The ipsilateral motor cortex contributes to cross-limb transfer of performance gains after ballistic motor practice

Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task dep...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 588; no. 1; pp. 201 - 212
Main Authors Lee, Michael, Hinder, Mark R., Gandevia, Simon C., Carroll, Timothy J.
Format Journal Article
LanguageEnglish
Published Oxford, UK The Physiological Society 01.01.2010
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Blackwell Science Inc
Subjects
Online AccessGet full text
ISSN0022-3751
1469-7793
1469-7793
DOI10.1113/jphysiol.2009.183855

Cover

Loading…
Abstract Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task depends partly on cortical circuits located ipsilateral to the trained limb. The idea that crossed effects, which are important for the learning process, might occur in the ‘untrained' hemisphere following ballistic training is based on the observation that tasks requiring strong descending drive generate extensive bilateral cortical activity. Twenty-one volunteers practiced a ballistic index finger abduction task with their right hand, and corticospinal excitability was assessed in two hand muscles (first dorsal interosseus, FDI; adductor digiti minimi, ADM). Eight control subjects did not train. After training, repetitive transcranial magnetic stimulation (rTMS; 15 min at 1 Hz) was applied to the left (trained) or right (untrained) motor cortex to induce a ‘virtual lesion'. A third training group received sham rTMS, and control subjects received rTMS to the right motor cortex. Performance and corticospinal excitability (for FDI) increased in both hands for training but not control subjects. rTMS of the left, trained motor cortex specifically reduced training-induced gains in motor performance for the right, trained hand, and rTMS of the right, untrained motor cortex specifically reduced performance gains for the left, untrained hand. Thus, cortical processes within the untrained hemisphere, ipsilateral to the trained hand, contribute to early retention of ballistic performance gains for the untrained limb.
AbstractList Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task depends partly on cortical circuits located ipsilateral to the trained limb. The idea that crossed effects, which are important for the learning process, might occur in the 'untrained' hemisphere following ballistic training is based on the observation that tasks requiring strong descending drive generate extensive bilateral cortical activity. Twenty-one volunteers practiced a ballistic index finger abduction task with their right hand, and corticospinal excitability was assessed in two hand muscles (first dorsal interosseus, FDI; adductor digiti minimi, ADM). Eight control subjects did not train. After training, repetitive transcranial magnetic stimulation (rTMS; 15 min at 1 Hz) was applied to the left (trained) or right (untrained) motor cortex to induce a 'virtual lesion'. A third training group received sham rTMS, and control subjects received rTMS to the right motor cortex. Performance and corticospinal excitability (for FDI) increased in both hands for training but not control subjects. rTMS of the left, trained motor cortex specifically reduced training-induced gains in motor performance for the right, trained hand, and rTMS of the right, untrained motor cortex specifically reduced performance gains for the left, untrained hand. Thus, cortical processes within the untrained hemisphere, ipsilateral to the trained hand, contribute to early retention of ballistic performance gains for the untrained limb. Non-technical summaryAlthough it has long been known that practice of a motor task with one limb improves performance with the opposite limb, the underlying mechanisms are poorly understood. Here we show that cross-limb transfer of ballistic motor performance (i.e. fastest possible movement) depends partly on changes in the cerebral hemisphere that controls movements of the untrained limb. We speculate that these 'crossed' adaptations occur because both sides of the brain are activated when ballistic tasks are performed with one limb. The data may have practical applications if crossed effects can be exploited to enhance movement capacity in disorders of movement that affect predominantly one side of the body.
Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task depends partly on cortical circuits located ipsilateral to the trained limb. The idea that crossed effects, which are important for the learning process, might occur in the ‘untrained’ hemisphere following ballistic training is based on the observation that tasks requiring strong descending drive generate extensive bilateral cortical activity. Twenty‐one volunteers practiced a ballistic index finger abduction task with their right hand, and corticospinal excitability was assessed in two hand muscles (first dorsal interosseus, FDI; adductor digiti minimi, ADM). Eight control subjects did not train. After training, repetitive transcranial magnetic stimulation (rTMS; 15 min at 1 Hz) was applied to the left (trained) or right (untrained) motor cortex to induce a ‘virtual lesion’. A third training group received sham rTMS, and control subjects received rTMS to the right motor cortex. Performance and corticospinal excitability (for FDI) increased in both hands for training but not control subjects. rTMS of the left, trained motor cortex specifically reduced training‐induced gains in motor performance for the right, trained hand, and rTMS of the right, untrained motor cortex specifically reduced performance gains for the left, untrained hand. Thus, cortical processes within the untrained hemisphere, ipsilateral to the trained hand, contribute to early retention of ballistic performance gains for the untrained limb. Non‐technical summary
Although it has long been known that practice of a motor task with one limb improves performance with the opposite limb, the underlying mechanisms are poorly understood. Here we show that cross‐limb transfer of ballistic motor performance (i.e. fastest possible movement) depends partly on changes in the cerebral hemisphere that controls movements of the untrained limb. We speculate that these ‘crossed’ adaptations occur because both sides of the brain are activated when ballistic tasks are performed with one limb. The data may have practical applications if crossed effects can be exploited to enhance movement capacity in disorders of movement that affect predominantly one side of the body.
Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task depends partly on cortical circuits located ipsilateral to the trained limb. The idea that crossed effects, which are important for the learning process, might occur in the ‘untrained’ hemisphere following ballistic training is based on the observation that tasks requiring strong descending drive generate extensive bilateral cortical activity. Twenty-one volunteers practiced a ballistic index finger abduction task with their right hand, and corticospinal excitability was assessed in two hand muscles (first dorsal interosseus, FDI; adductor digiti minimi, ADM). Eight control subjects did not train. After training, repetitive transcranial magnetic stimulation (rTMS; 15 min at 1 Hz) was applied to the left (trained) or right (untrained) motor cortex to induce a ‘virtual lesion’. A third training group received sham rTMS, and control subjects received rTMS to the right motor cortex. Performance and corticospinal excitability (for FDI) increased in both hands for training but not control subjects. rTMS of the left, trained motor cortex specifically reduced training-induced gains in motor performance for the right, trained hand, and rTMS of the right, untrained motor cortex specifically reduced performance gains for the left, untrained hand. Thus, cortical processes within the untrained hemisphere, ipsilateral to the trained hand, contribute to early retention of ballistic performance gains for the untrained limb.
Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task depends partly on cortical circuits located ipsilateral to the trained limb. The idea that crossed effects, which are important for the learning process, might occur in the ‘untrained' hemisphere following ballistic training is based on the observation that tasks requiring strong descending drive generate extensive bilateral cortical activity. Twenty-one volunteers practiced a ballistic index finger abduction task with their right hand, and corticospinal excitability was assessed in two hand muscles (first dorsal interosseus, FDI; adductor digiti minimi, ADM). Eight control subjects did not train. After training, repetitive transcranial magnetic stimulation (rTMS; 15 min at 1 Hz) was applied to the left (trained) or right (untrained) motor cortex to induce a ‘virtual lesion'. A third training group received sham rTMS, and control subjects received rTMS to the right motor cortex. Performance and corticospinal excitability (for FDI) increased in both hands for training but not control subjects. rTMS of the left, trained motor cortex specifically reduced training-induced gains in motor performance for the right, trained hand, and rTMS of the right, untrained motor cortex specifically reduced performance gains for the left, untrained hand. Thus, cortical processes within the untrained hemisphere, ipsilateral to the trained hand, contribute to early retention of ballistic performance gains for the untrained limb.
Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task depends partly on cortical circuits located ipsilateral to the trained limb. The idea that crossed effects, which are important for the learning process, might occur in the 'untrained' hemisphere following ballistic training is based on the observation that tasks requiring strong descending drive generate extensive bilateral cortical activity. Twenty-one volunteers practiced a ballistic index finger abduction task with their right hand, and corticospinal excitability was assessed in two hand muscles (first dorsal interosseus, FDI; adductor digiti minimi, ADM). Eight control subjects did not train. After training, repetitive transcranial magnetic stimulation (rTMS; 15 min at 1 Hz) was applied to the left (trained) or right (untrained) motor cortex to induce a 'virtual lesion'. A third training group received sham rTMS, and control subjects received rTMS to the right motor cortex. Performance and corticospinal excitability (for FDI) increased in both hands for training but not control subjects. rTMS of the left, trained motor cortex specifically reduced training-induced gains in motor performance for the right, trained hand, and rTMS of the right, untrained motor cortex specifically reduced performance gains for the left, untrained hand. Thus, cortical processes within the untrained hemisphere, ipsilateral to the trained hand, contribute to early retention of ballistic performance gains for the untrained limb.Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task depends partly on cortical circuits located ipsilateral to the trained limb. The idea that crossed effects, which are important for the learning process, might occur in the 'untrained' hemisphere following ballistic training is based on the observation that tasks requiring strong descending drive generate extensive bilateral cortical activity. Twenty-one volunteers practiced a ballistic index finger abduction task with their right hand, and corticospinal excitability was assessed in two hand muscles (first dorsal interosseus, FDI; adductor digiti minimi, ADM). Eight control subjects did not train. After training, repetitive transcranial magnetic stimulation (rTMS; 15 min at 1 Hz) was applied to the left (trained) or right (untrained) motor cortex to induce a 'virtual lesion'. A third training group received sham rTMS, and control subjects received rTMS to the right motor cortex. Performance and corticospinal excitability (for FDI) increased in both hands for training but not control subjects. rTMS of the left, trained motor cortex specifically reduced training-induced gains in motor performance for the right, trained hand, and rTMS of the right, untrained motor cortex specifically reduced performance gains for the left, untrained hand. Thus, cortical processes within the untrained hemisphere, ipsilateral to the trained hand, contribute to early retention of ballistic performance gains for the untrained limb.
Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task depends partly on cortical circuits located ipsilateral to the trained limb. The idea that crossed effects, which are important for the learning process, might occur in the ‘untrained’ hemisphere following ballistic training is based on the observation that tasks requiring strong descending drive generate extensive bilateral cortical activity. Twenty‐one volunteers practiced a ballistic index finger abduction task with their right hand, and corticospinal excitability was assessed in two hand muscles (first dorsal interosseus, FDI; adductor digiti minimi, ADM). Eight control subjects did not train. After training, repetitive transcranial magnetic stimulation (rTMS; 15 min at 1 Hz) was applied to the left (trained) or right (untrained) motor cortex to induce a ‘virtual lesion’. A third training group received sham rTMS, and control subjects received rTMS to the right motor cortex. Performance and corticospinal excitability (for FDI) increased in both hands for training but not control subjects. rTMS of the left, trained motor cortex specifically reduced training‐induced gains in motor performance for the right, trained hand, and rTMS of the right, untrained motor cortex specifically reduced performance gains for the left, untrained hand. Thus, cortical processes within the untrained hemisphere, ipsilateral to the trained hand, contribute to early retention of ballistic performance gains for the untrained limb. Non‐technical summary
Although it has long been known that practice of a motor task with one limb improves performance with the opposite limb, the underlying mechanisms are poorly understood. Here we show that cross‐limb transfer of ballistic motor performance (i.e. fastest possible movement) depends partly on changes in the cerebral hemisphere that controls movements of the untrained limb. We speculate that these ‘crossed’ adaptations occur because both sides of the brain are activated when ballistic tasks are performed with one limb. The data may have practical applications if crossed effects can be exploited to enhance movement capacity in disorders of movement that affect predominantly one side of the body.
Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly understood. Here we tested the hypothesis that improved performance with the untrained limb on a fastest possible (i.e. ballistic) movement task depends partly on cortical circuits located ipsilateral to the trained limb. The idea that crossed effects, which are important for the learning process, might occur in the 'untrained' hemisphere following ballistic training is based on the observation that tasks requiring strong descending drive generate extensive bilateral cortical activity. Twenty-one volunteers practiced a ballistic index finger abduction task with their right hand, and corticospinal excitability was assessed in two hand muscles (first dorsal interosseus, FDI; adductor digiti minimi, ADM). Eight control subjects did not train. After training, repetitive transcranial magnetic stimulation (rTMS; 15 min at 1 Hz) was applied to the left (trained) or right (untrained) motor cortex to induce a 'virtual lesion'. A third training group received sham rTMS, and control subjects received rTMS to the right motor cortex. Performance and corticospinal excitability (for FDI) increased in both hands for training but not control subjects. rTMS of the left, trained motor cortex specifically reduced training-induced gains in motor performance for the right, trained hand, and rTMS of the right, untrained motor cortex specifically reduced performance gains for the left, untrained hand. Thus, cortical processes within the untrained hemisphere, ipsilateral to the trained hand, contribute to early retention of ballistic performance gains for the untrained limb.
Author Mark R. Hinder
Michael Lee
Simon C. Gandevia
Timothy J. Carroll
Author_xml – sequence: 1
  givenname: Michael
  surname: Lee
  fullname: Lee, Michael
– sequence: 2
  givenname: Mark R.
  surname: Hinder
  fullname: Hinder, Mark R.
– sequence: 3
  givenname: Simon C.
  surname: Gandevia
  fullname: Gandevia, Simon C.
– sequence: 4
  givenname: Timothy J.
  surname: Carroll
  fullname: Carroll, Timothy J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19917563$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxS1URLeFb4CQJQ6csthxnNgckFDFX1WCw3K2HGey65UTB9uh7LfHS7YUeoHTaOTfe56Zd4HORj8CQk8pWVNK2cv9tDtE6926JESuqWCC8wdoRataFk0j2RlaEVKWBWs4PUcXMe4JoYxI-QidUylpw2u2QnGzA2ynaJ1OELTDg08-YONDgh-5jCnYdk4QcfLYBB9j4ezQ4hT0GHsI2Pd4gtD7MOjRAN5qO0as-2yGW-2cjcmak-kUtMkdPEYPe-0iPDnVS_T13dvN1Yfi-vP7j1dvrgvDBSsLWdGyN2XVC9A9oQC8koQ2hHNmOt0IKmoQnOm-06bpCBFGyqoWpALTyq7R7BK9XnynuR2gM5CX0U5NwQ46HJTXVv39Mtqd2vrvqhQl5Vxmgxcng-C_zRCTGmw04Jwewc9RNYzVRJYVyeTze-Tez2HM2ynKK85ovjfN1LM_B_o9yW0cGagW4NelA_R3CFHH1NVt6uqYulpSz7JX92TGJp3sMT1t3b_EchHfWAeH__pQbT59YY0s7w60s9vdjQ2gFjp6YyEdFBdC0ayk7CfNV9jb
CODEN JPHYA7
CitedBy_id crossref_primary_10_1123_mc_2016_0048
crossref_primary_10_3390_ijerph181910044
crossref_primary_10_3389_fnhum_2014_00234
crossref_primary_10_1113_JP270184
crossref_primary_10_1302_0301_620X_95B2_30566
crossref_primary_10_1016_j_apmr_2016_04_021
crossref_primary_10_1016_j_humov_2016_07_007
crossref_primary_10_1016_j_neubiorev_2021_11_025
crossref_primary_10_1016_j_clinph_2015_01_006
crossref_primary_10_1007_s00221_013_3481_9
crossref_primary_10_1111_sms_13608
crossref_primary_10_1080_00222895_2024_2390032
crossref_primary_10_1016_j_chb_2021_106782
crossref_primary_10_1016_j_jesf_2015_07_001
crossref_primary_10_1109_TNSRE_2022_3221738
crossref_primary_10_1152_jn_00777_2019
crossref_primary_10_1152_jn_00116_2018
crossref_primary_10_1007_s00221_011_2842_5
crossref_primary_10_1371_journal_pone_0204839
crossref_primary_10_1007_s00221_018_5224_4
crossref_primary_10_1371_journal_pone_0246298
crossref_primary_10_1007_s00421_011_2053_6
crossref_primary_10_1155_2016_8628039
crossref_primary_10_1080_00222895_2023_2265316
crossref_primary_10_1152_jn_00535_2012
crossref_primary_10_1016_j_neulet_2017_02_033
crossref_primary_10_1111_apha_12032
crossref_primary_10_1016_j_jsams_2011_07_007
crossref_primary_10_1002_mus_23316
crossref_primary_10_1371_journal_pone_0128747
crossref_primary_10_1100_2012_504837
crossref_primary_10_15406_mojor_2016_04_00138
crossref_primary_10_3389_fnhum_2019_00135
crossref_primary_10_3389_fnagi_2022_935781
crossref_primary_10_1007_s00221_012_3194_5
crossref_primary_10_1016_j_nicl_2016_11_012
crossref_primary_10_1080_09602011_2014_922889
crossref_primary_10_1371_journal_pone_0052573
crossref_primary_10_1152_jn_00850_2011
crossref_primary_10_2522_ptj_20120058
crossref_primary_10_1139_apnm_2018_0073
crossref_primary_10_1371_journal_pone_0141828
crossref_primary_10_1152_jn_00228_2013
crossref_primary_10_1093_cercor_bhad042
crossref_primary_10_1007_s10072_016_2693_8
crossref_primary_10_1016_j_clinph_2021_03_051
crossref_primary_10_1152_jn_01117_2010
crossref_primary_10_1371_journal_pone_0081038
crossref_primary_10_1007_s00221_014_4158_8
crossref_primary_10_1007_s00421_017_3736_4
crossref_primary_10_1016_j_mvr_2021_104271
crossref_primary_10_1016_j_neuroimage_2021_118657
crossref_primary_10_1152_japplphysiol_00958_2010
crossref_primary_10_1016_j_clinph_2014_12_006
crossref_primary_10_1152_japplphysiol_00971_2017
crossref_primary_10_1016_j_neuroscience_2021_12_011
crossref_primary_10_1016_j_neulet_2017_05_039
crossref_primary_10_23736_S0022_4707_20_10677_7
crossref_primary_10_1038_s41598_025_94182_z
crossref_primary_10_1111_ejn_13409
crossref_primary_10_1111_ejn_13769
crossref_primary_10_3389_fnagi_2015_00222
crossref_primary_10_1016_j_celrep_2016_11_009
crossref_primary_10_1111_j_1748_1716_2011_02271_x
crossref_primary_10_1038_s41598_020_74005_z
crossref_primary_10_1007_s00421_015_3248_z
crossref_primary_10_1152_jn_00178_2018
crossref_primary_10_1016_j_humov_2020_102629
crossref_primary_10_1177_1971400916631992
crossref_primary_10_1007_s00421_024_05509_z
crossref_primary_10_1088_1361_6579_ab516c
crossref_primary_10_3389_fnhum_2018_00289
crossref_primary_10_1249_JES_0000000000000009
crossref_primary_10_3389_fnagi_2015_00073
crossref_primary_10_1177_1545968310397202
crossref_primary_10_3390_sports9100142
crossref_primary_10_1152_jn_00225_2016
crossref_primary_10_1113_jphysiol_2010_198077
crossref_primary_10_1371_journal_pone_0080202
crossref_primary_10_1016_j_gaitpost_2019_02_019
crossref_primary_10_2147_JMDH_S298991
crossref_primary_10_1080_00222895_2022_2061409
crossref_primary_10_1123_jmld_2021_0006
crossref_primary_10_3724_SP_J_1329_2024_03004
crossref_primary_10_1111_sms_13926
crossref_primary_10_1080_13803395_2018_1500527
crossref_primary_10_1080_17461391_2012_704079
crossref_primary_10_1016_j_jcm_2017_01_002
crossref_primary_10_1016_j_neurobiolaging_2016_11_012
crossref_primary_10_1152_jn_00210_2011
crossref_primary_10_1113_JP275433
crossref_primary_10_1371_journal_pone_0222620
crossref_primary_10_3389_fneur_2019_01242
crossref_primary_10_1249_MSS_0000000000000600
crossref_primary_10_3389_fphys_2017_00297
crossref_primary_10_3389_fnhum_2016_00204
crossref_primary_10_3389_fphys_2017_00695
crossref_primary_10_1007_s00421_016_3436_5
crossref_primary_10_1007_s00221_023_06563_3
crossref_primary_10_1093_cercor_bhy172
crossref_primary_10_1152_jn_00557_2018
crossref_primary_10_1152_jn_00075_2013
crossref_primary_10_1007_s00421_018_3937_5
crossref_primary_10_1007_s40279_013_0049_6
crossref_primary_10_1016_j_neuropsychologia_2015_05_018
crossref_primary_10_18857_jkpt_2015_27_6_430
crossref_primary_10_1523_JNEUROSCI_3224_17_2018
crossref_primary_10_1007_s40279_013_0105_2
crossref_primary_10_1152_jn_00042_2014
crossref_primary_10_1249_MSS_0b013e318210783c
crossref_primary_10_1007_s00221_014_4016_8
crossref_primary_10_1097_NPT_0000000000000109
crossref_primary_10_1016_j_neulet_2021_136306
crossref_primary_10_1016_j_tins_2019_08_008
crossref_primary_10_1016_j_apmr_2011_08_010
crossref_primary_10_3389_fpsyg_2023_1187175
crossref_primary_10_1016_j_neuroscience_2015_08_007
crossref_primary_10_1016_j_bandc_2021_105691
crossref_primary_10_1016_j_clinph_2017_12_003
crossref_primary_10_1007_s00221_013_3451_2
crossref_primary_10_1016_j_jelekin_2023_102835
crossref_primary_10_1371_journal_pone_0197505
crossref_primary_10_1177_19417381211016353
crossref_primary_10_1152_jn_00485_2015
crossref_primary_10_1523_ENEURO_0190_20_2021
crossref_primary_10_1007_s00421_021_04839_6
crossref_primary_10_1080_00222895_2022_2106935
crossref_primary_10_1139_apnm_2017_0457
crossref_primary_10_1016_j_archger_2013_09_003
crossref_primary_10_1111_ejn_14538
crossref_primary_10_1007_s00421_011_2012_2
crossref_primary_10_1152_jn_00860_2017
crossref_primary_10_1523_JNEUROSCI_5363_13_2014
crossref_primary_10_1249_MSS_0b013e31820a94b8
crossref_primary_10_3389_fnins_2018_00787
crossref_primary_10_1007_s00421_017_3538_8
crossref_primary_10_3389_fnhum_2020_583579
crossref_primary_10_1007_s40279_024_02042_z
crossref_primary_10_1371_journal_pone_0155998
crossref_primary_10_1007_s00421_016_3346_6
crossref_primary_10_3390_ijerph17030849
crossref_primary_10_1007_s00421_019_04130_9
crossref_primary_10_1249_MSS_0000000000000733
Cites_doi 10.1016/0006-8993(94)91270-X
10.1523/JNEUROSCI.0093-08.2008
10.1113/jphysiol.2008.159558
10.1037/h0069979
10.1007/s00221-005-0262-0
10.1038/377155a0
10.1016/0278-2626(89)90008-0
10.1007/s002210000614
10.1152/jappl.1951.4.2.136
10.1038/nature712
10.1152/japplphysiol.01351.2007
10.1523/JNEUROSCI.23-12-05308.2003
10.1007/s002219900269
10.1152/jn.01001.2002
10.1016/j.tins.2005.10.003
10.1007/s00221-002-1234-2
10.1016/j.brainres.2007.09.088
10.1038/nrn2590
10.1523/JNEUROSCI.4128-06.2007
10.1016/S0168-5597(97)00096-8
10.1152/jn.1995.74.4.1787
10.1126/science.8122113
10.1007/s00221-002-1363-7
10.1016/0028-3932(71)90067-4
10.1113/jphysiol.2005.089904
10.1016/S1388-2457(99)00243-6
10.1212/WNL.48.5.1398
10.1113/jphysiol.2007.144824
10.1016/S1388-2457(00)00284-4
10.1162/jocn.2006.18.12.2167
10.2165/00007256-200737010-00001
10.2307/1422813
10.1016/j.clinph.2006.06.712
10.1002/(SICI)1097-4598(199808)21:8<1033::AID-MUS7>3.0.CO;2-9
10.1093/cercor/bhj152
10.1007/s002210000432
10.1002/ana.410410216
10.1068/p100383
10.1016/j.cub.2007.09.058
10.1016/S0165-0270(01)00468-X
10.1007/s002210100758
10.1006/brcg.1999.1205
10.1007/s00221-003-1719-7
10.1152/japplphysiol.00531.2006
10.1152/jn.1995.74.3.1037
10.1113/jphysiol.2003.044313
10.1016/S0304-3940(98)00150-5
10.1212/WNL.62.1.91
10.1016/0304-3940(86)90565-3
10.1037/0096-1523.21.4.719
10.1016/S1388-2457(01)00693-9
10.1016/j.cub.2004.01.033
10.1152/jn.1995.74.2.802
10.1016/j.neuropsychologia.2005.08.010
10.1007/s00221-006-0440-8
10.1212/WNL.57.3.449
10.1523/JNEUROSCI.2570-07.2007
10.1093/cercor/bhm173
10.1111/j.1460-9568.2004.03277.x
10.1212/WNL.52.3.529
10.1016/S1388-2457(02)00109-8
10.1016/S0010-9452(80)80006-2
10.1152/jn.1999.81.1.383
10.1016/S0166-4328(05)80091-9
ContentType Journal Article
Copyright 2010 The Authors. Journal compilation © 2010 The Physiological Society
Journal compilation © 2010 The Physiological Society
Copyright_xml – notice: 2010 The Authors. Journal compilation © 2010 The Physiological Society
– notice: Journal compilation © 2010 The Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
DOI 10.1113/jphysiol.2009.183855
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Technology Research Database
CrossRef


MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 212
ExternalDocumentID PMC2821559
3374172211
19917563
10_1113_jphysiol_2009_183855
TJP3792
588_1_201
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
05W
0R
0YM
10A
123
1OB
1OC
24P
29L
2WC
31
33P
3N
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAONW
AAVGM
AAZKR
ABCUV
ABFLS
ABHUG
ABITZ
ABIVO
ABOCM
ABPPZ
ABPTK
ABPVW
ABUFD
ABWRO
ACAHQ
ACFBH
ACGFS
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACXME
ACXQS
ADACO
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADXAS
ADZMN
AEIMD
AEUQT
AFBPY
AFFNX
AFPWT
AFZJQ
AGJLS
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DZ
E3Z
EBS
EJD
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GA
GODZA
GX1
H.X
H13
HZ
HZI
IA
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LI0
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF
O0-
O66
O9-
OK1
OVD
P2P
P2W
P2X
P2Z
P4A
P4B
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RPM
RX1
SUPJJ
TLM
TN5
UB1
UNR
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WT
WXI
WYISQ
X
XG1
Y3
YZZ
ZA5
ZZTAW
---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
0R~
18M
31~
36B
3EH
3O-
AAFWJ
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
ABCQN
ABEML
ABJNI
ABQWH
ABXGK
ACCFJ
ACCZN
ACGFO
ACGOF
ACSCC
ACXBN
ADBTR
ADKYN
ADMGS
ADOZA
AEEZP
AEGXH
AEIGN
AEQDE
AEUYR
AFEBI
AFFPM
AFGKR
AFWVQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALVPJ
AMYDB
AOIJS
CHEAL
EMOBN
FA8
HF~
HGLYW
HZ~
H~9
IPNFZ
KBYEO
LH4
MVM
NEJ
NF~
OHT
OIG
SAMSI
TEORI
TR2
UKR
W8F
WHG
WXSBR
X7M
XOL
YBU
YHG
YKV
YQT
YSK
YXB
YYP
ZGI
ZXP
~IA
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
8FD
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c5832-9412fc24f8eaf01ee5490170553cda78186e853afdac7d008c9946804ecb9d7a3
IEDL.DBID DR2
ISSN 0022-3751
1469-7793
IngestDate Thu Aug 21 18:20:10 EDT 2025
Fri Jul 11 05:33:59 EDT 2025
Fri Jul 25 12:16:06 EDT 2025
Wed Feb 19 01:47:22 EST 2025
Tue Jul 01 04:28:56 EDT 2025
Thu Apr 24 22:51:47 EDT 2025
Wed Jan 22 16:24:49 EST 2025
Fri Jan 15 02:12:02 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5832-9412fc24f8eaf01ee5490170553cda78186e853afdac7d008c9946804ecb9d7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2821559
PMID 19917563
PQID 1545319171
PQPubID 1086388
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2821559
proquest_miscellaneous_733609240
proquest_journals_1545319171
pubmed_primary_19917563
crossref_primary_10_1113_jphysiol_2009_183855
crossref_citationtrail_10_1113_jphysiol_2009_183855
wiley_primary_10_1113_jphysiol_2009_183855_TJP3792
highwire_physiosociety_588_1_201
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2010
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: January 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: London
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2010
Publisher The Physiological Society
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Blackwell Science Inc
Publisher_xml – name: The Physiological Society
– name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Blackwell Science Inc
References 1995; 74
2007; 1185
1997b; 41
1986; 71
2004; 62
2002; 113
2000; 44
2006; 174
1983; 96
2000; 131
2008; 104
1898; 6
1995; 377
2000; 133
2008; 586
2006; 171
1999; 81
2007b; 27
2003; 551
1951; 4
2007; 37
1994; 663
1971; 9
2003; 90
2009; 10
1997a; 48
1991; 46
1994; 263
1995; 21
2008; 28
2006; 29
1999; 52
1982
1999; 51
2001; 57
1998; 244
2001; 136
2001; 139
2007; 27
2007; 17
2008; 18
2000a; 111
2002; 415
2006; 18
2000b; 111
1998; 21
2006; 117
2004; 155
1980; 16
2001; 112
1989; 11
2003; 149
2004; 19
2007a; 17
2006; 44
2004; 14
2005; 568
1998; 108
2003; 148
2006; 101
1981; 10
1933; 16
2003; 23
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
Hellebrandt FA (e_1_2_6_28_1) 1951; 4
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
Teixeira LA (e_1_2_6_66_1) 2003; 149
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
Davis WW (e_1_2_6_14_1) 1898; 6
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
Di Lazzaro V (e_1_2_6_16_1) 1999; 51
e_1_2_6_22_1
e_1_2_6_45_1
Hallett M (e_1_2_6_26_1) 1999; 52
e_1_2_6_47_1
e_1_2_6_68_1
Lee L (e_1_2_6_40_1) 2003; 23
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_61_1
Dizio P (e_1_2_6_18_1) 1995; 74
Keppel G (e_1_2_6_36_1) 1982
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
10759179 - Exp Brain Res. 2000 Mar;131(1):135-43
11482835 - Exp Brain Res. 2001 Jul;139(1):101-5
7675082 - Nature. 1995 Sep 14;377(6545):155-8
16307247 - Exp Brain Res. 2006 May;171(1):26-34
12140004 - Clin Neurophysiol. 2002 Aug;113(8):1249-57
5146491 - Neuropsychologia. 1971 Mar;9(1):97-113
17043329 - J Appl Physiol (1985). 2006 Nov;101(5):1514-22
18403447 - J Appl Physiol (1985). 2008 Jun;104(6):1656-64
11807497 - Nature. 2002 Feb 7;415(6872):640-4
2789820 - Brain Cogn. 1989 Sep;11(1):98-113
12821724 - J Physiol. 2003 Sep 1;551(Pt 2):563-73
9593504 - Neurosci Lett. 1998 Mar 20;244(3):121-4
7226856 - Cortex. 1980 Dec;16(4):587-603
10590981 - Electroencephalogr Clin Neurophysiol Suppl. 1999;52:105-13
17267558 - J Neurosci. 2007 Jan 31;27(5):1045-53
17974592 - J Physiol. 2008 Jan 15;586(2):325-51
10680571 - Clin Neurophysiol. 2000 Feb;111(2):344-9
7472384 - J Neurophysiol. 1995 Aug;74(2):802-15
16890483 - Clin Neurophysiol. 2006 Dec;117(12):2584-96
16051628 - J Physiol. 2005 Oct 1;568(Pt 1):343-54
11291723 - Exp Brain Res. 2001 Feb;136(4):431-8
14648014 - Exp Brain Res. 2004 Mar;155(2):196-203
12632233 - Exp Brain Res. 2003 Apr;149(3):312-9
14534271 - J Neurophysiol. 2003 Oct;90(4):2451-9
17964167 - Curr Biol. 2007 Nov 6;17(21):1896-902
17129198 - J Cogn Neurosci. 2006 Dec;18(12):2167-76
10825706 - Clin Neurophysiol. 2000 Jun;111(6):1002-7
15078569 - Eur J Neurosci. 2004 Apr;19(7):1950-62
17996854 - Brain Res. 2007 Dec 14;1185:136-51
16525129 - Cereb Cortex. 2007 Feb;17(2):353-62
10025782 - Neurology. 1999 Feb;52(3):529-37
11801430 - Clin Neurophysiol. 2002 Jan;113(1):101-7
18653655 - J Physiol. 2008 Sep 15;586(Pt 18):4481-7
10590942 - Electroencephalogr Clin Neurophysiol Suppl. 1999;51:120-6
11716954 - J Neurosci Methods. 2001 Dec 15;112(2):193-202
9474057 - Electroencephalogr Clin Neurophysiol. 1998 Jan;108(1):1-16
18057199 - J Neurosci. 2007 Dec 5;27(49):13413-9
17928331 - Cereb Cortex. 2008 Jun;18(6):1395-406
9914297 - J Neurophysiol. 1999 Jan;81(1):383-7
11104537 - Brain Cogn. 2000 Dec;44(3):455-69
16198379 - Neuropsychologia. 2006;44(6):939-49
9029074 - Ann Neurol. 1997 Feb;41(2):247-54
19229241 - Nat Rev Neurosci. 2009 Mar;10(3):224-34
14761660 - Curr Biol. 2004 Feb 3;14(3):252-6
11502912 - Neurology. 2001 Aug 14;57(3):449-55
12832556 - J Neurosci. 2003 Jun 15;23(12):5308-18
17190532 - Sports Med. 2007;37(1):1-14
12478392 - Exp Brain Res. 2003 Jan;148(1):1-16
3785745 - Neurosci Lett. 1986 Nov 11;71(2):235-40
7500130 - J Neurophysiol. 1995 Sep;74(3):1037-45
8989414 - J Neurophysiol. 1995 Oct;74(4):1787-92
14888623 - J Appl Physiol. 1951 Aug;4(2):136-44
16604315 - Exp Brain Res. 2006 Sep;174(2):199-209
18509024 - J Neurosci. 2008 May 28;28(22):5631-40
7874508 - Brain Res. 1994 Nov 14;663(2):251-6
9153480 - Neurology. 1997 May;48(5):1398-403
10985677 - Exp Brain Res. 2000 Aug;133(4):425-30
14718704 - Neurology. 2004 Jan 13;62(1):91-8
1786110 - Behav Brain Res. 1991 Dec 13;46(1):1-8
7643045 - J Exp Psychol Hum Percept Perform. 1995 Aug;21(4):719-33
8122113 - Science. 1994 Mar 4;263(5151):1287-9
9655121 - Muscle Nerve. 1998 Aug;21(8):1033-9
16290273 - Trends Neurosci. 2006 Jan;29(1):58-64
7335437 - Perception. 1981;10(4):383-9
References_xml – volume: 113
  start-page: 101
  year: 2002
  end-page: 107
  article-title: Subthreshold low frequency repetitive transcranial magnetic stimulation selectively decreases facilitation in the motor cortex
  publication-title: Clin Neurophysiol
– volume: 16
  start-page: 144
  year: 1933
  end-page: 160
  article-title: Studies in cross education: I. Mirror tracing the star‐shaped maze
  publication-title: J Exp Psychol
– volume: 90
  start-page: 2451
  year: 2003
  end-page: 2459
  article-title: Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in human
  publication-title: J Neurophysiol
– volume: 62
  start-page: 91
  year: 2004
  end-page: 98
  article-title: Repetitive TMS of the motor cortex improves ipsilateral sequential simple finger movements
  publication-title: Neurology
– volume: 10
  start-page: 383
  year: 1981
  end-page: 389
  article-title: Interlimb transfer after adaptation to visual displacement: Patterns predicted from the functional closeness of limb neural control centres
  publication-title: Perception
– volume: 48
  start-page: 1398
  year: 1997a
  end-page: 1403
  article-title: Depression of motor cortex excitability by low‐frequency transcranial magnetic stimulation
  publication-title: Neurology
– volume: 136
  start-page: 431
  year: 2001
  end-page: 438
  article-title: Role of the human motor cortex in rapid motor learning
  publication-title: Exp Brain Res
– volume: 27
  start-page: 13413
  year: 2007
  end-page: 13419
  article-title: Impairment of retention but not acquisition of a visuomotor skill through time‐dependent disruption of primary motor cortex
  publication-title: J Neurosci
– volume: 18
  start-page: 2167
  year: 2006
  end-page: 2176
  article-title: Proactive interference as a result of persisting neural representations of previously learned motor skills in primary motor cortex
  publication-title: J Cogn Neurosci
– volume: 28
  start-page: 5631
  year: 2008
  end-page: 5640
  article-title: Mechanisms underlying functional changes in the primary motor cortex ipsilateral to an active hand
  publication-title: J Neurosci
– volume: 1185
  start-page: 136
  year: 2007
  end-page: 151
  article-title: Neural correlates associated with intermanual transfer of sensorimotor adaptation
  publication-title: Brain Res
– start-page: 146
  year: 1982
  end-page: 150
– volume: 111
  start-page: 344
  year: 2000a
  end-page: 349
  article-title: Changes in motor cortex excitability during ipsilateral hand muscle activation in humans
  publication-title: Clin Neurophysiol
– volume: 74
  start-page: 1037
  year: 1995
  end-page: 1045
  article-title: Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills
  publication-title: J Neurophysiol
– volume: 74
  start-page: 802
  year: 1995
  end-page: 815
  article-title: Relation between cerebral activity and force in the motor areas of the human brain
  publication-title: J Neurophysiol
– volume: 263
  start-page: 1287
  year: 1994
  end-page: 1289
  article-title: Modulation of cortical motor output maps during development of implicit and explicit knowledge
  publication-title: Science
– volume: 16
  start-page: 587
  year: 1980
  end-page: 603
  article-title: Left‐hemisphere motor dominance in righthanders
  publication-title: Cortex
– volume: 44
  start-page: 939
  year: 2006
  end-page: 949
  article-title: Intermanual transfer effects in sequential tactuomotor learning: evidence for effector independent coding
  publication-title: Neuropsychologia
– volume: 663
  start-page: 251
  year: 1994
  end-page: 256
  article-title: Activity in the human primary motor cortex related to ipsilateral hand movements
  publication-title: Brain Res
– volume: 104
  start-page: 1656
  year: 2008
  end-page: 1664
  article-title: Unilateral practice of a ballistic movement causes bilateral increases in performance and corticospinal excitability
  publication-title: J Appl Physiol
– volume: 10
  start-page: 224
  year: 2009
  end-page: 234
  article-title: A single standard for memory: the case for reconsolidation
  publication-title: Nat Rev Neurosci
– volume: 17
  start-page: 1896
  year: 2007a
  end-page: 1902
  article-title: Neural substrates of intermanual transfer of a newly acquired motor skill
  publication-title: Curr Biol
– volume: 71
  start-page: 235
  year: 1986
  end-page: 240
  article-title: Magnetic stimulation of the human brain: facilitation of motor responses by voluntary contraction of ipsilateral and contralateral muscles with additional observations on an amputee
  publication-title: Neurosci Lett
– volume: 96
  start-page: 223
  year: 1983
  end-page: 228
  article-title: Cognitive and motor components of bilateral transfer
  publication-title: Am J Psychol
– volume: 149
  start-page: 312
  year: 2003
  end-page: 319
  article-title: Intermanual transfer of force control is modulated by asymmetry of muscular strength
  publication-title: Exp Brain Res
– volume: 29
  start-page: 58
  year: 2006
  end-page: 64
  article-title: Consolidation of motor memory
  publication-title: Trends Neurosci
– volume: 44
  start-page: 455
  year: 2000
  end-page: 469
  article-title: Timing and force components in bilateral transfer of learning
  publication-title: Brain Cogn.
– volume: 14
  start-page: 252
  year: 2004
  end-page: 256
  article-title: Consolidation of dynamic motor learning is not disrupted by rTMS of primary motor cortex
  publication-title: Curr Biol
– volume: 148
  start-page: 1
  year: 2003
  end-page: 16
  article-title: Transcranial magnetic stimulation: new insights into representational cortical plasticity
  publication-title: Exp Brain Res
– volume: 586
  start-page: 325
  year: 2008
  end-page: 351
  article-title: Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control
  publication-title: J Physiol
– volume: 11
  start-page: 98
  year: 1989
  end-page: 113
  article-title: Asymmetrical transfer of training between hands: implications for interhemispheric communication in normal brain
  publication-title: Brain Cogn
– volume: 133
  start-page: 425
  year: 2000
  end-page: 430
  article-title: Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability
  publication-title: Exp Brain Res
– volume: 113
  start-page: 1249
  year: 2002
  end-page: 1257
  article-title: Modulation of input‐output curves by low and high frequency repetitive transcranial magnetic stimulation of the motor cortex
  publication-title: Clin Neurophysiol
– volume: 174
  start-page: 199
  year: 2006
  end-page: 209
  article-title: Extensive training of elementary finger tapping movements changes the pattern of motor cortex excitability
  publication-title: Exp Brain Res
– volume: 244
  start-page: 121
  year: 1998
  end-page: 124
  article-title: Modulation of ipsilateral motor cortex in man during unimanual finger movements of different complexities
  publication-title: Neurosci Lett
– volume: 74
  start-page: 1787
  year: 1995
  end-page: 1792
  article-title: Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm
  publication-title: J Neurophysiol
– volume: 551
  start-page: 563
  year: 2003
  end-page: 573
  article-title: Effects on the right motor hand‐area excitability produced by low‐frequency rTMS over human contralateral homologous cortex
  publication-title: J Physiol
– volume: 117
  start-page: 2584
  year: 2006
  end-page: 2596
  article-title: A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition
  publication-title: Clin Neurophysiol
– volume: 131
  start-page: 135
  year: 2000
  end-page: 143
  article-title: Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects
  publication-title: Exp Brain Res
– volume: 9
  start-page: 97
  year: 1971
  end-page: 113
  article-title: The assessment and analysis of handedness: the Edinburgh inventory
  publication-title: Neuropsychologia
– volume: 139
  start-page: 101
  year: 2001
  end-page: 105
  article-title: Symmetric facilitation between motor cortices during contraction of ipsilateral hand muscles
  publication-title: Exp Brain Res
– volume: 27
  start-page: 1045
  year: 2007b
  end-page: 1053
  article-title: Neurophysiological mechanisms involved in transfer of procedural knowledge
  publication-title: J Neurosci
– volume: 568
  start-page: 343
  year: 2005
  end-page: 354
  article-title: Presynaptic control of group Ia afferents in relation to acquisition of a visuo‐motor skill in healthy humans
  publication-title: J Physiol
– volume: 46
  start-page: 1
  year: 1991
  end-page: 8
  article-title: The temporal locus of transfer of training between hands: an interference study
  publication-title: Behav Brain Res
– volume: 101
  start-page: 1514
  year: 2006
  end-page: 1522
  article-title: Contralateral effects of unilateral strength training: evidence and possible mechanisms
  publication-title: J Appl Physiol
– volume: 37
  start-page: 1
  year: 2007
  end-page: 14
  article-title: Cross education: possible mechanisms for the contralateral effects of unilateral resistance training
  publication-title: Sports Med
– volume: 377
  start-page: 155
  year: 1995
  end-page: 158
  article-title: Functional MRI evidence for adult motor cortex plasticity during motor skill learning
  publication-title: Nature
– volume: 415
  start-page: 640
  year: 2002
  end-page: 644
  article-title: Early consolidation in human primary motor cortex
  publication-title: Nature
– volume: 21
  start-page: 1033
  year: 1998
  end-page: 1039
  article-title: Facilitation of human first dorsal interosseous muscle responses to transcranial magnetic stimulation during voluntary contraction of the contralateral homonymous muscle
  publication-title: Muscle Nerve
– volume: 52
  start-page: 105
  year: 1999
  end-page: 113
  article-title: Repetitive transcranial magnetic stimulation
  publication-title: Electroencephalogr Clin Neurophysiol Suppl
– volume: 4
  start-page: 136
  year: 1951
  end-page: 144
  article-title: Cross education: ipsilateral and contralateral effects of unimanual training
  publication-title: J Appl Physiol
– volume: 171
  start-page: 26
  year: 2006
  end-page: 34
  article-title: Physiology of modulation of motor cortex excitability by low‐frequency suprathreshold repetitive transcranial magnetic stimulation
  publication-title: Exp Brain Res
– volume: 18
  start-page: 1395
  year: 2008
  end-page: 1406
  article-title: Memory formation in the motor cortex ipsilateral to a training hand
  publication-title: Cereb Cortex
– volume: 51
  start-page: 120
  year: 1999
  end-page: 126
  article-title: Direct recordings of descending volleys after transcranial magnetic and electric motor cortex stimulation in conscious humans
  publication-title: Electroencephalogr Clin Neurophysiol Suppl
– volume: 19
  start-page: 1950
  year: 2004
  end-page: 1962
  article-title: Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits
  publication-title: Eur J Neurosci
– volume: 41
  start-page: 247
  year: 1997b
  end-page: 254
  article-title: Involvement of the ipsilateral motor cortex in finger movements of different complexities
  publication-title: Ann Neurol
– volume: 6
  start-page: 6
  year: 1898
  end-page: 50
  article-title: Researches in cross education
  publication-title: Studies from the Yale Pschological Laboratory
– volume: 17
  start-page: 353
  year: 2007
  end-page: 362
  article-title: Role of the ipsilateral primary motor cortex in controlling the timing of hand muscle recruitment
  publication-title: Cereb Cortex
– volume: 108
  start-page: 1
  year: 1998
  end-page: 16
  article-title: Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 586
  start-page: 4481
  year: 2008
  end-page: 4487
  article-title: Low frequency rTMS suppresses specific excitatory circuits in the human motor cortex
  publication-title: J Physiol
– volume: 155
  start-page: 196
  year: 2004
  end-page: 203
  article-title: Slowing fastest finger movements of the dominant hand with low‐frequency rTMS of the hand area of the primary motor cortex
  publication-title: Exp Brain Res
– volume: 52
  start-page: 529
  year: 1999
  end-page: 537
  article-title: Low‐frequency repetitive transcranial magnetic stimulation of the motor cortex in writer's cramp
  publication-title: Neurology
– volume: 112
  start-page: 193
  year: 2001
  end-page: 202
  article-title: Reliability of the input‐output properties of the corticospinal pathway obtained from transcranial magnetic and electrical stimulation
  publication-title: J Neurosci Methods
– volume: 21
  start-page: 719
  year: 1995
  end-page: 733
  article-title: The locus of visual‐motor learning at the task or manipulator level: implications from intermanual transfer
  publication-title: J Exp Psychol Hum Percept Perform
– volume: 23
  start-page: 5308
  year: 2003
  end-page: 5318
  article-title: Acute remapping within the motor system induced by low‐frequency repetitive transcranial magnetic stimulation
  publication-title: J Neurosci
– volume: 111
  start-page: 1002
  year: 2000b
  end-page: 1007
  article-title: Effects of low‐frequency transcranial magnetic stimulation on motor excitability and basic motor behaviour
  publication-title: Clin Neurophysiol
– volume: 81
  start-page: 383
  year: 1999
  end-page: 387
  article-title: Activation of distinct motor cortex regions during ipsilateral and contralateral finger movements
  publication-title: J Neurophysiol
– volume: 57
  start-page: 449
  year: 2001
  end-page: 455
  article-title: Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex
  publication-title: Neurology
– ident: e_1_2_6_35_1
  doi: 10.1016/0006-8993(94)91270-X
– ident: e_1_2_6_53_1
  doi: 10.1523/JNEUROSCI.0093-08.2008
– ident: e_1_2_6_17_1
  doi: 10.1113/jphysiol.2008.159558
– ident: e_1_2_6_10_1
  doi: 10.1037/h0069979
– ident: e_1_2_6_27_1
  doi: 10.1007/s00221-005-0262-0
– ident: e_1_2_6_34_1
  doi: 10.1038/377155a0
– ident: e_1_2_6_50_1
  doi: 10.1016/0278-2626(89)90008-0
– ident: e_1_2_6_44_1
  doi: 10.1007/s002210000614
– volume: 4
  start-page: 136
  year: 1951
  ident: e_1_2_6_28_1
  article-title: Cross education: ipsilateral and contralateral effects of unimanual training
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1951.4.2.136
– ident: e_1_2_6_46_1
  doi: 10.1038/nature712
– ident: e_1_2_6_6_1
  doi: 10.1152/japplphysiol.01351.2007
– volume: 23
  start-page: 5308
  year: 2003
  ident: e_1_2_6_40_1
  article-title: Acute remapping within the motor system induced by low‐frequency repetitive transcranial magnetic stimulation
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-12-05308.2003
– ident: e_1_2_6_58_1
  doi: 10.1007/s002219900269
– ident: e_1_2_6_31_1
  doi: 10.1152/jn.01001.2002
– ident: e_1_2_6_39_1
  doi: 10.1016/j.tins.2005.10.003
– volume: 6
  start-page: 6
  year: 1898
  ident: e_1_2_6_14_1
  article-title: Researches in cross education
  publication-title: Studies from the Yale Pschological Laboratory
– ident: e_1_2_6_60_1
  doi: 10.1007/s00221-002-1234-2
– ident: e_1_2_6_2_1
  doi: 10.1016/j.brainres.2007.09.088
– ident: e_1_2_6_47_1
  doi: 10.1038/nrn2590
– ident: e_1_2_6_56_1
  doi: 10.1523/JNEUROSCI.4128-06.2007
– ident: e_1_2_6_69_1
  doi: 10.1016/S0168-5597(97)00096-8
– volume: 74
  start-page: 1787
  year: 1995
  ident: e_1_2_6_18_1
  article-title: Motor adaptation to Coriolis force perturbations of reaching movements: endpoint but not trajectory adaptation transfers to the nonexposed arm
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1995.74.4.1787
– ident: e_1_2_6_51_1
  doi: 10.1126/science.8122113
– volume: 149
  start-page: 312
  year: 2003
  ident: e_1_2_6_66_1
  article-title: Intermanual transfer of force control is modulated by asymmetry of muscular strength
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-002-1363-7
– ident: e_1_2_6_48_1
  doi: 10.1016/0028-3932(71)90067-4
– ident: e_1_2_6_54_1
  doi: 10.1113/jphysiol.2005.089904
– start-page: 146
  volume-title: Design and Analysis
  year: 1982
  ident: e_1_2_6_36_1
– ident: e_1_2_6_43_1
  doi: 10.1016/S1388-2457(99)00243-6
– ident: e_1_2_6_8_1
  doi: 10.1212/WNL.48.5.1398
– ident: e_1_2_6_57_1
  doi: 10.1113/jphysiol.2007.144824
– ident: e_1_2_6_45_1
  doi: 10.1016/S1388-2457(00)00284-4
– ident: e_1_2_6_11_1
  doi: 10.1162/jocn.2006.18.12.2167
– ident: e_1_2_6_41_1
  doi: 10.2165/00007256-200737010-00001
– ident: e_1_2_6_30_1
  doi: 10.2307/1422813
– ident: e_1_2_6_21_1
  doi: 10.1016/j.clinph.2006.06.712
– ident: e_1_2_6_62_1
  doi: 10.1002/(SICI)1097-4598(199808)21:8<1033::AID-MUS7>3.0.CO;2-9
– ident: e_1_2_6_13_1
  doi: 10.1093/cercor/bhj152
– ident: e_1_2_6_42_1
  doi: 10.1007/s002210000432
– ident: e_1_2_6_9_1
  doi: 10.1002/ana.410410216
– ident: e_1_2_6_20_1
  doi: 10.1068/p100383
– ident: e_1_2_6_55_1
  doi: 10.1016/j.cub.2007.09.058
– ident: e_1_2_6_7_1
  doi: 10.1016/S0165-0270(01)00468-X
– ident: e_1_2_6_63_1
  doi: 10.1007/s002210100758
– ident: e_1_2_6_65_1
  doi: 10.1006/brcg.1999.1205
– ident: e_1_2_6_33_1
  doi: 10.1007/s00221-003-1719-7
– ident: e_1_2_6_5_1
  doi: 10.1152/japplphysiol.00531.2006
– ident: e_1_2_6_52_1
  doi: 10.1152/jn.1995.74.3.1037
– ident: e_1_2_6_24_1
  doi: 10.1113/jphysiol.2003.044313
– ident: e_1_2_6_67_1
  doi: 10.1016/S0304-3940(98)00150-5
– ident: e_1_2_6_37_1
  doi: 10.1212/WNL.62.1.91
– ident: e_1_2_6_29_1
  doi: 10.1016/0304-3940(86)90565-3
– ident: e_1_2_6_32_1
  doi: 10.1037/0096-1523.21.4.719
– volume: 52
  start-page: 105
  year: 1999
  ident: e_1_2_6_26_1
  article-title: Repetitive transcranial magnetic stimulation
  publication-title: Electroencephalogr Clin Neurophysiol Suppl
– ident: e_1_2_6_59_1
  doi: 10.1016/S1388-2457(01)00693-9
– ident: e_1_2_6_3_1
  doi: 10.1016/j.cub.2004.01.033
– ident: e_1_2_6_15_1
  doi: 10.1152/jn.1995.74.2.802
– ident: e_1_2_6_68_1
  doi: 10.1016/j.neuropsychologia.2005.08.010
– volume: 51
  start-page: 120
  year: 1999
  ident: e_1_2_6_16_1
  article-title: Direct recordings of descending volleys after transcranial magnetic and electric motor cortex stimulation in conscious humans
  publication-title: Electroencephalogr Clin Neurophysiol Suppl
– ident: e_1_2_6_38_1
  doi: 10.1007/s00221-006-0440-8
– ident: e_1_2_6_23_1
  doi: 10.1212/WNL.57.3.449
– ident: e_1_2_6_25_1
  doi: 10.1523/JNEUROSCI.2570-07.2007
– ident: e_1_2_6_19_1
  doi: 10.1093/cercor/bhm173
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1460-9568.2004.03277.x
– ident: e_1_2_6_61_1
  doi: 10.1212/WNL.52.3.529
– ident: e_1_2_6_22_1
  doi: 10.1016/S1388-2457(02)00109-8
– ident: e_1_2_6_64_1
  doi: 10.1016/S0010-9452(80)80006-2
– ident: e_1_2_6_12_1
  doi: 10.1152/jn.1999.81.1.383
– ident: e_1_2_6_49_1
  doi: 10.1016/S0166-4328(05)80091-9
– reference: 16604315 - Exp Brain Res. 2006 Sep;174(2):199-209
– reference: 16890483 - Clin Neurophysiol. 2006 Dec;117(12):2584-96
– reference: 9655121 - Muscle Nerve. 1998 Aug;21(8):1033-9
– reference: 18057199 - J Neurosci. 2007 Dec 5;27(49):13413-9
– reference: 11801430 - Clin Neurophysiol. 2002 Jan;113(1):101-7
– reference: 9593504 - Neurosci Lett. 1998 Mar 20;244(3):121-4
– reference: 7643045 - J Exp Psychol Hum Percept Perform. 1995 Aug;21(4):719-33
– reference: 17928331 - Cereb Cortex. 2008 Jun;18(6):1395-406
– reference: 11291723 - Exp Brain Res. 2001 Feb;136(4):431-8
– reference: 17190532 - Sports Med. 2007;37(1):1-14
– reference: 11716954 - J Neurosci Methods. 2001 Dec 15;112(2):193-202
– reference: 17964167 - Curr Biol. 2007 Nov 6;17(21):1896-902
– reference: 16198379 - Neuropsychologia. 2006;44(6):939-49
– reference: 7500130 - J Neurophysiol. 1995 Sep;74(3):1037-45
– reference: 17267558 - J Neurosci. 2007 Jan 31;27(5):1045-53
– reference: 14718704 - Neurology. 2004 Jan 13;62(1):91-8
– reference: 17043329 - J Appl Physiol (1985). 2006 Nov;101(5):1514-22
– reference: 10680571 - Clin Neurophysiol. 2000 Feb;111(2):344-9
– reference: 14534271 - J Neurophysiol. 2003 Oct;90(4):2451-9
– reference: 10025782 - Neurology. 1999 Feb;52(3):529-37
– reference: 3785745 - Neurosci Lett. 1986 Nov 11;71(2):235-40
– reference: 12478392 - Exp Brain Res. 2003 Jan;148(1):1-16
– reference: 7226856 - Cortex. 1980 Dec;16(4):587-603
– reference: 18653655 - J Physiol. 2008 Sep 15;586(Pt 18):4481-7
– reference: 18403447 - J Appl Physiol (1985). 2008 Jun;104(6):1656-64
– reference: 18509024 - J Neurosci. 2008 May 28;28(22):5631-40
– reference: 12632233 - Exp Brain Res. 2003 Apr;149(3):312-9
– reference: 8989414 - J Neurophysiol. 1995 Oct;74(4):1787-92
– reference: 11104537 - Brain Cogn. 2000 Dec;44(3):455-69
– reference: 10590981 - Electroencephalogr Clin Neurophysiol Suppl. 1999;52:105-13
– reference: 16525129 - Cereb Cortex. 2007 Feb;17(2):353-62
– reference: 16290273 - Trends Neurosci. 2006 Jan;29(1):58-64
– reference: 10825706 - Clin Neurophysiol. 2000 Jun;111(6):1002-7
– reference: 9029074 - Ann Neurol. 1997 Feb;41(2):247-54
– reference: 14888623 - J Appl Physiol. 1951 Aug;4(2):136-44
– reference: 9914297 - J Neurophysiol. 1999 Jan;81(1):383-7
– reference: 14761660 - Curr Biol. 2004 Feb 3;14(3):252-6
– reference: 12832556 - J Neurosci. 2003 Jun 15;23(12):5308-18
– reference: 12821724 - J Physiol. 2003 Sep 1;551(Pt 2):563-73
– reference: 17129198 - J Cogn Neurosci. 2006 Dec;18(12):2167-76
– reference: 19229241 - Nat Rev Neurosci. 2009 Mar;10(3):224-34
– reference: 9474057 - Electroencephalogr Clin Neurophysiol. 1998 Jan;108(1):1-16
– reference: 7335437 - Perception. 1981;10(4):383-9
– reference: 10985677 - Exp Brain Res. 2000 Aug;133(4):425-30
– reference: 1786110 - Behav Brain Res. 1991 Dec 13;46(1):1-8
– reference: 2789820 - Brain Cogn. 1989 Sep;11(1):98-113
– reference: 9153480 - Neurology. 1997 May;48(5):1398-403
– reference: 7874508 - Brain Res. 1994 Nov 14;663(2):251-6
– reference: 17996854 - Brain Res. 2007 Dec 14;1185:136-51
– reference: 7675082 - Nature. 1995 Sep 14;377(6545):155-8
– reference: 16051628 - J Physiol. 2005 Oct 1;568(Pt 1):343-54
– reference: 11807497 - Nature. 2002 Feb 7;415(6872):640-4
– reference: 11482835 - Exp Brain Res. 2001 Jul;139(1):101-5
– reference: 11502912 - Neurology. 2001 Aug 14;57(3):449-55
– reference: 7472384 - J Neurophysiol. 1995 Aug;74(2):802-15
– reference: 14648014 - Exp Brain Res. 2004 Mar;155(2):196-203
– reference: 5146491 - Neuropsychologia. 1971 Mar;9(1):97-113
– reference: 12140004 - Clin Neurophysiol. 2002 Aug;113(8):1249-57
– reference: 15078569 - Eur J Neurosci. 2004 Apr;19(7):1950-62
– reference: 10590942 - Electroencephalogr Clin Neurophysiol Suppl. 1999;51:120-6
– reference: 17974592 - J Physiol. 2008 Jan 15;586(2):325-51
– reference: 8122113 - Science. 1994 Mar 4;263(5151):1287-9
– reference: 10759179 - Exp Brain Res. 2000 Mar;131(1):135-43
– reference: 16307247 - Exp Brain Res. 2006 May;171(1):26-34
SSID ssj0013099
Score 2.3817272
Snippet Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly...
Although it has long been known that practicing a motor task with one limb can improve performance with the limb opposite, the mechanisms remain poorly...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 201
SubjectTerms Adolescent
Adult
Brain
Female
Fingers - physiology
Functional Laterality - physiology
Humans
Learning - physiology
Male
Middle Aged
Motor ability
Motor Cortex
Movement - physiology
Neuroscience
Psychomotor Performance - physiology
Upper Extremity - physiology
Young Adult
Title The ipsilateral motor cortex contributes to cross-limb transfer of performance gains after ballistic motor practice
URI http://jp.physoc.org/content/588/1/201.abstract
https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2009.183855
https://www.ncbi.nlm.nih.gov/pubmed/19917563
https://www.proquest.com/docview/1545319171
https://www.proquest.com/docview/733609240
https://pubmed.ncbi.nlm.nih.gov/PMC2821559
Volume 588
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWqrtjwKo9Aqbyo2KXEcRLHywo6Kq1AFWql7izbcYZAmowmGYmy4hP4Rr6k13aSYaASCNZ-aOw51z43vvdchPYNVwVJjQ5lSXiYZFEZKh2pUMLtVhRMkUTafOd377Pji-TkMr3cQrMxF8brQ0wf3KxluPPaGrhUQxUSYsUGPjnXv6295iQgM09trjmhmZXQf_MhXj8mRJxPouEsJUMGHUzz6rZJNm-oUTX4Ngb6eyDlzwTX3VCze2g-rs0Hpnw-WPXqQH_9Rfbx_xd_H90dSCw-9Kh7gLZM8xDtHDbgwF9d45f4zA9r59c7aAVAxNWiq2ppk51rDNhol1jbIN8v2EXK25JbpsN9i92O_Pj2va6uFO4dpzZL3JZ4sc5vwHNZNR12xc2xknXtpKaHacekr0foYnZ0_vo4HGo9hDqFQyXkCYlLHSdlbmQZEWPAb_VSP1QXklndPQPMQpaF1KwA4qI5T7I8SoxWvGCSPkbbTduYpwjnVBoGUIvhgk5MxhXTpUp1RDUvo8xkAaLj_yv0IIRu63HUwjtEVIy7a2t0cuF3N0DhNGrhhUD-0B-P0BG-ufNhuCLNc0GgKwnQ7ggpMZwcnbCUllonGprx1Aw2bx9yZGPaVSeshGUEjnMUoCcegOufBHyfpRkNENuA5tTByolvtjTVRycrDs63faMOUOyQ91erFOcnZ5Tx-Nm_DHqO7vhYDPtBaxdt98uVeQEUr1d7YMBvT_ecGd8AzttS_Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFL0qZQGb8ii0gQJeIHYpeSdeVkAZSltVaCp1Z9mO0wbSZDTJSJQVn8A38iVc20mGgUogxNoPxc659rn2vccAzxUVuR8r6fLCp26UeIUrpCdcjrtbnqfCj7jOdz46Tian0cFZfLYGb4dcGKsPMR64acsw67U2cH0g3Vu5Vhv4aHz_prKikwjNLI5vwM0IOYf2wl5_CJbXCR6lo2x4Gvt9Dh328_K6Xlb3qEE3-DoO-nso5c8U1-xR-3fgYhidDU35tLvoxK788ovw438Y_l3Y6Hks2bPAuwdrqr4Pm3s1-vCXV-QFObHNmvOrTVggFkk5a8uK63zniiA8mjmROs73MzHB8vrVLdWSriFmSr5__VaVl4J0hlarOWkKMlumOJBzXtYtMe-bE8GryqhN990OeV8P4HT_zfTVxO2fe3BljOuKSyM_KGQQFZnihecrha6rVfsJZc5TLb2nkFzwIucyzZG7SEqjJPMiJQXNUx4-hPW6qdU2kCzkKkW0BbhHRyqhIpWFiKUXSlp4iUocCIcfzGSvha6f5KiY9YlCNsyufqaTMju7Drhjq5nVAvlDfTJgh9ni1kbisjjLmI9VfQd2BkyxfvFomWa1ofajsZiMxWj2-i6H16pZtEyrWHroO3sObFkELj8JKX8aJ6ED6Qo2xwpaUXy1pC4vjLI4-t_6mtqBwEDvr0bJpgcnYUqDR__S6BncmkyPDtnhu-P3j-G2Dc3Q51s7sN7NF-oJMr5OPDXW_APJy1Yj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIiEuvMojUMAHxC0lb8fHCliVAtUKtVJvlu0420CarDZZiXLiJ_Ab-SWM7WSXhUogOPuR2PnGMxPPfAPwTDNZhKlWvihD5idZUPpSBdIXqN2KgsowESbf-f1RdnCSHJ6mp1swGXNhHD_E6oebkQx7XhsBnxflIOSGbOCjdf3b2nFOIjLzNL0CV_FxuXWtPkTr24SAsRVrOE3DIYUO53lx2SybKmqkDb7MBP09kvJnC9eqqMlNmI2Lc5Epn_aWvdxTX37hffz_1d-CG4MVS_Yd7G7Dlm7uwM5-gx78-QV5TqZuWDu72IElIpFU866qhcl2rgmCo10QZaJ8PxMbKm9qbumO9C2xO_L967e6Opekt0a1XpC2JPN1ggOZiarpiK1uTqSoa8s1PUw7Zn3dhZPJ6-OXB_5Q7MFXKZ4qPkvCqFRRUuZalEGoNTqujusnVoWghnhPo2khykIoWqDlohhLsjxItJKsoCK-B9tN2-gHQPJYaIpYi1BDJzpjkqpSpiqIFSuDTGcexOP35WpgQjcFOWruPKKYj7trinQy7nbXA381au6YQP7Qn4zQ4a65c3G4PM1zHmLX0IPdEVJ8ODo6bmza2HjR2ExWzSj05iZHNLpddtxwWAboOQce3HcAXL8SGvw0zWIP6AY0Vx0Mn_hmS1OdWV5x9L7NJbUHkUXeX62SHx9OY8qih_8y6Clcm76a8Hdvjt4-gusuLsP83NqF7X6x1I_R3OvlEyvLPwCXsFTS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ipsilateral+motor+cortex+contributes+to+cross-limb+transfer+of+performance+gains+after+ballistic+motor+practice&rft.jtitle=The+Journal+of+physiology&rft.au=Michael+Lee&rft.au=Mark+R.+Hinder&rft.au=Simon+C.+Gandevia&rft.au=Timothy+J.+Carroll&rft.date=2010-01-01&rft.pub=The+Physiological+Society&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=588&rft.issue=1&rft.spage=201&rft_id=info:doi/10.1113%2Fjphysiol.2009.183855&rft_id=info%3Apmid%2F19917563&rft.externalDBID=n%2Fa&rft.externalDocID=588_1_201
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon