The ipsilateral motor cortex contributes to cross-limb transfer of performance gains after ballistic motor practice
Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task dep...
Saved in:
Published in | The Journal of physiology Vol. 588; no. 1; pp. 201 - 212 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
The Physiological Society
01.01.2010
Blackwell Publishing Ltd Wiley Subscription Services, Inc Blackwell Science Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3751 1469-7793 1469-7793 |
DOI | 10.1113/jphysiol.2009.183855 |
Cover
Loading…
Abstract | Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite,
the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on
a fastest possible (i.e. ballistic) movement task depends partly on cortical circuits located ipsilateral to the trained limb.
The idea that crossed effects, which are important for the learning process, might occur in the âuntrained' hemisphere following
ballistic training is based on the observation that tasks requiring strong descending drive generate extensive bilateral cortical
activity. Twenty-one volunteers practiced a ballistic index finger abduction task with their right hand, and corticospinal
excitability was assessed in two hand muscles (first dorsal interosseus, FDI; adductor digiti minimi, ADM). Eight control
subjects did not train. After training, repetitive transcranial magnetic stimulation (rTMS; 15 min at 1 Hz) was applied to
the left (trained) or right (untrained) motor cortex to induce a âvirtual lesion'. A third training group received sham rTMS,
and control subjects received rTMS to the right motor cortex. Performance and corticospinal excitability (for FDI) increased
in both hands for training but not control subjects. rTMS of the left, trained motor cortex specifically reduced training-induced
gains in motor performance for the right, trained hand, and rTMS of the right, untrained motor cortex specifically reduced
performance gains for the left, untrained hand. Thus, cortical processes within the untrained hemisphere, ipsilateral to the trained hand, contribute to early retention of ballistic performance gains for the untrained
limb. |
---|---|
AbstractList | Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task depends partly on cortical circuits located ipsilateral to the trained limb. The idea that crossed effects, which are important for the learning process, might occur in the 'untrained' hemisphere following ballistic training is based on the observation that tasks requiring strong descending drive generate extensive bilateral cortical activity. Twenty-one volunteers practiced a ballistic index finger abduction task with their right hand, and corticospinal excitability was assessed in two hand muscles (first dorsal interosseus, FDI; adductor digiti minimi, ADM). Eight control subjects did not train. After training, repetitive transcranial magnetic stimulation (rTMS; 15 min at 1 Hz) was applied to the left (trained) or right (untrained) motor cortex to induce a 'virtual lesion'. A third training group received sham rTMS, and control subjects received rTMS to the right motor cortex. Performance and corticospinal excitability (for FDI) increased in both hands for training but not control subjects. rTMS of the left, trained motor cortex specifically reduced training-induced gains in motor performance for the right, trained hand, and rTMS of the right, untrained motor cortex specifically reduced performance gains for the left, untrained hand. Thus, cortical processes within the untrained hemisphere, ipsilateral to the trained hand, contribute to early retention of ballistic performance gains for the untrained limb. Non-technical summaryAlthough it has long been known that practice of a motor task with one limb improves performance with the opposite limb, the underlying mechanisms are poorly understood. Here we show that cross-limb transfer of ballistic motor performance (i.e. fastest possible movement) depends partly on changes in the cerebral hemisphere that controls movements of the untrained limb. We speculate that these 'crossed' adaptations occur because both sides of the brain are activated when ballistic tasks are performed with one limb. The data may have practical applications if crossed effects can be exploited to enhance movement capacity in disorders of movement that affect predominantly one side of the body. Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task depends partly on cortical circuits located ipsilateral to the trained limb. The idea that crossed effects, which are important for the learning process, might occur in the ‘untrained’ hemisphere following ballistic training is based on the observation that tasks requiring strong descending drive generate extensive bilateral cortical activity. Twenty‐one volunteers practiced a ballistic index finger abduction task with their right hand, and corticospinal excitability was assessed in two hand muscles (first dorsal interosseus, FDI; adductor digiti minimi, ADM). Eight control subjects did not train. After training, repetitive transcranial magnetic stimulation (rTMS; 15 min at 1 Hz) was applied to the left (trained) or right (untrained) motor cortex to induce a ‘virtual lesion’. A third training group received sham rTMS, and control subjects received rTMS to the right motor cortex. Performance and corticospinal excitability (for FDI) increased in both hands for training but not control subjects. rTMS of the left, trained motor cortex specifically reduced training‐induced gains in motor performance for the right, trained hand, and rTMS of the right, untrained motor cortex specifically reduced performance gains for the left, untrained hand. Thus, cortical processes within the untrained hemisphere, ipsilateral to the trained hand, contribute to early retention of ballistic performance gains for the untrained limb. Non‐technical summary Although it has long been known that practice of a motor task with one limb improves performance with the opposite limb, the underlying mechanisms are poorly understood. Here we show that cross‐limb transfer of ballistic motor performance (i.e. fastest possible movement) depends partly on changes in the cerebral hemisphere that controls movements of the untrained limb. We speculate that these ‘crossed’ adaptations occur because both sides of the brain are activated when ballistic tasks are performed with one limb. The data may have practical applications if crossed effects can be exploited to enhance movement capacity in disorders of movement that affect predominantly one side of the body. Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task depends partly on cortical circuits located ipsilateral to the trained limb. The idea that crossed effects, which are important for the learning process, might occur in the ‘untrained’ hemisphere following ballistic training is based on the observation that tasks requiring strong descending drive generate extensive bilateral cortical activity. Twenty-one volunteers practiced a ballistic index finger abduction task with their right hand, and corticospinal excitability was assessed in two hand muscles (first dorsal interosseus, FDI; adductor digiti minimi, ADM). Eight control subjects did not train. After training, repetitive transcranial magnetic stimulation (rTMS; 15 min at 1 Hz) was applied to the left (trained) or right (untrained) motor cortex to induce a ‘virtual lesion’. A third training group received sham rTMS, and control subjects received rTMS to the right motor cortex. Performance and corticospinal excitability (for FDI) increased in both hands for training but not control subjects. rTMS of the left, trained motor cortex specifically reduced training-induced gains in motor performance for the right, trained hand, and rTMS of the right, untrained motor cortex specifically reduced performance gains for the left, untrained hand. Thus, cortical processes within the untrained hemisphere, ipsilateral to the trained hand, contribute to early retention of ballistic performance gains for the untrained limb. Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task depends partly on cortical circuits located ipsilateral to the trained limb. The idea that crossed effects, which are important for the learning process, might occur in the âuntrained' hemisphere following ballistic training is based on the observation that tasks requiring strong descending drive generate extensive bilateral cortical activity. Twenty-one volunteers practiced a ballistic index finger abduction task with their right hand, and corticospinal excitability was assessed in two hand muscles (first dorsal interosseus, FDI; adductor digiti minimi, ADM). Eight control subjects did not train. After training, repetitive transcranial magnetic stimulation (rTMS; 15 min at 1 Hz) was applied to the left (trained) or right (untrained) motor cortex to induce a âvirtual lesion'. A third training group received sham rTMS, and control subjects received rTMS to the right motor cortex. Performance and corticospinal excitability (for FDI) increased in both hands for training but not control subjects. rTMS of the left, trained motor cortex specifically reduced training-induced gains in motor performance for the right, trained hand, and rTMS of the right, untrained motor cortex specifically reduced performance gains for the left, untrained hand. Thus, cortical processes within the untrained hemisphere, ipsilateral to the trained hand, contribute to early retention of ballistic performance gains for the untrained limb. Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task depends partly on cortical circuits located ipsilateral to the trained limb. The idea that crossed effects, which are important for the learning process, might occur in the 'untrained' hemisphere following ballistic training is based on the observation that tasks requiring strong descending drive generate extensive bilateral cortical activity. Twenty-one volunteers practiced a ballistic index finger abduction task with their right hand, and corticospinal excitability was assessed in two hand muscles (first dorsal interosseus, FDI; adductor digiti minimi, ADM). Eight control subjects did not train. After training, repetitive transcranial magnetic stimulation (rTMS; 15 min at 1 Hz) was applied to the left (trained) or right (untrained) motor cortex to induce a 'virtual lesion'. A third training group received sham rTMS, and control subjects received rTMS to the right motor cortex. Performance and corticospinal excitability (for FDI) increased in both hands for training but not control subjects. rTMS of the left, trained motor cortex specifically reduced training-induced gains in motor performance for the right, trained hand, and rTMS of the right, untrained motor cortex specifically reduced performance gains for the left, untrained hand. Thus, cortical processes within the untrained hemisphere, ipsilateral to the trained hand, contribute to early retention of ballistic performance gains for the untrained limb.Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task depends partly on cortical circuits located ipsilateral to the trained limb. The idea that crossed effects, which are important for the learning process, might occur in the 'untrained' hemisphere following ballistic training is based on the observation that tasks requiring strong descending drive generate extensive bilateral cortical activity. Twenty-one volunteers practiced a ballistic index finger abduction task with their right hand, and corticospinal excitability was assessed in two hand muscles (first dorsal interosseus, FDI; adductor digiti minimi, ADM). Eight control subjects did not train. After training, repetitive transcranial magnetic stimulation (rTMS; 15 min at 1 Hz) was applied to the left (trained) or right (untrained) motor cortex to induce a 'virtual lesion'. A third training group received sham rTMS, and control subjects received rTMS to the right motor cortex. Performance and corticospinal excitability (for FDI) increased in both hands for training but not control subjects. rTMS of the left, trained motor cortex specifically reduced training-induced gains in motor performance for the right, trained hand, and rTMS of the right, untrained motor cortex specifically reduced performance gains for the left, untrained hand. Thus, cortical processes within the untrained hemisphere, ipsilateral to the trained hand, contribute to early retention of ballistic performance gains for the untrained limb. Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task depends partly on cortical circuits located ipsilateral to the trained limb. The idea that crossed effects, which are important for the learning process, might occur in the ‘untrained’ hemisphere following ballistic training is based on the observation that tasks requiring strong descending drive generate extensive bilateral cortical activity. Twenty‐one volunteers practiced a ballistic index finger abduction task with their right hand, and corticospinal excitability was assessed in two hand muscles (first dorsal interosseus, FDI; adductor digiti minimi, ADM). Eight control subjects did not train. After training, repetitive transcranial magnetic stimulation (rTMS; 15 min at 1 Hz) was applied to the left (trained) or right (untrained) motor cortex to induce a ‘virtual lesion’. A third training group received sham rTMS, and control subjects received rTMS to the right motor cortex. Performance and corticospinal excitability (for FDI) increased in both hands for training but not control subjects. rTMS of the left, trained motor cortex specifically reduced training‐induced gains in motor performance for the right, trained hand, and rTMS of the right, untrained motor cortex specifically reduced performance gains for the left, untrained hand. Thus, cortical processes within the untrained hemisphere, ipsilateral to the trained hand, contribute to early retention of ballistic performance gains for the untrained limb. Non‐technical summary Although it has long been known that practice of a motor task with one limb improves performance with the opposite limb, the underlying mechanisms are poorly understood. Here we show that cross‐limb transfer of ballistic motor performance (i.e. fastest possible movement) depends partly on changes in the cerebral hemisphere that controls movements of the untrained limb. We speculate that these ‘crossed’ adaptations occur because both sides of the brain are activated when ballistic tasks are performed with one limb. The data may have practical applications if crossed effects can be exploited to enhance movement capacity in disorders of movement that affect predominantly one side of the body. Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task depends partly on cortical circuits located ipsilateral to the trained limb. The idea that crossed effects, which are important for the learning process, might occur in the 'untrained' hemisphere following ballistic training is based on the observation that tasks requiring strong descending drive generate extensive bilateral cortical activity. Twenty-one volunteers practiced a ballistic index finger abduction task with their right hand, and corticospinal excitability was assessed in two hand muscles (first dorsal interosseus, FDI; adductor digiti minimi, ADM). Eight control subjects did not train. After training, repetitive transcranial magnetic stimulation (rTMS; 15 min at 1 Hz) was applied to the left (trained) or right (untrained) motor cortex to induce a 'virtual lesion'. A third training group received sham rTMS, and control subjects received rTMS to the right motor cortex. Performance and corticospinal excitability (for FDI) increased in both hands for training but not control subjects. rTMS of the left, trained motor cortex specifically reduced training-induced gains in motor performance for the right, trained hand, and rTMS of the right, untrained motor cortex specifically reduced performance gains for the left, untrained hand. Thus, cortical processes within the untrained hemisphere, ipsilateral to the trained hand, contribute to early retention of ballistic performance gains for the untrained limb. |
Author | Mark R. Hinder Michael Lee Simon C. Gandevia Timothy J. Carroll |
Author_xml | – sequence: 1 givenname: Michael surname: Lee fullname: Lee, Michael – sequence: 2 givenname: Mark R. surname: Hinder fullname: Hinder, Mark R. – sequence: 3 givenname: Simon C. surname: Gandevia fullname: Gandevia, Simon C. – sequence: 4 givenname: Timothy J. surname: Carroll fullname: Carroll, Timothy J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19917563$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9v1DAQxS1URLeFb4CQJQ6csthxnNgckFDFX1WCw3K2HGey65UTB9uh7LfHS7YUeoHTaOTfe56Zd4HORj8CQk8pWVNK2cv9tDtE6926JESuqWCC8wdoRataFk0j2RlaEVKWBWs4PUcXMe4JoYxI-QidUylpw2u2QnGzA2ynaJ1OELTDg08-YONDgh-5jCnYdk4QcfLYBB9j4ezQ4hT0GHsI2Pd4gtD7MOjRAN5qO0as-2yGW-2cjcmak-kUtMkdPEYPe-0iPDnVS_T13dvN1Yfi-vP7j1dvrgvDBSsLWdGyN2XVC9A9oQC8koQ2hHNmOt0IKmoQnOm-06bpCBFGyqoWpALTyq7R7BK9XnynuR2gM5CX0U5NwQ46HJTXVv39Mtqd2vrvqhQl5Vxmgxcng-C_zRCTGmw04Jwewc9RNYzVRJYVyeTze-Tez2HM2ynKK85ovjfN1LM_B_o9yW0cGagW4NelA_R3CFHH1NVt6uqYulpSz7JX92TGJp3sMT1t3b_EchHfWAeH__pQbT59YY0s7w60s9vdjQ2gFjp6YyEdFBdC0ayk7CfNV9jb |
CODEN | JPHYA7 |
CitedBy_id | crossref_primary_10_1123_mc_2016_0048 crossref_primary_10_3390_ijerph181910044 crossref_primary_10_3389_fnhum_2014_00234 crossref_primary_10_1113_JP270184 crossref_primary_10_1302_0301_620X_95B2_30566 crossref_primary_10_1016_j_apmr_2016_04_021 crossref_primary_10_1016_j_humov_2016_07_007 crossref_primary_10_1016_j_neubiorev_2021_11_025 crossref_primary_10_1016_j_clinph_2015_01_006 crossref_primary_10_1007_s00221_013_3481_9 crossref_primary_10_1111_sms_13608 crossref_primary_10_1080_00222895_2024_2390032 crossref_primary_10_1016_j_chb_2021_106782 crossref_primary_10_1016_j_jesf_2015_07_001 crossref_primary_10_1109_TNSRE_2022_3221738 crossref_primary_10_1152_jn_00777_2019 crossref_primary_10_1152_jn_00116_2018 crossref_primary_10_1007_s00221_011_2842_5 crossref_primary_10_1371_journal_pone_0204839 crossref_primary_10_1007_s00221_018_5224_4 crossref_primary_10_1371_journal_pone_0246298 crossref_primary_10_1007_s00421_011_2053_6 crossref_primary_10_1155_2016_8628039 crossref_primary_10_1080_00222895_2023_2265316 crossref_primary_10_1152_jn_00535_2012 crossref_primary_10_1016_j_neulet_2017_02_033 crossref_primary_10_1111_apha_12032 crossref_primary_10_1016_j_jsams_2011_07_007 crossref_primary_10_1002_mus_23316 crossref_primary_10_1371_journal_pone_0128747 crossref_primary_10_1100_2012_504837 crossref_primary_10_15406_mojor_2016_04_00138 crossref_primary_10_3389_fnhum_2019_00135 crossref_primary_10_3389_fnagi_2022_935781 crossref_primary_10_1007_s00221_012_3194_5 crossref_primary_10_1016_j_nicl_2016_11_012 crossref_primary_10_1080_09602011_2014_922889 crossref_primary_10_1371_journal_pone_0052573 crossref_primary_10_1152_jn_00850_2011 crossref_primary_10_2522_ptj_20120058 crossref_primary_10_1139_apnm_2018_0073 crossref_primary_10_1371_journal_pone_0141828 crossref_primary_10_1152_jn_00228_2013 crossref_primary_10_1093_cercor_bhad042 crossref_primary_10_1007_s10072_016_2693_8 crossref_primary_10_1016_j_clinph_2021_03_051 crossref_primary_10_1152_jn_01117_2010 crossref_primary_10_1371_journal_pone_0081038 crossref_primary_10_1007_s00221_014_4158_8 crossref_primary_10_1007_s00421_017_3736_4 crossref_primary_10_1016_j_mvr_2021_104271 crossref_primary_10_1016_j_neuroimage_2021_118657 crossref_primary_10_1152_japplphysiol_00958_2010 crossref_primary_10_1016_j_clinph_2014_12_006 crossref_primary_10_1152_japplphysiol_00971_2017 crossref_primary_10_1016_j_neuroscience_2021_12_011 crossref_primary_10_1016_j_neulet_2017_05_039 crossref_primary_10_23736_S0022_4707_20_10677_7 crossref_primary_10_1038_s41598_025_94182_z crossref_primary_10_1111_ejn_13409 crossref_primary_10_1111_ejn_13769 crossref_primary_10_3389_fnagi_2015_00222 crossref_primary_10_1016_j_celrep_2016_11_009 crossref_primary_10_1111_j_1748_1716_2011_02271_x crossref_primary_10_1038_s41598_020_74005_z crossref_primary_10_1007_s00421_015_3248_z crossref_primary_10_1152_jn_00178_2018 crossref_primary_10_1016_j_humov_2020_102629 crossref_primary_10_1177_1971400916631992 crossref_primary_10_1007_s00421_024_05509_z crossref_primary_10_1088_1361_6579_ab516c crossref_primary_10_3389_fnhum_2018_00289 crossref_primary_10_1249_JES_0000000000000009 crossref_primary_10_3389_fnagi_2015_00073 crossref_primary_10_1177_1545968310397202 crossref_primary_10_3390_sports9100142 crossref_primary_10_1152_jn_00225_2016 crossref_primary_10_1113_jphysiol_2010_198077 crossref_primary_10_1371_journal_pone_0080202 crossref_primary_10_1016_j_gaitpost_2019_02_019 crossref_primary_10_2147_JMDH_S298991 crossref_primary_10_1080_00222895_2022_2061409 crossref_primary_10_1123_jmld_2021_0006 crossref_primary_10_3724_SP_J_1329_2024_03004 crossref_primary_10_1111_sms_13926 crossref_primary_10_1080_13803395_2018_1500527 crossref_primary_10_1080_17461391_2012_704079 crossref_primary_10_1016_j_jcm_2017_01_002 crossref_primary_10_1016_j_neurobiolaging_2016_11_012 crossref_primary_10_1152_jn_00210_2011 crossref_primary_10_1113_JP275433 crossref_primary_10_1371_journal_pone_0222620 crossref_primary_10_3389_fneur_2019_01242 crossref_primary_10_1249_MSS_0000000000000600 crossref_primary_10_3389_fphys_2017_00297 crossref_primary_10_3389_fnhum_2016_00204 crossref_primary_10_3389_fphys_2017_00695 crossref_primary_10_1007_s00421_016_3436_5 crossref_primary_10_1007_s00221_023_06563_3 crossref_primary_10_1093_cercor_bhy172 crossref_primary_10_1152_jn_00557_2018 crossref_primary_10_1152_jn_00075_2013 crossref_primary_10_1007_s00421_018_3937_5 crossref_primary_10_1007_s40279_013_0049_6 crossref_primary_10_1016_j_neuropsychologia_2015_05_018 crossref_primary_10_18857_jkpt_2015_27_6_430 crossref_primary_10_1523_JNEUROSCI_3224_17_2018 crossref_primary_10_1007_s40279_013_0105_2 crossref_primary_10_1152_jn_00042_2014 crossref_primary_10_1249_MSS_0b013e318210783c crossref_primary_10_1007_s00221_014_4016_8 crossref_primary_10_1097_NPT_0000000000000109 crossref_primary_10_1016_j_neulet_2021_136306 crossref_primary_10_1016_j_tins_2019_08_008 crossref_primary_10_1016_j_apmr_2011_08_010 crossref_primary_10_3389_fpsyg_2023_1187175 crossref_primary_10_1016_j_neuroscience_2015_08_007 crossref_primary_10_1016_j_bandc_2021_105691 crossref_primary_10_1016_j_clinph_2017_12_003 crossref_primary_10_1007_s00221_013_3451_2 crossref_primary_10_1016_j_jelekin_2023_102835 crossref_primary_10_1371_journal_pone_0197505 crossref_primary_10_1177_19417381211016353 crossref_primary_10_1152_jn_00485_2015 crossref_primary_10_1523_ENEURO_0190_20_2021 crossref_primary_10_1007_s00421_021_04839_6 crossref_primary_10_1080_00222895_2022_2106935 crossref_primary_10_1139_apnm_2017_0457 crossref_primary_10_1016_j_archger_2013_09_003 crossref_primary_10_1111_ejn_14538 crossref_primary_10_1007_s00421_011_2012_2 crossref_primary_10_1152_jn_00860_2017 crossref_primary_10_1523_JNEUROSCI_5363_13_2014 crossref_primary_10_1249_MSS_0b013e31820a94b8 crossref_primary_10_3389_fnins_2018_00787 crossref_primary_10_1007_s00421_017_3538_8 crossref_primary_10_3389_fnhum_2020_583579 crossref_primary_10_1007_s40279_024_02042_z crossref_primary_10_1371_journal_pone_0155998 crossref_primary_10_1007_s00421_016_3346_6 crossref_primary_10_3390_ijerph17030849 crossref_primary_10_1007_s00421_019_04130_9 crossref_primary_10_1249_MSS_0000000000000733 |
Cites_doi | 10.1016/0006-8993(94)91270-X 10.1523/JNEUROSCI.0093-08.2008 10.1113/jphysiol.2008.159558 10.1037/h0069979 10.1007/s00221-005-0262-0 10.1038/377155a0 10.1016/0278-2626(89)90008-0 10.1007/s002210000614 10.1152/jappl.1951.4.2.136 10.1038/nature712 10.1152/japplphysiol.01351.2007 10.1523/JNEUROSCI.23-12-05308.2003 10.1007/s002219900269 10.1152/jn.01001.2002 10.1016/j.tins.2005.10.003 10.1007/s00221-002-1234-2 10.1016/j.brainres.2007.09.088 10.1038/nrn2590 10.1523/JNEUROSCI.4128-06.2007 10.1016/S0168-5597(97)00096-8 10.1152/jn.1995.74.4.1787 10.1126/science.8122113 10.1007/s00221-002-1363-7 10.1016/0028-3932(71)90067-4 10.1113/jphysiol.2005.089904 10.1016/S1388-2457(99)00243-6 10.1212/WNL.48.5.1398 10.1113/jphysiol.2007.144824 10.1016/S1388-2457(00)00284-4 10.1162/jocn.2006.18.12.2167 10.2165/00007256-200737010-00001 10.2307/1422813 10.1016/j.clinph.2006.06.712 10.1002/(SICI)1097-4598(199808)21:8<1033::AID-MUS7>3.0.CO;2-9 10.1093/cercor/bhj152 10.1007/s002210000432 10.1002/ana.410410216 10.1068/p100383 10.1016/j.cub.2007.09.058 10.1016/S0165-0270(01)00468-X 10.1007/s002210100758 10.1006/brcg.1999.1205 10.1007/s00221-003-1719-7 10.1152/japplphysiol.00531.2006 10.1152/jn.1995.74.3.1037 10.1113/jphysiol.2003.044313 10.1016/S0304-3940(98)00150-5 10.1212/WNL.62.1.91 10.1016/0304-3940(86)90565-3 10.1037/0096-1523.21.4.719 10.1016/S1388-2457(01)00693-9 10.1016/j.cub.2004.01.033 10.1152/jn.1995.74.2.802 10.1016/j.neuropsychologia.2005.08.010 10.1007/s00221-006-0440-8 10.1212/WNL.57.3.449 10.1523/JNEUROSCI.2570-07.2007 10.1093/cercor/bhm173 10.1111/j.1460-9568.2004.03277.x 10.1212/WNL.52.3.529 10.1016/S1388-2457(02)00109-8 10.1016/S0010-9452(80)80006-2 10.1152/jn.1999.81.1.383 10.1016/S0166-4328(05)80091-9 |
ContentType | Journal Article |
Copyright | 2010 The Authors. Journal compilation © 2010 The Physiological Society Journal compilation © 2010 The Physiological Society |
Copyright_xml | – notice: 2010 The Authors. Journal compilation © 2010 The Physiological Society – notice: Journal compilation © 2010 The Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
DOI | 10.1113/jphysiol.2009.183855 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Technology Research Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-7793 |
EndPage | 212 |
ExternalDocumentID | PMC2821559 3374172211 19917563 10_1113_jphysiol_2009_183855 TJP3792 588_1_201 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 05W 0R 0YM 10A 123 1OB 1OC 24P 29L 2WC 31 33P 3N 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAONW AAVGM AAZKR ABCUV ABFLS ABHUG ABITZ ABIVO ABOCM ABPPZ ABPTK ABPVW ABUFD ABWRO ACAHQ ACFBH ACGFS ACIWK ACMXC ACNCT ACPOU ACPRK ACXME ACXQS ADACO ADAWD ADBBV ADDAD ADEOM ADIZJ ADXAS ADZMN AEIMD AEUQT AFBPY AFFNX AFPWT AFZJQ AGJLS ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DZ E3Z EBS EJD EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GA GODZA GX1 H.X H13 HZ HZI IA IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LI0 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF O0- O66 O9- OK1 OVD P2P P2W P2X P2Z P4A P4B P4D Q.N Q11 QB0 R.K RIG ROL RPM RX1 SUPJJ TLM TN5 UB1 UNR UPT V8K VH1 W8V W99 WBKPD WH7 WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WT WXI WYISQ X XG1 Y3 YZZ ZA5 ZZTAW --- -DZ -~X .3N .55 .GA .GJ .Y3 0R~ 18M 31~ 36B 3EH 3O- AAFWJ AAHHS AAHQN AAIPD AAMNL AANLZ AASGY AAXRX AAYCA AAYJJ ABCQN ABEML ABJNI ABQWH ABXGK ACCFJ ACCZN ACGFO ACGOF ACSCC ACXBN ADBTR ADKYN ADMGS ADOZA AEEZP AEGXH AEIGN AEQDE AEUYR AFEBI AFFPM AFGKR AFWVQ AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALVPJ AMYDB AOIJS CHEAL EMOBN FA8 HF~ HGLYW HZ~ H~9 IPNFZ KBYEO LH4 MVM NEJ NF~ OHT OIG SAMSI TEORI TR2 UKR W8F WHG WXSBR X7M XOL YBU YHG YKV YQT YSK YXB YYP ZGI ZXP ~IA ~WT AAYXX ADXHL AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 8FD FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c5832-9412fc24f8eaf01ee5490170553cda78186e853afdac7d008c9946804ecb9d7a3 |
IEDL.DBID | DR2 |
ISSN | 0022-3751 1469-7793 |
IngestDate | Thu Aug 21 18:20:10 EDT 2025 Fri Jul 11 05:33:59 EDT 2025 Fri Jul 25 12:16:06 EDT 2025 Wed Feb 19 01:47:22 EST 2025 Tue Jul 01 04:28:56 EDT 2025 Thu Apr 24 22:51:47 EDT 2025 Wed Jan 22 16:24:49 EST 2025 Fri Jan 15 02:12:02 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5832-9412fc24f8eaf01ee5490170553cda78186e853afdac7d008c9946804ecb9d7a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2821559 |
PMID | 19917563 |
PQID | 1545319171 |
PQPubID | 1086388 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2821559 proquest_miscellaneous_733609240 proquest_journals_1545319171 pubmed_primary_19917563 crossref_primary_10_1113_jphysiol_2009_183855 crossref_citationtrail_10_1113_jphysiol_2009_183855 wiley_primary_10_1113_jphysiol_2009_183855_TJP3792 highwire_physiosociety_588_1_201 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2010 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – month: 01 year: 2010 text: January 2010 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: London |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2010 |
Publisher | The Physiological Society Blackwell Publishing Ltd Wiley Subscription Services, Inc Blackwell Science Inc |
Publisher_xml | – name: The Physiological Society – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: Blackwell Science Inc |
References | 1995; 74 2007; 1185 1997b; 41 1986; 71 2004; 62 2002; 113 2000; 44 2006; 174 1983; 96 2000; 131 2008; 104 1898; 6 1995; 377 2000; 133 2008; 586 2006; 171 1999; 81 2007b; 27 2003; 551 1951; 4 2007; 37 1994; 663 1971; 9 2003; 90 2009; 10 1997a; 48 1991; 46 1994; 263 1995; 21 2008; 28 2006; 29 1999; 52 1982 1999; 51 2001; 57 1998; 244 2001; 136 2001; 139 2007; 27 2007; 17 2008; 18 2000a; 111 2002; 415 2006; 18 2000b; 111 1998; 21 2006; 117 2004; 155 1980; 16 2001; 112 1989; 11 2003; 149 2004; 19 2007a; 17 2006; 44 2004; 14 2005; 568 1998; 108 2003; 148 2006; 101 1981; 10 1933; 16 2003; 23 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 Hellebrandt FA (e_1_2_6_28_1) 1951; 4 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 Teixeira LA (e_1_2_6_66_1) 2003; 149 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 Davis WW (e_1_2_6_14_1) 1898; 6 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 Di Lazzaro V (e_1_2_6_16_1) 1999; 51 e_1_2_6_22_1 e_1_2_6_45_1 Hallett M (e_1_2_6_26_1) 1999; 52 e_1_2_6_47_1 e_1_2_6_68_1 Lee L (e_1_2_6_40_1) 2003; 23 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_61_1 Dizio P (e_1_2_6_18_1) 1995; 74 Keppel G (e_1_2_6_36_1) 1982 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 10759179 - Exp Brain Res. 2000 Mar;131(1):135-43 11482835 - Exp Brain Res. 2001 Jul;139(1):101-5 7675082 - Nature. 1995 Sep 14;377(6545):155-8 16307247 - Exp Brain Res. 2006 May;171(1):26-34 12140004 - Clin Neurophysiol. 2002 Aug;113(8):1249-57 5146491 - Neuropsychologia. 1971 Mar;9(1):97-113 17043329 - J Appl Physiol (1985). 2006 Nov;101(5):1514-22 18403447 - J Appl Physiol (1985). 2008 Jun;104(6):1656-64 11807497 - Nature. 2002 Feb 7;415(6872):640-4 2789820 - Brain Cogn. 1989 Sep;11(1):98-113 12821724 - J Physiol. 2003 Sep 1;551(Pt 2):563-73 9593504 - Neurosci Lett. 1998 Mar 20;244(3):121-4 7226856 - Cortex. 1980 Dec;16(4):587-603 10590981 - Electroencephalogr Clin Neurophysiol Suppl. 1999;52:105-13 17267558 - J Neurosci. 2007 Jan 31;27(5):1045-53 17974592 - J Physiol. 2008 Jan 15;586(2):325-51 10680571 - Clin Neurophysiol. 2000 Feb;111(2):344-9 7472384 - J Neurophysiol. 1995 Aug;74(2):802-15 16890483 - Clin Neurophysiol. 2006 Dec;117(12):2584-96 16051628 - J Physiol. 2005 Oct 1;568(Pt 1):343-54 11291723 - Exp Brain Res. 2001 Feb;136(4):431-8 14648014 - Exp Brain Res. 2004 Mar;155(2):196-203 12632233 - Exp Brain Res. 2003 Apr;149(3):312-9 14534271 - J Neurophysiol. 2003 Oct;90(4):2451-9 17964167 - Curr Biol. 2007 Nov 6;17(21):1896-902 17129198 - J Cogn Neurosci. 2006 Dec;18(12):2167-76 10825706 - Clin Neurophysiol. 2000 Jun;111(6):1002-7 15078569 - Eur J Neurosci. 2004 Apr;19(7):1950-62 17996854 - Brain Res. 2007 Dec 14;1185:136-51 16525129 - Cereb Cortex. 2007 Feb;17(2):353-62 10025782 - Neurology. 1999 Feb;52(3):529-37 11801430 - Clin Neurophysiol. 2002 Jan;113(1):101-7 18653655 - J Physiol. 2008 Sep 15;586(Pt 18):4481-7 10590942 - Electroencephalogr Clin Neurophysiol Suppl. 1999;51:120-6 11716954 - J Neurosci Methods. 2001 Dec 15;112(2):193-202 9474057 - Electroencephalogr Clin Neurophysiol. 1998 Jan;108(1):1-16 18057199 - J Neurosci. 2007 Dec 5;27(49):13413-9 17928331 - Cereb Cortex. 2008 Jun;18(6):1395-406 9914297 - J Neurophysiol. 1999 Jan;81(1):383-7 11104537 - Brain Cogn. 2000 Dec;44(3):455-69 16198379 - Neuropsychologia. 2006;44(6):939-49 9029074 - Ann Neurol. 1997 Feb;41(2):247-54 19229241 - Nat Rev Neurosci. 2009 Mar;10(3):224-34 14761660 - Curr Biol. 2004 Feb 3;14(3):252-6 11502912 - Neurology. 2001 Aug 14;57(3):449-55 12832556 - J Neurosci. 2003 Jun 15;23(12):5308-18 17190532 - Sports Med. 2007;37(1):1-14 12478392 - Exp Brain Res. 2003 Jan;148(1):1-16 3785745 - Neurosci Lett. 1986 Nov 11;71(2):235-40 7500130 - J Neurophysiol. 1995 Sep;74(3):1037-45 8989414 - J Neurophysiol. 1995 Oct;74(4):1787-92 14888623 - J Appl Physiol. 1951 Aug;4(2):136-44 16604315 - Exp Brain Res. 2006 Sep;174(2):199-209 18509024 - J Neurosci. 2008 May 28;28(22):5631-40 7874508 - Brain Res. 1994 Nov 14;663(2):251-6 9153480 - Neurology. 1997 May;48(5):1398-403 10985677 - Exp Brain Res. 2000 Aug;133(4):425-30 14718704 - Neurology. 2004 Jan 13;62(1):91-8 1786110 - Behav Brain Res. 1991 Dec 13;46(1):1-8 7643045 - J Exp Psychol Hum Percept Perform. 1995 Aug;21(4):719-33 8122113 - Science. 1994 Mar 4;263(5151):1287-9 9655121 - Muscle Nerve. 1998 Aug;21(8):1033-9 16290273 - Trends Neurosci. 2006 Jan;29(1):58-64 7335437 - Perception. 1981;10(4):383-9 |
References_xml | – volume: 113 start-page: 101 year: 2002 end-page: 107 article-title: Subthreshold low frequency repetitive transcranial magnetic stimulation selectively decreases facilitation in the motor cortex publication-title: Clin Neurophysiol – volume: 16 start-page: 144 year: 1933 end-page: 160 article-title: Studies in cross education: I. Mirror tracing the star‐shaped maze publication-title: J Exp Psychol – volume: 90 start-page: 2451 year: 2003 end-page: 2459 article-title: Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in human publication-title: J Neurophysiol – volume: 62 start-page: 91 year: 2004 end-page: 98 article-title: Repetitive TMS of the motor cortex improves ipsilateral sequential simple finger movements publication-title: Neurology – volume: 10 start-page: 383 year: 1981 end-page: 389 article-title: Interlimb transfer after adaptation to visual displacement: Patterns predicted from the functional closeness of limb neural control centres publication-title: Perception – volume: 48 start-page: 1398 year: 1997a end-page: 1403 article-title: Depression of motor cortex excitability by low‐frequency transcranial magnetic stimulation publication-title: Neurology – volume: 136 start-page: 431 year: 2001 end-page: 438 article-title: Role of the human motor cortex in rapid motor learning publication-title: Exp Brain Res – volume: 27 start-page: 13413 year: 2007 end-page: 13419 article-title: Impairment of retention but not acquisition of a visuomotor skill through time‐dependent disruption of primary motor cortex publication-title: J Neurosci – volume: 18 start-page: 2167 year: 2006 end-page: 2176 article-title: Proactive interference as a result of persisting neural representations of previously learned motor skills in primary motor cortex publication-title: J Cogn Neurosci – volume: 28 start-page: 5631 year: 2008 end-page: 5640 article-title: Mechanisms underlying functional changes in the primary motor cortex ipsilateral to an active hand publication-title: J Neurosci – volume: 1185 start-page: 136 year: 2007 end-page: 151 article-title: Neural correlates associated with intermanual transfer of sensorimotor adaptation publication-title: Brain Res – start-page: 146 year: 1982 end-page: 150 – volume: 111 start-page: 344 year: 2000a end-page: 349 article-title: Changes in motor cortex excitability during ipsilateral hand muscle activation in humans publication-title: Clin Neurophysiol – volume: 74 start-page: 1037 year: 1995 end-page: 1045 article-title: Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills publication-title: J Neurophysiol – volume: 74 start-page: 802 year: 1995 end-page: 815 article-title: Relation between cerebral activity and force in the motor areas of the human brain publication-title: J Neurophysiol – volume: 263 start-page: 1287 year: 1994 end-page: 1289 article-title: Modulation of cortical motor output maps during development of implicit and explicit knowledge publication-title: Science – volume: 16 start-page: 587 year: 1980 end-page: 603 article-title: Left‐hemisphere motor dominance in righthanders publication-title: Cortex – volume: 44 start-page: 939 year: 2006 end-page: 949 article-title: Intermanual transfer effects in sequential tactuomotor learning: evidence for effector independent coding publication-title: Neuropsychologia – volume: 663 start-page: 251 year: 1994 end-page: 256 article-title: Activity in the human primary motor cortex related to ipsilateral hand movements publication-title: Brain Res – volume: 104 start-page: 1656 year: 2008 end-page: 1664 article-title: Unilateral practice of a ballistic movement causes bilateral increases in performance and corticospinal excitability publication-title: J Appl Physiol – volume: 10 start-page: 224 year: 2009 end-page: 234 article-title: A single standard for memory: the case for reconsolidation publication-title: Nat Rev Neurosci – volume: 17 start-page: 1896 year: 2007a end-page: 1902 article-title: Neural substrates of intermanual transfer of a newly acquired motor skill publication-title: Curr Biol – volume: 71 start-page: 235 year: 1986 end-page: 240 article-title: Magnetic stimulation of the human brain: facilitation of motor responses by voluntary contraction of ipsilateral and contralateral muscles with additional observations on an amputee publication-title: Neurosci Lett – volume: 96 start-page: 223 year: 1983 end-page: 228 article-title: Cognitive and motor components of bilateral transfer publication-title: Am J Psychol – volume: 149 start-page: 312 year: 2003 end-page: 319 article-title: Intermanual transfer of force control is modulated by asymmetry of muscular strength publication-title: Exp Brain Res – volume: 29 start-page: 58 year: 2006 end-page: 64 article-title: Consolidation of motor memory publication-title: Trends Neurosci – volume: 44 start-page: 455 year: 2000 end-page: 469 article-title: Timing and force components in bilateral transfer of learning publication-title: Brain Cogn. – volume: 14 start-page: 252 year: 2004 end-page: 256 article-title: Consolidation of dynamic motor learning is not disrupted by rTMS of primary motor cortex publication-title: Curr Biol – volume: 148 start-page: 1 year: 2003 end-page: 16 article-title: Transcranial magnetic stimulation: new insights into representational cortical plasticity publication-title: Exp Brain Res – volume: 586 start-page: 325 year: 2008 end-page: 351 article-title: Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control publication-title: J Physiol – volume: 11 start-page: 98 year: 1989 end-page: 113 article-title: Asymmetrical transfer of training between hands: implications for interhemispheric communication in normal brain publication-title: Brain Cogn – volume: 133 start-page: 425 year: 2000 end-page: 430 article-title: Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability publication-title: Exp Brain Res – volume: 113 start-page: 1249 year: 2002 end-page: 1257 article-title: Modulation of input‐output curves by low and high frequency repetitive transcranial magnetic stimulation of the motor cortex publication-title: Clin Neurophysiol – volume: 174 start-page: 199 year: 2006 end-page: 209 article-title: Extensive training of elementary finger tapping movements changes the pattern of motor cortex excitability publication-title: Exp Brain Res – volume: 244 start-page: 121 year: 1998 end-page: 124 article-title: Modulation of ipsilateral motor cortex in man during unimanual finger movements of different complexities publication-title: Neurosci Lett – volume: 74 start-page: 1787 year: 1995 end-page: 1792 article-title: Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm publication-title: J Neurophysiol – volume: 551 start-page: 563 year: 2003 end-page: 573 article-title: Effects on the right motor hand‐area excitability produced by low‐frequency rTMS over human contralateral homologous cortex publication-title: J Physiol – volume: 117 start-page: 2584 year: 2006 end-page: 2596 article-title: A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition publication-title: Clin Neurophysiol – volume: 131 start-page: 135 year: 2000 end-page: 143 article-title: Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects publication-title: Exp Brain Res – volume: 9 start-page: 97 year: 1971 end-page: 113 article-title: The assessment and analysis of handedness: the Edinburgh inventory publication-title: Neuropsychologia – volume: 139 start-page: 101 year: 2001 end-page: 105 article-title: Symmetric facilitation between motor cortices during contraction of ipsilateral hand muscles publication-title: Exp Brain Res – volume: 27 start-page: 1045 year: 2007b end-page: 1053 article-title: Neurophysiological mechanisms involved in transfer of procedural knowledge publication-title: J Neurosci – volume: 568 start-page: 343 year: 2005 end-page: 354 article-title: Presynaptic control of group Ia afferents in relation to acquisition of a visuo‐motor skill in healthy humans publication-title: J Physiol – volume: 46 start-page: 1 year: 1991 end-page: 8 article-title: The temporal locus of transfer of training between hands: an interference study publication-title: Behav Brain Res – volume: 101 start-page: 1514 year: 2006 end-page: 1522 article-title: Contralateral effects of unilateral strength training: evidence and possible mechanisms publication-title: J Appl Physiol – volume: 37 start-page: 1 year: 2007 end-page: 14 article-title: Cross education: possible mechanisms for the contralateral effects of unilateral resistance training publication-title: Sports Med – volume: 377 start-page: 155 year: 1995 end-page: 158 article-title: Functional MRI evidence for adult motor cortex plasticity during motor skill learning publication-title: Nature – volume: 415 start-page: 640 year: 2002 end-page: 644 article-title: Early consolidation in human primary motor cortex publication-title: Nature – volume: 21 start-page: 1033 year: 1998 end-page: 1039 article-title: Facilitation of human first dorsal interosseous muscle responses to transcranial magnetic stimulation during voluntary contraction of the contralateral homonymous muscle publication-title: Muscle Nerve – volume: 52 start-page: 105 year: 1999 end-page: 113 article-title: Repetitive transcranial magnetic stimulation publication-title: Electroencephalogr Clin Neurophysiol Suppl – volume: 4 start-page: 136 year: 1951 end-page: 144 article-title: Cross education: ipsilateral and contralateral effects of unimanual training publication-title: J Appl Physiol – volume: 171 start-page: 26 year: 2006 end-page: 34 article-title: Physiology of modulation of motor cortex excitability by low‐frequency suprathreshold repetitive transcranial magnetic stimulation publication-title: Exp Brain Res – volume: 18 start-page: 1395 year: 2008 end-page: 1406 article-title: Memory formation in the motor cortex ipsilateral to a training hand publication-title: Cereb Cortex – volume: 51 start-page: 120 year: 1999 end-page: 126 article-title: Direct recordings of descending volleys after transcranial magnetic and electric motor cortex stimulation in conscious humans publication-title: Electroencephalogr Clin Neurophysiol Suppl – volume: 19 start-page: 1950 year: 2004 end-page: 1962 article-title: Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits publication-title: Eur J Neurosci – volume: 41 start-page: 247 year: 1997b end-page: 254 article-title: Involvement of the ipsilateral motor cortex in finger movements of different complexities publication-title: Ann Neurol – volume: 6 start-page: 6 year: 1898 end-page: 50 article-title: Researches in cross education publication-title: Studies from the Yale Pschological Laboratory – volume: 17 start-page: 353 year: 2007 end-page: 362 article-title: Role of the ipsilateral primary motor cortex in controlling the timing of hand muscle recruitment publication-title: Cereb Cortex – volume: 108 start-page: 1 year: 1998 end-page: 16 article-title: Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996 publication-title: Electroencephalogr Clin Neurophysiol – volume: 586 start-page: 4481 year: 2008 end-page: 4487 article-title: Low frequency rTMS suppresses specific excitatory circuits in the human motor cortex publication-title: J Physiol – volume: 155 start-page: 196 year: 2004 end-page: 203 article-title: Slowing fastest finger movements of the dominant hand with low‐frequency rTMS of the hand area of the primary motor cortex publication-title: Exp Brain Res – volume: 52 start-page: 529 year: 1999 end-page: 537 article-title: Low‐frequency repetitive transcranial magnetic stimulation of the motor cortex in writer's cramp publication-title: Neurology – volume: 112 start-page: 193 year: 2001 end-page: 202 article-title: Reliability of the input‐output properties of the corticospinal pathway obtained from transcranial magnetic and electrical stimulation publication-title: J Neurosci Methods – volume: 21 start-page: 719 year: 1995 end-page: 733 article-title: The locus of visual‐motor learning at the task or manipulator level: implications from intermanual transfer publication-title: J Exp Psychol Hum Percept Perform – volume: 23 start-page: 5308 year: 2003 end-page: 5318 article-title: Acute remapping within the motor system induced by low‐frequency repetitive transcranial magnetic stimulation publication-title: J Neurosci – volume: 111 start-page: 1002 year: 2000b end-page: 1007 article-title: Effects of low‐frequency transcranial magnetic stimulation on motor excitability and basic motor behaviour publication-title: Clin Neurophysiol – volume: 81 start-page: 383 year: 1999 end-page: 387 article-title: Activation of distinct motor cortex regions during ipsilateral and contralateral finger movements publication-title: J Neurophysiol – volume: 57 start-page: 449 year: 2001 end-page: 455 article-title: Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex publication-title: Neurology – ident: e_1_2_6_35_1 doi: 10.1016/0006-8993(94)91270-X – ident: e_1_2_6_53_1 doi: 10.1523/JNEUROSCI.0093-08.2008 – ident: e_1_2_6_17_1 doi: 10.1113/jphysiol.2008.159558 – ident: e_1_2_6_10_1 doi: 10.1037/h0069979 – ident: e_1_2_6_27_1 doi: 10.1007/s00221-005-0262-0 – ident: e_1_2_6_34_1 doi: 10.1038/377155a0 – ident: e_1_2_6_50_1 doi: 10.1016/0278-2626(89)90008-0 – ident: e_1_2_6_44_1 doi: 10.1007/s002210000614 – volume: 4 start-page: 136 year: 1951 ident: e_1_2_6_28_1 article-title: Cross education: ipsilateral and contralateral effects of unimanual training publication-title: J Appl Physiol doi: 10.1152/jappl.1951.4.2.136 – ident: e_1_2_6_46_1 doi: 10.1038/nature712 – ident: e_1_2_6_6_1 doi: 10.1152/japplphysiol.01351.2007 – volume: 23 start-page: 5308 year: 2003 ident: e_1_2_6_40_1 article-title: Acute remapping within the motor system induced by low‐frequency repetitive transcranial magnetic stimulation publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-12-05308.2003 – ident: e_1_2_6_58_1 doi: 10.1007/s002219900269 – ident: e_1_2_6_31_1 doi: 10.1152/jn.01001.2002 – ident: e_1_2_6_39_1 doi: 10.1016/j.tins.2005.10.003 – volume: 6 start-page: 6 year: 1898 ident: e_1_2_6_14_1 article-title: Researches in cross education publication-title: Studies from the Yale Pschological Laboratory – ident: e_1_2_6_60_1 doi: 10.1007/s00221-002-1234-2 – ident: e_1_2_6_2_1 doi: 10.1016/j.brainres.2007.09.088 – ident: e_1_2_6_47_1 doi: 10.1038/nrn2590 – ident: e_1_2_6_56_1 doi: 10.1523/JNEUROSCI.4128-06.2007 – ident: e_1_2_6_69_1 doi: 10.1016/S0168-5597(97)00096-8 – volume: 74 start-page: 1787 year: 1995 ident: e_1_2_6_18_1 article-title: Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm publication-title: J Neurophysiol doi: 10.1152/jn.1995.74.4.1787 – ident: e_1_2_6_51_1 doi: 10.1126/science.8122113 – volume: 149 start-page: 312 year: 2003 ident: e_1_2_6_66_1 article-title: Intermanual transfer of force control is modulated by asymmetry of muscular strength publication-title: Exp Brain Res doi: 10.1007/s00221-002-1363-7 – ident: e_1_2_6_48_1 doi: 10.1016/0028-3932(71)90067-4 – ident: e_1_2_6_54_1 doi: 10.1113/jphysiol.2005.089904 – start-page: 146 volume-title: Design and Analysis year: 1982 ident: e_1_2_6_36_1 – ident: e_1_2_6_43_1 doi: 10.1016/S1388-2457(99)00243-6 – ident: e_1_2_6_8_1 doi: 10.1212/WNL.48.5.1398 – ident: e_1_2_6_57_1 doi: 10.1113/jphysiol.2007.144824 – ident: e_1_2_6_45_1 doi: 10.1016/S1388-2457(00)00284-4 – ident: e_1_2_6_11_1 doi: 10.1162/jocn.2006.18.12.2167 – ident: e_1_2_6_41_1 doi: 10.2165/00007256-200737010-00001 – ident: e_1_2_6_30_1 doi: 10.2307/1422813 – ident: e_1_2_6_21_1 doi: 10.1016/j.clinph.2006.06.712 – ident: e_1_2_6_62_1 doi: 10.1002/(SICI)1097-4598(199808)21:8<1033::AID-MUS7>3.0.CO;2-9 – ident: e_1_2_6_13_1 doi: 10.1093/cercor/bhj152 – ident: e_1_2_6_42_1 doi: 10.1007/s002210000432 – ident: e_1_2_6_9_1 doi: 10.1002/ana.410410216 – ident: e_1_2_6_20_1 doi: 10.1068/p100383 – ident: e_1_2_6_55_1 doi: 10.1016/j.cub.2007.09.058 – ident: e_1_2_6_7_1 doi: 10.1016/S0165-0270(01)00468-X – ident: e_1_2_6_63_1 doi: 10.1007/s002210100758 – ident: e_1_2_6_65_1 doi: 10.1006/brcg.1999.1205 – ident: e_1_2_6_33_1 doi: 10.1007/s00221-003-1719-7 – ident: e_1_2_6_5_1 doi: 10.1152/japplphysiol.00531.2006 – ident: e_1_2_6_52_1 doi: 10.1152/jn.1995.74.3.1037 – ident: e_1_2_6_24_1 doi: 10.1113/jphysiol.2003.044313 – ident: e_1_2_6_67_1 doi: 10.1016/S0304-3940(98)00150-5 – ident: e_1_2_6_37_1 doi: 10.1212/WNL.62.1.91 – ident: e_1_2_6_29_1 doi: 10.1016/0304-3940(86)90565-3 – ident: e_1_2_6_32_1 doi: 10.1037/0096-1523.21.4.719 – volume: 52 start-page: 105 year: 1999 ident: e_1_2_6_26_1 article-title: Repetitive transcranial magnetic stimulation publication-title: Electroencephalogr Clin Neurophysiol Suppl – ident: e_1_2_6_59_1 doi: 10.1016/S1388-2457(01)00693-9 – ident: e_1_2_6_3_1 doi: 10.1016/j.cub.2004.01.033 – ident: e_1_2_6_15_1 doi: 10.1152/jn.1995.74.2.802 – ident: e_1_2_6_68_1 doi: 10.1016/j.neuropsychologia.2005.08.010 – volume: 51 start-page: 120 year: 1999 ident: e_1_2_6_16_1 article-title: Direct recordings of descending volleys after transcranial magnetic and electric motor cortex stimulation in conscious humans publication-title: Electroencephalogr Clin Neurophysiol Suppl – ident: e_1_2_6_38_1 doi: 10.1007/s00221-006-0440-8 – ident: e_1_2_6_23_1 doi: 10.1212/WNL.57.3.449 – ident: e_1_2_6_25_1 doi: 10.1523/JNEUROSCI.2570-07.2007 – ident: e_1_2_6_19_1 doi: 10.1093/cercor/bhm173 – ident: e_1_2_6_4_1 doi: 10.1111/j.1460-9568.2004.03277.x – ident: e_1_2_6_61_1 doi: 10.1212/WNL.52.3.529 – ident: e_1_2_6_22_1 doi: 10.1016/S1388-2457(02)00109-8 – ident: e_1_2_6_64_1 doi: 10.1016/S0010-9452(80)80006-2 – ident: e_1_2_6_12_1 doi: 10.1152/jn.1999.81.1.383 – ident: e_1_2_6_49_1 doi: 10.1016/S0166-4328(05)80091-9 – reference: 16604315 - Exp Brain Res. 2006 Sep;174(2):199-209 – reference: 16890483 - Clin Neurophysiol. 2006 Dec;117(12):2584-96 – reference: 9655121 - Muscle Nerve. 1998 Aug;21(8):1033-9 – reference: 18057199 - J Neurosci. 2007 Dec 5;27(49):13413-9 – reference: 11801430 - Clin Neurophysiol. 2002 Jan;113(1):101-7 – reference: 9593504 - Neurosci Lett. 1998 Mar 20;244(3):121-4 – reference: 7643045 - J Exp Psychol Hum Percept Perform. 1995 Aug;21(4):719-33 – reference: 17928331 - Cereb Cortex. 2008 Jun;18(6):1395-406 – reference: 11291723 - Exp Brain Res. 2001 Feb;136(4):431-8 – reference: 17190532 - Sports Med. 2007;37(1):1-14 – reference: 11716954 - J Neurosci Methods. 2001 Dec 15;112(2):193-202 – reference: 17964167 - Curr Biol. 2007 Nov 6;17(21):1896-902 – reference: 16198379 - Neuropsychologia. 2006;44(6):939-49 – reference: 7500130 - J Neurophysiol. 1995 Sep;74(3):1037-45 – reference: 17267558 - J Neurosci. 2007 Jan 31;27(5):1045-53 – reference: 14718704 - Neurology. 2004 Jan 13;62(1):91-8 – reference: 17043329 - J Appl Physiol (1985). 2006 Nov;101(5):1514-22 – reference: 10680571 - Clin Neurophysiol. 2000 Feb;111(2):344-9 – reference: 14534271 - J Neurophysiol. 2003 Oct;90(4):2451-9 – reference: 10025782 - Neurology. 1999 Feb;52(3):529-37 – reference: 3785745 - Neurosci Lett. 1986 Nov 11;71(2):235-40 – reference: 12478392 - Exp Brain Res. 2003 Jan;148(1):1-16 – reference: 7226856 - Cortex. 1980 Dec;16(4):587-603 – reference: 18653655 - J Physiol. 2008 Sep 15;586(Pt 18):4481-7 – reference: 18403447 - J Appl Physiol (1985). 2008 Jun;104(6):1656-64 – reference: 18509024 - J Neurosci. 2008 May 28;28(22):5631-40 – reference: 12632233 - Exp Brain Res. 2003 Apr;149(3):312-9 – reference: 8989414 - J Neurophysiol. 1995 Oct;74(4):1787-92 – reference: 11104537 - Brain Cogn. 2000 Dec;44(3):455-69 – reference: 10590981 - Electroencephalogr Clin Neurophysiol Suppl. 1999;52:105-13 – reference: 16525129 - Cereb Cortex. 2007 Feb;17(2):353-62 – reference: 16290273 - Trends Neurosci. 2006 Jan;29(1):58-64 – reference: 10825706 - Clin Neurophysiol. 2000 Jun;111(6):1002-7 – reference: 9029074 - Ann Neurol. 1997 Feb;41(2):247-54 – reference: 14888623 - J Appl Physiol. 1951 Aug;4(2):136-44 – reference: 9914297 - J Neurophysiol. 1999 Jan;81(1):383-7 – reference: 14761660 - Curr Biol. 2004 Feb 3;14(3):252-6 – reference: 12832556 - J Neurosci. 2003 Jun 15;23(12):5308-18 – reference: 12821724 - J Physiol. 2003 Sep 1;551(Pt 2):563-73 – reference: 17129198 - J Cogn Neurosci. 2006 Dec;18(12):2167-76 – reference: 19229241 - Nat Rev Neurosci. 2009 Mar;10(3):224-34 – reference: 9474057 - Electroencephalogr Clin Neurophysiol. 1998 Jan;108(1):1-16 – reference: 7335437 - Perception. 1981;10(4):383-9 – reference: 10985677 - Exp Brain Res. 2000 Aug;133(4):425-30 – reference: 1786110 - Behav Brain Res. 1991 Dec 13;46(1):1-8 – reference: 2789820 - Brain Cogn. 1989 Sep;11(1):98-113 – reference: 9153480 - Neurology. 1997 May;48(5):1398-403 – reference: 7874508 - Brain Res. 1994 Nov 14;663(2):251-6 – reference: 17996854 - Brain Res. 2007 Dec 14;1185:136-51 – reference: 7675082 - Nature. 1995 Sep 14;377(6545):155-8 – reference: 16051628 - J Physiol. 2005 Oct 1;568(Pt 1):343-54 – reference: 11807497 - Nature. 2002 Feb 7;415(6872):640-4 – reference: 11482835 - Exp Brain Res. 2001 Jul;139(1):101-5 – reference: 11502912 - Neurology. 2001 Aug 14;57(3):449-55 – reference: 7472384 - J Neurophysiol. 1995 Aug;74(2):802-15 – reference: 14648014 - Exp Brain Res. 2004 Mar;155(2):196-203 – reference: 5146491 - Neuropsychologia. 1971 Mar;9(1):97-113 – reference: 12140004 - Clin Neurophysiol. 2002 Aug;113(8):1249-57 – reference: 15078569 - Eur J Neurosci. 2004 Apr;19(7):1950-62 – reference: 10590942 - Electroencephalogr Clin Neurophysiol Suppl. 1999;51:120-6 – reference: 17974592 - J Physiol. 2008 Jan 15;586(2):325-51 – reference: 8122113 - Science. 1994 Mar 4;263(5151):1287-9 – reference: 10759179 - Exp Brain Res. 2000 Mar;131(1):135-43 – reference: 16307247 - Exp Brain Res. 2006 May;171(1):26-34 |
SSID | ssj0013099 |
Score | 2.3817272 |
Snippet | Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite,
the mechanisms remain poorly... Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly... |
SourceID | pubmedcentral proquest pubmed crossref wiley highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 201 |
SubjectTerms | Adolescent Adult Brain Female Fingers - physiology Functional Laterality - physiology Humans Learning - physiology Male Middle Aged Motor ability Motor Cortex Movement - physiology Neuroscience Psychomotor Performance - physiology Upper Extremity - physiology Young Adult |
Title | The ipsilateral motor cortex contributes to cross-limb transfer of performance gains after ballistic motor practice |
URI | http://jp.physoc.org/content/588/1/201.abstract https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2009.183855 https://www.ncbi.nlm.nih.gov/pubmed/19917563 https://www.proquest.com/docview/1545319171 https://www.proquest.com/docview/733609240 https://pubmed.ncbi.nlm.nih.gov/PMC2821559 |
Volume | 588 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWqrtjwKo9Aqbyo2KXEcRLHywo6Kq1AFWql7izbcYZAmowmGYmy4hP4Rr6k13aSYaASCNZ-aOw51z43vvdchPYNVwVJjQ5lSXiYZFEZKh2pUMLtVhRMkUTafOd377Pji-TkMr3cQrMxF8brQ0wf3KxluPPaGrhUQxUSYsUGPjnXv6295iQgM09trjmhmZXQf_MhXj8mRJxPouEsJUMGHUzz6rZJNm-oUTX4Ngb6eyDlzwTX3VCze2g-rs0Hpnw-WPXqQH_9Rfbx_xd_H90dSCw-9Kh7gLZM8xDtHDbgwF9d45f4zA9r59c7aAVAxNWiq2ppk51rDNhol1jbIN8v2EXK25JbpsN9i92O_Pj2va6uFO4dpzZL3JZ4sc5vwHNZNR12xc2xknXtpKaHacekr0foYnZ0_vo4HGo9hDqFQyXkCYlLHSdlbmQZEWPAb_VSP1QXklndPQPMQpaF1KwA4qI5T7I8SoxWvGCSPkbbTduYpwjnVBoGUIvhgk5MxhXTpUp1RDUvo8xkAaLj_yv0IIRu63HUwjtEVIy7a2t0cuF3N0DhNGrhhUD-0B-P0BG-ufNhuCLNc0GgKwnQ7ggpMZwcnbCUllonGprx1Aw2bx9yZGPaVSeshGUEjnMUoCcegOufBHyfpRkNENuA5tTByolvtjTVRycrDs63faMOUOyQ91erFOcnZ5Tx-Nm_DHqO7vhYDPtBaxdt98uVeQEUr1d7YMBvT_ecGd8AzttS_Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFL0qZQGb8ii0gQJeIHYpeSdeVkAZSltVaCp1Z9mO0wbSZDTJSJQVn8A38iVc20mGgUogxNoPxc659rn2vccAzxUVuR8r6fLCp26UeIUrpCdcjrtbnqfCj7jOdz46Tian0cFZfLYGb4dcGKsPMR64acsw67U2cH0g3Vu5Vhv4aHz_prKikwjNLI5vwM0IOYf2wl5_CJbXCR6lo2x4Gvt9Dh328_K6Xlb3qEE3-DoO-nso5c8U1-xR-3fgYhidDU35tLvoxK788ovw438Y_l3Y6Hks2bPAuwdrqr4Pm3s1-vCXV-QFObHNmvOrTVggFkk5a8uK63zniiA8mjmROs73MzHB8vrVLdWSriFmSr5__VaVl4J0hlarOWkKMlumOJBzXtYtMe-bE8GryqhN990OeV8P4HT_zfTVxO2fe3BljOuKSyM_KGQQFZnihecrha6rVfsJZc5TLb2nkFzwIucyzZG7SEqjJPMiJQXNUx4-hPW6qdU2kCzkKkW0BbhHRyqhIpWFiKUXSlp4iUocCIcfzGSvha6f5KiY9YlCNsyufqaTMju7Drhjq5nVAvlDfTJgh9ni1kbisjjLmI9VfQd2BkyxfvFomWa1ofajsZiMxWj2-i6H16pZtEyrWHroO3sObFkELj8JKX8aJ6ED6Qo2xwpaUXy1pC4vjLI4-t_6mtqBwEDvr0bJpgcnYUqDR__S6BncmkyPDtnhu-P3j-G2Dc3Q51s7sN7NF-oJMr5OPDXW_APJy1Yj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIiEuvMojUMAHxC0lb8fHCliVAtUKtVJvlu0420CarDZZiXLiJ_Ab-SWM7WSXhUogOPuR2PnGMxPPfAPwTDNZhKlWvihD5idZUPpSBdIXqN2KgsowESbf-f1RdnCSHJ6mp1swGXNhHD_E6oebkQx7XhsBnxflIOSGbOCjdf3b2nFOIjLzNL0CV_FxuXWtPkTr24SAsRVrOE3DIYUO53lx2SybKmqkDb7MBP09kvJnC9eqqMlNmI2Lc5Epn_aWvdxTX37hffz_1d-CG4MVS_Yd7G7Dlm7uwM5-gx78-QV5TqZuWDu72IElIpFU866qhcl2rgmCo10QZaJ8PxMbKm9qbumO9C2xO_L967e6Opekt0a1XpC2JPN1ggOZiarpiK1uTqSoa8s1PUw7Zn3dhZPJ6-OXB_5Q7MFXKZ4qPkvCqFRRUuZalEGoNTqujusnVoWghnhPo2khykIoWqDlohhLsjxItJKsoCK-B9tN2-gHQPJYaIpYi1BDJzpjkqpSpiqIFSuDTGcexOP35WpgQjcFOWruPKKYj7trinQy7nbXA381au6YQP7Qn4zQ4a65c3G4PM1zHmLX0IPdEVJ8ODo6bmza2HjR2ExWzSj05iZHNLpddtxwWAboOQce3HcAXL8SGvw0zWIP6AY0Vx0Mn_hmS1OdWV5x9L7NJbUHkUXeX62SHx9OY8qih_8y6Clcm76a8Hdvjt4-gusuLsP83NqF7X6x1I_R3OvlEyvLPwCXsFTS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ipsilateral+motor+cortex+contributes+to+cross-limb+transfer+of+performance+gains+after+ballistic+motor+practice&rft.jtitle=The+Journal+of+physiology&rft.au=Michael+Lee&rft.au=Mark+R.+Hinder&rft.au=Simon+C.+Gandevia&rft.au=Timothy+J.+Carroll&rft.date=2010-01-01&rft.pub=The+Physiological+Society&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=588&rft.issue=1&rft.spage=201&rft_id=info:doi/10.1113%2Fjphysiol.2009.183855&rft_id=info%3Apmid%2F19917563&rft.externalDBID=n%2Fa&rft.externalDocID=588_1_201 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |