 25
Hertz (10.1016/j.cub.2014.07.014_bib30) 2013; 154
Cookson (10.1016/j.cub.2014.07.014_bib3) 2005; 74
Klinkenberg (10.1016/j.cub.2014.07.014_bib31) 2010; 166
Zhong (10.1016/j.cub.2014.07.014_bib34) 2005; 121
Matsuda (10.1016/j.cub.2014.07.014_bib13) 2010; 189
Olzmann (10.1016/j.cub.2014.07.014_bib18) 2007; 178
Narendra (10.1016/j.cub.2014.07.014_bib6) 2012; 4
Woodroof (10.1016/j.cub.2014.07.014_bib28) 2011; 1
Wang (10.1016/j.cub.2014.07.014_bib12) 2011; 147
Tanaka (10.1016/j.cub.2014.07.014_bib19) 2010; 191
McLelland (10.1016/j.cub.2014.07.014_bib24) 2014; 33
Trempe (10.1016/j.cub.2014.07.014_bib23) 2013; 340
Zheng (10.1016/j.cub.2014.07.014_bib16) 2013; 23
Narendra (10.1016/j.cub.2014.07.014_bib26) 2008; 183
Winklhofer (10.1016/j.cub.2014.07.014_bib5) 2014; 24
Ungermannova (10.1016/j.cub.2014.07.014_bib37) 2005; 280
Gautier (10.1016/j.cub.2014.07.014_bib27) 2008; 105
Kondapalli (10.1016/j.cub.2014.07.014_bib11) 2012; 2
Zhou (10.1016/j.cub.2014.07.014_bib8) 2008; 105
Codogno (10.1016/j.cub.2014.07.014_bib33) 2005; 12
Sarraf (10.1016/j.cub.2014.07.014_bib22) 2013; 496
Youle (10.1016/j.cub.2014.07.014_bib4) 2011; 12
Geisler (10.1016/j.cub.2014.07.014_bib21) 2010; 6
Ding (10.1016/j.cub.2014.07.014_bib36) 2007; 27
Lazarou (10.1016/j.cub.2014.07.014_bib17) 2013; 200
Wenzel (10.1016/j.cub.2014.07.014_bib15) 2011; 474
Valente (10.1016/j.cub.2014.07.014_bib1) 2004; 304
Narendra (10.1016/j.cub.2014.07.014_bib7) 2010; 8
Wang (10.1016/j.cub.2014.07.014_bib20) 2011; 286
Geisler (10.1016/j.cub.2014.07.014_bib14) 2010; 12
Müller-Rischart (10.1016/j.cub.2014.07.014_bib25) 2013; 49
Inuzuka (10.1016/j.cub.2014.07.014_bib35) 2011; 471
Vives-Bauza (10.1016/j.cub.2014.07.014_bib9) 2010; 107
Haque (10.1016/j.cub.2014.07.014_bib32) 2008; 105
References_xml – volume: 74
  start-page: 29
  year: 2005
  end-page: 52
  ident: bib3
  article-title: The biochemistry of Parkinson’s disease
  publication-title: Annu. Rev. Biochem.
– volume: 6
  start-page: 871
  year: 2010
  end-page: 878
  ident: bib21
  article-title: The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations
  publication-title: Autophagy
– volume: 107
  start-page: 378
  year: 2010
  end-page: 383
  ident: bib9
  article-title: PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 280
  start-page: 30301
  year: 2005
  end-page: 30309
  ident: bib37
  article-title: Ubiquitination of p27Kip1 requires physical interaction with cyclin E and probable phosphate recognition by SKP2
  publication-title: J. Biol. Chem.
– volume: 12
  start-page: 1509
  year: 2005
  end-page: 1518
  ident: bib33
  article-title: Autophagy and signaling: their role in cell survival and cell death
  publication-title: Cell Death Differ.
– volume: 4
  start-page: a011338
  year: 2012
  ident: bib6
  article-title: Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 340
  start-page: 1451
  year: 2013
  end-page: 1455
  ident: bib23
  article-title: Structure of parkin reveals mechanisms for ubiquitin ligase activation
  publication-title: Science
– volume: 121
  start-page: 1085
  year: 2005
  end-page: 1095
  ident: bib34
  article-title: Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis
  publication-title: Cell
– volume: 178
  start-page: 1025
  year: 2007
  end-page: 1038
  ident: bib18
  article-title: Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6
  publication-title: J. Cell Biol.
– volume: 474
  start-page: 105
  year: 2011
  end-page: 108
  ident: bib15
  article-title: UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids
  publication-title: Nature
– volume: 340
  start-page: 471
  year: 2013
  end-page: 475
  ident: bib10
  article-title: PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
  publication-title: Science
– volume: 200
  start-page: 163
  year: 2013
  end-page: 172
  ident: bib17
  article-title: PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding
  publication-title: J. Cell Biol.
– volume: 166
  start-page: 422
  year: 2010
  end-page: 434
  ident: bib31
  article-title: Enhanced vulnerability of PARK6 patient skin fibroblasts to apoptosis induced by proteasomal stress
  publication-title: Neuroscience
– volume: 304
  start-page: 1158
  year: 2004
  end-page: 1160
  ident: bib1
  article-title: Hereditary early-onset Parkinson’s disease caused by mutations in PINK1
  publication-title: Science
– volume: 496
  start-page: 372
  year: 2013
  end-page: 376
  ident: bib22
  article-title: Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
  publication-title: Nature
– volume: 33
  start-page: 282
  year: 2014
  end-page: 295
  ident: bib24
  article-title: Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control
  publication-title: EMBO J.
– volume: 12
  start-page: 9
  year: 2011
  end-page: 14
  ident: bib4
  article-title: Mechanisms of mitophagy
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 191
  start-page: 1367
  year: 2010
  end-page: 1380
  ident: bib19
  article-title: Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
  publication-title: J. Cell Biol.
– volume: 49
  start-page: 908
  year: 2013
  end-page: 921
  ident: bib25
  article-title: The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO
  publication-title: Mol. Cell
– volume: 183
  start-page: 795
  year: 2008
  end-page: 803
  ident: bib26
  article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
  publication-title: J. Cell Biol.
– volume: 286
  start-page: 11649
  year: 2011
  end-page: 11658
  ident: bib20
  article-title: Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease
  publication-title: J. Biol. Chem.
– volume: 189
  start-page: 211
  year: 2010
  end-page: 221
  ident: bib13
  article-title: PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
  publication-title: J. Cell Biol.
– volume: 154
  start-page: 737
  year: 2013
  end-page: 747
  ident: bib30
  article-title: A neo-substrate that amplifies catalytic activity of parkinson’s-disease-related kinase PINK1
  publication-title: Cell
– volume: 25
  start-page: S32
  year: 2010
  end-page: S39
  ident: bib2
  article-title: The role of parkin in familial and sporadic Parkinson’s disease
  publication-title: Mov. Disord.
– volume: 20
  start-page: 920
  year: 2013
  end-page: 930
  ident: bib29
  article-title: PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage
  publication-title: Cell Death Differ.
– volume: 2
  start-page: 120080
  year: 2012
  ident: bib11
  article-title: PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
  publication-title: Open Biol.
– volume: 105
  start-page: 1716
  year: 2008
  end-page: 1721
  ident: bib32
  article-title: Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: e1000298
  year: 2010
  ident: bib7
  article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
  publication-title: PLoS Biol.
– volume: 1
  start-page: 110012
  year: 2011
  ident: bib28
  article-title: Discovery of catalytically active orthologues of the Parkinson’s disease kinase PINK1: analysis of substrate specificity and impact of mutations
  publication-title: Open Biol.
– volume: 24
  start-page: 332
  year: 2014
  end-page: 341
  ident: bib5
  article-title: Parkin and mitochondrial quality control: toward assembling the puzzle
  publication-title: Trends Cell Biol.
– volume: 27
  start-page: 4006
  year: 2007
  end-page: 4017
  ident: bib36
  article-title: Degradation of Mcl-1 by beta-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization
  publication-title: Mol. Cell. Biol.
– volume: 105
  start-page: 12022
  year: 2008
  end-page: 12027
  ident: bib8
  article-title: The kinase domain of mitochondrial PINK1 faces the cytoplasm
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 23
  start-page: 886
  year: 2013
  end-page: 897
  ident: bib16
  article-title: Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism
  publication-title: Cell Res.
– volume: 105
  start-page: 11364
  year: 2008
  end-page: 11369
  ident: bib27
  article-title: Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 119
  year: 2010
  end-page: 131
  ident: bib14
  article-title: PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
  publication-title: Nat. Cell Biol.
– volume: 471
  start-page: 104
  year: 2011
  end-page: 109
  ident: bib35
  article-title: SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction
  publication-title: Nature
– volume: 147
  start-page: 893
  year: 2011
  end-page: 906
  ident: bib12
  article-title: PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
  publication-title: Cell
– volume: 33
  start-page: 282
  year: 2014
  ident: 10.1016/j.cub.2014.07.014_bib24
  article-title: Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control
  publication-title: EMBO J.
– volume: 12
  start-page: 9
  year: 2011
  ident: 10.1016/j.cub.2014.07.014_bib4
  article-title: Mechanisms of mitophagy
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3028
– volume: 12
  start-page: 119
  year: 2010
  ident: 10.1016/j.cub.2014.07.014_bib14
  article-title: PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2012
– volume: 1
  start-page: 110012
  year: 2011
  ident: 10.1016/j.cub.2014.07.014_bib28
  article-title: Discovery of catalytically active orthologues of the Parkinson’s disease kinase PINK1: analysis of substrate specificity and impact of mutations
  publication-title: Open Biol.
  doi: 10.1098/rsob.110012
– volume: 25
  start-page: S32
  issue: Suppl 1
  year: 2010
  ident: 10.1016/j.cub.2014.07.014_bib2
  article-title: The role of parkin in familial and sporadic Parkinson’s disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.22798
– volume: 154
  start-page: 737
  year: 2013
  ident: 10.1016/j.cub.2014.07.014_bib30
  article-title: A neo-substrate that amplifies catalytic activity of parkinson’s-disease-related kinase PINK1
  publication-title: Cell
  doi: 10.1016/j.cell.2013.07.030
– volume: 49
  start-page: 908
  year: 2013
  ident: 10.1016/j.cub.2014.07.014_bib25
  article-title: The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.01.036
– volume: 6
  start-page: 871
  year: 2010
  ident: 10.1016/j.cub.2014.07.014_bib21
  article-title: The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations
  publication-title: Autophagy
  doi: 10.4161/auto.6.7.13286
– volume: 23
  start-page: 886
  year: 2013
  ident: 10.1016/j.cub.2014.07.014_bib16
  article-title: Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.66
– volume: 8
  start-page: e1000298
  year: 2010
  ident: 10.1016/j.cub.2014.07.014_bib7
  article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000298
– volume: 304
  start-page: 1158
  year: 2004
  ident: 10.1016/j.cub.2014.07.014_bib1
  article-title: Hereditary early-onset Parkinson’s disease caused by mutations in PINK1
  publication-title: Science
  doi: 10.1126/science.1096284
– volume: 474
  start-page: 105
  year: 2011
  ident: 10.1016/j.cub.2014.07.014_bib15
  article-title: UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids
  publication-title: Nature
  doi: 10.1038/nature09966
– volume: 286
  start-page: 11649
  year: 2011
  ident: 10.1016/j.cub.2014.07.014_bib20
  article-title: Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.144238
– volume: 280
  start-page: 30301
  year: 2005
  ident: 10.1016/j.cub.2014.07.014_bib37
  article-title: Ubiquitination of p27Kip1 requires physical interaction with cyclin E and probable phosphate recognition by SKP2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M411103200
– volume: 105
  start-page: 1716
  year: 2008
  ident: 10.1016/j.cub.2014.07.014_bib32
  article-title: Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0705363105
– volume: 74
  start-page: 29
  year: 2005
  ident: 10.1016/j.cub.2014.07.014_bib3
  article-title: The biochemistry of Parkinson’s disease
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.74.082803.133400
– volume: 12
  start-page: 1509
  issue: Suppl 2
  year: 2005
  ident: 10.1016/j.cub.2014.07.014_bib33
  article-title: Autophagy and signaling: their role in cell survival and cell death
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4401751
– volume: 191
  start-page: 1367
  year: 2010
  ident: 10.1016/j.cub.2014.07.014_bib19
  article-title: Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201007013
– volume: 121
  start-page: 1085
  year: 2005
  ident: 10.1016/j.cub.2014.07.014_bib34
  article-title: Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis
  publication-title: Cell
  doi: 10.1016/j.cell.2005.06.009
– volume: 340
  start-page: 1451
  year: 2013
  ident: 10.1016/j.cub.2014.07.014_bib23
  article-title: Structure of parkin reveals mechanisms for ubiquitin ligase activation
  publication-title: Science
  doi: 10.1126/science.1237908
– volume: 178
  start-page: 1025
  year: 2007
  ident: 10.1016/j.cub.2014.07.014_bib18
  article-title: Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200611128
– volume: 27
  start-page: 4006
  year: 2007
  ident: 10.1016/j.cub.2014.07.014_bib36
  article-title: Degradation of Mcl-1 by beta-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00620-06
– volume: 105
  start-page: 11364
  year: 2008
  ident: 10.1016/j.cub.2014.07.014_bib27
  article-title: Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0802076105
– volume: 166
  start-page: 422
  year: 2010
  ident: 10.1016/j.cub.2014.07.014_bib31
  article-title: Enhanced vulnerability of PARK6 patient skin fibroblasts to apoptosis induced by proteasomal stress
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2009.12.068
– volume: 4
  start-page: a011338
  year: 2012
  ident: 10.1016/j.cub.2014.07.014_bib6
  article-title: Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a011338
– volume: 183
  start-page: 795
  year: 2008
  ident: 10.1016/j.cub.2014.07.014_bib26
  article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200809125
– volume: 107
  start-page: 378
  year: 2010
  ident: 10.1016/j.cub.2014.07.014_bib9
  article-title: PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0911187107
– volume: 147
  start-page: 893
  year: 2011
  ident: 10.1016/j.cub.2014.07.014_bib12
  article-title: PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.018
– volume: 200
  start-page: 163
  year: 2013
  ident: 10.1016/j.cub.2014.07.014_bib17
  article-title: PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201210111
– volume: 105
  start-page: 12022
  year: 2008
  ident: 10.1016/j.cub.2014.07.014_bib8
  article-title: The kinase domain of mitochondrial PINK1 faces the cytoplasm
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0802814105
– volume: 2
  start-page: 120080
  year: 2012
  ident: 10.1016/j.cub.2014.07.014_bib11
  article-title: PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
  publication-title: Open Biol.
  doi: 10.1098/rsob.120080
– volume: 189
  start-page: 211
  year: 2010
  ident: 10.1016/j.cub.2014.07.014_bib13
  article-title: PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200910140
– volume: 496
  start-page: 372
  year: 2013
  ident: 10.1016/j.cub.2014.07.014_bib22
  article-title: Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
  publication-title: Nature
  doi: 10.1038/nature12043
– volume: 24
  start-page: 332
  year: 2014
  ident: 10.1016/j.cub.2014.07.014_bib5
  article-title: Parkin and mitochondrial quality control: toward assembling the puzzle
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2014.01.001
– volume: 471
  start-page: 104
  year: 2011
  ident: 10.1016/j.cub.2014.07.014_bib35
  article-title: SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction
  publication-title: Nature
  doi: 10.1038/nature09732
– volume: 20
  start-page: 920
  year: 2013
  ident: 10.1016/j.cub.2014.07.014_bib29
  article-title: PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2013.19
– volume: 340
  start-page: 471
  year: 2013
  ident: 10.1016/j.cub.2014.07.014_bib10
  article-title: PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
  publication-title: Science
  doi: 10.1126/science.1231031
SSID ssj0012896
Score 2.4396284
Snippet The PINK1-Parkin pathway is known to play important roles in regulating mitochondria dynamics, motility, and quality control. Activation of this pathway can be...
Background: The PINK1-Parkin pathway is known to play important roles in regulating mitochondria dynamics, motility, and quality control. Activation of this...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1854
SubjectTerms Amino Acid Sequence
Apoptosis
Cell Line
Cytoprotection
HEK293 Cells
HeLa Cells
Humans
Phosphorylation
Protein Kinases - genetics
Protein Kinases - metabolism
Sequence Alignment
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
Title PINK1 Triggers Autocatalytic Activation of Parkin to Specify Cell Fate Decisions
URI https://dx.doi.org/10.1016/j.cub.2014.07.014
https://www.ncbi.nlm.nih.gov/pubmed/25088558
https://www.proquest.com/docview/1555249745
https://www.proquest.com/docview/1694978543
https://pubmed.ncbi.nlm.nih.gov/PMC4143385
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCaKDgN2Gbp32q7QgJ0GGPFDsuRjmjUoFqyHrsVyEyRL3jIEdrE6h_z7krIdLCuWw06GbcqQSYn6KFIkwEfrVJoZyrFvnI249z6yVrooMSgRb11RhTpkX6_yy1v-ZSEWBzAdzsJQWGWv-zudHrR1_2Tcc3N8t1yOv4Vkabi-oYkQk5mCejjjKhziW5xvPQloUAR_JRJHRD14NkOMV7m2FN3FQ_7OhP9rbXqMPf8OofxjTZodwfMeTLJJ198XcODrl_C0Ky-5eQVkss8TdoMG-A9EeWyybpuwXbNBejYph8pmrKkYnX5e1qxtWKhIX23Y1K9WbIZQlH3u6_Dcv4bb2cXN9DLqKyhEpVBZi1OA8yLxwkmZSetlJVTljS8yYZ0oeO6k8AQA47iyqUHrJi8RMFZpbF3lcyWzN3BYN7V_B0xI440kCw2_WRoE5i4VaZGUiA-dkm4E8cA7XfbpxanKxUoPcWS_NLJbE7t1LDVeRvBp2-Suy62xj5gPAtE7A0Sj7t_X7MMgPI0Th7whpvbN-l4jkBJoe0ou9tDkBVXgEzwbwdtO4NuepgRthVAjkDtDYUtAibt339TLnyGBN0eQmilx_H-_dALP6I42thN1Coft77V_j8iotWfwZDK__j4_C1PgAZrkDQQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTQheJsbHKGPDk3hCipoPO04eS6HqYNsLndQ3y46drahKJpY-9L_nzkkqCqIPe4oUnyPnzmf_zne-A_hobBYnmnLsa2sC7pwLjJE2iDRKxBmbl74O2dV1Or3h3-Zivgfj_i4MhVV2a3-7pvvVunsz7Lg5vF8shj98sjTc39BECMlMeQIHiAYkaefF_PPGlYAWhXdYInVA5L1r0wd5FStD4V3cJ_CM-P82p3_B598xlH9sSpMXcNihSTZqB3wEe656CU_b-pLrV0A2-_eIzdACv0WYx0arpvbnNWukZ6OiL23G6pLR9edFxZqa-ZL05ZqN3XLJJohF2ZeuEM_Da7iZfJ2Np0FXQiEoRJY0qAOc55ETVspEGidLkZVOuzwRxoqcp1YKRwgwDEsTazRv0gIRYxmHxpYuzWTyBvarunJvgQmpnZZkouE3C43I3MYizqMCAaLNpB1A2PNOFV1-cSpzsVR9INlPhexWxG4VSoWPAXzadLlvk2vsIua9QNTWDFG4-O_qdt4LT6HmkDtEV65ePShEUgKNT8nFDpo0pxJ8gicDOG4FvhlpTNhWiGwAcmsqbAgoc_d2S7W48xm8OaLUJBPvHvdLH-DZdHZ1qS5xDp3Ac2qhU-4oew_7za-VO0WY1Jgzrwa_AatUDoE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PINK1+Triggers+Autocatalytic+Activation+of+Parkin+to+Specify+Cell+Fate+Decisions&rft.jtitle=Current+biology&rft.au=Zhang%2C+Conggang&rft.au=Lee%2C+Schuyler&rft.au=Peng%2C+Yinghua&rft.au=Bunker%2C+Eric&rft.date=2014-08-18&rft.issn=0960-9822&rft.eissn=1879-0445&rft.volume=24&rft.issue=16&rft.spage=1854&rft.epage=1865&rft_id=info:doi/10.1016%2Fj.cub.2014.07.014&rft_id=info%3Apmid%2F25088558&rft.externalDocID=PMC4143385
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon