PINK1 Triggers Autocatalytic Activation of Parkin to Specify Cell Fate Decisions
The PINK1-Parkin pathway is known to play important roles in regulating mitochondria dynamics, motility, and quality control. Activation of this pathway can be triggered by a variety of cellular stress signals that cause mitochondrial damage. How this pathway senses different levels of mitochondrial...
Saved in:
Published in | Current biology Vol. 24; no. 16; pp. 1854 - 1865 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
18.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The PINK1-Parkin pathway is known to play important roles in regulating mitochondria dynamics, motility, and quality control. Activation of this pathway can be triggered by a variety of cellular stress signals that cause mitochondrial damage. How this pathway senses different levels of mitochondrial damage and mediates cell fate decisions accordingly is incompletely understood.
Here, we present evidence that PINK1-Parkin has both cytoprotective and proapoptotic functions. PINK1-Parkin operates as a molecular switch to dictate cell fate decisions in response to different cellular stressors. Cells exposed to severe and irreparable mitochondrial damage agents such as valinomycin can undergo PINK1-Parkin-dependent apoptosis. The proapoptotic response elicited by valinomycin is associated with the degradation of Mcl-1. PINK1 directly phosphorylates Parkin at Ser65 of its Ubl domain and triggers activation of its E3 ligase activity through an autocatalytic mechanism that amplifies its E3 ligase activity toward Mcl-1.
Autocatalytic activation of Parkin bolsters its accumulation on mitochondria and apoptotic response to valinomycin. Our results suggest that PINK1-Parkin constitutes a damage-gated molecular switch that governs cellular-context-specific cell fate decisions in response to variable stress stimuli.
[Display omitted]
•PINK1-Parkin operates as a damage-gated molecular switch for cell fate decisions•Parkin catalyzes ubiquitination of selective substrates in response to specific stimuli•Parkin is the E3 ligase for Mcl-1 and mediates valinomycin-induced apoptosis•PINK1 triggers autocatalytic activation of Parkin by phosphorylating Ser65 of Parkin
Zhang et al. show that the PINK1-Parkin pathway can mediate different cell fates in response to different cell stress stimuli. Exposure to mitochondrial damage reveals a proapoptotic function of PINK1 and Parkin. PINK1 directly phosphorylates Parkin, triggering its autocatalytic activation and amplifying its E3 ligase activity toward Mcl-1. |
---|---|
AbstractList | The PINK1-Parkin pathway is known to play important roles in regulating mitochondria dynamics, motility, and quality control. Activation of this pathway can be triggered by a variety of cellular stress signals that cause mitochondrial damage. How this pathway senses different levels of mitochondrial damage and mediates cell fate decisions accordingly is incompletely understood.
Here, we present evidence that PINK1-Parkin has both cytoprotective and proapoptotic functions. PINK1-Parkin operates as a molecular switch to dictate cell fate decisions in response to different cellular stressors. Cells exposed to severe and irreparable mitochondrial damage agents such as valinomycin can undergo PINK1-Parkin-dependent apoptosis. The proapoptotic response elicited by valinomycin is associated with the degradation of Mcl-1. PINK1 directly phosphorylates Parkin at Ser65 of its Ubl domain and triggers activation of its E3 ligase activity through an autocatalytic mechanism that amplifies its E3 ligase activity toward Mcl-1.
Autocatalytic activation of Parkin bolsters its accumulation on mitochondria and apoptotic response to valinomycin. Our results suggest that PINK1-Parkin constitutes a damage-gated molecular switch that governs cellular-context-specific cell fate decisions in response to variable stress stimuli.
[Display omitted]
•PINK1-Parkin operates as a damage-gated molecular switch for cell fate decisions•Parkin catalyzes ubiquitination of selective substrates in response to specific stimuli•Parkin is the E3 ligase for Mcl-1 and mediates valinomycin-induced apoptosis•PINK1 triggers autocatalytic activation of Parkin by phosphorylating Ser65 of Parkin
Zhang et al. show that the PINK1-Parkin pathway can mediate different cell fates in response to different cell stress stimuli. Exposure to mitochondrial damage reveals a proapoptotic function of PINK1 and Parkin. PINK1 directly phosphorylates Parkin, triggering its autocatalytic activation and amplifying its E3 ligase activity toward Mcl-1. Background: The PINK1-Parkin pathway is known to play important roles in regulating mitochondria dynamics, motility, and quality control. Activation of this pathway can be triggered by a variety of cellular stress signals that cause mitochondrial damage. How this pathway senses different levels of mitochondrial damage and mediates cell fate decisions accordingly is incompletely understood. Results: Here, we present evidence that PINK1-Parkin has both cytoprotective and proapoptotic functions. PINK1-Parkin operates as a molecular switch to dictate cell fate decisions in response to different cellular stressors. Cells exposed to severe and irreparable mitochondrial damage agents such as valinomycin can undergo PINK1-Parkin-dependent apoptosis. The proapoptotic response elicited by valinomycin is associated with the degradation of Mcl-1. PINK1 directly phosphorylates Parkin at Ser65 of its Ubl domain and triggers activation of its E3 ligase activity through an autocatalytic mechanism that amplifies its E3 ligase activity toward Mcl-1. Conclusions: Autocatalytic activation of Parkin bolsters its accumulation on mitochondria and apoptotic response to valinomycin. Our results suggest that PINK1-Parkin constitutes a damage-gated molecular switch that governs cellular-context-specific cell fate decisions in response to variable stress stimuli. The PINK1-Parkin pathway is known to play important roles in regulating mitochondria dynamics, motility, and quality control. Activation of this pathway can be triggered by a variety of cellular stress signals that cause mitochondrial damage. How this pathway senses different levels of mitochondrial damage and mediates cell fate decisions accordingly is incompletely understood.BACKGROUNDThe PINK1-Parkin pathway is known to play important roles in regulating mitochondria dynamics, motility, and quality control. Activation of this pathway can be triggered by a variety of cellular stress signals that cause mitochondrial damage. How this pathway senses different levels of mitochondrial damage and mediates cell fate decisions accordingly is incompletely understood.Here, we present evidence that PINK1-Parkin has both cytoprotective and proapoptotic functions. PINK1-Parkin operates as a molecular switch to dictate cell fate decisions in response to different cellular stressors. Cells exposed to severe and irreparable mitochondrial damage agents such as valinomycin can undergo PINK1-Parkin-dependent apoptosis. The proapoptotic response elicited by valinomycin is associated with the degradation of Mcl-1. PINK1 directly phosphorylates Parkin at Ser65 of its Ubl domain and triggers activation of its E3 ligase activity through an autocatalytic mechanism that amplifies its E3 ligase activity toward Mcl-1.RESULTSHere, we present evidence that PINK1-Parkin has both cytoprotective and proapoptotic functions. PINK1-Parkin operates as a molecular switch to dictate cell fate decisions in response to different cellular stressors. Cells exposed to severe and irreparable mitochondrial damage agents such as valinomycin can undergo PINK1-Parkin-dependent apoptosis. The proapoptotic response elicited by valinomycin is associated with the degradation of Mcl-1. PINK1 directly phosphorylates Parkin at Ser65 of its Ubl domain and triggers activation of its E3 ligase activity through an autocatalytic mechanism that amplifies its E3 ligase activity toward Mcl-1.Autocatalytic activation of Parkin bolsters its accumulation on mitochondria and apoptotic response to valinomycin. Our results suggest that PINK1-Parkin constitutes a damage-gated molecular switch that governs cellular-context-specific cell fate decisions in response to variable stress stimuli.CONCLUSIONSAutocatalytic activation of Parkin bolsters its accumulation on mitochondria and apoptotic response to valinomycin. Our results suggest that PINK1-Parkin constitutes a damage-gated molecular switch that governs cellular-context-specific cell fate decisions in response to variable stress stimuli. The PINK1-Parkin pathway is known to play important roles in regulating mitochondria dynamics, motility, and quality control. Activation of this pathway can be triggered by a variety of cellular stress signals that cause mitochondrial damage. How this pathway senses different levels of mitochondrial damage and mediates cell fate decisions accordingly is incompletely understood. Here, we present evidence that PINK1-Parkin has both cytoprotective and proapoptotic functions. PINK1-Parkin operates as a molecular switch to dictate cell fate decisions in response to different cellular stressors. Cells exposed to severe and irreparable mitochondrial damage agents such as valinomycin can undergo PINK1-Parkin-dependent apoptosis. The proapoptotic response elicited by valinomycin is associated with the degradation of Mcl-1. PINK1 directly phosphorylates Parkin at Ser65 of its Ubl domain and triggers activation of its E3 ligase activity through an autocatalytic mechanism that amplifies its E3 ligase activity toward Mcl-1. Autocatalytic activation of Parkin bolsters its accumulation on mitochondria and apoptotic response to valinomycin. Our results suggest that PINK1-Parkin constitutes a damage-gated molecular switch that governs cellular-context-specific cell fate decisions in response to variable stress stimuli. |
Author | Giaime, Emilie Peng, Yinghua Lee, Schuyler Zhang, Conggang Shen, Jie Zhou, Zongyao Bunker, Eric Liu, Xuedong |
AuthorAffiliation | 2 Center for Neurologic Diseases, Brigham and Women's Hospital, Program in Neuroscience, Harvard Medical School, New Research Building, Rm 636E 77 Avenue Louis Pasteur, Boston, MA 02115 1 Department of Chemistry and Biochemistry, 3415 Colorado Ave, JSCBB, and University of Colorado-Boulder, Boulder, Colorado 80303 |
AuthorAffiliation_xml | – name: 1 Department of Chemistry and Biochemistry, 3415 Colorado Ave, JSCBB, and University of Colorado-Boulder, Boulder, Colorado 80303 – name: 2 Center for Neurologic Diseases, Brigham and Women's Hospital, Program in Neuroscience, Harvard Medical School, New Research Building, Rm 636E 77 Avenue Louis Pasteur, Boston, MA 02115 |
Author_xml | – sequence: 1 givenname: Conggang surname: Zhang fullname: Zhang, Conggang organization: Department of Chemistry and Biochemistry, 3415 Colorado Avenue, Jennie Smoly Caruthers Biotechnology Building, University of Colorado Boulder, Boulder, CO 80303, USA – sequence: 2 givenname: Schuyler surname: Lee fullname: Lee, Schuyler organization: Department of Chemistry and Biochemistry, 3415 Colorado Avenue, Jennie Smoly Caruthers Biotechnology Building, University of Colorado Boulder, Boulder, CO 80303, USA – sequence: 3 givenname: Yinghua surname: Peng fullname: Peng, Yinghua organization: Department of Chemistry and Biochemistry, 3415 Colorado Avenue, Jennie Smoly Caruthers Biotechnology Building, University of Colorado Boulder, Boulder, CO 80303, USA – sequence: 4 givenname: Eric surname: Bunker fullname: Bunker, Eric organization: Department of Chemistry and Biochemistry, 3415 Colorado Avenue, Jennie Smoly Caruthers Biotechnology Building, University of Colorado Boulder, Boulder, CO 80303, USA – sequence: 5 givenname: Emilie surname: Giaime fullname: Giaime, Emilie organization: Center for Neurologic Diseases, Brigham and Women’s Hospital, Program in Neuroscience, Harvard Medical School, New Research Building, Room 636E, 77 Avenue Louis Pasteur, Boston, MA 02115, USA – sequence: 6 givenname: Jie surname: Shen fullname: Shen, Jie organization: Center for Neurologic Diseases, Brigham and Women’s Hospital, Program in Neuroscience, Harvard Medical School, New Research Building, Room 636E, 77 Avenue Louis Pasteur, Boston, MA 02115, USA – sequence: 7 givenname: Zongyao surname: Zhou fullname: Zhou, Zongyao organization: Department of Chemistry and Biochemistry, 3415 Colorado Avenue, Jennie Smoly Caruthers Biotechnology Building, University of Colorado Boulder, Boulder, CO 80303, USA – sequence: 8 givenname: Xuedong surname: Liu fullname: Liu, Xuedong email: xuedong.liu@colorado.edu organization: Department of Chemistry and Biochemistry, 3415 Colorado Avenue, Jennie Smoly Caruthers Biotechnology Building, University of Colorado Boulder, Boulder, CO 80303, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25088558$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVFv0zAUhS00xLrBD-AF-ZGXBDuxY1tISFXZYGKCSoxny3FuiksaF9up1H8_l24I9rA9Xcn-ztG595yhk9GPgNBrSkpKaPNuXdqpLStCWUlEmcczNKNSqIIwxk_QjKiGFEpW1Sk6i3FNCK2kal6g04oTKTmXM7RcXn39QvFNcKsVhIjnU_LWJDPsk7N4bpPbmeT8iH2Plyb8ciNOHn_fgnX9Hi9gGPClSYA_5oeYufgSPe_NEOHV3TxHPy4vbhafi-tvn64W8-vCclmnosoRFQXeCVGLFkTPZQ8GVM3bjivWdIKDEoIR0reVIbJprFKqr0jb9dBIUZ-jD0ff7dRuoLMwpmAGvQ1uY8Jee-P0_z-j-6lXfqcZZXUteTZ4e2cQ_O8JYtIbF21eyIzgp6hpo5gSkmf6SZRzXmWYHVzf_Bvrb577i2dAHAEbfIwBem1d-nPinNINmhJ96Favde5WH7rVROg8spI-UN6bP6Z5f9RArmLnIOhoHYwWOhfAJt1594j6Fg3ju4Q |
CitedBy_id | crossref_primary_10_1007_s12576_019_00720_6 crossref_primary_10_26508_lsa_201900392 crossref_primary_10_1016_j_jbc_2024_107543 crossref_primary_10_1016_j_jep_2023_117338 crossref_primary_10_1111_iej_13055 crossref_primary_10_1002_advs_202205483 crossref_primary_10_1007_s12640_019_00060_8 crossref_primary_10_1016_j_mito_2017_11_007 crossref_primary_10_1038_leu_2016_213 crossref_primary_10_3389_fonc_2017_00204 crossref_primary_10_1016_j_celrep_2017_01_029 crossref_primary_10_1016_j_cbpc_2021_109151 crossref_primary_10_1097_YPG_0000000000000211 crossref_primary_10_1155_2022_6459585 crossref_primary_10_1515_hsz_2016_0137 crossref_primary_10_15252_embj_2019102539 crossref_primary_10_1074_jbc_M115_677815 crossref_primary_10_1016_j_bbrc_2016_10_088 crossref_primary_10_1016_j_tibs_2015_02_003 crossref_primary_10_1016_j_freeradbiomed_2017_10_009 crossref_primary_10_1038_cr_2014_159 crossref_primary_10_1080_10409238_2018_1491525 crossref_primary_10_1016_j_brainresbull_2016_12_004 crossref_primary_10_1074_jbc_RA118_006506 crossref_primary_10_1016_j_neuron_2014_12_007 crossref_primary_10_1074_jbc_M116_714923 crossref_primary_10_3389_fcell_2019_00073 crossref_primary_10_4103_NRR_NRR_D_23_01140 crossref_primary_10_1083_jcb_201410050 crossref_primary_10_2337_db22_0231 crossref_primary_10_1080_15548627_2022_2151294 crossref_primary_10_1038_s41556_024_01429_4 crossref_primary_10_3390_ijms20030748 crossref_primary_10_1016_j_mito_2021_01_001 crossref_primary_10_1016_j_celrep_2014_10_046 crossref_primary_10_1038_onc_2016_302 crossref_primary_10_1016_j_jbc_2021_101339 crossref_primary_10_1186_s12860_019_0220_5 crossref_primary_10_1016_j_cellsig_2021_109933 crossref_primary_10_1016_j_neubiorev_2022_104871 crossref_primary_10_1111_cpr_13327 crossref_primary_10_3233_JPD_160989 crossref_primary_10_1016_j_bpj_2019_06_038 crossref_primary_10_1074_jbc_M115_687319 crossref_primary_10_1016_j_jare_2024_05_012 crossref_primary_10_1038_s41418_020_00706_7 crossref_primary_10_1016_j_isci_2020_101797 crossref_primary_10_1016_j_biopha_2018_06_128 crossref_primary_10_1002_adhm_201601406 crossref_primary_10_1038_s41418_023_01251_9 crossref_primary_10_1074_jbc_M114_606798 crossref_primary_10_1242_jcs_161216 crossref_primary_10_1002_humu_22808 crossref_primary_10_1136_thoraxjnl_2019_214158 crossref_primary_10_1111_febs_13249 crossref_primary_10_15252_embj_2020107341 crossref_primary_10_15252_embr_201949097 crossref_primary_10_1016_j_molmet_2024_102042 crossref_primary_10_15252_embr_201439820 crossref_primary_10_3390_biom14030248 crossref_primary_10_1016_j_celrep_2017_07_081 crossref_primary_10_1159_000430888 crossref_primary_10_1515_hsz_2020_0231 crossref_primary_10_1007_s10565_020_09561_1 crossref_primary_10_1038_s41419_019_2132_x crossref_primary_10_1042_BST20140321 crossref_primary_10_1016_j_bbamcr_2017_04_009 crossref_primary_10_1089_ars_2014_6206 crossref_primary_10_1016_j_brainres_2017_11_014 crossref_primary_10_1038_s41419_024_06804_5 crossref_primary_10_1186_s13024_017_0170_3 crossref_primary_10_1016_j_ejcb_2021_151185 crossref_primary_10_1016_j_neo_2016_12_006 crossref_primary_10_3390_cells11152426 crossref_primary_10_1186_s13024_017_0212_x crossref_primary_10_1126_sciadv_adg8156 crossref_primary_10_1016_j_devcel_2020_11_007 crossref_primary_10_1016_j_molcel_2020_10_007 crossref_primary_10_1111_cns_13140 crossref_primary_10_15252_embr_201540514 crossref_primary_10_1038_s41418_019_0486_3 crossref_primary_10_1074_jbc_M117_783175 crossref_primary_10_1111_febs_16101 crossref_primary_10_15252_embj_201899916 |
Cites_doi | 10.1038/nrm3028 10.1038/ncb2012 10.1098/rsob.110012 10.1002/mds.22798 10.1016/j.cell.2013.07.030 10.1016/j.molcel.2013.01.036 10.4161/auto.6.7.13286 10.1038/cr.2013.66 10.1371/journal.pbio.1000298 10.1126/science.1096284 10.1038/nature09966 10.1074/jbc.M110.144238 10.1074/jbc.M411103200 10.1073/pnas.0705363105 10.1146/annurev.biochem.74.082803.133400 10.1038/sj.cdd.4401751 10.1083/jcb.201007013 10.1016/j.cell.2005.06.009 10.1126/science.1237908 10.1083/jcb.200611128 10.1128/MCB.00620-06 10.1073/pnas.0802076105 10.1016/j.neuroscience.2009.12.068 10.1101/cshperspect.a011338 10.1083/jcb.200809125 10.1073/pnas.0911187107 10.1016/j.cell.2011.10.018 10.1083/jcb.201210111 10.1073/pnas.0802814105 10.1098/rsob.120080 10.1083/jcb.200910140 10.1038/nature12043 10.1016/j.tcb.2014.01.001 10.1038/nature09732 10.1038/cdd.2013.19 10.1126/science.1231031 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd Copyright © 2014 Elsevier Ltd. All rights reserved. 2014 Elsevier Inc. All rights reserved. 2014 |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. – notice: 2014 Elsevier Inc. All rights reserved. 2014 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1016/j.cub.2014.07.014 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-0445 |
EndPage | 1865 |
ExternalDocumentID | PMC4143385 25088558 10_1016_j_cub_2014_07_014 S0960982214008409 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA107098 – fundername: NCI NIH HHS grantid: CA107098 – fundername: NIGMS NIH HHS grantid: T32 GM008759 – fundername: NCRR NIH HHS grantid: S10 RR026680 – fundername: NIGMS NIH HHS grantid: T32 GM142607 – fundername: NINDS NIH HHS grantid: R01 NS041779 |
GroupedDBID | --- --K -DZ -~X 0R~ 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 5VS 62- 6I. 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAKRW AALRI AAQFI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHFR AGHSJ AGKMS AGUBO AHHHB AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID IHE IXB J1W JIG LX5 M3Z M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SCP SDG SES SSZ TR2 WQ6 ZA5 29F AAIKJ AAMRU AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP ASPBG AVWKF CAG CITATION COF FEDTE FGOYB G-2 HVGLF HZ~ OZT R2- SEW UHS XIH XPP Y6R ZGI 0SF CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM EFKBS |
ID | FETCH-LOGICAL-c583t-204491e5d7737be7f58feae935bd5946d75e977400fb2a0866c999f20bdfe6873 |
IEDL.DBID | IXB |
ISSN | 0960-9822 1879-0445 |
IngestDate | Thu Aug 21 18:34:04 EDT 2025 Fri Jul 11 03:59:35 EDT 2025 Fri Jul 11 02:53:34 EDT 2025 Thu Jan 02 22:54:04 EST 2025 Thu Apr 24 22:58:52 EDT 2025 Tue Jul 01 04:08:01 EDT 2025 Fri Feb 23 02:28:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2014 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c583t-204491e5d7737be7f58feae935bd5946d75e977400fb2a0866c999f20bdfe6873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0960982214008409 |
PMID | 25088558 |
PQID | 1555249745 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4143385 proquest_miscellaneous_1694978543 proquest_miscellaneous_1555249745 pubmed_primary_25088558 crossref_citationtrail_10_1016_j_cub_2014_07_014 crossref_primary_10_1016_j_cub_2014_07_014 elsevier_sciencedirect_doi_10_1016_j_cub_2014_07_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-18 |
PublicationDateYYYYMMDD | 2014-08-18 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current biology |
PublicationTitleAlternate | Curr Biol |
PublicationYear | 2014 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Matsuda, Sato, Shiba, Okatsu, Saisho, Gautier, Sou, Saiki, Kawajiri, Sato (bib13) 2010; 189 Arena, Gelmetti, Torosantucci, Vignone, Lamorte, De Rosa, Cilia, Jonas, Valente (bib29) 2013; 20 Wang, Winter, Ashrafi, Schlehe, Wong, Selkoe, Rice, Steen, LaVoie, Schwarz (bib12) 2011; 147 Haque, Thomas, D’Souza, Callaghan, Kitada, Slack, Fraser, Cookson, Tandon, Park (bib32) 2008; 105 Ding, He, Hsu, Xia, Chen, Li, Lee, Liu, Zhong, Wang, Hung (bib36) 2007; 27 Chen, Dorn (bib10) 2013; 340 Klinkenberg, Thurow, Gispert, Ricciardi, Eich, Prehn, Auburger, Kögel (bib31) 2010; 166 Trempe, Sauvé, Grenier, Seirafi, Tang, Ménade, Al-Abdul-Wahid, Krett, Wong, Kozlov (bib23) 2013; 340 Kondapalli, Kazlauskaite, Zhang, Woodroof, Campbell, Gourlay, Burchell, Walden, Macartney, Deak (bib11) 2012; 2 Valente, Abou-Sleiman, Caputo, Muqit, Harvey, Gispert, Ali, Del Turco, Bentivoglio, Healy (bib1) 2004; 304 Zhou, Huang, Shao, May, Prou, Perier, Dauer, Schon, Przedborski (bib8) 2008; 105 McLelland, Soubannier, Chen, McBride, Fon (bib24) 2014; 33 Wenzel, Lissounov, Brzovic, Klevit (bib15) 2011; 474 Cookson (bib3) 2005; 74 Geisler, Holmström, Skujat, Fiesel, Rothfuss, Kahle, Springer (bib14) 2010; 12 Ungermannova, Gao, Liu (bib37) 2005; 280 Narendra, Walker, Youle (bib6) 2012; 4 Geisler, Holmström, Treis, Skujat, Weber, Fiesel, Kahle, Springer (bib21) 2010; 6 Inuzuka, Shaik, Onoyama, Gao, Tseng, Maser, Zhai, Wan, Gutierrez, Lau (bib35) 2011; 471 Narendra, Jin, Tanaka, Suen, Gautier, Shen, Cookson, Youle (bib7) 2010; 8 Zhong, Gao, Du, Wang (bib34) 2005; 121 Winklhofer (bib5) 2014; 24 Hertz, Berthet, Sos, Thorn, Burlingame, Nakamura, Shokat (bib30) 2013; 154 Gautier, Kitada, Shen (bib27) 2008; 105 Codogno, Meijer (bib33) 2005; 12 Müller-Rischart, Pilsl, Beaudette, Patra, Hadian, Funke, Peis, Deinlein, Schweimer, Kuhn (bib25) 2013; 49 Youle, Narendra (bib4) 2011; 12 Zheng, Hunter (bib16) 2013; 23 Olzmann, Li, Chudaev, Chen, Perez, Palmiter, Chin (bib18) 2007; 178 Dawson, Dawson (bib2) 2010; 25 Woodroof, Pogson, Begley, Cantley, Deak, Campbell, van Aalten, Whitworth, Alessi, Muqit (bib28) 2011; 1 Tanaka, Cleland, Xu, Narendra, Suen, Karbowski, Youle (bib19) 2010; 191 Wang, Song, Du, Tian, Yue, Liu, Li, Wang, Zhu, Cao (bib20) 2011; 286 Vives-Bauza, Zhou, Huang, Cui, de Vries, Kim, May, Tocilescu, Liu, Ko (bib9) 2010; 107 Lazarou, Narendra, Jin, Tekle, Banerjee, Youle (bib17) 2013; 200 Sarraf, Raman, Guarani-Pereira, Sowa, Huttlin, Gygi, Harper (bib22) 2013; 496 Narendra, Tanaka, Suen, Youle (bib26) 2008; 183 Arena (10.1016/j.cub.2014.07.014_bib29) 2013; 20 Chen (10.1016/j.cub.2014.07.014_bib10) 2013; 340 Dawson (10.1016/j.cub.2014.07.014_bib2) 2010; 25 Hertz (10.1016/j.cub.2014.07.014_bib30) 2013; 154 Cookson (10.1016/j.cub.2014.07.014_bib3) 2005; 74 Klinkenberg (10.1016/j.cub.2014.07.014_bib31) 2010; 166 Zhong (10.1016/j.cub.2014.07.014_bib34) 2005; 121 Matsuda (10.1016/j.cub.2014.07.014_bib13) 2010; 189 Olzmann (10.1016/j.cub.2014.07.014_bib18) 2007; 178 Narendra (10.1016/j.cub.2014.07.014_bib6) 2012; 4 Woodroof (10.1016/j.cub.2014.07.014_bib28) 2011; 1 Wang (10.1016/j.cub.2014.07.014_bib12) 2011; 147 Tanaka (10.1016/j.cub.2014.07.014_bib19) 2010; 191 McLelland (10.1016/j.cub.2014.07.014_bib24) 2014; 33 Trempe (10.1016/j.cub.2014.07.014_bib23) 2013; 340 Zheng (10.1016/j.cub.2014.07.014_bib16) 2013; 23 Narendra (10.1016/j.cub.2014.07.014_bib26) 2008; 183 Winklhofer (10.1016/j.cub.2014.07.014_bib5) 2014; 24 Ungermannova (10.1016/j.cub.2014.07.014_bib37) 2005; 280 Gautier (10.1016/j.cub.2014.07.014_bib27) 2008; 105 Kondapalli (10.1016/j.cub.2014.07.014_bib11) 2012; 2 Zhou (10.1016/j.cub.2014.07.014_bib8) 2008; 105 Codogno (10.1016/j.cub.2014.07.014_bib33) 2005; 12 Sarraf (10.1016/j.cub.2014.07.014_bib22) 2013; 496 Youle (10.1016/j.cub.2014.07.014_bib4) 2011; 12 Geisler (10.1016/j.cub.2014.07.014_bib21) 2010; 6 Ding (10.1016/j.cub.2014.07.014_bib36) 2007; 27 Lazarou (10.1016/j.cub.2014.07.014_bib17) 2013; 200 Wenzel (10.1016/j.cub.2014.07.014_bib15) 2011; 474 Valente (10.1016/j.cub.2014.07.014_bib1) 2004; 304 Narendra (10.1016/j.cub.2014.07.014_bib7) 2010; 8 Wang (10.1016/j.cub.2014.07.014_bib20) 2011; 286 Geisler (10.1016/j.cub.2014.07.014_bib14) 2010; 12 Müller-Rischart (10.1016/j.cub.2014.07.014_bib25) 2013; 49 Inuzuka (10.1016/j.cub.2014.07.014_bib35) 2011; 471 Vives-Bauza (10.1016/j.cub.2014.07.014_bib9) 2010; 107 Haque (10.1016/j.cub.2014.07.014_bib32) 2008; 105 |
References_xml | – volume: 74 start-page: 29 year: 2005 end-page: 52 ident: bib3 article-title: The biochemistry of Parkinson’s disease publication-title: Annu. Rev. Biochem. – volume: 6 start-page: 871 year: 2010 end-page: 878 ident: bib21 article-title: The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations publication-title: Autophagy – volume: 107 start-page: 378 year: 2010 end-page: 383 ident: bib9 article-title: PINK1-dependent recruitment of Parkin to mitochondria in mitophagy publication-title: Proc. Natl. Acad. Sci. USA – volume: 280 start-page: 30301 year: 2005 end-page: 30309 ident: bib37 article-title: Ubiquitination of p27Kip1 requires physical interaction with cyclin E and probable phosphate recognition by SKP2 publication-title: J. Biol. Chem. – volume: 12 start-page: 1509 year: 2005 end-page: 1518 ident: bib33 article-title: Autophagy and signaling: their role in cell survival and cell death publication-title: Cell Death Differ. – volume: 4 start-page: a011338 year: 2012 ident: bib6 article-title: Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism publication-title: Cold Spring Harb. Perspect. Biol. – volume: 340 start-page: 1451 year: 2013 end-page: 1455 ident: bib23 article-title: Structure of parkin reveals mechanisms for ubiquitin ligase activation publication-title: Science – volume: 121 start-page: 1085 year: 2005 end-page: 1095 ident: bib34 article-title: Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis publication-title: Cell – volume: 178 start-page: 1025 year: 2007 end-page: 1038 ident: bib18 article-title: Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6 publication-title: J. Cell Biol. – volume: 474 start-page: 105 year: 2011 end-page: 108 ident: bib15 article-title: UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids publication-title: Nature – volume: 340 start-page: 471 year: 2013 end-page: 475 ident: bib10 article-title: PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria publication-title: Science – volume: 200 start-page: 163 year: 2013 end-page: 172 ident: bib17 article-title: PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding publication-title: J. Cell Biol. – volume: 166 start-page: 422 year: 2010 end-page: 434 ident: bib31 article-title: Enhanced vulnerability of PARK6 patient skin fibroblasts to apoptosis induced by proteasomal stress publication-title: Neuroscience – volume: 304 start-page: 1158 year: 2004 end-page: 1160 ident: bib1 article-title: Hereditary early-onset Parkinson’s disease caused by mutations in PINK1 publication-title: Science – volume: 496 start-page: 372 year: 2013 end-page: 376 ident: bib22 article-title: Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization publication-title: Nature – volume: 33 start-page: 282 year: 2014 end-page: 295 ident: bib24 article-title: Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control publication-title: EMBO J. – volume: 12 start-page: 9 year: 2011 end-page: 14 ident: bib4 article-title: Mechanisms of mitophagy publication-title: Nat. Rev. Mol. Cell Biol. – volume: 191 start-page: 1367 year: 2010 end-page: 1380 ident: bib19 article-title: Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin publication-title: J. Cell Biol. – volume: 49 start-page: 908 year: 2013 end-page: 921 ident: bib25 article-title: The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO publication-title: Mol. Cell – volume: 183 start-page: 795 year: 2008 end-page: 803 ident: bib26 article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy publication-title: J. Cell Biol. – volume: 286 start-page: 11649 year: 2011 end-page: 11658 ident: bib20 article-title: Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease publication-title: J. Biol. Chem. – volume: 189 start-page: 211 year: 2010 end-page: 221 ident: bib13 article-title: PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy publication-title: J. Cell Biol. – volume: 154 start-page: 737 year: 2013 end-page: 747 ident: bib30 article-title: A neo-substrate that amplifies catalytic activity of parkinson’s-disease-related kinase PINK1 publication-title: Cell – volume: 25 start-page: S32 year: 2010 end-page: S39 ident: bib2 article-title: The role of parkin in familial and sporadic Parkinson’s disease publication-title: Mov. Disord. – volume: 20 start-page: 920 year: 2013 end-page: 930 ident: bib29 article-title: PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage publication-title: Cell Death Differ. – volume: 2 start-page: 120080 year: 2012 ident: bib11 article-title: PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65 publication-title: Open Biol. – volume: 105 start-page: 1716 year: 2008 end-page: 1721 ident: bib32 article-title: Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: e1000298 year: 2010 ident: bib7 article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin publication-title: PLoS Biol. – volume: 1 start-page: 110012 year: 2011 ident: bib28 article-title: Discovery of catalytically active orthologues of the Parkinson’s disease kinase PINK1: analysis of substrate specificity and impact of mutations publication-title: Open Biol. – volume: 24 start-page: 332 year: 2014 end-page: 341 ident: bib5 article-title: Parkin and mitochondrial quality control: toward assembling the puzzle publication-title: Trends Cell Biol. – volume: 27 start-page: 4006 year: 2007 end-page: 4017 ident: bib36 article-title: Degradation of Mcl-1 by beta-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization publication-title: Mol. Cell. Biol. – volume: 105 start-page: 12022 year: 2008 end-page: 12027 ident: bib8 article-title: The kinase domain of mitochondrial PINK1 faces the cytoplasm publication-title: Proc. Natl. Acad. Sci. USA – volume: 23 start-page: 886 year: 2013 end-page: 897 ident: bib16 article-title: Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism publication-title: Cell Res. – volume: 105 start-page: 11364 year: 2008 end-page: 11369 ident: bib27 article-title: Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 119 year: 2010 end-page: 131 ident: bib14 article-title: PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 publication-title: Nat. Cell Biol. – volume: 471 start-page: 104 year: 2011 end-page: 109 ident: bib35 article-title: SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction publication-title: Nature – volume: 147 start-page: 893 year: 2011 end-page: 906 ident: bib12 article-title: PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility publication-title: Cell – volume: 33 start-page: 282 year: 2014 ident: 10.1016/j.cub.2014.07.014_bib24 article-title: Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control publication-title: EMBO J. – volume: 12 start-page: 9 year: 2011 ident: 10.1016/j.cub.2014.07.014_bib4 article-title: Mechanisms of mitophagy publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3028 – volume: 12 start-page: 119 year: 2010 ident: 10.1016/j.cub.2014.07.014_bib14 article-title: PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2012 – volume: 1 start-page: 110012 year: 2011 ident: 10.1016/j.cub.2014.07.014_bib28 article-title: Discovery of catalytically active orthologues of the Parkinson’s disease kinase PINK1: analysis of substrate specificity and impact of mutations publication-title: Open Biol. doi: 10.1098/rsob.110012 – volume: 25 start-page: S32 issue: Suppl 1 year: 2010 ident: 10.1016/j.cub.2014.07.014_bib2 article-title: The role of parkin in familial and sporadic Parkinson’s disease publication-title: Mov. Disord. doi: 10.1002/mds.22798 – volume: 154 start-page: 737 year: 2013 ident: 10.1016/j.cub.2014.07.014_bib30 article-title: A neo-substrate that amplifies catalytic activity of parkinson’s-disease-related kinase PINK1 publication-title: Cell doi: 10.1016/j.cell.2013.07.030 – volume: 49 start-page: 908 year: 2013 ident: 10.1016/j.cub.2014.07.014_bib25 article-title: The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.01.036 – volume: 6 start-page: 871 year: 2010 ident: 10.1016/j.cub.2014.07.014_bib21 article-title: The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations publication-title: Autophagy doi: 10.4161/auto.6.7.13286 – volume: 23 start-page: 886 year: 2013 ident: 10.1016/j.cub.2014.07.014_bib16 article-title: Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism publication-title: Cell Res. doi: 10.1038/cr.2013.66 – volume: 8 start-page: e1000298 year: 2010 ident: 10.1016/j.cub.2014.07.014_bib7 article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000298 – volume: 304 start-page: 1158 year: 2004 ident: 10.1016/j.cub.2014.07.014_bib1 article-title: Hereditary early-onset Parkinson’s disease caused by mutations in PINK1 publication-title: Science doi: 10.1126/science.1096284 – volume: 474 start-page: 105 year: 2011 ident: 10.1016/j.cub.2014.07.014_bib15 article-title: UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids publication-title: Nature doi: 10.1038/nature09966 – volume: 286 start-page: 11649 year: 2011 ident: 10.1016/j.cub.2014.07.014_bib20 article-title: Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.144238 – volume: 280 start-page: 30301 year: 2005 ident: 10.1016/j.cub.2014.07.014_bib37 article-title: Ubiquitination of p27Kip1 requires physical interaction with cyclin E and probable phosphate recognition by SKP2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M411103200 – volume: 105 start-page: 1716 year: 2008 ident: 10.1016/j.cub.2014.07.014_bib32 article-title: Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0705363105 – volume: 74 start-page: 29 year: 2005 ident: 10.1016/j.cub.2014.07.014_bib3 article-title: The biochemistry of Parkinson’s disease publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.74.082803.133400 – volume: 12 start-page: 1509 issue: Suppl 2 year: 2005 ident: 10.1016/j.cub.2014.07.014_bib33 article-title: Autophagy and signaling: their role in cell survival and cell death publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401751 – volume: 191 start-page: 1367 year: 2010 ident: 10.1016/j.cub.2014.07.014_bib19 article-title: Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin publication-title: J. Cell Biol. doi: 10.1083/jcb.201007013 – volume: 121 start-page: 1085 year: 2005 ident: 10.1016/j.cub.2014.07.014_bib34 article-title: Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis publication-title: Cell doi: 10.1016/j.cell.2005.06.009 – volume: 340 start-page: 1451 year: 2013 ident: 10.1016/j.cub.2014.07.014_bib23 article-title: Structure of parkin reveals mechanisms for ubiquitin ligase activation publication-title: Science doi: 10.1126/science.1237908 – volume: 178 start-page: 1025 year: 2007 ident: 10.1016/j.cub.2014.07.014_bib18 article-title: Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6 publication-title: J. Cell Biol. doi: 10.1083/jcb.200611128 – volume: 27 start-page: 4006 year: 2007 ident: 10.1016/j.cub.2014.07.014_bib36 article-title: Degradation of Mcl-1 by beta-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00620-06 – volume: 105 start-page: 11364 year: 2008 ident: 10.1016/j.cub.2014.07.014_bib27 article-title: Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0802076105 – volume: 166 start-page: 422 year: 2010 ident: 10.1016/j.cub.2014.07.014_bib31 article-title: Enhanced vulnerability of PARK6 patient skin fibroblasts to apoptosis induced by proteasomal stress publication-title: Neuroscience doi: 10.1016/j.neuroscience.2009.12.068 – volume: 4 start-page: a011338 year: 2012 ident: 10.1016/j.cub.2014.07.014_bib6 article-title: Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a011338 – volume: 183 start-page: 795 year: 2008 ident: 10.1016/j.cub.2014.07.014_bib26 article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy publication-title: J. Cell Biol. doi: 10.1083/jcb.200809125 – volume: 107 start-page: 378 year: 2010 ident: 10.1016/j.cub.2014.07.014_bib9 article-title: PINK1-dependent recruitment of Parkin to mitochondria in mitophagy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0911187107 – volume: 147 start-page: 893 year: 2011 ident: 10.1016/j.cub.2014.07.014_bib12 article-title: PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility publication-title: Cell doi: 10.1016/j.cell.2011.10.018 – volume: 200 start-page: 163 year: 2013 ident: 10.1016/j.cub.2014.07.014_bib17 article-title: PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding publication-title: J. Cell Biol. doi: 10.1083/jcb.201210111 – volume: 105 start-page: 12022 year: 2008 ident: 10.1016/j.cub.2014.07.014_bib8 article-title: The kinase domain of mitochondrial PINK1 faces the cytoplasm publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0802814105 – volume: 2 start-page: 120080 year: 2012 ident: 10.1016/j.cub.2014.07.014_bib11 article-title: PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65 publication-title: Open Biol. doi: 10.1098/rsob.120080 – volume: 189 start-page: 211 year: 2010 ident: 10.1016/j.cub.2014.07.014_bib13 article-title: PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy publication-title: J. Cell Biol. doi: 10.1083/jcb.200910140 – volume: 496 start-page: 372 year: 2013 ident: 10.1016/j.cub.2014.07.014_bib22 article-title: Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization publication-title: Nature doi: 10.1038/nature12043 – volume: 24 start-page: 332 year: 2014 ident: 10.1016/j.cub.2014.07.014_bib5 article-title: Parkin and mitochondrial quality control: toward assembling the puzzle publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2014.01.001 – volume: 471 start-page: 104 year: 2011 ident: 10.1016/j.cub.2014.07.014_bib35 article-title: SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction publication-title: Nature doi: 10.1038/nature09732 – volume: 20 start-page: 920 year: 2013 ident: 10.1016/j.cub.2014.07.014_bib29 article-title: PINK1 protects against cell death induced by mitochondrial depolarization, by phosphorylating Bcl-xL and impairing its pro-apoptotic cleavage publication-title: Cell Death Differ. doi: 10.1038/cdd.2013.19 – volume: 340 start-page: 471 year: 2013 ident: 10.1016/j.cub.2014.07.014_bib10 article-title: PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria publication-title: Science doi: 10.1126/science.1231031 |
SSID | ssj0012896 |
Score | 2.4396284 |
Snippet | The PINK1-Parkin pathway is known to play important roles in regulating mitochondria dynamics, motility, and quality control. Activation of this pathway can be... Background: The PINK1-Parkin pathway is known to play important roles in regulating mitochondria dynamics, motility, and quality control. Activation of this... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1854 |
SubjectTerms | Amino Acid Sequence Apoptosis Cell Line Cytoprotection HEK293 Cells HeLa Cells Humans Phosphorylation Protein Kinases - genetics Protein Kinases - metabolism Sequence Alignment Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism Ubiquitination |
Title | PINK1 Triggers Autocatalytic Activation of Parkin to Specify Cell Fate Decisions |
URI | https://dx.doi.org/10.1016/j.cub.2014.07.014 https://www.ncbi.nlm.nih.gov/pubmed/25088558 https://www.proquest.com/docview/1555249745 https://www.proquest.com/docview/1694978543 https://pubmed.ncbi.nlm.nih.gov/PMC4143385 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCaKDgN2Gbp32q7QgJ0GGPFDsuRjmjUoFqyHrsVyEyRL3jIEdrE6h_z7krIdLCuWw06GbcqQSYn6KFIkwEfrVJoZyrFvnI249z6yVrooMSgRb11RhTpkX6_yy1v-ZSEWBzAdzsJQWGWv-zudHrR1_2Tcc3N8t1yOv4Vkabi-oYkQk5mCejjjKhziW5xvPQloUAR_JRJHRD14NkOMV7m2FN3FQ_7OhP9rbXqMPf8OofxjTZodwfMeTLJJ198XcODrl_C0Ky-5eQVkss8TdoMG-A9EeWyybpuwXbNBejYph8pmrKkYnX5e1qxtWKhIX23Y1K9WbIZQlH3u6_Dcv4bb2cXN9DLqKyhEpVBZi1OA8yLxwkmZSetlJVTljS8yYZ0oeO6k8AQA47iyqUHrJi8RMFZpbF3lcyWzN3BYN7V_B0xI440kCw2_WRoE5i4VaZGUiA-dkm4E8cA7XfbpxanKxUoPcWS_NLJbE7t1LDVeRvBp2-Suy62xj5gPAtE7A0Sj7t_X7MMgPI0Th7whpvbN-l4jkBJoe0ou9tDkBVXgEzwbwdtO4NuepgRthVAjkDtDYUtAibt339TLnyGBN0eQmilx_H-_dALP6I42thN1Coft77V_j8iotWfwZDK__j4_C1PgAZrkDQQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTQheJsbHKGPDk3hCipoPO04eS6HqYNsLndQ3y46drahKJpY-9L_nzkkqCqIPe4oUnyPnzmf_zne-A_hobBYnmnLsa2sC7pwLjJE2iDRKxBmbl74O2dV1Or3h3-Zivgfj_i4MhVV2a3-7pvvVunsz7Lg5vF8shj98sjTc39BECMlMeQIHiAYkaefF_PPGlYAWhXdYInVA5L1r0wd5FStD4V3cJ_CM-P82p3_B598xlH9sSpMXcNihSTZqB3wEe656CU_b-pLrV0A2-_eIzdACv0WYx0arpvbnNWukZ6OiL23G6pLR9edFxZqa-ZL05ZqN3XLJJohF2ZeuEM_Da7iZfJ2Np0FXQiEoRJY0qAOc55ETVspEGidLkZVOuzwRxoqcp1YKRwgwDEsTazRv0gIRYxmHxpYuzWTyBvarunJvgQmpnZZkouE3C43I3MYizqMCAaLNpB1A2PNOFV1-cSpzsVR9INlPhexWxG4VSoWPAXzadLlvk2vsIua9QNTWDFG4-O_qdt4LT6HmkDtEV65ePShEUgKNT8nFDpo0pxJ8gicDOG4FvhlpTNhWiGwAcmsqbAgoc_d2S7W48xm8OaLUJBPvHvdLH-DZdHZ1qS5xDp3Ac2qhU-4oew_7za-VO0WY1Jgzrwa_AatUDoE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PINK1+Triggers+Autocatalytic+Activation+of+Parkin+to+Specify+Cell+Fate+Decisions&rft.jtitle=Current+biology&rft.au=Zhang%2C+Conggang&rft.au=Lee%2C+Schuyler&rft.au=Peng%2C+Yinghua&rft.au=Bunker%2C+Eric&rft.date=2014-08-18&rft.issn=0960-9822&rft.eissn=1879-0445&rft.volume=24&rft.issue=16&rft.spage=1854&rft.epage=1865&rft_id=info:doi/10.1016%2Fj.cub.2014.07.014&rft_id=info%3Apmid%2F25088558&rft.externalDocID=PMC4143385 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon |